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Abstract 

Sediment is considered as one of the important pollutant of concern in the U.S. In order 

to develop watershed management plans that address sediment pollution, it is essential to identify 

all sources of sediment in a watershed. The overall goal of this research is to quantify the total 

sediment from a watershed by integrating the outputs of three types of sediment sources: sheet 

and rill erosion, ephemeral gully erosion, and streambank erosion, that each operates at different 

spatial and temporal scales. This approach will be demonstrated in Black Vermillion River 

Watershed using AnnAGNPS (overland flow/erosion model), REGEM (ephemeral gully erosion 

model) and field measured values of streambank erosion. The study area includes three 

subwatersheds (Irish Creek, the Black Vermillion River Main Stem, and North Fork of the Black 

Vermillion), each monitored for continuous stream flow, base flow and event-based suspended 

sediment subwatershed export, annual streambank erosion, for 2 years. NASS land use, 

SSURGO soils data, 30-m DEMs, and local weather data were used to generate input data 

needed by the models. Stream monitoring data were used to calibrate the models. This paper will 

present results from independently calibrated and validated combinations of AnnAGNPS, 

REGEM, and filed measured streambank erosion.  Our hypothesis is that use of separate models 

to simulate sediment load contributions for each sediment source will improve model agreement 

with measured watershed sediment yield data. 
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CHAPTER 1 - Introduction 

1.1. General Background 

1.1.1. Sediment issues in U.S., globally 

Sediment is one of the principal pollutants of surface waters in the United States. 

Nationally, sediment has been identified as the most important contaminant of concern by 

the U.S Environmental Protection Agency. Streambank erosion and sedimentation are 

critical environmental, social and economical problems in U.S. and throughout the world 

(Borah and Bera, 2003). About 75 billion Mg of fertile soil is lost from world agricultural 

systems each year (Pimentel, 2006). The amount of soil lost in the U.S. is estimated to be 

about 3 billion Mg per year (Pimentel, 2006). Erosion reduces soil productivity and 

causes a range of downstream impacts (Cruse et al., 2006).Sediment is a concern for both 

physical and chemical reasons.  

Physical problems include degraded water quality, degraded aquatic habitat, 

increased water treatment costs, decrease in flood control, decrease channel capacity, 

clogged water intakes and loss of water storage capacity in reservoirs. The U.S. 

Department of Agriculture (USDA, 1989) reports that 60% of water-eroded soil ends up 

in U.S. streams. In Kansas, there is a 33% loss of lake's original water-storage capacity of 

425,000 acre-ft at conservation pool in Tuttle Creek Lake since the dam was closed in 

1962 (Juracek and Mau, 2002). The U.S. Geological Survey (USGS), in cooperation with 

Federal, State, and local agencies, has completed a number of reservoir sediment studies 

in Kansas using a combination of bathymetric surveying, sediment coring, chemical 

analysis, and statistical analysis (table 1.1).  

 



 2 

Table 1.1 Estimated sediment deposition and yield for several reservoirs in Kansas 

(http://ks.water.usgs.gov/studies/ressed/). 

Reservoir Drainage area 

(mi
2
) 

Years 

since dam 

closure 

Total deposition 

(ac-ft) 

Mean 

annual net 

yield  [ac 

ft/mi
2
)/yr] 

Decrease in 

storage capacity 

(percent) 

Mound City  5.8 21 248 2.04 14 

Crystal Lake 0.6 121 125 1.72 55 

Perry Lake 1,117.0 32 56,700 1.59 23 

Mission Lake 8.6 76 926 1.42 50 

Hillsdale Lake 144.0 15 2,100 0.97 3 

Cedar Lake 6.14 62 338 0.89 50 

Gardner City  5.5 60 281 0.85 12 

Otis Creek Res. 14.0 31 310 0.71 6 

Lake Afton 10.4 41 283 0.66 9 

Lake Olathe 16.6 45 317 0.42 10 

      Tuttle Creek  9,628.0 37 142,000 0.40 33 

Cheney Res. 933.0 33 7,100 0.22 4 

Webster Res. 1,150.0 40 1,267 0.03 2 

 

Heavy sedimentation leads to rivers and lake flooding. For example, Pimentel 

(2006) suggests that the floods that occurred in midwestern U.S. were due to the sediment 

deposited in Mississippi and Missouri rivers.  

Sediment serves as a carrier for various contaminants and, under certain 

conditions, as a source of contaminants to water and biota. Sediment-associated 

contaminants include nutrients (nitrogen, phosphorus), trace elements, and pesticides. 

USGS reservoir sediment studies in Kansas shows that sedimentation affects both the 

useful life of a reservoir for such important purposes as flood control and water supply as 

well as its aesthetic quality (USGS, 2009).  

Sediment quality is an important environmental concern because sediment may 

act as a sink for water-quality constituents and as a source of constituents to the overlying 

water column and biota. Once in the food chain, sediment-derived constituents may pose 

an even greater concern due to bioaccumulation. Soil erosion also adds to global 
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warming, because carbon dioxide is released to the atmosphere when enormous amounts 

of biomass carbon in the soil are oxidized.  

There are many economic losses and costs due to soil erosion. The most costly 

off-site damages occur when soil particles enter lake and river systems (Pimentel, 2006). 

Yearly erosion costs in the U.S. are in billions of dollars, with annual off-site costs 

estimated at $17 billion and onsite costs of about $27 billion (Cruse et al., 2006). Other 

estimates conclude soil erosion in U.S. costs the nation about $37.6 billion each year in 

loss of productivity (Uri, 2001). 

In order to develop watershed management plans that address sediment pollution, 

it is essential to identify all sources of sediment in a watershed and consider all sources of 

sediment while quantitatively determining total sediment from a watershed. Then risk 

areas can be identified and best management practices or conservation techniques can be 

implemented to minimize soil erosion rates. 

1.1.2. Problems with sediment source identification 

Effective management strategies to reduce watershed sediment loads require an 

understanding of the sources of sediment for a given stream or reservoir (Walling, 2005). 

Because the relative contribution of sediment from different sources can vary within and 

between basins and over time, basin-specific information on sediment sources is needed. 

Erosion and sediment yield in any stream basin are rarely in steady state (Trimble, 1999). 

Trimble‟s studies in the agricultural Coon Creek Basin for the period 1975-93 showed 

that sediment efflux remained relatively constant despite large stream and valley changes 

within the basin. Trimble‟s observations demonstrated that the sediment sources, sinks 
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and fluxes vary widely over time and space although improved soil conservation 

measures have decreased soil erosion. 

The proper identification of sediment source could potentially assist with attempts 

to mitigate output from watersheds and to prolong the usable life of reservoirs.  Efforts to 

limit excessive sediment from reaching a reservoir must target the correct sources. After 

identifying the sources of sediment, it is essential to quantify the amount of sediment 

coming from each source. Computer simulation models can help quantify sediment 

sources. 

1.1.3. Sediment simulation models 

Computer-based simulation models perform longterm simulation of the effects of 

watershed processes and management activities on water quality, water quantity, and soil 

quality. These models also facilitate the simulation of various conservation program 

effects and aid policy design to mitigate water and soil quality degradation by 

determining suitable conservation programs for particular watersheds and agronomic 

settings (Moriasi et al., 2007). Computer models for simulating sediment erosion can be 

divided functionally by watershed source area into two general categories: (1) overland 

erosion models and (2) fluvial erosion models. 

Many of the overland erosion models do not include algorithms for estimating 

sediment generated by fluvial processes within a given watershed. Sediment produced via 

fluvial processes can be quite significant, especially in watersheds that are highly 

urbanized, have steep slopes, or have large grazing populations with unimpeded access to 

streams (Dietrich and Dunne, 1978). Fluvial erosion models typically emphasize 

streambank erosion processes and generally fall into three categories based on their 
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complexity: (1) simplified models, based primarily on land-use designations and 

imperviousness, (2) moderately detailed simulations, based on empirical loading 

functions, and (3) highly detailed simulations, which require detailed site-specific data 

such as management operations, management schedule data. These categories of models 

differ primarily in the amount of location-specific data required to specify the parameters 

and on the complexity of computation required to produce results. The accuracy of these 

models depends on the underlying mathematical equations (McGarity and Horna, 2005). 

Simplified models are often based on statistical methods, such as linear 

regression, to relate loadings to a few parameters that are fairly easy to obtain. They often 

ignore characteristics such as topography and distribution of precipitation events, and are 

frequently applied using parameters that are aggregated across a wide area. These simple 

models typically can be used to support an assessment of the relative significance of 

different pollutant sources. They can guide decisions for watershed management plans 

and provide direction for continuous monitoring efforts. Examples of simplified models 

include STEPL (U.S. EPA, 2006) which models annual watershed pollutant loads and 

allows users to input an additional sediment load from channel sources (Nejadashemi and 

Mankin, 2007).  

Models in the moderately detailed simulations have mathematical formulas with 

little consideration given to exact location of specific sites in the watershed. These 

models can be used to evaluate pollution sources and impacts over broad geographic 

scales and therefore assist in defining target areas for pollution mitigation programs on 

large scale basis. Data of this type can be obtained using GIS layers. Examples of 
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moderately simulated models are Fluvial-12 (Chang, 1998), AVGWLF (McGarity and 

Horna, 2005). 

The highly detailed simulations employ the most advanced theory available on 

mechanisms of pollutant generation (sediment, nitrogen, phosphorous) and transport, and 

require highly site specific data to characterize these mechanisms. If the proper data are 

not available or can not be obtained at a reasonable cost, then the output of such models 

can be highly inaccurate. Complex models most accurately represent the current 

understanding of watershed processes affecting pollution generation. Complex models 

are used to identify sources of problems rather than simply describing all conditions. 

Examples of complex models include Conservational Channel Evolution and Pollutant 

Transport System (CONCEPTS) (Langendoen, 2000). 

1.1.4. Model selection considerations 

Selecting the appropriate model is crucial in developing feasible, defensible and 

equitable TMDLs and load locations (Shoemaker et al., 2005). The following factors 

must be taken into consideration while selecting a model: 

 Stakeholder issues 

 Model characteristics 

 Water body types 

 Pollutant types 

 Management practices 

 Temporal scale (Climate data) 

 Spatial scale 

 Calibration needs 
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 Time and money available 

 Project time line 

The standard practice in modeling is to identify the dominant processes and identify the 

simplest models sufficient to meet the needs of the project (Shoemaker et al., 2005).  

1.1.5. Limitations of current modeling approach 

Understanding and evaluating natural processes in a watershed leading to 

impairments and problems are continuous challenges for scientists and engineers. Most 

current erosion and runoff modeling is typically limited in spatial and/or temporal 

resolution and accuracy. Although watershed models have become increasingly more 

sophisticated, there is a long way to go before they become household tools. The most 

ubiquitous deficiencies of the models are their lack of user friendliness, large data 

requirements, lack of quantitative measures of their reliability (Singh and Frevert, 2006). 

Models cannot be embedded with social, political and environmental systems (Singh and 

Frevert, 2006). Developing reliable watershed simulation models and validating them for 

real-world watersheds with measured and monitored data are also challenging (Borah and 

Bera, 2003). 

1.2. Research Goals and Objectives 

Watershed sediment sources include overland (inter-rill and rill), ephemeral gully, 

streambank, and stream bed. The overall goal of this research was to develop methods 

that quantify the total sediment from a watershed by integrating estimates from three 

sources: sheet and rill erosion, ephemeral gully erosion, and streambank erosion, that 

each operates at different spatial and temporal scales. This approach was demonstrated in 

Irish Creek, Main Stem, and North Fork Subwatersheds of Black Vermillion Watershed 
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using Annualized Agricultural Non Point Source Pollution Model (AnnAGNPS) 

(overland flow/erosion model) (Bingner and Theurer, 2003), Revised Ephemeral Gully 

Erosion Model (REGEM) (ephemeral gully erosion model) (Gordon et al., 2006), and a 

number of modeling approaches to dissagragate annual field-based measurements of 

stream-bank erosion to the daily scale. The study area included three subwatersheds (Irish 

Creek, the Black Vermillion River Main Stem, and North Fork of the Black Vermillion), 

each monitored for continuous stream flow and event-based suspended sediment 

subwatershed export, annual streambank erosion for 2 years. The following specific 

objectives guided this study:  

1. Develop and demonstrate a modeling approach that integrates the outputs from 

overland erosion model, ephemeral gully erosion model, and field measured 

streambank erosion values, each operating at different spatial and temporal scales. 

2. Develop a method to compare integrated watershed-level sediment discharge 

model estimates to stream suspended-sediment discharge measurements. 

3. Quantify the differences in accuracy that result from different levels of integration 

of AnnAGNPS, REGEM and field measured streambank erosion values in Irish 

Creek, Main Stem and North Fork Subwatersheds. 
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CHAPTER 2 - Literature Review 

2.1. Introduction 

In order to develop watershed management plans that address sediment pollution, 

it is essential to identify all sources of sediment in a watershed.  Total sediment from a 

watershed includes sediment coming from overland (inter-rill and rill), ephemeral gullies, 

gullies, streambanks, and stream beds. It is necessary to consider the sediment coming 

from all these sources when developing plans and prioritizing specific actions to address 

each source.  

Sediment transport in streams includes suspended sediment and bedload.  

Suspended sediment is typically represented using a measure of total suspended solids 

(TSS) in the water sample drawn from the stream water column. The procedure used in 

this study to measure the total suspended solids parameter is described the Standard 

Methods for the Examination of Water and Wastewater Method 209C (Clesceri et al., 

1998).  Water with TSS concentrations less than 20 mg/L are considered to be clear, 

concentrations between 20 and 80 mg/L tend to appear cloudy, while TSS concentrations 

greater than 150 mg/L appear to be dirty and are considered impaired (Barnes, 2005). 

Nonpoint sources of TSS are typically associated with soil erosion in surface 

runoff and streambank erosion. As levels of TSS increase, a stream begins to lose its 

ability to support a diversity of aquatic life.  Suspended solids absorb heat from sunlight, 

which increases water temperature and subsequently decreases levels of dissolved 

oxygen.  TSS can also destroy fish habitat because suspended solids settle to the bottom 

and can eventually blanket the riverbed.  Suspended solids can smother the eggs of fish 

and aquatic insects, and can suffocate newly hatched insect larvae.  Suspended solids can 
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also harm fish directly by clogging gills, reducing growth rates, and lowering resistance 

to disease.  Changes to the aquatic environment may result in diminished food sources, 

and increased difficulties in finding food.  Natural movements and migrations of aquatic 

populations may be disrupted. 

Einstein (1950), Colby (1963), Bagnold (1966), and Van Rijn (1984), all defined 

bed load sediment in terms of material of which the bed is composed and transported by 

rolling and sliding, and by hopping or jumping or saltating. Bagnold called bed load the 

movement of particles whose successive contacts with the bed are limited by the effects 

of gravity. That means that the particles do not go into suspension. The suspended bed-

load material is then defined as that in which the excess weight of the particles is 

supported by the upward impulses of turbulence. Van Rijn chose a similar definition 

(Abraham and Pratt, 2002). Two methods are being developed to estimate bedload by the 

U.S. Army Corps of Engineers. One method would be based on the celerity of traveling 

sand waves and the other is based on the difference of surfaces (Abraham and Pratt, 

2002). To date, most methods are only marginally successful (Abraham and Pratt, 2002). 

Accurate sampling of bedload is difficult due to the movement of sediments in bars, 

ripples and dunes (for sand), changes in sediment supply, „the stop and start‟ nature of 

sediment movement and the problem of efficiently sampling sediments over a range of 

sizes. 

Streambank erosion and associated sedimentation and land loss hazards are a 

problem of global significance. Sediment produced via streambank erosion can be a 

major watershed contributor, especially in watersheds that are highly urbanized, have 

steep slopes, and have large grazing animal populations with unimpeded access to 
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streams (Evans et al., 2003). Streambank erosion is a dominant source of sediment in 

many river systems.  Wilkin and Hebel (1982) estimate streambanks contribute 50% of 

total watershed sediment loads in Midwestern U.S. streams. The adverse consequences of 

streambank erosion results not only in accelerated sediment yields but also in 

destabilizing the stream channel, leading to associated stream type changes. These 

instabilities and consequential shifts in stream type can degrade physical and biological 

function of rivers. Therefore it is essential to include sediment coming from streambank 

erosion while estimating the total sediment from a watershed. 

Soil conservationists have recently noted that an important source of sediment 

erosion within fields is being overlooked. Among other terms, it has been called 

ephemeral gully erosion, concentrated flow erosion, and mega rill erosion. The 

topography of most fields causes runoff to collect and concentrate in a few major 

waterways within the field. The erosion that occurs in these channels is called ephemeral 

gully erosion (Foster, 1986). Ephemeral gully erosion is an important soil degradation 

process affecting environments worldwide (Gordon et al., 2007) and can significantly 

contribute to total soil losses in agricultural areas. Ephemeral gullies serve as connecting 

links transferring sediment and associated agrochemicals from upland areas to stream 

channels. About 20% to 100% of the total agricultural soil loss likely is due to ephemeral 

gully erosion (Gordon et al., 2007). Because of this significant contribution and their 

wide spread occurrence, USDA-NRCS stressed the importance of including ephemeral 

gully erosion processes within the soil loss prediction technology (USDA-NRCS, 1996; 

Gordon et al., 2007). Hargrove et al. (2010) also identified the critical need for 

quantifying the contribution of ephemeral gully erosion to upland erosion  
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Sediment can be quantitatively determined from each source by using watershed 

models. Watershed models are computer based models that can predict sediment loads. 

Each source has specific models in predicting sediment load from that source. Models 

operate at different spatial and temporal scales. 

The goal of this study was to quantify the total sediment from a watershed by 

integrating the outputs of three types of watershed models: an overland erosion model, an 

ephemeral gully erosion model, and a streambank erosion model, that operate at different 

spatial and temporal scales. A brief description about the three different watershed 

models (overland flow model, ephemeral gully erosion, and streambank erosion model) is 

given below. 

2.2. Overland Flow Model 

Selecting a suitable watershed/hydrologic model for a particular application and 

for a certain watershed is a difficult task (Polyakav et al., 2007). Some of the commonly 

used overland flow models are Annualized Agricultural Non-Point Source model 

(AnnAGNPS), Soil and Water Assessment Tool (SWAT), L-THIA, and Hydrological 

Simulation Model (HSPF) (Borah and Bera, 2003). Some of the models are based on 

simple empirical relations and some are based on empirical equations that have 

computationally intensive numerical solutions. Sometimes simple models are incapable 

of producing desired results, yet the detailed models could be inefficient and prohibitive 

for large watersheds (Borah and Bera, 2003). Therefore selecting a suitable model for a 

particular application is a difficult task. 

In this study, our overall objective was to assess sheet/rill erosion, ephemeral 

gully erosion, and streambank erosion contributions to stream sediment loads at the 
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watershed scale.  The only watershed model that included an ephemeral gully submodel 

was AnnAGNPS (Borah and Bera, 2003).  Therefore, AnnAGNPS was selected for this 

study.  AnnAGNPS provided the following advantages. 

First, AnnAGNPS has demonstrated reasonable accuracy in simulating stream 

flow and sediment yields in a number of watershed settings.  This will be discussed 

further in the following section. 

Second, AnnAGNPS has an integrated ephemeral gully erosion model, REGEM, 

that has been integrated as an additional tool within the Annualized Agricultural Non-

point Source (AnnAGNPS) model (Bingner and Theurer, 2001).  This allows explicit 

accounting of the contribution of ephemeral gullies in watershed-scale erosion at the sub-

cell scale (Gordon et al., 2006) with a minimum of additional input data.  The REGEM 

model will be discussed in detail in a later section. 

Third, AnnAGNPS disaggregates eroded sediment yields by particle size. In 

AnnAGNPS model the sediment is subdivided into five particle size classes (clay, silt, 

sand, small aggregate and large aggregate), and these particle sizes are routed separately 

in the stream reaches in AnnAGNPS.  Other models, such as SWAT and HSPF, do not 

route sediment particle sizes separately.  This feature was not fully utilized in the present 

study, but offers an opportunity for further method development to separate sediment size 

fractions that are transported by the stream under different flow regimes. 

2.2.1. Application of AnnAGNPS model 

AnnAGNPS model was selected to simulate overland erosion in this study. 

AnnAGNPS has demonstrated reasonable accuracy in simulating stream flow and 

sediment yields in a number of watershed settings. AnnAGNPS predicted the runoff 
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volume within a range of acceptable accuracy and sediment in the range of moderate 

accuracy (Shrestha et al., 2006). AnnAGNPS simulated and observed runoff values were 

well matched (100% for runoff and 106% for sediment) at the outlet of Little River 

watershed in south central Georgia (Suttles et al., 2003; Yuan et al., 2008).  

Baginska et al. (2003) evaluated AnnAGNPS performance and produced 

satisfactory results when simulating event flows. In tests carried out by Yuan et al. 

(2001), the simulated and observed runoff from individual events resulted in similar 

coefficient of determination (R
2
) of 0.90 for daily stream flow discharge and 0.50 for 

daily sediment loss.  Licciardelo et al. (2007) implemented AnnAGNPS in a small 

Mediterranean watershed which was mainly of pastureland, and found satisfactory results 

and a good model efficiency (Ef = 0.55) and a very high coefficient of determination (R
2
 

> 0.90) were also found for the suspended sediment yields.  

AnnAGNPS model was used to study several best management practices for the 

Chesapeake Bay Basin by Hession et al. (1989). An Arc/Info geographic information 

system was used to generate input data for this model. As reported satisfactory results 

were obtained when simulated runoff, peak runoff rate, total nitrogen, total phosphorous, 

and total suspended solids were compared with recorded data. 

2.2.2. Model description  

AnnAGNPS version 5.0 is a continuous simulating model jointly developed by 

USDA Agricultural Research Service (USDA-ARS) and USDA Natural Resources 

Conservation Service (USDA-NRCS) to predict nonpoint source pollutant loadings in a 

watershed dominated by agriculture and to facilitate assessment of watershed and 

landscape processes affecting agricultural areas (Bingner and Theurer, 2002; Gordon et 
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al., 2007). This program was developed based on single-event model AGNPS. It is batch 

process, daily time step, pollutant loading model developed to simulate runoff and 

transport of sediment and chemicals as a result of precipitation, irrigation, and snow melt 

from agricultural watersheds (Cronshey and Theurer, 1998; Bingner and Theurer, 2003; 

Parajuli et al., 2009). AnnAGNPS divides the watershed into homogenous drainage areas, 

which are then integrated together by simulated rivers and streams, routing the runoff and 

pollutants from each area downstream (Parajuli et al., 2009). The hydrology of this model 

is based on a water balance approach. Daily surface runoff is calculated by using the 

NRCS Curve Number (CN) method (USDA- SCS, 1985). The CN method can be written 

as: 

 )/()( 2 IaSPIaPQD   (2.1) 

 SIa 2.0  (2.2) 

 ]10)/1000[(  CNS  (2.3) 

where: 

QD = surface runoff (mm), 

P = storm precipitation (mm), 

S = potential maximum retention (mm), 

Ia = initial abstraction (mm), and 

CN = Curve Number. 

The model uses the Revised Universal Soil Loss Equation (RUSLE) (Renard et 

al., 1997) to calculate daily sheet and rill erosion. A delivery ratio, which quantifies the 

amount of sediment deposited in the field and the amount of sediment delivered to the 

stream, is calculated using the Hydrogeomorphic Universal Soil Loss Equation (HUSLE) 

(Yuan et al., 2008). AnnAGNPS uses Bagnold Equation to determine the sediment 
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transport capacity of the stream, and a modified Einstein equation is used to determine 

the sediment transport in the stream system (Yuan et al., 2008).  

The input data that is required for this model includes daily climate data, 

watershed physical information and land management operations. Additional input 

requirements, which include crop operations, management practices, defining channel 

hydraulic characteristics can be organized by the AnnAGNPS input editor, a graphical 

user interface which is used in selecting appropriate input parameters (Yuan et al., 2007). 

Much of this information can be obtained from USDA-NRCS sources or from the nine 

reference databases developed within AnnAGNPS. Runoff, sediment, nutrient and 

pesticide loads are obtained at various temporal scales ranging from daily to yearly at 

desired locations as an output. 

2.3. Ephemeral Gully Erosion Model 

The only tool which was available for field practitioners to simulate ephemeral 

gully erosion on agricultural fields was the Ephemeral Gully Erosion Model (EGEM; 

Merkel et al., 1988; USDA-SCS, 1992). EGEM simulates a single, non-bifurcating 

ephemeral gully on a planar surface.  Hydrologic components are based on USDA-NRCS 

methods (USDA-SCS, 1986) to estimate peak discharge and runoff volume, and erosion 

components are based on those developed for CREAMS (USDA-ARS, 1980) to estimate 

gully width and soil loss (Gordon et al., 2007). However the applicability of this model is 

limited because the exact topographical position (i.e., the length) of the ephemeral gully 

must be known before a model can be applied.  

The length of gully is a key parameter used to determine the volume of gully erosion 

for EGEM (Nachtergaele et al., 2001b). As there is a strong correlation between the 
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length and volume of the gully (Cheng et al., 2007), it is suggested that gully length is a 

significant and useful index to estimate the volume of gully erosion. While topographic 

indices may be used to identify locations of potential gully erosion, there is no method 

currently available to predict gully length (Gordon et al., 2007). Additional limitations of 

ephemeral gully erosion routines in EGEM involve the use of diameter and specific 

gravity of a representative particle to calculate sediment transport capacity. There are two 

specific limitations to this approach:  

1. for any material to be detached, the amount of sediment carried by the water must 

be below transport capacity, thus deposition cannot be simulated; and 

2. because soil particle diameter and specific gravity are simplified to some 

representative or dominant value, the soil material delivered to the mouth of the 

ephemeral gully contains the same ratios of clay, silt, sand and aggregates as the 

soil in situ (Gordon et al., 2006). 

These limitations limit the usage of these models.  

REGEM model was selected for this study for the following reasons: 

1. REGEM model has been integrated as an additional tool within the Annualized 

Agricultural Nonpoint Source (AnnAGNPS) model (Bingner and Theurer, 2001), 

allowing it to explicitly account for ephemeral gullies in its erosion routines at the 

sub-cell scale (Gordon et al., 2006, 2007) with a minimum of additional input 

data. REGEM has been designed specifically to comply with the computational 

framework of the AnnAGNPS suite of watershed modeling tools (Gordon et al., 

2006, 2007). 
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2. Defining gully length through extending the gully by the upstream migration of 

the head cut. (Gordon et al., 2007). 

3. Its sediment routing calculations address five particle size classes, accounting for 

differences between the ephemeral gully sediment flux and the in situ soil 

material. 

4. It determines channel width from discharge, allowing channel dimensions to be 

explicitly predicted at any point in time and space (Gordon et al., 2006, 2007). 

2.3.1. Model description 

The integration of REGEM technology into AnnAGNPS led to other additions to 

simulate tillage-induced ephemeral gully erosion including: the capability to repair 

gullies through tillage that defines when an ephemeral gully can again initially form; the 

influence of prior land use as defined from RUSLE technology; utilization of HUSLE 

(Theurer and Clarke, 1991) components for sediment transport determination; enhanced 

gully width calculations; and the determination of the amount of scour-hole erosion. 

These enhancements and the inclusion of REGEM technology have led to the Tillage-

Induced Ephemeral Gully Erosion Model (TIEGEM) within AnnAGNPS to provide a 

watershed-scale assessment of management practice effects on sediment production from 

ephemeral gully erosion within croplands (Bingner et al., 2009). 

This study used REGEM model in its currently available version (as of July 

2010). REGEM is only concerned with the dynamics of channel geometry, unsteady, 

spatially varied flow, and sediment transport and may be used only to predict sediment 

delivered to the mouth or outlet of an ephemeral gully. This sediment is combined with 

overland erosion and routed through the remainder of the watershed using the 
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AnnAGNPS model channelized flow algorithms. Within AnnAGNPS, REGEM requires 

no additional information beyond that required by AnnAGNPS itself. REGEM will 

account for the processes of ephemeral gully erosion at the sub-cell scale, and will 

become a part of the continuous simulation of runoff and erosion on agricultural lands 

(Gordon, 2005). 

REGEM has four categories of input information: 1) hydrologic; 2) field scale; 3) 

soil; and 4) management operations. All input to REGEM will eventually be passed from 

routines in AnnAGNPS, some of which may allow user input while others are calculated 

internally in other routines (Gordon, 2005). Table 2.1 represents the input parameters 

required by the REGEM model. 

REGEM involves two steps to prepare an ephemeral gully dataset: 

 generate potential ephemeral gully and digitize gully mouth, and   

 create potential ephemeral gully dataset and export ephemeral gully INP file. 

Table 2.1 Input parameters required by REGEM model 

Categories Input variable Notation Units 

Hydrology Event peak discharge Qp m
3
 sec

-1
 

Hydrology Event runoff volume Vr m
3
 

Field Average thalweg slope S m m
-1

 

Field Manning‟s roughness n  

Field Tillage depth Dt m 

Field Drainage area to gully mouth Ad ha 

Soil Clay ratio in surface soil Rclay  

Soil Silt ratio in surface soil Rsilt  

Soil Sand ratio in surface soil Rsand  

Soil Small aggregate ratio in surface soil Rsagg  

Soil Large aggregate ratio in surface soil Rlagg  

Soil Soil bulk density Bd Mg m
-3

 

Soil Critical shear stress of surface soil Tc N m
-2

 

Soil Head cut erodibility co efficient Kd cm
3
 N

-1
 sec

-1
 

Management 

Operations 

Integer value classifying current soil 

condition. 
Csoil 

1= no till, 2= freshly 

cultivated, 3= 

established crop 
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The “generate potential ephemeral gully” tool helps the user to identify the flow 

network where ephemeral gullies have the potential to form and is based on flow 

direction and accumulation occurring in landscape. The tool to digitize the gully mouth 

helps the user to identify gully mouth points in the study area and also to edit the gully 

mouth dataset. For detailed information about REGEM, refer the REGEM technical 

documentation (Gordon et al., 2006, 2007). 

2.3.2. Model limitations 

REGEM within AnnAGNPS has identified several model limitations because 

little is known about several critical components. Some of the more important limiting 

components are the identification of and relationships to quantify (1) ephemeral gully 

width, (2) soil resistance to gully erosion, including a definition for non-erosive layers, 

(3) the effect of root mass and above-ground vegetation on erosion resistance, (4) 

ephemeral gully networks, and (5) the effect of subsurface flow on ephemeral gullies 

(Bingner et al., 2009). 

2.4. StreamBank Erosion Models 

FLUVIAL-12 (Chang, 1998) and CONCEPTS (Langendoen, 2000) are two 

streambank erosion models that are currently being used. The CONCEPTS model is 

particularly complex, requires extensive user inputs, and is time consuming to use. Table 

2.2 describes and differentiates key features of FLUVIAL-12 and CONCEPTS and shows 

the complex nature of streambank erosion models. 
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Table 2.2 Comparative study of FLUVIAL-12 and CONCEPTS  

 FLUVIAL–12 CONCEPTS 

Full Model Name  Conservational Channel Evolution and 

Pollutant Transport System 

Source San Diego State University USDA-ARS 

Level of Complexity One-dimensional, unsteady flow One-dimensional unsteady flow 

Channel form Considers its natural form. Assumes the channel is straight 

Type of model Erodible boundary model (considers 

channel curvature) 
Erodible bed model (Does not consider 

channel curvature), unsteady state model 

Simulations (Type, 
Level of Complexity, 

Time step, Hydrology, 

Water quality) 

Simulates channel bed scour, fill, width 

variation and changes caused by 

curvature effect 

Simulates transport of cohesive and 

cohesion less sediments both in suspension 

and on bed, open channel hydraulics, and 

channel morphology. 

Governing equations Continuity and Momentum equations Saint Venant Equations, Manning equation,  

Simulation of channel 

width 
By incorporating bed scour and fill By incorporating fluvial erosion by flow 

and mass bank failure. 

Model Inputs Run control data, Discharge data at 

upstream boundary, an input file for 

each cross section, grain size 

distributions of bed sediment, channel 

curvature, bank erodibility, and 

hydrology. 

Topographic maps of the river, digitized 

data for cross sections, flow hydrographs 

and size distributions of sediment samples 

Model Strengths  Formulated and Developed for 

Sediment and water routing in natural 

and man made lakes. 
 Is capable of modeling changes over 

time in the following physical 

parameters: 
 Changes in river curvature. 
 Changes in Manning‟s n 
 Changes in cross section caused by 

bank erosion. 
 Changes in water surface and bed 

elevation profiles. 
 Can be used for evaluation of general 

scour at bridge crossings, sediment 

delivery, channel responses to sand 

and gravel mining, channelization etc. 
 Applicable to ephemeral rivers as well 

as rivers with long term flow. 
 Adjusts the channel width based on 

considerations of minimizing stream 

power expenditure. 

 Can predict the dynamic response of flow 

sediment transport to in stream hydraulic 

structures. 

 Computes channel evolution by tracking 

bed changes. 

 Simulates transport of both cohesive and 

cohesion less sediments both in 

suspension and on bed. 

 Used to evaluate the efficiency, location 

and sizing alternatives of in stream grade 

control structures to reduce sediment 

yield. 

 Used to evaluate the design of stream 

corridor.  

Model Limitations  Does not consider storage effects due 

to unsteady flow 
 Uses 13 predefined sediment particle size 

classes. 

 Linear erosion rate of cohesive bed 

material. 

 Homogenous cohesive bank material 

 Only four types of in stream structures 

are used 

 Metric system of units. 
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Due to their complex nature, our lack of the site-specific data required to run 

these models, and reasonable time constraints associated with completion of this M.S. 

Thesis project, this study did not apply these models.  Instead, this study developed and 

demonstrated several methods to apply measured annual streambank sediment erosion 

values to the daily scale in an integrated modeling approach. 

2.5. Streams in Black Vermillion Watershed 

Streams in Black Vermillion Watershed are highly channelized. Channelization is 

an engineering process in which attempts are made to physically realign a channel in 

order to shorten or straighten that channel through dredging, excavation, etc. (Brookes, 

1985). Channelization causes rapid morphological changes that have numerous negative 

effects to the fluvial systems, like lowering of streambed through dredging, increased 

channel capacity, increased channel gradient and increased velocity; the resulting 

changes include unstable banks, upstream degradation and downstream aggradation 

(Simon and Rinaldi, 2006). Stream channelization causes changes in nearly all 

hydrogeomorphic processes (Hupp, 1992). 

The primary reason for channelization of streams in Black Vermillion Watershed 

was to keep flood flows from impacting crops and to improve water drainage from fields. 

A secondary benefit of channelization was that the newly-straightened stream channels 

allowed for increased amounts of land to be put under cultivation (Peterson, 1991). 

Channelization practices have not been completed consistently – temporally or spatially – 

in the Black Vermillion Watershed. In fact, channelization has been completed in 

piecemeal fashion throughout the watershed (fig. 2.1) (Meade, 2009). Overall, 

channelization has shortened the channel lengths by about 23% on the North Fork, 26% 
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on the Main Stem above Vliets, and 12% on the Main Stem from Vliets to Frankfort 

(ACOE, 1998). Today channelized stream reaches are readily visible in the Black 

Vermillion Watershed (fig. 2.2). 

 

Figure 2.1 Map of timing of channelization in the Black Vermillion watershed. 

Created by Rob Daniels, 2008. (Meade, 2009). 
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Figure 2.2 Channelization on Main Stem of Black Vermillion River near Vermillion, 

Kansas. (Source: Erik Peterson, Jan, 1987) 

2.6. Streambank Erosion 

Streambank erosion is a natural process. Streambank erosion occurs for two 

reasons. First, lateral erosion of the bank toe occurs because of the fluvial entrainment of 

in situ bank materials. This process is known as hydraulic erosion. Second, gravity can 

cause mass failure of the upper part of the bank (Langendoen and Simon, 2008). Both of 

these processes can be triggered by channel incision which is in turn triggered by landuse 

activities. Acceleration of this natural process leads to stream channel instability, 

landloss, disproportionate sediment supply and other effects. Simon and Rinaldi (2006) 

stated that channel incision contributes to the generation of higher and steeper 

streambanks. Channel incision contributes to channel widening due to bank erosion and 

subsequent channel-width adjustment. Simon (1992) stated that channel widening and 

bank erosion are important processes in helping the incised channel to recover over time 
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because these processes can effectively reduce flow depth, shear stress, and therefore 

reduce the sediment transport capacity of the fluvial system. Zaimes et al. (2006) found 

that bank erosion can contribute up to 50-90% of the sediment transported in stream bed 

load. Simon and Rinaldi (2006) stated that streambanks can contribute up to 80% of a 

stream‟s total suspended load. The streambanks in the Black Vermillion Watershed are 

highly unstable (fig. 2.3). 

 

Figure 2.3 Bank erosion on the North Fork of the Black Vermillion River. 

(Source: Chris Sass, June, 2008) 

2.7. Stream Channel Aggradation and Degradation 

Aggradation involves the raising of the streambed elevation, an increase in width 

to depth ratio, and a corresponding decrease in channel capacity (Rosgen, 2006). 

Aggradation often results from an increase in upstream sediment load and/ or sediment 

size that exceeds the transport capacity of the channel. Aggradation may also result from 
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instability caused by over-widening of the channel, with a resulting decrease in stream 

power and shear stress. Excess sediment deposition in the stream channel and coarse 

particle deposits on flood plains are characteristics of an aggrading river. This 

characterstic is observed in most of the streams in Black Vermillion River watershed. 

Common adverse consequences include increased flood risk, land loss, the decline of fish 

habitats, elevated stream temperatures and loss of biological functions (Rosgen, 2006). 

Degradation involves the lowering of the bed levels of rivers through the process 

of excess bed scour and channel incision. The process of channel degradation will 

generally migrate upstream as a series of knickpoints or knickzones, depending on the 

bed substrate material and their cohesiveness and erosion resistance. The upstream 

progression of degradation will occur especially when bed-material mining or 

channelization has occurred because of the extreme disturbance to stream channels that 

has occurred (Simon and Rinaldi, 2006). 
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CHAPTER 3 - Materials and Methods 

3.1. Watershed Description 

The Black Vermillion River Watershed (Hydrologic Unit Code 10270205; USGS, 

2010) selected for this study is located in the north east of Kansas within the Great Plains 

region of United States. The watershed, located in the parts of Marshall, Nemaha and 

Pottawatomie counties (fig. 3.1), is dominated by agricultural land uses.  Within this 

watershed, the streams are highly disturbed due to extensive channelization of the stream 

network (Philip Barnes, personal communication, 17 March 2009). Most of the watershed 

is rural with the largest towns (fig. 3.2) being Frankfort (population 776) and Centralia 

(population 486) (U.S. Census Data, 2008).  Irish Creek, Main Stem and North Fork are 

the three subwatersheds (fig. 3.3) that were chosen for this study because of they each 

have highly unstable streambanks and represent a range of land use distributions 

representative of the region. 

3.1.1. Irish Creek  

Irish Creek (fig. 3.4), also known as South Fork of the Black Vermillion River, 

has a drainage area of 33.55 km
2
 (12.95 mi

2
), enters the Black Vermillion to the east of 

Frankfort, Kansas, from the south, and flows primarily through Flint Hill uplands (Sass, 

2008). The western banks resemble Flint Hills more than the east bank. The Irish Creek 

subwatershed has many flow-through water impoundments affecting the watershed 

drainage area and stream flow characteristics (Sass, 2008). Most of the subwatershed 

(58.26%) is behind watershed structures (drainage area of 19.52 km
2
 [7.54 mi

2
] behind 

watershed structures) (fig. 3.5).  
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Figure 3.1 Black Vermillion Watershed study area. 
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Figure 3.2 Major towns and cities within Black Vermillion Watershed study area. 
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Figure 3.3 Study subwatersheds and stream flow monitoring sites within the Black 

Vermillion Watershed. 
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(a) 

 

(b) 

 

Figure 3.4 Irish Creek a) reach 1, and b) reach 2 (Sass, 2008). 
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Figure 3.5 Watershed structures and drainage areas in Irish Creek subwatershed. (Source: Developed by State Conservation 

Commission and the Kansas Water Office, S. C. S. No. 5, R-22, 320).
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3.1.2. Main Stem 

The Main Stem of Black Vermillion River (fig. 3.6) flows through alluvial and 

glacial deposits and has a drainage area of approximately 154.37 km
2
 (62 mi

2
). Main 

Stem also contains many small flow-through water impoundments, with Centralia Lake 

as the largest impoundment (approximately 161.6 ha [400 ac] impoundment) (Sass, 

2008). Most of the subwatershed (57%) is behind watershed structures (drainage area of 

subwatershed behind watershed structures is 91.35 km
2
 [35.27 mi

2
]), and in the future an 

additional 25.90 km
2
 (10 mi

2
) of the subwatershed may drain to watershed structures 

(73% of the total subwatershed) (fig. 3.7).   

(a) 
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(b) 

 

(c) 

 

Figure 3.6 Main Stem a) reach 1, b) reach 2, and c) reach 3 (Sass,2008).
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Figure 3.7 Watershed structures and drainage areas in Main Stem subwatershed. (Source: Developed by State Conservation 

Commission and the Kansas Water Office, S. C. S. No. 5, R-22, 320)
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3.1.3. North Fork 

North Fork (fig. 3.8), the largest subwatershed of the Black Vermillion 

Watershed, flows through alluvial and glacial deposits. Topography is rolling with deeply 

dissected and entrenched streams (Sass, 2008). A portion of the subwatershed (21%) 

drains to watershed structures (drainage area of 67.23 km
2
 [25.96 mi

2
] behind watershed 

structures) and in future an additional 104.58 km
2
 [42 mi

2
] of the watershed drainage area 

is planned to be detained by watershed structures (55% of total subwatershed) (fig. 3.9). 

(a) 
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(b) 

 

(c) 

 

 

Figure 3.8 North Fork a) reach 1, b) reach 2, and c) reach 3 (Sass, 2008).
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Figure 3.9 Watershed structures and drainage areas in North Fork subwatershed. (Source: Developed by State Conservation 

Commission and the Kansas Water Office, S. C. S. No. 5, R-22, 320).
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3.1.4. Climate 

Black Vermillion Watershed in winters (November to February) has average 

temperature of -1.4 C (29.4 F) and average daily minimum temperature of -7.0 C (19.4 

F). In summer (May to August), the average temperature is 25.8 C (78.5 F) and the 

average daily maximum temperature is 30.7 C (87.3 F) (Abel, 2005). The average 

annual precipitation is 87.8 cm. The sun shines 76% of the time in summer and 63% in 

winter. Average wind speed is 5.8 m/s (13 mi/h) (Abel, 2005). Precipitation in Kansas 

increases from west to east. Annual average precipitation is 79.5 cm in Marshall County 

and 87.5 cm in Nemaha County (Meade, 2009). 

3.1.5. Topography 

Kansas Geological Survey shows that the northern portion of Black Vermillion 

River Watershed is topographically till plains and the southern portion has chiefly a rock-

controlled type of topography similar to that of the Flint Hills region. In areas more 

remote from major streams, the rock-controlled topography is mantled by glacial drift 

and loess. Black Vermillion River is a large, westward-flowing tributary of Big Blue 

River and joins it about 1.6 km north of the Pottawatomie County line. Vermillion Creek, 

a major southward-flowing tributary of Black Vermillion River, joins the Black 

Vermillion River near the city of Frankfort. A small area in the northeast corner of 

Marshall County is drained by Nemaha River and another in the southeast corner by a 

tributary of Vermillion River. Elevations range from approximately 300 to 450 m above 

mean sea level through out the watershed, with the lowest elevations being found near 

Frankfort, Kansas, within the valley of the lower reaches of the Black Vermillion River. 
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The highest elevations are found in the northern portions of the watershed, near the 

Nebraska-Kansas state line (Meade, 2009). 

3.1.6. Soils 

The soils in the Nemaha County are deep and gently sloping to moderately steep 

and have clayey or loamy sub soils, from 0.6 m to 1.0 m deep, and are particularly noted 

for the manner in which it withstands drought, dry weather seldom affecting it (Abel, 

2005). The watershed has a wide variety of soils (table 3.1), and most of the soils in the 

three study subwatersheds have hydrological soil group D (table 3.2). Figure 3.10 shows 

the hydrological soil group distribution in the study subwatersheds. 
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Table 3.1 Soil properties in Black Vermillion Watershed (SSURGO Soils; USDA-

NRCS, 2005). 

Soil Name Soil Texture Hydrologic Soil Group K-Factor Albedo 

Hobbs Silt Loam B 0.32 0.23 

Crete Silty Clay Loam C 0.37 0.09 

Geary Silt Loam B 0.32 0.16 

Lady Smith Silty Clay Loam D 0.37 0.16 

Ortello Sandy Loam B 0.20 0.16 

Tully Silty Clay Loam C 0.28 0.09 

Eudora Loam B 0.32 0.16 

Mayberry Clay loam D 0.37 0.16 

Morrill Loam B 0.28 0.16 

Wymore Silty clay loam D 0.28 0.16 

Nodaway Silt loam B 0.37 0.23 

Kipson Silty clay loam D 0.32 0.16 

Calco Silty clay loam D 0.28 0.09 

Wabash Silty clay loam D 0.37 0.16 

Reading Silt loam B 0.32 0.16 

Aksarben Silty clay loam C 0.32 0.16 

Burchard Clay loam B 0.28 0.16 

Elmont Silt loam B 0.32 0.16 

Martin Silty clay loam C 0.37 0.16 

Padonia Silty clay loam C 0.37 0.09 

Sibleyville Loam B 0.28 0.23 

Vinland Variant Loam B 0.32 0.09 

Judson Silt loam B 0.28 0.09 

Wann Fine sand loam B 0.20 0.16 

Muir Silt loam B 0.32 0.16 

Carr Fine sandy loam B 0.24 0.30 

Chase Silty clay loam C 0.37 0.16 

Ivan Silt loam B 0.32 0.16 

Ben field Silty clay loam C 0.28 0.09 

Clime Silty clay loam C 0.32 0.16 

Tuttle Channery silty clay loam C 0.20 0.09 

Wamego Silt loam C 0.32 0.16 

Bourbonais Silt loam C 0.32 0.16 

Bismarckgrove Silt loam B 0.32 0.23 

Belvue Silt loam B 0.32 0.30 

Zeandale Silt loam B 0.32 0.36 

Kennebec Silt loam B 0.28 0.09 

Kimo Silty clay loam C 0.37 0.23 

Stone house Loamy fine sand A 0.15 0.30 

Muscotah Silty clay loam D 0.37 0.09 

Paxico Silt loam B 0.37 0.30 

Sarpy Loamy sand A 0.17 0.23 

Zook Silty clay loam D 0.37 0.09 

Rossville Silt loam B 0.28 0.16 

Gymer Silt loam C 0.32 0.09 

Olmitz Loam B 0.24 0.23 

Pawnee Clay loam D 0.37 0.16 

Sharpsburg Silt loam C 0.32 0.16 

Shelby Clay loam B 0.28 0.16 

Steinauer Clay loam B 0.32 0.23 

Thurman Loamy fine sand A 0.17 0.16 

Wymore variant Fine sandy loam C 0.28 0.16 

Monona Silt loam B 0.32 0.09 
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Table 3.2 Percent soil group distribution in study areas 

Watershed 
     Percent       
 Soil Group A 

Percent 
Soil Group B 

Percent 
Soil Group C 

Percent 
Soil Group D 

Irish Creek 0.0 9.7 1.8 88.5 

Main Stem 0.0 30.6 0.3 69.1 

North Fork 0.0 24.2 1.1 74.7 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

Figure 3.10 Soil group distributions for each study subwatersheds 

3.1.7. Land use  

In Black Vermillion Watershed, farming was initially concentrated in the river 

valleys until about 1880 because of flat topography, deep fertile soils found adjacent to 

the rivers (USDA-SCS-KAES, 1951). After 1880 farming efforts spread on to 

surrounding hillslopes away from riparian areas (USDA-SCS-KAES, 1951).  Most of the 

land use in the Black Vermilion Watershed is agriculture (table 3.3, fig. 3.11). Most of 

land north of Frankfort is row crops and tilled cultivated lands; most of the land south of 

Frankfort is pasture. Corn (Zea mays), wheat (Triticum aestivum), grain sorghum 

(Sorghum sp.), soybeans (Glycine max), alfalfa (Medicago sativa) are the principal crops. 

About one-third of the acreage of Marshall County is grazing land; a large part of this is 
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in the southwest quarter of the county where the soil is less suitable for tilling. The 

percentage of land use in agriculture varies slightly by county and by time period. 

Between 1967 and 1977, 71% of the total land area of Nemaha County was in crops 

(USDA-SCS, 1982) while in 1967, 60% of the Marshall County was in crops (USDA-

SCS, 1980). Sorghum, corn, soybeans, alfalfa and wheat are the main crops that are 

grown (USDA-SCS, 1982). The acreage planted to sorghum and soybeans increased over 

the previous 10-year period (USDA-SCS, 1982). Row crops are common in the sub 

watersheds of North Fork (table 3.3, fig. 3.14) and Main Stem (table 3.3, fig. 3.13), while 

Irish Creek (table 3.3, fig. 3.12) contains higher levels of grazing land and woodland. Soil 

erosion is the major hazard on about 90 percent of the cropland in Nemaha County 

(USDA-SCS, 1982) and 75 percent crop land in Marshall County (USDA-SCS, 1980). 

The Irish Creek of Black Vermillion flows out of hilly terrain similar to Flint Hills 

topography to the south. Thinner soils and more bed rock exposure inhibit crop growth 

and therefore promote rangeland as a land use. The North Fork and Main Stem flow out 

of flat terrain that is covered with thick deposits of glacial till and loess (Meade, 2009). 

These areas are more appropriate for row crops. Native grasses such as big bluestem, 

little bluestem and Indian grass exist in this watershed. 



 44 

 

Figure 3.11 Land use map of Black Vermillion Watershed (USDA-NASS, 2008) 

 

According to 2008 NASS land use data (USDA-NASS, 2008), Soybeans, corn, 

sorghum, winter wheat are the most commonly grown crops. 
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Figure 3.12 Land use map of Irish Creek subwatershed (USDA-NASS, 2008) 
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Figure 3.13 Land use map of Main Stem subwatershed (USDA-NASS, 2008) 
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Figure 3.14 Land use map of North Fork subwatershed (USDA-NASS, 2008) 
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Table 3.3 2008 USDA- NASS Land use distribution for study subwatersheds and 

total Black Vermillion watershed  

Subwatershed Total Cropland 

(% of watershed) 

Total Grassland 

(% of watershed) 

Total Other 

(% of watershed) 

Irish Creek 24.88 31.62 43.50 

Main Stem 35.47 22.06 42.47 

North Fork 49.21 20.92 29.87 

Total Black Vermillion 40.01 21.58 38.41 

 

The other landuse in the table 3.3 represents urbanland, forestland, residential, water, etc. 

3.2. Input Data Requirements for Models 

Input data sources for the AnnAGNPS and REGEM model include USGS 30 m 

Digital Elevation Model for topography (USGS-NED, 2008), USDA-NRCS spatial 

SSURGO soils data (USDA-NRCS, 2005) at a scale of 1:24000, and the USDA-NASS 

cropland data layer (USDA-NASS, 2008). This land use was used because of its 

classification accuracy, which is between 85% to 95% correct for agriculture related land 

cover categories (USDA-NASS, 2008). 

The precipitation data were obtained from Lillis weather station located at 

Latitude 39°36'N and Longitude 96°20'W, and the rest of the weather data was obtained 

from Manhattan airport located at Latitude 39°08'N and Longitude 96°40'W (fig. 3.15), 

which is about 60 km south of the outlet of the Black Vermillion Watershed. This 

weather station was selected because it is the nearest weather station in that area having 

all the other climate data required by AnnAGNPS and has atleast 12 years of weather 

records. Twelve years of climate data were used (01/01/1997 to 12/31/2009). The 24-

hour total precipitation depths, maximum and minimum temperatures, average dew-point 

temperature, total solar radiation, and average wind speed were used.  This weather data 
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was used for both AnnAGNPS and REGEM models. All the weather information was 

obtained from State Climatologist, Mary Knapp.   

 

 

 
        Figure 3.15 Location of Manhattan Airport Weather Station 
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3.2.1. User-supplied input data 

Once the model was populated with the watershed and climate data, a limited 

amount of additional data were supplied. Some of these data were automatically entered 

using information from watershed and climate data. 

3.2.1.1. Cell data 

All CELL DATA used in the AGNPS Input Editor was imported from the 

AnnAGNPS/ ArcView interface described in Step 9 of the users guide. 

3.2.1.2. Crop data 

Crop data can be imported from either RULSE 1.06 or RUSLE2.  

3.2.1.3. Management field data 

The Management field data section includes data for categories of land use (e.g., 

sorghum, winter wheat, corn, soybeans) and land management (e.g., terraces, contour 

tillage, strip cropping on the contour) including such information as terrace horizontal 

distance and terrace grade. Whenever cultivation is done on slopes, the system has to be 

protected from erosive rains by land management practices that will slow the runoff 

water and thus reduce the amount of soil it can carry.  

Terraces reduce interrill and rill erosion on the terrace interval by breaking the 

hillslope into shorter hillslope lengths. Also, deposition along the terrace may trap much of 

the sediment eroded from the inter-terrace surface above, particularly if the terraces are level, 

of very low gradient, or have closed outlets. Properly designed terraces and outlet channels 

intercept surface runoff and convey it from the hillslopes at non-erosive velocities (Toy and 

Foster, 1998).  
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Terraces were found to be present on a large portion of the croplands within the study 

subwatersheds (table 3.4). Terraces were identified using 12/09/2008 aerial imagery 

developed by Farm Services Agency available at Kansas geospatial community website 

(http://www.kansasgis.org/catalog/catalog.cfm).  Boundaries of each field observed to 

contain a terrace were digitized by hand, and a management field data identification 

number was assigned to each terraced cell using the Arc View interface. Terrace 

locations were confirmed by field reconnaissance in Irish Creek on 2 June 2010.  Field 

reconnaissance of agricultural fields identified to have terraces from aerial imagery 

confirmed terraces on 99% of these fields.  To include these terraces the P factor value for the 

cells having terraces was reduced to 0.1 (Wischmeier and Smith, 1978) and Curve Number 

was reduced by 6. 

Table 3.4 Percentage of  watersheds having terraces (aerial imagery, 2008) 

Subwatershed % watershed having terraces % cropland having terraces 

Irish Creek 24% 95% 

Main Stem 37% 65% 

North Fork                  30%                 62% 

3.2.1.4. Management operation data 

The management field ID and the management schedule ID used are the same ID 

characters for each land use/management scenario. The naming convention used for the 

land use and land management is the same ID used in the GIS coverage. Table 3.5 and 

3.6 show the management operations and management properties used for this research 

(Lyle Frees, personal communication, 27 October 2009). 
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Table 3.5 Management Schedule and Management Operations data (Lyle Frees, 

personal communication, 2009). 

Land use Management Schedule Event 

data  

(month- date-year) 

Management Operation ID 

Corn 

3-15-1 Chisel;_st._pt._0 

4-14-1 Cultivator;_field_0 

4-15-1 Planter;_double_di0 

10-15-1 Harvest;_grain;_gr0 

Winter Wheat 

4-15-1 Disk;_tandem_light0 

4-20-1 Cultivator;_field_0 

5-1-1 Planter;_double_di0 

10-1-1 Harvest;_grain;_gr0 

10-15-1 Cultivator;_field_0 

10-25-1 Drill_or_air_seede0 

7-1-2 Harvest;_grain;_gr0 

11-1-2 Chisel;_st._pt._0 

4-1-3 Cultivator;_field_0 

5-10-3 Planter;_double_di0 

10-5-3 Harvest;_grain;_gr0 

11-1-3 Chisel;_st._pt._0 

Soy Beans 

4-15-1 Disk;_tandem_light0 

4-20-1 Cultivator;_field_0 

5-1-1 Planter;_double_di0 

10-1-1 Harvest;_grain;_gr0 

11-1-1 Chisel;_st._pt._0 

4-1-2 Disk;_tandem_light0 

5-1-2 Cultivator;_field_0 

5-10-2 Planter;_double_di0 

10-5-2 Harvest;_grain;_gr0 

11-1-2 Chisel;_st._pt._0 

Sorghum 

4-15-1 Disk;_tandem_heavy0 

5-5-1 Disk;_tandem_secon0 

5-10-1 Fert_applic._anhyd0 

5-15-1 Cultivator;_field_0 

5-20-1 Planter;_double_di0 

10-20-1 Harvest;_grain;_gr0 

 

Table 3.6 Properties of Management Operations 

Management Operation ID Mixing efficiency Surface Roughness Tillage Depth 

Disk;_tandem_light0 0.5 18 100 

Cultivator;_field_0 0.35 17 40 

Planter;_double_di0 0.15 10 60 

Chisel;_st._pt._0 0.35 15 200 

Drill_or_air_seede0 0.25 12 50 
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3.2.1.5. Management schedule data 

Management schedule data can be imported from RUSLE2 by the input editor. 

Table 3.5 gives the information about the management schedule data (Lyle Frees, 

personnel communication, 27 October 2009). 

3.2.1.6. Non-crop data 

Data for non-crop land uses were derived from RUSLE 1.06 croplist.dat file 

import within the AGNPS Input Editor. 

3.2.1.7. Run off curve number data 

NRCS runoff curve numbers or AnnAGNPS default runoff curve number values 

provided by TR55 (NRCS Technical Release 55–Urban Hydrology for Small 

Watersheds, Chapter 2) were used (table 3.7). Curve numbers were used to calibrate the 

model results to measured runoff data.  

 

Table 3.7 Run off curve number data 

Land use Runoff Curve Number 

Soil A Soil B Soil C Soil D 

Corn 66 74 80 82 

Winter Wheat 66 74 80 82 

Soy Beans 66 74 80 82 

Idle Crop 39 61 74 80 

Grass Pasture 39 61 74 80 

Deciduous 30 58 71 78 

Alfalfa 39 61 74 80 

Developed 46 65 77 82 

Sorghum 66 74 80 82 

3.3. Stream Process Measurement and Stream Characterization 

The sections of Irish Creek, Main Stem and North Fork that were surveyed were 

located near to Frankfort, Kansas. In June 2007 nine monitored sites were established in 

the three main branches of the Black Vermillion River: Irish Creek, Main Stem, North 
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Fork (fig 3.16). All the branches experienced different levels of channel modification 

since the date of territory survey of 1857, including but not limited to water 

impoundments, channelization, vegetation removal, stabilization structures and levees 

(Sass, 2008). Three reaches per branch were selected, one each in the upper, middle and 

lower portions of each river branch. The nine sites were chosen to include varied 

geology, geomorphology, differing adjacent land cover/ landuse with in the 

subwatersheds (Sass, 2008). The adjacent land cover ranged from plowed field to 

established riparian forest. Drainage areas and the surveyed reach lengths of Irish Creek, 

Main Stem and North Fork are summarized in table 3.8. 

(a) 
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(b) 

 

 
 

(c) 

 
Figure 3.16 Study reach locations within each branch: a) Irish Creek, b) Main Stem, 

and c) North Fork.  (Source: Sass, 2008) 
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Table 3.8 Survey lengths and drainage areas of each study reach. 

Stream Reach 
Drainage Area 

(km
2
) 

Reach Length 

(m) 
Irish Creek Upper: IC-1 22.01 376.43 

 Middle: IC-2 59.56 510.23 
 Lower: IC-3 117.32 524.86 

Main Stem Upper: BV-1 16.31 316.99 
 Middle: BV-2 89.61 472.74 
 Lower: BV- 3 159.28 414.53 

North Fork Upper: NF-1 177.67 510.84 
 Middle: NF-2 252.26 696.77 

 Lower: NF-3 299.92 622.09 

 

3.3.1. Methods to characterize stream 

Stream data collection in the Irish Creek, Main Stem and North Fork 

subwatersheds included analyses of the longitudinal profile of each study reach and 

cross-sectional profiles of multiple locations within each reach. These procedures are 

explained below. 

3.3.1.1. Longitudinal profile 

The longitudinal profile defines the extent of the stream reach in the survey.  It is 

commonly defined as a length that is 20 times the channel bank full width. In order to 

survey the longitudinal profile three steps were followed: 

 Benchmark definition. 

 Level setting such that the benchmark and most of the site is visible.  

 Stations selection (record elevations). A riffle head was identified in order to start 

the longitudinal survey. Elevation of the channel bottom, water surface and bank-

full discharge was recorded through reach lengths that are mentioned above in the 

table 3.8. The starting point was at head of a riffle (i.e., 0 + 00). The next station 

and consecutive stations were defined based on feature presence and visual 
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changes in elevation. Distances were measured with a tape measure in the 

downstream direction. Elevations, stations, and important features were recorded 

in the field book. 

3.3.1.2. Cross sectional profile 

Survey data were taken of stream bank and bed elevations once each year and used to 

estimate annual bank erosion in each study reach.  The cross-sectional profile was 

surveyed for Irish Creek at stations (1+56), (11+34) and (0+00) feet of the longitudinal 

survey, for Main Stem at stations (5+41), (3+82), and (3+90), and for North Fork at 

stations (12+53) and (15+30).  Elevation was recorded, at a minimum, at the water 

surface and at each location of noticeable change in slope along the cross section. 

 Detailed procedure for measuring cross-sectional profile can be found in Stream Channel 

Reference Sites: An Illustrated Guide to Field Technique developed by USDA. 

(Available at: http://www.stream.fs.fed.us/publications/PDFs/RM245E.PDF). 

3.3.2. Estimating streambank erosion and bed scour 

The following procedures were used to estimate the streambank erosion and to 

measure bed scour.  

3.3.2.1. Bank Profile 

Bank profiles were done at permanent cross section to get the most detailed 

measure of bank erosion rate. A toe pin was installed off-set from the bank. An elevation 

rod was set on the toe pin with corresponding horizontal measurements taken to intercept 

the bank (fig. 3.17). A resurvey at the toe pin location allowed a comparison of a detailed 

computation of a change in bank profiles, yielding lateral erosion rate. The bank profile 

was resurveyed at least once per year to obtain annual erosion and contribution to 

sediment supply. 

http://www.stream.fs.fed.us/publications/PDFs/RM245E.PDF
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Figure 3.17 River Assessment and Monitoring protocol for bank profile 

measurement. (Source: Rosgen, 2006) 

 

3.3.2.2. Scour chains 

Scour chains were installed in glides and riffles to indicate the depth of scour and 

particle sizes entrained on an annual basis for various stream types and bed material 

gradations. These chains were small diameter chains that were attached to a small duck-

bill anchor and driven vertically into bed at a specific location until the tip of the chain 

was flush with the bed surface. These scour chains were installed at surveyed cross 

section. The chain was left flush with the surface and was resurveyed annually or after a 
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long flow event to determine scour depth, entrainment sizes of bed material and/or 

deposition and size of particle in the deposition (fig. 3.18). 

 

Figure 3.18 Field form for documenting scour chain results.  (Source: Rosgen, 2006) 

3.3.3. Mass balance of total suspended sediment  

Balanced sediment input and output at the subwatershed outlet (mass balance 

approach) is the central idea in this research (fig. 3.19).  It was assumed that there was no 

net change to sediment mass in the stream bed over the 2-year study period (ds=0).  This 

was supported by scour chain measurements, which showed aggradation during 2007-

2008 and degradation during 2008-2009 (Appendix- 3). The scour chain measured values 

in Appendix 3 shows that the degree of aggradation in year 2007-2008 was offset upto 30 

– 40% by the degree of degradation in year 2008-2009. We did not consider stream bed 
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load exported from the subwatershed in the mass balance approach as we don‟t have 

stream bed load measurements. The time interval of dt=2 years represents the time period 

over which the streambank erosion and streamflow measurements were collected. 

AnnAGNPS simulates sediment only on the days when there is rainfall; that is, all the 

sediment simulated on a given day is routed through the outlet on the same day. So the 

sheet, rill and gully sediment is represented as daily with sediment loads only occurring 

during events. The daily total simulated sediment at the outlet is compared to the 

measured TSS value at the outlet (efficiencies of the models were estimated for only the 

days that have measured TSS values at the watershed outlets). 

 

 

 

 

 

 

 

 

 

Figure 3.19 Mass Balance approach 

Sheet/Rill erosion (AnnAGNPS) [daily 

with sediment loads only occurring during 

events] 

Ephemeral gully erosion (REGEM) 
[daily with sediment loads only 

occurring during events] 

 

Field measured Streambank 

erosion [distribute 2 years total 

into daily or event based, based 

on threshold values] 

Outlet (AnnAGNPS+REGEM+ Methods to 

distribute Streambank sediment) (daily) 

Stream (dt= 2 years, ds=0, daily scale, space= subwatershed) 
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3.3.3. Methods to estimate streambank sediment loads 

Table 3.9 gives the estimates of the streambank erosion values for each of the 

nine sites. Total sediment for each year is calculated as average erosion rates per year 

times the density of soil composition times stream length (only third order streamlengths 

were considered and were measured using GIS). In many watersheds, erosion occurs 

from only one of the two streambanks at a given location within a reach.  In this 

watershed, however, erosion in many locations appears to be occurring on both banks, 

thus a factor of 1.3 was considered appropriate to account for the extra bank erosion (Tim 

Keane, personnel communication, 18 May 2010).  In this study, this bank erosion factor 

was varied and the calibration process was used to adjust measured stream-bank erosion 

to match measured stream sediment export rates. 

Table 3.9 Measured annual streambank sediment erosion values for 3 reaches 

segments in each study watershed (Keane et al., 2010) 

Site Annual bank erosion 

(lb/ft/yr) 
Irish Creek 1 503 

Irish Creek 2 469 

Irish Creek 3 521 

Main Stem 1 685 

Main Stem 2 574 

Main Stem 3 64 

North Fork 1 936 

North Fork 2 752 

North Fork 3 1719 

3.4. Stream Flow Monitoring 

3.4.1. Stream flow  

Flow in a stream is a function of many factors, including precipitation, surface 

runoff, interflow; the cross sectional geometry and bed slope of the channel, the bed and 

side slope roughness; meandering, obstructions, and changes in shape; hydraulic control 

structures and impoundments; and sediment transport and channel stability (Ward and 
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Elliot, 1995). Generally, flow in streams and impoundments are classified as open-

channel flow because the surface of the flow is open to the atmosphere.  Stream flow can 

be classified several ways.  For example, it can be turbulent in steep rocky areas or 

following severe storm events.  Typically, stream flow is more tranquil and is considered 

to be a steady uniform flow (Barnes, 2005).  The calculated stream flows for this study 

assumed this condition in which the stream depth does not change during the flow 

measurement.  

The continuity equation provides basic relationship for calculating stream flow: 

 vaq   (3.1) 

where:  

q = stream flow (ft
3
/sec), 

 v = average stream velocity (ft/sec), and 

 a = cross-sectional area of flow (ft
2
). 

For uniform flow in a stream, the average stream velocity, v, can be estimated by 

Manning's equation. 

 2/13/25.1
SR

n
v   (3.2) 

where:  

v = average stream velocity (ft/sec), 

 n = Manning's roughness coefficient of the stream channel, 

 R = hydraulic radius (a/p, p = wetted perimeter), and 

 S = channel bed slope (ft/ft). 
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3.4.2. Stream flow measurements 

Flow measurement and water quality samples were collected at the outlets of the 

Irish Creek, Main Stem, North Fork subwatersheds (table 3.10, fig. 3.6) and the outlet of 

the Black Vermillion River at the USGS gage (USGS 06885500) southwest of Frankfort, 

Kansas (table 3.10). Flow measurement and sample collection for the three 

subwatersheds were made at road crossings (bridges or culverts) using an automated 

sampler (ISCO Inc., Lincoln, Nebraska, Model #6700) and bubbler-module stage 

recorder (ISCO Inc., Lincoln, Nebraska, Model #670).   

Stream flow stage data were collected near the bridge cross sections near the 

bank, with the bubbler outflow point 0.051 m (2 in) above the bottom of the stream 

(Barnes, P. L., personal communication, 2010). Stream depth was recorded at 5 min 

intervals throughout the year except when the line was frozen. Depth was converted to 

velocity using surveyed stream cross-sectional area data, surveyed stream slope, and 

estimated Manning‟s roughness along with equation 3.2 (Barnes, P. L., personal 

communication, 2010).  Manning‟s roughness for the stream bed was estimated to be 

0.008 (Barnes, P. L., personal communication, 2010).  Velocity and stream cross-

sectional area data were used with equation 3.1 to calculate stream flow. Slope of the 

water surface is determined from accurate measurements of stage at the upstream and 

downstream ends of the reach referenced to a common fixed point (Barnes, P. L., 

personal communication, 2010).  These data were summarized for each annual period of 

the study and included in the appendix.  
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Table 3.10 Monitoring site location descriptions 

Site Number Site Location Latitude Longitude 

1 Black Vermillion River USGS Gage N39.68199 W96.4425 

2 Black Vermillion Irish Creek N39.60974 W96.30456 

3 Black Vermillion Main Stem N39.71379 W96.26647 

4 Black Vermillion North  Fork N39.72594 W96.32856 

3.4.3. Suspended sediment measurements 

Grab samples were collected using one litre wide-mouth polypropylene bottles 

near the bridge cross sections at the centroid of stream flow, 0.051 m (2 in) above the 

bottom of the stream monthly in the winter months of March, October, November and 

December. During the rest of the year (April through September), water grab samples 

were collected weekly and after most runoff events. During runoff events, samples were 

collected using an automated sampler.  The inlet tube for automated samples was located 

10 cm off the bottom of the stream and somewhere near bank of the stream. Sampling 

was initiated when the water level was 0.25 ft above the sampling point.  During the 

events, 340-mL samples were collected every three hours until the water level fell below 

the sampling point (10 cms from the bottom of the stream) and 1000-mL composite 

samples (300 mL of each sample is mixed to get composite sample) were made and used 

for total suspended solids (TSS) analysis.    

Total suspended solids include all particles suspended in the water column that 

will not pass through a 0.45 m filter. When the TSS concentration (mg/L) was 

multiplied by the flow volume (L/day), the load of a TSS (mg/day) was determined. The 

procedure used in this study to measure the TSS parameter is described the Standard 

Methods for the Examination of Water and Wastewater Method 209C (Clesceri et al., 

1998).   



 65 

3.5. Methods to Disaggregate Bank Erosion from Annual Loads to Daily 

or Event Loads 

3.5.1. Literature review 

Streambanks in agricultural areas may erode in response to a variety of water flow 

processes, including stream flow (shear processes), changes in stream flow (mass wasting 

processes after flow recession), and water flowing over or through the streambank 

(fingering erosion processes). Most of the streams are subjected to wide fluctuations in 

both flow depth and velocity over a period of time, due to seasonal changes in rainfall 

and due to land use changes. Streambank erosion occurs when the flow depths and 

velocities increase, rain falling on streambanks, or runoff from adjacent fields.  

Streambank erosion involves the detachment of soil aggregates and grains from 

the bed and banks followed by fluvial entrainment (Allen et al., 1999). Fluvial 

entrainment or removal of bank material occurs as flow contacts streambank and mass 

movement of material due to gravity (Harmel et al., 1999). This complex process is 

influenced by climatic processes (rainfall, microclimate, temperature) (Luppi et al., 

2008), fluvial processes (stream power, bends, vegetation, secondary currents) and mass 

failure (bank height, composition, moisture conditions) (Thorne et al., 1997; Allen et al., 

1999). In attempts to understand the complex nature of riverbank erosion, numerous 

studies have examined fluvial processes (e.g., Rose et al., 1983; Moore et al., 1986; 

Nearing et al., 1998; Allen et al., 1999), and a few studies have investigated mass failure 

(Harmel et al., 1999; Simon et al., 2000). However, no study has been able to establish 

the predominant control on the amount of hydraulic erosion in response to variable flow 

conditions. 
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This study attempts to relate sediment loads measured at a point in the stream into 

event or daily based loads from appropriate watershed sources, including overland (inter-

rill and rill), ephemeral gully, and stream bed and bank sources.  A key aspect of this 

research is the disaggregation of annual stream source estimates to daily source 

contributions.  The goal is to determine what fraction of the annual stream sediment loads 

are transported to the watershed outlet associated with flows that occur on each day.  The 

energy available to transport stream sediments is related to the combination of climatic, 

land, and stream factors.  

     Rain fall             Runoff                                  Streambank fluvial processes 

                      Figure 3.20 Conceptual representation of methods 

Major rainfall events can induce sediment yield through slope failure, incision, 

and surface and channel bank erosion (Lamoureux, 2002). The channel geometry can be 

altered by the deposited sediments in the channel during these events, depending on the 

channel conditions.  

The following sections will describe the theoretical bases for several methods that 

will be used in this study to disaggregate annual streambank sediment source loads to 

event-based loads.  Specific methods based on these theoretical concepts will be 

presented in the methods section of this chapter.  

The process of soil detachment from the land by water occurs first via the process 

of splash from raindrop impact followed by runoff and then by fluvial processes. Renard 

et al. (1997), in the Agriculture Handbook Number 703, proposed that the soil losses 

from cultivated fields are directly proportional to a rainstorm parameter: the total storm 

energy times the maximum 30-min intensity. Raindrop (splash) erosion increases with EI, 

the I component reflects the prolonged peak rates of detachment and runoff. EI 
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technically indicates how particle detachment is combined with transport capacity. The 

relation of soil loss to the EI parameter is assumed to be linear. The sum of the storm EI 

values for a given period is a numerical measure of erosive potential of the rainfall within 

that period. The average annual total of the storm EI values in a particular locality is the 

rainfall erosion index for the locality. 

Rainfall showers of less than 12 mm (0.5 in.) were omitted while developing the 

initial R-factor map (Renard et al., 1997). Analyses showed that erosion from these light 

rains is usually too small for practical significance. Xie et al. (2002), in their work on 

practical thresholds for separating erosive and non erosive storms, showed that a rainfall 

event less than 12 mm had no significant soil erosion.  They also suggested that rainfall 

erosivity can be over-estimated if non-erosive events are counted, or it can be under-

estimated if erosive rainfalls are omitted.  The results of Lamoureux (2002) showed that 

rainfall events totaling approximately 13 mm or more resulted in increased sediment 

yield. Field observations by Lamoureux also indicated that rainfall-induced flood peaks 

may have subsequent impacts on sediment yields. The threshold value of 12.7 mm total 

rainfall suggested by Wischmeier and Smith (1978) is often used in making isoerodent 

maps in many countries (Renard and Freimund, 1994; Yu and Rosewell, 1996). 

Williams (1974) replaced the rainfall factor from RUSLE with a runoff factor and 

got more accurate results. Runoff is highly affected by antecedent soil moisture. If the 

soil moisture is low, large rain-storms may produce little or no runoff. Without runoff 

there is no sediment yield. The runoff rates and volumes were substituted for the rain fall 

energy factor in the universal soil loss equation (USLE).  
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   PCLSKqQS p 
56.0

95  (3.3) 

where:  

S = sediment yield (tons), 

Q = volume of runoff (ac ft), and 

qp = peak flow rate (ft
3
/s). 

The USLE overpredicted sediment production for years with low rainfall factors and 

underpredicted production for years with high rainfall factors (Williams, 1974). The same 

concept of peak flow rate has been applied in my research. 

Various equations were proposed for describing stream sediment transport 

capacity in terms of single determinant: flow velocity, slope, shear stress, discharge 

(Moore et al., 1986). Most of the studies described sediment transport in terms of water 

discharge or effective discharge (Williams, 1975; Meyer et al., 1975) or in terms of 

effective shear stress (Foster and Meyer, 1972; Foster, 1982). Many studies also 

concluded that unit stream power is the dominant factor in determining the total sediment 

concentration of streams with alluvial and gravel beds (Yang, 1973; Bagnold, 1977; Rose 

et al., 1983a). Many sediment formulas evaluated by Alonso et al. (1981) showed that 

unit stream power gave reliable predictions of sediment transport in shallow flows and 

stream flows, particularly for fine to coarse sands. The concept of stream power was first 

introduced by Bagnold, who defined stream power in terms of the power per unit area of 

stream bed (shear stress times flow velocity). Yang (1973) defined unit stream power in 

terms of power per unit weight of water (Moore and Burch. 1986). 
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 VsP   (3.4) 

where: 

P = unit stream power (m/s), 

V = velocity of flow in longitudinal direction (m/s), and 

s = slope (m/m).  

Bagnold (1966) defined stream power as the kinetic energy available for erosion and 

transport:              

 QS    (3.5) 

where, 

 Ω = stream power per unit length of channel [(Nm/ms) or (W/m)], 

لا  = specific weight of water (N/m
3
), 

Q = stream discharge (m
3
/s), and 

S = energy gradient or slope (m/m). 

Rose et al. (1983a, 1983b) used Bagnold‟s stream power in their erosion-

deposition model to characterize the entrainment of sediment of over land flow. Moss 

(1979) stated that the basic mechanics of erosion, transportation and deposition varies 

little from rivers to overland flow. This stream power concept must be applied to the 

entire river system otherwise the local effects such as armoring or secondary flow from 

upstream make validation difficult (Moore and Burch. 1986). 

Bank erosion rates or rate of soil detachment from the channel perimeter is a 

function of shear stress induced by flow (Nearing et al., 1998; Allen et al., 1999). As flow 

is increased, shear stress increases until it eventually crosses critical shear stress that is 

required to detach the particle. The widely used equation for modeling channel erosion is 



 70 

 )( TcTeKEr   (3.6) 

where: 

Er = the erosion rate (ft/s), 

K = erodibility coefficient (ft
3
/lb-s), 

Te = effective stress (Pa) (lb/ft
2
), and 

Tc = critical stress (Pa) (lb/ft
2
). 

Fluvial entrainment depends on the relationship between the flows shear force 

acting on the bank and the bank‟s capacity to resist this force (Thorne, 1982; Harmel et 

al., 1999). The flow shear stress is a function of flows velocity gradient along the channel 

bank and bed. If the shear stress exceeds the internal resistance of material, bank or bed 

particles may be dislodged and become entrained in the flow (Thorne, 1982). The rate of 

bank erosion due to mass failure depends on the relationships among gravitational forces 

acting on the bank material, the hydro static pressure on the bank material, and the banks 

resistance to mass failure, referred to as internal shear strength (Thorne, 1981; Harmel et 

al., 1999). 

Engineers design channels based on empirical studies of the erosion thresholds 

(Allen et al., 1999). Channel geometry is therefore adjusted so that the shear stress, 

stream power or channel velocities are kept below the critical value. The approach used 

in this study to integrate all the three sources of sediment is based on these critical values. 

Using AnnAGNPS (RUSLE) and REGEM as soil and gully erosion methods, a model to 

disaggregate annual streambank erosion to daily values was formulated based on key 

terms in the streambank erosion detachment criteria assessed above, such as stream 

power or discharge. These flow parameters were presumed to be related to streambank 
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erosion through an erosion rate coefficient, which should include such effects as soil 

erodibility and bank cover (e.g., vegetation), but also the controlling bank erosion mode 

(fluvial erosion or bank failure).  

3.5.2. Methods 

3.5.2.1. Use of rainfall (Method 1) 

This method distributes total annual streambank erosion according to daily 

rainfall depths for storms exceeding an established threshold value.  The average CN of 

the watersheds were determined (Irish Creek = 74, Main Stem = 78, North Fork = 76). 

(Ia/S) values ranging from 0.1 to 0.5 were tested as threshold values. 

 SIa 2.0   (3.7) 

 )10/1000(  CNS  (3.8) 

where: 

Ia = Initial abstraction (in), 

CN = curve number, and 

S = potential maximum soil moisture retention after runoff begins (in). 

Method 1: 

1. Identify all the rainfall events that are above the Ia/S threshold (R*).  

2. Days with rain showers less than Ia/S were assumed to contribute no streambank 

erosion from those events. 

3. Sum all the R* values for the study period (SR*). 

4. Calculate the ratio of event R* to SR* (RSR) 

5. Assign the fraction of total (2-year) study-period streambank erosion based on the 

RSR for that event. 
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6. Sum up the daily streambank erosion values with the daily values of AnnAGNPS and 

REGEM to give the total sediment for each day. 

7. Compare the predicted sediment values with the measured TSS values for days 

having stream TSS measurements. 

8. Repeat the above mentioned steps for each Ia/S threshold value.  

3.5.2.2. Use of total stream flow (Method 2) 

This method will distribute measured streambank erosion based on percentage of 

the event stream flow / total stream flow of simulation period. This method is similar to 

that used currently by the STEAD model.  STEAD is a stand alone tool for AnnAGNPS. 

It was written to allow the user to request, extract and summarize specific information 

from the gauging station output file generated by AnnAGNPS. It allows the user to enter 

the annual average streambank erosion contribution to the measure total sediment load 

and assign a daily streambank erosion amount based on percentage of the event stream 

flow / total stream flow of the simulation period. (Bingner R. L., personnel 

communication, 1 Feb, 2010).  

Method 2 with no threshold stream flow value 

1. Calculate total stream flow (runoff + baseflow) for each day of the study period using 

AnnAGNPS. 

2. Assign the measured streambank erosion for the study period to each event based on 

the ratio of event total stream flow (runoff + base flow) to the sum of daily total 

stream flow for the study period. 

streamflowtotalstreamfloweventpercentevent _/__   
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percenteventloadtotalloadevent ___    

3. Sum the streambank erosion value with the daily value of AnnAGNPS and REGEM 

to give the total sediment for each day. 

4. Compare the predicted sediment values with the measured watershed outlet TSS 

values for days having stream TSS measurements. 

Method 2 with a threshold stream flow value 

1. Calculate total stream flow (runoff + baseflow) for each day of the study period using 

AnnAGNPS. 

2. Identify all the events that are above a threshold value (thresholds are defined as a 

given percentage of bank-full flow). (B*) 

3. Days which had flow less then the threshold value were assumed to contribute no 

streambank erosion from those events. 

4. Sum all the B* values for the study period (SB*). 

5. Calculate the ratio of event B* to SB* (BSB) 

6. Sum the streambank erosion value with the daily value of AnnAGNPS and REGEM 

to give the total sediment for each day. 

7. Compare the predicted sediment values with the measured watershed outlet TSS 

values for days having stream TSS measurements. 

8. The above steps are repeated for various threshold values (e.g., 1%, 5%, 10%, 15%, 

20%, 25%, 30%) of bank full.  
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Table 3.11 Bank full depths and discharges of the subwatersheds at bank full depth 

Subwatershed Bank full depth 

(ft) 

Stream flow 

(cfs) 

Irish Creek 4.53 359 

Main Stem 8.33 1,833 

North Fork 5.87 712 

3.5.2.3. Use of stream power (Method 3) 

This method will distribute measured streambank erosion based on percentage of 

the daily stream power / total stream power of simulation period. 

Detachment rates are a function of stream power, which is the energy of flow 

dissipated to the flow boundary (Bagnold, 1977; Rose et al., 1983a; Nearing et al., 

1991a). Most of the models assume linear relationships for soil detachment and hydraulic 

variable like shear stress (Nearing et al., 1998), stream power (Rose et al., 1983a; 

Nearing et al., 1991a). Stream power is a better hydraulic predictor variable for 

detachment and sediment yield (Nearing et al., 1991a; Nearing et al., 1997). 

Stream power is the energy expended by the flow in doing work on sediment 

particles to initiate and maintain sediment motion (Cunningham and Armitage, 2006).  

Stream power is the power available to transport sediment load and critical power is the 

power needed to transport sediment load. Bagnold (1966) defined stream power as the 

kinetic energy available for erosion and transport. 

  

 QS  (3.9) 

where, 

 Ω = stream power per unit length of channel [(Nm/ms) or (W/m)], 
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لا  = specific weight of water (N/m
3
), 

Q = stream discharge (m
3
/s), and 

S = energy gradient or slope (m/m). 

Bull (1979) explained the term “critical power” as a short hand expression through a 

continuity equation, (Q= wdv) for variables such as width (w), depth (d), and velocity (v) 

that affect hydraulic roughness and channel morphology. All of these variables interact to 

determine the capacity and competence of the stream to transport sediment. 

Method 3 with no threshold stream power 

1. Calculate unit stream power (eq. 3.9) for each day of the study period based on 

measured stream flow and measured stream slope. 

2. Assign the measured streambank erosion for the study period to each event based on 

the ratio of event stream power to the sum of daily stream power for the study period. 

rstreampowetotalrstreampoweeventpercentevent _/__   

percenteventloadtotalloadevent ___   

3. Sum the streambank erosion value with the daily value of AnnAGNPS and REGEM 

to give the total sediment for each day. 

4. Compare the predicted sediment values with the measured watershed outlet TSS 

values for days having stream TSS measurements. 

Method 3 with a threshold stream power value 

1. Calculate unit stream power (eq. 3.9) for each day of the study period based on 

measured stream flow and measured stream slope. 

2. Identify all the events that are above threshold value of stream power. (P*) 
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3. Days which had stream power less then the threshold value were assumed to 

contribute no streambank erosion from those events. 

4. Sum all the P* values for the study period (SP*). 

5. Calculate the ratio of event P* to SP* (PSP) 

6. Sum the streambank erosion value with the daily value of AnnAGNPS and REGEM 

to give the total sediment for each day. 

7. Compare the predicted sediment values with the measured watershed outlet TSS 

values for days having stream TSS measurements. 

The above steps are repeated for various threshold values.  

Some other methods that are based on shear stress and threshold velocities are 

explained in Appendix 1. 

For several events, the peak daily flow and sediment yield modeled by AGNPS 

and measured at the streamflow as the precipitation gage location did not align on the 

same day.  This could have occurred due to (1) differences in watershed lag time caused 

by ponds and other detention structures that were not modeled by AGNPS, (2) 

differences in lag time caused by a storm crossing the precipitation gage location before 

(or after) reaching the modeled watershed, since AGNPS applies the precipitation 

according to recorded timing at the precipitation gage (storms tend to move from west to 

east in this watershed, and the precipitation gage is west of the study subwatersheds (fig. 

3.15) , so the typical case is for the storm to reach the precipitation gage before the 

subwatershed), or (3) different reporting periods for the precipitation gage (7:00 am to 

7:00 am, with the 24-hour rainfall amount attributed to the date of collection), versus 

streamflow (midnight to midnight).  All three factors tend to cause streamflow to lag after 
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recorded precipitation, though to a different degree depending upon how the three factors 

align for a given event. A substantial temporal deviation was observed to occur on four 

occasions for Irish Creek (8/2/07, 8/8/07, 9/14/08, and 4/29/09), four occasions for Main 

Stem (09/13/08, 4/27/09, 6/2/09, and 6/21/09, and seven occasions for North Fork 

(8/2/07, 8/8/07, 8/24/07, 9/14/08, 4/29/09, 6/3/09, 6/22/09).  In these cases, modeled and 

measured watershed sediment yields were summed for the entire event period (up to 4 

days), using the minimum number of days to capture the peak discharge day for both 

modeled and measured yields, rather than for a single day. 

3.6. Model Calibration Procedure 

Model calibration is the process of varying uncertain input parameters over a 

range of likely values until a satisfactory match between measured data and simulated 

data is achieved. In most of the watershed modeling projects, model output is compared 

to corresponding measured data with the assumption that all the error variance is 

contained within the predicted values and the measured values are error free. But recent 

findings by Harmel et al. (2005; 2006) showed that uncertainty exists in measured stream 

flow and water quality data, and this uncertainty has to be considered when calibrating, 

validating and evaluating watershed models because of differences in inherent 

uncertainty between measured flow, sediment, and nutrient data (Moriasi et al., 2007). 

Both the hydrological and erosion components of AnnAGNPS and REGEM models were 

calibrated.  

3.6.1. Stream flow calibration  

Stream flow is the total water flowing in the stream at a specified location. The 

sources for this stream flow are the groundwater-fed baseflow and runoff. Two years 
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(Summer 2007 to Summer 2009) of daily stream flow data collected in Irish Creek, Main 

Stem and North Fork Subwatersheds were used to calibrate and validate AnnAGNPS and 

REGEM models. Flow calibration was performed for the simulation periods shown in 

table 3.13 by adjusting the CN parameter (tables 3.14, 3.15). CN is a key factor in 

obtaining accurate prediction of runoff and sediment yield (Yuan et al., 2001; Shrestha et 

al., 2006; Licciardello et al., 2007). CN is a soil moisture balance parameter that allows 

the model to modify the soil moisture condition of the soil to estimate surface runoff. 

Many studies suggested CN as the most sensitive parameter (Liccardelo et al., 2007; 

Parajuli et al., 2009).  

Table 3.12 Monitoring site location coordinates 

Site Number Site Location Latitude Longitude 

1 Black Vermillion River USGS Gage N39.68199  W96.4425 

2 Black Vermillion Irish Creek N39.60974 W96.30456 

3 Black Vermillion Main Stem N39.71379 W96.26647 

4 Black Vermillion North  Fork N39.72594 W96.32856 

 

 

Table 3.13 Simulation periods used for calibration 

Subwatershed Simulation period (yr) 

Irish Creek 6/6/2007- 6/18/2009 

Main Stem 8/1/2007- 6/30/2009 

North Fork 7/1/2007- 6/30/2009 

 

Table 3.14 Default Curve Number associated with each hydrologic soil group for 

each land use 

 Hydrologic Soil Group 

Land use A B C D 
Residential 46 65 77 82 
Cropland 66 74 80 82 
Pasture 39 61 74 80 
Meadows 30 58 71 78 
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Table 3.15 Parameters adjusted during flow calibration of subwatersheds Irish 

Creek, Main Stem, North Fork, and watershed Black Vermillion 

Watershed Parameter
1
 Default Value Testing Range Final Value 

Irish Creek CN Table 3.14 Default CN  6 Default CN + 6 

 Initial Soil Moisture 0.5 0.3 – 0.8 0.8 

Main Stem CN Table 3.14 Default CN  5 Default CN -5 

 Initial Soil Moisture 0.5 0.3 – 0.8 0.4 

North Fork CN Table 3.14 Default CN  7 Default CN -7 

 Initial Soil Moisture 0.5 0.3 – 0.8 0.7 

1
CN = Runoff Curve Number  

In each calibration step simulation results were compared to daily discharge values using 

multiple statistical criteria. First, a range of physically acceptable values was selected for 

each calibrated parameter, and then the procedure was performed by adjusting the input 

parameters within the range until the simulation results were close to the observed values 

on daily scale (fig. 4.1).  

3.6.2. Sediment load calibration 

Models were calibrated for sediment yield for Irish Creek and Main Stem by 

adjusting the various input parameters (table 3.16) until a match was established between 

observed and simulated values. The calibrated parameter values for each subwatershed 

(Irish Creek and Main Stem) were used separately, along with a number of other values, 

to validate and further test the AGNPS + REGEM model for the North Fork 

Subwatershed 
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Table 3.16 Parameters adjusted during sediment calibration for AnnAGNPS and 

REGEM 

Watershed Parameters Default value Test range value Final value 

Irish Creek USLE P factor 

REGEM SGF 

1.0 0.2-1.0 

0.1-0.5 

0.4 

0.2 

Main Stem USLE P factor 

REGEM SGF 

1.0 0.2-1.0 

0.1-10.0 

0.6 

0.1 

 

The default values of USLE C for each land-use type were used for calibration. 

The USLE P factor, defined as the ratio of soil loss with a specific support practice to the 

corresponding loss with up and down slope culture, was used for calibration in the range 

from 0.1 to 1.0 in this study.  P values for watershed areas (76% of Irish Creek, 63% of 

Main Stem, 70% of North Fork) without terraces were adjusted during calibration. 

A REGEM Sediment Gully Factor (SGF) found in the PL calibration data of the 

AnnAGNPS input editor was adjusted over the range of 0.1 to 20.0 until the best model 

efficiency was achieved.  
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3.7. Model Evaluation Statistics  

Correlation coefficient (R
2
), Nash- Sutcliffe efficiency index (Ef) and percent bias 

(PBIAS) model evaluation statistical techniques were used to measure the relationship 

between measured and predicted flow, and Ef and PBIAS for measured and predicted 

sediment yield.  

3.7.1. Coefficient of determination (R
2
) 

Coefficient of determination describes the degree of colinearity between 

simulated and measured data. R
2
 ranges from 0 to 1, with higher values indicating less 

error variance. An R
2
 of 1.0 indicates that the regression line perfectly fits the data.  

3.7.2. Nash-Sutcliffe efficiency (Ef) 

Nash-Sutcliffe efficiency index indicates the degree of agreement between 

observed and simulated data. Nash-Sutcliffe efficiency is computed as follows: 
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where: 

Ef: = Nash-Sutcliffe efficiency index, 

Pi: = predicted daily value (stream flow, m
3
/s), 

Oi = observed daily value (stream flow, m
3
/s), 

O = mean of observed daily values (stream flow, m
3
/s), and 

n = number of observations on observed and predicted values. 

Nash-Sutcliffe efficiency indices in assessment of flow modeling were considered “Very 

Good” for a monthly coefficient of 0.75 to 1.00, “Good” for a coefficient of 0.75 to 0.65, 
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“Satisfactory” for a coefficient of 0.65 to 0.50, and “Unsatisfactory” for a coefficient of 

less than 0.50 (Moriasi et al., 2007).   

3.7.3. Percent bias (PBIAS) 

PBIAS measures the average tendency of simulated data to be larger or smaller 

than observed counterparts (Gupta et al., 1999). PBIAS is calculated:  
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 (3.13) 

where,  

PBIAS = percentage bias (%),   

Yi
obs

 = observed value for event i, and  

Yi
sim

 = predicted value for event i.  

The optimal value of PBIAS is 0.0, with low magnitude values indicating accurate model 

simulation. Positive values indicate model under estimation bias and negative values 

indicate model over estimation bias (Moriasi et al., 2007).  PBIAS for streamflow model 

performance was considered very good for <15 for sediment and <10 for streamflow, 

good for 15 < PBIAS <30 for sediment and 10 < PBIAS < 15 for streamflow, 

satisfactory for 30 < PBIAS <55 for sediment and 15 < PBIAS <25 for streamflow, 

and unsatisfactory for PBIAS >55 for sediment and PBIAS >25 for streamflow 

(Moriasi et al., 2007). 
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CHAPTER 4 - Results and Discussions 

4.1. Flow 

The AnnAGNPS model was calibrated for streamflow using measured data 

collected at the outlet to each of three subwatersheds (table 3.11).  Each of the three 

subwatersheds was calibrated independently resulting in different flow calibration 

parameters (table 3.14).  Calibrated model results for Irish Creek, Main Stem and North 

Fork Subwatersheds predicted daily flow of watersheds with satisfactory performance for 

R
2
 (> 0.50) in all three subwatersheds and for Ef (> 0.50) in two of the three 

subwatersheds, using general performance ratings proposed by Moriasi et al. (2007). The 

calculated PBIAS values (table 4.1, fig. 4.1) for Irish Creek and Main Stem were 

satisfactory (< 25%) for all three subwatershed and very good (< 10%) for two of the 

three subwatersheds. 

Table 4.1 Statistical parameters
1
 of model performance for calibration of daily 

streamflow for three study subwatersheds and overall watershed for 2-year study 

period. 

Subwatershed Ef PBIAS (%) R
2
 

Irish Creek 0.43 6.3 0.50 

Main Stem 0.50 8.8 0.49 

North Fork 0.49 18.2 0.51 
1
Ef = Nash-Sutcliffe efficiency index, PBIAS = Percent bias, 

R
2
 = Coefficient of determination  
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(C)                 

 
 

Figure 4.1 Time series of measured and AnnAGNPS simulated daily flow for (a) 

Irish Creek, (b) Main Stem, and (c) North Fork over 2-year study period. 

 

4.2. Sediment 

Sediment calibration was conducted for the Irish Creek and Main Stem 

Subwatersheds independently.  A limited number of parameters were used to calibrate 

each method: P factor for AnnAGNPS, SGF for REGEM, and a SB multiplier and 

various thresholds (Ia/S for Method 1, SFT for Method 2, and SPT for Method 3) for 

each method of disaggregating streambank sediment yields. For each method, parameters 

were adjusted until an optimal model performance (local maximum Ef and local 

minimum PBIAS) was found. 

Model results for sediment loads from the watershed were interpreted using 

general performance ratings for sediment calibration proposed by Moriasi et al. (2007): 

monthly time-step model performance was rated very good for Ef > 0.75 and PBIAS < 
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15%, good for Ef > 0.65 and PBIAS < 30%, satisfactory for Ef > 0.5 and PBIAS < 

55%, and unsatisfactory for Ef  0.5 and PBIAS > 55%.  Model results in this study 

were assessed on an event basis, which tend to produce lower model statistics than a 

monthly time step (Moriasi et al., 2007), so these monthly performance ratings might 

qualitatively underestimate event-based performance ratings (i.e., these ratings might be 

overly-critical in rating the performance of the event-based statistical values in this 

study). 

4.2.1. Overland erosion 

The first calibration of sediment yield was for the AnnAGNPS model alone 

(without the REGEM component) for the Irish Creek and Main Stem subwatersheds.  

AnnAGNPS was calibrated by adjusting the P factor for model cells that did not have 

terraces, which accounted for 5% of cropland area in Irish Creek and 35% of cropland 

area in Main Stem (table 3.4). 

The calibrated AnnAGNPS model for Irish Creek and Main Stem predicted daily-

based sediment yield with an unsatisfactory model performance (table 4.2) compared to 

measured sediment yield data. For Irish Creek Subwatershed, the best calibration results 

were found using a P = 0.8, resulting in the highest Ef (0.30) and the lowest PBIAS 

(48.4%) (table 4.2). For the Main Stem Subwatershed, the best calibration was considered 

to be for P = 1.0, with near-optimal Ef (0.25) and the lowest PBIAS (58.0%) (table 4.2). 

Optimal calibrated P factors for the model cells that did not have terraces were 

high for both subwatersheds (0.8 and 1.0).  This indicated that the typical recommended 

P factor of 1.0 for fields without terraces or contouring is a reasonable assumption when 

using AnnAGNPS alone. 
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The calibrated parameter values for each subwatershed were used separately, 

along with a number of other values, to validate and further test the AnnGNPS model for 

the North Fork Subwatershed (table 1.4). Positive PBIAS value (71.4%) indicated that 

the model underestimated the sediment yields. The model efficiency values were low 

with optimal value for P = 0.8 (Ef = 0.01).  

The low Ef and high PBIAS values of the AnnAGNPS model for three 

subwatersheds indicate the need to consider other sediment sources and processes 

(ephemeral gully erosion, streambank erosion). 

4.2.2. Overland + Ephemeral gully erosion 

The second calibration of sediment yield was for the AnnAGNPS model 

combined with the REGEM component for the Irish Creek and Main Stem 

Subwatersheds. The REGEM Sediment Gully Factor (SGF) found in the PL Calibration 

Data of the AnnGNPS Input Editor was adjusted together with the P factor until the best 

set of calibration statistics was achieved.  

A heuristic approach was used to arrive at the calibration factor for ephemeral 

gully erosion for both Irish Creek and Main Stem Subwatersheds. Several model 

simulations were performed with different parameter combinations of P factor and SGF 

in order to determine an optimal Ef and PBIAS (table 4.2). 

For a constant P factor value, as SGF was increased, the PBIAS value decreased 

slightly (less than 10% for Irish Creek and less than 1% for Main Stem). Increasing SGF 

leads to greater sediment contribution from ephemeral gullies, which slightly improved 

the agreement with measured subwatershed outlet values. At the same time, model 

efficiency improved as SGF value was increased.  
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With a constant SGF value, an increase in P factor increased the total sediment 

load from overland erosion.  This resulted in decreasing PBIAS values and increasing 

model efficiency to optimal values near a P between 0.7 and 0.8 for Irish Creek and 1.0 

for Main Stem. Further increase in P factor beyond these values led to poorer model 

statistics.   

The optimal combination of model statistics for Irish Creek was found for a P 

factor of 0.8 and SGF of 0.8 (Ef = 0.37, PBIAS = 21.1%). For Main Stem, the optimal 

combination was for P factor of 1.0 and SGF of 14 (Ef = 0.34, PBIAS = 50.7%). For the 

calibration using AnnAGNPS alone, the optimal P factor values were same for Irish 

Creek (0.8) and same for Main Stem (1.0). As more sediment was added from ephemeral 

gullies, the P factor value for Irish Creek and Main Stem remained the same. 

The calibrated parameter values for each subwatershed (Irish Creek and Main 

Stem) were used separately, along with a number of other values, to validate and further 

test the AGNPS + REGEM model for the North Fork Subwatershed (table 1.4). Positive 

PBIAS value (64.6%) indicated that the model underestimated the sediment yields. The 

model efficiency values were low with optimal value for P = 0.8 (Ef = 0.06).  

The same trend was observed in the three subwatersheds for both AnnAGNPS 

alone and in combination with REGEM. The higher PBIAS and lower Ef values indicate 

the need to consider sediment coming from streambanks. 
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Table 4.2  Calibration model parameters
1
 and event-based (n=62) model 

performance
2
 for five methods to simulate Irish Creek Subwatershed outlet total 

suspended sediment yield. 

Multiplier Threshold P factor SGF Ef PBIAS  

(%) 

Total  

Sediment  

(Mg) 

AnnAGNPS 

SB=0 -- 0.5 0 0.26 66.5 352 

  0.6 0 0.28 60.5 416 

  0.7 0 0.29 54.5 479 

  0.8 0 0.30 48.4 542 

  0.9 0 0.28 42.4 605 

  1.0 0 0.27 36.4 668 

AnnAGNPS + REGEM 

SB=0 -- 0.5 0.7 0.36 49.1 603 

  0.5 0.8 0.37 45.7 641 

  0.5 0.9 0.37 42.7 677 

  0.6 0.7 0.37 36.7 666 

  0.6 0.8 0.38 33.1 704 

  0.7 0.8 0.38 27.1 767 

  0.7 0.9 0.37 23.6 803 

  0.7 1.0 0.36 21.1 830 

  0.8 0.8 0.37 21.1 830 

  0.8 0.9 0.36 17.6 867 

AnnAGNPS + REGEM + Method 1 (Based on Rainfall) 

SB=0.1 Ia/S=0 0.6 0.6 0.45  1.4 1,037 

  0.6 0.7 0.45   -1.6 1,069 

  0.5 0.8 0.46  0.8 1,043 

  0.4 0.8 0.46  6.8 980 

  0.4 0.9 0.44  3.4 1,016 

  0.4 1.0 0.42  0.8 1,043 

 Ia/S=0.1 0.5 0.4 0.51  0.6 1,046 

  0.4 0.5 0.52  2.6 1,024 

  0.4 0.6 0.51 -0.8 1,060 

 Ia/S=0.2 0.5 0.1 0.56  1.5 1,036           

  0.5 0.2 0.55 -2.4 1,077 

  0.4 0.2 0.56 3.6 1,014 

  0.4 0.3 0.55 -0.3 1,055 

  0.3 0.4 0.55 2.1 1,030 

  0.3 0.5 0.56 -1.9 1,072 

 Ia/S=0.3 0.4 0 0.61 -1.1 1,063 

  0.3 0.1 0.61 3.0 1,020 

  0.3 0.2 0.61 -0.9 1,061 

 Ia/S=0.4 0.2 0.1 0.68 0.2 1,050 

 Ia/S=0.5 0.2 0 0.76 -7.3 1,129 

  0.1 0 0.75 -1.2 1,065 

SB=0.2 Ia/S=0 0.3 0.1 0.49 0.1 1,051 

 Ia/S=0.1 0.1 0 0.54 -14.2 1,202 

 Ia/S=0.2 0.1 0 0.54 -35.4 1,424 

 Ia/S=0.3 0.1 0 0.48 -56.4 1,646 

SB=0.3 Ia/S=0 0.1 0 0.47 24.0 1,305 
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AnnAGNPS+REGEM+Method 2 (Based on streamflow) 

SB=0.1 SFT=0% 0.6 0.7 0.53 0.8 1,044 

  0.5 0.7 0.54 6.8 980 

  0.5 0.8 0.53 3.2 1,018 

  0.5 0.9 0.52 -0.2 1,055 

  0.4 1.0 0.50 3.2 1,018 

 SFT=10% 0.3 0 0.67 -0.5 1,057 

  0.2 0.1 0.66 3.6 1,013 

  0.2 0.2 0.65 -0.2 1,054 

  0.1 0.3 0.63 1.9 1,031 

  0.1 0.4 0.63 -1.7 1,070 

 SFT=20% 0.3 0 0.67 -2.0 1,073 

  0.2 0.1 0.66 2.2 1,029 

  0.2 0.2 0.66 -1.7 1,070 

  0.1 0.3 0.64 0.4 1,047 

  0.1 0.4 0.63 -3.2 1,086 

 SFT=30% 0.3 0 0.67 -3.4 1,087 

  0.2 0.1 0.66 0.8 1,044 

  0.2 0.2 0.66 -3.1 1,084 

  0.1 0.2 0.64 3.0 1,020 

  0.1 0.3 0.64 -0.9 1,062 

SB=0.2 SFT=0% 0.4 0 0.62 0.8 1,044 

  0.4 0.1 0.63 -1.2 1,064 

  0.3 0.2 0.62 1.0 1,042 

 SFT=10% 0.1 0 0.41 -67.3 1,760 

SB=0.3 SFT=0% 0.1 0 0.65 -16.9 1,229 

 SFT=10% 0.1 0 -0.62  -146.3 2,591 

SB=0.4 SFT=0% 0.1 0 0.61 -52.8 1,607 

SB=0.5 SFT=0% 0.1 0 0.46 -88.6 1,984 

 
AnnAGNPS+REGEM+Method 3 (Based on stream power) 

SB=0.1 SPT=0 0.6 0.7 0.53 0.3 1,040 

  0.5 0.8 0.53 2.7 1,015 

  0.5 0.9 0.52 -0.8 1,051 

  0.4 1.0 0.50 2.7 1,015 

 SPT=0.1 0.3 0 0.66 0.9 1,034 

  0.3 0.1 0.66 -1.1 1,055 

  0.2 0.2 0.65 1.2 1,031 

  0.1 0.3 0.62 3.3 1,009 

  0.1 0.4 0.62 -0.3 1,047 

 SPT=0.5 0.3 0 0.67 -4.2 1,087 

  0.2 0 0.66 2.0 1,023 

  0.2 0.1 0.66 -0.03 1,044 

  0.1 0.2 0.64 2.2 1,020 

  0.1 0.3 0.64 -1.8 1,062 

 SPT=1.0 0.2 0 0.67 -0.04 1,044 

  0.1 0.1 0.65 4.1 1,000 

  0.1 0.2 0.64 0.2 1,041 

SB=0.2 SPT=0 0.4 0 0.62 0.6 1,038 

  0.4 0.1 0.63 -1.4 1,058 

  0.3 0.2 0.62 -0.8 1,035 

 SPT=0.1 0.1 0 0.45 -64.3 1,714 

SB=0.3 SPT=0 0.1 0 0.65 -16.9 1,220 

 SPT=0.1 0.1 0 -0.48 -141.7 2,523 

SB=0.4 SPT=0 0.1 0 0.61 -52.8 1,594 
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SB=0.5 SPT=0 0.1 0 0.46 -88.6 1,969 
1
P factor = USLE P factor for non-terraced cells, SGF = REGEM sediment gully factor, Ia/S = Ratio of 

initial abstraction (Ia) to total watershed storage (S), SPT = Stream power threshold, SFT = Streamflow 

threshold 
2
Ef = Nash-Sutcliffe efficiency, PBIAS = Percent bias, Total sediment = Sediment from combined 

AnnAGNPS, REGEM, and streambank distribution methods (2-yr total),  

 

Table 4.3 Calibration model parameters
1
 and event-based (n=60) model 

performance
2
 for five methods to simulate Main Stem Subwatershed outlet total 

suspended sediment yield. 

Multiplier Threshold P factor SGF Ef PBIAS  

(%) 

Total  

Sediment  

(Mg) 

AnnAGNPS 

SB=0  0.5 0 0.16 77.3 2,827 

  0.6 0 0.19 73.4 3,311 

  0.7 0 0.21 69.5 3,794 

  0.8 0 0.23 65.7 4,276 

  0.9 0 0.24 61.8 4,757 

  1.0 0 0.25 57.9 5,238 

AnnAGNPS + REGEM 

SB=0  0.9 5 0.29 59.4 5,052 

  0.9 10 0.32 56.7 5,388 

  0.9 14 0.33 54.5 5,662 

  1.0 1 0.26 57.5 5,299 

  1.0 5 0.29 55.6 5,532 

  1.0 10 0.33 52.9 5,868 

  1.0 14 0.34 50.7 6,143 

AnnAGNPS + REGEM + Method 1 (Based on Rainfall) 

SB=1.0 Ia/S=0 0.9 14 0.50 8.5 11,393 

  0.8 14 0.51 12.4 10,912 

SB=1.3 Ia/S=0 0.9 10 0.52 -3.1 12,838 

  0.8 10 0.53 0.8 12,357 

  0.8 11 0.53 0.3 12,417 

  0.8 12 0.53 -0.2 12,488 

  0.8 13 0.53 -0.8 12,559 

  0.7 14 0.54 2.5 12,149 

 Ia/S=0.1 0.3 10 0.60 -2.3 12,749 

  0.2 12 0.60 0.5 12,392 

  0.2 13 0.60 -0.1 12,463 

 Ia/S=0.2 0.1 0 0.622 -5.5 13,145 

 Ia/S=0.3 0.1 0 0.58 -20.9 15,071 
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AnnAGNPS+REGEM+Method 2 (Based on streamflow) 

SB=1.0 SFT=0 0.9 12 0.59 9.20 11,312 

  0.9 14 0.58 8.0 11,455 

  0.8 14 0.59 11.9 10,974 

  0.7 12 0.60 16.9 10,349 

 SFT=10% 0.1 0 0.63 0.3 12,423 

 SFT=20% 0.1 0 0.61 -5.2 13,099 

SB=1.3 SFT=0 0.9 0 0.61 1.3 12,288 

  0.8 10 0.62 0.26 12,438 

  0.8 11 0.62 -0.3 12,498 

  0.7 11 0.63 3.5 12,016 

  0.7 14 0.62 1.8 12,230 

 SFT=10% 0.2 0 0.46 -31.5 16,378 

SB=1.5 SFT=0 0.7 0 0.64 -0.2 12,483 

  0.6 0 0.65 3.7 12,000 

 SFT=10% 0.1 0 0.29 -46.1 18,196 

AnnAGNPS+REGEM+Method 3 (Based on stream power) 

SB=1.0 SPT=0 1.0 11 0.56 17.1 10,329 

  1.0 14 0.55 15.4 10,543 

  0.9 14 0.56 18.5 10,149 

 SPT=0.1 0.8 10 0.57 23.9 9,479 

 SPT=0.5 0.4 0 0.61 1.9 12,217 

  0.3 0 0.62 5.1 11,817 

SB=1.3 SPT=0 1.0 10 0.58 4.7 11,868 

  1.0 14 0.56 2.5 12,143 

  0.9 10 0.59 7.9 11,473 

  0.9 14 0.58 5.7 11,748 

  0.8 11 0.60 10.6 11,139 

  0.7 10 0.61 14.2 10,682 

  0.6 11 0.61 16.9 10,346 

 SPT=0.5 0.1 0 0.49 -1.2 14,098 

 SPT=1.0 0.1 0 0.47 -15.4 14,378 

SB=1.5 SPT=0 0.8 12 0.60 1.5 12,275 

  0.7 0.0 0.62 10.7 11,118 

 SPT=0.5 0.1 0.0 0.37 -29.7 16,155 
1
P factor = USLE P factor for non-terraced cells, SGF = REGEM sediment gully factor, Ia/S = Ratio of 

initial abstraction (Ia) to total watershed storage (S), SPT = Stream power threshold, SFT = Streamflow 

threshold 
2
Ef = Nash-Sutcliffe efficiency, PBIAS = Percent bias, Total sediment = Sediment from combined 

AnnAGNPS, REGEM, and streambank distribution methods (2-yr total),  
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Table 4.4 Validation model parameters
1
 and event-based (n=63) model 

performance
2
 for five methods to simulate North Fork Subwatershed outlet total 

suspended sediment yield. 

Multiplier Threshold P 

factor 

SGF Ef PBIAS  

(%) 

Total  

Sediment  

(Mg) 

AnnAGNPS 

SB=0 -- 0.2 0 -0.012 91.7       1,781 

  0.4 0 0.004 84.8 3,252 

  0.8 0 0.01 71.4 6,116 

  1.0 0 0.004 64.8 7,523 

AnnAGNPS + REGEM 

SB=0 -- 0.8 1 0.02 70.9 6,213 

  0.8 10 0.06 64.6 7,561 

  1.0 1 0.01 64.3 7,621 

  1.0 10 0.05 58.0 8,967 

AnnAGNPS + REGEM + Method 1 (Based on Rainfall) 

SB=0.05 Ia/S=0 0.2 0 0.11 66.8 7,083 

  0.2 10 0.15 60.1 8,535 

  0.4 0 0.12 60.0 8,554 

  0.4 10 0.16 53.2 10,003 

  0.8 0 0.11 46.6 11,417 

  0.8 10 0.14 39.8 12,863 

 Ia/S=0.1 0.2 0 0.18 58.7 8,823 

  0.2 10 0.21 51.9 10,275 

  0.4 0 0.18 51.8 10,294 

  0.4 10 0.21 45.0 11,743 

 Ia/S=0.4 0.2 0 0.36 43.2 12,132 

  0.2 10 0.37 36.4 13,585 

  0.4 0 0.35 36.3 13,604 

SB=0.1 Ia/S=0.1 0.2 0 0.31 25.8 15,865 

  0.2 10 0.33 19.0 17,317 

  0.4 0 0.30 18.9 17,336 

  0.4 10 0.32 12.1 18,785 

 Ia/S=0.6 0.2 0 0.68 -24.5 26,601 

  0.2 10 0.64 -31.3 28,053 

  0.4 0 0.64 -31.5 28,072 

SB=0.2 Ia/S=0 0.2 0 0.33 -7.6 22,989 

  0.2 10 0.34 -14.4 24,441 

  0.4 0 0.30 -14.4 24,460 
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AnnAGNPS+REGEM+Method 2 (Based on streamflow) 

SB=0.05 SFT=0% 0.2 0 0.13 67.4 6,960 

  0.2 10 0.16 60.4 8,412 

  0.4 0 0.14 60.7 8,404 

  0.4 10 0.16 53.9 9,854 

  0.8 0 0.13 47.5 11,215 

 SFT=10% 0.2 0 0.24 43.3 12,116 

  0.2 10 0.24 36.5 13,568 

  0.4 0 0.23 36.5 13,561 

 SFT=20% 0.2 0 0.24 42.9 12,198 

  0.2 10 0.24 36.1 13,650 

  0.4 0 0.23 36.2 13,642 

SB=0.1 SFT=0% 0.2 0 0.22 43.0 12,172 

  0.2 10 0.23 36.2 13,624 

  0.4 0 0.22 36.3 13,616 

  0.4 10 0.22 29.5 15,065 

  0.8 0 0.19 23.1 16,426 

 SFT=10% 0.2 0 0.20 -5.2 22,485 

  0.2 10 0.14 -12.0 23,937 

AnnAGNPS+REGEM+Method 3 (Based on stream power) 

SB=0.05 SPT=0 0.2 0 0.13 67.4 6,960 

  0.2 10 0.16 60.3 8,412 

  0.4 0 0.14 60.7 8,404 

  0.4 10 0.16 53.9 9,854 

  0.8 0 0.13 47.5 11,215 

 SPT=0.5 0.2 0 0.24 43.2 12,146 

  0.2 10 0.24 36.4 13,598 

  0.4 0 0.23 36.4 13,590 

SB=0.1 SPT=0 0.2 0 0.22 43.0 12,172 

  0.2 10 0.23 36.2 13,624 

  0.4 0 0.22 36.3 13,616 

  0.4 10 0.22 29.5 15,066 

  0.8 0 0.19 23.1 16,426 

 SPT=0.5 0.2 0 0.20 -5.5 22,543 
1
P factor = USLE P factor for non-terraced cells, SGF = REGEM sediment gully factor, Ia/S = Ratio of 

initial abstraction (Ia) to total watershed storage (S), SPT = Stream power threshold, SFT = Streamflow 

threshold 
2
Ef = Nash-Sutcliffe efficiency, PBIAS = Percent bias, Total sediment = Sediment from combined 

AnnAGNPS, REGEM, and streambank distribution methods (2-yr total),  
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4.2.3. Overland + Ephemeral gully + Streambank erosion 

The field-measured 2-year total annual streambank erosion values were 

disaggregated to the daily scale using three methods, as described in Section 3.5.  

4.2.3.1. AnnAGNPS + REGEM + Streambank Erosion: Method 1 

This method distributes the total 2-year streambank erosion, after applying a 

multiplier (SB), to the daily scale according to the percentage of the daily rainfall depths 

for storms exceeding an established Ia/S threshold value to the 2-year sum of daily 

rainfall depths that exceed the Ia/S threshold value.  

Results (tables 4.2 and 4.3; also see tables in Appendix 2) suggest that for a 

constant SGF factor and constant Ia/S threshold, an increase in P factor increased the 

total sediment load and decreased PBIAS value, but the efficiency of the method 

increased to a certain P factor value and then decreased. For a constant P factor value and 

SGF value, an increase in Ia/S threshold value decreased PBIAS values, indicating that 

more sediment was routed through fewer major events, and the Ef values increased up to 

an optimum threshold value and then decreased. For a constant P factor and Ia/S 

threshold, an increase in SGF value increased the total sediment load and decreased 

PBIAS, but the Ef remained the same. 

Field assessments determined that streambank erosion may be originating from 

both banks, thus a streambank (SB) multiplier of 1.3 might be warranted (Keane et al., 

2010). Various SB multipliers were tested in this study (0.1, 0.2, 0.3, 0.4, 0.5 and 1.3 for 

Irish Creek and 1.0, 1.3 and 1.5 for Main Stem). When no threshold was applied, as the 

SB multiplier was increased, the efficiency of the method increased up to an optimum SB 

value and then decreased, but the PBIAS values decreased. As the SB multiplier 
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increased good efficiencies and satisfactory PBIAS values were achieved at lower P 

factor values and lower SGF values.  For Irish Creek using a SB multiplier of 0.1, 

satisfactory performance was achieved for P factor = 0.5 and SGF factor = 0.8 (Ef = 0.46 

and PBIAS = 0.8%).  For SB value of 0.2, satisfactory performance was achieved at P 

factor = 0.3 and SGF factor = 0.1 (Ef = 0.49 and PBIAS = 0.08%) (table 4.2). For Main 

Stem using a SB value of 1.0, satisfactory performance was achieved for P factor = 0.9 

and SGF = 14 (Ef = 0.50 and PBIAS = 8.5%). Based on the statistical parameters in table 

4.2 and table 4.3, for Irish Creek the SB multiplier factors of 0.1 and 0.2 gave nearly 

satisfactory model efficiencies (Ef = 0.46 and Ef = 0.49) and very good PBIAS values 

(0.8% and 0.08%), and for Main Stem the SB multiplier factor of 1.3 gave satisfactory 

efficiency (Ef = 0.53) and very good PBIAS values (0.3%) for no threshold conditions. 

As more sediment was added from streambanks, the P factor and SGF values 

decreased, indicating that less sediment was routed from the overland and ephemeral 

gullies to the outlet. Since 58.3% of the Irish Creek Subwatershed and 57.0% of the Main 

Stem Subwatershed drained into watershed structures, there was a possibility of the 

sediment from overland and ephemeral gullies to settle in the watershed structures, 

particularly for small events. More sediment from overland and ephemeral gullies might 

be routed to the outlet during bigger events, when detention times in these structures are 

relatively short. So most of the sediment that was measured at outlet might have been 

sediment from streambanks.  

Threshold conditions of Ia/S = 0 mean that each event contributed to routing the 

sediment from streambanks to the outlet. As the Ia/S threshold value increased, only a 

few events (events greater than the threshold value) contributed to routing the total 
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streambank sediment, and the efficiency of the method increased to an optimum 

threshold value and then decreased. Maximum efficiencies and low PBIAS were 

achieved at low P factors and low SGF. As the Ia/S threshold value increased, maximum 

efficiency and low PBIAS values were achieved at lower P factor and SGF values. For 

Irish Creek, the optimal combinations of statistics were  

 Ia/S = 0 at P = 0.5 and SGF = 0.8 (Ef = 0.46 and PBIAS = 0.8%),  

 Ia/S = 0.1 at P = 0.5 and SGF = 0.4 (Ef = 0.51 and PBIAS = 0.6%),  

 Ia/S = 0.2 at P = 0.5 and SGF = 0.1 (Ef = 0.56 and PBIAS= 1.5%),  

 Ia/S = 0.3 at P = 0.3 and SGF = 0.2 (Ef = 0.61 and PBIAS = -0.9%),  

 Ia/S = 0.4 at P = 0.2 and SGF = 0.1 (Ef = 0.68 and PBIAS = 0.2%),  

 Ia/S = 0.5 at P = 0.1 and SGF = 0.0 (Ef = 0.75 and PBIAS = -1.2%), and  

 Ia/S =0.6 at P = 0.1 and SGF = 0.0 (Ef = 0.68 and PBIAS = -11.8%).  

For Main Stem the same trend was observed, but the optimal threshold value observed 

was Ia/S = 0.2 at P = 0.1 and SGF = 0.0 (Ef = 0.62 and PBIAS = -5.5%), and For North 

Fork the same trend was observed, but the optimal threshold value observed was Ia/S = 

0.7 at P= 0.2 and SGF=0.0 (Ef = 0.65 and PBIAS = -30.1%). 

The results suggested that the model did not perform well for small events, but it 

did perform well for large events. In a study of 72 small basins in 17 states, Piest (1965) 

found that large storms (with a return period of 1 year or more) contributed an average of 

31 percent of the total sediment yield from their respective basins (Guy, 1970). The 

difference in the optimum threshold values for Irish Creek (Ia/S = 0.5) and Main Stem 

(Ia/S = 0.2) might be attributed to the spatial variability of precipitation. In this study, 

precipitation was assumed to be spatially uniform, due to the limitation of measured 
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precipitation. Negligence in considering the spatial variability could result in serious 

errors in model outputs (Chang et al., 2007). The spatial rainfall variability could result in 

the uncertainty of runoff predictions (Chang et al., 2007). The input errors of 

precipitation can result in the uncertainty on modeling outputs of flow hydrographs, 

representing flow volume, peak flow, arrival time of peak flow, and other hydrograph 

characteristics (Chaubey et al., 1999; Chang et al., 2007). The uncertainty on hydrologic 

responses would translate to uncertainty in pollutant exports, and even be expanded 

(Chang et al., 2007). Young et al. (1992) and Luzio and Lenzi (1995) studies 

demonstrated that the sediment yield, total nitrogen and total phosphorous predictions are 

sensitive to the spatial variability of rainfall (Chaubey et al., 1999). Chaubey et al. (1999) 

demonstrated the need to capture the spatial variability of rainfall in order to accurately 

predict the hydrologic and water quality responses of watersheds. Since rainfall is a 

driving force behind many kinds of pollutant release and subsequent transport and spread 

mechanisms, ignoring this property of rainfall in the application of watershed models 

limits the accuracy of model results (Chaubey et al., 1999). Rainfall spatial patterns can 

be better captured using a network of rain gauges and radar rainfall data (Gali, 2010). 

4.2.3.2. AnnAGNPS + REGEM + Streambank Erosion: Method 2 

This method distributed the 2-year total measured streambank erosion, after 

applying a multiplier (SB), to the daily scale based on the percentage of the daily 

streamflow that exceeds a threshold (SFT) value to the 2-year sum of streamflows that 

exceed the SFT threshold value.  

Results (tables 4.2 and 4.3; also see tables in Appendix 2) suggest that for a 

constant SGF factor and constant SFT, an increase in P factor increased the total 
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sediment load and decreased PBIAS values, but the efficiency of the method increased to 

a certain P factor value and then decreased. For a constant P factor value and SGF value, 

an increase in SFT threshold value increased the efficiency of the method up to optimum 

threshold value and then decreased and the PBIAS values decreased.  For a constant P 

factor and SFT threshold an increase in SGF value increased the total sediment load and a 

decrease in PBIAS value. 

Field assessments determined that streambank erosion may be originating from 

both banks, thus a streambank (SB) multiplier of 1.3 might be warranted (Keane et al., 

2010). Various SB multipliers were tested in this study (0.1, 0.2, 0.3, 0.4, 0.5 and 1.3 for 

Irish Creek and 1.0, 1.3 and 1.5 for Main Stem). At SFT threshold = 0%, as the SB 

multiplier was increased, the efficiency of the method increased up to an optimum SB 

value and then decreased, and the PBIAS values decreased. As the SB multiplier 

increased good efficiencies and satisfactory PBIAS values were achieved at lower P 

factor values and lower SGF values.  For Irish Creek, SB value of 0.1, a satisfactory Ef 

(0.53) and very good PBIAS (0.8%) was achieved for P factor = 0.6 and SGF factor = 

0.7, and for SB value of 0.2, similar performance was achieved at P factor = 0.4 and SGF 

factor = 0.1 (Ef = 0.63 and PBIAS = -1.2%) (table 1.2). For Main Stem, for SB value of 

1.0, satisfactory Ef (0.59) and very good PBIAS (9.2%) was achieved for P factor = 0.9 

and SGF = 12, and for SB factor of 1.3, similar performance was achieved for P = 0.8 

and SGF = 10 (Ef = 0.62 and PBIAS = 0.2%). For North Fork, for SB value of 0.2, low 

efficiency Ef (0.23) and very good PBIAS (-5.7%) was achieved for P factor = 0.1 and 

SGF = 0. 
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As more sediment was contributed from streambanks, the P factor and SGF 

values decreased, indicating that less sediment was routed from the overland and 

ephemeral gullies to the outlet. Since 58.3% approx of the Irish Creek Subwatershed, 

57.0% approx of the Main Stem Subwatershed and 21% approx of the North Fork 

drained into watershed structures, there was a possibility of the sediment from overland 

and ephemeral gullies to settle in the watershed structures for small events, as discussed 

above. 

Threshold conditions of SFT = 0% means that each event contributed to routing 

the sediment from streambanks to the outlet. As the SFT threshold increased, fewer 

events (events greater than the threshold value) contributed to routing the total 

streambank sediment, and the efficiency of the method increased to an optimum 

threshold value and then decreased. Maximum Ef and low PBIAS were achieved at low P 

factors and low SGF. As the SFT threshold increased, maximum Ef and low PBIAS 

values were achieved at lower P factor and SGF values. For Irish Creek, the optimal 

combinations of statistics were: 

 SFT = 0% at P = 0.6 and SGF = 0.7 (Ef = 0.53 and PBIAS = 0.8%),  

 SFT = 10% at P = 0.3 and SGF = 0.0 (Ef = 0.67 and PBIAS = -0.5%),  

 SFT = 20% at P = 0.2 and SGF = 0.2 (Ef = 0.66 and PBIAS = -1.7%), and  

 SFT = 30% at P = 0.2 and SGF = 0.1 (Ef = 0.66 and PBIAS = 0.8%).  

For Main Stem the same trend was observed for SB factor of 1.0 but the optimum 

threshold value observed was SFT = 10% at P = 0.1 and SGF = 0.0 (Ef = 0.63 and PBIAS 

= 0.3%), but for the SB factor of 1.3, the method gave optimal model performance with 

no threshold (SFT = 0%) conditions (Ef = 0.62 and PBIAS = 0.2%). For North Fork, the 
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same trend was observed for SB factor of 0.05 but the optimum threshold value observed 

was SFT = 20% at P = 0.2 and SGF = 0.0 (Ef = 0.24 and PBIAS = 36.1%), but for the SB 

factor of 0.1, the method gave optimal model performance with no threshold (SFT = 

10%) conditions (Ef = 0.20 and PBIAS = -5.2%). 

4.2.3.3. AnnAGNPS + REGEM + Streambank Erosion: Method 3 

This method distributes the 2-year total annual streambank erosion, after applying 

a multiplier (SB), among the events according to the ratio of daily stream power to the 2-

year sum of stream power for events in which the stream power exceeds the threshold 

stream power (SPT).  

Results (tables 4.2 and 4.3; also see tables in Appendix 2) shows that for a 

constant SGF factor and constant SPT threshold, an increase in P factor increased the 

total sediment load and decreased PBIAS value, but the efficiency of the method 

increased to a certain P factor value and then decreased. For a constant P factor value and 

SGF value, an increase in threshold value increased the efficiency of the method up to 

optimum threshold value and then decreased and the PBIAS values got decreased.  For a 

constant P factor and SPT, increase in SGF value increased the total sediment load and a 

decrease in PBIAS value. 

Field assessments determined that streambank erosion may be originating from 

both banks, thus a streambank (SB) multiplier of 1.3 might be warranted (Keane et al., 

2010). Various SB multipliers were tested in this study (0.1, 0.2, 0.3, 0.4, 0.5 and 1.3 for 

Irish Creek and 1.0, 1.3 and 1.5 for Main Stem). At SPT threshold = 0, as the SB 

multiplier increased, the efficiency of the method increased up to a optimum SB value 

and then decreased, and the PBIAS values decreased. As the SB multiplier increased 



 102 

good efficiencies and satisfactory PBIAS values were achieved at lower P factor values 

and lower SGF values.  For Irish Creek, SB multiplier of 0.1, the best performance was 

achieved for P = 0.6 and SGF =0.7 (Ef = 0.53 and PBIAS = 0.3%), and for SB multiplier 

of 0.2, the best performance was achieved at P = 0.4 and SGF = 0.1 (Ef = 0.63 and 

PBIAS = -1.4%) (table 1.2). For Main Stem, for SB multiplier of 1.0, the best 

performance was achieved for P = 1.0 and SGF = 11 (Ef = 0.56 and PBIAS = 17.1%), and 

for SB multiplier of 1.3, the best performance was achieved for P = 0.7 and SGF = 10 (Ef 

= 0.61 and PBIAS = 14.2%). Based on the statistical parameters in table 1.2 and table 

1.3, for Irish Creek the SB multiplier of 0.2 gave satisfactory Ef (0.63) and very good 

PBIAS (-1.4%), and for Main Stem the SB multiplier of 1.3 gave satisfactory Ef (0.61) 

and very good PBIAS (14.2%) for SPT threshold of 0. 

As more sediment was contributed from streambanks, the P factor and SGF 

values decreased, indicating that less sediment was routed from the overland and 

ephemeral gullies to the outlet. Since 58.3% of the Irish Creek Subwatershed and 57.0% 

of the Main Stem Subwatershed drained into watershed structures, there was a possibility 

of the sediment from overland and ephemeral gullies to settle in the watershed structures 

for small events, as discussed above. 

Threshold conditions of SPT = 0 means that each event contributed to routing the 

sediment from streambanks to the outlet. As SPT increased, fewer events (events greater 

than the threshold value) contributed to routing the total streambank sediment, and the 

efficiency of the method increased to an optimum threshold value and then decreased. 

Maximum Ef and low PBIAS were achieved at low P factors and low SGF. As the SPT 
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increased, maximum Ef and low PBIAS values were achieved at low P factor and SGF 

values. For Irish Creek, for SB factor of 0.1, the optimal combinations of statistics were: 

 SPT = 0 at P = 0.6 and SGF = 0.7 (Ef = 0.53 and PBIAS = 0.3%),  

 SPT = 0.1 at P = 0.3 and SGF = 0.0 (Ef = 0.66 and PBIAS = -0.9%),  

 SPT = 0.5 at P = 0.2 and SGF = 0.2 (Ef = 0.66 and PBIAS = -0.03%), and 

 SPT = 1.0 at P = 0.2 and SGF = 0.0 (Ef = 0.67 and PBIAS = -0.04%).  

For Main Stem the same trend was observed for SB factor of 1.0 but the optimum 

threshold value observed was SPT = 0.5 at P = 0.4 and SGF = 0.0 (Ef = 0.61 and PBIAS 

= 1.9%), but for the SB factor of 1.3, the method gave good agreement with no threshold 

(SPT = 0) conditions for P = 0.7 and SGF = 10 (Ef = 0.61 and PBIAS = 14.2%). For 

North Fork, the same trend was observed for SB factor of 0.05 but the optimum threshold 

value observed was SPT = 0.5 at P = 0.2 and SGF = 10.0 (Ef = 0.24 and PBIAS = 

36.4%). 

4.2.4. Overall Discussion 

From results summarized in tables 4.2, 4.3, and 4.4 (and from tables in Appendix 

2), we can say that all the methods followed the same trend as explained above but with 

different threshold values and SB multipliers for Irish Creek, Main Stem, and North Fork. 

These differences in threshold values can be attributed to the differences in the three 

subwatersheds, in terms of landuse activities, management operations, condition of 

terraces, stream and riparian geomorphologic condition, watershed size, percentage of 

watershed that drains into watershed structures, and spatial variability of precipitation 

(differences in the distance of watershed from the weather station). The lower efficiency 

values were due to the model limitations which are explained later in this chapter. 



 104 

Satisfactory efficiencies at low P factors and lower SGF factors (for Irish Creek: 

Ia/S = 0.5 at P = 0.1 and SGF = 0.0 [Ef = 0.75 and PBIAS = -1.2%]; for Main Stem: Ia/S 

= 0.2 at P = 0.1 and SGF = 0.0 [Ef = 0.62 and PBIAS = -5.5%]; for North Fork: Ia/S = 0.6 

at P = 0.2 and SGF = 0.0 [Ef = 0.68 and PBIAS = -24.5%]) indicate that only a fraction, 

and often a rather small fraction, of the sediment eroded within a drainage basin reached 

the basin outlet and was represented in the sediment yield. Deposition and temporary or 

permanent storage of sediment may occur on the slopes, at the base of the slope, in 

watershed structures (58.3% of Irish Creek, 57.0% of Main Stem, and 21.0% of the North 

Fork drains into watershed structures), in swales, on the flood plain, and in the channel 

itself. The relative magnitude of this loss tended to increase with increasing basin size. A 

study of 105 agricultural production areas in the U.S by Wade and Heady (1978) 

documented a range of sediment output between 0.1% and 37.8% of gross erosion.  In 

this study, calibrated model results ranged from about 46% to 49% for the two 

subwatersheds. 

Also, a temporal discontinuity may exist between the downstream sediment yield 

and the upstream erosion rates. Sediment eroded at one location may be stored 

temporarily and subsequently remobilized several times over a period of time before 

reaching the drainage basin outlet (Walling, 1994; Gordon et al., 2004). 

Low P factor values might be due to: Most of the terraced fields have grass 

waterways which drain directly into the ponds that are located in the rangelands 

(impounded terraces) (field observations on June 2, 2010). Impoundment terraces are 

designed to reduce sediment loss from croplands. They function by collecting and 

detaining runoff from an upslope area for a period of time to allow sediment deposition. 
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The impoundment drains via an underground conduit which connects to the bottom of the 

impoundment so it drains completely between each storm (Nearing et al., 1998). 

Reservoir impoundments are designed to collect and store surface runoff for later 

use. These include stock tanks and farm ponds. As with impoundment terraces, 

deposition is the main sedimentation process. Runoff from a reservoir impoundment is 

produced only when it is full and more runoff is introduced. When the pond becomes full, 

extra runoff is routed over spillways. Estimation of the discharge rates requires a rating 

table for the spillway. Detailed information about the impoundments is required in order 

to include in the models (like area, depth, seepage rate, sediment delivery ratio, drain 

time, release rate, sediment delivery ratio). 

In this study, precipitation was assumed to be spatially uniform, due to the 

limitation of measured precipitation. Failure to include rainfall spatial variability could 

result in the uncertainty of runoff predictions, as discussed above. There is no allowance 

for spatially variable rainfall in these models, which is a major limitation. 

As the size of the watershed increased, the efficiency of the models decreased.  

For Irish Creek (33.55 km
2
), performance for AnnAGNPS was Ef = 0.30 and 

AnnAGNPS+REGEM was Ef = 0.38. For Main Stem (154.37 km
2
), performance for 

AnnAGNPS (Ef = 0.25) and AnnAGNPS+REGEM was (Ef = 0.34).  Finally, for the 

largest subwatershed, North Fork (320.16 km
2
), performance for both AnnAGNPS was Ef 

= 0.01 and AnnAGNPS+REGEM was Ef = 0.06. The effect of drainage area on sediment 

movement is explained in simple terms by Gottschalk and Jones (1995, p.138). The ratio 

of the amount of sediment carried out of a basin to the gross erosion within the basin is 

known as the delivery ratio. The delivery ratio of a drainage basin depends on the areial 
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distribution and intensity of runoff, the size and topographic characteristics of the basin 

including the degree of channelization, and other soil and land use factors, all of which 

determine the ability of the drainage system to pick up and transport sediment (Guy, 

1970). As the size of the drainage basin increases, there are more sites for permanent or 

temporary storage of sediments, and the sediment yield per unit area decreases (Schumm, 

1977).  As the size of the watershed increased, the time the runoff and sediment reaching 

the watershed outlet increased (increase in lag time) and this is further increased by the 

watershed structures. The model failed to capture the delay time caused by the watershed 

structures. All runoff and associated sediment, nutrient, and pesticide loads for a single 

day are routed to the watershed outlet before the next day simulation begins (regardless 

of how many days this may actually take). This is a major limitation of the AnnAGNPS 

model. 

As the size of the watershed increased, an addition of streambank sediment 

increased the efficiency of each method for no threshold conditions for two 

subwatersheds increased. For Irish Creek (33.55 km
2
), performance for Method 1 at no 

threshold conditions was Ef = 0.45. For Main Stem (154.37 km
2
), performance for 

Method 1 at no threshold conditions was Ef = 0.54 but the validation results for North 

Fork (320.16 km
2
) gave an Ef = 0.33. 

The overall work did not identify the processes responsible for streambank 

erosion, but evaluated simple methods to disaggregate annual streambank erosion into 

daily erosion based on easily available or measureable data (like streamflow, 

precipitation, etc.). The over all research helped in identifying the different sediment 

sources and sediment sinks in the subwatersheds.  
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A different way of defining and investigating the sediment delivery characteristics 

might be by developing the sediment budget concept, which was advocated by Dietrich 

and Dunne (1978) and developed by Lehr (1981). In this approach, various sediment 

sources within a watershed are defined, and the sediment mobilized from these sources is 

routed to and through the channel system by considering various sinks (Walling, 1994). 

Based on data represented by Trimble (1981) from Coon Creek (Wisconsin), Lehre 

(1982) from Long Tree Creek (California), and Zaslavsky (1979), from Oka River Basin 

(Central Europe), the proportion of soil delivered to the basin outlet can be relatively 

small, ranging from 53% to 5.5%.  But substantial differences exist between the 

catchments represented in the precise form of budget and in location and importance of 

the various sinks (Walling, 1994). In this study, the final calibrated models resulted in 

22% to 12% delivery in Irish Creek, 62% to 14% delivery in Main Stem, and 24% 

delivery in North Fork. All these calculations were based on following assumptions. 

 First, it is assumed that the calibrated AGNPS+REGEM results represent actual overland 

+ ephemeral gully erosion.  Second, it is assumed that the final model results for each 

Method are the most accurate estimates of the amount of exported sediment from stream 

bank sources.  Thus, the final model results for each Method also tell you how much of 

the exported sediment was from overland sources.  The DIFFERENCE between this 

overland source amount and the original calibrated AGNPS+REGEM amount is the 

amount that was retained by the watershed somewhere (and not exported from the 

watershed past the stream gage).  The ratio of that DIFFERENCE to the original 

AGNPS+REGEM amount is the retained fraction, and 1 minus this fraction is the 
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delivery ratio. The above results were based on the values of the highest Ef and PBIAS 

values for all the three methods. 

  The techniques for quantifying the various sediment sources and sinks involved 

in sediment budget are rather limited and require considerble effort (Walling, 1994). 
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CHAPTER 5 - Conclusions and Recommendations 

5.1 Conclusions 

This study was the first of its kind to develop methods to integrate the three 

sources of sediment (sheet and rill, ephemeral gully, and streambank erosion). Sediment 

transport processes can be modeled at the watershed scale by using computer models. 

This study developed and demonstrated methods to characterize sediment source loads 

and to assess the sensitivity of model parameters. 

Calibration results of AnnAGNPS and REGEM models in two subwatersheds of 

Irish Creek and Main Stem of the Black Vermillion Watershed using about two years of 

daily measured data (June 2007- June 2009) for flow (R
2
 > 0.5 and Ef > 0.5) and event 

measured sediment (Ef values up to 0.38 and PBIAS values up to 58%) and Validation 

results of AnnAGNPS and REGEM models in North Fork for flow was(R
2
 > 0.5 and Ef > 

0.5) and for sediment (Ef values up to 0.06 and PBIAS values up to 65%). The model- 

predicted results varied spatially with the size of the watersheds, landuse, topography,  

management operations, condition of terraces, watershed size, percentage of watershed 

that drains into watershed structures, and spatial variability of precipitation (differences 

in the distance of watershed from the weather station). 

The lower efficiencies and higher PBIAS values of both the models for the three 

subwatersheds indicated the need to consider sediment from streambanks. Various 

methods (based on rainfall, total streamflow, and stream power) have been developed to 

disaggregrate annually measured streambank erosion values into event based that are in 

turn based on some threshold values. All these methods gave satisfactory Efficiencies (Ef 
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values up to 0.75 and PBIAS values > + 5 %.) for the three subwatersheds, but with 

different threshold values for three subwatersheds. 

The differences in the threshold values is due to the differences in the watershed 

sizes, stream lengths, differences in stream channelization, spatial variability of 

precipitation, differences in landuse activities, stream and riparian geomorphologic 

conditions. 

The overall study demonstrated the need to consider sediment sinks along with all 

sediment sources in order to accurately estimate the total sediment yield from the 

watershed. In order to better understand about the various sediment sources, sediment 

sinks, and sediment delivery characteristics in a watershed, it is better to develop 

sediment budget for that watershed (Dietrich and Dunne, 1978). 

5.2 Recommendations for Future Research 

Watershed models are useful in developing watershed sediment budgets and are 

used as educational tools for the watershed and source characterization process for both 

stakeholders and watershed modelers. Variability in model output caused by inaccurate 

input estimates can be reduced by decreasing the uncertainty in the inputs through 

increasing the number of measurements of the parameter and improving methods used to 

measure the parameter.  

The research considered three sediment sources in modeling. Uncertainty in both 

model and measurements resulted in fair simulation of all sources, but poor agreement 

was found with individual sources, due to added uncertainty in climate data and 

uncertainty in watershed structures. However, future studies may focus on the following 

recommended studies. 
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5.2.1 Sources and rates of sedimentation 

One of the biggest research need is to identify and quantify all the significant 

sediment sources (uplands, riparian areas, streambanks, stream channels, ephemeral 

gullies) and their delivery ratios to the reservoirs for a range a climatic zones and 

ecosystem types. There is also a need to develop simulation models that account for all 

the sources of sediment and that can predict the impacts of management practices. 

5.2.2 Effects of small Impoundments or watershed structures 

There is a need to conduct a more complete assessment of watershed structures in 

order to better quantify the degree of sedimentation and current rates of sedimentation. 

There is also need to develop models that can simulate small impoundments and their 

effects on geomorphology and hydrology of watershed. 

5.2.3 Developing watershed sediment budgets 

It is a more rigorous approach to define and investigate the sediment delivery 

characteristics of a drainage basin. In this approach various sediment sources are defined, 

and the sediment mobilized from these sources is routed to and through the channel 

system by considering the various sinks. An attempt can be made to define source-yield 

linkages and development of such sediment budgets represents an important research 

need. 
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Appendix -1 Other Methods that can be used to disaggregate annually 

measured streambank sediment yield to event based 

Method 1 : Use of stream velocity 

This method distributes the measured average annual streambank erosion values among 

the events in which the velocity of the stream exceeds the critical particle velocities of the 

material being transported. 

Erosion begins with the detachment of the particle from surrounding material. 

Entrainment is the process of particle lifting by the agent of erosion. The main force 

responsible for entrainment is fluid drag. Fluid drag causes the particle to move because 

of horizontal force and vertical lift. Within a medium both these forces are controlled by 

velocity. Horizontal force occurs from the push of the medium against the particle. If this 

push is sufficient to overcome the friction, the particle moves horizontally and the 

turbulence or eddies produce a vertical lift and pushes the particle upwards. Once the 

particle is lifted, the only force resisting its transport is gravity, as the forces of friction, 

slope angle, and cohesion are now non-existent. The particle can also be transported at 

velocities lower than the entrainment velocities because of the reduction in forces acting 

on it. The Hjulstrom diagram (Pidwirny, 2008) describes the relationship between stream 

flow velocity, and particle erosion, transport, and deposition. The critical entrainment 

velocity curve suggests that particles below a certain size are just as resistant to 

entrainment as particles with larger sizes and masses (Pidwirny, 2008). 

In this method the critical mean flow velocities of the particles (average size of sand) 

which are required to initiate movement on a flat, uniform bed, for a flow depth of one 
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meter were determined from the Hjulstrom diagram and the days in which the stream 

flow velocities are greater than these critical mean flow velocities were identified. 

 

Figure 6.1 Hjulstrom curve (Pidwirny, 2008) 

The Hjulstrom curve is used to determine whether a river will erode, transport or deposit 

sediment.  Based on figure 6, consider the velocities (both erosion+ transport velocity and 

only erosion velocity) of the particle size (average size of sand) that is mostly present in 

the stream as the threshold velocities. 

Method A: 

 Identify the days or events (with bank full width) in which the velocity of the 

stream is greater than the threshold velocity of erosion and transport. 

 Assign the measured streambank erosion values based on the fraction of event 

stream flow (only events with greater velocities greater than threshold velocity) / 

total stream flow. 

Repeat the above method at various depths (quarter bank full depth, half bank full 

depth) 

 Calibrate and validate the method at various depths. 
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Method B: 

Repeat the above method with velocities greater than threshold velocity of 

erosion. 

These methods were considered to be a refinement of the flow-based methods.  Based on 

consideration of the time constraints of this thesis and preliminary results from the flow-

based method, which did not appear to warrant the further refinements offered by the 

velocity-based methods, these methods were not assessed. 

Method 2: Use of stream flow shear stress 

This method distributes total annual streambank erosion among the events in which the 

flow shear stress exceeds the critical shear stress. 

Bank erosion rates or rate of soil detachment from the channel perimeter is primarily a 

function of shear stress induced by flow (Nearing et al., 1998; Allen et al., 1999). As flow 

is increased, shear stress increases until it eventually crosses critical shear stress that is 

required to detach the particle. The widely used equation for modeling channel erosion is 

 )( TcTeKEr   (3.9) 

where: 

Er = the erosion rate (depth per unit time), 

K = erodibility coefficient, 

Te = effective stress, and 

Tc = critical stress. 

Boundary shear stress of one dimensional flow in channels 

 RS   (3.10) 

where: 
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لا  = unit weight water (units), 

R = hydraulic radius (units), and 

S = slope (units). 

The stress causing detachment of soil at the soil water interface is called the effective 

shear stress. Hanson (1990a, 1990b) and Allen et al. (1999) have shown that the critical 

shear stress encountered is as low relative to effective stress as to be negligible. There 

fore equation 1 is reduced to 

 )(TeKEr   (3.11) 

As effective stress increases in the channel, the rate of erosion increases by a factor of K. 

Effective shear stress is a product of channel dimensions and slope. USLE K factor can 

replace the soil erodibilty factor in equation 1. Few studies (Knisel, 1980; Allen et al., 

1999) suggest that this coefficient can be used in channel erosion. Fewer studies (Laflen, 

1991) have showed that rill erodibilties and critical hydraulic shear stress values were 

either correlated or poorly correlated with USLE K factor. 

Method 

 Calculate the shear stress for all events 

 Identify those flows that have shear stress greater then critical shear stress. 

 Assign the measured streambank erosion values based on the fraction of event stream 

flow (only events above critical shear stress) / total stream flow. 

Based on consideration of the time constraints of this thesis and preliminary results from 

the flow-based and power-based methods, which did not appear to warrant the further 

refinements offered by the sheer-stress-based methods, these methods were not assessed. 
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Appendix-2 Calibration model parameters
1
 and event-based model 

performance
2
 for five methods to simulate Irish Creek Subwatershed 

outlet total suspended sediment yield. 

Only AnnAGNPS 
Subwatershed Statistical 

Parameters P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

Irish Creek 

 

Ef 

PBIAS (%) 

A (ton) 

0.26 

66.49 

352 

    0.28 

60.47 

416 

   0.29 

54.46 

 479 

   0.30 

48.45 

 542 

   0.28 

42.45 

  605.3 

0.27 

36.40 

668 

Main Stem 

 

Ef 

PBIAS (%) 

A (ton) 

0.16 

77.30 

2827 

0.19 

73.42 

3311 

0.21 

69.54 

3794 

0.23 

65.67 

4276 

0.24 

61.81 

4757 

0.25 

57.95 

5238 

 

AnnAGNPS+REGEM  

SGF Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.18 

78.56 

225 

0.22 

72.52 

289 

0.26 

66.49 

352 

    0.28 

60.47 

416 

   0.29 

54.46 

 479 

   0.30 

48.45 

 542 

   0.28 

42.45 

  605.3 

0.1 Ef 

PBIAS (%) 

A+R (ton) 

0.19 

76.60 

246 

0.24 

70.56 

310 

0.27 

64.55 

373 

    0.29 

 58.52 

   436 

    0.30 

52.51 

  500 

    0.31 

46.50 

  563 

     0.30 

40.50 

   626 

0.2 Ef 

PBIAS (%) 

A+R (ton) 

0.21 

72.73 

287 

0.26 

66.69 

350 

 0.29 

60.67 

  414 

0.31 

54.66 

   477 

   0.32 

48.65 

  540 

   0.32 

42.64 

  603 

    0.30 

36.64 

666.45 

0.3 Ef 

PBIAS (%) 

A+R (ton) 

0.24 

  68.79 

328 

0.28   

62.75 

392 

    0.31 

56.72 

455 

       0.32 

   50.71 

   518 

  0.33 

44.70 

  581.7 

   0.33 

38.70 

  645 

    0.32 

32.70 

   707 

0.4 Ef 

PBIAS (%) 

A+R (ton) 

    0.26 

  65.15 

367 

   0.30 

59.10 

430 

   0.32 

53.08 

494 

       0.34 

47.07 

  557 

   0.34 

41.06 

  620 

   0.34 

35.06 

  683 

      0.32 

29.06 

   746 

0.5 Ef 

PBIAS (%) 

A+R (ton) 

   0.29 

 61.19 

408 

   0.32 

   55.15 

472 

  0.35 

49.13 

535 

   0.36 

43.12 

  598 

   0.36 

37.11 

  662 

0.35 

31.10 

725 

     0.34 

    25.11 

788 

0.6 Ef 

PBIAS (%) 

A+R (ton) 

---    0.33 

   51.72 

508 

  0.35 

45.70 

571 

   0.37 

39.70 

  634 

   0.37 

33.68 

  698 

0.36 

27.68 

761 

-- 

0.7 Ef 

PBIAS (%) 

A+R (ton) 

---    0.34 

   48.70 

540 

  0.36 

42.67 

603 

   0.37 

36.66 

  666 

   0.37 

30.66 

  729 

0.36 

24.65 

793 

-- 

0.8 Ef 

PBIAS (%) 

A+R (ton) 

---    0.35 

   45.11 

577 

  0.37 

39.09 

641 

   0.38 

33.08 

  704 

   0.38 

27.08 

  767 

0.37 

21.08 

830 

-- 

0.9 Ef 

PBIAS (%) 

A+R (ton) 

---    0.35 

   41.65 

614 

  0.37 

35.62 

677 

   0.37 

29.62 

740 

   0.37 

23.61 

  803 

0.36 

17.61 

867 

-- 

1.0 Ef 

PBIAS (%) 

A+R (ton) 

---    0.33 

   39.09 

641 

  0.35 

33.07 

704 

   0.36 

27.07 

  767 

   0.36 

21.06 

  830 

0.34 

15.06 

893 

-- 
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AnnAGNPS+REGEM+SB (0.1):  Method 1 (No threshold) 

SGF Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.38 

40.3 

628 

0.41 

34.26 

691 

0.43 

28.23 

755 

    0.43 

22.21 

818 

   0.42 

16.20 

 881 

   0.41 

10.19 

945 

   0.38 

4.20 

1008 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.39 

38.34 

649 

0.42 

32.30 

712 

0.43 

26.27 

776 

    0.44 

 20.26 

   839 

    0.43 

14.25 

  902 

    0.41 

8.24 

965 

     0.38 

2.24 

   1028 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.40 

34.48 

689 

0.43 

28.44 

753 

 0.44 

22.41 

  816 

0.44 

16.40 

   879 

   0.43 

10.40 

  943 

   0.41 

4.38 

  1006 

    0.38 

-1.61 

1069 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.41 

  30.53 

731 

0.43   

24.49 

794 

    0.45 

18.46 

858 

       0.44 

   12.45 

   921 

  0.43 

6.44 

  984 

   0.41 

0.437 

1047 

    0.38 

-5.56 

   1110 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.42 

  26.88 

769 

   0.44 

20.84 

833 

   0.45 

14.82 

896 

       0.45 

8.81 

  959 

   0.43 

2.80 

  1022 

   0.41 

-3.2 

1086 

      0.38 

-9.19 

   1149 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.44 

22.93 

811 

   0.46 

   16.89 

874 

  0.46 

10.87 

938 

   0.46 

4.86 

1001 

   0.44 

-1.15 

  1064 

0.41 

-7.15 

1127 

     0.37 

    -13.14 

1190 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.46 

   13.46 

910 

  0.46 

7.44 

974 

   0.45 

1.43 

  1037 

   0.44 

-4.54 

  1100 

0.40 

-10.575 

1163 

-- 

0.7 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.46 

   10.44 

942 

  0.46 

4.41 

1005 

   0.45 

-1.59 

1069 

   0.43 

-7.06 

  1132 

0.40 

-13.6 

1195 

-- 

0.8 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.46 

   6.8 

980 

  0.46 

0.83 

1043 

   0.45 

-5.17 

1106 

   0.43 

-11.17 

1169 

0.40 

-17.17 

1233 

-- 

0.9 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.44 

   3.38 

1016 

  0.44 

-2.63 

1080 

   0.43 

-8.64 

1143 

   0.41 

-14.67 

  1206 

0.38 

-20.64 

1269 

-- 

1.0 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.42 

   0.84 

1043 

  0.42 

-5.18 

1106 

---- ---- ---- -- 
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AnnAGNPS+REGEM+SB (0.1):  Method 1 (Ia/S= 0.1) 

SGF 
Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 
PBIAS (%) 

A+R+S (ton) 

0.48 
26.06 

778 

0.50 
20.02 

841 

0.50 
13.99 

905 

    0.50 
7.98 

968 

   0.48 
1.96 

1031 

0.1 Ef 

PBIAS (%) 
A+R+S (ton) 

0.49 

24.10 
798 

0.50 

18.06 
862 

0.51 

12.03 
925 

    0.50 

 6.02 
989 

    0.48 

0.01 
  1052 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.49 

20.24 

839 

0.51 

14.20 

903 

 0.51 

8.17 

966 

0.50 

2.16 

   1029 

   0.48 

-3.85 

1092 

0.3 Ef 
PBIAS (%) 

A+R+S (ton) 

0.50 
16.29 

881 

0.51   
10.25 

944 

    0.51 
4.22 

1007 

       0.50 
   -1.79 

1071 

-- 

0.4 Ef 

PBIAS (%) 
A+R+S (ton) 

    0.50 

12.64 
919 

   0.51 

6.60 
982 

   0.51 

0.58 
1046 

       0.49 

-5.43 
1109 

--- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.51 

8.69 

960 

   0.52 

   2.65 

1024 

  0.51 

-3.37 

1087 

   0.49 

-9.38 

1151 

--- 

0.6 Ef 
PBIAS (%) 

A+R+S (ton) 

---    0.51 
   -0.77 

1060 

  0.51 
-6.80 

1123 

-- -- 

0.7 Ef 

PBIAS (%) 
A+R+S (ton) 

---    0.51 

   -3.80 
1092 

0.50 

-9.82 
1155 

--- -- 

 

AnnAGNPS+REGEM+SB (0.1):  Method 1 (Ia/S= 0.2) 

SGF 
Statistical 
parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.55 

15.50 

889 

0.56 

9.46 

952 

0.55 

3.43 

1016 

    0.53 

-2.58 

1079 

   0.51 

-8.59 

1142 

0.1 Ef 
PBIAS (%) 

A+R+S (ton) 

0.56 
13.54 

909 

0.56 
7.50 

973 

0.56 
1.47 

1036 

    0.54 
 -4.54 

1100 

-- 

0.2 Ef 

PBIAS (%) 
A+R+S (ton) 

0.55 

9.68 
950 

0.56 

3.64 
1014 

 0.55 

-2.39 
1077 

0.53 

-8.39 
1140 

--- 

0.3 Ef 
PBIAS (%) 

A+R+S (ton) 

0.55 
5.73 

992 

0.55   
-0.31 

1055 

    0.54 
-6.33 

1119 

-- -- 

0.4 Ef 

PBIAS (%) 
A+R+S (ton) 

    0.55 

2.10 
1030 

   0.55 

-3.95 
1093 

   0.54 

-9.97 
1157 

--- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.56 

-1.86 

1072 

   0.55 

   -7.90 

1135 

  0.54 

-13.93 

1198 

--- --- 

0.6 Ef 
PBIAS (%) 

A+R+S (ton) 

---    0.54 
   -11.33 

1171 

--- -- -- 

0.7 Ef 

PBIAS (%) 
A+R+S (ton) 

--- -- --- --- -- 
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AnnAGNPS+REGEM+SB (0.1):  Method 1 (Ia/S= 0.3) 

SGF 
Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 
PBIAS (%) 

A+R+S (ton) 

0.61 
4.95 

1000 

0.61 
-1.09 

1063 

0.60 
-7.12 

1127 

    0.57 
-13.13 

1190 

-- 

0.1 Ef 

PBIAS (%) 
A+R+S (ton) 

0.61 

2.99 
1020 

0.61 

-3.05 
1084 

0.60 

-9.08 
1147 

-- -- 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.61 

-0.87 

1061 

0.60 

-6.91 

1125 

 0.59 

-12.94 

1188 

-- --- 

0.3 Ef 
PBIAS (%) 

A+R+S (ton) 

0.60 
-4.82 

1103 

0.59   
-14.50 

1205 

-- -- -- 

0.4 Ef 

PBIAS (%) 
A+R+S (ton) 

    0.60 

-8.46 
1141 

-- --- --- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.60 

-12.42 

1183 

--- --- --- --- 

0.6 Ef 
PBIAS (%) 

A+R+S (ton) 

--- -- --- -- -- 

0.7 Ef 

PBIAS (%) 
A+R+S (ton) 

--- -- --- --- -- 

 

AnnAGNPS+REGEM+SB (0.1):  Method 1 (Ia/S= 0.4) 

SGF 
Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 

0.0 Ef 

PBIAS (%) 
A+R+S (ton) 

0.67 

8.26 
965 

0.68 

2.15 
1029 

0.68 

-3.93 
1093 

    0.67 

-9.98 
1157 

   0.65 

-16.00 
1220 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.67 

6.29 

986 

0.68 

0.19 

1050 

0.68 

-5.89 

1114 

    0.67 

 -11.94 

1177 

-- 

0.2 Ef 
PBIAS (%) 

A+R+S (ton) 

0.66 
2.43 

1026 

0.67 
-3.67 

1091 

 0.67 
-9.76 

1155 

0.66 
-15.80 

1218 

--- 

0.3 Ef 

PBIAS (%) 
A+R+S (ton) 

0.66 

-1.52 
1068 

0.66   

-7.62 
1132 

    0.66 

-13.71 
1196 

-- -- 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.66 

-5.17 

1106 

   0.66 

-11.27 

1170 

   0.65 

-17.35 

1234 

--- --- 

0.5 Ef 
PBIAS (%) 

A+R+S (ton) 

   0.656 
-9.12 

1148 

   0.66 
   -15.22 

1212 

  0.65 
-21.30 

1276 

--- --- 

0.6 Ef 

PBIAS (%) 
A+R+S (ton) 

--- -- --- -- -- 

0.7 Ef 

PBIAS (%) 

A+R+S (ton) 

--- -- --- --- -- 
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AnnAGNPS+REGEM+SB (0.1):  Method 1 (Ia/S= 0.5) 

SGF 
Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=1.0 

0.0 Ef 
PBIAS (%) 

A+R+S (ton) 

0.75 
-1.21 

1065 

0.76 
-7.3 

1129 

0.75 
-13.41 

1193 

0.73 
-19.36 

1257 

0.70 
-25.48 

1320 

0.40 
-55.52 

1636 

0.1 Ef 

PBIAS (%) 
A+R+S (ton) 

0.75 

-3.18 
1085 

0.75 

-9.29 
1150 

0.74 

-15.38 
1214 

-- --  

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.74 

-7.05 

1126 

0.74 

-13.15 

1190 

 0.73 

-19.24 

1254 

-- ---  

0.3 Ef 
PBIAS (%) 

A+R+S (ton) 

-- -- -- -- -- -- 

0.4 Ef 

PBIAS (%) 
A+R+S (ton) 

-- -- -- --- --- -- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.73 

-18.60 

1248 

0.72 

-24.70 

1312 

-- 0.68 

-36.82 

1439 

---    -- 

0.6 Ef 
PBIAS (%) 

A+R+S (ton) 

--- -- --- -- -- --- 

1.0 Ef 

PBIAS (%) 
A+R+S (ton) 

--- -- --- 0.59 

-52.88 
1608 

-- --- 

 

AnnAGNPS+REGEM+SB (0.2): Method 1 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.44 

14.24 

902 

0.47 

8.14 

966 

0.49 

2.08 

1030 

0.49 

-4.00 

1094 

0.49 

-10.03 

1157 

0.47 

-16.04 

1221 

 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.44 

12.27 

923 

0.47 

6.17 

987 

0.49 

0.08 

1051 

0.50 

-5.96 

1115 

0.49 

-11.98 

1178 

  

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

8.40 

963 

0.47 

2.31 

1028 

0.49 

-3.78 

1092 

0.49 

-9.82 

1155 

0.48 

-15.84 

1219 

  

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

4.46 

1005 

0.47 

-1.64 

1069 

0.48 

-7.73 

1133 

0.49 

-13.77 

1197 

   

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

0.813 

1043 

0.47 

-5.28 

1108 

     

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

-3.14 

1085 

0.48 

-9.24 

1149 

     

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

-6.57 

1121 

0.48 

-12.67 

1185 
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AnnAGNPS+REGEM+SB (0.2): Method 1 (Ia/S=0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.54 

-14.23 

1202 

0.55 

-20.34 

1266 

0.55 

-26.43 

1330 

0.53 

-32.48 

1394 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.54 

-16.21 

1222 

0.55 

-22.31 

0.54 

-28.40 

1351 

0.53 

-34.44 

1414 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.53 

-20.07 

1263 

0.54 

-26.17 

1327 

0.53 

-32.26 

1391 

 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.52 

-24.02 

1305 

   

 

AnnAGNPS+REGEM+SB (0.2): Method 1 (Ia/S=0.2) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.54 

-35.35 

1424 

0.53 

-41.46 

1488 

0.51 

-47.55 

1552 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.54 

-37.32 

1445 

0.52 

-43.43 

1509 

0.50 

-49.51 

1573 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.52 

-41.19 

1485 

0.50 

-47.29 

1549 

 

 

AnnAGNPS+REGEM+SB (0.2): Method 1 (Ia/S=0.3) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.48 

-56.45 

1646 

0.45 

-62.57 

1710 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.47 

-58.43 

1667 
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AnnAGNPS+REGEM+SB (0.3): Method 1 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.47 

-24.03 

1305 

0.48 

-30.12 

1369 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.47 

-26.00 

1325 

0.48 

-32.10 

1390 

 

AnnAGNPS+REGEM+SB (0.1): Method 2 (No threshold) 

SGF Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

42.70 

603 

0.48 

36.64 

666 

0.50 

30.61 

730 

    0.50 

24.60 

793 

   0.50 

18.58 

856 

   0.48 

12.57 

920 

   0.45 

6.57 

983 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

40.72 

624 

0.49 

34.68 

687 

0.51 

28.65 

750 

    0.51 

 22.64 

   814 

    0.50 

16.63 

  877 

    0.49 

10.62 

940 

     0.46 

4.62 

   1003 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.47 

36.86 

664 

0.50 

30.82 

728 

 0.51 

24.80 

791 

0.51 

18.78 

   854 

   0.50 

12.77 

  918 

   0.49 

6.76 

981 

    0.46 

0.76 

1044 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.48 

  32.90 

706 

0.51   

26.87 

769 

    0.52 

20.84 

833 

       0.52 

   14.83 

896 

  0.51 

8.82 

  959 

   0.49 

2.81 

1022 

    0.45 

-3.18 

   1085 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.50 

  29.26 

744 

   0.51 

23.22 

808 

   0.52 

17.20 

871 

       0.52 

11.18 

  934 

   0.51 

5.18 

  997 

   0.49 

-0.83 

1061 

--- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.51 

25.31 

786 

   0.53 

   19.27 

849 

  0.53 

13.24 

913 

   0.53 

7.24 

976 

   0.51 

1.23 

  1039 

0.49 

-4.77 

1102 

--- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   15.84 

885 

  0.53 

9.82 

949 

   0.53 

3.81 

  1012 

   0.51 

-2.20 

  1075 

0.48 

-8.12 

1138 

-- 

0.7 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   12.81 

917 

  0.54 

6.79 

980 

   0.53 

0.78 

1044 

   0.51 

-5.22 

  1107 

0.48 

-11.2 

1170 

-- 

0.8 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   9.24 

955 

  0.53 

3.21 

1018 

   0.52 

-2.79 

1081 

   0.50 

-8.80 

1144 

0.47 

-14.80 

1208 

-- 

0.9 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.52 

   5.76 

991 

  0.52 

-0.25 

1055 

   0.50 

-6.26 

1118 

   0.49 

-12.27 

  1181 

--- -- 

1.0 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.50 

   3.21 

1018 

  0.50 

-2.80 

1081 

---- ---- ---- -- 
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AnnAGNPS+REGEM+SB (0.1): Method 2 (threshold= 0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

11.73 

928 

0.66 

5.62 

993 

0.67 

-0.47 

1057 

0.67 

-6.51 

1120 

0.65 

-12.54 

1184 

    0.63 

-18.55 

1247 

   0.60 

-24.57 

1310 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

9.76 

949 

0.66 

3.65 

1013 

0.67 

-2.43 

1077 

0.67 

-8.47 

1141 

0.65 

-14.50 

1204 

    0.63 

-20.51 

   1268 

    0.59 

-26.52 

1331 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

5.89 

990 

0.65 

-0.21 

1054 

0.66 

-6.29 

1118 

0.66 

-12.33 

1182 

 0.64 

-18.36 

1245 

0.61 

-24.37 

1308 

   0.58 

-30.39 

1371 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

1.94 

1031 

0.65 

-4.16 

1096 

0.65 

  -10.24 

1160 

0.65   

-16.28 

1223 

    0.63 

-22.31 

1287 

       0.60 

   -28.32 

1349.8 

 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-1.70 

1070 

0.64 

-7.8 

1134 

    0.64 

-13.88 

1198 

   0.64 

-19.93 

1261 

   0.62 

-26.0 

1325 

       0.59 

-32.0 

  1388 

--- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-5.66 

1111 

0.64 

-11.76 

1176 

   0.64 

-17.84 

1240 

   0.63 

   -23.88 

1303 

  0.60 

-29.90 

1366 

 --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-9.08 

1147 

0.63 

-15.18 

1212 

--    0.62 

   -27.30 

1339 

  0.59 

-33.32 

1402.5 

 -- 

0.7 Ef 

PBIAS (%) 

A+R+S (ton) 

--- -- ----- --- ---  -- 

0.8 Ef 

PBIAS (%) 

A+R+S (ton) 

--- --- -- --- --  -- 

0.9 Ef 

PBIAS (%) 

A+R+S (ton) 

--- --- --- --- --- --- -- 

1.0 Ef 

PBIAS (%) 

A+R+S (ton) 

--- --- --- ---- ---- ---- -- 
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AnnAGNPS+REGEM+SB (0.1): Method 2 (threshold= 0.2) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

10.23 

944 

0.66 

4.11 

1009 

0.67 

-1.97 

1073 

0.67 

-8.01 

1136 

0.65 

-14.05 

1200 

    0.63 

-20.06 

1263 

   0.59 

-26.07 

1326 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

8.25 

965 

0.66 

2.15 

1029 

0.67 

-3.94 

1093 

0.67 

-9.98 

1157 

0.65 

-16.00 

1220 

    0.63 

-22.02 

   1284 

    0.59 

-28.03 

1347 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

4.39 

1006 

0.66 

-1.71 

1070 

0.66 

-7.80 

1134 

0.66 

-13.84 

1197 

 0.64 

-19.87 

1261 

0.61 

-25.88 

1324 

   0.57 

-31.89 

1387 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

0.44 

1047 

0.65 

-5.66 

1111 

0.65 

  -11.75 

1175 

0.64   

-17.79 

1239 

    0.63 

-23.81 

1302 

       0.60 

   -29.82 

1366 

 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-3.21 

1086 

0.65 

-9.30 

1150 

    0.65 

-15.39 

1214 

   0.64 

-21.43 

1277 

--        --- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-7.16 

1127 

0.64 

-13.26 

1191 

   0.64 

-19.35 

1255 

   0.63 

   -25.39 

1319 

--- --- --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-10.59 

1163 

0.63 

-16.69 

1227 

--    0.61 

   -28.81 

1355 

--- --- -- 

 

AnnAGNPS+REGEM+SB (0.1 Multiple): Method 2 (threshold= 0.3) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

8.85 

959 

0.66 

2.74 

1023 

0.67 

-3.35 

1087 

0.67 

-9.39 

1151 

0.65 

-15.42 

1214 

    0.63 

-21.44 

1277 

   0.59 

-27.45 

1341 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

6.87 

980 

0.66 

0.77 

1044 

0.67 

-5.31 

1108 

0.67 

-11.36 

1171 

0.65 

-17.38 

1235 

    0.63 

-23.39 

   1298 

    0.59 

-29.41 

1361 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

3.01 

1020 

0.66 

-3.09 

1084 

0.66 

-9.18 

1148 

0.66 

-15.22 

1212 

 0.64 

-21.24 

1275 

0.61 

-27.25 

1339 

   0.57 

-33.27 

1401 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-0.94 

1062 

0.65 

-7.04 

1126 

0.65 

  -13.12 

1190 

0.64   

-19.17 

1254 

    0.62 

-25.19 

1317 

       0.59 

   -31.20 

1380 

 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-4.58 

1100 

0.65 

-10.68 

1164 

    0.65 

-16.77 

1228 

   0.63 

-22.81 

1292 

--        --- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-8.54 

1142 

0.64 

-14.64 

1206 

   0.64 

-20.72 

1270 

   0.63 

   -26.76 

1333 

--- --- --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-11.97 

1178 

0.63 

-18.07 

1242 

--    0.61 

   -30.19 

1369 

--- --- -- 
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AnnAGNPS+REGEM+SB (0.2): Method 2 (No threshold) 

SGF Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.61 

6.80 

980 

0.62 

0.76 

1044 

0.62 

-5.27 

1107 

0.61 

-11.28 

1171 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

4.84 

1001 

0.63 

-1.20 

1064 

0.62 

-7.723 

1128 

0.61 

-13.24 

1191 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

0.98 

1042 

0.62 

-5.06 

1105 

0.62 

-11.09 

1168 

 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-2.97 

1083 

0.62 

-9.012 

1147 

0.61 

-15.04 

1210 

 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-6.61 

1121 

   

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-10.57 

1163 

   

 

AnnAGNPS+REGEM+SB (0.2): Method 2 (threshold=0.1) 

 

 

 

 

 

 

AnnAGNPS+REGEM+SB (0.2): Method 2 (threshold=0.3) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.37 

-73.06 

1820 

0.34 

-79.17 

1885 

0.29 

-85.26 

1949 

0.24 

-91.31 

2012 

0.18 

-97.34 

2076 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.35 

-75.04 

1841 

0.32 

-81.14 

1905 

0.28 

-87.23 

1969 

0.22 

-93.27 

2033 

0.16 

-99.30 

2096 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

  0.24 

-91.09 

2010 

0.18 

-97.13 

2074 

0.12 

-103.16 

2137 

 

 

 

 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.41 

-67.30 

1760 

0.39 

-73.41 

1824 

0.35 

-79.5 

1888 

0.30 

-85.54 

1951.7 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.40 

-69.28 

1781 

0.37 

-75.38 

1845 

0.33 

-81.46 

1909 
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AnnAGNPS+REGEM+SB (0.3): Method 2 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

-16.87 

1229 

0.66 

-22.98 

1294 

0.66 

-29.07 

1357 

0.65 

-35.12 

1421 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-18.85 

1250 

0.66 

-24.95 

1314 

0.66 

-31.04 

1378 

0.65 

-37.08 

1442 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-22.71 

1291 

0.65 

-28.81 

1355 

0.64 

-34.90 

1419 

0.63 

-40.94 

1483 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

-26.67 

1332 

   

 

AnnAGNPS+REGEM+SB (0.3): Method 2 (threshold = 0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

-0.62 

-146.33 

2591.14 

-0.67 

-152.44 

2655 

  

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

-0.65 

-148.31 

2612 

   

 

AnnAGNPS+REGEM+SB (0.4): Method 2 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.611 

-52.76 

1607 

0.60 

-58.86 

1671 

0.59 

-64.95 

1735 

 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.60 

-54.73 

1628 

0.60 

-60.83 

1692 

  

 

AnnAGNPS+REGEM+SB (0.5): Method 2 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

-88.63 

1984 

0.43 

-94.74 

2048 

  

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

-90.61 

2005 

0.42 

-96.71 

2069 
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AnnAGNPS+REGEM+SB (0.6) Method 2 (No threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.19 

-124.51 

2362 

0.15 

-130.62 

2426 

  

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.17 

-126.49 

2382 

0.13 

-132.59 

2447 

  

 

AnnAGNPS+REGEM+SB (0.1): Method 4 (No threshold) 

SGF Statistical 

parameters P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

42.52 

600 

0.48 

36.43 

663 

0.50 

30.35 

727 

    0.50 

24.29 

790 

   0.50 

18.22 

853 

   0.48 

12.16 

917 

   0.45 

6.11 

980 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

40.54 

620 

0.49 

34.45 

683 

0.51 

28.37 

747 

    0.51 

 22.31 

   811 

    0.50 

16.25 

  874 

    0.49 

10.19 

937 

     0.46 

4.15 

   1000 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.47 

36.65 

661 

0.50 

30.56 

725 

 0.51 

24.48 

788 

0.51 

18.42 

   851 

   0.50 

12.36 

  914 

   0.49 

6.30 

978 

    0.46 

0.26 

1041 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.48 

  32.66 

703 

0.51   

26.58 

766 

    0.52 

20.50 

830 

       0.52 

   14.44 

893 

  0.51 

8.38 

  956 

   0.49 

2.32 

1019 

    0.45 

-3.71 

   1082 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.50 

  28.99 

741 

   0.51 

22.90 

804 

   0.52 

16.83 

868 

       0.52 

10.77 

  931 

   0.51 

4.71 

  994 

   0.49 

-1.34 

1057 

--- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.51 

25.00 

783 

   0.53 

   18.92 

846 

  0.53 

12.84 

909 

   0.53 

6.79 

973 

   0.51 

0.73 

  1036 

0.49 

-5.32 

1099 

--- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   15.46 

882 

  0.53 

9.39 

945 

   0.53 

3.33 

  1009 

   0.51 

-2.72 

  1072 

0.48 

-8.77 

1135 

-- 

0.7 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   12.41 

914 

  0.53 

6.34 

977 

   0.53 

0.28 

1040 

   0.51 

-5.77 

  1104 

0.48 

-11.82 

1167 

-- 

0.8 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.53 

   8.80 

952 

  0.53 

2.73 

1015 

   0.52 

-3.32 

1078 

   0.50 

-9.38 

1141 

0.47 

-15.43 

1204 

-- 

0.9 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.52 

   5.30 

988 

  0.52 

-0.76 

1051 

   0.50 

-6.82 

1115 

   0.49 

-12.89 

  1178 

--- -- 

1.0 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.50 

   2.73 

1015 

  0.50 

-3.34 

1078 

---- ---- ---- -- 
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AnnAGNPS+REGEM+SB (0.1): Method 4 (Threshold =0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

13.21 

906 

0.65 

7.05 

970 

0.66 

0.91 

1034 

    0.66 

-5.18 

1098 

   0.65 

-11.26 

1161 

   0.63 

-17.32 

1224 

-- 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

11.22 

926 

0.65 

5.07 

991 

0.66 

-1.07 

1055 

    0.66 

 -7.16 

   1118 

    0.65 

-13.23 

1182 

    0.63 

-19.30 

1245 

-- 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.63 

7.32 

967 

0.65 

1.17 

1031 

 0.65 

-4.96 

1095 

0.65 

-11.05 

   1159 

   0.64 

-17.13 

1222 

-- -- 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

  3.34 

1009 

0.64   

-2.81 

1073 

    0.65 

-8.94 

1137 

       0.64 

   -15.03 

1200 

-- -- -- 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.62 

-0.33 

1047 

   0.64 

-6.48 

1111 

   0.64 

-12.61 

1175 

       0.63 

-18.70 

  1239 

-- -- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.62 

-4.32 

1089 

   0.64 

   -10.47 

1153 

  0.64 

-16.60 

1217 

-- -- -- --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-7.77 

1125 

   0.63 

   -13.93 

1189 

-- -- -- -- -- 

 

 

AnnAGNPS+REGEM+SB (0.1): Method 4 (Threshold =0.5) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

8.11 

959 

0.66 

1.95 

1023 

0.67 

-4.18 

1087 

    0.67 

-10.28 

1151 

   0.65 

-16.36 

1214 

   0.63 

-22.42 

1277 

-- 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

6.12 

980 

0.66 

-0.03 

1044 

0.67 

-6.17 

1108 

    0.67 

 -12.25 

   1171 

    0.65 

-18.33 

1235 

    0.63 

-24.39 

1298 

-- 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

2.23 

1020 

0.66 

-3.92 

1084 

 0.66 

-10.06 

1148 

0.66 

-16.15 

   1212 

   0.64 

-22.22 

1275 

-- -- 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

  -1.75 

1062 

0.65   

-7.91 

1126 

    0.65 

-14.04 

1190 

       0.64 

   -20.13 

1253 

-- -- -- 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.63 

-5.43 

1100 

   0.65 

-11.58 

1164 

   0.65 

-17.71 

1228 

       0.63 

-23.80 

  1292 

-- -- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.63 

-9.42 

1142 

   0.64 

   -15.57 

1206 

  0.64 

-21.70 

1270 

-- -- -- --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.62 

-12.87 

1178 

   0.63 

   -19.02 

1242 

-- -- -- -- -- 
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AnnAGNPS+REGEM+SB (0.1): Method 4 (Threshold =1.0) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

6.12 

980 

0.67 

-0.04 

1044 

0.67 

-6.18 

1108 

    0.67 

-12.27 

1172 

   0.65 

-18.35 

1235 

   0.63 

-24.41 

1298 

-- 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

4.13 

1000 

0.67 

-2.02 

1065 

0.67 

-8.16 

1129 

    0.67 

 -14.25 

   1192 

    0.65 

-20.32 

1256 

    0.62 

-26.39 

1319 

-- 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

0.23 

1041 

0.66 

-5.92 

1105 

 0.66 

-12.05 

1169 

0.65 

-18.14 

   1233 

   0.64 

-24.22 

1296 

-- -- 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-3.75 

1083 

0.65   

-9.90 

1147 

    0.65 

-16.03 

1211 

       0.64 

   -22.12 

1274 

-- -- -- 

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

    0.64 

  -7.42 

1121 

   0.65 

-13.57 

1185 

   0.64 

-17.70 

1249 

       0.63 

-29.80 

1313 

-- -- --- 

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

   0.63 

-11.41 

1162 

   0.64 

   -17.56 

1227 

  0.64 

-23.69 

1291 

-- -- -- --- 

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

---    0.63 

   -21.01 

1263 

-- -- -- -- -- 

 

 

AnnAGNPS+REGEM+SB (0.2): Method 4 (No Threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.56 

18.94 

846 

0.60 

12.79 

910 

0.61 

6.65 

974 

0.62 

0.56 

1038 

0.62 

-5.52 

1102 

0.61 

-11.58 

1164 

 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.57 

16.95 

866 

0.60 

10.80 

931 

0.62 

4.67 

995 

0.63 

-1.42 

1058 

0.62 

-7.5 

1122 

0.61 

-13.56 

1185 

 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.57 

13.06 

907 

0.60 

6.91 

971 

0.62 

0.77 

1035 

0.62 

-5.31 

1099 

0.62 

-11.39 

1162 

  

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

0.58 

9.08 

949 

0.60 

2.93 

1013 

0.62 

-3.20 

1077 

 0.61 

-15.37 

1204 

  

0.4 Ef 

PBIAS (%) 

A+R+S (ton) 

0.58 

5.40 

987 

0.60 

-0.74 

1051 

0.62 

-6.87 

1115 

    

0.5 Ef 

PBIAS (%) 

A+R+S (ton) 

0.59 

1.42 

1029 

0.61 

-4.73 

1093 

0.62 

-10.86 

1157 

    

0.6 Ef 

PBIAS (%) 

A+R+S (ton) 

0.58 

-2.04 

1065 

0.60 

-8.18 

1129 

     

 



 140 

 

AnnAGNPS+REGEM+SB (0.2): Method 4 (Threshold =0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

-64.27 

1714 

0.42 

-70.43 

1778 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.43 

-66.26 

1735 

0.41 

-72.41 

1799 

 

AnnAGNPS+REGEM+SB (0.3): Method 4 (No Threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.65 

-16.92 

1220 

0.66 

-23.08 

1284 

0.66 

-29.22 

1348 

0.65 

-35.31 

1412 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-18.91 

1241 

0.66 

-25.06 

1305 

0.66 

-31.20 

1369 

0.65 

-37.29 

1433 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.64 

-22.80 

1281 

0.65 

-28.96 

1346 

0.64 

-35.09 

1410 

 

0.3 Ef 

PBIAS (%) 

A+R+S (ton) 

 0.64 

-32.94 

1387 

  

 

AnnAGNPS+REGEM+SB (0.3): Method 4 (Threshold=0.1) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

-0.48 

-141.75 

2523 

-0.55 

-147.91 

2587 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

-0.51 

-143.77 

2543 

-0.58 

-149.89 

2608 

 

AnnAGNPS+REGEM+SB (0.4): Method 4 (No Threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.61 

-52.79 

1594 

0.60 

-58.95 

1659 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.60 

-54.78 

1615 

0.60 

-60.93 

1679 

0.2 Ef 

PBIAS (%) 

A+R+S (ton) 

0.58 

-58.67 

1656 

0.57 

-64.83 

1720 
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AnnAGNPS+REGEM+SB (0.5): Method 4 (No Threshold) 

SGF Statistical 

parameters P=0.1 P=0.2 

0.0 Ef 

PBIAS (%) 

A+R+S (ton) 

0.46 

-88.60 

1969 

0.43 

-94.81 

2033 

0.1 Ef 

PBIAS (%) 

A+R+S (ton) 

0.45 

-90.65 

1989 

0.42 

-96.80 

2054 

 

Appendix-2 Calibration model parameters
1
 and event-based model 

performance
2
 for five methods to simulate Main Stem Subwatershed 

outlet total suspended sediment yield. 

 

Only AGNPS 
Subwatershed Statistical 

Parameters P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

Irish Creek 

 

Ef 

PBIAS (%) 

A (ton) 

0.26 

66.49 

352 

    0.28 

60.47 

416 

   0.29 

54.46 

 479 

   0.30 

48.45 

 542 

   0.28 

42.45 

  605.3 

0.27 

36.40 

668 

Main Stem 

 

Ef 

PBIAS (%) 

A (ton) 

0.16 

77.30 

2827 

0.19 

73.42 

3311 

0.21 

69.54 

3794 

0.23 

65.67 

4276 

0.24 

61.81 

4757 

0.25 

57.95 

5238 

 

AGNPS+REGEM 
SGF Statistical 

parameters P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

   0.23 

65.67 

 4276 

   0.24 

61.81 

 4757 

   0.25 

57.95 

5238 

10 Ef 

PBIAS (%) 

A+R (ton) 

    0.31 

60.61 

  4907 

    0.32 

56.75 

5388 

     0.33 

52.89 

   5868 

11 Ef 

PBIAS (%) 

A+R (ton) 

  0.31 

60.13 

  4967 

   0.32 

56.26 

5448 

    0.33 

52.41 

   5928 

12 Ef 

PBIAS (%) 

A+R (ton) 

   0.31 

59.56 

  5038 

0.33 

55.70 

5519 

     0.33 

    51.84 

5999 

13 Ef 

PBIAS (%) 

A+R (ton) 

   0.32 

58.99 

5109 

0.33 

55.12 

5590 

0.34 

51.27 

6071 

14 Ef 

PBIAS (%) 

A+R (ton) 

   0.32 

58.41 

  5181 

0.33 

54.54 

5662 

0.34 

50.69 

6143 

15 Ef 

PBIAS (%) 

A+R (ton) 

-- -- 0.23 

53.58 

5304 
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AnnAGNPS+REGEM + SB (1.0) (Method 1) No threshold 

 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.45 

31.30 

8558 

0.46 

27.41 

9042 

    0.46 

23.54 

9525 

   0.46 

19.67 

 10007 

   0.46 

15.81 

10488 

   0.45 

11.95 

10968 

10 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.50 

26.23 

9189 

0.51 

22.35 

9673 

    0.51 

 23.28 

   9556 

    0.51 

14.61 

  10637 

    0.50 

10.74 

11119 

0.49 

6.88 

   11599 

11 Ef 

PBIAS (%) 

A+R (ton) 

-- -- 0.51 

21.87 

9733 

       0.51 

   17.99 

10216 

  0.51 

14.12 

  10698 

   0.50 

10.26 

11179 

    0.49 

6.40 

   11659 

12 Ef 

PBIAS (%) 

A+R (ton) 

-- -- 0.51 

21.30 

9804 

   0.51 

17.42 

10287 

   0.51 

13.55 

10768 

0.50 

9.69 

11250 

     0.49 

5.84 

11730 

13 Ef 

PBIAS (%) 

A+R (ton) 

-- -- --    0.51 

16.85 

10358 

   0.51 

12.98 

10840 

0.50 

9.12 

11321 

0.49 

5.26 

11801 

14 Ef 

PBIAS (%) 

A+R (ton) 

-- -- --    0.51 

16.27 

10430 

   0.51 

12.40 

  10912 

0.50 

8.54 

11393 

0.49 

4.68 

11873 

15 Ef 

PBIAS (%) 

A+R (ton) 

-- -- --    ---    -- -- 0.40 

7.57 

11513 

 

 

AnnAGNPS+REGEM + SB (1.3) (Method 1) No threshold 

 
SGF Statistical 

Parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.49 

21.39 

9792 

0.50 

17.50 

10277 

0.50 

13.61 

10761 

    0.50 

9.79 

11244 

   0.50 

5.87 

 11726 

   0.48 

2.00 

12207 

   0.47 

-1.85 

12688 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

12.433 

10908 

0.54 

8.55 

11392 

    0.54 

 4.67 

   11875 

    0.53 

0.80 

  12357 

    0.52 

-3.06 

12838 

0.50 

-6.93 

   13318 

11 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

11.95 

10969 

0.54 

8.06 

11452 

       0.54 

   4.2 

11935 

  0.53 

0.32 

  12417 

   0.52 

-3.54 

12898 

-- 

12 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

11.38 

11039 

0.54 

7.50 

11523 

   0.54 

3.62 

12006 

   0.53 

-0.25 

12488 

0.52 

-4.11 

12969 

-- 

13 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

10.80 

11111 

0.54 

6.92 

11594 

   0.54 

3.05 

12077 

   0.53 

-0.82 

12559 

-- -- 

14 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

10.23 

11183 

0.54 

6.34 

11667 

   0.54 

2.47 

12149 

   0.53 

-1.40 

  12631 

-- -- 

15 Ef 

PBIAS (%) 

A+R (ton) 

   0.45 

5.36 

11789 

   -- -- -- 
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AnnAGNPS+REGEM+SB (1.3): (Method 1) (Ia/s =0.1) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.58 

10.59 

11138 

0.59 

6.65 

11628 

0.59 

2.73 

12177 

0.58 

-1.17 

12603 

0.58 

-5.07 

13088 

0.56 

-8.95 

13572 

    0.55 

-12.83 

14055 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.60 

5.51 

11771 

0.60 

1.57 

12261 

0.60 

-2.34 

12749 

0.60 

-6.24 

13235 

0.59 

-10.13 

13720 

0.57 

-14.01 

14203 

    0.55 

 -17.89 

   14686 

11 Ef 

PBIAS (%) 

A+R (ton) 

0.60 

5.03 

11831 

0.60 

1.09 

12321 

0.60 

-2.83 

12809 

0.59 

-6.73 

13295 

0.58 

-10.62 

13780 

0.57 

-14.50 

14264 

       0.55 

   -18.38 

14746 

12 Ef 

PBIAS (%) 

A+R (ton) 

0.60 

4.46 

11902 

0.60 

0.52 

12392 

0.60 

-3.39 

12880 

0.59 

-7.29 

13366 

0.58 

-11.18 

13850 

0.57 

-15.07 

14334 

   0.55 

-18.95 

14817 

13 Ef 

PBIAS (%) 

A+R (ton) 

0.59 

3.30 

12045 

0.60 

-0.05 

12463 

0.59 

-3.97 

12951 

0.59 

-8.45 

13509 

0.58 

-11.76 

13922 

0.56 

-15.64 

14406 

   0.55 

-19.52 

14889 

14 Ef 

PBIAS (%) 

A+R (ton) 

0.59 

3.88 

11973 

0.59 

-0.63 

12536 

  --- 0.56 

-16.22 

14478 

   0.54 

-20.10 

14961 

 

AnnAGNPS+REGEM+SB (1.3): (Method 1) (Ia/s =0.2) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.622 

-5.53 

13145 

0.61 

-9.47 

13636 

0.60 

-13.38 

14125 

0.58 

-17.29 

14611 

0.56 

-21.18 

15096 

0.54 

-25.07 

15580 

    0.51 

-28.95 

16063 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.60 

-14.45 

14269 

0.59 

-18.46 

14757 

0.57 

-22.37 

15243 

0.55 

-26.25 

15727 

0.52 

-30.14 

16211 

    0.49 

 -34.01 

16694 

11 Ef 

PBIAS (%) 

A+R (ton) 

   -- 0.54 

-26.74 

15788 

0.52 

-30.62 

1627 

-- 

 

 

AnnAGNPS+REGEM+SB (1.3): (Method 1) (Ia/s =0.3) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.58 

-20.98 

15071 

0.56 

-24.92 

15562 

     

10 Ef 

PBIAS (%) 

A+R (ton) 

0.55 

-26.06 

15704 
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AnnAGNPS+REGEM + SB (1.0): (Method 2) No threshold 

 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.57 

30.80 

8620 

0.57 

26.92 

9104 

    0.58 

23.04 

9587 

   0.58 

19.17 

 10068 

   0.57 

15.30 

10550 

   0.56 

11.45 

11030 

10 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.59 

25.73 

9251 

0.60 

21.85 

9735 

    0.60 

 17.97 

   10218 

    0.60 

14.10 

  10700 

    0.59 

10.24 

11180 

0.58 

6.38 

   11661 

11 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.59 

25.25 

9312 

0.60 

21.37 

9795 

       0.60 

   17.49 

10278 

  0.59 

13.62 

  10698 

   0.59 

9.76 

11179 

    0.58 

5.90 

   11722 

12 Ef 

PBIAS (%) 

A+R (ton) 

-- -- 0.59 

20.80 

9866 

   0.60 

16.92 

10349 

   0.59 

13.05 

10831 

0.59 

9.19 

11312 

     0.57 

5.34 

11792 

13 Ef 

PBIAS (%) 

A+R (ton) 

-- -- 0.59 

20.23 

9938 

   0.59 

16.35 

10420 

   0.59 

12.48 

10902 

0.58 

8.62 

11383 

0.57 

4.76 

11801 

14 Ef 

PBIAS (%) 

A+R (ton) 

-- -- --    0.59 

15.77 

10492 

   0.59 

11.90 

  10974 

0.58 

8.04 

11455 

0.57 

4.18 

11936 

15 Ef 

PBIAS (%) 

A+R (ton) 

-- -- --    ---    -- -- 0.49 

7.07 

11575 

 

AnnAGNPS+REGEM + SB (1.0): (Method 2) (threshold=10%) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.63 

0.27 

12423 

0.63 

-3.67 

12914 

0.63 

-7.59 

13402 

0.62 

-11.49 

13888 

0.60 

-15.38 

14373 

0.59 

-19.27 

14857 

0.57 

-23.15 

15340 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.59 

-4.80 

13056 

0.59 

-8.74 

13546 

0.58 

-12.66 

14034 

0.57 

-16.56 

14520 

0.56 

-20.45 

15005 

0.54 

-24.34 

15489 

0.51 

-28.21 

15971 

 

 

AnnAGNPS+REGEM + SB (1.0): (Method 2) (threshold=20%) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.61 

-5.16 

13099 

0.61 

-9.10 

13590 

0.60 

-13.02 

14079 

    

10 Ef 

PBIAS (%) 

A+R (ton) 

0.56 

-10.24 

13733 

0.56 

-14.17 

14223 

0.55 

-18.09 

14711 
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AnnAGNPS+REGEM + SB (1.3): (Method 2) No threshold 

 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.62 

20.74 

9873 

0.62 

16.85 

10358 

0.63 

12.96 

10842 

    0.62 

9.08 

11325 

   0.62 

5.22 

 11807 

   0.61 

1.35 

12288 

   0.60 

-2.50 

12769 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.63 

11.78 

10989 

0.63 

7.90 

11473 

    0.63 

 4.02 

   11956 

    0.62 

0.16 

  12438 

    0.61 

-3.71 

12919 

0.59 

-7.56 

   13399 

11 Ef 

PBIAS (%) 

A+R (ton) 

 0.63 

11.30 

11049 

0.63 

7.41 

11533 

       0.63 

   3.54 

12016 

  0.62 

-0.33 

  12498 

   0.61 

-4.19 

12980 

-- 

12 Ef 

PBIAS (%) 

A+R (ton) 

 0.63 

10.73 

11120 

0.63 

6.84 

11604 

   0.62 

2.97 

12087 

   0.61 

-0.89 

12569 

0.60 

-4.76 

13050 

-- 

13 Ef 

PBIAS (%) 

A+R (ton) 

 0.62 

10.15 

11191 

0.62 

6.27 

11675 

   0.62 

2.34 

12158 

   0.61 

-1.47 

12640 

-- -- 

14 Ef 

PBIAS (%) 

A+R (ton) 

 0.62 

9.57 

11264 

0.62 

5.69 

11748 

   0.62 

1.82 

12230 

   0.61 

-2.05 

  12712 

-- -- 

15 Ef 

PBIAS (%) 

A+R (ton) 

   0.55 

4.71 

11870 

   -- -- -- 

 

 

AnnAGNPS+REGEM+SB (1.3) (Method 2) (Threshold = 10%) 

 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.24 

-44.48 

17998 

0.46 

-31.47 

16378 

0.45 

-39.35 

16866 

0.42 

-39.30 

17352 

0.40 

-43.19 

17837 

0.37 

-47.07 

18321 

 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.38 

-36.55 

17010 

     

 

AnnAGNPS+REGEM + SB (1.5) (Method 2) No threshold 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.65 

11.44 

11031 

0.65 

7.55 

11516 

0.65 

3.66 

12000 

0.64 

-0.21 

12483 

0.63 

-4.08 

12965 

0.61 

-7.94 

13447 

0.59 

-11.80 

13927 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.64 

6.37 

11663 

0.65 

2.48 

12148 

0.64 

-1.40 

12632 

0.63 

-5.28 

13114 

0.62 

-9.14 

13596 

0.61 

-13.00 

14077 

0.58 

-16.86 

14558 

11 Ef 

PBIAS (%) 

A+R (ton) 

 0.64 

2.00 

12208 

    0.58 

-17.35 

14618 
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AnnAGNPS+REGEM + SB (1.5): (Method 2) threshold=10% 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.29 

-46.07 

18196 

0.27 

-50.01 

18487 

0.24 

-53.93 

19175 

0.21 

-57.84 

19662 

0.17 

-61.73 

20147 

0.13 

-65.62 

20631 

0.09 

-69.49 

21114 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.18 

-51.15 

18829 

   0.06 

-66.80 

20778 

 -0.03 

-74.56 

21745 

 

AnnAGNPS+REGEM + SB (1.0): (Method 4) No threshold 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

 0.54 

38.53 

7658 

0.55 

35.33 

8055 

0.55 

32.15 

8452 

0.55 

28.98 

8848 

0.55 

25.79 

9244 

0.54 

22.62 

9639 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.56 

33.46 

8289 

0.57 

30.27 

8687 

0.57 

27.08 

9083 

0.57 

23.90 

9479 

0.57 

20.73 

9874 

0.56 

17.56 

10269 

11 Ef 

PBIAS (%) 

A+R (ton) 

  0.57 

29.78 

8747 

0.57 

26.60 

9144 

0.57 

23.42 

9540 

0.57 

20.24 

9935 

0.56 

17.08 

10329 

12 Ef 

PBIAS (%) 

A+R (ton) 

  0.57 

29.21 

8818 

0.57 

26.03 

9214 

0.57 

22.85 

9610 

0.56 

19.68 

10005 

0.55 

16.51 

10400 

13 Ef 

PBIAS (%) 

A+R (ton) 

  0.57 

28.64 

8889 

0.57 

25.45 

9286 

0.57 

22.28 

9682 

0.56 

19.10 

10077 

0.55 

15.94 

10471 

14 Ef 

PBIAS (%) 

A+R (ton) 

  0.56 

28.06 

8961 

0.57 

24.88 

9358 

0.56 

21.70 

9754 

0.56 

18.53 

10149 

0.55 

15.36 

10543 

15 Ef 

PBIAS (%) 

A+R (ton) 

     -- 0.47 

18.25 

10184 

 

AnnAGNPS+REGEM + SB (1.0): (Method 4) (threshold=0.1) 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

-- 0.54 

38.53 

7658 

0.55 

35.33 

8056 

0.55 

32.15 

8452 

0.55 

28.97 

8848 

0.55 

25.79 

9244 

0.54 

22.62 

9639 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.56 

33.45 

8289 

0.57 

30.27 

8687 

0.57 

27.08 

9083 

0.57 

23.90 

9479 

0.57 

20.73 

9874 

0.56 

17.56 

10269 

11 Ef 

PBIAS (%) 

A+R (ton) 

   0.57 

26.59 

9144 

  0.56 

17.08 

10329 

12 Ef 

PBIAS (%) 

A+R (ton) 

      0.55 

16.51 

10400 

13 Ef 

PBIAS (%) 

A+R (ton) 

      0.55 

15.94 

10471 
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AnnAGNPS+REGEM + SB (1.0): (Method 4) (threshold=0.5) 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.61 

11.60 

11012 

0.62 

8.36 

11415 

0.62 

5.14 

11817 

0.61 

1.93 

12217 

0.60 

-1.27 

12615 

0.59 

-4.46 

13013 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.57 

6.52 

11645 

0.58 

3.29 

12048 

0.57 

0.07 

12449 

0.57 

-3.14 

12848 

0.56 

-6.34 

13247 

0.54 

-9.53 

13644 

11 Ef 

PBIAS (%) 

A+R (ton) 

0.57 

6.03 

11705 

0.57 

2.80 

12108 

0.57 

-0.42 

12509 

0.56 

-3.62 

12909 

0.55 

-6.82 

13306 

 

12 Ef 

PBIAS (%) 

A+R (ton) 

0.56 

5.47 

11776 

0.56 

2.23 

12179 

    

13 Ef 

PBIAS (%) 

A+R (ton) 

0.55 

4.90 

11847 

     

 

AnnAGNPS+REGEM + SB (1.3): (Method 4) No threshold 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

 0.60 

25.69 

9257 

0.60 

22.50 

9655 

0.60 

19.31 

10052 

0.60 

16.13 

10448 

0.59 

12.96 

10843 

0.58 

9.88 

11238 

10 Ef 

PBIAS (%) 

A+R (ton) 

 0.61 

20.62 

9888 

0.61 

17.43 

10286 

0.61 

14.24 

10682 

0.60 

11.07 

11078 

0.59 

7.89 

11473 

0.58 

4.73 

11868 

11 Ef 

PBIAS (%) 

A+R (ton) 

  0.61 

16.94 

10346 

 0.60 

10.58 

11139 

0.59 

7.41 

11534 

0.57 

4.24 

11928 

12 Ef 

PBIAS (%) 

A+R (ton) 

    0.59 

10.02 

11209 

0.58 

6.84 

11605 

0.57 

3.67 

11999 

13 Ef 

PBIAS (%) 

A+R (ton) 

     0.58 

6.27 

11676 

0.57 

3.10 

12071 

14 Ef 

PBIAS (%) 

A+R (ton) 

     0.58 

5.69 

11748 

0.56 

2.52 

12143 

 

 

AnnAGNPS+REGEM+SB (1.3): (Method 4) (Threshold = 0.5) 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.49 

-13.17 

14098 

0.48 

-16.41 

14502 

     

10 Ef 

PBIAS (%) 

A+R (ton) 

0.42 

-18.25 

14731 

0.41 

-21.49 

15134 
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AnnAGNPS+REGEM+SB (1.3): (Method 4) (Threshold = 1.0) 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.47 

-15.42 

14378 

0.46 

-18.66 

14782 

     

10 Ef 

PBIAS (%) 

A+R (ton) 

0.39 

-20.50 

15011 

0.38 

-23.74 

15415 

     

 

AnnAGNPS+REGEM + SB (1.5): (Method 4) No threshold 
SGF Statistical 

parameters P=0.4 P=0.5 P=0.6 P=0.7 P=0.8 P=0.9 P=1.0 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.62 

20.33 

9924 

0.62 

17.13 

10323 

0.62 

13.94 

10721 

0.62 

10.75 

11118 

0.61 

7.57 

11514 

0.60 

4.40 

11909 

0.58 

1.23 

12304 

10 Ef 

PBIAS (%) 

A+R (ton) 

0.62 

15.26 

10556 

0.62 

12.06 

10954 

0.62 

8.87 

11352 

0.61 

5.68 

11749 

0.60 

2.51 

12144 

0.59 

-0.66 

12540 

0.57 

-3.83 

12934 

11 Ef 

PBIAS (%) 

A+R (ton) 

  0.62 

8.38 

11412 

0.61 

5.20 

11808 

0.60 

2.02 

12205 

0.59 

-1.14 

12600 

0.57 

-4.31 

12995 

12 Ef 

PBIAS (%) 

A+R (ton) 

    0.60 

1.46 

12275 

  

13 Ef 

PBIAS (%) 

A+R (ton) 

    0.59 

0.88 

12347 

  

14 Ef 

PBIAS (%) 

A+R (ton) 

    0.59 

0.31 

12418 

  

 

AnnAGNPS+REGEM + SB (1.5) (Method 4) threshold (0.5) 
SGF Statistical 

parameters P=0.1 P=0.2 P=0.3 P=0.4 P=0.5 P=0.6 P=0.7 

0.0 Ef 

PBIAS (%) 

A+R (ton) 

0.37 

-29.69 

16155 

0.32 

-32.93 

16559 

     

10 Ef 

PBIAS (%) 

A+R (ton) 

0.23 

-34.77 

16788 

0.21 

-38.01 

17192 

     

11 Ef 

PBIAS (%) 

A+R (ton) 

0.22 

-35.26 
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Appendix -3 Scour Chain Measurements 

 

This data is figured from both 2007-2008 and 2008-2009.   

 
      

      

      Stream Area (sqft)         

  2007 2008 2009 2007-2008 2008-2009 

Irish Creek 1 5209.229 4620.541 4339.276 -588.688 -281.265 

IC-2 10195.452 9153.621 9388.207 -1041.831 234.586 

IC-3 19205.005 19460.449 19435.058 255.444 -25.391 

North Fork 1 21872.142 20228.49 18757.388 -1643.652 -1471.102 

NF-2 28757.716 28625.883 28283.477 -131.833 -342.406 

NF-3 8239.032 8138.842 8501.875 -100.19 363.033 

Main stem 1 1661.28 1693.755 1995.121 32.475 301.366 

MS-2 8348.119 7369.529 7811.914 -978.59 442.385 

MS-3 17380.696 16940.497 17024.562 -440.199 84.065 

 

Note: Negative (-) numbers signify loss of area using bankfull, or aggradation.  Possitive 

numbers signify degradation.   

 


