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INTRODUCTION

Optimization of transportation problems with linear cost functions

can be regarded as a generalization of the assignment problems and can be

accomplished by the Simplex Method of Linear Programming Jlj. However,

some special methods, such as the Northwest Corner Method, the Unit Penalty

Method and Vogel's Approximation Method, have been developed which are easy

to apply and are less tedious than the Simplex Method I 2, 3j» Recently,

a discrete version of the Maximum Principle has been applied to the two,

three and four depots problems with ease, in view of calculations I

4J.

Optimization of transportation problems with non-linear cost

functions can no longer be solved by Linear Programming Methods. Such

problems for two and three depots are solved hy Dynamic Programming i 5 !•

Recently, a discrete version of the Maximum Principle has been applied to

the two depots problem. This has resulted in a great simplification of

numerical calculations 16, 7 )•

The three depots problem with non-linear cost function is investigated

by Hwang, et al
j
8 . The Maximum Principle for continuous processes was

originally developed by Pcntryagin
)
9 I. The Discrete version of this

Maximum Principle was proposed ^oj Chang I 10 I and Katz
j
11

j

and was developed

further by Fan and Wang I 6j.

The aim of this report is to present the application of the Discrete

Maximum Principle to obtain the solution of transportation problems having

both linear and non-linear cost functions in a relatively elegant manner.

Simple problems of the linear type with two and three origins are system-

atically analyzed in order to develop a generalized computational procedure

for solving problems having more than three origins. A problem with four



origins is solved to illustrate in detail both this general computational

procedure and a systematic search for feasible solutions and then an optimal

solution. Simple problems of two and three depots having non-linear cost

functions, with and vaVthout set-up costs, are also systematically illustrated.

Very recently, Charnes and Kortanek I 12J
have commented on the Discrete

Maximum Principle and Distributation Problems published by Fan and Wang
j
7 j-

The simple example for a linear cost function cited by Charnes and Kortanek

is included in this report. The systematic search for an optimal solution

is applied to demonstrate that their comment on having serious difficulty

with numerical procedures to obtain an optimum solution is premature. As

this method is in an early stage of development, it does not appear to be

appropriate to compare the efficiency of this present method with that of

others which have been more fully refined.



THE DISCRETE MAXIMUM PRINCIPLE

The following is an outline of the general algorithm of the Discrete

Maximum Principle for systems without information feedback given by Fan

and Wang
16

J.

A multistage decision process consisting of N-stages in sequence is

schematically shown in Fig. 1. The state of the process stream, denoted by

an s-dimensional vector, x, is transformed at each stage according to the

decision made on the control actions denoted by a t-dimensional vector, 6.

The transformation of the process stream thus brought about at the n""1 stage

is given by the transformation operator (or performance equation)

n ,ji / n-1 n-1 n-1 n n n* , .

x^ - T^ (Xj^
»
x2 ' " "

• * x
s 1* •2*••• , t'* \1a

n=l, 2,..., N; i=l, 2,..., s.

or, in vector form,

n _n / n-1. nn>x = T (x ; 9 ).

The optimization problem is to determine the sequence of 6
n

, subject to

the constraints, T|
n < 8

n < §
n

, n = 1, 2,..., N, which will maximize £ c
nxn ,

with x? preassigned, i = l, 2,..., s. Here T] and 5
n are the loxrer and upper

bounds of 8
n and c. denotes some specified constants.

The procedure for finding the optimal sequence of 6
n

is to introduce an

adjoint vector, z
n

, and a Hamiltonian function, H
n

, satisfying

* The superscript, n, indicates the stage number. The exponents are

written with parentheses or brackets such as (x
11

) or j^Cx*
1

)]- .
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Hn = 2 a? T? (x^1 ; G
n
). b-1, 2 N. (2)

i=l
1 x

z^ —JJ3J
, n = 1, 2,..., N; i = 1, 2 s. (3)

z
i
= C

i'
i = 1. 2 s. (4)

and to determine the optimal sequence of control actions, 8 , from the

conditions

H
11
= maximum, or — = 0. (5)

For the optimi2ation problem in which some of the final values of state

variables xv are preassigned, such as r = W and Xv .» WL, and the objective

function is specified as

1=1

i^a
i^b

the basic algorithm represented by equations (2) through (5) is still

applicable, except that equation (^) is replaced by

«1 — -L, £- , • • • > S •

*-* u, b .

(6)

If the minimizing, instead of the maximizing, sequence of control actions

is to be decided, the above algorithm remains applicable, except that

equation (5) is replaced by

H^ = minimum, or 2£_ = o, n = 1, 2,..., N. \ ( /

de
n



FORMULATION OF THE TRANSPORTATION PROBLEM 3Y THE
DISCRETE MAXIMUM PRINCIPLE

The transportation problems having linear as well as non-linear cost

functions shall first be formulated in terms of the discrete maximum principle.

Suppose that there is only one type of resource and that its total

supply is equal to the total demand for it. Let

6? = the quantity of the resource sent from the i-th depot (origin)

to the n-th demand point and

F^CG
3

?) = the cost incurred by this operation.

If there are s depots and N demand points, the problem is to determine the

values of G. , i = 1, 2 s; n = 1, 2,..., N, so as to minimize the total

cost of transporting the resource

N s

c „ = S S F* (G
n

)
sN

n=l i=l
x x

subject to the constraints

(i) g£ >

N
(ii) 2 6. = W. , number of units of the resource available at the

^_1
i i

n—J.

i-th depot, i = 1, 2,..., s.

s
n

(iii) £ S. = B , number of units of the resource recuired by the
i=l

1

n-th demand point, n = 1, 2,..., N.

Defining the demand points as stages and the total amount of resource

which has been transported from the i-th depot to the first n stages (demand

points) as state variables x^, 1 = 1, 2,..., s-1, then

x
n = x*"

1 + G
n

, x° = 0, *J = W.ii i l ii
i = 1, 2,..., s-1, n = 1, 2,..., N.



It must be noted that, though there are "s" depots in the problem,

there are only (s-1) state variables. This is because the demand by each

stage is preassigned; hence the number of the units supplied from the s-th

depot to n-th stage can be obtained by subtracting the sum of the units

supplied to the n-th stage from the first through (s-l)-th depots from the

total number of units required by the n-th stage. That is

s-1
e
n = d

11
- s e

n
3

i=i
x

Since it is desired to minimize the total cost of transportation, a new

state variable, xy, may be defined as

xn = x*"
1 + 2 F? (e

n
)

s s w i i

(9)
o

x = 0, n = 1, 2,..., N.

It can be shown that x* is equal to the total cost of transportation. The
s

optimization problem is formulated as one in which xf; is to be minimized

by the proper choice of the sequence of 8?, i = 1, 2,..., s-1, n = 1, 2,..., N,

for the process described by equations (8) and (9).

A discrete version of the maximum principle asserts that, for finding

the optimal sequence of n
, if the adjoint vector, z

n
, and the Hamiltonian

function, H
n

, satisfying

^=2 z?x? (x
n_1

; 6
n
), n = 1, 2 N (10)

(11)

(12)

i=l
x x

n-1 . hi?
z

-i —^~T»1
Bx?'

1

n = 1, 2,..., N

i — .L , £,•••, s

N
iz

s
= 1
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are introduced, and the optimal sequence of 9 is obtained from the condition

stationary at the interior point of n

H»«
linimum at the boundary point of 9

n = 1, 2,..,, N.

For the process under consideration, the Hamiltonian function can be written

as

s-1 ., s

(13)

Hn = S z? (x?-
1 + 9?) + z

n ]^1'1 + S F? (ej)}
i=1

i l l s i s
i=1

x l J

n = 1, 2 N.

and components of the adjoint vector are, in general,

z
n-l = _^V = z? . 1-1. 2 s (14)

i

Equation (12) results specifically in

z = 1, n = 1, 2,..., N.
s

Since z
2

? and x?~ are considered as constants at each step in the

minimization of the Hamiltonian function given by equation (13) » it is

convenient to define the variable part of the Hamiltonian function as

H
n = E b? 9? + S F? (9?). (15)
v ML x i

i-1
1 x



EXAMPLE (1). TV.'O ORIGINS AND FOUR DEMAND POINTS
(LINEAR COST FUNCTION)

The linear cost function, Fv(9?) can be expressed by
i' i

4(e.) = c
±
q
±

where

,n
C. = the cost incurred in supplying one unit of resource from the i-th

origin to the n-th demand point.

The problem is represented by Table 1. Values of C? (in dollars), if
1

and W. are shown in this table. The total number of units required by

N-demand points is equal to the total number of units supplied from the

s-origins, that is,

Ji
N
Z D" - S W.

.

n=l i=l
x

It is required to allocate the number of resource units in such a

way as to minimize the total cost of transportation.

Table 1. Transportation costs and requirements
for Example (1).

Depots

CO

•H
O
P«

*d

cd

a
CD

^v. i
n ^s. 1 2 TP

1 8 3 8

2 5 8 20

3 1 3 12

k 7 2 5

i
25 20 ^5
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The variable part of the Haniltonian equation for this problem is

Equation (15)

2

K
n = z?e? + S C

n
G
n

v 11
i=1

i i

= z^ej + c£e
n
+ c|e£, n = 1, 2, 3, 4.

Since ©£ = D
n

-
8
J, the following is obtained

H» = (2£ + C» - eg) 6^ + C*D
n

, n = 1. 2, 3 , ^.

Stage 1:

Substituting n = 1 in the foregoing equation, the variable part of

the Hamiltonian equation for the first demand point (stage) becomes

H^ = (zj[ + C* - Cg) &i
+ CgD

1
.

From the entries in Table 1, this becomes

H^ = (aj + 5)
6Jt

+ 2fc.

Thus

,

z
1
- - 5 - C

1
- C

1

From this three conditions at which H may be minimum result:11 1
(a) K = min. at 6, = when z-, > -5

(b) ?} = min. at < 9^ < 8 when z^ = -5

(c) H^ = min. at 6^ = 8 when zi < -5.

The conditions (a), (b) and (c) are shown in Fig. 2.

In a similar manner, the values of z? and 0? are determined for the

rest of the demand points (stages), n = 2, 3 and ^, which makes Ii a minimum.



11

Fig. 2. Adjoint vector z.,, showing selection of 6?"

for Example (1).



These values of z? and
6
J are shown in Table 2.

Table 2. Conditions necessary for H^ to be minimum
for Example (1).

12

n \

Minima of H5 occuring at

fl
n „n8
1 zl

1

> - 5

o<e^<8 - 5

8 < - 5

2

> 3

o < e^ < 20 =3
20 < 3

3

> 2

< e^ < 12 =2
12 < 2

4

> - 5

0<6^<5 = - 5

5 < - 5

As given by Equation (1^), the value of z-^, n = 1, 2, 3, 4 are identical.

From the values of z", n = 1, 2, 3 and ^ given in Table 2, Fig. 3 shows the

boundary values of z-,, i.e., z,.

First, the value of z-, which gives al3 solutions satisfying the

constraints given by conditions (i), (ii), and (iii) will be obtained; then,
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the solution which minimizes the cost, that is, an optimal solution, will

be chosen. For illustration, the solutions corresponding to the values of

x? in the region of -5 < z? < 2, n = 1, 2, 3 and 4 will be given. Comparing

the values of z?, n = 1, 2, 3t ^ shown in Table 2 with the boundary values

of zi, which define the region, the values of 8 given in Table 3 can be

obtained. This solution does not, however, satisfy the end-point condition

of Wx = 25.

Table 3» 6^ corresponding to the values of z? in

the region of - 5 < z? < 2.

^^ i

n \. 1 2 D
n

1 8 8

2 20 20

3 12 12

4 5 5

wi
32

(25)

13
(20) ^5

Then the corresponding solution of z
n = 2 is found. The results,

summarized in Table 4, give the feasible solution x^iich satisfies the

end-point conditions.

In order to satisfy the end-point conditions, W-, = 25 and W
2
= 20,

3
6 has to be 5. The total cost for this solution is
1

4 2

E E cW = $ 160.

n=l i=l
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This is the only feasible solution and should be the optimal solution,

The solution obtained by the linear programming method is the same.

Table 4. 6? corresponding to the values of z-, at z? 2

\i

n >v

1 2 D*

1 8 8

2 20 20

3

(5)

o < e^ < 12

(7)

12 - e^ 12

4 5 5

i

20 + e^

(25)

25 - e^

(20)

45
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EXAMPLE (2). THREE ORIGINS AND FOUR DEMAND POINTS
(LINEAR COST FUNCTION)

The problem is represented by Table 5«

Table 5« Transportation costs and requirements
for Example (2).

COp
c
•H
O
Pi

Ti

00

S
CD

«

Deoots

\. i

n \
1 2 3 D

n

1 8 7 4 18

2 5 8 1 29

3 2 6 2 23

k 4 3 3 25

X
20 30 ^5 95

The variable part of the Hamiltonian equation for this problem is

2 3

Hf= E z
n

6
n + E c

n
8
n

, n»l, 2,3, ^.
V , -. 1 1 ._-, 1 1

i=l 1=1

Since 9? =

z
l

G
l

+ z
2

6
2
+ C

l
e
i
+ C

2
9
2
+

°3 8
3

^ " e
i " e

2'
then

h£ = (zj + cj - c£> ej + (zg + c* - eg) e£ + c* d*

Stage 1:

The variable part of the Hamiltonian equation for the first demand

point (stage) is
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h^ = ( ZJ
+ cj}; - cb e^ + ( 2| + 4 - c^) 63 + c^ d

1

From the entries in Table 1, this becomes

e£ = (zj + 4) ejj; + (z\ + 3) *\ + 72

Thus

s
i
= " * = c

3
" c

i •

-1
z9 = - 3 = c, - c;

From this nine conditions at which IT may be minimum result:

(a

(b

(c

(d

(e

(f

(g

(h

(i

when 2- > - 4H
1 = rain, at 9* = & A =
V 1 2

H
1
= min. at < gJ < 18 & 9, = when zJ = - 4

H^ = min. at 9^ = 18 & 9^ = when z^ < - 4

H
1 = min. at eJ j» & < 9^ < 18 when z^ > - 4

H
1 = min. at < 9?" < 18 & < 9^ < 18 when zj = - 4
v ~ 1 ~ — 2 — 1

H^ min. at 9^ = l6 & 9^ = when z^ < - 4

Hr = min. at eJ =
v 1

& 9^ = 18

1

1
when z7 > - k

H^ - min. at 9^ = & 9^ = 18 when z^ = - 4

H^ = min. at < 9^ < 18 & < G^ < 18 when z^ < - **

&z
l
>

&zj>

&z1
2
>

& z
2
=

&z
2
=

& z?
=

&z*<

&z2<

&z\<

3

3

3

3

3

3

3

3

3^

in a similar manner, the values of z*. z», 8», and eg are determined

for the rest of the demand points (stages), n = 2, 3 and ^, which makes

H a minimum. These values of z?, z?, 9^ and 9? are shown in Table 6.



Table 6. Conditions necessary for If
1
to be minimum

for Example (2)
v

18

Y\

Minimum of k: occurs at

11

fi
n

9
1

6
2 •5

n
z
2

> - if > - 3

o < e^ < 18 » - if > - 3

18 < - k > - 3

1 o < ei < 18- 2 - > - k = - 3

o < e^ < 18 o < e^ < 18 = - k - - 3

18 < - 4 = - 3

18 > - 4 < - 3

18 = - if < - 3

o < e?- < 18 o < e* < 18 < - 4 < - 3

> - if > - 7

o < e^ < 29 a -if > - 7

29 < - if > - 7

< 9^ < 29 > - if = - 7

2 o < e^ < 29 < e^ < 29 a . if = . ?

29 < - if = - 7

29 > - if < - 7

29 = - if < - 7

o < e^ < 29 < e^ < 29 < - 4 < - 7



Table 6. (Continued)
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n

nMinimum of H^ occurs at

,n ,n n n

o < e| < 23

o < e^ < 23 o < e| < 23

o < e^ < 23

23

o

23

23

23

o < e^ < 23 o < e| < 23

> o

<

>

-

<

>

=

<

> - if

> - 4

= - k

« - 4

< - if

< - 4

<-4

o < e^ < 25

25

< Q* < 25

5 e
i
< 25 < 9^ < 25

25

25

25

<
©i

< 25 < 0^ < 25

> - 1

= - 1

< - 1

> - 1

« - 1

< - 1

> - 1

- - 1

< - 1

>

>

>

= o

=

<

<

<
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The conditions for all h^ to be minimum are tabulated in Table 6.

I p O h

As given by Equation (1*0, z-,, z-,, z< and z-, are identical. Similarly,

z
2 , z

2
, z^ and zl are also identical. From the values of z, and z

2
given

in Table 6, Figs. 4a and 4b show the boundary values of z? and z£; i.e.;

z-| and z~.

By systematic search of each combination of the interior and/or

boundary values of z? and z
2

(see Figs. 4a and 4b) for feasible solutions,

cases which do not satisfy the constraints are eliminated. For instance,

the value z? in the region z? > 0, together with any values of z2 will yield

XL 8- = 0, which does not satisfy the constraint W-, = 20. Similarly

the combination of z-, = and z
2
= 0; z, = and z

2
= - 4; z, = - 1 and

Zp = ; z? = - 1 and z£ = - 3 etc . , does not give feasible solution except

that zlj
1 = and z£ = - 3» For example, the values of 8? corresponding to

the values of z? = - 1 and z
2
= - 3 are presented in Table ?.

n
Table 7» ^ corresponding to the values of

SL = - 1 and z
2
= - 3*

^\i
n ^\^ 1 2 3 D

n

1 < 8 < 18 18

2 29 29

3 23 23

4 25 25

w
i

(20) (30) (45) 95
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n = 1,2 4 3

.8 -6 -4 -2 -1 7
n

5
1

Fig. 4a. Boundary values of adjoint vector z^ for Example (2)

n = 2 3 1 4

i r
6 8-8-7-6 -4-3 -2 2 4

n

Fig. 4b. Boundary values of adjoint vector z~ for Example (2).
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Again, the constraint of W-^ = 20 cannot be satisfied.

The results at z? = and z£ = - 3 are shown in Table 8.

Table 8. 8. corresponding to the values of zj
at z? c and z!J « - 3«

^s. i

n ^^ 1 2 3 if

1 < eg < 18 18- e| 18

2 29 29

3 o < e^ < 23 23 - e^ 23

4 25 25

W
i

e
i

(20)

25 +*l
(30)

70 - (e£ + ej)

(^5)

95

From Table 8, it can be seen that 9
2
= W

2
- 25 30 - 25 5, and

3
6£ 20. The solution is presented in Table 9.

The total cost for the solution shown in Table 9 is

k 3
E £ c? 9? = $337.
n=l M x 1

This is the only feasible solution, therefore, the optimal solution- The

solution obtained by the linear programming method is the same.



Table 9. The solution for zj = and zlj = - 3-

23

^\i 1 2 3 d"

1 (5) (13) 18

2 29 29

3 (20) (3) 23

4 25 25

wi 20 30 ^5 95
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COMPUTATIONAL PROCEDURES FOR PROBLEMS WITH LINEAR COST FUNCTION

The computational procedures for problems with linear-cost function may

be developed and summarized as follows:

Since the linear cost function is

f>?> = Cl 8?

the variable part of the Kaniltonian function given by Equation (15) is

n s"1 n n s n n . „
HV =L z

i
8
i
+S ^9., n = l, 2 N. (16)

i=l i=l

Since H
n

is linear in 9. , the values of 8. are determined in such a

way the K
n

is absolute minimum. It should be noted that, since z, is

undetermined at the beginning of calculation, it plays a role similar to the

Lagrange multiplier in differential calculus. The values of z
4

. are to be

determined at the end of calculation from the condition that the values of

tfv are W
i

.

Equation (16) can be written in the form

s-1
hE - l (z? + c?) e

n + c
n

e
n

(17)
i=l i i 1 s s

s-i
Substituting 9^ = if

1
- E 9? into this equation yields

S
k=l

i

H? =
S

e (z? + c?) 9? + c
n

(d
11 -

S

i 9?)V
i=l

1 i i S
i=JL

i

s-1

(18)= s I z? + (c? - c
11

) I e? + c
n

eP
i=1 L i i s J i s

Since C^lP is constant, values of
9J,

which give the minimum H?, depend on

the sign of the bracketed quantity I z" + (c!J - C
s)J«

For any *• the v*lue
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of z?, at which this bracketed quantity changes its sign, may be called the

n
boundary value of zi

. It is located where

n
.

/_n _n N _

z
i
+ (C

±
- C

s )

or

-n _n „n /•,n\
z
±
= C

s
- C± (19)

In addition, the three constraints are

,n
(i) ej > o

s

(ii) s eSif1

i=i
x

(iii) z 9? = 4 = w,

n=l
x x x

Therefore, based on Equations (18) and (19) and constraints (i), (ii)

and (iii), the computational procedure may be summarized:

(1) For any particular value of z? considered,

(a) If, for any i, z£ > z?, then e£

(b) If, for any i, z? < zj, then 9^ is a positive value such

that < 9? < rf
1
. And, as a special case, if z2 < z5 for

only one j, and z? > z? for all i 4 j» then 9
1
? takes the

extreme value, that is Q
n
. = i/

1
.

(c) If, for any i, z? = z?, then the corresponding 9? is such

that < 9? < if
1
except the special case mentioned in (b).

(2) Then all the values of z? and eventually 9^ are fixed from

Equation (11) and constraints (ii) and (iii).

(3) Finally, an optimal solution or solutions which give the minimum

cost function are selected from all the resulting feasible solutions.



EXAMPLE (3). FOUR ORIGINS AND FIVE DEMAND POINTS
(LINEAR COST FUNCTION)
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The problem is represented by Table 10.

Table 10. Transportation costs and requirements for
Example (3)

CO

+»

•H
O
P«

T3
a
a
m
a>

Depoiis

^v i
n >v

1 2 3 * if

1 3 3 6 k 10

2 5 2 10 9 20

3 5 7 3 8 10

k k 10 2 10 18

5 8 3 3 12 20

i
16 20 18 24 78

The variable part of the Harailtonian equation for this problem is

[equation
(18)J

B* - E [_£ + (cj - c£)J e
n + c£ if, n « 1, 2, 3, 4, 5.

n rn
The boundary values of z., i.e., z., 1 1, 2, 3» obtained by the use

of Equation (19) » are plotted on Figs. 5a, 5b and 5c and are listed in

Table 11.

The systematic search for feasible solutions combining the interior

and/or boundary values of z
n

(see Figs. 5a, 5b, and 5c) is as follows I



2?

n as

1 i r
-12 -10 -8 7 ~T~

4

3 2,5 4

i r
-2 1 2 3 4 8 ID 12

n

n
Fig. 5a. Boundary values of adjoint vector z^_

n = 4 1.3 2 5

l I i i i r
-12 -10 -8 -6 -4 -2

t 1 1 1 r

012 4 6789 10 12

n

n
Fig, 5b. Boundary values of adjoint vector z2

n = 1 2

n 1 r
-12 -10 -8

k 5

r
-4 -2 -1 k 5 6 8 9 10 12

n

Fig. 5c Boundary values of adjoint vector z^,
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n
Table 11. Boundary values of 2..

n^^1^ 1 2 3

1 1 1 - 2

2 4 7 . 1

3 3 1 5

k 6 8

5 4 9 9

There is no feasible solution for the conditions zj 6, z!J 9

and z" > - 1.

The feasible solution for conditions z^ = 6, z~ 9 and z!}

presented by Table 12.

- 1 is

Table 12. 8. corresponding to the values z,

z£ - 9. and z* = - 1.

= 6,

n
^*s

**«v^ 1 2 3 k D"

1 10 10

2

(6)

< e^ < 20 (lfc) 20

3 10 (0) 10

4

(16)

o < e^ < 18

(2)

< e5| < 18 (0) 18

5

(20)

< 85 < 20

(o)

< e^ < 20 (0) 20

w
i

16 20 18 24 78

The total cost for the above solution $384. 00

«
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The conditions zj = 6, z§ = 9 and z? < - 1 give the feasible solution

but is not considered as it involves one more undecided control variable.

The feasible solution for conditions zi? 6, z£ = 7 and z~ 9 is

presented by Table 13.

Table 13. 6? corresponding to the values of z? 6,

z£ - 7, and z*= 9.

l 2 3 4 d"

1 10 10

2

(18)

o < e| < 20 (2) 20

3 10 10

4

(16)

o < e^ < 18 (2) 18

5

(2)

o < e| < 20

(18)

o < e| < 20- 3 - (o) 20

w
i

16
i

20
III

18
. . .

24 78

The total cost for the above solution = $318* 00

•

The conditions z£ = 6, z§ 7 and z? = 5 or z~ < 9 give feasible

solutions but also increase the number of undecided control variables and

hence is not considered*

The feasible solution for conditions z? = 6, z^ 1 and z£ = 9 is

presented by Table 14«

The total cost for the above solution is $322.00.

The conditions zj = 6, z£ = 1 and z~ < 9 are not considered as they

involve more undecided control variables.
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Table 14. 6. corresponding to the values z.

z£ 1, and z^ - 9-

6,

n ^"^-v^ 1 2 3 4 If
1

1

(0)

o < e^ < io (10) 10

2 20 (0) 20

3

(0)

o < e| < 10 (10) 10

k

(16)

o < ej < 18 (2) 18

5

(0)

o < e| < 20

(18)

o < e^ < 20 (2) 20

w
i

16 20 18 24 78

The feasible solution for the conditions z? = 4, zjj = 9 and z~

ia presented by Table 15-

Table 15. Q4 corresponding to the values z1
= 4„

z§ - 9. and Z3 = 8.

= 8

^\i
1 2 3 4 jfk

1 10 10

2

(16)

< G^ < 20 (4) 20

3 10 10

4

(0)

< ej < 18

(18)

< e^ < 18 (0) 18

5

(0)

< 8^ < 20

(20)

< e| < 20

(0)

< e^ < 20 (0) 20

w
i

16 20 18 24 78
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The total cost for the above solution is $332.00.

The conditions z£ = k, z* = 9 and 8» < 8 are not considered as they

involve more undecided control variables.

The feasible solution for conditions z? b, z« = 7» and z?s8ls

presented by Table l6«

Table 16. 0? corresponding to the values zj = b,

z!J = 7, and z^ = 8.

n "^n^ 1 2 3 4 IP-

1 10 10

2 o < e^ < 20 < Sg < 20 1 20

3 10 10

4 o < ej < 18 < ot < 18—
_2
— 18

5 < 6^ < 20 o < e| < 20 o < e-5 < 20 20

W
i

16 20 18 2h 78

This solution involves too many undecided control variables; therefore,

no final solution is obtained here.

Comparing the cost of all feasible solutions and the number of undecided

control variables, the solution which gives the least cost and the least

undecided control variables is chosen. This is met by the solution given

in Table 13.

The next is to try the feasible solution which has the z? in the

vicinity of the z£ given by Table 13. This new feasible solution may have
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one or more undecided control variables than the one given by Table 13.

Then the total cost will be compared * and the optimal solution obtained.

In this problem, the feasible solution for conditions z-j_ = 6, Z£ = 7

and z« = 8 is presented by Table 17. This has one more undecided control

variable than the one given by Table 13. The resulting solution from the

above is presented by Table 18.

Table 17. 8? corresponding to the values z£ = 6,

z£ = 7, and z* = 8.

"""--*^i
1 2

1

3 4 D"

1 10 10

2 < 83 < 20 20- 83 20

3 10 10

4

(16)

< 6^ < 18 < e^ < 18

18 -

18

5 < e| < 23 < e^ < 18

20 -

20

w
i

9
1

(16) (20)

G
3
+ e

3
5

(18) (24) 78

The total cost for this solution is $316.00.

The solution given by Table 18 is the optimal solution. This is in

contrast to the fact that the feasible solution having least number of

undecided control variables usually gives the optimal solution.

This method is still not perfect. There should exist some better

methods which may be found in future research work.
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Table 18. The optimal solution for zlj in the regions of

Zt =6, Zo — 7» and Zo = 8.

^\i
n "^^^ 1 2 3 4 D"

1 10 10

2 (16) M 20

3 10 10

4 (16) (2) (o) 18

5 (4) (16) (o) 20

W± (16) (20) (18) (24) 78

The solution given by Table 18 is the same as given by Simplex

Technique for solving such problems
[13J

•
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EXAMPLE (4) TtfO ORIGINS AND THREE DEMAND POINTS
(NON-LINEAR COST FUNCTION)

The non-linear cost function is expressed here by

f£ (ej) = 4 e° + bg (ej)
2

where aj, bj are constants. The values of a!jj» bj with D
11

and V^ are shown

in Table 19.

Table 19. Transportation costs and requirements
for Example (4-)

03

-P

•H
O
P«

<d

o>

\ i

n \

1 2
d"

S b
?

ana
2 *2

1 1.0 3.0 10

2 3.0 0.01 2.1 ^5

3 3.0 1.0 0.2 20

Wi 30 ^5 75

The variable part of the Hamiltonian equation for this problem is

2-1 2

H* = E b? 9? + E F? (e?)
v

i=l
1 1

fed * *

n An , in rtn , , n /nn\2 n An , , n / rtn\2\
" *1 6

1
+

1*1 9
1
+ b

l
(e
i } + a

2 2
+ b

2
(9

2 } I

Since e£ D
11

- ej, then

l£ = <zj + aj - 4 - 2b£ tf
1

) ej + (bj + b^Oj)2
+ 4 D

11
+ b£ (D

11

)

2

Stage In

The variable part of the Hamiltonian equation for the first demand
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point (stage) is

h£ = (zj - 2) ej + 30

This stage is the linear cost function; therefore, it can be treated as

shown previously for linear cost function case. Thus

-1 9 1 1
z
l
= 2 = a

2 " *L

From this three conditions at which IT" may be minimum result:
v ^^

(a) HZ as min« at 9-, when z-, > 2.

(b) H^ min. at « 0* < 10 when z^ = 2.

(c) H~ = min. at 0, = 10 when z-, < 2.

Stage 2:

The variable part of the Hamiltonian equation for the second demand

point (stage) is

H
2
, = (z

2
+ .9) 0* + ,oi (9

2
)

2
+ 94.5

Taking partial derivative of H~ with respect to 0, and equating it to

zero e the following is obtained:

&IC 1 2—2 s = zl + .9 + .02 0*

oe
2 i 1

,\ e
2
= - 45 - 50 z

2

2 2
when Gn, 0, z-,= - .9

2 2
and when 0.' = 45, z

i
= " ls8

H
2
, min. , at

2
= if z

2 > - 0.9

and at 0^ =45 if z
2 < - 1.8

Hence , H^ is minimum at
2 - - 45 - 50 z? if - 1.8 < z? < - 0.9.
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Stage 3:

The variable part of the Kamiltonian equation for the third demand point

(stage) is

3 , 3x2 AK^ = (z£ - 6) G£ + 0.2 (G£) + 100

3 3
Taking partial derivative of ?/ -with respect to 6^ and equating it to zero

results in

a?3drV 3 3—1 = = zx> - 6 + 0.4 G<
ae3

e£ = 15 - 2.5 z:

when e
i
= °* Z

l
= 6

and when G
3 = 20, z

3 = - 2

3 3 3 3
Hence, Hi: is rrinimum at 6^ = 15 - 2.5 zi if - 2 < z^ < 6

The conditions for all HI: to be minimum are summarized in Table 20.

r-n
Table 20. Conditions necessary for h^. to be minimum

for Example (4)

.

n
Minima occur at

3
n

z
l

o < e^" < 10

> 2

1 s 2

10 < 2

> - .9

2 - 45 - 50 z\ - 1.8 < z^ < - .9

45 ^ - 1.8
> 6

3 15 - 2.5 z
3 - 2 < z

3 < 6

20 £ - 2
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The value of Zn can now be determined by the condition

3
,n

E Q" = 30
n=l

±

By systematic search for the value of z-, which satisfies this given

condition, the optimal solution will result.

For instance, for the value of b« in the region of - 2 < z?< - 1.8,

the solution corresponding to this value of z^ will be

n *"^»^ 1 2 D"

1 10 10

2 45 45

3 15 - 2.5 zx
20 - e^ 20

WI (30) (45) 75

This does not satisfy the end-point condition £, 9? = 30.
n=l x

Next, the value of z-, in the region of - 1.8 < z?< - 0.9-

^>^i '"

1 2 IP

1 10 10

2 - 45 - 50 z
x

2
45- e£ 45

3 15 - 2.5 z
x

20 - e^ 20

Wi (30) (45) 75

This gives - 20 - 52.5 zx 30

o e

Here E
n
= 30.00625

n=l
^
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Hence, z-^ - 0.9525 satisfies the given end-point condition. The result is

2
presented by Table 21. Substituting this value of k, then 8, 2.62 and

3
8-£ = 17«38. In practical situation, there cannot be a fraction of a unit*

so these figures are rounded off to the nearest whole number.

,n
Table 21. 8. corresponding to the value of

z
1
= - 0.9525 for Example (4).

\^i
n *"*—

^

1 2 IP

1 10 10

2 (3) 42 45

3 (17) 3 20

wi 30 ^5 75

The total cost for the above solution is

3 2
£ E F? (8?) $163.09
n=l i=l

x x

This is the only feasible solution. Checking the condition of optimality

of the solution given by Table 21 by the perturbation method results in

n^^-\^ 1 2 IP

1 10 10

2 4 41 45

3 16 4 20

wi 30 45 75

The total cost for the above is

k Jl *i (6i } " $l63#46
n=l

Hence, the optimal solution is that given by Table 21.



EXAMPLE (5). THREE ORIGINS AND THREE DEMAND POINTS
(NON-LINEAR COST FUNCTION)

The problem is represented by Table 22.

Table 22. Transportation costs and requirements for
Example (5)«

39

Depots

CO

-p
c
•H
O
P,

•d
a
a)

a
0)

\ i

n \

1 2 3
D

11

n
*1 b

l
n
a
2

b
2

a
n

a
3

b
3

1 2.5 2.6 1.0 20

2 3.0 .01 2.7 9.0 60

3 6.0 5.0 .01 6.6 ko

«L 50 30 40 120

J n an , «n /An N2i+ -ja^ Qj + b^ (9y J-,

The variable part of the Hamiltonian equation for this problem is

2 3
h* = z z

n
e
n + e i» (e

n
)Y

i=i
1 i

i=i
i i

n _n , n ..n
,

j n _n . , n /azk2\ . j n rtn , , n /„n»2l
- z

l
9
1
+ z

2
9
2
+

l
a
l

6
1
+ bl <81> J

+
l«2

9
2
+ b2 <62> J

n 1, 2, 3.

Since e" » D
11

-
9
J - 0^, then

H$ = (z£ + a£ - $ - 2^ D
n
) ej + («g + ag - •£ - 2b^ D

n
)
9*

+ ftl + b*> (0j)
2
+ (bg + *£) (eg)

2
+ «£ D

n
+ b^ (D

n
)

2

*

n = l, 2, 3.

Stage It

The variable part of the Hamiltonian equation for the first demand
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point (stage) is

h^ = (z* + 1.5) e^; + (z
2
+ 1.6) 9

2
+ 20

This stage is the linear cost function and can be treated as previously

illustrated. Here,

•1 i c 1:L o-l ,.11
z^ = - 1.5 al - a^» and z

2
= - 1.6 = a^ - ag

Following are the nine conditions at which H~ may be minimum:

(a) Hj min. at Q
1
= & 9

2
when z-l > - 1.5 & z2

> - 1.6

(b) H^ = min. at < 9^ < 20 & 92
- when z^ = - 1.5 & z2

> - 1.6

(c) H^ min. at 87 = 20 & 9
2
= when z^ < - 1.5 & z

2
> - 1.6

(d) hJ - min. at 9^ - & < 9
2
< 20 when b£ > - 1.5 & z

2
- 1.6

(e) H^ = min. at < &
1
< 20 & < 9* < 20 when bJ - 1.5 A z

2
- - 1.6

JL 1111
(f) H^ min. at 9j «= 20 & 92 = when §i < " 1*5 & z

2 = - 1.6

(g) hJ = min. at 9-j^ & 9
2

20 when b£ > - 1.5 & z2
< - 1.6

(h) hJ = min. at 9* = & 9* 20 when bJ .- - 1.5 A Sg < - 1.6

(i) H^ = min. at <
9-l

< 20 & < 92
< 20 when b£ < - 1.5 A z2

< - 1.6

Stage 2 j

The variable part of the Hamiltonian equation for the second demand

point (stage) is

H^ - (b* - 6) 9* + (z2
- 6.9) 9

2
+ 0.01 (9*)

2
+ 5^0

Taking partial derivative of VT with respect to 9
n and equating it to zero

V JL
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results in

—5 = z? - 6 + 0.02 e?

e^ =300-50 z\

2 2
when 9, = 0, z-. - 6

2 2
and when 6, = 60, z, = 4.8.

Hence, h| is minimum at 9^ = 300 - 50 z^ for 4.8 < z\ < 6.

Following are the nine conditions at which H^ may be minimum.

2 2 2 2 2
IT = min. at 6, a & 9

2
when z., > 6 & z

2
> 6.9

H^ a rain, at 9^ = & < 9^ < 60 when z^ > 6 & z
2
- 6.9

.2 2 2 2 2
H^ min. at Q-^ = & 9

2
= 60 when z-^ > 6 & z2

< 6.9

H^ = min. at 9^ = 300 - 50 z\ & 9
2
= when 4*8 < z^ < 6 & z2

> 6.9

H^ = min. at 9^ = 300 - 50 z^ & < 9* < 60 when 4,8 < z\ < 6 & z
2
- 6.9

H^ - min. at Q* = 300 - 50 z\ & < 9
2
< 60 when 4.8 < z\ < 6 & z\ < 6.9

(a

(b

(c

(d

(e

<f

(g

(h

2 2 2 2
= min. at 9

1
= 60 & 9

2
= when z, <4.8& z

2
> 6.9

J2 2 2 2 2
Hy min. at

9^j^
= 60 & 92

a when z-j^ < 4.8 & z2
= 6.9

Hy = min. at < 9^ < 60 & < 92
< 60 when z* < 4.8 & z\ < 6.9(i

Stage 3s

The variable part of the Hamiltonian equation for the third demand

point (stage) is
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h^ m (bJ - 0.6) e^ + (zl - 1.6) e| + o.oi (e^)
2
+ 264

Taking partial derivative of H~ with respect to e| and equating it to

zero results in

—2 B 8? - 1.6 + 0.02 e?
oe|

.% e| = 80 - 50 z^

when 0| =0, z^ - 1.6

and when 9?, = 40,, z| 0.8

3 3 3 3
Hence, H^ is minimum at 9£ = 80 - 50 z£ for 0.8 < z£ < 1.6

(a

(b

(c

(d

(e

(f

(g

(h

(i

3
Following are the nine conditions at which Hi may be minimum.

H^ = min. at 9^ = & 9^ « when z\ > .6 & z^ > 1.6

H^ = min. at 9^ a & 9? = 80 - 50 z\ when z^ > .6 & .8 < z\ < 1.6

H^ - min. at 9^ = & 9^ = 40 when z\ > .6 & Zg < .8

HJ = min. at < 9£ < 40 & 9£ = when z\ = .6 & z| > 1.6

H^ = min. at < 9^ < 40 & 9g = 80 - 50 zg when z\ = .6 & .8 < z| < 1.6

3 3 3 3 3
H^ = min. at

9J_
= & 9^ = 40 when z-j_ = .6 & z^ < 0.8

H^ = min. at 9^ = 40 & 9^ when z^ < .6 & z\> 1.6

HJ min. at < 9£ < 40 & 9^ 80 - 50 z\ when z^ < .6 & .8 < z\ < 1.6

H^ » min. at0<9^<40&0<92<40 when z\ < .6 & Zg < 0.8
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The conditions for all H? to be minimum are summarized in Table 23

«

Table 23. Conditions necessary for H^ to be minimum for
Example (5).

n
Minima occur at

5 e
n

*2 z
n

z
l 4

> - 1.5 > - 1.6

< G* < 20 = - 1.5 > - 1.6

20 < - 1.5 > - 1.6

< 83 < 20 > - 1.5 = - 1.6

1 < ej < 20 < e| < 20 = - 1.5 - - 1.6

20 < - 1.5 = - 1.6

20 > - 1.5 < - 1.6

20 == - 1.5 < - 1.6

< e* < 20 < e^ < 20 < - 1.5 < - 1.6

> 6 > 6.9

< 83 < 60 > 6 - 6.9

60 > 6 < 6.9

300 - 50 z^ 4.8 < z^ < 6 > 6.9

2 300 - 50 z* < 9g < 60 4.8 < z^ < 6 6.9

300 - 50 z^ < e| < 60 4.8 < z| < 6 < 6.9

60 <4.8 > 6.9

60 < 4.8 » 6.9

< e < 60 < 9 < 60 < 4.8 < 6.9
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Table 23. Conditions necessary for H*. to be minimum for
Example (5) (Continued)

n e» 9
2 A 4

> .6 > 1,6

80 - 50 7?
2

> .6 .8 < z| < 1.6

• 40 > .6 < 0.8

< ej < 4o = .6 > 1.6

3 < e^ < 4o 80 - 50 z| = .6 .8 < z| < 1.6

40 = .6 < 0.8

40 < .6 > 1.6

< e^ < 40 80 - 50 z| < .6 .8 < z\ < 1.6

< e^ < 40 < e| < 40 < .6 < 0.8

By systematically searching each combination of the interior and/or

the boundary values of z-? and z£ for feasible solutions, cases which do not

satisfy the constraints are eliminated.

A possible feasible solution corresponding to the values of z, in the

region of 4.8 < z? < 6 and z" in the region of 0.8 < z]jj< 1.6 which satisfies

the constraints is presented in Table 24.

Here two conditions are obtained:

(i) 80 - 50 z" = 30 which gives z£ - 1.

(ii) 90 - 50 z£ 30 which gives z!J = 1.2.

It is not advisable to consider condition (i) given above since it

gives higher total cost. The feasible solution given by condition (ii) is

also presented in Table 24. The total cost for this solution is $452.00.
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Table 24. 6? corresponding to the values of z" and z!J in

the regions of 4.8 < z" < 6, and 0.8 < z!J < 1.6.

n ^-^ 1 2 3 IP

1 20 20

2 50

(10)

< 9^ < 60 (o) 60

3

(20)

80 - 50 z^ (20) 40

W± (50) (30) (40) 120

Another possible feasible solution corresponding to the values

z? = 0.6 and zjj 1*6 is presented by Table 25.

Table 25 « 9^ corresponding to the values zj 0.6

and z« = 1.6.

n
^s-"^_ 1 2 3

...

D
11

1 20 20

2 < 9^ < 60 < 9g < 60 6o - (e* + e|) 60

3 < 9^ < 40 40 - 9* 40

% (50) (30) (40) 120

A feasible solution resulting from Table 25 is given by Table 26.

The solution of Table 26 is obtained as follows!

2
As there is no other choice, 9

?
= 30 has to satisfy the end condition

\f s 30. Comparing the cost functions for deciding among the control

variables 0^ , 6 OJ Of and &2, it is advantageous to assign maximum value
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to the control variable 9^ by comparing the costs given by Table 22. Then

9? = TT - 9^ which is 9? = 60 - 30 = 30 units can be assigned. After 9?,

the rest of the solution is obtained by meeting the end-point constraints.

Table 26. The optimal solution for z" 0.6 and z^ = 1.6.

^\i
n^^«^ 1 2 3 IP

1 20 20

2 (30) (30) (o) 60

3 (20) (20) 40

»L 50 30 40 120

The total cost for the solution given in Table 26 is

3 3
E E Fj (9

n
) - $434.00.

n=l i=l 1 1

Comparing the feasible solutions in Tables 24 and 26, Table 26 is the

optimum solution.

Checking by perturbation the condition of optimality, the solution is:

n^--^ 1 2 3 D"

1 20 20

2 31 29 60

3 19 1 20 40

"i 50 30 40 120

The total cost for the above is

3 3
£ 2 F? (9

n
) - $434.52.

nal i=l
1 X
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Checking by perturbation the condition of optimality, the solution is:

^\i
1 2 3 D"

1 20 20

2 29 30 1 60

3 31 19 40

Wi 50 30 40 120

The total cost for the above solution is

3 3
Z £ Fj (e?) = $438.81.
n=d i=l

1 x

Hence , the optimal cost of $434. 00. as given by Table 26*
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EXAMPLE (6). TWO ORIGINS AND THREE DEMAND POINTS
(NON-LINEAR COST FUNCTION WITH SET UP COST)

The non-linear cost function for this problem is defined as

ij CeJ> = ^ ej + bj <«»> + cj [<]

where a? and b? are constants and c£ ! ejl is called a "set-up" cost or

"fixed charge." It is equal to zero if 8. = and is equal to a positive

constant cj if e£ > 0.

The problem is represented by Table 27.

en

-p
a
•H

a

0)

Pi

Table 27 • Transportation costs and requirements
for Example (6).

Depots

\ i

n \
1 2

D
n

n
*1 C

l
n

«2 b
2

n
c
2

1 2.5 2.6 5

2 6.0 5.0 .01 20

3 5.0 - ,01 10 3.0 15

*i 25 15 40

The variable part of the Hamiltonian equation for this problem is

2-1 2

uj - e »£ ej + z fJ (e£)
i^l fc=l

Z
l

6
1
+ 1*1 9

1
+ *! (8

1
)2 + C

l L

8n
J)

+
1*2 8

2
+ b

2
(e
2
)2 +

C
2 L

g
£j}

j « - 1» 2, 3»

Since 8^ - D
11

-
8J,

then



^9

1$ . (£ + aj - 4 - 2b» D
n

) ej (bj bg) (e?)
2

(§ [e£j

+ °2 K - 9
lJ

+ a
2 * + b

2
(Dri)2

-

Stage 1:

The variable part of the Hamiltonian equation for the first demand

point (stage) is

H* = (zj - 0.1) ej + 13-

This stage is linear cost function and therefore can be treated in the

way shown previously. Thus

-1 11
z.. =s 0.1 a« - aj

.

Prom this three conditions -at which Hi may be minimum result;

(a) H^ = 1 1
min, at 9-, « when z-, > 0.1

(b) H^ = min. at < 0* < 5 when z^ 0.1.

n 1 • 1
(c) Er ss min. at 0, 5 when z-, < 0.1

Stage 2:

The variable part of the Hamiltonian equation for the second demand

point (stage) is

h
2
, a (z\ + o,6) e

2
+ o e oi (e

2
)
2
+ 104.

Taking partial derivative of HI with respect to 0^ and equating it to

zero, the following is obtained:

^*V 2 2

o0
2 X *
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,\ 8
2
= - 30 - 50 z

2

2 2
when 8, 0, zj « - 0.6

2 2
when 9

1
20, £ - 1

—2 2 2
HI =s min., at 9, n if z, > - 0.6

and at 9? 20 if z
2 < - 1.

1 1 —

Hence, H^ is minimum at < 9
2 < 20 if - 1 < z

2 < - 0.6.

Stage 3:

The variable part of the HanrLLtonian equation for the third demand

point (stage) is

H^ * (z^ + 2) 9^ - 0.01 (9^)
2
+ 10 |_e^J + ^5.

Here, when 9^ = 0. H^ k5

3
and when 0£ = 15. then

H^ . ^5 - (z^ + 2) 15 - 0.01 (15)
2
+ 10+^5

2--HI-
Following are the three conditions at which Hr may be minimum

(a) Hi min. at 0? when zj >

(b) H^ = min. at < 9^ < 15 when z\ - =§

(c) H^ * min. at 9^ = 15 when z\ < -^
The conditions for all Hr to be minimum are summarized in Table 28.

3y systematic search for the value of zj which satisfies the given

condition E 8? = 25. the optimal solution will be obtained.
n=»l x



Table 28. Conditions necessary for H$ to be minimum
for Example (6).

n
Minima occur at

e
l

n
z
l

> 0.1

1 o < e* < 5 - 0.1

5 < 0.1

> o.6

2 - 30 - 50 zj - l < z" < 0.6

20 < - l

>-HI
3 o < e? < 15— i — = _1§

15 <-*$

The region - 0.6 < z? < 0.1 does not give the feasible solution.

Considering the region -l<z"<- 0.6, the feasible solution corresponding

to this value of zj is given by Table 29.

Table 29. 9^ corresponding to the value of z. in

region of - 1 < z-^ < - 0.6

XI i 2 D11

1 5

2 - 30 - 50 z,
J.

20 ~ e
i

20

3 15 15

w
i

5 + e*

(25)

35- e
2

40
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This satisfies the given end-point condition which gives

- 25 - 50 z
x
= 25

The optimal solution corresponding to the value of z^ = - 1 is given by

Table 30.

Table 30. The optimal solution for z, - 1.

^\i
n ^-^ 1 2 D*

1 5 5

2 20 20

3 15 15

w± (25) (15) 40

The total cost for the solution given by Table 30 is

3 2

£ z f? (e
n

) m $177.50.
p=l i=l * 1n=l

Checking the condition of optimality of the solution given by

Table 30 by the perturbation method results in

\i
n

v*""\ 1 2 D"

1 5 5

2 19 1 20

3 2_ 14 15

w
i (25) (15) 40

The total cost for the above is

£ E f? (e
n

) = $183.49.
n=l i=l

Hence, the optimal solution is that given by Table 30<



EXAMPLE (7) . THREE ORIGINS AND FOUR DEMAND POINTS
(NON-LINEAR COST FUNCTION WITH SET UP COST)

The problem is represented by Table 31*

53

m

a
•H
O
Pi

a
a)

B
<D

«

Table 31* Transportation costs and requirements
for Example (7).

Depots

\ i

n \
1 2 3

d"
n

a
l

b
l

n
c
l

n
a
2

b
2

n
c
2

n
*3 b

3

n
c
3

1 1.0 3.1 2 7.0 25

2 2.0 1 4.1 3.0 40

3 5.0 - .01 10 3.0 2.0 5 30

4 3.0 1.0 0.2 5 4.0 35

Wi 4o 30 6o 130

The variable part of the Hamiltonian equation for this problem Is

3-1 3
H" = E z

n 6" + £ F? (6
n
), n = 1, 2, 3. *•

> Id ' 4 1=1 x ±

- 4

4

+ 4 4 + (4 4 + 4 <4>
2
+ 4 Ki

+ 14 4 + 4 (4>
2 + °2 L4| + 14 e

3
+ b

3
<e5>

2 + c
3 L

e
5J>

Since »2 > D° - 9
n
- eg, then

S? =
(«J

+ aj - a^ - »$ D
n
) 8° + (,| + 4 - a5 - 2b^ if) 6^

+ (b£ + b°) (ej>
2
+ <bg + b§) (e^)

2
+ b° (D

n
)

2

+ 2b54 e
2
+ 4L4J*4[4J^UDn -4-4J + 4>

5n



fr

Stage 1:

The variable part of the Hamiltonian equation for the first demand

point (stage) is

H^ « {z\ - 6) b\ + (z\ - 3-9) 6^+2
|_6^J

+ 175

when ej - arid e| - 0, hJ = 175

When z^ > 6, 97 =0, and for 6
2 25 in the following equation

H^ = {z\ - 3.9) 8^+2 [e|j + 175 = 175

gives zT = 3.82

To see the effects of different values of z« on ^ne Hamiltonian function

of Hy" when 6-^ = and 6
2
varying from to 25 » a computer program is

written for IBM 1620 computer. The results thus obtained are presented

graphically (see Fig. 6).

Following are the nine conditions at which HZ may be minimum;

(a

(b

(c

(d

(e

(f

e-L = & 9
2

when Zj > 6 & z
2
> 3.82

e£ = &

e£ = &

H^ = min. at

H~ = min. at

H~ = min* at

Hy = min. at < 6-j^ < 25 &

H^ min. at < 6^ < 25 & 9
2

= or 25 when z^ = 6 & z\ 3.82

K " mXn ' at ° < q\ < 25 & < e| < 25 when z\ = 6 & z\ < 3-82

2 25 when z^ > 6 & z
2 3*82

1 11
2
= 25 when Zt > 6 & z

2
< 3-82

6
2
= when z± = 6 & z2

> 3.82
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Fig. 6. Effects of z3; on H^ when G^ = 0, and 6
2
varies from

to 25.
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(g) hJ = min. at 8
]L
= 25 & 8

2
= when z^ < 6 & z2

> 3.82

(h) HJ min. at 8* = 25 & 63 = when zj < 6 & z\ = 3-82

(i) H^ = min. at < 8* < 25 & < 9
2
< 25 when z\ < 6 & z\ < 3.82

Stage 2:

!Ihe variable part of the Hamiltonian equation for the second demand

point (stage) is

H^ - (z* - 1) 9* + (a% + 1.1) 92
+ 1 [^J + 120

when 9* = and 9* = 0, H^ 120

2 -2
when 9g = 0» z~ « - 1#1

H^ - 120 = (z^ - 1) 9* + 1 |_9* |
+ 120

at 9^ = 40

z\ = 0.975

(a

(b

(c

(d

(e

(f

Following are the nine conditions at which Hy may be minimum:

_2 2 2 2 2
H^ = min. at Q-^ m & 92 when z-^ > .975 & zz > - 1.1

H^ = min. at 9^ & < 8
2
< 40 when z^ > .975 & z

2
= - 1.1

_2 2 2 2 2
H^ = min. at 9, = & 9

2
- 40 when z^ > »975 & z2 < ~ 1.1

2 2 2 2 2
IT = min. at 9, = or 40 & 62

= ° wiien z
l
= *^5 & z2 > ' "L#1

H^ - min. at 9^ = or 40 & < 9^ < 40 when z^ .975 & z
2
- - 1.1

H^ min. at 9^ - & Q* = 40 when z\ = .975 & z2
< - 1.1



57

/ » 2 2 2 2 2
(g) H^ = min. at e1

= ^0 & 62
= when z-j^ < ,975 & z2

> - 1.1

(h) H
2
, - min. at < G

2
< 40 & < 6

2
< 40 when z\ < .975 & z

2
= - 3L '1

(i) H
2
. « min. at < 9

2
< 40 & < 6

2
< 40 when z

2 < .975 & 4 < - 1.1

Stage 3

J

The variable part of the Hamiltonian equation for the third demand

point (stage) is

H
3 = (z

3 + 3) e^ + (z^ + i) e
3 - o.oi (e^)

2
+ 10 [e^J

+ 5
L
30 " e

i " e
ij * *°

when 6£ and 9;J 0, then

H3 = 5 + 60 = 65

when 8£ 30 s and 9
2

0, so

H^ s 65 - (z^ + 3) ©i
- o.oi (ej*)

2
+ io [e?J + 6o

= (z
3 + 3) 30 - o.oi (30)

2 +10+60

00 z
l - 30 33

Similarly, when 83 = 0, and 93 = 30, then

H
3 = 65 = (z|+ 1) e| + 60

• •
Z
2 30 6

Following are the nine conditions at which It? may be minimum:



58

(a

(b

(c

(d

(e

(f

(g

(h

(i

H^ = min. at 6^ = & 9g = when z^>-^&Z2>-|

Y? = rain, at 6^ = & e| «0 or 30 when zi>-][5 &z2=-f

T3.H^ = min. at
v

fl| = 4 e| = 30 when z^ > - ^ & z| < -

H5 = min. at 8^ =0 or 30 & e| = when z^ = - ^ & z| > -

H3 = min. at 9^ =0 or 30 & e| =0 or 30 when z^ = - || & z| = -

3IK = rain, at
v

9
1 ~ ° & 9

2
= ^° when Z

^
= " li

& Z
2
< "

H3 = min. at 9^ 30 & 9^ = when z^ < - || & z3 > .

3
H-' = rain, at 9^= 30 9^ = when z^ < - j| & z| = -

H3 = min. at < 9? < 30 & < 9^ < 30 when z3<-£2& z3<-4
V "— 1~" ~2~ II520

Stage 4:

The variable part of the Hamiltonian equation for the fourth demand

point (stage) is

hJ; = (bJ - 1) ej + (zg - 3) 83 + 0.2 (gg)
2
+ 5 |_e^J + 140

4 4
Taking partial derivative of !C with respect to 9

2 » and equating it to

zero gives

4
9Hv 4 4—r = z, - 3 + 0.4 97

o9*

• 4 4 4 4
o 6* 7.5 - 2.5 zT; or Zg = 3 - 0.4 9g

4
Considering 9, = and

h£ = (z\ - 3) 6^ + 0.2 (9^)
2
+ 5 j^J + 140
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Taking partial derivative of H^. with respect to
2
and equating it to

zero gives

4

ae
2

o% 4 = 7 ' 5 " 2 ' 5 4
or 4=3-0.4 9^

For 63 = 35

4 = 3- 0«4 (35) - - 11

4
For 92 = 0,

4 = 3

Referring to Fig» 7» some intermediate point for the condition

4 3 - 0.4 9g at which H^ = 140 is found. For this, the value of e

follows t

H* = 140 = (3 - 0.4 4 " 3) 4 + °*2 (e
2
)2 + 5 L

e
2j

+ liK)

- 5 - - 0.4 (4)
2
+ 0.2 (Bg)

2

= - 0.2 (0^)
2

.\ (e^)
2
= 25

311(1 4 = 5

4 4
Hence, the value of z2 corresponding to the value of 6

2
= 5 is

z\ = 3 - 0.4 (5) = 3 - 2 . 1

4 4 4
H as minimum when z2 is in the region - 11 < z2 < 1.
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- 50-

- 100

Fig. 7-
L L L

Relation between H and z_ -«hen G. = and
v 2 1

h
Q varies froia to 35-



4
when z-,> 1 &

4

4
when z-i = 1 & *2 > X

4
when z-j = 1 & 22 = 1
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Following are the twelve conditions at which H^ may be minimum.

(a) Hi = min. at 8
1
a & 6

2
when z-^ > 1 & z

2
> 1

4 4 4 4 4
(b) iC = min. at 9^ = & 92 = or 5 when z1 > 1 & z2 1

4 4 4 4 4 4
(c) H^ = min. at 9-^ = & 92 7*5 - 2.5 z2 when Z! > 1 & -11 < z2 < 1

(d) H^ = min. at 9^ = & e2 = 35

, » 4 4 4
(e) Hj - min. at < ©1

< 35 & 92
=

(f

)

H^ « min. at < ej < 35 & 92
- or 5

(g) hJ[
a min. at < 9^ < 35 «S: ©2 ~ "7 * 5 " 2 * 5 4 ^en z

l
= X & "n - z2

< 1

, . 4 4 4 4 4
(h) H^ a min. at <

9-l
< 35 & < 92 < 35 when z1 1 & z2 < -11

(i) H^ = min. at 9^ a 35 & e2 " ° when z
l
< -1 & z2 > X

(j) H^ = min. at < 9, < 35 & 92
= or 5 when z-^ < 1 & z2

a 1

(k) H^ = min. at < 9^ < 35 & 9^ = 7*5 - 2.5 z!j when zj < 1 & -11 < z
£
< 1

(1) H^ a min. at < ej < 35 & < 9
£
< 35 when z£ < 1 & z\ < -11

The conditions for all l£ to be minimum are summarized in Table 32.

The values of z? and z£ in Table 32 may be defined as boundary values.

By systematic search of each combination of the interior and/or the boundary

values of z? and z~ for the feasible solutions, cases which do not satisfy

the constraints are eliminated. The procedure is as follows z

Consider first the value of z? a 6 and the combination of all the

values of z
2
in steps to find the feasible solutions.



62

Table 32. Conditions necessary for JT to be minimum
for Example (7)

V

n
minima occur at

e
i q *i 4

> 6 > 3.82

25 > 6 = 3.82

i 25 > 6 < 3.82

1
o < e* < 25 = 6 > 3-82

o < e* < 25 or 25 = 6 = 3.82

o < e^ < 25 o < e\ < 25 = 6 < 3.82

25 < 6 > 3.82

25 < 6 = 3.82

o < e* < 25 < 0g < 25 < 6 < 3.82

> .975 > - 1.1

o < e^ < 40 > .975 = - 1.1

40 > .975 < - 1.1

2
or 40

or 40 < 63 < 40

= .975

= -975

> - 1.1

= - 1.1

40 = .975 < - 1.1

40 < .975 > - 1.1

o < e^ < 4o < e| < 4o < .975 = - 1.1

o < e^ < 40 < e^ < 40 < .975 < - 1.1
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Table 32. (continued)

n
minima occur at

A
2

n n

or 30

or 30

30

30

o < e^ <

o

or 30

30

or 30

30

o

30 o < e| < 30

73
15

15

>.&
15

.-42
15

..a
15

~ 15

<-»

<-8

-8

> -

< -

> -

< -

> -

< -

o

k
o. < e:r <

< 37 <

0<9^<

k
< e

i
<

> 1

or 30 > 1

7-5 - 2.5 4 > 1

35 > 1

35 =1

35 or 5 =1

35 7-5 - 2.5 z
z

= 1

35 < e^ < 35 =1

> 1

= 1

11 < zi < 1

< - 11

> 1

= 1

11 < z- < 1

< - 11
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Table 32. (continued)

n
minima occur at

°; e
n

6
2

n
z
l

n
z
2

35 < 1 > 1

o < ej < 35 or 5 < 1 = 1

k

< ej < 35 7.5 - 2.5 Zg < 1
4

- 11 < z
z
< 1

< e
l
< 35 o < eg < 35 < 1 < - 11

Take zj = 6 and z£ = 3*82. This does not give the feasible solution

as z^ = 6 does not satisfy the constraint XL 9- = W_ . Hence, any combina-

tion of this value of z? with z? will not give feasible solutions.

Next, consider the value of z? = 1.

The value of zl? = 1 with the values of z£ as 3*82, 1 and - * does

not give feasible solutions.

The values of z^
1 = 1 and z^ in the region - 1.1 < z^ < - 4 give the

feasible solution shown by Table 33 • This solution has four undecided

control variables.

The values of z? = 1 and z£ = - 1»1 also give a feasible solution and

is shown by Table 3^* This solution has five undecided control variables.

No more combinations with z-, = 1 will be considered as they would give an

increasing number of undecided control variables. Similarly, the values

of z? = 0.975 and z!J = 3*82 do not give a feasible solution.

The feasible solution for the combination z? = 0.975 and z^ = 1 is

presented by Table 35* This solution has five undecided control variables.

The feasible solution for the combination of z? 0.975 and zj} « - 7
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is shown by Table 36. This solution has five undecided control variables.

The other combinations of z? and z^ will have an increasing number of

undecided control variables and hence will not be considered.

Table 33. 8? corresponding to the values of z? = 1

and z£ in the region - 1.1 < zh < - j>

n ^""^-s^ 1 2 _J D
n

1
(25)

< e^ < 25

(0)

< e^ < 25
(0) 25

2 40 40

3 30 (0) 30

4
(15)

< e^ < 35

(0)

7-5 - 2.5 z£
(20) 35

*i 40 30 60 130

The total cost for the feasible solution of Table 33 is $360.00.

Table 3^» 6? corresponding to the values of z£

and z
2
= - 1.1

= 1

n ^^^v^ 1 2 3 D"

1
(25)

< ej < 25

(0)

< el <
- (0) 25

2
(0)

< 6^ < 40 (40) 40

3 30 (0) 30

4
(15)

< e
i
< 35

(0)

7-5 - 2.5 z!j
(20) 35

W± 40 30 60 130
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The total cost for the feasible solution shown in Table 34 is $360.00,

Table 35. 8? corresponding to the values of z? = 0.975

and b5 m 1.

^\i
n ^"-^ 1 2 3 D11

1
(0)

< ej < 25

(25)

o < e^ < 25
(0) 25

2
7^0)

or 40
(o) 40

3 30 30

4
(0)

< e
i
< 35

(5)

or 5
(30) 35

Wi 40 30 60 130

The total cost for the feasible solution shown in Table 35 is $360.50.

Table 36. 6? corresponding to the values of z£ = 0.975

and z£ n - I

1 2 3 D11

1
(0)

< ej < 25

(0)

< e* < 25
(25) 25

2 (40)

or 40
(0) 40

3
(30)

or 30
(0) 30

4' (0)

or 40
. (35) 35

W
i

40 30 60 130
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The total cost for the feasible solution of Table 36 is $486.00.

Comparing the total costs for the feasible solutions, the optimal

solution is given by Tables 33 and 34.

Checking the condition of optimality of the solution given by

Tables 33 and 34 by the perturbation method results in

n ^^ 1 2 3 IP

1 25 25

2 1 39 40

3 29 1 30

4 15 20 35

Wi 40 30 60 130

The total cost for the above is $365«10.

Hence, the optimal solution is given by Tables 33 and 34 and the

optimal cost is $360. 00.
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CONCLUDING REMARKS

The discrete version of maximum principle satisfies only a necessary

condition, but not the sufficient condition, so it cannot pin-point the

optimal solution in most of the cases.

The systematic search method eliminates the conditions which do not

give feasible solutions. A feasible solution, among the few obtained by

the systematic search method, having least number of undecided control

variables usually gives the optimum solution. However, this is not the case

with example (3)« This method is still not perfect. There should exist

some better methods which may be found in the future research work.

Very recently, in a paper titled "A Note on the Discrete Maximum

Principle and Distribution Problems," by Charnes and Kortanek 1

12J
citing

a simple linear cost function example, commented that the maximum principle

has a cumbersome computational approach for finding an optimal solution.

In their words, it runs as "the number of choices (and indeterminates

)

builds up at a combinatorial rate as the number of depots, which is one

greater than the number of z, 's, and the number of destinations, which equal

the number of Hamiltonians or sets of 6. 's, increases. Thus, a great deal

more than direct application of the discrete maximum principle is required

for effective solution. In addition to this, we may point out, using this

tiny example, another serious difficulty with numerical procedures —
obtaining an optimum requires the exact values for the z , i.e., missing the

correct values by however small an amount can yield the wrong values for

the B?i"

This is investigated using the commentator's own example (Example (2))
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by the systematic search method. There is only one feasible solution to

their particular example and, of course, this is the optimum one. It

appears that the criticism is premature at this early stage of development

of this method. Compared to established linear and non-linear programming

techniques, this is in its infancy and needs future developments before

it can be compared for efficiency.
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Optimization of transportation problems, with only one type of

resource and with its total supply equal to the total demand, is studied

through the application of the discrete version of maximum principle. An

outline of general algorithm of the discrete version of maximum principle

and formulation of the transportation problem in terms of this algorithm

are given.

The purpose of this report is to present an elegant stepwise approach

to solve the transportation problems by the application of the discrete

version of the maximum principle. An algorithm based on this principle

reduces such problems to a standard form from which a number of feasible

solutions are obtainable. A systematic search method is developed to obtain

feasible solutions and to find an optimum solution or solutions among the

feasible solutions.

A feasible solution, among few obtained by the systematic search method,

having least number of undecided control variables, usually gives the optimum

one. However, this is not the case with Example (3)-

Simple problems involving linear cost functions with two and three

depots are systematically analysed in order to obtain generalized computational

procedure for solving problems of more than three depots. A problem with

four depots is solved using this procedure. Problems involving non-linear

cost functions, with and without set-up costs, having two and three depots,

are systematically analysed.

A very recent comment, on the application of the maximum principle

to linear cost function transportation problems, that it is a cumbersome

computational approach for an optimum solution is investigated by solving



the commentator's example, Example (2), by the systematic search method.

It appears that the criticism is premature at this early stage of the

development of this method.


