TESTS OF A SMALL COMPRESSED AIR PLANI
BY
J. A. CORRELL \& O. P. DRAKE.

DISCUSSION.

The following tests were made on the compressed air plant in the Engineering Laboratory of the Kansas State Agricultural college. The plant is equipped as follows: a vertical engine the make and rated horse power of which are unknown, belted, through a main shaft, to a double acting, horizontal, piston compressor manufactured by the Ingersoll-Sergeant Drill Company, and rated at from 8 to 13 horse power depending on the revolutions per minute and the receiver pressure. A westinghouse engine with two 6×8 single acting cylinders was connected to the air receiver and used as an air motor.

The object of the tests was to determine lst the efficiency of the plant, or the ratio of the developed brake horse power of the motor to the indicated horse power of the engine; 2nd the efficiency between the engine and compressor cylinders, and between the compressor cylinder and the brake on the motor: 3rd the horse power lost in heating the air and the cooling water.

A series of three tests was conducted, the duration of each of which was one hour. Indicator cards were taken on the engine and compressor every five minutes throughout the test; as there was no means of taking cards on the air motor, a rope brake was constructed and used instead. Every five minutes, at the same time that the indicator cards were taken, the speeds of the engine compressor and motor were noted, and at the same time, the initial and final temperatures of the air and cooling water, and the readings of the scale of the rope brake on the motor were taken. All water which passed through the water jacket of the compressor was carefully weighed and recorded, so that the total weight of water which passed through the jacket during the test was known.

The mean effective pressure for both the compressor and the engine was calculated as follows: The area of the card divided by the length of the card gave the average height of the card, and this multiplied by the scale of the indicator spring used, gave the mean effective pressure; or as a formula,

Let $\mathrm{Pe}=$ mean effective pressure.
$a=$ area of card.
$s=s c a l e$ of indicator spring.
$1=$ length of indicator card.
Then $\mathrm{Pe}=\frac{\mathrm{a} s}{1}$.
For the calculation of the indicated horse power from the indicator cards,

Let $\mathrm{Pe}=$ mean effective pressure.
$L=$ length of stroke in feet.
$A=$ area of piston in square inches
$\mathrm{N}=$ number of revolutions per minute.
Then I. H. P. $=\frac{\mathrm{Pe} \mathrm{L} \mathrm{A} \mathrm{N}}{33000}$
This will give the indicated horse power for one end of the cylinder. The area of the piston will be different for the two ends of the cylinder owing to the piston rod reducing the effective area for the crank end; since the mean effective pressure will be different for the two ends also, separate calculations will be required for the two ends. The total horse power developed will be the sum of the horse power developed by the two ends. Since in the formula the quantity $\frac{L}{33000}$ is constant for the same engine, it is called the engine constant. Then I. H. P. $=\mathrm{CPeN}$ where C is the engine constant. This must be calculated for both ends since A varies.

The brake horse power was calculated as follows:

Let $w=w e i g h t$ of the brake.
Wo $=$ weight on the scale pan of the brake.
$W=$ effective weight on the brake.
$S=$ scale reading.
$r=$ radius of brake wheel of motor.
$N=$ revolutions per minute.
Then $H \cdot P \cdot=\frac{2 \pi r N W}{33000}=C N W$ where $C=$ the brake con-
stant or $\frac{2 \pi r}{33000}$ and $w=W_{0}+w-5$
The efficiency of the whole plant then
is; $E=\frac{B \cdot H \cdot P \cdot \text { of motor }}{\text { I. H. P. of engine }}$
The efficiency between the engine and compressor cylinders is; $\quad E_{1}=\frac{I \cdot H . P . O f \text { compressor }}{I \cdot H . P . O f ~ e n g i n e ~ t h e ~ e f f i c i e n c y ~ b e-~}$ tween the compressor and the motor is;

$$
\mathrm{E}_{2}=\frac{\mathrm{B} \cdot \mathrm{H} \cdot \mathrm{P} \cdot \text { of motor }}{I \cdot \mathrm{H} \cdot \mathrm{P} \cdot \text { of compressor }}
$$

To determine the horse power lost in heating the air and the cooling water,

Let $t=r i s e$ in temperature of cooling water.
W = weight of cooling water used throughout the test
Then the heat given to the cooling water expressed in
B. T. U. is $\quad Q=W t$.
$778 \mathrm{Q}=778 \mathrm{Wt}=\mathrm{ft} . \mathrm{Ib}$. where 778 is the mechanical
equivalent of heat.

$$
\mathrm{H}_{.} \mathrm{P}_{0}=\frac{778 \mathrm{Wt}}{60 \times 33000}
$$

To find the horse power lost in heating the air
Let $t=$ rise in temperature of the air
$\mathbb{W}=$ weight of air compressed during the test.
Cp $=$ specific heat of air at constant pressure.
$C V=$ specific heat of air at constant volume.
Now assume that the volume remains constant while the
pressure increases, then;
$W, t, C v=$ heat given to the air during that stage.
Now assume that the pressure remains constant while the volume decreases, then;
$W, t, C p=$ heat given to the air during this stage.
Then the total heat given to the air during compression
is;
$Q=W, t, C v+W, t, C p$
$Q=W, t,(C v+C p)$.
The ft. Ib. of work expended during the hour to heat the air then is;
$\mathrm{Q}_{2}=778 \mathrm{~W}, \mathrm{t},(\mathrm{Cv}+\mathrm{Cp})$
The horse power expended in heating the air then is;
H. P. $=\frac{778 \mathrm{~W}, \mathrm{t},(\mathrm{Cv}+\mathrm{Cp})}{60 \times 33000}$

In considering the results of these tests, we would
like to call attention to relative sizes and horse-powers of the engine, compressor, and motor.

The maximum indicated horse-power which we were able to obtain from the engine was a little over eight. The compressor is rated in the maker's catalogue at, from eight to thirteen horsepower. A glance at the data will show that it was running at a little more than half its rated power.

There is no way of taking indicator cards on the motor, so we could not tell what its indicated horse-power was. We had to keep it throttled down very close, during every one of the tests, and for that reason we know that the brake horse-power of the motor was not as large as it would give with the throttle full open. Judging from the dimensions of the motor (length of stroke eight inches, diameter of cylinders six inches) its rated horse-power would be equal to, or greater than that of the engine,
if it was not limited in the supply of air. These facts will partly explain why the efficiencies are so low.

There is one loss which the tests show to be very great and which would be large in any plant; that is the heat loss. In this plant it is nearly two horse-power. Taking an average of all the tests, we find that 26.84% of the indicated power ofthe engine is used in heating the air and cooling water.

The losses due to friction were very large compared with the pomer developed, because of the disproportion of the machines.

Horse-power of the engine
Horse-nower of the compressor
Horse-power of the motor
Pressure of air in receiver
Total weight of cooling water used
Increase in the temperature of the air,

Increase in the temperature of the cooling water (F)

Horse-power used to raise the temperature of the cooling water

Horse-power used to raise the temperature of the air

Horse-power lost between the engine and compressor

Horse-power lost between the compressor and motor

Efficiency of engine and compressor
Efficiency of compressor and motor; (ratio of B. H. P. of the motor to the I. H. P. of the compressor)

Efficiency of the whole plant

SCHEME of AIR PLANT

a, THERMOMETER

b, THEAMOMETER
c, THERMOMETER

BRAKE

Department of Mechanical Engineering. K. S. A. C.

TEST MADE AT K.S.A.C. LABOFATORY
MANHATTAN KANSAS
ON COMPAE SSED AIR PLANT DATE MAY 21903

No. Card.	Time.	R. P. M.	M. E. P.		H. E.
			H. E.	C. E.	
1		250	23.7	25.9	3.38
2		250	24.5	25.9	3.49
3		250	24.5	25.6	3.49
4		248	24.5	25.9	3.46
5		245	23.7	25.6	3.31
6		250	23.7	25.9	3.38
7		250	23.7	25.9	3.38
8		250	23.3	25.9	3.32
9		250	23.3	25.9	3.32
10		252	25.1	25.9	3.6
. 11		240	31.3	32.7	4.28
12		250	24.7	26.9	3.52
	Maximum,	252			
	Minjum,	240			
	'Total,	14935			
	Average,	248.9			
	1				

LOG OF ENGINE TRIAL.
constants of engine.
OBSERVERS:
Diameter of cylinder.... 6 .in. Area of piston H. E......28.274.sq. in. $\begin{array}{llll}\text { Diameter of piston rod.. } & \frac{1}{8} \text {. in. } \\ \frac{2}{3} & \text { Area of piston C. E...... 27.28.sq. in. }\end{array}$ Length of stroke $\quad \begin{array}{llll}\frac{2}{3} \ldots \text { ft. } & \begin{array}{l}\text { Engine constant for H. E., } 0.00057 \\ \text { Engine constant for C. E., } 0.0055\end{array}\end{array}$ Engine constant for C. E., .OOO55
A.A. Gorrsel
B. H. P. Remarks.

Department of Mechanical Engineering. K.S.A.C.

LOG OF COMPRESSOR TRIAL CONSTANTS OF ENGINE.

OBSERVERS

TEST MADE AT K.S. A.C. LABORATORY

Manhattan Kansas On Ala Gombresson DATE May2, 1903 | No. | |
| :---: | :---: |
| fard. | |

Department of Mechanical Engineering. K. S. A. C.

LOG OF ROPE BRAKE.

CONSTANTS OF BRAKE. OBSERVERS:
Radius of pulley...............0 0 年.......in.
Weight of brake........... ... $8 \frac{1}{2}$.
Weight on brake20 $0 \frac{1}{2}$..... lbs
Brake constant.............. . .OOQLGQ.G

Test made at KS.A.G...... $\angle A B O R A T O A Y$ MANHATTAN KANSAS On GOMPRESSED AIR PLANT. Date MAY 2 1903

Number of Reading

1110 2
3
4
5
6
7
8
9
10 II 12 -1
P. M.
10
106
90
110
110
110
105
112
110
110
112
110

Balance Reading.
7
7
7
7
7
7
7
7
6.5
6
6
6
5.5

Department of Mechanical Engineering. K. S. A. C.

LOG OF ENGINE TRIAL.
Diameter of cylinder.... 6 , in. Area of piston H. E.....28.2.7. sq. in. Diameter of piston rod.. $\frac{1}{8}$.in.
Length of stroke $\frac{2}{3}$
Are...ft. Length of stroke Engine constant for C. E., .0.0.0.05

OBSERVERS:
TEST MADE AT K.S. AC. LABORATORY Manhattan Kansas
On Upaight Engine DATE MAY, 2, 1903

Brake Load (Dynamo).
H.

H. E
3.40
3.50
3.40
3.36
3.18
3.56
3.56
3.56
3.05
3.40
3.32
3.36

1. H. P.

1. H.
C. E.
3.82
3.82
3.82
3.756
3.74
3.88
3.82
3.74
3.64
3.82
3.756
3.756

Department of Mechanical Engineering. K. S. A. C:

LOG OF COMPRESSOR TRIAL
CONSTANTS OF COMPAESSOR OBSERVERS:
Diam. of cylinder...in. Area of piston H. ECO.2.ssq. in
Diam. of piston rod, $\ldots \frac{3}{8}$ in. Area of piston C. E.ł8.7.\&q. in
Length of stroke $\frac{2}{3}$. \quad ft. Comp. constant for $\mathrm{H} . \mathrm{E} . .00 / 10 / 5$ Air per revolution. $46 \mathrm{ccu} . \mathrm{ft}$. Comp. constant for C. E. 0.00985

TEST MADE ATK.S.A.C. LABORATOAY Manhattan Kansas On Ala Compaessor DATE MAY 2, 1903

Remarks

Department of Mechanical Engineering, K. S. A. C.

Department of Mechanical Engineering. K. S. A. C.

LOG OF ENGINE TRIAL.
TEST MADE AT K.S.A.C. LABOBATEAT
MANHATTAN KANSAS On Veaight Engine
DATE MAY 8, 1903

No. Card.	Time.	R. P. M.	M. E. P.		1. H. P.			Brake Load (Dynamo).		B. H. P.
			H. E.	C. E.	H. E.	C. E.	Total.	Volts.	Amperes.	
,		242	26.68	22.9	3.68	3.05	6.73			
2		235	27.1	23.32	3.63	3.01	6.64			
3		240	27.73	22.27	3.79	2.94	6.73			
8		245	26.89	21.22	3.75	2.86	6.61			
5		245	27.52	24.37	3.84	3.28	7.12			
-6		235	28.99	23.11	3.88	2.99	0.87	,		
7		240	28.99	24.79	3.96	3.27	7.23			
8		240	26.89	22.06	3.68	2.91	6.59		.	
9		240	27,73	23.53	3.79	3.1	6.89		-	
10		245	29.42	25	4.11	3.37	7.48			
-.11		240	27.73	25	3.79	3.30	7.09			
12		240	28.15	23.7\%	3.85	3.13	6.98			
	Maximum,	$2 \not 75$							\cdots	
	Minimum,	235					6.59			
	Total,	14135								
	Average,	240.5					6.9			

OBSERVERS

 Length of stroke $\frac{2}{3}$.........it. Engine constant for H. E., 0005 7 Engine constant for C. E., $\quad 00.055$

Remarks.

Department of Mechanical Engineering. K.S.A.C.

LOG OF COMPRESSOR TRIAL
TEST MADE AT K.S.A.C. LABORATORY MANHATTAN KANSAS ON COMPAESSED AIA PLANT. DATE MAY 81903.
constants of engine.
CONSTANTS OF
$8 \quad \mathrm{in}$. Area of piston H. E 50.26 sq . in
Diam. of cylinder........ Length of stroke $\frac{2}{3} \ldots \mathrm{ft}$. Comp. constant for H. E. 001015 Air per revolution . . 46 c cu. ft. Comp. constant for C. E.00098,5

OBSERVERS:

- Temperature

No. of card.	Time.	R. P. M.	Area.		M. E. P.		I. H. P.			Temperature of Air.			Temperature Cooling Water.			$\underset{\substack{\text { Dissipated } \\ \text { in heat. }}}{\text { H. P. }}$	Remarks.
			H. E.	C. E.	H. E.	C. E.	H. E.	C. E.	Total.	Initial.	Final.	Rise.	Initial.	Final.	Rise.		
1			18	1.6	21.17	19.4	2.25	2.01	4.26	85.1	202	116.9	64.4	86.9	22.5		
2		100	1.89	1.82	22.24	22.6	2.25	2.18	4.43	83.3	204	120.7	65.3	86.9	21.6		Total weight of water
3		105	1.93	1.85	22.7	22.42	2.42	2.32	4.74	83.3	207	123.7	66.2	86.9	20.7		used in test 2
4		100	1.97	1.93	23.18	23.4	2.54	2.49	5.03	83.3	209	125.7	66.2	86.9	20.7		
5		105	1.9	1.85	22.35	22.42	2.38	2.32	4.70	84.2	210	125.8	66.2	87.8	21.6		Receiver Pressure $45^{\text {\# }}$
6	-	100	1.93	1.85	22.7	22.42	2.31	2.21	4.52	83.3	210	126.7	68	70.5	2.5		
7		104	1.94	1.89	22.82	23	2.41	2.35	4.76	83.3	210.5	127.2	70.7	94.1	23.4		
8		105	1.94	1.89	22.82	23	2.44	2.37	4.81	84.2	214	129.8	69.8	95	25.2		
9		110	1.98	1.89	23.3	23	2.6	2.48	5.08	84.2	216	131.8	69.8	96.8	25.		
10		106	189	1.85	22.24	22.42	2.39	2.34	4.73	84.2	216	131.8	68.9	96.8	27.9		
11		108	1.89	1.85	24.38	22.42	2.44	2.39	4.83	84.2	216	131.8	70.7	98.6	27.9		
12		105	1.95	1.96	24.45	24.44	2. 45	2.46	4.91	84.2	216	133.6	09.8	99.5			
		.															
	.																
	Maximum,	110			.				5.08			133.6			29.7		
	Minimum,	100							4.26			116.9			2.5		
	Total,	6305							56.80			1525.5			268.7		
	Average,	105							4.73			127.1			22.4		

Department of Mechanical Engineering. K. S. A. C.

LOG OF ROPE BRAKE.

CONSTANTS OF BRAKE.
 OBSERVERS:

Test made at.K.S.A.G... AABOAATOAY NANHATTTAN.......KANSAS. On COMPRESSED AIR RLANT. Date MAY \& 8.1903.

Number of Reading.	R. P. M.	Balance Reading.	B. H. P.
	R	100	9
2	95	9	.496
3	95	9	.470
4	100	9	.470
5	104	9.5	.496
6	98	9	.507
7	99	9	.486
8	90	9	.491
9	95	9	.446
10	95	9	.470
11	95	9	.470
12	90	9	.470
1			.446

