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Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: 

a feasibility study 

 

Abstract: Optical K9 glass has been used in a variety of applications, including optics, 

electronics, thermodynamics, and fluidics. It has been regarded as a difficult-to-cut 

material because of its superior mechanical properties. Rotary ultrasonic machining 

(RUM) using cutting fluid has been used successfully to machine many different types 

of brittle materials, such as ceramics, sapphire, and optical K9 glass. Dry machining has 

been successfully employed in the machining of some materials. However, there are no 

reported investigations on the RUM of optical K9 glass using compressed air as a 

coolant. This paper, for the first time, investigates the RUM of optical K9 glass using 

compressed air as a coolant. The experimental investigations focus on the effects of the 

input variables (ultrasonic power, spindle speed, and feedrate) on the output variables 

(edge chipping size, cutting force, surface roughness, and ultrasonic power 

consumption). 

Keywords: Rotary ultrasonic machining, optical K9 glass, compressed air, drilling, 

processing performance 
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1. Introduction 

Optical K9 glass is an outstanding functional material in many applications, 

including optics, electronics, thermodynamics, and fluidics. Because of its mechanical 

properties, such as high hardness, high strength, and low fracture toughness, it is 

regarded as a difficult-to-cut material. The machining of optical glass has attracted the 

attention of many researchers [1]. The current traditional machining methods used for 

optical glass include cutting, grinding, milling, and lapping. Fang and Chen have 

conducted experimental investigations of ultra-precision cutting for optical glass and 

explored the removal mechanism of brittle materials [2]. Belkhir et al. investigated the 

surface behavior during abrasive grain action in the glass lapping process and reported 

that the glass material removal rate during lapping depends on the cumulative actions of 

the individual grains [3]. Gu et al. presented a study on the horizontal surface grinding 

of optical glass BK7 using diamond grinding wheels and discussed the different 

material removal modes and the characteristics of the surface morphologies [4]. Arif et 

al. introduced the milling process into the ductile mode machining of optical glass and 

presented an analytical model to predict the critical feed per edge [5]. 

Some non-traditional machining processes have been applied to optical glass, such 

as abrasive water jet machining, electrolytic in-process dressing grinding, etc. Park et al. 
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conducted an experiment on the micro-grooving of glass using micro-abrasive jet 

machining [6]. They concluded that micro-abrasive jet machining could be effectively 

applied to the micro-machining of hard and brittle materials used for semiconductors, 

electronic devices, etc. Matsumura et al. applied abrasive water jet machining to micro 

machining and the fluid polishing of glass. A crack-free surface was finished using 

stagnation generated under the jet nozzle [7]. In addition, a study on the electrolytic 

in-process dressing grinding of optical glass showed that the electrolytic in-process 

dressing grinding could be an effective ultra-precision grinding process for hard and 

brittle materials [8]. 

Rotary ultrasonic machining (RUM), a non-traditional machining process, is a 

hybrid process that combines the material removal mechanisms of diamond grinding 

and ultrasonic machining [9]. The cutting tool is ultrasonically vibrated in the axial 

direction during processing, and the motion of the diamond particles on the diamond 

tool is a combination of rotation, ultrasonic vibration, and feeding. The machining 

process becomes milling if the feeding direction of the tool is perpendicular to the 

spindle axis and drilling if the feeding direction of the tool is parallel to the spindle axis; 

an illustration of the RUM process is shown in Fig. 1. 
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Fig.	1.	An	illustration	of	the	RUM	process	[9].	

Since RUM was developed in the 1960s, it has been used to machine many 

different types of brittle materials, such as ceramics, silicon, and glass. Pei et al. 

presented the modeling of the material removal rate in the RUM of ceramics [10], and 

Hu et al. studied the relationships between the material removal rate (MRR) and the 

controllable machining parameters based on the model [11]. They also stated that the 

RUM process can result in higher material removal rates than those obtained by 

diamond grinding. Li et al. reported a feasibility study on the RUM of ceramic matrix 

composites [12], and Cong et al. discussed edge-chipping in the RUM of silicon [13]. 

They showed that the RUM process can effectively reduce the edge chipping size. An 

investigation of the kinematic view of the tool life in the RUM of hard and brittle 

materials was conducted [14]. Furthermore, Zhang et al. studied the RUM of optical 
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glass. The literature review shows that compared with traditional machining processes, 

RUM has many advantages, including a smaller cutting force, a smaller edge chipping 

size, less subsurface damage, and less tool wear [15].  

Using cutting fluids as coolants can improve the machinability of materials and 

enhance machining performance, which has been acknowledged since early in the 20th 

century [16]. A review showed that using cutting fluids as coolants in machining can 

reduce the friction and heat generated during the machining process, improve the 

quality of the machined surface and the tool life, and promote the removal of chips [17]. 

However, using cutting fluids as coolants in machining has resulted in some problems. 

First, the costs of cutting fluids, consisting of the deployment and disposal costs, 

account for approximately 10–20% of the manufacturing costs [18]. Second, cutting 

fluids containing chlorine, sulfur, and phosphorus have a great impact on the 

environment [19]. In addition, some cutting fluids are also hazardous to the operator's 

health.  

The dry machining process was developed to reduce the problems caused by using 

cutting fluids as coolants. Studies have shown that dry machining using compressed air 

as a coolant can achieve satisfactory performance under certain machining conditions. 

Su et al. investigated the effects of cutting using compressed cooling air on tool wear, 

surface roughness and chip shape in the machining of difficult-to-cut materials. They 

showed that cooling air machining is not only environmentally friendly but also a great 
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improvement in the machinability of difficult-to-cut materials [20]. A feasibility study 

on the dry machining of Ti–6Al–4V alloy and the effects of cooling air temperature on 

machining performance was presented [21]. Nguyen and Zhang assessed the application 

of cold air and oil mist in surface grinding. They showed that using compressed air as a 

coolant can reduce the grinding force in the surface grinding of carbon steel [22]. 

However, there are few reports on using compressed air as a coolant in the RUM 

process. Cong et al. reported that the RUM of carbon fiber reinforced plastic (CFRP) 

using compressed cold air as a coolant is feasible under certain processing parameters 

[23]. A comparison between the RUM of CFRP using cutting fluid as a coolant and 

using compressed cold air as a coolant has been made [24].  

There are many reported experimental investigations on the RUM of optical K9 

glass using cutting fluids as coolants. Lv et al. presented surface observations and 

material removal mechanisms for the RUM of optical K9 glass. The authors also 

conducted a series of experimental studies on the RUM of optical K9 glass [25]. 

However, there is no report on the RUM of optical K9 glass without using cutting fluids 

as coolants. This paper, for the first time, presents an experimental study on the RUM of 

optical K9 glass using compressed air as a coolant. It reports the effects of the input 

variables (ultrasonic power, spindle speed, and feedrate) on the output variables (edge 

chipping size, cutting force, surface roughness, and ultrasonic power consumption). 

There are four sections in this paper. Following this introduction section is Section 2, 
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which describes the experimental conditions and measurement procedures. Section 3 

shows and discusses the experimental results. Finally, the conclusions are summarized 

in Section 4. 

2. Experimental conditions and measurement procedures 

2.1 Experimental set-up 

The experiments were conducted on a rotary ultrasonic machine (Series 10, 

Sonic-Mill, Albuquerque, NM, USA). Figure 2 shows the experimental set-up. It 

primarily consisted of an ultrasonic spindle system, cutting force and power 

consumption measurement systems, and a compressed air cooling system. The 

ultrasonic spindle system was comprised of an ultrasonic spindle, a power supply, and a 

control panel. The power supply converted conventional line voltage to 20 kHz of 

electrical energy. This high-frequency electrical energy was supplied to a piezoelectric 

converter that changed the high-frequency electrical energy to mechanical vibration. 

The ultrasonic vibration from the converter was amplified and transmitted to the cutting 

tool. This caused the cutting tool to vibrate at a frequency of 20 kHz. The amplitude of 

the ultrasonic vibration could be adjusted by changing the setting of the output control 

of the power supply. The vibration direction of cutting tool is axial during processing 

(shown in Fig. 2). A motor (SJ-PF, Mitsubishi Electric Corp., Tokyo, Japan) attached 
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atop the ultrasonic spindle supplied the rotational motion of the tool, and different 

speeds could be obtained by adjusting the motor speed controller.  

The compressed air cooling system included an air compressor, a pressure regulator 

and valve, and a pressure gauge. The cooling system provided compressed air to the 

spindle and the interface of the machining.  

There are two measurement systems: the cutting force measurement system and the 

ultrasonic power consumption measurement system. The cutting force measurement 

system consisted of a dynamometer, a charge amplifier, an A/D convertor, and a 

computer with software. The ultrasonic power consumption measurement system 

consisted of a current clamp, a voltage probe, a multimeter (Model 189, Fluke Crop., 

Everett, WA, USA), and a computer with the software Flukeview Forms (Version 3.4, 

Fluke Crop., Everett, WA, USA). The sampling rates of the current and the cutting force 

were set at 1 Hz and 100 Hz, respectively. More details about these two systems will be 

presented in Section 2.2.  
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Fig.	2.	Experimental	set‐up.	

The workpiece was optical K9 glass with dimensions of 40 mm × 30 mm × 5 mm. 

The cutting tool was a metal-bonded diamond core drill with two slots (NBR Diamond 

Tool Corp., LaGrangeville, NY, USA). The outer and inner diameters (OD and ID) of 

the cutting tool were 9.54 mm and 7.34 mm, respectively, and the tuning length was 45 

mm. The diamond abrasives had a mesh size of 180 and a concentration of 100. The 

metal bond was of the B type. 
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The experiments focused on studying the following input variables: 

•  Spindle speed: the rotational speed of the cutting tool;  

•  Feedrate: the feedrate of the cutting tool;  

•  Ultrasonic power: the percentage of power from the ultrasonic power supply 

controlling the ultrasonic vibration amplitude. Figure 3 illustrates the relationship 

between the ultrasonic power and the vibration amplitude. There is almost a linear 

relationship between the ultrasonic power and the ultrasonic vibration amplitude, 

and higher ultrasonic power will produce higher ultrasonic vibration amplitude [26]. 

 

Fig.	3.	Relationship	between	the	ultrasonic	power	and	the	vibration	amplitude.	

The input variables and their values are listed in Table 1. Only one variable was 

changed at a time. The pressure and the flow rate of the compressed air were maintained 

at 30 psi and 1.5 lpm, respectively. Two holes were drilled under each machining 

condition. 
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Table	1.	The	input	variables	and	their	values	

Variable Unit Value 

Spindle speed rpm 2000, 3000, 4000, 5000 

Feedrate mm/s 0.01, 0.02, 0.03, 0.04 

Ultrasonic power % 0, 20, 30, 40, 50 

2.2 Measurement procedures for the output variables 

A dynamometer (Model 9272, Kistler Inc., Switzerland) was used to measure the 

cutting force, and it was set on the machine table and beneath the workpiece. The 

electrical signals from the dynamometer were amplified by a charge amplifier (Model 

5070A, Kistler Inc., Switzerland) and transformed into digital signals by an A/D 

converter. After being processed by a signal conditioner, the digital signals were saved 

on a computer by a data acquisition card (PC-CARD-DAS16/16, Measurement 

Computing Corporation, Norton, MA, USA) with the help of the software Dynoware 

(Type 2815A, Kistler Inc., Switzerland). The cutting force reported in this paper was the 

mean value of the cutting force in the axial direction of the tool during the RUM 

experiments.  

The surface roughness was measured on the cylindrical surfaces of the machined 

holes. A surface profilometer (Surftest-402, Mitutoyo Corporation, Kanagawa, Japan) 
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was used with the tested range set at 1.6 mm. The surface roughness in this study was 

characterized by the average surface roughness (Ra). The roughness was measured at 

two locations along the axial direction of the hole: the entrance and the exit. At each 

location, two measurements were performed. Each measurement was repeated twice. 

The mean value of the measured Ra was used.  

An optical microscope (BX51, Olympus America Inc., Melville, NY, USA) and a 

vernier caliper (model IP-67, Mitutoyo Corp. Kanagawa, Japan) were used to inspect 

and evaluate the edge quality on the exit side of each machined hole. The edge chipping 

size was chosen to evaluate the edge quality. Figure 4 shows the process of determining 

the chipping size. More details can be found in the literature [12]. 

 

Fig.	4.	Illustration	of	the	edge	chipping	size.	
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The power consumption was the electricity energy (W) consumed by drilling 1 mm 

into the workpiece. It was calculated using 

3600
u u

u

U I
W

F





                                (1) 

where Wu is the power consumption of the ultrasonic power supply (wh/mm), Uu is the 

actual electrical voltage of the ultrasonic power supply (V), Iu is the measured current of 

the ultrasonic power supply during machining (A), and F is the feedrate (mm/s). 

3. Experimental results and discussion 

3.1 Edge quality  

Figure 5 shows pictures of a machined hole and rod using RUM. Figure 6 presents 

the machining results of an optical K9 glass workpiece without ultrasonic vibration 

(called diamond drilling below), where Fig. 6(a) is the picture of the machined hole and 

Fig. 6(b) is the cutting force curve during the machining process. The hole cannot be 

drilled successfully using compressed air as coolant when the ultrasonic power is at 0%. 

Fig. 5(A) and (B) show that edge chipping at the entrance of the hole is better than that 

produced at the exit of the hole. Fig. 5(c) shows the machined rod during the processing 

since the used diamond tool is a hollow drilling tool. 
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Fig.	5.	Pictures	of	the	machined	hole	and	rod:	(a)	entrance,	(b)	exit,	(c)	machined	rod,	(A)	a	

magnified	view	of	the	entrance	marked	in	(a),	(B)	a	magnified	view	of	the	exit	marked	in	(b).	

(Ultrasonic	power	=	30%,	spindle	speed	=	3000	rpm,	and	feedrate	=	0.02	mm/s.)	

Two stages of the cutting force curve are induced in the diamond drilling, as shown 

in Fig. 6(b). The cutting force of the first stage is relatively stable, which means that this 

stage is an effective machining process and the stage at which the machined region is 

produced (see Fig. 6(a)). The cutting force shows a strong fluctuation in the second 

stage, which means that serious cracks are induced, and the brittle fracture of the 

workpiece is generated during this stage (see Fig. 6(a)), which results in damage to the 

workpiece and failure to produce a hole. 
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Fig.	6.	Machining	results	without	ultrasonic	vibration:	(a)	machined	hole,	(b)	cutting	force	

curve.	(Ultrasonic	power	=	0%,	spindle	speed	=	3000	rpm,	and	feedrate	=	0.02	mm/s.)	

In drilling hard-brittle materials (such as ceramics, glass, etc.), edge chippings 

(chipping thickness and chipping size) are important criteria to evaluate the hole quality 

because they influence the component quality or the positioning accuracy during 

assembly. Figure 7 shows the effects of the ultrasonic power, spindle speed, and feedrate 

on the edge chipping size. The figure also shows that the change of the edge chipping 

size is not monotonic with an increase in the ultrasonic power. The chipping size 

decreases slightly when the ultrasonic power increases from 20% to 40%, but it 

significantly increases when the ultrasonic power increases from 40% to 50%. A hole 

cannot be drilled when the ultrasonic power is at 0%. As illustrated in Figs 7(b) and (c), 

the chipping size decreases with an increase in the spindle speed and a decrease in the 

feedrate. The feedrate has a more significant influence on the edge chipping size 
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compared to the ultrasonic power and the spindle speed within the ranges tested. 

 

Fig.	7.	The	effects	of	the	ultrasonic	power,	the	spindle	speed	and	the	feedrate	on	the	chipping	

size.	

Since the edge chipping during the drilling of brittle materials  is  induced by the fracture failure of 

machined workpiece, the generating mechanism of edge chipping can be explained by analyzing the 

stress distribution of the contact area between diamond tool and workpiece. The stress distribution 

can be calculated as follows 

  2 2
o i

4

π

F

D D
 


 (2)

where F is the axial cutting force (N), Do and Di are outer and inner diameter of the tool separately 

(mm). 
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Equation  (2)  shows  that  the  cutting  fore  has  significantly  influence  on  the  generation  of  edge 

chipping.  Jiao  et  al.  reported  an  investigation  on  edge  chipping  in  RUM  of  ceramics,  which 

presented  that  larger  edge  chipping  is  almost  always  accompanied  by  a  higher  cutting  force. 

Therefore, the cutting force features can be used to explain the behaviors of edge chipping, which is 

shown in below. The changing trends of edge chipping in Fig. 7(b) and (c) are consistent with that of 

cutting force appeared  in Fig. 9(b) and (c). However, the trends appeared  in Fig. 7(a) and Fig. 9(a) 

are  inconsistent, which may be because of the change of ultrasonic power. This phenomenon will 

be discussed in our future work. 

 

3.2 Cutting force 

Figure 8 shows a comparison of the cutting force between the RUM process and 

diamond drilling (RUM without ultrasonic vibration). The machining conditions of Fig. 

8 for RUM and diamond drilling are as follows: the ultrasonic power is 0 and 30%, 

respectively, the spindle speed = 3000 rpm, the feedrate = 0.02 mm/s, the compressed 

air cooling has a pressure of 40 psi, and the flow rate is 1.5 lpm. Figure 8 shows that the 

RUM process of optical K9 glass using compressed air as a coolant can significantly 

reduce the cutting force compared to that induced in diamond drilling. 
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Fig.	8.	Comparison	of	the	cutting	force	between	RUM	and	diamond	drilling.	

The effects of the ultrasonic power, spindle speed and feedrate on the cutting force 

are shown in Fig. 9. Figure 9(a) presents the effects of the ultrasonic power on the 

cutting force. The cutting force decreases when the ultrasonic power increases from 0 to 

50%. When the ultrasonic power increases from 0 to 20%, the cutting force decreases 

from 139.59 N to 49.55 N. With a further increase in the ultrasonic power, the rate of 

decrease of the cutting force becomes small. The trend of the cutting force versus the 

increase of the ultrasonic power is consistent with that reported in the paper [24] for the 

RUM of CFRP using compressed air as a coolant. Figure 9 also shows that, compared to 

diamond drilling, the RUM of optical K9 glass using compressed air as a coolant can 

significantly reduce the cutting force. 

Figure 9(b) shows the effects of the spindle speed on the cutting force. An increase 

in the spindle speed reduces the cutting force. The relationship of the feedrate and the 

cutting force is shown in Figure 9(c). The cutting force increases with an increase in the 

feedrate. The results of the effects of the spindle speed and feedrate on the cutting force 

are consistent with those for the RUM of CFRP using cold air as a coolant [24], and the 

RUM of optical K9 glass using cutting fluid as a coolant [15]. 
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Fig.	9.	The	effects	of	the	ultrasonic	power,	the	spindle	speed	and	the	feedrate	on	the	cutting	

force.	

3.3 Surface roughness 

Figure 10 shows the effects of the input variables on the surface roughness. The 

relationship between the ultrasonic power and surface roughness is shown in Fig. 10(a). 

The surface roughness on the machined hole surface increases with an increase in the 

ultrasonic power. The effects of the spindle speed on the surface roughness, as shown in 

Fig. 10(b), indicate that increasing the spindle speed can effectively reduce the surface 

roughness. Figure 10(c) illustrates the relationship between the feedrate and surface 
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roughness. The surface roughness increases as the feedrate increases.  

 

Fig.	10.	The	effects	of	the	ultrasonic	power,	the	spindle	speed	and	the	feedrate	on	the	surface	

roughness.	

3.4 Ultrasonic power consumption 

There is only one paper on the power consumption in the RUM of CFRP using a 

fluid coolant [27]. The paper reported the results of the effects of the input variables 

(ultrasonic power, spindle speed, feedrate, and material type) on the power consumption 

of the entire RUM system and each component (ultrasonic power supply, spindle motor, 

coolant system, and the air compressor used for feeding the spindle).  
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The effects of the input variables (ultrasonic power, spindle speed, and feedrate) on 

the ultrasonic power consumption in the RUM of optical K9 glass using compressed air 

as a coolant are shown in Fig. 11. Figure 11(a) presents the relationship between 

ultrasonic power and ultrasonic power consumption. The consumption of ultrasonic 

power significantly increases when the ultrasonic power increases from 0 to 50%. It is 

interesting to note that the change of the ultrasonic power consumption with the 

increase of the ultrasonic power is non-linear, while the relationship between the 

ultrasonic power and the ultrasonic vibration amplitude is almost linear (as shown in Fig. 

3). 

The effects of the spindle speed on the ultrasonic power consumption are shown in 

Fig. 11(b). The ultrasonic power consumption decreases almost linearly as the spindle 

speed increases. Figure 11(c) presents the effects of the feedrate on the ultrasonic power 

consumption. It shows that the ultrasonic power consumption decreases as the feedrate 

increases.  
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Fig.	11.	The	effects	of	the	ultrasonic	power,	the	spindle	speed	and	the	feedrate	on	the	

ultrasonic	power	consumption.	

 

4. Conclusions 

This paper, for the first time, reports an experimental study on the rotary ultrasonic 

machining (RUM) of optical K9 glass using compressed air as a coolant. The effects of 

the process parameters (ultrasonic power, spindle speed and feedrate) on the output 

variables (edge chipping size, cutting force, surface roughness, and power consumption) 

have been studied. The following conclusions can be drawn from the study: 

1. When compressed air is used as coolant, the machining of a hole in an optical K9 

glass workpiece can be drilled by RUM but cannot be produced by diamond drilling. 

Moreover, compared with diamond drilling, RUM has a much lower cutting force. 

2. The chipping size decreases slightly with an increase in the ultrasonic power when 

the ultrasonic power increases from 20% to 40%, but it significantly increases when 

the ultrasonic power increases from 40% to 50%. The chipping size decreases as the 
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spindle speed increases and increases as the feedrate increases.  

3. As the ultrasonic power or the spindle speed increases, the cutting force decreases. 

The cutting force increases with an increase in the feedrate. 

4. The surface roughness on the machined hole surface increases as the ultrasonic 

power or the feedrate increases and decreases as the spindle speed increases. 

5. The ultrasonic power consumption increases as the ultrasonic power increases and 

decreases as the spindle speed or the feedrate increases.  

 

Acknowledgments 

This research was financially supported by the National Natural Science 

Foundation of China (Grant No. 50975153), the State Key Laboratory of Tribology 

Foundation of China (Grant No. SKLT11C7), and National Science Foundation of the 

USA through award CMMI-0900462. 

 

 

References 

[1] Gu WB, Yao ZQ and Liang XG. Material removal of optical glass BK7 during single 

and double scratch tests. Wear 2011; 270(3-4): 241-246. 

[2] Fang FZ and Chen LJ. Ultra-Precision Cutting for ZKN7 Glass. Ann CIRP 2000; 



24 
 

49(1): 17-20. 

[3] Belkhir N, Bouzid D and Herold V. Surface behavior during abrasive grain action in 

the glass lapping process. App Surf Sci 2009; 255(18): 7951-7958. 

[4] Gu WB, Yao ZQ and Li HL. Investigation of grinding modes in horizontal surface 

grinding of optical glass BK7. J Mater Process Tech 2011; 211(10): 1629-1636. 

[5] Arif M, Rahman M and Yoke San W. Analytical model to determine the critical feed 

per edge for ductile-brittle transition in milling process of brittle materials. Int J 

Mach Tool Manuf 2011; 51(3): 170-181. 

[6] Park DS, Cho MW, Lee H, et al. Micro-grooving of glass using micro-abrasive jet 

machining. J Mater Process Tech 2004; 146(2): 234-240. 

[7] Matsumura T, Muramatsu T and Fueki S. Abrasive water jet machining of glass with 

stagnation effect. Ann CIRP 2011; 60(1): 355-358. 

[8] Stephenson DJ, Sun X and Zervos C. A study on ELID ultra precision grinding of 

optical glass with acoustic emission. Int J Mach Tool Manuf 2006; 46(10): 

1053-1063. 

[9] Zhang CL, Feng PF and Zhang JF. Ultrasonic vibration-assisted scratch-induced 

characteristics of C-plane sapphire with a spherical indenter. Int J Mach Tool 

Manuf 2013; 64(1): 38-48. 



25 
 

[10] Pei ZJ, Prabhakar D, Ferreira PM, et al. Mechanistic approach to the prediction of 

material removal rates in rotary ultrasonic machining. Journal of Engineering for 

Industry 1995; 117(2): 142-151. 

[11] Hu P, Zhang JM, Pei ZJ, et al. Modeling of material removal rate in rotary 

ultrasonic machining: designed experiments. J Mater Process Tech 2002; 129(1-3): 

339-344. 

[12] Li ZC, Jiao Y, Deines TW, et al. Rotary ultrasonic machining of ceramic matrix 

composites: feasibility study and designed experiments. Int J Mach Tool Manuf 

2005; 45(12-13): 1402-1411. 

[13] Cong WL, Feng Q, Pei ZJ, et al. Edge chipping in rotary ultrasonic machining of 

silicon. Int J Manuf Res 2012; 7(3): 311-329. 

[14] Gong H, Fang FZ and Hu XT. Kinematic view of tool life in rotary ultrasonic side 

milling of hard and brittle materials. Int J Mach Tool Manuf 2010; 50(3): 303-307. 

[15] Zhang CL, Feng PF, Zhang JF, et al. Investigation into the rotary ultrasonic face 

milling of K9 glass with mechanism study of material removal. Int J Manuf Tech 

Manag 2012; 25(4): 248-266. 

[16] Shokrani A, Dhokia V and Newman SY. Environmentally conscious machining of 

difficult-to-machine materials with regard to cutting fluids. Int J Mach Tool Manuf 



26 
 

2012; 57(1): 83-101. 

[17] Sharma VS, Dogra M and Suri NM. Cooling techniques for improved productivity 

in turning. Int J Mach Tool Manuf 2009; 49(6): 435-453. 

[18] Sreejith PS and Ngoi BKA. Dry machining: machining of the future. J Mater 

Process Tech 2000; 101(1-3): 287-291. 

[19] Choi HZ, Lee SW and Jeong HD. A comparison of the cooling effects of 

compressed cold air and coolant for cylindrical grinding with a CBN wheel. J 

Mater Process Tech 2001; 111(1-3): 265-268.  

[20] Su Y, He N, Li L, et al. Refrigerated cooling air cutting of difficult-to-cut materials. 

Int J Mach Tool Manuf 2007; 47(6): 927-933. 

[21] Yuan SM, Yan LT, Liu WD, et al. Effects of cooling air temperature on cryogenic 

machining of Ti–6Al–4V alloy. J Mater Process Tech 2011; 211(3): 356-362. 

[22] Nguyen T and Zhang LC. An assessment of the applicability of cold air and oil mist 

in surface grinding. J Mater Process Tech 2003; 140(1-3): 224-230. 

[23] Cong WL, Pei ZJ, Deines TW, et al. Rotary ultrasonic machining of CFRP using 

cold air as coolant: feasible regions. J Reinf Plastics Comp 2011; 30(10): 899 - 

906. 

[24] Cong WL, Feng Q, Pei ZJ, et al. Rotary ultrasonic machining of carbon fiber 



27 
 

reinforced plastic composites: using cutting fluid vs. cold air as coolant. J Comp 

Mater 2012; 46(14): 1745-1753. 

[25] Lv DX, Wang HX, Tang YJ, et al. Surface observations and material removal 

mechanisms in rotary ultrasonic machining of brittle material. Proc Inst Mech Eng, 

Part B: J Eng Manuf 2012; 226(9): 1479-1488.   

[26] Cong WL, Pei ZJ, Mohanty N, et al. Vibration amplitude in rotary ultrasonic 

machining: a novel measurement method and effects of process variables. J Manuf 

Sci Eng 2011; 133(3): 034501. 

[27] Cong WL, Pei ZJ, Deines TW, et al. Rotary ultrasonic machining of CFRP 

composites: a study on power consumption. Ultrasonics 2012; 52(8): 1030-1037. 


	PeiCoverPage2014
	Rotary ultrasonic...optical K9 Auth vers

