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CHAPTER I

Introduction

In recent years, there has arisen a great furor over thé lack of avail-
ability of the fuels that we have taken for granted for decades. Besides this,
there has been a growing concern over the possible impact upon man's environ-
ment of dumping toxic exhaust gases into the atmosphere. These concerns have
prompted the renewed search for more and new sources of energy for our vast
number of combustion processes.

The automobile is generally regarded as one of the most serioQS contrib-
utors to both problems stated above (l). For this reason, there continues to
be wigorous ;esearch in the areas of automotive engine design, and automotive
fuels and lubricants.

In the present study, the research on what is felt to be an original fuel
for spark ignition, internal combustion engines is discussed. This fuel con-
sists of mixtures of gasoline and propane.

Propane was first introduced as a possible fuel for internal combustion
(I.C.) engines in 1930 (2). Since this time, propane has not been widely used
by the general public due to the difficulty and potential danger in its handling.

Today, propane is used as an engine fuel mostly by industry and agricul-
ture. In industry, propane is a valuable source of fuel for fork-lifts and
other vehicles operated in enclosed spaces because the exhaust is lower in
unburned hydrocarbon and carbon monoxide content - 80 and 50 per cent reduc~

tions respectively over gasoline (3) - although somewhat higher in NOx emis-

silons. Some agriculturists have, in the past, turned to propane as a motor

fuel for use In their farm equipment as a means of reducing operating costs



or increasing power output. Today, however, the price of propane approaches
that of gasoline and fuel oil, thus losing its economic advantage.

Propane can be used to boast the output of diesel engines to some extent.
By aspirating propane in substitutdion of as much as 40 per cent of the fuel
0il, it is possible to improve the delivered power by up to 25 per cent (3).
According to one source (4) however, this is not sanctioned by the agriculture
equipment manufacturers because it narrows the tolerance limits of the engine.
In other words, the engines are not designed to put out this additional power
and consequently may be damaged by the practice.

One of the advantages of propane over gasoline as an engine.fuel has al-
ready been mentioned., 1In addition to cleaner exhaust, the absence of fuel
additives in propane also leaves fewer deposits on the combustion chamber walls.
Because of this cleaner burning characteristic of propane over gasoline, the
spark plugs do not foul and misfire as readily. The fourth advantage of pro-
pane is the longer interval between required oil changes. This is accomplished,
of course, through supplimenting the base oil with the necessary additives (3).

As with any engine fuel, however, propane has some disadvantages too. In
the case of propane, the largest disadvantage is with handling and distribution.
Very few propane filling stations exist. Besides this, it takes qualified
personnel to refill the pressurized storage tank. While competent station
attendants can be easily trained, propane simply cannot be handled safely by
the general public without rigorous education and training in its proper
handling.

The danger with propane (other than its obvious combustibility), is that
at atmospheric pressure, the vaporization temperature is -44°F (~42°C). Since

propane is stored as a liquid, any that escapes a storage tank or transfer



line, which immediately comes into contact with one's skin, can cause severe
"freeze burns."

To this point, the advantages and disadvantages of propane as an engine
fuel have been outlined. As gasoline becomes more and more scarce, it occurs
to this author and his advisor that it may become advantageoué to stretch the
gasoline supply by supplimenting it with an optimum proportion of propane
which is yet unknown. On the other hand, it is realized that the known base
petroleum resources from which propane is derived are also in short supply.
This in itself negates the possibility of converting all engines to burn
propane exclusively. For these reasons the use of propane-gasoline mixtures
may help solve both the problems of gasoline supply and air pollution from
vehicle exhaust.

it must be pointed out, however, that as the cost of gasoline and propane
rise, the supplies of these fuels essentially increase also. This is because
it is the expense of secondary recovery which is currently limiting supplies.
As the prices of the fuels increase, it becomes economically more attractive
to recover more and more of the original resérve. Also, there are vast areas
of the world which have not yet been closely studied to determine their po-
tential for petroleum production, e.g. South America (1).

As one can easily see, higher prices or new petroleum reserves may alter
the nation's need to stretch the gasoline or propane supplies.

At this point in time, only a few fuels have been extensively researched
for mixing with gasoline. These include alcohol (5), hydrogen (6), and
methanol (7). It is hoped that the present study may spark further interest

and research Into the mixing of propane and gasoline.
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CHAPTER 1T

Literature Review

Literature on the subject of propane-gasoline mixtures is Very sparse.
After many, many hours of searching, the author has been unable to find any
material written on the topic at hand. This, then, leads one to the conclu-
sion that very little, if any, work has been done in the area. That deduc-
tion is reinforced by the response of a number of companies and individuals
across the nation to Inquiries about references or research results from in-
vestigations Into the idea of these mixtures.

Correspondence with Caterpillar, International Hafvester, J. I. Case
Co., Deere and Co., Pacific Gas & Electric, Century Propane Equipment Co.,

engineers at the Amoco 0il Research Center, professors of engineering at

*Kansas State University and professors of mechanical engineering at the

University of Michigan resulted in no information being made available.
Professor Bolt of the Mechanlcal Engineering Department of the University of
Michigan stated that to his knowledge, no work had been done on the subject
within the last ten years.

The situation isquite different however, if one looks for information on
operating engines on propane only. From this literature, clues as to recom-
mended engine alterations were obtained. The suggestions in the literature
included raising the compression ratio of the engine, advancing the ignition
timing, installat;on of "colder" spark plugs, and hardening of valve seats
(2, 3, and 8). These changes will be discussed further in the next chapter.

Adams et al. (8) performed research on three engines at varlous com-

pression ratios to discover how engine performance varied when propane was



used as the fuel. Their work showed that when compared to gasoline, engines
operating on propane developed slightly less power. This has been attributed
by some to the lower volumetric efficiencies which result from alr being dis-
placed by propane. Also, it was shown that at compression ratios of 7.3 and
7.5, propane exhibited anti-knock values far higher than those associated with
gasoline. Thirdly, they showed that the brake specific fuel consumption was
lower for propane than for operation on gasoline; the decrease was approxi-
mately 12 per cent at low speeds and 0-9 per cent at high speeds. Another of
their results which has a bearing on this study is that as the compression
ratio of one engine was increased from 7.5 to 11.5, the power increased by
12 per cent with propane. The same approximate increase was observed with
gasoline. The compression ratio of the other two engines was not altered.
The last of their conclusions whieh should be noted here is that one of
their engines showed essentially no difference in minimum spark advance for
best torque between propane and gasoline. The other two engines showed some
difference between the fuels. Where a difference existed, the engines re-

quired less spark advance on propane at high speeds.



CHAPTER III

Equipment and Testing Procedures

In this chapter the equipment and experimental layout will first be
discussed. Next, the.engine revisions will be pointed out, followed by the
data taking procedures.

A reproduction of the equipment and instrumentation layout used in this
study is shown in Plates I, II, and III. Because of the physical size of the
apparatus and space limitations, a single photograph could not be taken which
would clearly display all the devices. Therefore, the area is pictured and
identified in three parts.

The major piece of equipment used for the experimentation was a 1968
model, 96.6 cu in (1.58 1) displacement, four cylinder, horizontally op-
posed, electronically fuel injected, air cooled, spark ignition, internal
combustion, Volkswagen engine. Table 1 lists several important facts about

the engine as it was assembled.

TABLE 1%
Valve Clearance .006 in (.15 mm) intake & exhaust
Ignition Timing 0° (TDC) @ 850 rpm*
Spark Plug Type Bosch W 145 T 1
Spark Plug Gap .028 in (.7 mm)
Breaker Point Gap .016 in (.4 mm)
Engine 0il between 40°F & 86°F SAE 30 (MS)
Bore 3.36 in (85.5 mm)
Stroke 2.72 in ( 69 mm)
Displacement 96.6 cu in (1.584 1)
Compression Ratio 7.7:1
Torque (SAE) 86.8 ft 1b @ 2800 rpm
Qutput (SAE) 65 bhp @ 4600 rpm

Vacuum hose(s) disconnected
* Data taken from reference 9
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10.
11.
12.
13.
14.

15,

EXPLANATION OF PLATE I

Left End of Experimental Laydut

Description
Vertical Mercury Manometerr
Oscilloscope
Cooling Water Supply
Hydraulic 0il Filter
Hydraulic 0il Reservoir
Power Supply
Function Generator
Daytronic Modular Instrument System
Counter
Manual Pressure Regulating Valve
Stop Watches
Auxiliary Fuel Injection Control Unit
Strain Gauge Transducer
Electronic Control Unit

Hydraulic Pump Dynamometer
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Item

10.

11.

12.

13.

EXPLANATION OF PLATE II

Center Section of Experimental Layout

Description
Throttle
Magnetic Speed Pick-Up
Propane Line from Converter
Propane Volume Flow Indicators
Propane Throttle Valves
Throttle Position Switch
Location of Propane Entry into Engine
Location of Tee in Manifold Vacuum Line
Fuel Pump
Manifold Pressure Sensor
Gasoline Supply aﬁd Return Lines
Combustion Air Intake

Shut-0ff Valve in Auxiliary Air Line
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Item

10.
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12.
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14,

EXPLANATION OF PLATE III

Right End of Experimental Layout

Description
Locatlon of Thermocouple in Exhaust
Propane Supply to Engine
Gasoline Container and Scale
Water Supply to Propane Converter

Weights to Obtain Positive Guage
Pressure in Propane Supply Line

Propane Converter

Water Return from Propane Converter
Propane Container and Scale

Micro Manometer

Sling Psychrometer

Flow Nozzle Location

Propane Supply Line to Converter
Millivolt Potentiometer

Vacuum Bottle



Plate ITL



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



10

~The electronically controlled fuel injection system on this'engine was
manufactured by the Robert Bosch Gmbh. of Stuttgart, Germany. The system
uses an electronic control unit to calculate the length of the timed mani-
fold injection.

The parameters used to determine the injection time are engine speed,
intake manifold vacuum, oil and cylinder head temperatures, and throttle

position. See Figure 1.

Temperature Speed
Electronic
Control
/ Unit
Manifold . 1 . Throttle
Pressure Signal to Injectors Position

Tigure 1. Electronic Fuel Injection Component Diagram

The engine speed was fed in by way of two trigger contacts which were
activated by a cam on the distributor shaft. FEach contact initiated the in-
jection for two cylinders in order to simplify the system and keep it as
inexpensivé as possible. Therefore, only one injector in each set delivered
fuel while the intake valve wasopen. The other two injectors - again,one in
each set - deposited fuel onto the closed intake valve, Figure 2 shows the

timing graphically.
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Figure 2. Fuel Injection Timing

The intake manifold pressure sensor contains an inductive data transmitter.
As the manifold pressure changes, the evacuated aneroids in the sensor position
the plunger in the magneticcircuit and thus change its inductance. When the
load is small, the throttle is closed, the manifold pressure is low, the in-
ductance is low and injection time is short. Naturally, when éhe load is large,
the injection time is long.

The 0il and cylinder head temperatures were received by the control unit
from temperature sensors in appropriate locations.

Timed injection of gasoline into the Intake manifold was realized by
briefly opening the Injectors to which gasoline was continuously supplied at
constant pressure. The injectors consisted of an electric coil around a
spring loaded plunger (see Figure 3) which closed the injector orifice until
an electrical pulse was recelved from the control unit, When a pulse arrived,
the plunger lifted off its seat and the pressurized fuel was atomized as it

was sprayed into the manifold.
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Electrical Connection to

Plunger Coil Electronic Control Unit

Pressurized Gasoline

—— X v
el

Figure 3. Fuel Injector Cross—Section

Coil

The pulse duration was equal to the injector open time. Therefore,
manipulation of the pulse length was the way the control unit adjusted the
fuel flow to match the engine requirements.

The gasoline was supplied to the injectors by a low-pressure, common
rail system. See Figure 4. The positive displacement electric pump drew
gasoline from the storage tank and delivered it to the injectors at a con-—
stant pressure of 28 psig (2 kg/cmz). The constant pressure was maintained
by the pressure regulating valve located, of course, at the end of the
system. The excess gasoline was then returned to the storage tank. -

The throttle position was a parameter for the injection process only
during deceleratién from engine speeds in excess of 1800 rpm. 1If the throttle
valve closed to 59 or less while the engine was at a speed greater than
1800 rpm, then all fuel was shut off from the engine by the injectors until

1200 rpm was reached.
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Figure 4. Common Rail Fuel Supply Diagram

There are two conditions of engine operation which demand richer mixtures
than "normal" - warm-up and full load, wide-open-throttle. The first of these
was perceived by the oil and cylinder head temperature sensors. If they were
reading low temperature values, then the fuel mixture was enriched for warm-
up. In conjunction with this, an auxiliary air valve opened at low tempera-
tures to allow more air into the intake manifold, thus decreasing the mani-
fold vacuum which caused the control unit to lengthen the injector pulse.

Wide open throttle enrichment was attained by more, rather than longer,
injection pulses. When the throttle was opened completely, then the pressure
in the intake man%fold was very nearly atmospheric which closed contacts in
the pressure switch, allowing additional injections to take place.

Reference 10 states that the minimum required quantities to record during
any engine testing are torque, engine speed, horsepower, mass flow of air into

the engine, fuel consumption, time duration of test, room wet and dry bulb



temperatures, and atmospheric pressure. In addition to these, eﬁhaust tem-
perature, manifold vacuum, and when running at other than 100 per cent gaso-
line, the time of injector opening were also recorded. A brief description
of the instrumentation used in measuring these values will be presented next.

The engine speed was obtained by using a fixed magnetic pick-up and a
60 tooth metallic gear mounted on the drive shaft between the clutch and the
dynamometer. ‘The pulses from the pick-up.and an electrical signal from a
strain guage transducer were both fed into a Daytronic Modular Instrument
System which not only gave a digital display of the speed and torgque, but
also the horsepower that the engine delivered to the dynamometer.

As mentioned above, the ﬁorque against the engine was measured by a
strain guage transducer. The torque was applied to the engine by way of an
aviation hydraulic pump. See figure 5. Low pressure oil was drawn from a
55 gal (208.2 1) reservoir and pumped back again through a manual pressure

regulating valve and strainer.

0il Return to Reservoir 0il Supply to Pump

Hydraulic Pump Engine Drive Shaft

N

{ AN i
\\\\\—- Strain Guage Transducer

Figure 5. Dynamometer and Strain Guage Transducer Configuration

Calibration
1 Weight

14
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As the pressure against which the pump had to do work was iﬁcreased, the
torque against the engine also increased. The pressure was controlled (as
the name implies) with the pressure regulating valve.

Since the oil was absorbing most of the energy output from the engine, it
would become quite hot after extended periods of operation. A coil of copper
tubing was immersed in the oil and water from anear-by supply line flowed
through the coil to cool the oil. This heat exchanger worked very well for
the intended purpose.

The air mass flow rate was calculated from the pressure drop across first
a 2 in (5.08 cm) then later a 1.59 in (4.04 cm), A.S5.M.E. long radius flow
nozzle as measured with a 10 in (25.4 cm) water micro-manometer. The nozzle
was placed in one end of a surge tank and from the opposite end, the air was

drawn by the engine. See Figure 6.

Air Supply to Engine

Surge Tank

Flow Nozzle

Figure 6. Air Intake System
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The 1.59 in (4.04 cm) nozzle was substituted for the original 2 in
(5.08 cm) nozzle shortly after testing had begun when it was realized that
the 2 in (5.08 cm) nozzle would not give pressure drops large encugh to mini-
mize the error associated with reading the micro-manometer scale.

Gasoline and propane consumptions were measured by timing how long it
took for a certain mass of fuel to flow from the respective container. The
scales used for this data allowed one to measure the difference between a
known and an unknown mass. See Figure 7. The span of differential weight

was 0-2 1lbs (0-.907 kg) as indicated by a pointer which swept the full extent

of the graduated scale.

1 1 1 1

Figure 7. Fuel Scales

Two stopwatches were incorporated in the time measurements. One watch

was used to measure the time for an amount of gasoline to be burned and the

other was used for an identical purpose with the propane.

The atmospheric conditions were obtained in the usual manner. Barometric

pressure was read from a barometer in a room near the testing area. The wet
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and dry bulb temperatures were obtained through the use of a sliﬁg psychrom~
eter. As is proper, only distilled water was used on the wet bulb wick.
Exhaust temperature was found by measuring the electromotive force (emf)
produced by a two-junction chromel-alumel thermocouple with one junction in
the exhaust stream and the other in an ice bath. The emf was measured with a
null-balance millivolt potentiometer. See Figure 8. After measuring the

emf, it was used to find the temperature of the exhaust from the appropriate

table.

//r— Millivolt Potentiometer

R,

Ice Bath

Figure 8. Millivolt Potentiometer and Thermocouple Diagram

The intake manifold pressure was measured with a vertical mercury mano-
meter. A tee in the vacuum line from the manifold to the manifold pfessure
sensor (one of the components of the fuel injection system) was connected to
the manometer. This location was selected because it was assumed that the
manufacturer placed the manifold tap for the pressure sensor to give a fairly

constant and accurate measure of the pressure.



Several changes were made on the engine; some of them very minor but
others were quite major. The minor changes were performed to either allow
more accurate measurement of the desired quantities or to help the engine run

more smoothly. The major modifications, however, had the purpose of either
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conforming to the recommendations set forth in references 2, 3, and 8, or in-

stalling the propane fuel system.

In discussion with Mr. Royce Bunner (district representative for Volks-
wagen) the author was informed that often spark plugs one range hotter than
those recommended by the manufacturer are installed in the model engine used
for this testing. It was his opinion, however, that they would not be needed
for operation under mild conditions such as prevailed in the testing room.
For this reason and the recommendation in the literature that cooler spark
plugs be used for propane fueled engines, Bosch W 145 T 1 spark plugs were
used in the engine for all testing.

Along with a new set of spark plugs, other necessary maintenance was
carried out before the start of testing. Ignition breaker points, condenser
and oil were all changed. The breaker points and ignition timing were set to
manufacturer's suggested values shown in Table 1. The oil used throughout
the testing was Mobil non-detergent SAE 30.

The 1968 VW Program ProvisionalﬁorkshopManual for fuel and electrical
systems gives detailed step-by-step instructions for the checking of the
electronic fuel injection system. The Bosch tester obtained with the engine
was used in conjunction with the check list to insure that all transmitters
and their connections were operating properly before the performance testing

was begun.
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In preliminary observations of the engine operation, it was.discovered
that the alr cleaner supplied with the engine did not seal well., Since the
air in the engine testing area was felt to be clean enough to burn in the
engine without detrimental affects, the air cleaner was removed for the dura-
tion of the testing so accurate air flow measurements could be obtained.

A small valve was placed in the auxiliary air line so that it could be
tightly shut off to safeguard against erroneous air flow readings.

Farly in the testing of the engine, it was discovered that under certain
conditions, the engine operation was very unstable. In discussions with a
Volkswagen representative and a certified repair shop foreman, the author was
told that adjustment of the spring force against the slug in the manifold
pressure sensor would solve the problem. It must be pointed out that this
adjustment was not sanctioned by the system's manufacturer.

In any case, the adjustment did not solve the problem and attempts to
readjust the spring force back to its originél value were only partially
successful, This will be discussed further in the chapter on results.

The instability problem was finally solved purely by accident when the
throttle position switch was disconnected. The faulty switch did not reveal
itself during the checking sequence of the fuel system. Since all testing was
to be steady state, this switch would not be needed and therefore was detached
for the remainder of the testing.

Following the running of a set of tests with only the above modifications
to the engine, the single most major design alteration was made. As pointed
out in the literature review, it is suggested by reference 3 that upon con-
verting to propane fuel, the compression ratio of an engine be raised inorder

to take advantage of the high octane rating of propane, This was done by
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milling .051 in (1.2954 mm) off the cylinder heads to elevate thé compression
ratio from the original 7.7:1 to 8.8:1. The ratio was not increased as much
as advocated simply because the testing was not to be performed with the
engine ever operating on 100 per cent propane.

Ignition timing was also adjusted during the testing. Justification for
this, again, was derived from references 2 and 8. The work done by Adams
et al. (8) shows that with 100 per cent propane fuel, ignition timing is a
very important variable to consider.

The problem of how to get propane from the storage tank into the engine
was solved in the following way. See Figure 9. First, liquid was taken from
the tank and vaporized in a propane converter. The converter not only evap-
orated the propane, but was also a two stage pressure regulator. From the con-
verter,lthe vapor was piped through a pair of volume flgw indicators arranged
in parallel, and dumped into the engine intake air upstream of the throttle

plate. Each indicator had its own manuel throttle valve.

Air Supply to Engine
Propane
Supply Tank

Water Supply and
Return for Propane

Propane Flow Indicators

Propane Converter

Propane Tank
Throttle Valves Shut OFf Valve

Shut Off Valve

Figure 9. Propane Fuel System
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These flow indicators in the propane line were made for meaéuring NZ
flow. However, since their function was merely to give a relative indication
of propane flow, no calibration was performed on them,

A conventional propane carburetion system was not utilized during this
investigation because none were available. Therefore, a positive gauge pres-
sure had to be carried in the propane line between the engine and the converter
to force the vapor into the air stream. To do this, the converter had to be
modified slightly. Since it was designed without pressure adjustments, a
crude system was added to allow gross changes in the cutlet pressure.

The last change made on the engine concerned the control unit. As the
injection system was designed, it would maintain an approximately constant
air-fuel ratio based upon the parameters of manifold pressure, engine speed,
engine temperature, and throttle position. The system was completely obliv-
ious of additional fuel being taken in with the air. Therefore, if it was to
be possible to maintain a constant air-fuel ratio while burning a mixture of
gasoline and propane, the time of injector opening had to be proportionally
controlled. Such a system for control of gasoline injection was designed,
built, and installed on the engine by a graduate student at Kansas State
University.

The auxiliary fuel injection control unit (see Figure 10) tied into the
electronic control unit at the base of two transistors. FEach transistor was
part of the circuitry for one set of injectors. Signals from the base of these
transistors were fed into others in the auxiliary control in order to amplify
the signals to 5 volts. After passing through the transistors the signals
were taken to two components. First, each signal went through a monostable

multivibrator to increase its pulse width, and on to an "and gate."
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The function of these "and gates" will become evident later. The signals were
secondly taken to an "or gate" which added the signals to produce a solitary
output. The "or gate" was made by feeding each signal through an inverter be-
fore entering an "and gate." The signal came out of the "or gate'" into a
"flip-flop." When the "flip-flop" received a pulse from the "or gate" it went
high. This high signal was taken to a third "and gate" which also received

a signal from a function generator. The "and gate" output was a pulse identical
to the function generator signal and lasted for the duration of the high condi-
tion received from the "flip-flop." 'The function generator signal then entered
the counting circuitry which counted 256 pulses before sending a "clear'" sig-
nal back to the "flip-flop" via another monostable which lengthened the "clear"
pulse to insure that the "flip-flop" caught it. The pulse sent the "flip-flop™
low which readied it for another pulse from the "or gate.' From this mono-
stable, a signal was also sent back to the counters to reset them to zero in
preparation for the next counting sequence.

This is the point at which the first two "and gates'" that were mentioned
become important. Recall that each of them received a signal from the base
of a transistor in the electronic control unit. They each also received the
pulse signal from the "flip-flop." Finally then, the pulse leaving these
two "and gates'" was fed back into the electronic control unit to be used as
the driving signal for the injectors.

With this design, the signals from the base of the transistors in the
electronic control unit were used to start injection. The duration of in-
jection was equal to the time for 256 pulses from the function generator to
reach the counters. By this, it can be seen that as one increased the fre-

quency of the function generator signal, the time required for 256 pulses to
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enter the counters decreased. The opposite was true for decreasing the
function generator frequency.

The length of injection was monitored in two ways. TFirst the signal
length was fed into a digital counter and secondly it was displayed on an
oscilloscope screen. These devices were used extensively to assist in accu-
rate setting of the duration of fuel injection.

The potential required to drive the components of the auxiliary fuel in-
jection control unit was 5 volts. This voltage was delivered by an exter-
nal power source wired teo each constituent.

The interested reader will find a detailed circuit diagram of the aux-
iliary injection control unit and interface with the electronic control unit
in Appendix B.

The discussion of equipmentﬁand its alteration is now complete. The
next topic will be used of this equipment and its function in the data taking
process.

A dynamometer was not available which would allow full load tests to be
run. Because of this, tests at zero, one-fourth, and one-half load were
carried out. Curves for torque vs. speed at one-fourth and one~half loads were
obtained by plotting the correct fractional values of the full load curve.
See Figures 11 and 12. The full load data was taken from the 1968 VW Program
Provisional Workshop Manual for fuel and electrical systems.

Generally speaking, each data point was run at a specified speed, torque,
compression ratio, timing, and per cent gasoline. After running three tests
at these conditions, one or more of the parameters were changed. The process
continued as long as time would permit.

Enough time was not available toobtain a complete operational map of the

engine under all circumstances. However, ample testing was done to draw some
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26

general conclusions. This will be discussed further in the resﬁlts, conclu-
sions and recommendations sections of this thesis.

After the above parameters had been set, the engine was allowed to
approach stability and the test began. The stop watches were started as
the scale sweep hands passed transcribed marks on the respective graduated
scale. Next the differential pressure across the air flow nozzle, exhaust
temperature, horsepower output, and manifold vacuum were recorded. Also
noted was the per cent gasoline flow and, if any propane was being burned, the
injection time.

In the testing where the period of injection was controlled, it was first
set to give an air-fuel ratio of approximately 14.5:1 when burning 100 per
cent gasoline. This time was then altered by the function generaﬁor, but was
indicated by the counter and oscilloscope, as testing progressed toward 20 per
cent gasoline., The indicator scale of the function generator was too ceoarse
to read as accurately as necessary for sustaining a constant air-fuel ratio.
The counter and oscilloscope were therefore used for this purpose.

Since testing sessions seldom lasted more than six hours, the barometric
pressure was recorded at the beginning of each session and assumed constant
throughout the period. Room wet and dry bulb temperatures were remeasured
after each set of three data points had been run.

After letting the engine run for approximately five minutes, the watches
were stopped as the scale hands swept past the nearest scale marks. Then
the elapsed time and final differential masses were entered in the appropri-

ate spaces on the data sheet.
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CHAPTER IV

Development of Equations

The reduction of all data was accomplished using the Kansas State
University IBM 370 digital computing system. The computer program to do this
reduction was written in FORTRAN WATFIV lgnguage and is listed with the raw
data and reduced results in Appendix C. 1In this chapter the equations used
in the program will be presented and explained where necessary.

The scales used for the propane and gasoline measurement were calibrated
with known differential masses to obtain the following equations. For gaso-
line:

AMG = (.9902) (MMG) + .0177 (1)
and for propane:

AMP = (1.0234) (MMP) + .01366 . (2)

After finding the amount of fuel consumed during the test, a simple cal-
culation was performed to find the mass of fuel burned per hour:

CAMG

WHG = e x 3600 (3)
. CAMP

WHP = TIMEP * 3600 (4)

TWHF = WHG + WHP . (5)

Next, the thermal efficiency was calculated by the equation:

550
_ HP [?ﬂi]ssoo )
~ (WHG) (19134) + (WHP) (19768)

Tth

where

for propane LHV/p=c = 19768. Btu/lb

for gasoline LHv/p=c = 19134. Btu/lb .
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The lower heating value for propane was taken from reference 1, Eut the LHV
of gasoline was found by measuring its API gravity. The questipn of whether
to use LHV or HHV for gasoline computations does not seem to yet have been
settled upon by the oil industry. For this reason, while thermal efficiency
results will be presented, the reader is encouraged to more closely scrutin-
ize the brake specific fuel consumption figures to detect trends and changes.

In order to calculate the mass air flow rate, several intermediate values
first had to be found. First, the density of the atmospheric air had to be
found. WNext, the "standard density" pressure drop across the flow nozzle had
to be calculated. After obtaining this, then the air CFM and finally the

WHA were computed. This process sounds very simple, but it is not actually

50,

From reference 11, the equation to use for calculation of air density is:

(PATM) (.491) - .38 |PW - (BATH) Loeal) (IUB -TWR)
DENSA = 2700 (7)
(.37) (TDB)

The standard density pressure drop across the flow nozzle was acquired

from:
_ (PMN) (.075)
PNSD = DENGA . (8)

In order to calculate the CFM into the engine as a function of the pres-
sure drop across the nozzle, a calibration sequence had to be performed. The
procedure incorporated an annubar meter and calibration methods as prescribed
by the Air Diffusion Council. After taking the proper data in the outlined
way, the data was reduced through the use of a Wang 600 Electronic Calculator
and program 2029 from the Wang 600 General Library. The result of this was
equations 10 and 11. Equation 10 appliesg to the 2 in (5.08 cm) nozzle which
was filrst used and equation 11 is the relationéhip for the 1.59 in (4.04 cm)

nozzle,
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CFM = (98.3596) (pNsp) ‘°1t® (10)
CFM = (62.0524) (PNSD) "20%4 | (11)
After finding the CFM, the WHA was calculated by equation 12,

WHA = (CFM) (DENSA) (60) (12)

Continuing through the program, the next series of calculations performed
resulted in the volumetric efficiency. First, the theoretical maximum air in-

take by the engine was computed from equation 13

96.6 RPM
TWHA = [—??~] [1728] (DENSA) (60) (13)
where engine displacement is equal to 96.6 cu in (1.58 1). Of course the volu-

metric efficiency was:

WHA
Ny = TwHA . ()

The remainder of the equations used in the computer program were all quite

simple. They were, in order of appearance:

AF = TWHF (15)

BMEP = 150.8 |——r : (16)
‘5 1565

BSFC = “AhE (17)
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CHAPTER V

Presentation of Results

From the data collécted, there were several quantities calculated and
later plotted on graphs. These results will be discussed in the order in
which the data was taken.

The first series of testing done in éhe engine had the purpose of es-
tablishing a base from which to begin the discussion of the effects of chang-
ing the selected parameters. The results of these tests are shown graphically
in Figures 13 through 19.

Inspection of these curves shows nothing unexpected except in the case
of Figure 13. This graph shows results quite contrary to the expressed cap-
ability of the electronic fuel injection system. The system was supposedly
designed to maintain an air-fuel ratio of approximately 14.0:1. As pointed
out in Chapter III, this could be altered somewhat for short periods of time
during warm-up and deceleration as well as operation under full load. During
the testing, however, none of these three conditions existed. "The problem of
irregular and widely varying ratios must then have been the result of either
poor system design or changing the adjustment on the manifold pressure sensor,
or both.

There can be no mistake that tampering with the pressure sensor may have
had an ill effect upon engine performance. This was borane out in discussions
with Peter Fichtner of the Bosch technical staff in Broadview, Illinois. The
exact effect of this mutation upon the operation could not be obtained though.

One of the design problems with the fuel injection system on the engine

was that the pressure of the gasoline supplied to the injectors was held
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constant with respect to atmospheric pressure. The pressure differential
across the injector nozzles would have been much greater than 28 psig (2 kg
cmz) in many cases. To compensate for this, the manifold pressure sensor
signal would have tended to shorten the pulse length. This concept must not
have proven too successful though, as it was discarded in favor of an "air
flow" system on later models.

In any event, the cause of the widely varying air-fuel ratio curves can-
not be explained fully by the author.

In looking at Figure 14, one will note that there are curves of brake
specific fuel consumption for all three load conditions. If what has been
called the zero load test had actually been run at zero load, the brake specific
fuel consumption would have been infinity, as one deduces from equation 17.
It then becomes obvious that "zero load" was not truly indicitive of the
actual case. Since the dynamometer could not be easily disconnected, zero
load simply referred to the smallest possible load the pump would put on the
engine. This turned out to be a torque in the neighborhood of 5 ft 1b (.69
kg m).

The one-fourth and one-half load curves for brake specific fuel consump-
tion behave in a manner to be expected. At the larger loads, the fuel con-
sumption per horsepower output dropped. This is because as the dynamometer
load increases, the fraction of the fuel which is burned to overcome the in-
ternal friction of the engine becomes smaller.

The thermal efficiency (Figure 15) trends are (by definition) exactly
the opposite of those displayed by the brake specific fuel consumption.

Volumetric efficiency (Figure 16) naturally increased as the load and

thereby the throttle opening increased. Volumetric efficiency and intake



39

manifold vacuum are very closely related as one can see by compafing Figures

16 and 17. As the load was increased, the throttle was further open at a given
speed. Therefore, the manifold pressure drifted toward atmospheric as the load
increased because the pressure drop across the throttle plate diminished.

From equation 16, it can be seen that torque is the only variable in the
equation for brake mean effective pressure. As the torque was increased in
going from zero to one-half load, the brake mean effective pressure corre-
spondingly increased. See Figure 18.

The rise of the exhaust temperature (Figure 19) as the load was increased
can be explained through the use of Figure 20. The dashed line indicates a
typical cycle at some given conditions. If then the initial pressure of the

mixture is elevated from 1 to 1', the cycle would look more like that depicted

Figure 20. Pressure~Volume Diagram Showing Effect of Changing Intake
Manifold Vacuum Upon Exhaust Temperature
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by the solid line. The higher pressure at point 1' is, of coursé, the result
of the throttle being further open at heavier loads for a given engine speed.
Comparison of the exhaust process in the two cycles shows the high pressure
cycle to have a higher exhaust gas temperature.

The rise in exhaust temperature with engine speed is the result of less
time for heat trasfer with the combustion chamber walls and a decrease in the
time for combustion leading to some burning still occurring in the exhaust
manifold,

The second set of tests was run after the cylinder heads had been altered
to give a higher compression ratio. In comparison with the first set of re-
sults, this modification generally lowered the volumetric efficiency (Figure 21),
exhaust temperature (Figure 22), brake specific fuel consumption (Figure 23),
and intake manifold vacuum (Figure 24). Because of the testing procedure,
the revamping did not affect the brake mean effective pressure (Figure 25). As
one would expect, there was also no change in the air-fuel ratio (Figure 26)
as a result of this variation. The only performance indicator which changed in
a positive direction was the thermal efficiemcy. See Figure 27.

There is no valid reason that any change in air-fuel ratio should take
place. The decline in the volumetric efficiency indicates that less air flowed
into the engine. The lower manifold vacuum was interpreted by the control
unit as less load. Recall that removing the load decreases the fuel injected.
The combination of less fuel and less air contributes to the likelihood of
unchanged air-fuel ratio.

Figure 28 shows the effect upon thermal efficiency when the compression
ratio of the ideal Otto cycle is increased. The spark ignition engine does
not duplicate the Otto cycle, but for theoretical work it is a widely accepted

approximation,
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]

Figure 28. Temperature-Entropy Diagram to Show Increase in Thermal
Efficiency with an Increase in Compression Ratio

Referring once again to Figure 28, the thermal efficiency is calculated

as:
o
A+ B

Nth =

One can see that boosting the compression ratio, which shifts point 2 to 2'
and 3 to 3', increases "A" as "B" remains constant, thus the bettering of the
thermal efficiency. The results of the testing therefore follow the theoretical
model for increasing the compression ratio.

Once again, the trend of the brake specific fuel consumption (Figure 23)
is explained by simply pointing out that it i1s another measure of engine

efficiency which was shown above to improve with increased compression ratio.
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Of course, improved values is synonymous with lower values when épeaking of
brake specific fuel consumption which was indeed the pattern observed in this
testing.

The increase in the thermal efficiency of the engine means that there
were more useful units of work output per unit of energy input after raising
the compression ratio than before. This means that less of the combustion
mixture needed to be fed into the engine in order to get the same amount of
work out. A decrease inthe demand for mixture lessened the demand for air,
thereby reducing the volumetric efficiency. See Figure 21. The manifold
pressure also dropped (Figure 24) since the throttle plate was held further
closed at a given speed and torque.

As mentioned above, the brake mean effective pressure did not change be-
cause of the particular testing procedure used. See Figure 25. Most of the
testing was designed to follow the curves in Figures 11 and 12. Thus, at any
given speed and load condition (one-half or one-fourth load) the torque was
set at a predetermined value. TFrom equation 16, if the torque did not change,
then the brake mean effective pressure did not change either.

The reduction in exhaust temperature is due to the general lowering of the
manifold pressure. In looking at Figure 20, if point 1' is lowered to 1, the
whole cycle is moved down on the graph, resulting‘in point 5 being at a lower
temperature value than point 5' because of the change in the compression ratio.

The third set of tests run were a set of constant throttle, variable speed
and torque tests. These were run in order to investigate the trend of the per-
formance parameters as the operating conditions varied between the extremes of

small load-high speed and large load-low speed.
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Looking at Figures 29 through 35, one sees that the curves ére, with the
exception of the air-fuel ratio, smooth and regular. In comparison with the
second set of tests, the curves at 1600 rpm match almost identically those for
1600 rpm and one-half load. At 3200 rpm the engine exhibited characteristics
very similar to the 3200 rpm and zero load values. These are, of course,
exactly the results one would expect since the torque was '"zero" at 3200 rpm
and about equal to the one-~half load value at 1600 rpm. The tests simply
substantiate the expected outcome.

The reasons for the fluctuating air-fuel ratio (Figure 29) were discussed
earlier. The same explanations apply to the remainder of these results as
applied to the two earlier sets of tests.

Before running any more tests, for the purpose of presentation, a great
deal of time was spent to develop skills in operating the engine on mixtures
of gasoline and propane. To ald in conducting these mixture tests, some curves
had to be developed. The first curve was one relating the injection time to
the mass of gasoline injected per opening. The other curves showed how the in-
jection time varied with speed at one-fourth and one-~half loadt

These curves were used in the following way. First, the torque and speed
were selected and set. Next, Figure 26 was used to find the air-fuel ratio
that the electronic control unit had maintained at this speed and torque com-
bination during the second set of tests. This value and the injection time
produced by the control unit at this speed and torque were then used in linear
ratios to find the injection time necessary to maintain an air-fuel ratioc of
14.5:1. The auxiliary fuel injection control unit was then set to produce this
injection time. The tests at 100 per cent gasoline were then run.

The curve showing the mass of gasoline flow per injector opening as a

function of opening time was not linear over the full range. Therefore, to
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find the injection time for burning mixtures, the 100 per cent mass flow rate
was multiplied by the correct proportion to find the new mass flow rate. The
corresponding injection time was then found from the curve. As the auxiliary
fuel injection control unit was adjusted to give this new value for injection
time, the propane flow was adjusted to gilve what was hoped to be an air-fuel

ratio of 14.5:1.
75
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Figure 35. Brake Mean Effective Pressure at Variable Load as a Function
of Engine Speed with a Compression Ratio of 8.8:1

When injection time and propane flow rate had been set as well as possible,
the test was begun. After the test, some quick hand calculations were made to
determine the con;umption of gasoline and propane. If the proportions were not
correct, the first test was discarded, adjustments in either the gasoline in-
jection or propane flow were made and another test was run. This process con-
tinued untill approximately correct usage rates for each fuel were found. The

required three tests were then run.
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As the testing progressed from 100 per cent gasoline to 20 ﬁer cent gaso-
line, the torque had to be continually decreased in order to maintain the
engine speed. It was decided to run constant speed rather than constant torque
tests in order to keep the changes in the propane flow rate as linear as.
possible. That is, the author wanted the change in propane flow rate to be
the same when going from 40 to 20 per cent gasoline as in moving from 80 to
60 per cent gasoline.

Testing sequences four through seven were carried out on mixtures of
fuels. The fourth and fifth sets differed only in the fact that number four
was conducted at one-fourth load and number five was conducted at one-half
load. These tests were run with an ignition timing of 0%dc and engine speed
range of 1500 rpm to 3000 rpm in 500 rpm intervals. The per cent gasoline was
also varied in 20 per cent steps from 100 to 20 per cent.

Testing group six was run at the conditions of 2000 rpm and began at a
torque of 20.1 ft 1b (2.79 kg m) for 100 per cent gasoline. The variables here
were in ignition timing, per cent gasoline, and torque. The timing was ad-
justed in increments of 32 from 0%tde to 15°btdc. The range of gasoline
percentages was again 100 per cent to 20 per cent in steps of 20 per cent. As
noted earlier, the torque was regulated to maintain an engine speed of 2000 rpm.

The last set éf tests were exactly like the sixth, except that the begin-
ning torque was 40.2 ft 1b (5.58 kg m) at 100 per cent gasoline.

The graphical representation of the results of test sets four and five is
shown in Figures 36 through 48. These will be compared and contrasted with
one another. However, before beginning the discussion of the results, it must
be noted that the propane supply system would not allow enough vapor through to

run the engine at 20 per cent gasoline, 2500 rpm and one-half load. This is



Air-Fuel Ratio (1bm air/lbm fuel)

56

19
100% Gasoline
80% Gasoline
—— e —  60% Gasoline
L s 40% Gasoline ?
S B R 20% Gasoline /
17 =t
16 -4
15~
14—
13-1
12 — ; i | i
500 1000 1500 2000 2500 3000
Engine Speed (rpm)
Figure 36. Air-Fuel Ratio at One-Fourth Load as a Function of Engine

Speed and Per Cent Gasoline with a Compression Ratio of
8.8:1

3500



Air-Fuel Ratio (lbm air/1bm fuel)

57

26
100% Gasoline
i 80% Gasoline
24~ 607 Gasoline PN
40% Gasoline /N
- ——— - 20% Gasoline f .
22~
20—+
18—+
l6—1
14T
[} 1 1 1 1
1.2 = | | | |
500 1.000 1500 2000 2500 3000 3500

Engine Speed (rpm)

Figure 37. Air-Fuel Ratio at One-Half Load as a Function of Engine
Speed and Per Cent Gasoline with a Compression Ratio of
8.8:1



Brake Specific Fuel Consumption
(1bm fuel/hp hr)

Brake Specific Fuel Consumption
{(1bm fuel/hp hr)

58

1.2
100% Gasoline
80% Gasoline
== 607 Gasoline
Y 40% Gasoline
1.0-f \\ —————— 20% Gasoline
8-+
6 | | i ; i
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Figure 38. Brake Specific Fuel Consumption at One-Fourth Load as a
Function of Engine Speed and Per Cent Gasoline with a
Consumption Ratio of 8.8:1
.65
55—
\ \‘\/ |
| 100% Gasoline N o
807% Gasoline \ ,,.a”
—— — —— (0% Gasoline \\ o
40% Gasoline \\P’,,ﬂf’
—————— 20% Gasoline
.35 - i f t i
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Figure 39. Brake Specific Fuel Consumption at One-Half Load as a Function

of 8.8:1

of Engine Speed and Per Cent Gasoline with a Compression Ratio



Thermal Efficiency

Thermal Efficiency

59

.20
A5+
. 10-1 . ——————— 100% Gasoline
80% Gasoline
———— 60% Gasoline
40% Gasoline
———————— 20% Gasoline
.05 | s | | i
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Figure 40. Thermal Efficiency at One-Fourth Load as a Function of Engine
Speed and Per Cent Gasoline with a Compression Ratioc of 8.8:1
+ 35
100% Gasoline f‘x\
80% Gasoline / Wi
60% Gasoline ,/ \'“-\\
40% Gasoline / \s\\
——————— 20% Gasoline S
.30 / ~
~o
P
~
W25~
=
.20 } } f 1 5

500 1000 1500 .2000 2500 3000 3500
: Engine Speed (rpm)
Figure 41. Thprmal Efficiency at One-Half Load as a Function of Engine

Speed and Per Cent Gasoline with a Compression Ratio of
8.8:1



Brake Mean Effective Pressure (psi)

60

36
100% Gasoline
80% Gasoline
—— ——— 60% Gasoline
34 -t 40% Gasoline
=== 20% Gasoline
32—
30 —+
28 —+
26—
241
22 — i i i i
500 1000 1500 2000 2500 3000
Engine Speed (rpm)
Figure 42. Brake Mean Effective Pressure at One-Fourth Load as a

Function of Engine Speed and Per Cent Gasoline with a
Compression Ratio of 8.8:1

3500



Brake Mean Effective Pressure (psi)

61

66
100% Gasoline
80% Gasoline
64 —+ - 60% Gasoline
—————t—— 407 Gasoline
———————=-= 20% Gasoline
62 ==
60 ~t-
58—
/’,ﬂh~\\\h
s
d \"""-s...,
”~ —
" T
56—+ =
54—
52 i i i i i
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Brake Mean Effective Pressure at One-Half Load as a Functiom

Figure 43.

of Engine Speed and Per Cent Gasoline with a Compression
Ratio of 8.8:1



Exhaust Temperature (°F)

62

950
——e—— 1/2 Load
s 1/4 Load
850 —f g/
§
750 -+
®
(]
650 — /&
550 F / .
{ /g/'
450 - //E//.////
9
350 -t
250 ~ i i i i
500 1000 1500 2000 2500 3000 3500

Figure 44.

Engine Speed (rpm)

Exhaust Temperature at One-Fourth and One~Half Load as a
Function of Fngine Speed and Per Cent Gasoline with a
Compression Ratio of 8.8:1



Volumetric Efficiency

63

40
100% Gasoline
807% Gasoline
= 60% Gasoline
. 40% Gasoline
W30=F e 207 Gasoline

.38

37

w

o
|
T

35T

. 34—

L]

.33

32 | ; ; | T
500 1000 1500 2000 2500 3000
Engine Speed (rpm)
Figure 45. Volumetric Efficlency at One-Fourth Load as a TFunction of

3500

Engine Speed and Per Cent Gasoline with a Compression Ratio

of R.8:1



Volumetric Efficiency

64

.60
100% Gasoline
B 807% Gasoline
- 60% Gasoline
— 407% Gasoline
O —————— 20% Gasoline
58T
.57
.56+
55~
. S4=1
33—+
+52 i i | I i
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Figure 46. Volumetric Efficiency at One-Half Load as a Function of

Engine Speed and Per Cent Gasoline with a Compression Ratlo
of 8.8:1



65

17
- 100% Gasoline
ot 80% Gasoline
o —_— e 607 Gasoline
& 40% Gasoline A P
g 164 ————— 20% Gasoline / BN -
3
¥
o
=
o
—
o
2
g 15—+
=
u
o~
o
44
(=
H
14 | | ; | :
500 1000 1500 2000 2500 3000 3500
Engine Speed (rpm)
Figure 47. Intake Manifold Vacuum at One-Fourth Load as a Function of
Engine Speed and Per Cent Gasoline with a Compression Ratio
of 8.8:1
11
100% Gasoline
e 80% Gasoline
o = 60% Gasoline
2 | T g e
e - » Gasoline L N T e _
g 10-F ’//'\5\ —
5 : .
3]
o
=
e
~
o
bt
g 9+F
3
@
Y
]
I8 )
=)
=
8 i i f i i
500 1000 1500 2000 2500 3000

Figure 48.

Engine Speed (rpm)

Intake Manifold Vacuum at One-Half Load as a Function of
Engine Speed and Per Cent Gasoline with a Compression Ratio

of 8.8:1

3500



66

the reason that there are only three points rather than four along the one-
half load curve.

Figure 36 shows the relationship between the air-fuel ratio and engine
speed as the per cent gasoline varied at one-fourth load. The peculiar shape
of these curves and those of the alr-fuel ratio at ome-half load (Figure 37)
arises from the method used to find the proper injection time to maintain a
fixed air-fuel ratio. Rather than assume a constant value for the injection
time, the oscillating curve relating the injection time to engine speed as de-
termined by the electronic control unit was used. Following this curve for
injection time led directly to the oscillations imn the air-fuel ratio as the
speed varied. The rather wide range of values for the air-fuel ratio of any
particular speed resulted from poor control of the propane flow.

The curves for brake specific fuel consumption (Figures 38 and 39) and
thermal efficiency (Figures 40 and 41) fluctuate in opposite directions but
yet it is obvicus that both are related to the changes in the air-fuel ratio.
As the air-fuel ratio raises, the thermal efficiency also increases and the
brake specific fuel consumption falls off. The opposite case also holds true.

This can be explained by first pointing out that the horsepower was a
continuously increasing function with respect to speed in the range of 1500 rpm
to 3000 rpm. Therefore, as the fuel flow was reduced, as in the speed ranges
of 1500 rpm to 2000 rpm and 2500 rpm to 3000 rpm, the thermal efficiency had
to raise and the brake specific fuel consumption was forced to drop.

The curves for brake mean effective pressure (Figures 42 and 43) naturally
follow the curves relating the torque to engine speed at one-fourth and one-
half load values (Figures 1l and 12). This is because the only variable in

the equation for brake mean effective pressure is torque.
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Inspection of Figure 44 shows that the exhaust temperature increased with
engine speed. The two probable causes of this were discussed earlier.

The fluctuations in the intake manifold vacuum (Figures 45 and 46) can
be explained with the use of the air-fuel ratio (Figures 36 and 37) and thermal
efficiency (Figures 40 and 41) curves. It has already been sﬂown that thermal
efficiency increased with air-fuel ratio, meaning that a greater speed was
obtainable with a given fixed throttle opening. As the air-fuel ratio was
leaned and the speed was increased, the manifold vacuum rose. This is not to
suggest that the engine speed could be increased a full 500 rpm by leaning the
combustion mixture, but the increase in speed surely was not totally accom-
plished by opening the throttle. The opposite case holds true for the speed
range where the fuel mixture was richened.

The explanations of the changes of the volumetric efficiency curves with
engine speed (Figures 45 and 46) are a bit more subtle and some speculation
is necessary. The drop in the volumetric efficiency at one-fourth load
(Figure 45) between the engine speeds of 1500 rpm and 2000 rpm may have been
caused totally by the increase in thermal efficiency (Figure 40) associated
with this speed range. If the increase in thermal efficiency was sufficient
to raise the engine speed nearly the full 500 rpm and the throttle therefore
only had to be opened slightly more to allow the engine to run at 2000 rpm,
then the increased speed may not have induced an equally large increase in
the air flow. The volumetric efficiency in the next 500 rpm interval appears
to remaln relatively constant indicating that because the thermal efficiency
was reduced, the throttle was opened more in order to realize the desired in-
crease in engine speed. The trend was further advanced in the highest speed
range to the point that throttle position was the primary factor in setting

engine speed.
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Referring now to Figure 46, it is obvious that the trend in the volumetric
efficiency was quite different at one-half load than at one-fourth load. The
volumetric efficiency increased with speed and therefore throttle opening with
the exception of one point.

The reason for this trend as opposed to the pattern noticed at one-fourth
load was the large amount that the throttle had to be opened in order to speed
up the engine at one-half load.

The change in the paraméters with increased propane flow was generally
the result of poor control of the propane flow. This was brought up earlier
during the discussion of the air-fuel ratio. It has been shown that the ther-
mal efficiency follows the air-fuel ratio and comparison of Figures 36 and 37
and Figures 40 and 41 emphasizes the point that the same characteristics ex-—
isted at any mixture of gasoline and propane., The same holds true for the
brake specific fuel consumption as is shown in Figures 38 and 39. The mani-
fold vacuum (Figures 47 and 48) increased with propane content because a
denser mixture was being drawn past the throttle opening. The torque and
therefore the brake mean effeétive pressure (Figures 42 and 43? fell off with
increased propane flow. Since the propane displaces air, the volumetric
efficiency (Figures 45 and 46) declined with rising propane percentage.

Figure 44 does not show that the exhaust temperature varied significantly with
changes in the fuel composition because of the scale employed. Looking at the
results as calculated by the computer shows slight decreases in exhaust tem-
perature as the per cent gasoline dropped off. The explanation for this is
that the intake manifold vacuum increased with the per cent gasoline. Earlier
discussions showed the relationship between intake manifold vacuum and ex-

haust temperature. The same arguments apply in this case.
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Now then, a discussion of test sets six and seven will be carried out with
the emphasis on changes due to ignition timing alterations and per cent gaso-
line adjustments. The results of these tests are presented together in
Figures 49 through 62, Again, it must be pointed out that the propane system
would not allow sufficient flow to run the engine at 20 per cent gasoline and
one-half load.

The curves for the air-fuel ratio are shown in Figures 49 and 50. At
first glance it 1s obvious that the curves for one-fourth load did not follow
regular patterns. On the other hand it appears that the one-half load ratios
increased with ignition timing. In both cases, the air-fuel ratio followed
quite closely the curves for volumetric efficiency shown in Figures 51 and 52.
This trend of following the volumetric efficiency can be explained by recalling
the testing procedure. First a timing was set and then the whole gaumet of
gasoline percentages was tested. The timing was then readjusted and so on un-
til all six specified timings had been tested. In these tests, the injection
time and propane flow were manually controlled and were set identically from
one ignition timing to another for similar gasoline proportions. That is to
say, for example, that the injection time and propane flow were the same for
all tests at 40 per cent gasoline and one-fourth load regardless of ignition
timing. Similarly for every other gasoline percentage. Because of this pro-
cedure, the fuel deposited in the engine remained constant from one timing to
the next, so if the volumetric efficiency, and thereby the mass of air taken
into the engine, decreased, the air-fuel ratio also decreased. The opposite
was naturally true for increasing the volumetric efficiency. It must be
pointed out, though, that the randomness and evident lack of pattern in these
curves negates the possibility of concrete arguments concerning the effect of

ignition timing upon air-fuel ratio. This statement is also applicable to the
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Function of Ignition Timing and Per Cent Gasoline with a
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thermal efficiency (Figures 53 and 54) and brake specific fuel consumption
(Figures 55 and 56) curves.

At this polnt it is appropriate to note the uncertaintiesassociated with the
thermal efficiency, brake specific fuel consumption and air-fuel ratio. The

values are calculated in Appendix A as:

A = 17.22%
Meh

ABSFC = 17.07%
AAF = 17.80%

While it is true that these are the values for a worst case analysis, the uncer-
tainty must be assumed to have asizable effect upon the dispersion of the results.
As one might conclude from the testing method used, the ignition timing
had no visable effect upon the brake mean effective pressure (Figures 5? and 58)

for either the one-fourth or one-half load testing.

The intake manifold vacuum (Figures 59 and 60) definitely followed a pat-
tern as the timing was advanced. In comparison with the volumetric efficiency
curves, one can easily ascertain that the manifold vacuum moved, without excep-
tion, in a direction opposite to the volumetric efficiency. This too was to
" be expected since as the pressure drop across the throttle plate approached
zero, the pressure in the intake manifold increased toward atmospheric. This
higher pressure in the manifold resulted in a higher volumetric efficiency.

If one cowpares Figures 59 and 60 with Figures 61 and 62, the reasons for
the trends displayed by the exhaust temperature become obvious. As discussed
earlier, when the intake manifold pressure rises, a corresponding rise in the
exhaust temperature takes place and vice-versa.

Thus far, the trends in the manifold vacuum, and, to a lesser degree,

the ailr-fuel ratlo and exhaust temperature have been shown to have varied in
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some manner with the volumetric efficiency as the ignition timing was advanced.
This ralses questions as to the causes of the observed variations in the volu-
metric efficiency.

The most objecticnable trend occurred in the one-fourth load group of
curves between 6° and 9°btdc. The sudden drop in volumetric efficiency 1is
quite baffling to say the least. There may be several explanations of the drop,
but none can be readily extracted from the raw data or results of the testing.
For example one might speculate that as the timing was advanced and the idle
speed increased, then the closing of the idle bypass orifice to reduce idle
speed had a large effect upon the volumetric efficiency at the high speeds. To
support this hypothesis, it is necessary to explain why the change was so great
only between 6° and 9°btdec and why the same effect was not noticed at one-half
load.

The answer to both questions may lie in the proportional magnitude of the
required change in the bypass orifice. If the bypass opening had to be changed
more between 6% and 9° than between any other two consecutive timings, it would
explain why the largest drop in volumetric efficiency occurred there. However,
if this was true, then the thermal efficiency should ﬁave shown a significant
increase between these same two timing settings. This is because the.thermal
efficiency must increase to get an increase in speed without a reduction in
torque or an Increase in the fuel available for combustion. The randomness of
the thermal efficiency, though, does not allow such conclusions to be drawn.

To answer the second question above it might be argued that at one-
fourth load, the orifice opening may have constituted a relatively large pro-
portion of the total opening available for air flow, while becoming a rather

small proportion of the total throttle opening at one-half load. If this was
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the case, then it explains the reason for a change at one-fourth load without
a similar change in the one-half load curves.

A second trend in the volumetric efficiency which is somewhat disturbing
is the difference in the general shape of the one-fourth load as opposed to
the one-half load curves. Even if the large drop of the one-fourth load curve
discussed above is ignored, the trend was, at best, no change at all. On the
other hand, there was a very positive effect upon the volumetric efficiency
when the ignition timing was advanced at one-half load conditions. These
variations may take on a new significance if more testing were done in the
region between the one-fourth and one-half load curves., This will be discussed
further in the chapter on recommendations.

The variation of the results in test groups six and seven with changes in
the per cent gasoline are only slightly more predictable than for changes in
the ignition time., Once again, trends in air-fuel ratio (Figures 48 and 49),
thermal efficiency (Figures 53 and 54), and brake specific fuel consumption
(Figures 55 and 56) were nearly non-existent. The problem in this case, how-
ever, was most probably one of accurate control over the amount of fuel flow.
The greatest problem, as pointed out in Chapter III, was obtaining or re—
peating desired propane flow rates. The difficulty is revealed most wvividly in
Figures 49 and 50 and Figures 51 and 52. The volumetric efficiency dropped
consistantly with decreasing gasoline percentage which assures the fact that
the propane flow increased. The greater the propane flow, the larger became
the amount of air .-it displaced leading to reduced volumetric efficiency. The
non-uniform ranking of the air-fuel ratios from rich to lean with respect to
the percentage gasoline as the testing moved from one timing to the next is

indicative of the lack of ability to repeat the flow rates of the propane.
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As always, one must not forget the effect of the uncertaintlies encountered when
calculating these values.

The increased manifold vacuum (Figures 59 and 60) was caused by forcing
a relatively constant mass of an increasingly denser vapor through the fixed
area of the throttle. The alr-propane mixture was more dense than air alone
because propane is élightly denser than air. As the heavier mixture was
pulled past the throttle plate, the pressure drop was greater than that for
air alone,

The brake mean effective pressure was one of the parameters which changed
very systematically with increased propane flow. See Figures 57 and 58. As
mentioned before, the changes in the brake mean effective pressure were
largely the result of the testing sequence, but it does point out the fact that
the engine did not continue to deliver a set torque as the proportion of pro-

pane was increased.
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CHAPTER VI

Summary and Conclusions

Engine performance tests were conducted in which the fuel consisted of
mixtures of gasoline and propane. In conjunction with the fuel composition
variations, the effect of ignition timing advancement was also Investigated.

The results of this testing showed that:

1. Thermal efficiency and brake specific fuel consumption were both
highly dependent upon the air-fuel ratic as engine speed was increased, per
cent gasoline was decreased, or ignition timing was advanced. Combinations
of these control variables led to the same results.

2. Intake manifold pressure closely followed the trends in air-fuel
ratio in the case where ignition timing was held constant while the engine
speed and percent gasoline were adjusted. However, when the iguition timing
and per cent gasoline were varied, the trends in the intake manifold pressure
were most directly related to the volumetric efficiency.

3. Volumetric efficiency changes were difficult to pfédict. The one com-
mon characteristic throughout the testing was that never did the one-half load
results agree with the one-fourth load results., Various explanations of this
were presented with the results. 1In very general terms, the one-fourth load
volumetric efficlency curves were shaped concave dovnward in tests where engine
speed was a variable whether or not the per cent gasoline was also adjusted.
The reasoning behind the one-fourth load results where ignition timing was
varied was totally speculation. The conclusion to be drawn from the one-half
load volumetric efficiency is that it displayed continually increasing char-

acteristics with Increases in either engine speed or ignitien timing. 1In all



cases the volumetric efficiency steadily dropped with decreasing per cent
gasoline,

4. The exhaust temperature fell with decreasing manifold pressure but
increased with engine speed and load. Of these three, load had the greatest
influence and per cent propane had the least.

5. Because of the procedurcs used, brake mean effective pressure varied
in a manner identical to that of maximum torque at wide open throttle when
engine speed was a variable. When the ignition timing changed, brake mean
effective pressure remained constant. With increasing propane flow, brake

mean effective pressure declined.
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CHAPTER VII

Recommendations

To make accurate predictions about the behavior of the engine under all
operating conditions, some improvements in the instrumentation and testing
procedures musf be made. Also the amount of testing must be increased in order
to obtain a complete operational map of the engine.

The one improvement inihstrumentation which most desperately needs to be
made, is the method of setting the amount of propane flow. The flow indica-
tors used, must be rePlacéd with devices which allow better determination of
the instantaneous propane flow.

If conclusions about the effects of ignition timing and per cent prﬁpane
upon engine performance are to be made, then it is necessary to be able to con-
tain the air-fuel ratio within limits much narrower than those maintained dur-
ing this study. With the installation of better propane contrbls, it will be-
come easier to regulate the flow to obtain the required constant air-fuel ratio.
The capability to closely govern the gasoline flow existed through the use of
the auxiliary fuel injection control unit, but inexperience in its use led to
eratic results, even at 100 per cent gasoline.

As noted in the presentation of results, as well as in the conclusions,
some of the performance parameters displayed vastly different trends at one-
fourth load as coypared to one-half load. For this reason it is suggested
" that the load be increased in finer steps. Increment sizes of perhaps one-
tenth rather than one-fourth load would be appropriate. Besides this, the
effect of ignition timing should be'determined at all engine speeds rather

than being limited to only one.
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If further testing is to be conducted at greater than one-half load over
the same range of fuel mixtures, then it will be necessary to place the pro-
pane outlet at the throat of a venturi placed in the air intake system. This
must be done in order to create a pressure drop of large enough magnitude to

draw the propane through the converter in the conventional mannet.
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APPENDIX A

Uncertainty Analysis

The uncertainty in each of the performance parameters will be calculated
with the suggested equations of Sprague and Nash (12). For a variable which

is a function of various independently measure values

H=f (Yl, YZ, Y3, Yn),

the uncertainty in H is
2 2 2 2 . . 2 2

AH = Jsl Al + 52 lz + Sn An (18)
where Sn is defined as

g =.9f Yn

v . 19
nood Y, f(Yl, Y, Yn) (19)

and where An is the uncertainty in the n'th measured value.

If a portion of the measured values are not independent, as would be the
case if they were measured with the same instrument, then the equation for the

uncertainty is:.

2 2 .2 2 2 4...2 .2
"u“\“:sl AT Syt By Ai] S5 A1 T S Mo Bs P

(20)
where values 1 through i are dependent measurements and values i+l through n
are independent measurements.

For the calculations presented,here,ln will be in per cent of reading

wherever possible. The uncertainties will be calculated using the smallest

measured values in order to find the largest uncertainties encountered. Also,
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manufacturer's literature was not available for most of the instruments used.
In these cases, resolution and linearity uncertainties will both be assumed

equal to 1/2 of the smallest scale division of the particular instrument.

Thermal Efficiency

From equation 6, the formula for thermal efficiency is:

HP [5’39] (3600)
Men = L8 (6)
WHG (19134) + WHP (19768)
where
_ _CAMG
WHG = e x 3600 (3)
_ CAMP
WP = et 3600 ; (4)
CAMG = ,9902 (IMMG - FMMG) (22)
CAMP = 1.0234 (IMMP - FMMP) . (23)

To solve for the uncertainty in the thermal efficiency, the uncertainties in
several other values must first be found.

Equation 22 is used to find the sensitivities for IMMG and FMMG and equa-
tion 23 is mdnipulated to find the sensitivities of IMMP and FMMP.

" ____ IMMgG
IMMG  IMMG - FMMG

.
FMMG  IMMG - FMMG

IMMP

Somr T TP - FIOP

FMMP

Sevp T TMMP - FMOIP

Solving these equations for the worst case 1s facilitated by finding the

smallest values encountered for the denominators. From test number 672:



IMMG - FMMG = .55 -
and from test number 529:

IMMP - I'MMP = .83 -~
Therefore,

. _ .55
IMMG .55 - .49

49

S = ere——— e e =

FMMG .55 - .49

.83

Sime~ 783 - .75

.75

S L e i ——Y -

FMMP .83 - .75

The smallest scale division of the gasoline and propane balances was ,01

]

.49 = .06,

.75 = .08 .

|

= 9,17

8.2

10.4

9.4
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1bm. This allows the following calculation of uncertainties for CAMG and CAMP.

Equation 20 is used in this case.

>
i

= 2
CAMG J[}SA)IMMG + (Mg

(9.17) [m] + (8.2) [4%99-5-}

] + (9.4) E%%%%

5 - .005
CAMG .55
= 16.70%

- +005
ACAMP = (10.4) [.83
= 12.5%

The uncertainties in TIMEG and TIMEP are calculated using the smallest
measured values of each which were 141 sec and 149 sec respectively.
readings were encountered in test number 779.

used for the timing was 1 sec.

The smallest scale division

Therefore,



_ 2 2
MiEe \(A )linearity * LY Ve Turion
e ,_‘___'_5__2-_ = o
ATIMEG = \2 JélJ = .00501 .501%
2 2
ATIMEP B \(l )linearity LA )resolution

512

2 149] .00475 = ,475%

AoMER T

From equation 19, the sensitivities for equations 3 and 4 are:

{[339@& (36005] akiﬁ@gi (36005]
TIMEG L (cae) TIMEP 1 (camp)
" - g _ 3_CAMG _ 3_CAMP -1
CAMG CAMP CAMG (3600) . _CAMP (3600) -
TIMEG TIMEP
aFEéﬁﬁ-(saoof] B (3500{]
TIMEG L (roEe) TIMEP L (rovEp)
5 -5 _ ___ 3 TIMEG _ ___ 3 TIMEP
TIMEG  "TIMEP . _CAMG CAMP
TIMEG 000 TvEp 000

The uncertainty in WHG and WHP is calculated from 18 as:

Aang \(52 AZ)CAMG + (" AE)TIMEG

e = NOF (1617 + (<1)* (00501 = 16.71%
AWHP - \(Sz lz)CAMP # (52 A2>TIMEP

M = N 1297 + (1% (00475)% = 12,517
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The Daytronic Modular Instrument System uses the inputs of forque from
a strain guage transducer and speed from a magnetic pick-up to calculate horse-
power. The instruction manuel listed the accuracies of the various medules
as .05 per cent of full scale for the torque from the strain guage conditioner-
amplifier, .05 per cent of scale for the speed output derived from the fre-
quency-to-voltage converter and .2 per cent for the multiplier module which
gives horsepower. There was also a .02 per cent ¥ one digit accuracy asso-
ciated with the display of these quantities.

The ,05 per cent of full scéle for the torque can be converted to per

cent of smallest reading as follows by knowing full scale is 150 ft 1b.

[z 2 )
AT ) J(A )linearity Q@ )accuracy * @ )TQSOlUtion
of display
i} 3 2 [-1]Z _
AT = 1(.0005) 4+ (.0002)" + {;SOJ = ,086%

(.00086) (150) = .129ft 1b

1" 3.15%

¢}

Since full scale of the engine speed was 5000 rpm, the uncertainty in the

speed can be changed to per cent of reading as follows:

= |22 2
Arpm J(A )linearity + )accuracy + O )resolution

of display
2 2 5 }2
A = L] - AT = .
_— J( 0005)" + (.0002)" + [SOOOJ 1147%

(.114) (5000) = 5.68 rpm

.688%

4
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The uncertainty in horsepower can similarly be changed to per cent of -reading as:

2 2 2 2
A = A A
HP ( )linearity Q@ )accuaracy b 4K )resolution + 4 )calibration
of display
2 2
Acalibration - \(A )armlength + (1 )weight

.1]2 A2
- R - s

.05
28.55

5o
1

J(.OOZ)Z + (.0002)2 + l J2 + (.00534)2

HP

= .59%

.0059 (28.55) = .17 hp

.17 :
41 4.16%

il

where full scale was 28,55 hp. All the recorded values used in the above con-
versions were the smallest ones encountered during testing and were the re-
sults of test number 3.
The next step in this process is to determine the sensitivities for HP,
WHG, and WHP in equation 6.
3 Mth

dHP

HP 550
HP [778] 3600

WHG (19134) + WHP (19768)

(HP)

3 Tth
WG (WHG)

S =
WHG o [550

778 3600

WHG (19134) + WHP (19768)

(19134) WHG
= WHG (19134) + WHP (19768)
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3 "th
3 WHP

S =
WHP HP [QQQJ 3600

(WHP)

778
WHG (19134) + WHP (19768)

] WHP (19768)
WHG (19134) + WHP (19768) .

It can be seen that SWHG 1s a maximum of 1 when SWHP 1s zero and vice

versa. However, since 100 per cent propane was never used, the worst case
surely occured at 100 per cent gasoline, The uncertainty in thermal effic-
lency is presented here as being the worst case at 100 per cent gasoline. The

uncertainty is calculated from equation 18 as:

22 2 2
SR (Cle o SURRE S G N B

N c1en? + @ (o0s16)?

17.227% .

Volumetric Efficiency

From equation 14, it can be seen that to calculate the uncertainty in vol-
umetric efficiency, the uncertainty in WHA and TWHA must first be found. These
two quantities in turn require the uncertainty in DENSA, CFM, and RPM. Going
even further, the uncertainty in TWB, TDB, PATM, PNSD, and PMN must be computed.

Equation 7 gives the relationship for DENSA, however for use in the uncer-
tainty analysis tﬁe following expanded form of the equation will be used:

_ PATM _ PV _ TWB
DENSA = 1.33 —5o= = 1.03 = + .00019 PATM ~ .00019 o PATM . (21)

The uncertainty In TDB and TWB are found by assuming the linearity uncer-

tainty equals the resolution ﬁncertaiuty of .5°F. The smallest value of TDB
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during testing was 710F at test polnt number 108. The smallest value of TWB

was 54°F at test point number 186. The uncertainties then are:

= 2 2

linearity

i \{‘}—i}z )’

.9967%

resolution

Z 2
A = N + (A7)

TWB linearity resolution

T

= 1.31% .

The uncertainty in the barometric pressure is also to be calculated with
the linearity and resolution uncertainties equal to 1/2 of the smallest scale
division on the barometer. This smallest division was .0l in Hg and the small-

est pressure reading was 28.54 in Hg. The uncertainty in PATM is:

2 2
APATM - J(l )1inearity + )resolution

\ . [=005]2  [.005]2
PATM 28. 54 28.54

.0248% .

H

Now after finding the sensitivities of PATM, TDB and TWB from equation 21,
the uncertainty in DENSA can be computed. From equation 19 again:
d DENSA

o . _seam AT
PATM DENSA
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2 [Tl°33 + .00019 - .00019 EEEJ PATM - 1.03 Jﬁi] PATM

_ 9 PATM TDB TDB TDB|
h PATM PW TWB
1.33 TDB 1.03 TDB + ,00019 PATM - .00019 DB PATM
133 TWB
_ T .00019 - .00019 DB
~ 1.33 1.03 PW TWB *
TDB ~ PATM (TDB) + .00019 - .00019 DB
Now then
9 DENSA
o . omm ™
TWB DENSA
TWB
< _ -.00019 TDB PATM
TWB PATM PW TWB )
1.33 DB - 1.03 TDB + .00019 PATM - ,00019 TDB PATM
Next calculate the sensitivity for TDB
9 DENSA
g _ o TDB 0B
TDB DENSA
TWB
PATM _PW + .00019 —— PATM
; _ 1.33 DB + 1.03 TDB TDB
TDB PATM PW TWB ’
1.33 DB 1.03 TDB + .00019 PATM - ,00019 TDB PATM

The values of TDB, TWB, and PW to substitute into the sensitivity equations for
PATM, TDB, and TWB were taken from test number 787. From this point:

TDB = 850F

TWB = 72°F
TDB - TWB = 13°F
PW = .3887 psi .
A value of 28.8 in Hg was the mean of the atmospheric pressures and is used

in calculation of the sensitivities. When these readings are substituted into

the sensitivity equations, the result is:
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SPATM = 1.01
STWB = -,0104
STDB = -.99 ,

Having finished finding the necessary uncertainties and sensitivities, the

uncertainty in DENSA can now be found.

_ 2 .2 z .2 2 .2
ADENSA \(S X )PATM * 45 A )TDB 6 A g

(1012 (.000248)% + (-.99)2 (.00996)% + (-.0104)% + (.0131)2

]
<

Il

.99%

from this the uncertainty in TWHA can be found.

2 .2 2 .2
A =G ey T ST A ppnsa

= N2 (.00688)% + ()2 (.0099)?

1.21%

To obtain the uncertainty in WHA, the uncertainty in PNSD and CFM must first
be found. Since

(PMN) (.075)

DENSA , (8)

PNSD =

the task of finding the uncertainty in PMN must be performed. The only uncer-
tainty associated with PMN measurements was the resolution and linearity of the
micromanometer. Once again these two uncertainties will be assumed equal to
1/2 of the smallest scale divisioﬁ which 1s .0005. The uncertainty for the

large nozzle then is



2 2

oy = N lineariey T )

resolution

_ |[:0005}2 _ [.0005]2
|0 - 006 . 006

Il

11.79%

for the smaller nozzle

2 2

A = | )linearity + O )resolution

.016 .016

B [.ooos]z i [looos]z

= 4.427% .
From equation 8, we see immediately that

S PMN 1

8 1

DENSA

so the uncertainty in PNSD for the larger nozzle 1is:

_ 2 2 2 2
Apnsp ~ (87 2 Do (57 A )DENSA

s

\(.1179)% + (.0099)2

11.83%

and for the smaller nozzle it is

_ 2 .2 2 .2
APNSD B J<5 A )PMN (8" A )DENSA

\0as2)2 + (.0099)>

0

4.53% .
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In order to calculate-the uncertainty in CFM the sensitivity of PNSD first

in equation 10 and then equation 11 must be known. For the larger nozzle and

from equation 10

9 _CFM
o . apmsp P
PNSD CFM
- 5116
_ O PNSD (98.3596) (PNSD)’ (PNSD)
a .5014

(98.3596) (PNSD)

_ (98.3596) (.5116) (PNSD)

(98.3596) (pnsD) 110

(PNSD)

.5116

The sensitivity for the smaller nozzle is
SPNDS = .5014 .,

The uncertainty in CFM can now be found for the two nozzles from equation 18 as

s% 2%

b
1

CFM PNSD

5V pysp

(.5116) (.1183)

]

6.05%

for the larger nozzle. Similarly for the small nozzle

A

CFM (SA)

PNSD

A

CIM (.5014) (.0453)

I

2.27% .

Since there are two uncertainties for CFM, the largest value of 6.05% will be
used from this point on the calculation of the uncertainty in volumetric
efficlency. Yrom equation 12 it is obvious that for the calculation of the

uncertainty in WHA, the sensitivities of CFM and DENSA both equal 1. The
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uncertainty is therefore found as

]

Na J(s2 22y w52

CFM DENSA

\](.0605)2 + (.0099)2

6.13% .
. Continuing on, the sensitivities of WHA and TWHA in equation 14 are 1 and -1

respectively. The uncertainty in volumetric efficiency is

A [z 2 72
”w.;r_\!(S la T S M gy

J? osn? + 1 oz’

il

6.25% .

Air-Fuel Ratio

The next parameter that the uncertainly must be computed for is the air-
fuel ratio. The defining equation for the ratio is:

WHA
AF = TuHF

(15)
where

TWHF = WHG + WHP . (5)
To complete the amnalysis of uncertainty in AF, all is needed is the sensitivi-
ties in WHG and WHP from equation 5 and WHA and TWHF from equation 15.

9 TWHF
o __owie "MC
WHG WHG + WHP

WHG
WHG -+ WHP

WHP
WHP  WHG + WHP
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By an earlier explanation

which leads to the conclusion

ATWHF = AWHG = 16.71%

The sensitivities of WHA and TWHF are easily found to be plus and minus unity

respectively. Therefore

I 7 .2
Mar T J(S a7 )y

It

Jeos1m? + (.1671)2

It

17.80% .

Brake Specific Fuel Consumption

The calculation of BSFC is performed with the use of equation 17. The
uncertainties necessary for obtaining the uncertainty in BSFC were computed
above. The sensitivity of the equation to TWHF is 1 and HP is -1. The uncer-

tainty in BSFC is:

(.1656)2 + (.0416}2

e
I

BSFC

17.07% .

Brake Mean Effective Pressure

The uncertainty in BMEP is equal to the uncertainty in the reading of

torque .

ABMEP = AT = 3.15%
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Manifold Pressure

As explained earlier, the manifoldvacuum was read from a vertical mer-
cury manometer. The uncertainty associated with this reading consists of
linearity and resolution uncertainties only. The smallest scale division of
the manometer was .l in Hp. The uncertainty in the recorded values of mani-

fold vacuum is:

2 2

APIM = Q& )linearity G

- (29512 1,052
‘pm = [8.3} = [8.3}

.8527% .

resolution

i

Exhaust Temperature

Several uncertainties are associated with the recorded exhaust tempera-
ture. These are the uncertainty in temperature sensed by the thermocouple
amounting to 40F, a linearity uncertainty in the millivolt potentiometer of
.03% of reading plus 3 uv and thirdly the resolution uncertainty of 1/2 of the
smallest scale division. The smallest scale division is .0005 yv. The small-
est exhaust temperature read was 350°F which corresponds to a millivolt cut-
put of 7.20. The rms value of the uncertainty in exhaust temperature in

terms of per cent reading is:

_ 2 2 2
Mg = O )thermocouple Gl )linearity ()

TE
4 12 2 3 . 0002512
T~ [350] + (.0003) " + [7.20] * [ 7.201

4.3% .

resolution

>
I
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APPENDIX B

Detailed Auxiliary Fuel Control Unit Circuit Diagram
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APPENDIX C

Computer Program and Original Data
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A short explanation of how the data is arranged on the computer cards is
essential for understanding the program and 1its logic. The first thing to
note is that the nmumber furthest to the right on the card is the number of
the test. Notice that it required three cards to hold all the necessary infor-
mation from each test. The first card of a particular test is indicated with
just a number. The second card has the test number and a "'" while the third
is denoted with ""." Those cards with a "+'" in the nomenclature hold data -
from tests which were re-run because of obvious errors made when the tests
were first run.

On the first card, from left to right, are values of atmospheric wet bulb
temperature in degrees Rankin, atmospheric dry bulb temperature in degrees
Rankin, barometric pressure in inches of mercury, the initial mass dif~_
ferential of the gasoline scale in pounds, the final mass differential of the
gasoline scale in pounds, the initial mass differential of the propane scale
in pounds, and the final mass differential of the propane scale in pounds.
The second card holds the information of recorded time for gasoline flow in
seconds, the recorded time for propane flow in seconds, pressure drop across
the flow nozzle in inches of water, engine_speed in revolutions per minute,
torque in foot-pounds, horsepower, and saturated vapor pressure of water in
pounds per square inch at the atmospheric wet bulb temperature. On the
third card 1s information of exhaust temperature in degrees Fahrenheit and

intake manifold vacuum in inches of mercury.
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JOn WWH T IME= (0,3 )y PAGES=2D
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PRUOPATE FLUGW, THE PRESSURF 0RIP ACHIISYS TUE NOZ/ZLE,y THE SPEEND CF FHE
ChGINEy THE THRPQUE, THY HIIRSEPIEER,y  ARND THe SATULATED VAPROR DPRFSSURE,
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ABSTRACT

This study deals with the trends in an engine's performance as the com—-
position of the fuel was changed from 100 per cent gasoline to a 20 per cent
gasoline-80 per cent.propane mixture in four steps. - The performance parameters
investigated are air~fuel ratio, brake specific fuel consumption, thermal
efficiency, volumetric efficiency, brake mean effective pressure, exhaust gas
temperature, and intake'manifbld vacuum. The seven testing groups consisted
of various combinations of engine speed, compression ratio, load condition,
ignition timing and, of course, fuel composition.

Group one was run at 100 per cent gasoline, 0%dec ignition timing, 7.7:1
compression ratio, and varying engine speed and load condition. Group two ﬁas
the same as group one except that the compression ratio was 8.8:1. Grouﬁ three,
unlike any other, was a constant throttle setting sequence with all other set-
tings similar to those in group two. Groups four and five were rum with the
only difference between them being the load on the engine. The other condi-
tions were 0%tde ignition timing, 8.8:1 compression ratio, and constant load
condition. The variables here were fuel composition and engine speed. Test
groups six and seven again only differed iﬁ the load on the engine. Constant
settings were the engine speed at 2000 rpm, load condition, and compression
ratio of 8.8:1., Those items which were altered in these tests were ignition

timing and fuel composition.



