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CHAPTER

INTRODUCTION

Cinematography is the most widely used technique in

sport biomechanics research to provide a digital record

and/or an image record of overt human body movements. These

film records are analyzed quantitatively to obtain linear

and angular coordinate-time data for total body or

segmental movements. Typically, the basic coordinate-time

function of a motion does not provide sufficient

information to fully describe the activity. Therefore,

these data have to be further treated mathematically to

determine the corresponding velocity and acceleration

functions. Knowledge of the velocity and acceleration

patterns provides more descriptive information about the

movement under investigation. It is therefore critical in

most studies that precise estimates of velocity and

acceleration be obtained.

For precise estimates of velocity and acceleration,

various mathematical techniques have been employed to

smooth raw data to eliminate or reduce the effect of errors

which arise in filming and digitizing procedures. Winter

(1974) advocated a second-order recursive digital filter

for smoothing film analysis data. This digital filter has

been suggested as the best among the smoothing techniques

used in biomechanics studies (Li & Yu, 1983; Winter, 1979;



Wood, 1982) , and is widely used in biomechanics studies at

present.

In the digital filter smoothing procedure, there is a

set of coefficients which control the "degree" of smoothing

or the sharpness of cutoff. This set of coefficients is

determined according to the cutoff frequency of the raw

data. At the present time, the cutoff frequency is

subjectively determined by the researcher. There is no

method to objectively determine the cutoff frequency. The

determination of cutoff frequency has a great influence on

the smoothing quality of digital filter. Therefore, if a

precise estimate of velocity and acceleration is expected

from the data smoothed by the digital filter, it is

essential that the problem of determination of cutoff

frequency be solved.

Statement Of The Problem

The purpose of this study was to develop a method for

objective determination of the proper cutoff frequency of

the digital filter used in data smoothing procedures in

sport biomechanics. A set of coordinate-time data of freely

falling movement was used as the standard data in which no

error was involved. Different sets of computer-generated

random numbers were used as random errors, and mixed into

the standard data. These sets of artificial raw data with

random errors were smoothed by the digital filter procedure

using varying cutoff frequencies. The filtered outputs were

compared with the standard data to determine the best
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cutoff harmonic. Multiple regression procedures were used

to analyze the relationship between the best cutoff

frequency and the characteristic variables of raw data. It

was expected that a multiple regression equation could be

established to determine the best cutoff harmonic from the

characteristic variables of raw data. The independent

variables selected to reflect the characteristics of errors

involved in raw data were sampling frequency, normalized

harmonic amplitudes of the signal, and corresponding

harmonics.

Definitions

Data smoothing

The mathematical procedure to eliminate or reduce the

errors involved in the measured signal.

Data fitness

The mathematical procedure to seek mathematical

expression of the measured signal.

Raw data

Also termed as unprocessed data or signal, they are

coordinate-time data directly measured from film through

the digitizing procedure.

Fourier series

The weighted sum of sine and cosine terms of

increasing frequencies. Any continuous signal can be

expressed as a Fourier series.



K
X(t) = AO + J [Ak sin(Fk||t) + Bk cos(Fk||t)] (1)

k=l

where AO is the constant term; Ak and Bk are the amplitudes

of sine and cosine functions at kth harmonic, respectively;

Fk is the frequency at kth harmonic; and t is the

independent variable, time; M is the highest harmonic of

the signal.

Frequency

The number of cycles per second of a sine or cosine

function. Frequency can be expressed in radian/s or Hz, and

radian/s = 2
|

| Hz.

Fundamental frequency

The frequency of the first sine and cosine terms in a

Fourier series.

Harmonic

The frequencies of the sine and cosine functions in a

Fourier series are expressed as the multiples of the

fundamental frequency. These functional components are

called harmonics.

Harmonic amplitude

The modulus of the amplitudes of the sine and cosine

functions with the same harmonic. The kth harmonic

amplitude is expressed as:



I

2 2

HAk = /\| Ak + Bk (2)

Harmonic power

The ratio of a harmonic amplitude to the total

harmonic amplitude of the signal. The kth harmonic power is

expressed as:

|
2 2 / K | 2 2

HPk = /\ |
Ak + Bk / Y. A I A3 + BJ (3)

j=l

Harmonic content

The sum of the harmonic powers below a specific

harmonic. The kth harmonic content is expressed as:

k 2 2 / K 2 2

HCk - £ A| Ai + Bi / f Al Aj + Bj (4)
i=l j=l

(k < K)

Cutoff frequency

The frequency at which the best compromise is

obtained to retain most of the signal of interest and the

least of the error signal.



Sampling frequency

The number of data points taken per second from the

cine film recording.

Knot

When raw data are smoothed by spline functions, the

raw data curve will be broken down into sections. The point

which connects two adjacent sections is termed as knot.

Nyquit frequency

One-half of sampling frequency. Nyquit frequency can

be expressed as:

Fn = Fs/2 (5)



CHAPTER

REVIEW OF RELATED LITERATURE

The literature reviewed for this study is divided

into four parts: (1) the nature of errors, (2) the sources

of errors, (3) data smoothing techniques used in sport

biomechanics, and (4) determination of cutoff frequency for

the digital filter. A basic understanding of the nature of

errors involved in the measured signal and how errors arise

is very helpful for understanding of (a) the comparison of

different smoothing techniques used in sport biomechanics,

and (b) the principle for determining the appropriate

cutoff frequency when using the digital filter. Thus, the

first two sections of literature review concern the nature

of errors and the sources of errors.

The Nature Of Errors

Human body movement is a process which is

continuously changing with time. In sport biomechanics,

cinematography is used to measure this continuous process

at discrete points. These discrete points are considered as

the measured signal of a human body movement. Any measured

signal can be divided into two components actual signal

component and error, or noise component.

The error component can be broken down further into

two parts systematic error and random error. A measured

7



signal is the sum of actual signal and error. It has been

demonstrated that in human body movement the actual signal

component of a cinematography measured signal is typified

by large amplitude and low frequency. The total error, or

noise on the other hand, is typified by small amplitude and

high frequency even though systematic error has low

frequency (Lees, 1980; Winter, Sidwall, & Hobson, 1974;

Winter, 1979; Wood, 1982).

The effect of the errors in coordinate-time data or

displacement data is not serious because of the small

amplitude of these errors. But, when derivations are formed

to calculate velocity and acceleration, these errors will

be amplified because of their high frequencies. To

illustrate this problem, consider a sinusoidal motion of

frequency F and amplitude A, A sin (Ft) , as shown in Figure

1, with some added measurement error in the form of another

sinusoid of fequency 10F but amplitude A/10,

(A/10) sin(lOFt) . In communications-engineering terms, the

ratio of signal to noise is 10:1. The measurement signal,

f (t) , can be written as:

f(t) = A sin(Ft) + (A/10)sin(10Ft)

Upon taking the first derivative,

df(t)/dt = AF cos(Ft) + AF cos(lOFt)



A -

I
.

-A

TIME

MEASURED SIGNAL

ACTUAL SIGNAL

Figure 1. Measured and actual sinusoidal signals
(Wood, 1982).
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it can be found that the amplitude of noise is equal to

that of the actual signal (Figure 2) . When differentiated

twice,

2 2 2 2

df (t)/dt = -AF sin(Ft) - 10AF sin(lOFt)

2

the noise is amplified 100F times, and the amplitude of

noise became 10 times of that of actual signal (Figure 3)

.

From this example, it can be seen that the amplitude

of each of the harmonics increases with its harmonic number

in differentiations; for velocities the amplitudes increase

linearly, and for accelerations the increase is

proportional to the square of the harmonic number (Winter,

1979; Wood, 1982). With such a large amplitude, the noise

has concealed the actual signal. In this case, it is very

difficult to carry out any analysis of the actual signal,

even a qualitative analysis.

Sources Of Errors

The sources of errors associated with the kinematic

or kinetic data obtained by cinematography are numerous.

Some investigators (McLaughlin, Dillman, & Lardner, 1978;

Wood 1982) listed some potential sources of errors

associated with kinematic and kinetic data obtained by

cinematography as shown in table 1.

Errors arising from misalignment of the camera,

perspective error due to the object being out side of the

10
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Figure 2. The first derivative of the measured and
actual signals (Wood, 1982).
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Figure 3. The second derivative of the measured
and actual signals (Wood, 1982).
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Table 1. Sources of errors in cinematographic analysis.

j
1. Misalignment of the camera

2 . Movement of the camera
|

Camera j

| j
3. Imperfect registration of

Filming
j

j j

film in the camera
Procedure

j
j

Perspective error due to

Subject subject out of the

photographic plane

1. The movement of projector

Projector
j

2. Imperfect registration of

film in projector

1. Stretching of the film
Film

2. Graininess of the film
Digitizing

j

Procedure j Precision limits of
j

Digitizer
j

digitizer

Errors of judgment and

Operator parallax in locating joint

axes of rotation.

13



photographic plane, stretching of film or imperfect

registration of film in camera, movement of camera,

graininess of film are generally considered as systematic

errors with low frequencies. These errors all arise in the

photographic process and most of them can be mathematically

corrected or avoided by selecting proper photographic

equipment or methodology (Wood, 1982). For example, errors

arising from the misalignment of the camera can be

mathematically corrected by setting two spatial scales in

the photographic plane with one parallel to the horizon and

the other perpendicualr to the horizon. Perspective error

due to the object being out side of the photographic plane

can be avoided or neglected by using three dimensional

cinematography or telescopic lens. Errors arising from

stretching of the film or imperfect registratrion of the

film and graininess of film can be avoided by using an

infrared photography system or a video photography system.

Errors arising from operator errors of judgement

and parallex in locating joint axes of rotation are random

errors with high frequencies. As previously pointed out,

the effect of such errors with small amplitudes but high

frequencies on the differentiations of the measured signal

is serious. To eliminate or reduce this kind of random

error, body markers are used in cinematography.

Unfortunately, they do not eliminate the error because: (a)

the joint centers of rotation are not on the surface of the

skin, (b) the positions of body markers keep changing with

respect to the joint centers of rotation and anatomical

14



landmarks in the movement, and (c) body markers can only be

used in the laboratory environment. This means that the

only "chance" to reduce the effect of these random errors

is the mathematical reduction after the digital process, i.

e., data smoothing process.

Data Smoothing Techniques Used In Sport Biomechanics

Random errors in measured signals can be smoothed in

many ways. The smoothing techniques most often used in

sport biomechanics include: (a) finite difference

technique, (b) least square polynomial approximations, (c)

spline functions, (d) Fourier series, and (e) digital

filtering.

Finite difference technique

The derivative of the coordinate-time function y =

f (t) is velocity

V = dy/dt = f
'
(t) (6)

The derivative of the coordinate-time function at a given

point t can be defined as

f'(t) = lim [f(t +At) - f(t)]/At (7)

At->0

This expression represents the slope of the chord of the

curve represented by the function y = f(t) between points

[t + At, f(t +At)] and [t, f(t)]. As At approaches zero,

15



the slope of the chord of the curve represented by the

function y = f(t) between points [t + At, f(t + At) ] and

[t, f(t)] will infinitely approximate the slope of the

tangent at the point [t, f(t)]. For finite time intervals,

however, a better approximation to the derviative of the

function y = f(t) at t is found in the slope of the chord

of the curve represented by the function y = f(t) between

points [t +At, f(t +At)] and [t -At, f(t -At)], which

can be given by the formula

V - f'(t) = [f(t +At) - f(t -At)]/(2At) (8)

where f(t +At) - f(t -At) is referred to as the first

central difference.

Similarly, the acceleration at point t can be

obtained by applying the central differences twice to the

coordinate-time function

2

A = f" (t) = [f(t + 2At) - 2f(t) + f(t - 2At)]/4At

(9)

Equations (8) and (9) are called the finite

difference technique. These equations are used as a

smoothing technique in sport biomechanics by some

researchers. However, the poor results of this method have

been shown by several studies (Li & Yu, 1983; Pezzack,

Norman, & Winter, 1977; Winter, 1979; Wood, 1982). In fact,

16



the finite difference technique is nothing more than an

appropriate calculation method for velocity and

acceleration in cinematography.

Least square polynomial approximations

In many scientific experiments, experimenters measure

N + 1 data points of continuous processes and want to

develop functions for these continuous processes through N

+ 1 data points obtained from the experiments. If these N +

1 data are accurate enough, a polynomial of degree n can be

developed through these N + 1 data to mathematically

describe the process from which these N + 1 data are

obtained. This polynomial can be derived in such a way that

it represents an analytical line of best fit. This

procedure requires that the sum of the squares of the

deviations be minimized, so it is called the least square

polynomial approximation or fitness procedure. Wood (1982)

described this procedure in detail.

This least square polynomial approximation procedure

has been used by numerous researchers in biomechanics

studies to develop some low order polynomials (n = 1-7)

fitted to either N + 1 total data in the series, or a small

number (N = 2-8) of data points at a time.

Some researchers (Li & Yu, 1983; Pezzack, et.al.

,

1977; Winter, 1979; Wood, 1982) evaluated the smoothing

results of least square polynomial approximations. The

results of their studies have shown that the smoothing

results of least square polynomial approximations are not

17



better than those of finite difference techniques. The poor

smoothing results of least square polynomial are caused by-

two factors. First, in sport biomechanics, the movement of

any human body point is an unknown function. It is very

difficult to determine the degree n of the polynomial for a

given body point in a given movement. The different degrees

of the polynomials will cause great differences in

smoothing results (Lees, 1980; Wood, 1982). Second, in

least square polynomial approximations, the polynomials are

developed to fit the experimental data. If the experimental

data were accurate enough, the accurate function might be

obtained through least square polynomial approximations.

But, unfortunately, in sport biomechanics, the raw

experimental data obtained through cinematography are not

accurate enough and have serious errors. In fitting a

polynomial of degree n to a set of N + 1 experimental data

points which has serious errors, when the least square has

been obtained, most errors may be retained in the signal.

Spline functions

The spline function method is a modification of the

least square polynomial approximation technique. The

essential principle of the spline function is to break the

curve into sections, with special fitting being done

between adjacent sections. Detailed descriptions of the

mathematical formulae of spline functions can be found

elsewhere (Dunfield & Read, 1972; Greville, 1969; Rice,

1969; Wold, 1974)

.

Some researchers (McLaughlin, Dillman, & Lardner,

18



1978; Soudan & Dierdkx, 1979) analyzed some human body

movements with cubic spline functions. The results of their

experiments suggested that the cubic spline can provide an

accurate description of displacement-time data and the

corresponding time derivatives. Wood (1982) stated that

spline functions have extreme flexibility and pronounced

local properties which make them well suited to

biomechancial applications.

Despite the advantages of the spline function method

mentioned above, there are still some problems in the

procedure. The major problems with this technique are: (1)

consideration must be given to the appropriate degree of

the spline function, the number and positions of the knots

or the junction of adjacent segments, required accuracy of

least squares fit, and the management of end-conditions

(Winter, 1979; Wood, 1982); (2) at least 20 extra points

have to be taken at the endpoint regions for the confident

interpretation of results when the acceleration at end

point is not zero (McLaughlin, et.al., 1978); (3) for the

best results, the number of data points should be at least

50 (McLaughlin, et.al., 1978; Wood, 1982); and (4) the

complexity of the curve fitting requires much more computer

time. These problems limit the accuracy and the application

of spline function smoothing procedure.

Fourier series

It is known that a function, f(t), can be expressed

as a weighted sum of polynomials in terms of t. This

19



weighted sum of polynomials is called a series. The Fourier

series is one such series. A Fourier series provides a

means of expressing a periodic function as a weighted sum

of sine and cosine terms of increasing frequency. Winter

(1979) and Wood (1982) have described the Fourier series

smoothing technique in detail.

Hatze (1981) outlined a Fourier sine series, a

modification of the Fourier series, as a data smoothing

technique. He introduced a set of transformation data in

this approach. This transformation permits an odd extension

of the measured signal in the form of a Fourier sine

series.

It has been pointed out that Fourier series have a

very good basis in periodic movement (Winter, 1979; Wood,

1982) . Very satisfactory smoothing results of this

technique have been shown in some studies (Hatze, 1981;

Wood, 1982) . However, this approach also can be generalized

to nonperiodic data sequences by a suitable manipulation of

the data when it is assumed that the data are repetitive,

especially when transformation data are introduced in this

smoothing procedure. Under these circumstances, the

frequencies at which the data are analyzed have no

meaningful relationship to physical phenomenon being

studied and are only a mathematical convenience (Wood,

1982) .

Fourier series can be used not only in data smoothing

but also in harmonic analysis for human body movements.

Winter et.al. (1974) applied this Fourier analysis approach

20



in studying harmonic contents of human walking. Alexander

(1980) did a Fourier analysis of forces exerted in walking

and running.

Wood (1982) has pointed out that one of the major

problems of the Fourier series smoothing technique is the

high cost of computer time. The study done by Li and Yu

(1983) identified another problem associated with this

technique: the difficulty in determining the appropriate

cutoff harmonic. Improperly determined cutoff harmonic will

result in grossly over- or undersmoothed derivative

estimates. Some poor smoothing results of the Fourier

series smoothing procedure might be caused by a wrong

selection of the cutoff harmonic.

Digital filter

A digital filter is a frequency-selective device that

accepts as input a sequence of equispaced numbers and

operates on them to produce as output another number

sequence of limited frequency. The digital filter most

often used in sport biomechanics is an alternative form

called recursive or autoregressive filter. The output of

this type of filter depends not only on present and past

samples of unsmoothed original signal but also on past

smoothed values of the original signal. This form of

digital filter is said to have an infinite memory, or

"feedback", in that some knowledge of all previous data is

retained in the process (Winter, 1979; Wood, 1982). Winter

et.al. (1974) advocated a second-order recursive filter.
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The details of this procedure can be found in several

studies (Li & Yu, 1983; Winter, et.al., 1974; Winter, 1979;

Wood, 1982).

In the digital filter smoothing procedure, there is a

set of coefficients which need to be determined by the user

according to the cutoff and the sampling frequencies.

Winter (1979) has calculated and published some sets of

these coefficients for different sampling and cutoff

frequencies. Those coefficients published by Winter (1979)

can be directly used in the digital filter smoothing

procedure by approximating the ratio of cutoff frequency to

sampling frequency to one of those published by Winter

(1979) . The best smoothed output, however, results when the

coefficients are calculated for the given measured signal.

Pezzack et.al. (1977) and Li et.al. (1983) compared

several smoothing techniques. Their results have suggested

that the digital filter is the best of all the smoothing

techniques used in sport biomechnics studies. Wood (1982)

has pointed out that the computer time for this smoothing

procedure is the shortest of that of all the smoothing

techniques used in sport biomechanics. For these reasons,

such a device has attracted the interest of biomechanists

in spite of the problem associated with selecting the

cutoff frequency.

Determination Of Cutoff Frequency For The Digital Filter

The quality of the smoothed output of the digital

filter depends on the proper determination of cutoff

22



frequency. Figure 4a (Winter, 1979) showns a schematic plot

of a signal and the noise spectrum in the measured signal.

From this plot, it can be seen that, as previously pointed

out, the signal occupies the lower end of the frequency

spectrum and the error, or noise, occupies the higher end

of the frequency spectrum. There is an overlap of actual

signal and noise. When the measured signal is smoothed by

the digital filter, as can be seen in Figure 4b, the

response at lower frequencies is 1.0. This means that the

input signal passes through the filter unattenuated.

However, there is a sharp transition around the cutoff

frequency, Fc, and the signals above Fc are severely

attenuated. The result of the filtering process is shown in

Figure 4c. Winter (1979) pointed out that two things should

be noted: (1) the higher frequency noise has been severely

reduced but not completely eliminated; and (2) the signal,

especially in the region where the signal and noise overlap

(around Fc) , also is slightly attenuated. This attenuation

results in a slight distortion of the signal.

Thus, a compromise has to be made in the selection of

the cutoff frequency. If the cutoff frequency is set too

high, less signal distortion occurs but too much noise will

be allowed to pass. Conversely, if the cutoff frequency is

too low, the noise may be completely eliminated, but too

much signal will be lost (Lees, 1980; Winter, 1979; Wood,

1982) .

Pezzack, et.al. (1977) compared the peaks of the
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filtered curves to the raw curves in his digital filter

procedure. If the peaks of the filtered curves were too

low, the cutoff frequency of the filter would be raised; if

the oscillations of the filtered curves were too close to

those seen in the unfiltered curves, the cutoff frequency

would be reduced. Here the question remains: what are "too

low" and "too close"? On the other hand, in the case where

error characteristics are not known, it is very difficult

to give out a proper cutoff frequency through the

comparision between the filtered and unfiltered signals.

Harmonic analysis (Cook & Rabinowicz, 1963) is one of

the best ways to gain insight into the frequency spectrum

of the measured signal as a forerunner to the design of

digital filters to separate signal from noise (Wood, 1982)

.

Some researchers (Li, et.al. , 1983; Winter, 1974; Winter,

1979) have applied this method in determination of the

cutoff frequency for the digital filter.

In the harmonic analysis, the harmonic amplitudes can

be normalized as the percentage of fundamental harmonic

amplitude or as the harmonic power. When a harmonic

amplitude is normalized as the percentage of the

fundamental harmonic amplitude, it can be expressed

mathematically as:

|
2 2 / |

2 2

NHAk = /\ |
Ak + Bk /A |

Al + Bl (10)

When NHAk is less than a specific value AD, k will be
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selected as the cutoff fequency.

When a harmonic amplitude is normalized as the

harmonic power, it can be mathematically expressed as:

|
2 2 / K | 2 2

HPk = /\ | Ak + Bk / £ A | Aj + Bj (11)

when HPk is less then a specific value PD, k will be

selected as the cutoff frequency.

Two questions now must be answered to complete these

selection processes: (1) how to determine the highest

harmonic M of the measured signal, and (2) how to determine

the proper value of AD and PD.

Summary

In cinematography, there are some random errors which

can not be avoided and must be eliminated or reduced in the

data smoothing process. The digital filter is one of the

best smoothing techniques used in sports biomechanics.

Research suggests that very satisfactory smoothing results

can be obtained through the use of this smoothing technique

if appropriate cutoff frequency is selected. Further

research designed to develop a procedure to determine the

appropriate cutoff frequency is needed.
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CHAPTER

METHOD

The procedures for this study are presented in this

chapter. Data collection, harmonic analysis, Fourier series

fitness, digital filter procedure, resemblance evaluation,

statistical analysis, and all pertinent mathematical

formulas are included. All of the procedures of this study

are shown in Figure 5

.

Standard Data

The only way to evaluate the smoothed results is to

compare the smoothed data to the actual data (here called

standard data) . Pezzack et.al. (1977) designed an aluminium

"arm" to simulate the arm motion of the human body, and

positioned an accelerometer on the free end of this "arm"

to record the actual acceleration data which were used as

the standard data. McLaughlin et.al. (1978) used force

platform data as the standard data. In this study, the

vertical coordinate-time data of free fall body movement,

and corresponding velocity and acceleration data was

employed as the standard data. These standard data were

obtained from the following equations:

2

Sa(t) = G t /2 (m) (12)
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V(t) = G t (m/s) (13)

2

G = 9.8 (m/s )

Raw Data

As previously pointed out, any measured signal from

film represents the actual signal plus or minus the error

or noise inherent in the procedure used to record and

measure the sample data. This is represented by the

following expression:

Sm(t) = Sa(t) + e(t) (14)

where Sm, Sa, and e are measured signal, actual signal, and

error, respectively. Systematic errors can be minimized by

conducting well-controlled experimental and measurement

procedures. If controls are appropriate, the total error

associated with obtaining measures from film can be reduced

to random errors of digitizing. In this study, different

sets of random real numbers were generated by the computer

from the following equation:

e(t) = [R(t) - 0.5J/C (15)

where R(t) was a random real number which was less than 1.0

and greater than 0; C was a constant. This constant, C, was
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given different values for each sampling frequency. The

values of C controlled the mean absolute values of

different sets of random real numbers at each sampling

frequency. The different values of the constant, C, and the

corresponding mean absolute values are shown in Table 2

.

Table 2. C values and corresponding mean absolute values.

C 5.0 10.0 20.0 40.0 80.0

MAV 0.05000 0.02500 0.01250 0.00625 0.00312

MAV the mean absolute values, the unit of MAV is m.

These different sets of random real numbers with different

mean absolute values were mixed with the standard data as

the random errors to comprise different sets of raw data

with different mean random errors at each sampling

frequency.

Table 3 contains the sampling frequencies used in

this study.

Table 3. Sampling frequencies (Hz).

Fs 30 60 100 150 200 250 300 350 400 450 500

These sampling frequencies included all of those widely

used in cinematography in sport biomechanics.
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Digital Filter Process

To determine the most appropriate cutoff frequency

for a given measured signal, the raw data were smoothed by

a digital filter with different cutoff harmonics, and the

filtered outputs were compared to the standard data.

The raw data were filtered both forward and backward

to overcome the phase characteristic of the digital filter.

When this was done, the digital filter was written as

Y10 = yO

Yll = yl

Yli = AO yi + Al yi-1 + A2 yi-2 +

Bl Yli-1 + B2 Yli-2 (16)

(i = 2, 3, ... , N-2, N-l, N)

Y2N = yN

Y2N-1 = yN-1

Y2i = AO Yli + Al Yli+1 + A2 Yli+2 +

Bl Y2i+1 + B2 Y2i+2 (17)

(i = N-2, N-3, ... , 2, 1, 0)

where Yl and Y2 were forward and backward filtered outputs,
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respectively. AO, Al, A2 , Bl, and B2 were filter

coefficients defined as:

2
I

AO = 1/(C +/\| 2 C + 1) (18)

Al = 2 AO (19)

A2 = AO (2 0)

2 2
|

Bl = (2 C - 2)/(C + /\| 2 C + 1) (21)

I
2 2

|

B2 = (A |
2 C - C - 1)/(C +/\| 2 C + 1) (22)

where C was defined as:

C = l/tan(
|

| Fc/Fs) (23)

where Fc and Fs were, respectively, cutoff frequency and

sampling frequency.

The cutoff frequency at which a set of raw data was

best smoothed was considered as the best cutoff frequency

for this set of raw data.
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Evaluation Of Filtered Results

To determine the best cutoff frequency of the

measured signal for the digital filter, the filtered

results with different cutoff frequencies were evaluated in

order to determine the best filtered result. In this study,

error energy analysis was employed to evaluate the filtered

results with different cutoff frequencies.

Error energy of the two sets of data is defined as

the mean square of deviations of two sets of data. The

error energy Q of two sets of data can be written as

N 2

Q = Y. (xli " X2i ) /(N + 1) (24)
i=0

where XI and X2 represent two curves which have been

digitized. Generally, when Q reaches its minimum, there is

the strongest resemblance between the two compared curves.

In the evaluation of filtered results, when error energy

between filtered data and the standard data reached its

minimum, the filtered result was considered as the best.

Fourier Fitness

Before harmonic analysis of the measured signal,

Fourier series must be used to fit the measured signal.

When a measured continuous signal f(t) is fitted with a

Fourier series, it can be expressed as
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K
f(t) = AO + X tAk cos(2||kt/T) + Bk sin (2

|
| kt/T)

]

k=l
(25)

where t is the time point at which the signal f(t) is

measured; T is the total time interval during which the

signal occurs. AO, Ak, and Bk are Fourier coefficients and

can be expressed as

I

T/2
AO = 1/T| f(t)dt (26)

J -T/2

I

T/2 _
Ak = 1/T| f(t) cos (2

|
| kt/T) dt (27)

J -T/2

I
T/2 _

Bk = 1/T| f(t) sin(2| |kt/T)dt (28)

J -T/2

(JC — X , 2 , . . . , K)

In cinematography, the measured signal is a set of

discrete data, yO, yl, y2 , ... , yN. In this case, the

measured signal can be fitted by a Fourier series as

K
fi = AO + X tAk cos(2||ki/N) + Bk sin(2

|

| ki/N) ] (29)
k=l
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(i - 0, 1, 2, ... , N)

(k = 1, 2, . . . , K; M < K/2)

where N + 1 is the total number of frames digitized.

Considering that Fourier series have a very good

basis in periodic movements (Winter, 1979; Wood, 1982), the

data transformation outlined by Hatze (1981) was used to

make the data have the characteristics of periodic data.

Hatze defined this data transformation as the following:

gi = yi - yO -
[ (yN - yO)/N]i (30)

(i = 0, 1, 2, ... , N)

Because of this data transformation, the measured signal

fitted by Fourier series was expressed as

fi = yO + [ (yN - yO)/N]i +

K
A0 + £ [Ak cos(2||ki/N) + Bk sin (2

|

| ki/N)

]

k=l
(31)

where

I

T/2
A0 = 1/T| g(t)dt (32)

J -T/2
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I

T/2 _
Ak = 1/T| g(t) cos(2| |kt/T)dt (33)

_|-T/2

I

T/2 _
Bk = 1/T| g(t) sin(2| |kt/T)dt (34)

_|-T/2

(k — 1/ 2
r

••• , K)

where g(t) denoted an unknown continuous function of t

expressed by the discrete values of gO, gl, g2 , ... , gN.

The integrations in equations 32, 33, and 34 were

accomplished by different numerical integral analysis

methods. In this study, the Simpson integration rule

(Davis, 1975) was employed to calculate AO, Ak, and Bk.

When the measured signal was best fitted, K was be

considered as the highest harmonic of the measured signal.

Evaluation Of Fourier Fitness Results

To determine the highest harmonic of the measured

signal, Fourier fitnesses of the measured signal with

different values of K have to be evaluated in order to

determine the best Fourier fit of the measured signal. The

error energy analysis used in evaluation of filtered

results was used to evaluate the Fourier fitness results.

When error energy between fitted data and the raw data

reached its minimum, the fitness result was considered as

the best.
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Harmonic Analysis

As previously pointed out, harmonic analysis is one

of the best ways to reveal the characteristics of random

errors in a measured signal. There are two ways to

normalize harmonic amplitudes in harmonic analysis. In this

study, considering that Fourier fitness and the evaluation

of fourier fitness results was very time consuming and

would reduce calculation speed in future application,

harmonic amplitudes of raw data were normalized as the

percentages of fundamental harmonic amplitude by equation

10.

Statistical Analysis

From the above procedures, the best cutoff frequency

and the normalized harmonic contents for each set of raw

data were obtained. A multiple regression analysis was

carried out in which the best cutoff frequency were treated

as the dependent variable. The following regression

equation is expected

Fc = F(X1, X2, . . . , Xp) (36)

where Fc is the best cutoff frequency; XI, X2 , ..., Xp are

some independent variables selected based on the results of

analysis of the raw data.

37



Application Of Regression Equation

The regression equations obtained by the procedure

described above were used to determine the proper cutoff

frequency for the film angular displacement data collected

by Pezzack, et.al. (1977) . The filtered angular

displacement data and the corresponding angular

acceleration data were compared with the analog data

(Pezzack, et.al., 1977) to examine the filtered results at

P the cutoff frequencies determined by the regression

equations.
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CHAPTER 4

RESULTS AND DISCUSSION

110 sets of raw data were generated by the computer.

There were 2 sets of raw data for each mean error

controllor C at each sampling frequency. Harmonic spectrums

were analyzed for all of these raw data. Then, based on the

harmonic analysis of measured signals, independent

variables were selected to establish regression equations

to estimate the proper cutoff frequency. Different models

for estimating the proper cutoff frequency were tested. Two

regression equations were established based on the results

of statistical analysis. Because the harmonic analysis was

the key in selection of possible independent variables, the

result of harmonic analysis is shown in the first section

of this chapter.

Harmonic Analysis Of Measured Signal

A typical harmonic spectrum is shown in Figure 6. In

this study, it was found that the normalized harmonic

amplitudes of a measured signal kept decreasing before a

special harmonic but began to oscillate after this special

harmonic. The existence of this special harmonic had not

been reported before this study. Considering the overlap of

actual signal and error pointed out by Winter (1979) and

comparing Figure 6 to frequency spectrum in Figure 4, it is
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very reasonable to consider this special harmonic as the

indicator of the beginning of the overlap of actual signal

and error. Therefore, in this study, this special harmonic

was named as overlap harmonic which was denoted by Ho and

the normalized harmonic amplitude of this special harmonic

was named as normalized overlap harmonic amplitude which

was denoted by NHAo.

Selection Of Variables

Dependent variable

Figure 7 is the symmetry plot for the best cutoff

frequencies. It can be found that the best cutoff

frequencies were skewed to the region of the distribution

above the median, and a power transformation was needed to

make the distribution of the best cutoff frequencies nearly

symmetric. When The 0.5th power power transformation was

given to Fc, the data were nearly symmetrically distributed

as shown in Figure 8 . Therefore the square root of the best

cutoff frequency was determined as the dependent variable

in regression analysis procedures of this study. The square

root of Fc was denoted by PFc and expressed as:

1/2
PFc = Fc

Independent variables

Figure 9 shows the relationship between PFc and

sampling frequency Fs. It was found that PFc is highly

41



8 10 12 14 16 18

DISTANCE TO POINTS BELOW THE MEDIAN

Figure 7. A symmetry plot for the best cutoff frequency
(Fc).

42



1—1

s

55

Q

DISTANCE TO POINTS BELOW THE MEDIAN

Figure 8. A synmetry plot for the square root of the
best cutoff frequency (PFc).

43



fa sO ^

I

600

SAMPLING FREQUENCY (Hz)
(Fs)

Figure 9. The relaitonship between the square root of the
best cutoff frequency (PFc) and sampling frequency
(Fs).

44



correlated to Fs. However, the relationship between PFc and

Fs was not linear. According to the relationship between

PHc and Fs shown in Figure 9, a 0.5th power transformation

was given to Fs

1/2
PFs = Fs

Figure 10 shows the relationship between PFc and PFs. It

can be seen that the relationship between PFc and PFs was

quite linear.

Previous studies didn't report the influence of

sampling frequency on cutoff frequency. However, Winter

(1974) analyzed the harmonic spectrum of joint angles in

walking with a sampling frequency of 60 Hz. He demonstrated

that the proper cutoff frequencies of the measured signals

he analyzed were 5 to 7 Hz. This is just in the range of

the variation of the best cutoff frequencies of the

measured signals at the sampling frequency of 60 Hz found

in this study.

The finding of the influence of sampling frequency on

cutoff frequency in this study indicates that if the

sampling frequencies and other factors are the same, the

cutoff frequencies should be the same no matter what the

highest frequency present in the signal is. This is in

agreement with the results of Winter's study (1974). The

results of that study indicate that there is no significant

influence of movement speed on cutoff frequency. However,
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the following facts should be noticed: (1) the higher the

speed of movement is, the higher the highest frequency-

present in the actual signal itself is, (2) the higher the

sampling frequency is, the higher the highest frequency

present in the measured signal is and the more details of

the actual signal could be picked up, (3) according to the

sampling theorem (Winter, 1979) , the higher the highest

frequency present in the actual signal itself is, the

higher the sampling frequency should be in order to pick up

the details of the signal, and (4) the positive correlation

between sampling frequency and the best cutoff frequency

found in this study indicates that the higher the sampling

frequency is, the higher the cutoff frequency should be.

When these facts are considered, it can be said that the

speed of movement has an indirect influence on the cutoff

frequency. The non-significant influence of speed of

movement on cutoff frequency found by Winter (1974) is due

to the same sampling frequency used for all of the signals

analyzed in his study.

Considering the relationship between PFs and PFc, PFs

was selected as the first independent variable for the

regression analysis procedures in this study.

Examining Figure 10, it also can be seen that PFc at

the same sampling frequency varied in a relatively wide

range. This means that the best cutoff frequency is also

influenced by some other factors besides sampling

frequency, and some other variables besides PFs are needed

to estimate the best cutoff frequency.
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As previously pointed out, if the best smoothing

result of the digital filter is expected, a compromise has

to be made in determination of cutoff frequency to remain

as more actual signal and less error as possible. To make

this compromise in determination of cutoff frequency the

following factors should be considered: (1) the relative

amplitude of actual signal before the overlap of actual

signal and error, (2) the position in the harmonic spectrum

of the actual signal the overlap of the actual signal and

error begins, and (3) the relative amplitude of error. So,

after sampling frequency has been considered, the other

variables selected to estimate best cutoff harmonic should

be able to predict these three factors. The finding of

overlap harmonic provides a basis for selection of possible

variables to predict these factors.

To detect the effects of the other possible

independent variables on cutoff frequency, the difference

between each PFc and the mean PFc at each sampling

frequency were calculated as the following:

DPFcij = PFcij - MPFcj

(i = 1, 2, ... , 10; j = 30, 50, 100, ... , 450, 500)

where DPFcij was the difference between ith PFc at j

sampling frequency and the mean PFc at j sampling

frequency; MPFcj was the mean PFc at j sampling frequency.
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It has been pointed out in harmonic analysis of

measured signals that overlap harmonic is a predictor of

the beginning of the overlap of actual signal and error.

However, the overlap harmonic was not considered as a

possible independent variable in the expected regression

equation. What the overlap harmonic indicates is the

absolute position in the harmonic spectrum of the measured

signal the error begins to mix with the actual signal. This

absolute beginning position of overlap in the harmonic

spectrum of the measured signal may be different for

different kinds of data. If the overlap harmonic were

employed as an independent variable in regression analysis

procedures of this study, the use of the regression

equations to the data of other kinds of movements would be

limited. The possible independent variables considered for

the regression analysis procedures in this study should be

able to indicate the common charicteristics of all kinds of

data.

The normalized harmonic amplitude before the overlap

harmonic was the first one considered as a predictor of the

above mentioned factors. This normalized harmonic amplitude

was denoted by NHA1. Here, the hypothesis was that NHA1

could predict not only the relative amplitude of the signal

before the overlap of the signal and error but also the

relative position of the overlap in harmonic spectrum of

the actual signal. The higher NHA1 was, the lower the

overlap harmonic would be and the more the errors there

would be in the overlap, therefore, the cutoff frequency
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would be lower. Contrarily, the lower NHA1 was, the higher

the overlap harmonic would be and the less the errors there

would be in the overlap, therefore, the cutoff frequency

would be higher. The functions of NHA1 was partially

demonstrated by the relationship between NHA1 and Ho shown

in Figure 11. Figure 12 is the symmetry plot for NHA1. This

symmetry plot shows that the distribution of NHA1 was

skewed to the left. A -0.125th power transformation was

given to NHA1, and PNHA1 was used to denote this

transformation

-1/8
PNHA1 = NHA1

As shown in Figure 13, the distribution of PHNA1 was nearly

symmetric.

The relationship between PNHA1 and DPFc was shown in

Figure 14. Some correlation between PNHA1 and PFc can be

detected from this figure. Therefore, PNHA1 was considered

as the second possible independent variable.

The third possible independent variable considered

was the -0.125th power of the normalized overlap harmonic

amplitude. The -0.125th power of NHAo was denoted by

PNHAo. The reason to consider PNHAo as one of the possible

independent variables in expected regression equation was

the same as that for PNHA1. Figure 15 illustrates the

relationship between NHAo and Ho. The relationship between

these two variables was quite similar to that between NHA1
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and Ho. Figures 16 and 17 are symmetry plots for NHAo and

PNHAo respectively. Figure 17 shows that PNHAo was nearly

symmetrically distributed. Figure 18 shows the relationship

between PNHAo and DPFc. Some correlation between these two

variables can be seen in this figure.

Here it should be noticed that error begins to mix

into actual signal at Ho. NHAo might have included some

error. Therefore, the function of PNHAo as a predictor of

the relative harmonic amplitude of the signal before the

overlap of the signal and error and the relative position

of the beginning of the overlap in the spectrum of actual

signal might not be as effective as that of PNHA1.

To predict the relative amplitude of error, the

standard deviation of the five normalized harmonic

amplitudes after Ho was calculated as the following

Ho+n 2 Ho+n 2

ME = /\ | >_ NHAi - ( >_ NHAi ) /n ]/(n-l)
i=Ho+l i=Ho+i

(If Hm - Ho >= 5, n = 5;

if Hm - Ho < 5, n = Hm - Ho)

where ME is the standard deviation of the five normalized

harmonic amplitudes after Ho. The correlation between ME

and the mean error can be detected in Figure 19. Therefore,

it was expected that ME could act as a predictor of the

relative amplitude of error in the overlap of tha actual
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signal and error, and that the higher ME was, the lower the

cutoff frequency would be, and the lower the ME was, the

higher the cutoff frequency would be.

Figure 2 is the symmetry plot for ME. This symmetry

plot shows that the distribution of ME was skewed to the

region of the distribution below the median. Figure 21 is

the symmetry plot for the 0.25th power transformation of

ME. This transformation was expressed as

1/4
PME = ME

The distribution of PME was nearly symmetric as seen in

Figure 21. The relationship between PME and DPFc is shown

in Figure 22. There seems to be some correlation between

these two variables. Therefore, PME was considered as the

fourth possible independent variable in regression analysis

procedures.

Regression Analysis

The Backward elimination method was used to build the

regression equation. The first model to be tested was

PFc = L0 + LI PFs + L2 PNHA1 + L3 PNHAo + L4 PME + e

(35)

The statistics for this model are shown in Table 4. The

analysis of variance shows that overall regression was
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Table 4. Statistical results for Equation 35.

DEP VARIABLE: PFc

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE P VALUE

MODEL 4 76.4299 19.1074 158.831 0.0001
ERROR 105 12.6345 0.1203
C TOTAL 109 89.0645

ROOT MSE 0.3468 R-SQUARE 0.8581
DEP MEAN 3.7372 ADJ R-SQ 0.8525
C.V. 9.5111

PARAMETER ESTIMATES

PARAMETER STANDARD
VARIABLE DF ESTIMATE ERROR T VALUE P VALUE

INTERCEP 1 -0.7563 0.8167 -0.9261 0.3566
PFs 1 0.1361 0.0071 19.1690 0.0001
PNHA1 1 1.8562 0.5808 3.1959 0.0019
PNHAO 1 -0.3356 0.5396 -0.6219 0.5353
PME 1 -0.2098 0.9985 -0.2101 0.8340
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significant but PME and PNHAo had no significant

contribution to the model and the P value for PME was the

highest. That means that the contibution of PME to the

model was the smallest among the independent variables.

Therefore, PME was deleted from the first model.

The second model to be tested was

PFc = LO + LI PFs + L2 PNHA1 + L3 PNHAo + e (36)

The statistics for this model are shown in Table 5.

The analysis of variance shows that the overall model was

significant but PNHAo still had no significant contribution

to the model. Therefore, PNHAo was deleted from the second

model.

The third model to be tested was

PFc = LO + LI PFs + L2 PNHA1 + e (37)

The statistics for this model are shown in Table 6.

The analysis of variance shows that the overall regression

was significant and all of the independent variables in the

model had significant contribution to the model. The R

square and adjusted R square for overall regression were

0.8547 and 0.8575 respectively. These results indicate that

over 85% of the variation of the square root of cutoff

frequency can be explained by Equation 37 and the

correlation between the actual best cutoff frequency and

the estimated best cutoff frequency from the corresponding
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Table 5. Statistical results for Equation 36.

DEP VARIABLE: PFc

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE P VALUE

MODEL 3 76.4299 25.4747 213.554 0.0001
ERROR 106 12.6401 0.1192
C TOTAL 109 89.0645

ROOT MSE 0.3452 R-SQUARE 0.8581
DEP MEAN 3.7372 ADJ R-SQ 0.8539
C.V. 9.4659

PARAMETER

PARAMETER

ESTIMATES

STANDARD
VARIABLE DF ESTIMATE ERROR T VALUE P VALUE

INTERCEP 1 -0.9057 0.4001 -2.2636 0.0257
PFs 1 0.1357 0.0069 19.6667 0.0001
PNHA1 1 1.9205 0.4913 3.9090 0.0002
PNHAo 1 -0.3380 0.5369 -0.6295 0.5304
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Table 6. Statistical results for Equation 37.

DEP VARIABLE: PFc

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE P VALUE

MODEL 2 76.3747 38.1873 322.255 0.0001
ERROR 107 12.6897 0.1185
C TOTAL 109 89.0645

ROOT MSE 0.3442 R-SQUARE 0.8575
DEP MEAN 3.7372 ADJ R-SQ 0.8547
C.V. 9.4378

PARAMETER

PARAMETER

ESTIMATES

STANDARD
VARIABLE DF ESTIMATE ERROR T VALUE P VALUE

INTERCEP 1 -1.0432 0.3343 -3.1205 0.0024
PFs 1 0.1358 0.0068 19.9705 0.0001
PNHA1 1 1.6401 0.2066 7.9385 0.0001
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regression equation of Equaiton 37 was 0.9245. Figures 23,

24, 25 and 26 are residual plots of the equation 37. No

pattern in the distribution of residuals can be detected

from these residual plots. Therefore, Equation 37 was

considered as the best model for estimating the proper

cutoff frequency and the resulting regression equation can

be expressed as

1/2 -1/8 2

Fc = (0.1358 Fs + 1.6401 NHA1 - 1.0432)

(38)

This regression equation shows that Fs has a positive

effect on Fc but NHA1 has a negative effect on Fc. The

higher Fs is, the higher Fc will be. The higher NHA1 is,

the lower Fc will be.

In the above procedure of model building, the non-

significant contribution of PNHAo to the second model in

which both of PNHAo and PNHA1 were included, the higher

significance of the contribution of PNHA1 to the third

model after PNHAo was deleted, and the effect of PNHA1 on

Fc in the final regression equation further demonstrated

the hypotheses about the functions of NHA1 and NHAo.

The rejection of PME in the above procedure of model

building was unexpected. Examining the relationships

between NHA1 and mean error and between NHA1 and ME shown

in Figures 2 7 and 28, it can be found that NHA1 is

correlated with mean error and ME. This means that NHA1 is
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also a predictor of the relative amplitude of error and

functions as well as ME. Thus, the reason why ME was

rejected in regression analysis procedure can be explained

as that although ME is a predictor of the relative

amplitude of error in the overlap, NHA1 can function not

only as a predictor of relative amplitude of error in the

overlap as well as ME but also as a predictor of the

relative amplitude of the signal before the overlap and the

relative position of the beginning of the overlap on

harmonic spectrum of the signal, so the function of NHA1 in

estimating proper cutoff frequency is much stronger than

that of ME.

In applicaton of Equation 38, Fourier analysis has to

be carried out to calculate that NHA1. Considering that

Fourier analysis procedure was very time consuming and

would increase computer time spent in digital filter

procedure, the fourth model was tested. In this model, only

sampling frequency was remained as independent variable.

This model was expressed as the following

PFc = LO + LI PFs + e (39)

The statistics for this model are shown in Table 8.

The analysis of variance shows that the overall regression

was significant and PFs had significant contribution to the

model. The R square and adjusted R square of overall

regression were 0.7695 and 0.7673 respectively. These

results indicate that about 77% of the variation of cutoff
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Table 7. Statistical results for Equation 39.

DEP VARIABLE: PFc

ANALYSIS OF VARIANCE

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE P VALUE

MODEL 1 68.5367 68.5367 360.582 0.0001
ERROR 108 20.5278 0.1900
C TOTAL 109 89.0645

ROOT MSE 0.4358 R-SQUARE 0.7695
DEP MEAN 3.7372 ADJ R-SQ 0.7673
C.V. 11.9454

PARAMETER

PARAMETER

ESTIMATES

STANDARD
VARIABLE DF ESTIMATE ERROR T VALUE P VALUE

INTERCEP 1 1.4845 0.1290 11.5077 0.0001
PFs 1 0.1532 0.0082 18.6829 0.0001
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frequencies can be explained by Equation 3 9 and the

correlation between the actual best cutoff frequencies and

the estimated best cutoff frequencies from the

corresponding regression equation of equation 39 was

0.8772. Figures 29, 30, and 31 are residual plots for the

corresponding regression equation of Equation 39. Some

linear pattern of distribution of residual can be detected

when the residual was plotted as the function of actual

best cutoff frequency as shown in Figure 28. This linear

pattern in the distribution of residual is due to the

absence of PNHA1 from the model. No pattern can be detected

from the other two residual plots. Therefore, equation 39

was selected as the second best model for estimating the

best cutoff frequency, and the resulting regression

equation was

1/2 2

Fc = (1.4845 + 0.1532 Fs ) (40)

This equation avoids using Fourier analysis, therefore, it

has no influence on computer time spent in digital filter

procedure and is suited for fast feedback. However, The

variation of the square root of the best cutoff frequency

explained by Equation 40 is about 9% less than that

explained by Equation 38, which will cause some errors in

determination of the proper cutoff frequency, and these

errors may cause some under- or over-filtering effect in

filtered outputs.
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Application Of The Regression Equations

Figures 32 and 33 show the digitized analog angular

displacement data (Pezzack, et al. , 1977) and the digitized

film angular displacement data filtered at the cutoff

frequencies determined by Equations 38 and 40. The cutoff

frequencies determined by Equations 38 and 40 for this set

of data were 8.61 Hz and 6.60 Hz respectively. The cutoff

frequency determined by Equation 3 8 for this set of data is

very close to 9 Hz used by Pezzack in his study (1977)

.

Figure 34 and 35 depict the analog angular acceleration

data measured by the accelerometer (Pezzack et al. , 1977)

and the angular accelerations calculated from the filtered

film angular displacement data. These figures demonstrate

that, although the over-filtering effect appeared at the

peaks of the angular acceleration curve calculated from the

angular displacement data fitlered at the cutoff frequency

determined by equation 40, the angular displacement data

filtered at the cutoff frequencies determined by both

equations fitted the true angular displacement function

very well, and provided enough details of the true

acceleration function. These results indicate that both

Equations 38 and 40 were reasonably successful in

estimating the proper cutoff frequency for the second-order

low pass recursive digital filter to estimate velocity and

acceleration from the film analysis data which are severely

contaminated by noise.

A computer program has been written in PASCAL for the
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new digital filter procedure in sport biomechanics analysis

of human body movement. In this new digital filter

procedure, the regression equations established in this

study are applied to objectively determined the proper

cutoff frequency either from the sampling frequency or from

the sampling frequency and the normalized harmonic

amplitude before the overlap harmonic.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

Although the second-order recursive digital filter

has been widely used in cinematography in sport

biomechanics, the problem of determination of proper cutoff

frequency has not been solved. The purpose of this study

was to develop a method for accurate determination of the

cutoff frequency in the digital filter.

A set of vertical coordinate-time data of freely

falling movement was used as the standard data. Different

sets of computer-generated random numbers were used as

random errors and mixed into the standard data to generate

different sets of artificial raw data. The mean absolute

value of each set of random errors was controlled.

The artificial raw data were filtered by the digital

filter at different cutoff frequencies. The filtered

outputs were evaluated by the error energy of the filtered

data and standard data to determine the best cutoff

frequency for each set of raw data.

Harmonic analysis was then carried out to analyze the

characteristics of the signal and error of each set of raw

data. In the harmonic analysis, the highest harmonic of the

raw data was defined as the harmonic at which the raw data

were best fitted by Fourier series. Harmonic amplitudes
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were normalized as the percentages of fundamental harmonic

amplitude of each set of raw data. Based on the results of

harmonic analysis, independent variables were selected and

added to sampling frequency develop regression models.

Two regression equations were then developed from

these models. The proper cutoff frequency for a set of raw

data can be estimated either from the sampling frequency

and the normalized harmonic amplitude before the overlap

harmonic using the relationship:

1/2 -1/8 2

Fc = (0.1358 Fs + 1.6401 NHA1 - 1.0432)

and from only the sampling frequency using the following

formula:

1/2 2

Fc = (1.4845 + 0.1532 Fs )

These two regression equations were used to determine the

cutoff frequency for the film angular displacement data

collected by Pezzack, et al. (1977) . The cutoff frequency

of this set of data estimated from the sampling frequency

and the harmonic amplitude before the overlap was very

similar to that used by Pezzack, et al. (1977) . The

filtered outputs with the cutoff frequencies determined by

either of these two equations provided enough details of

the true angular acceleration function although there were
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some over-filtering effects on the peaks of the estimated

acceleration curve calculated from the displacement data

filtered at the cutoff frequency estimated from only the

sampling frequency.

The following are the findings of this study:

1. The cutoff frequency of digital filter is

influenced by the sampling frequency. Over 77% of the

variation of the square root of the best cutoff frequency

is due to the sampling frequency.

2. The harmonic amplitude of raw data keeps

decreasing below a particular harmonic. After this

particular harmonic, the harmonic amplitude of raw data

begins to oscillate. This particular harmonic can be

considered as the indicator of the beginning of the overlap

of signal and error on the frequency spectrum. In this

study, this particular harmonic was named as overlap

harmonic.

3. The normalized harmonic amplitude before the

overlap harmonic can be used as an indicator of the

relative amplitude of signal at the beginning of the

overlap, the relative beginning position of the overlap of

signal and error on the frequency spectrum of the signal,

and the relative amplitude of error in the overlap. About

9% of the variation of the square root of the best cutoff

frequency can be explained by the normalized harmonic

amplitude before the overlap harmonic.

A Computer program for a new digital filter procedure

has been written in PASCAL. In this program, the regression
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equations established in this study have been applied to

objectively determine the proper cutoff frequency for the

digital filter procedure.

Conclusions

The results of statistical analysis and application

of the regression equations have demonstrated that the

proper cutoff frequency of the digital filter can be

estimated from the sampling frequency and the normalized

harmonic amplitude of the signal before the overlap

harmonic, and that either of the two regresion equations

established in this study can be successfully applied to

objectively determine the proper cutoff frequency of the

second-order low pass recursive digital filter. It is

suggested that the second equation be used if the speed of

the feedback is more important than the accuracy, and the

first equation be used if the accuracy is more important

than the speed of the feedback.

Recommendations

The present study provides the basis for further

studies on the determination of the cutoff frequency of the

digital filter. Although two regression equations for

estimating the proper cutoff frequency of the digital

filter have been established in this study, there is still

about 14% of the variation of cutoff frequency unexplained.

This unexplained part of variation of cutoff frequency has
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some negative effect on the estimate of cutoff frequency,

and may have caused some over- or under-fitlering effect in

estimated velocity and acceleration curves. Further studies

are needed to provide a more complete explanation of the

variation of the cutoff frequency when using the digital

filter.

The findings from this study should be applicable to

human movement data with different frequency contents,

because the harmonic analysis variables were normalized

relative to the fundamental harmonic amplitude. However,

further research is recommended to verify if the results of

this study are fully applicable to human movement data with

widely varying frequency content.
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APPENDIX

A Computer Program For Digital Filter Procedure
With Different Methods

Of Determination Of Cutoff Frequency

(* *)

(* Author : Bing Yu *)

(* research assistant *)

(* Department of Physical Education, *)

(* and Leisure Studies *)

(* Kansas State University *)

(* *)

(* Major Professor : Dr. Larry Noble *)

(* *)
(*********************************************************)

Program DigitalFilter (input, output, 1st)

;

(*********************************************************)
(* *)

(* This program is one the programs in the KSU film *)

(* analysis system. This program is designed to smooth *)

(* the raw data of joint center coordinates generated by *)

(* the DATAIN program, generate a data file which *)

(* contains the smoothed data of joint center *)

(* coordinates, and print out the raw data and smoothed *)

(* data if the user requires. The cutoff frequency can *)

(* be automatically determined from sampling frequency *)

(* and results of harmonic analysis, from only sampling *)

(* frequency, or determined by user. *)

(* *)

const
maxframes = 12 0;

(* *)

(* Limit of number of frames analyzed for each joint. *)

(* *)

possible = 19;

(* *)

(* Limit of number of joints. *)

(* *)
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pi = 3.14159265;

type
dataarray = array [1. .possible, 1. .maxframes] of real;
cogarray = array [ 1. . 10, 1. .maxframes] of real;
temparray = array [ 1. .maxframes] of real;
coearray = array [1.. 5] of real;
cutarray = array [1. . 2 , 1. . 19] of real;
realfile = file of real;
namelab = string[20]

;

var
datal ,

data2 ,

data3 ,

data4 : dataarray;

(*********************************************************)
(* *)

(* datal, data2, data3, and data4 will contain raw data *)
(* of x and y coordinates of joint centers, and filtered *)

(* data of x and y coordinates of joint centers, *)

(* respectively. *)
(* *)

cutoff : cutarray;

(* *)
(* cutoff will contain cutoff frequencies for x and y *)
(* coordinates of each joint center. *)

(* *)
(*********************************************************)

deltatime,
camspeed ,

frameint
,

impreal : real;
segnum ,

frame : integer;
answer ,

filename : namelab;
ch : char

;

(* *)

(* deltatime : the time interval between digitizing. *)

(* camspeed : filming rate. *)

(* frameint : the number of frames between digiting. *)

(* impreal : flag for if user digitized an implement *)

(* or not, and the number of points on the *)

(* implement. *)
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(* segnum : the number of points digitized. *)

(* frame : the number of frames digitized. *)

(* *)

{$1 graph. p}
{$1 util.pas}
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Procedure introduce;

(*********************************************************)
(* *)

(* This procedure describes to the user what is going on.*)
(* *)
(*********************************************************)

var
ch char

;

begin
clrscr;
graphcolormode

;

graphbackground (red)

;

textcolor (white)

;

gotoxy (3, 6)

;

writeln(
gotoxy (3

writeln(
gotoxy (3

writeln(
gotoxy (3

writeln(
gotoxy (3

writeln(
gotoxy (7

writeln(

*********************************** i

)

7);
')

12 ) ;

WELCOME TO KSU FILM ANALYSIS SYSTEM')
16) ;

')

18) ;

*********************************** •

\

22) ;

(PRESS ANY KEY TO CONTINUE) ')

;

read(kbd / ch)

;

clrscr;
graphcolormode

;

graphbackground (blue)

;

textcolor (white)

;

gotoxy (4,7)

;

writeln(

'

) ;

gotoxy (4, 12)

;

writeln('NOW YOU ARE IN THE FILTER PROGRAM');
gotoxy (4, 17)

;

Writsln^ |AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA|\ •

gotoxy (4, 18)

;

writeln(

'

' ) ;

gotoxy (7,22)

;

writeln(' (PRESS ANY KEY TO CONTINUE) ')

;

read(kbd, ch)

;

clrscr;
textmode(c80)

;

graphbackground (blue)

;

textcolor (yellow)

;

gotoxy (1, 5)

;

writeln(' This program will smooth the joint center
coordinate data by using ' )

;

writeln(' digital filter. The joint center coordinates
data were generated by DATAIN * )

;

writeln(' program which should have been run previously
to this program.');
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writeln;
writeln(

upon
writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln;
writeln

(

read(kbd
end;

The filtered data will be printed out
request. The filtered data');

will be the following: 1

);
right and left foottoes;');
right and left ankles;');
right and left knees;');
right and left hips;');
right and left shoulders;');
right and left elbows;');
right and left wrists;');
right and left hands;');
head;

' )

;

implement (if available).');

(Press any other key to continue.)');
ch) ;

99



Procedure readin(var datal,data2 :dataarray

;

var segnum , frame : integer

;

var filename rnamelab;
var camspeed, frameint, impreal : real)

;

(*********************************************************)
(* *)

(* This procedure reads raw data from data file *)

(* established by the DATAIN program. *)

(* *)
(*********************************************************)

var
framenum,
tempio ,

index : integer;
actfile : realfile;

begin
repeat

(* *)

(* Enter file name. *)

(* *)
(*********************************************************)

clrscr;
textmode (c80)

;

graphbackground(blue)

;

textcolor (yellow)

;

gotoxy(l,5)

;

writeln(' Enter the name of your files. DO NOT inclu
de the file number and file type.');

gotoxy(20, 12)

;

readln( filename)

;

(*********************************************************)
(* *)

(* Check if the file exists or not. *)

(* *)
(*********************************************************)

assign(actfile, 'A: '+filename+ ' 2 .RAW )

;

(*$I-*)
reset (actfile)

;

(*$I+*)
tempio : =ioresult

;

if tempio <> then
begin

clrscr;
textmode (c80) ;

graphbackground(red)

;

textcolor (white)

;

gotoxy(l,5)

;
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writeln(' The file named ' , filename, is not
found. Make sure the following things:');

writeln;
writeln(' 1) you have run DATAIN program befo

re running this program;');
writeln (' 2) the disk with the file on it is

in drive A;
' )

;

writeln (' 3) file name is correctly entered.
');

gotoxy (1, 15)

;

writeln (' If you have NOT run DATAIN program,
press ESC key to quit this program ' )

;

writeln (' and run DATAIN program. If you have air
eady run DATAIN program, press any ' )

;

writeln (' other key to re-enter the file name.');
read(kbd,ch)

;

if ch = chr(27) then
begin

clrscr;
graphcolormode

;

clrscr;
textmode(c80) ;

halt;
end;

end;
until tempio = 0;

(*********************************************************)
(* *)

(* Read raw data. *)

(* *)
(*********************************************************)

clrscr;
textmode(c4 0)

;

graphbackground (magenta)

;

textcolor (yellow+blink)

;

gotoxy (15, 12)

;

writeln ( 'READING DATA' )

;

read(actfile,camspeed, frameint, impreal)

;

segnum:=17+trunc(impreal)

;

deltatime : =frameint/camspeed

;

frame :=0

;

while not eof(actfile) do
begin

frame := frame+1;
for index :=1 to segnum do

read(actfile, datal[ index, frame]

,

data2 [ index , frame ] )

;

end;
close (actfile)

;

end;
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Procedure filterdata (var datal,data2 ,data3 ,data4 :dataarray

;

var cutof f : cutarray

;

var segnum , frame : integer

;

var deltatime:real)

;

/*********************************************************)
(* *)

(* This procedure will filter rawdata of coordinates of *)

(* jointer centers contained in DATA1 and DATA2 . In this *)

(* procedure, DATA3 and DATA4 will contain filtered x *)

(* and y coordinates of joint centers. *)

(* *)
(*********************************************************)

var
index ,

framenum ,

tempio : integer;
ch : char

;

option : namelab;
tempcut : real

;

(* *)

(* tempcut : the cutoff frequency for a set of data. *)

(* *)

trandata : temparray;

(*********************************************************)
(* *)
(* trandata contains the data of a joint center and *)

(* transfer the data to and out of the FILTER procedure. *)
(* *)
(*********************************************************)

Procedure filter (var trandata: temparray; var frame: integer;
var option: namelab;
var deltatime, tempcut : real)

;

var
count ,

subframe : integer;
temp : temparray;

(*********************************************************)
(* *)

(* temp contains raw data. *)

(* *)

coef : coearray;
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(* *)

(* coef contains filter coefficients. *)

(* *)

wa. /

wb /

WC i

Xl i

x2 : real

;
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Procedure cutoffl(var trandata: temparray

;

var frame: integer;
var tempcut,deltatime: real)

;

(*********************************************************)
(* *)

(* This procedure do harmonic analysis for each set of *)

(* data, then calculate the cutoff frequency from the *)

(* sampling frequency and the result of harmonic *)

(* analysis. *)

(* *)

var
subframe
harmonum
stop
temp
A, B, C
dl
d2
d3
d4
d5
d6
si
s2
S3
xl
x2
NHA1

integer;

temparray;

real ;

begin

(*********************************************************)
(* *)

(* Eliminate linear component of the raw data. *)

(* *)
(******************************************************* **N

xl : =trandata [ 1 ]

;

x2 := (trandata [frame] -trandata [1] )/ (frame-1)

;

for subframe :=1 to frame do
trandata [ subframe ] : =trandata [ subframe ] -xl-x2 * ( subfram

e-1) ;

(* *)

(* Harmonic analysis. *)

(* *)
(*********************************************************)

dl : =2 . 0*pi/frame

;

harmonum :=0

;

stop:=0;
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repeat
harmonum : =harmonum+ 1

;

6.2 :=dl*harmonum;
d3:=0.0;
d4:=0.0;
d5:=0.0;
d6:=0.0;
si : =trandata [ 1 ]

;

s2 :=trandata[ frame] *cos ( (frame-1) *d2)

;

s3 :=trandata[ frame] *sin( (frame-1) *d2)

;

for subframe:=2 to frame-1 do
begin

if (subframe-l)/2 = trunc( (subframe-l)/2) then
begin

d4 :=d4+trandata[ subframe] *cos ( (subframe-1) *d2)

;

d6 : =d6+trandata [subframe] *sin ( (subframe-1) *d2)

;

end
else
begin

d3 :=d3+trandata[ subframe] *cos ( (subframe-1) *d2)

;

d5:=d5+trandata[ subframe] *sin( (subframe-1) *d2)

;

end;
end;
A[harmonum] :=( (dl/3.0) * (sl+s2+4 . 0*d3+2 . 0*d4) )/

(2.0*pi)

;

B [harmonum] :=( (dl/3.0) * (s3+4 . 0*d5+2 . 0*d6) )/(2.0*pi)

;

C [harmonum] :=sqrt (A [harmonum] *A [harmonum]
+B [harmonum] *B[ harmonum] )

;

(*********************************************************)
(* *)

(* Search overlap harmonic. *)

(* *)
(*********************************************************)

if harmonum > 2 then
if (C[harmonum] > C[harmonum-l] ) or

(harmonum > 1/ (2*deltatime) ) then
begin

NHAl:=C[harmonum-2]/C[l]

;

stop:=l;
end;

until stop = 1;

(*********************************************************)
(* *)

(* Remove linear component back to raw data. *)

(* *)
(*********************************************************)

for subframe:=l to frame do
trandata [ subframe ]

: =trandata [ subframe

]

+xl+x2* (subframe-1)

;
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(* *)

(* Calculate cutoff frequency. *)

(* *)
(*********************************************************)

if NHA1 < 0.001 then NHA1 : =0.001

;

tempcut:=sqr (sqrt (1/deltatime) *0. 13 58+
sqrt(sqrt(sqrt(l/NHAl) )

) *1. 6401-1. 0432)

;

end;
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(*********************************************************)
(* *)

(* Main procedure of filter *)
(* *)
(*********************************************************)

begin
if option [1] = ' 1' then cutoff 1 (trandata, frame, tempcut,

deltatime)

;

(*********************************************************)
(* *)

(* Calculate filter coefficients. *)

(* *)
(*********************************************************)

wc: =sin (pi*tempcut*deltatime) /cos (pi*tempcut*deltatime)

;

wa:=wc*2*sqrt (0. 5) ;

wb:=sqr (wc*sqrt (0. 5) ) *2 ;

coef [ 1 ] : =wb/ ( 1+wa+wb)

;

coef [2] :=2*coef [1]

;

coef [3] :=coef [1]

;

coef [4] :=-(2*wb-2)/ (1+wa+wb)

;

coef [5] :=- (wb-wa+1)/ (1+wa+wb)

;

for subframe:=l to frame do
temp [subframe] :=trandata[subframe]

;

xl : =trandata [ frame ]

;

x2 : =trandata [ frame-1 ]

;

(*********************************************************\
(* *)

(* Filter forward and backward. *)

(* *)
(*********************************************************)

for count :=1 to 2 do
begin

if count = 2 then

f *********************** **********************************)
(* *)

(* Keep the last two points of a set of data unfiltered *)

(* when filtering backward. *)

(* *)
(*********************************************************)

begin
trandata [ 1 ] : =xl

;

trandata [ 2 ] : =x2

;

end;
for subframe:=3 to frame do

trandata [ subframe ] : =coef [ 1 ] *temp [ subframe ]

+

coef [ 2
] *temp [ subframe-1 ]

+

coef [ 3
] *temp [ subframe-2 ]

+

coef [ 4 ] *trandata [ subframe-1 ]

+
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coef [ 5 ] *trandata [ subframe-2 ]

;

(* *)

(* Reverse the order of the data. *)

(* *)
(*********************************************************)

for subframe:=l to frame do
temp [subframe] :=trandata[frame+l-subframe]

;

end;
for subframe:=l to frame do

trandata[ subframe] :=temp[ subframe]

;

end;
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(* *)

(* Main procedure of filterdata *)
(* *)
(*********************************************************)

begin

(*********************************************************)
(* *)

(* Select the method of determination of cutoff *)

(* frequency. *)

(* *)
(*********************************************************)

repeat
clrscr;
textmode(c80) ;

textcolor (yellow)

;

graphbackground(blue)

;

gotoxy (3,4)

;

writeln( 'OPTION FOR DETERMINATION OF CUTOFF FREQUENCY

gotoxy (3,8)

;

writeln (' 1) CUTOFF FREQUENCIES ARE AUTOMATICALLY
DETERMINED FROM SAMPLING )

;

gotoxy (3,9)

;

writelnC FREQUENCY AND THE RESULT OF HARMONIC
ANALYSIS')

;

gotoxy (3 ,11)

;

writelnC 2) CUTOFF FREQUENCY IS AUTOMATICALLY DE
TERMINED FROM SAMPLING

' )

;

gotoxy (3, 12)

;

writeln ( FREQUENCY ' )

;

gotoxy (3 ,14)

;

writelnC 3) CUTOFF FREQUENCY IS DETERMINED BY US
ER') ;

gotoxy (3 ,16)

;

writeln (' Enter the number of you choice.');
gotoxy (3, 18)

;

readln (option)

;

(*********************************************************)
(* *)

(* Check if the option is valid or not. *)

(* *)

if (option[l] <> '1') and (option[l] <> '2') and
(option[l] <> '3') then

begin
clrscr;
textcolor (white) ;

graphbackground(red)

;

gotoxy (3, 10)

;
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writeln( 'There are only three choices as listed.
);

writeln;
writeln(' Only 1, 2 and 3 are valid numbers of ch

oices. )

;

writeln;
writeln (' Press any key to re-enter a valid numbe

r of choice.
' )

;

read(kbd, ch)

;

end;
until option [1] in [ »

1
'

, '2
•

,
'
3

' ]

;

(*********************************************************)
(* *)

(* Calculate cutoff frequency from sampling frequency. *)

(* *)
(*********************************************************)

if option[l]=' 2
' then tempcut :=sqr (1. 4845+

0.1532*sqrt(l/deltatime) )

;

(*********************************************************)
(* *)

(* Read cutoff frequency from screen. *)

(* *)

if option [1] = '3' then
begin

repeat
clrscr;
gotoxy(3, 10)

;

writeln ( 'Enter cutoff frequency.');
gotoxy (3, 12) ;

(*$I-*)
readln (tempcut) ;

(*$I+*)
tempio : =ioresult

;

until tempio = 0;
end;
clrscr;
textmode(c4 0) ;

graphbackground (magenta)

;

textcolor (yellow+blink)

;

gotoxy (15 , 12)

;

writeln (
' FILTERING

' )

;

for index :=1 to segnum do
begin

(*********************************************************)
(* *)

(* Filter x coordinates. *)

(* *)
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for framenum:=l to frame do
trandata[framenum] :=datal [ index, framenum]

;

filter (trandata , frame , option, deltatime , tempcut)

;

cutof f [ 1 , index] : =tempcut

;

for framenum :=1 to frame do
data3 [ index , framenum] : =trandata [ framenum]

;

(*********************************************************^
(* *)

(* Filter y coordinates. *)

(* *)
(*********************************************************)

for framenum :=1 to frame do
trandata [ framenum] : =data2 [ index, framenum]

;

filter (trandata, frame, option, deltatime, tempcut)

;

cutoff [ 2 , index] : =tempcut

;

for framenum :=1 to frame do
data4 [ index, framenum] : =trandata [ framenum]

;

end;
end;
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Procedure printer (var datal,data2 , data3 , data4 tdataarray;
var frame, segnum: integer;
var camspeed,deltatime: real

;

var cutoff: cutarray;
var filename : namelab)

;

(*********************************************************)
(* *)

(* This procedure print out the raw data and filtered *)

(* data on digital printer. *)

(* *)

var
answer : namelab;
segmentnum ,

option : integer;

Procedure printout (var option, frame : integer;
var deltatime : real;
var datal,data2 ,data3 ,data4 : dataarray;
var cutoff : cutarray)

;

(*********************************************************)
(* *)

(* This procedure print out the data according to user's *)

(* requirement. *)

(* *)

var
framenum
whichseg

: integer;
: namelab;

begin
whichseg : = *

'

;

case option of
1 : whichseg :

= •RIGHT FOOTTIP'

;

2 : whichseg :
= 'RIGHT ANKLE'

;

3 : whichseg :
= 'RIGHT KNEE 1

;

4 : whichseg :
= 'RIGHT HIP 1

;

5 : whichseg :
= •RIGHT SHOULDER'

;

6 : whichseg :
= 'RIGHT ELBOW ;

7 ! : whichseg :
= •RIGHT WRIST'

;

8 : whichseg ;
= • RIGHT HAND '

;

9 ! : whichseg :
= 'LEFT FOOTTIP'

;

10 ! whichseg = 1 LEFT ANKLE '

;

11 : whichseg = 1 LEFT KNEE ' ;

12 : whichseg :
= LEFT HIP'

;

13 ; whichseg :
= LEFT SHOULDER'

;

14 i whichseg :
= LEFT ELBOW ;

15 : whichseg :
= LEFT WRIST '

;

16 : whichseg :
= LEFT HAND

'

J

17 : whichseg :
= HEAD '

;
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18 : whichseg := ' IMPLEMENT-1 '

;

19 : whichseg := IMPLEMENT-2 '

;

end;
begin

writeln (1st, ' Data for ', whichseg)

;

writeln(lst)

;

writeln (1st)

;

writeln (1st,

'

HORIZONTAL COORDI
NATE VERTICAL COORDINATE

' )

;

writeln(lst,

'

RAW DATA FILTERE
D DATA RAW DATA FILTERED DATA ' )

;

writeln (1st)

;

writeln (1st, 'No. TIME CUTOFF FREQUENCY -
1

, cutoff [1, option] :5:2,

'

CUTOFF FREQUENCY = ',cutof
f [ 2, option] :5:2)

;

writeln (1st)

;

writeln (1st)

;

for framenum :=1 to frame do
begin

writeln ( 1st, framenum: 3
,

' ':4,
deltatime*framenum:5: 2

,

datal[ option, framenum] : 17 : 4,
data3 [option, framenum] : 14 : 4

,

data2 [option, framenum] : 19 : 4

,

data4 [option, framenum] : 14 : 4)

;

writeln (1st)

;

end;

(*********************************************************)
(* *)

(* Go to the beginning of the next piece of paper. *)

(* *)

writeln (1st, chr (12) )

;

end;
end;
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(*********************************************************)
(* *)

(* Main procedure of PRINT. *)

(* *)
(*********************************************************)

begin

f ************************************************* ********)
(* *)

(* Set printing. *)

(
* *)
(*********************************************************)

repeat
clrscr;
textmode(c80)

;

textcolor (yellow)

;

graphbackground(blue)

;

gotoxy (3,8)

;

write (
' OUTPUT OPTION- 1 :

' )

;

gotoxy (8, 10)

;

write ("1) PRINT OUT THE DATA FOR ALL OF THE SEGMENTS'
);

gotoxy (8, 11)

;

write ('2) PRINT OUT THE DATA FOR SELECTED SEGMENTS');
gotoxy (8, 12)

;

write ( '3) QUIT')

;

gotoxy (3, 15)

;

readln (answer)

;

until answer [1] in [
' 1

'

,
'
2

'

,
'
3

' ]

;

if answer [1] <> '3' then
begin

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst,

'

**********************
i

)

writeln(lst,

•

**********************

•

\

writeln(lst,

'

*** •

)

writeln(lst /
'

*** •

)

writeln(lst,

'

DATA OF JOINT ***')
writeln(lst,

'

*** •

)

writeln(lst,

•

OORDINATES ***•)
writeln(lst,

'

*** •

)

writeln(lst,

'

*** • ) ;

********************

********************

** *

***

***

** *

***

* **

** *

FILTERED

CENTER C
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writeln(lst,

'

********************** •

)

writeln(lst,
********************** • \

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst,

'

Result

********************

********************

writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst,
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst,

'

1 (fra/sec) ')

;

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst,

•

e: 6: 2 , (fra/sec)
writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst)

;

writeln(lst,

'

writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writeln(lst)
writelnClst,

'

Researcher

Event
')

Subject ')

Filming rate: ' , camspeed: 6: 2

,

')

Sampling frequency: , 1/deltatim

Data file name: ^filename)

')

writeln(lst,chr (12) )

;

if answer [1] = '1' then
for option :=1 to segnum do

printout ( option , frame , deltatime , datal , data2

,

data3 ,data4, cutoff)

;

if answer [1] = '2' then
repeat

repeat
clrscr;
textmode(c8 0)

;

textcolor (yellow)

;

graphbackground(blue)

;

gotoxy (3,3)

;
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writeln(
writeln;
writeln(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

writeln

(

OUTPUT 0PTI0N-2 :

• )

;

RIGHT FOOTTIP

RIGHT ANKLE

RIGHT KNEE

RIGHT HIP

RIGHT SHOULD

RIGHT ELBOW

RIGHT WRIST

RIGHT HAND

writeln

(

if segnum > 17 then
writeln (

'

if segnum > 18 then
writeln (

'

9; 1 LEFT FOOT

10; ) LEFT ANKL

11 ) LEFT KNEE

12 ) LEFT HIP 1

13 ) LEFT SHOU

14 ) LEFT ELBO

15, 1 LEFT WRIS

16, I LEFT HAND

17; I
HEAD );

18) IMPLEM

19) IMPLEM

20) PAGE ADV

TIP') ;

E") ;

>;

);

LD«) ;

W) ;

T»);

');

ENT-1 1

)

7

ENT-2
' )

;

writeln (

'

ANCE AND QUIT )

;

repeat
gotoxy (3, 18)

;

writeln (' Enter the option number in which
you wish to see.

' )

;

gotoxy (3,20)

;

(*$I-*)
read (option)

;

(*$I+*)
until ioresult = 0;
if (option > segnum) and (option 20) then
begin

clrscr;
textcolor (white)

;

graphbackground(red)

;

gotoxy (3, 12)

;

writeln (option, ' is not an invalid option. P
ress any key to re-enter the option.');

gotoxy (3 ,14)

;

read(kbd,ch)

;

option := 0;
end;

until (option <= 20) and (option >= 1)

;

if option <= 19 then
printout ( option , frame , deltatime , datal , data2

,

data3 , data4 , cutoff)

;

until option = 20;
end;

end;
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Procedure generatef ile (var data3 ,data4 :dataarray

;

var camspeed , frameint , impreal : real

;

var frame, segnum: integer

;

var filename :namelab)

;

(*********************************************************)
(* *)

(* This procedure save the filtered data into a data *)

(* file. *)

(* *)
(*********************************************************)

var
actfile : realfile;
framenum ,

segment : integer;
answer /

sfilename : namelab;

begin
assign(actfile, "A: '+filename+ 2 .ACT 1

)

;

rewrite (actfile) ;

write ( actfile , camspeed , frameint , impreal )

;

for framenum :=1 to frame do
for segment :=1 to segnum do

write (actfile, data3 [segment, framenum]

,

data4 [segment, framenum]

)

close (actfile)

;

end;
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(*********************************************************)
(* *)

(* Main program. *)

(* *)
(*********************************************************)

begin
introduce;
readin(datal, data2 , segnum, frame, filename, camspeed,

frameint, impreal)

;

filterdata(datal,data2 ,data3 ,data4 , cutoff, segnum, frame,
deltatime)

;

generatef ile (data3 , data4 , camspeed, frameint, impreal

,

frame, segnum, filename)

;

printer (datal,data2 ,data3 ,data4 , frame, segnum, camspeed,
deltatime,cutoff, filename)

;

clrscr;
graphcolormode

;

clrscr;
textmode(c80) ;

gotoxy (10, 12)

;

writelnC ****** END OF DIGITAL FILTER PROCESS
******

•

\ •

end.
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The purpose of this study was to develop a method

for objective determination of cutoff frequency in the

Butterworth low pass digital filter widely used in sport

biomechanics. Computer generated vertical coordinate data

of free fall body movement was used as the standard data.

Different sets of computer generated random real numbers

were mixed in to the standard data to comprise different

sets of artificial raw data. The best cutoff frequency for

each set of raw data was determined. Harmonic analysis was

carried out for each set of raw data. Two regression

equations were developed for estimating appropriate cutoff

frequency in the digital filter. About 87% of the variation

of the square root of the best cutoff frequency has been

explained. The following were the findings of this study:

(1) cutoff frequency was influenced by the sampling

frequency; (2) an overlap harmonic existed in the harmonic

spectrum of measured signal which can be used as an

indicator of the beginning of the overlap of actual signal

and error; and (3) the relative harmonic amplitude before

the overlap harmonic can be used as an indicator of the

relative amplitude of the actual signal, the relative

position of the beginning of the overlap on the harmonic

spectrum, and the relative amplitude of error. The

regression equations have been successfully applied to

determine the appropriate cutoff frequency for the film

data collected by Pezzack (1977) . Further studies are

recommended to provide more complete explanation of the

variation of cutoff freqeuency.




