THE APPICATION OE THE DISCPヨTE KMXIMUM PSINCIPLE TO TRANSPORTATION PROBLEWS WITH IINEAR AND MON-IIREAS COST FUNCTIONS

by

JAGDISHCHANDDA MAGATAL PMNCHAL
 B. E. (Niech.) Maharaja Sayajirao University Baroda, India, 1959

A MASTER'S REPORT
submitted in partial fulfillment of the requirerents for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

> KANSAS STATE UNIVERSITY
> Manhattan, Kansas

1965

TABIE OE CONTENTS

IMT?ODUCTION 1
T:E DISCPETE MAXIN: PRIMCIPIE 3
FORINLATION OF TFE TRANSPORTATION PROBLEM BY THE DISCRETE MAXIMUM PRIVCIPIE 6
EXLLPLE (I). TNO ORIGINS AND FOUR DENAND POINTS (INEAR COST FUNCTION) 9
EXAMPLE (2). THOE ORIGINS AND FOUR DEMAD POIITS (IINEAR COST FUNCTION) 16
COMPUTATIONAL PROCEDJRES FOR PROBLENS WITH LINE: 24
 COST FUNOTION: 26
EXAMPLE (4). T:O ORIGINS AND THREE DEAND POINS (NON-LINEAR COST FUNCTION) 34
ENAPLE (5). THREE ORIGIMS AKD THRE DEAND POINTS (non-Linear cost sunction) 39
EMARLE (6). THO ORIGINS AKD THPEE DEMAN POINTS (HON-LINEAR COST FUNCTION NITH SET UP COET) 48
EXDSLE (7). THPE ORICIIS AND FOUR DEMND POINTS (NON-LINEAR COST FUNCTION WITH SET UP COST) 53
CO:OCLUDI:G REMARKS 68
ACKNO:IEDOEENTS 70
REFEREMCES 71

INTRODUCTION

Optimization of transportation problems with linear cost functions can be regarded as a generalization of the assignment problems and can be accomplished by the Simplex Kethod of Linear Programing $\lfloor I\rfloor$. However, some special methods, such as the Northwest Corner Method, the Unit Penalty Method and Vogel's Approximation lifhod, have been developed which are easy to apply and are less tedious than the Simplex lyethod [2, 3]. Recently, a discrete version of the Maximun Principle has been applied to the two, three and four depots problems with ease, in view of calculations [4].

Optimization of transportation problems with non-linear cost Iunctions can no longer be solved by Linear Programming liethods. Such problems for two and three depots are solved by Dynamic Frogramming $[5]$. Recently, a discrete version of the Vavimum Principle has been applied to the tro depots problem. This has resulted in a great simplification of numerical calculations $[6,7\rfloor$.

The three depots problem with non-linear cost function is investigated by Hwang, et al $\lfloor 8\rfloor$. The Maximurn Principle for continuous processes was orisinally developed by Pontryasin [9]. The Discrete version of this Haximum Principle was proposed by Chang $[10\rfloor$ and $K_{a} 亡_{z}\lfloor I I]$ and was developed further by Fan and Wang [6].

The aim of this report is to present the application of the Liscrete Maximum Principle to obtain the solution oi transportation problems having both linear and non-linear cost Iunctions in a relatively elerant manner. Simple problems of the linear type with two and three origins are systematically analyzed in order to develop a generalized computational procedure for solving problems having more than three orisins. A problem with four
origins is solved to illustrate in detail both this general computational procedure and a systematic search for feasible solutions and then an optimal solution. Simple problems of tr:o and three depots having non-linear cost functions, with and :ithout set-up costs, are also systematically illustrated. Very recently, Charnes and Kortanek $\lfloor 12\rfloor$ have commented on the Discrete Vaximum Principle and Distributation Problems published by Fan and Wang [? |. The simple example for a linear cost function cited by Charnes and Kortanek is included in this report. The systematic search for an optimal solution is applied to demonstrate that their comment on having serious difficulty with numerical procedures to obtain an optimum solution is prenature. As this method is in an early stace of development, it does not appear to be appropriate to compare the efficiency of this present method with that of others which have been more fully refined.

THE DISCRETE MAYIMUM PRINCIPLE

The following is an outline of the general algorithm of the Discrete Maximum Principle for systems without information feedback given by Fan and Vang $\lfloor 6\rfloor$.

A multistage decision process consisting of N-stages in sequence is schematically shown in Fig. 1. The state of the process stream, denoted by an s-dimensional vector, x, is transformed at each stage according to the decision made on the control actions denoted by a t-dimensional vector, θ. The transformation of the process stream thus brought about at the $n^{\text {th }}$ stage is given by the transformation operator (or performance equation)

$$
\begin{align*}
& x_{i}^{n}=T_{i}^{n}\left(x_{1}^{n-1}, x_{2}^{n-1}, \ldots, x_{s}^{n-1} ; \theta_{1}^{n}, \theta_{2}^{n}, \ldots, \theta_{t}^{n}\right) . \tag{I}\\
& n=1,2, \ldots, N ; i=1,2, \ldots, s .
\end{align*}
$$

or, in vector form,

$$
x^{n}=T^{n}\left(x^{n-1} ; \theta^{n}\right)
$$

The optimization problem is to determine the sequence of θ^{n}, subject to the constraints, $\eta^{n} \leq \theta^{n} \leq \xi^{n}, n=1,2, \ldots, N$, wich will maximize $\sum_{i=1}^{S} c_{i}^{n} x_{i}^{n}$, with x_{j}^{0} preassigned, $i=I, 2, \ldots$, s. Here η^{n} and ξ^{n} are the lower and upper bounds of θ^{n} and c_{i} denotes some specified constants.

The procedure for finding the optimal sequence of θ^{n} is to introduce an adjoint vector, z^{n}, and a Hamiltonian function, H^{n}, satisfying

[^0]

Fig. 1. Yultistage decision process.

$$
\begin{align*}
& H^{n}=\sum_{i=1}^{s} z_{i}^{n} T_{i}^{n}\left(x^{n-1} ; \theta^{n}\right), \quad n=1,2, \ldots, N . \tag{2}\\
& z_{i}^{n-1}=\frac{\partial \mu^{n}}{\partial x_{i}^{n-1}}, \quad n=1,2, \ldots, N ; i=1,2, \ldots, s . \tag{3}\\
& z_{i}^{n}=c_{i}, \quad i=1,2, \ldots, s . \tag{4}
\end{align*}
$$

and to determine the optimal sequence of control actions, $\bar{\theta}^{n}$, from the conditions

$$
\begin{equation*}
H^{n}=\text { maximum, or } \frac{\partial H^{n}}{\partial \theta^{n}}=0 \tag{5}
\end{equation*}
$$

For the optimization problem in which some of the final values of state variables x_{i}^{N} are preassigned, such as $x_{a}^{N}=W_{a}$ and $x_{b}^{N}=W_{b}$, and the objective function is specified as

$$
\sum_{\substack{i=1 \\ i \neq a \\ i \neq b}}^{s} c_{i} x_{i}^{n}
$$

the basic algorithm represented by equations (2) through (5) is still applicable, except that equation (4) is replaced by

$$
z_{i}^{n}=c_{i} \quad\left\{\begin{array}{l}
i=1,2, \ldots, s . \tag{6}\\
i \neq a, b .
\end{array}\right.
$$

If the minimizing, instead of the maximizing, sequence of control actions is to be decided, the above algorithm remains applicable, except that equation (5) is replaced by

$$
\begin{equation*}
H^{n}=\text { minimum, or } \frac{\partial H^{n}}{\partial \theta^{n}}=0, \quad n=1,2, \ldots, N . \tag{7}
\end{equation*}
$$

FOZ:ULATION OE THE TRANSPORTATION PROBLEM BY THE DISCRETE MAKINIK PRINCIPLE

The transportation problems having linear as well as non-linear cost functions shall first be formulated in terms of the discrete maximum principle.

Suppose that there is only one type of resource and that its total supply is equal to the total demand for it. Iet
$\theta_{i}^{n}=$ the quantity of the resource sent from the i-th depot (origin) to the n-th demand point and
$F_{i}^{n}\left(\theta_{i}^{n}\right)=$ the cost incurred by this operation.
If there are s depots and N demand points, the problem is to determine the values of $\theta_{i}^{n}, i=I, 2, \ldots, s ; n=I, 2, \ldots, N$, so as to minimize the total cost of transporting the resource

$$
c_{s N}=\sum_{n=1}^{N} \sum_{i=1}^{s} F_{i}^{n}\left(\theta_{i}^{n}\right)
$$

subject to the constraints
(i) $\quad \theta_{i}^{n} \geq 0$
(ii) $\sum_{n=1}^{N} \delta_{i}^{n}=W_{i}$, number of units of the resource available at the i-th depot, $i=1,2, \ldots, s$.
(iii) $\sum_{i=1}^{s} \epsilon_{i}^{n}=D^{n}$, number of units of the resource recuired by the n-th demand point, $n=1,2, \ldots, N$.

Defining the demand points as stages and the total amount of resource wich has been transported from the i-th depot to the first n stages (demand points) as state variables $x_{i}^{n}, i=1,2, \ldots, s-1$, then

$$
\begin{aligned}
& x_{i}^{n}=x_{i}^{n-1}+\theta_{i}^{n}, \quad x_{i}^{0}=0, \quad x_{i}^{N}=N_{i} \\
& i=1,2, \ldots, s-1, \quad n=1,2, \ldots, N .
\end{aligned}
$$

It must be noted that, though there are "s" depots in the problem, there are only (s-l) state variables. This is because the demand by each stage is preassicned; hence the number of the units supplied from the s-th depot to n-th stage can be obtained by subtracting the sum of the units supplied to the $n-t h$ stage from the first through ($s-1$)-th depots from the total number of units required by the n-th stage. That is

$$
\theta_{s}^{n}=D^{n}-\sum_{i=1}^{s-1} \theta_{i}^{n}
$$

Since it is desired to minimize the total cost of transportation, a new state variable, x_{S}^{n}, may be deîined as

$$
\begin{align*}
& x_{s}^{n}=x_{s}^{n-1}+\sum_{i=1}^{s} F_{i}^{n}\left(\theta_{i}^{n}\right) \tag{9}\\
& x_{s}^{0}=0, \quad n=1,2, \ldots, N .
\end{align*}
$$

It can be show that x_{s}^{N} is equal to the total cost of transportation. The optimization problem is formulated as one in $\operatorname{minh} x_{s}^{N}$ is to be minimized by the proper choice of the sequence of $\theta_{i}^{n}, i=1,2, \ldots, s-1, n=1,2, \ldots, N$, for the process described by equations (8) and (9).

A discrete version of the maximum principle asserts that, for finding the optimal sequence of θ^{n}, if the adjoint vector, z^{n}, and the Hamiltonian function, H^{n}, satisfying

$$
\begin{align*}
& H^{n}=\sum_{i=1}^{s} z_{i}^{n} x_{i}^{n}\left(x^{n-1} ; \theta^{n}\right), \quad n=1,2, \ldots, N \tag{10}\\
& z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}}, \quad n=1,2, \ldots, N \tag{11}\\
& z_{s}^{N}=1 \tag{12}
\end{align*}
$$

are introduced, and the optimal sequence of $\bar{\theta}^{-n}$ is obtained from the condition

$$
\begin{aligned}
& H^{n}=\left\{\begin{array}{l}
\text { stationary at the interior point of } \theta^{n} \\
\text { minimum at the boundary point of } \theta^{n}
\end{array}\right. \\
& n=1,2, \ldots, N .
\end{aligned}
$$

For the process under consideration, the Hamiltonian function can be written as

$$
\begin{align*}
H^{n}= & \sum_{i=1}^{s-1} z_{i}^{n}\left(x_{i}^{n-1}+\theta_{i}^{n}\right)+z_{s}^{n}\left\{x_{s}^{n-1}+\sum_{i=1}^{s} F_{i}^{n}\left(\theta_{i}^{n}\right)\right\} \tag{13}\\
& n=1,2, \ldots, N .
\end{align*}
$$

and components of the adjoint vector are, in general,

$$
\begin{equation*}
z_{i}^{n-1}=\frac{\partial H^{n}}{\partial x_{i}^{n-1}}=z_{i}^{n}, \quad i=1,2, \ldots, s \tag{14}
\end{equation*}
$$

Equation (12) results specifically in

$$
z_{s}^{n}=1, \quad n=1,2, \ldots, N
$$

Since z_{i}^{n} and x_{i}^{n-1} are considered as constants at each step in the minimization of the Hamiltonian function given by equation (13), it is convenient to define the variable part of the Hamiltonian function as

$$
\begin{equation*}
H_{v}^{n}=\sum_{i=1}^{s-1} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{s} F_{i}^{n}\left(\theta_{i}^{n}\right) \tag{15}
\end{equation*}
$$

EXANPLE (I). THO ORIGINS AND FOUR DEMAND POINTS (LINEAR COST FUNCTION)

The linear cost function, $F_{i}^{n}\left(\theta_{i}^{n}\right)$ can be expressed by

$$
F_{i}^{n}\left(\theta_{i}^{n}\right)=C_{i}^{n} \theta_{i}^{n}
$$

where
$C_{i}^{n}=$ the cost incurred in supplying one unit of resource from the $i-$ th origin to the n-th demand point.
The problem is represented by Table 1 . Values of C_{i}^{n} (in dollars), D^{n} and W_{i} are shown in this table. The total number of units required by N-demand points is equal to the total number of units supplied from the s-origins, that is,

$$
\sum_{n=1}^{N} D^{n}=\sum_{i=1}^{s} W_{i}
$$

It is required to allocate the number of resource units in such a way as to minimize the total cost of transportation.

Table 1. Transportation costs and requirements for Example (1).

Depots

$\begin{aligned} & \text { n } \\ & \text { +1 } \\ & \text { r- } \\ & 0 \\ & 0 \end{aligned}$		1	2	D^{n}
	1	8	3	8
	2	5	8	20
$\begin{aligned} & \text { ロ̈ } \\ & \text { a } \\ & \text { \# } \\ & \text { A } \end{aligned}$	3	1	3	12
	4	7	2	5
	W_{i}	25	20	45

The variable part of the Hamiltonian equation for this proolem is Equation (15)

$$
\begin{aligned}
H_{V}^{n} & =z_{1}^{n} \theta_{l}^{n}+\sum_{i=1}^{2} c_{i}^{n} \theta_{i}^{n} \\
& =z_{1}^{n} \theta_{1}^{n}+c_{1}^{n} \theta_{1}^{n}+c_{2}^{n} \theta_{2}^{n}, \quad n=1,2,3,4
\end{aligned}
$$

Since $\theta_{2}^{n}=D^{n}-\theta_{1}^{n}$, the folloring is obtained

$$
H_{v}^{n}=\left(z_{1}^{n}+C_{1}^{n}-C_{2}^{n}\right) \theta_{1}^{n}+C_{2}^{n} D^{n}, \quad n=1,2,3,4
$$

Stage 1 :
Substituting $n=1$ in the foregoing equation, the variable part of the Familtonian equation for the first demand point (stage) becomes

$$
H_{V}^{I}=\left(2_{1}^{I}+C_{1}^{1}-C_{2}^{1}\right) \theta_{1}^{I}+C_{2}^{1} D^{I}
$$

From the entries in Table 1 , this becomes

$$
H_{v}^{I}=\left(z_{I}^{I}+5\right) \theta_{I}^{I} \div 24
$$

Thus,

$$
\bar{z}_{1}^{1}=-5=c_{2}^{1}-C_{1}^{1} .
$$

From this three conditions at which $H_{V}^{\mathcal{L}}$ may be minimum result:
(a) $H_{V}^{l}=\min$. at $\theta_{I}^{l}=0 \quad$ when $z_{I}^{I}>-5$
(b) $\quad H_{V}^{I}=\min$. at $0 \leq \theta_{I}^{I} \leq 8$ when $z_{I}^{I}=-5$
(c) $H_{V}^{I}=\min$. at $\theta_{I}^{I}=8 \quad$ men $z_{I}^{I}<-5$.

The conditions (a), (b) and (c) are shom in Fig. 2.
In a similar manner, the values of z_{I}^{n} and θ_{I}^{n} are determined for the rest of the demand points (staces), $n=2,3$ and 4 , which makes H_{V}^{n} a minimum.

Fig. 2. Adjoint vector z_{1}^{1}, showing selection oi θ_{1}^{l} for Example (1).

These values of z_{I}^{n} and σ_{I}^{n} are shown in Table 2 .

Table 2. Conditions necessary for H_{v}^{n} to be minimum for Example (1).

	Minima of H_{V}^{n} occuring at	
	θ_{1}^{n}	z_{1}^{n}
1	$0 \leq \theta_{1}^{0} \leq 8$	$\begin{aligned} & >-5 \\ & =-5 \\ & <-5 \end{aligned}$
2	$0 \leq \theta_{I}^{2} \leq 20$	$\begin{aligned} & >3 \\ & =3 \\ & <3 \end{aligned}$
3	$0 \leq \theta_{1}^{0} \leq 12$	$\begin{aligned} & >2 \\ & =2 \\ & <2 \end{aligned}$
4	$0 \leq 6_{1}^{4} \leq 5$	$\begin{aligned} & >-5 \\ & =-5 \\ & <-5 \end{aligned}$

As given by Equation (14), the value of $z_{I}^{n}, n=1,2,3,4$ are identical. From the values of $z_{1}^{n}, n=1,2,3$ and 4 given in Table 2, Fig. 3 shows the boundary values of z_{1}^{n}, i.e.. \bar{z}_{1}^{n}.

First, the value of z_{1} which gives all solutions satisfying the constraints given by conditions (i), (ii), and (iii) will be obtained; then,

Fig. 3. Boundary values of adjoint vector z_{1}^{n} for Example (1).
the solution mich minimizes the cost, that is, an optimal solution, will be chosen. For illustration, the solutions corresponding to the values of x_{1}^{n} in the region of $-5<z_{1}^{n}<2, n=1,2,3$ and 4 will be given. Comparing the values of $z_{1}^{n}, n=1,2,3,4$ shom in Table 2 with the boundary values of z_{l}^{n} which define the region, the values of θ_{1}^{n} given in Table 3 can be obtained. This solution does not, however, satisfy the end-point condition of $W_{1}=25$.

Table 3. θ_{i}^{n} corresponding to the values of z_{l}^{n} in the region of $-5<\mathrm{z}_{1}^{\mathrm{n}}<2$.

n	1	2	D^{n}
1	0	8	8
2	20	0	20
3	12	0	12
4	0	5	5
W_{i}	32 (25)	13 (20)	45

Then the corresponding solution of $z_{l}^{n}=2$ is found. The results, summarized in Table 4, give the feasible solution which satisfies the end-point conditions.

In order to satisfy the end-point conditions, $W_{1}=25$ and $W_{2}=20_{0}$ θ^{3} has to be 5. The total cost for this solution is

$$
\sum_{n=1}^{4} \sum_{i=1}^{2} c_{i}^{n} \theta_{i}^{n}=\$ 160
$$

This is the only feasible solution and should be the optimal solution. The solution obtained by the linear programming method is the same.

Table 4. θ_{i}^{n} corresponding to the values of z_{1}^{n} at $z_{1}^{n}=2$

EXAMPLE (2). THREE ORIGINS AND FOUR DEMAND POINTS (invear cost function)

The problem is represented by Table 5 .

Table 5. Transportation costs and requirements for trample (2).

The variable part of the Hamiltonian equation for this problem is

$$
\begin{aligned}
H_{v}^{n} & =\sum_{i=1}^{2} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{3} c_{i}^{n} \theta_{i}^{n}, \quad n=1,2,3,4, \\
& =z_{1}^{n} \theta_{1}^{n}+z_{2}^{n} \theta_{2}^{n}+c_{1}^{n} \theta_{1}^{n}+c_{2}^{n} \theta_{2}^{n}+c_{3}^{n} \theta_{3}^{n}
\end{aligned}
$$

Since $\theta_{3}^{n}=D^{n}-\theta_{1}^{n}-\theta_{2}^{n}$, then

$$
H_{v}^{n}=\left(z_{1}^{n}+C_{1}^{n}-C_{3}^{n}\right) \theta_{1}^{n}+\left(z_{2}^{n}+C_{2}^{n}-C_{2}^{n}\right) \theta_{2}^{n}+C_{3}^{n} D^{n}
$$

Stage I:
The variable part of the Hamiltonian equation for the first demand point (stage) is

$$
M_{v}^{1}=\left(z_{1}^{1}+C_{1}^{1}-C_{3}^{1}\right) \theta_{1}^{1}+\left(z_{2}^{1}+C_{2}^{1}-C_{3}^{1}\right) \sigma_{2}^{1}+C_{3}^{1} D^{1}
$$

From the entries in Table 1, this becomes

$$
F_{V}^{I}=\left(z_{1}^{I}+4\right) \theta_{1}^{I}+\left(z_{2}^{I}+3\right) \theta_{2}^{I}+72
$$

Thus

$$
\bar{z}_{1}^{1}=-4=c_{3}^{1}-c_{1}^{1}, \quad \bar{z}_{2}^{1}=-3=c_{3}^{1}-c_{2}^{1}
$$

From this nine conditions at which F_{8}^{l} may be minimum result:
(a) $H_{V}^{I}=\min$. at $\theta_{I}^{I}=0$
$\& \theta_{2}^{l}=0$
when $z_{I}^{I}>-4 \& z_{2}^{1}>-3$
(b) $H_{V}^{I}=\min$. at $0 \leq \theta_{I}^{I} \leq 18 \& \theta_{2}^{I}=0$ when $z_{I}^{I}=-4 \& z_{2}^{I}>-3$
(c) $M_{v}^{I}=\min$. at $\theta_{1}^{I}=18 \quad \& \theta_{2}^{I}=0 \quad$ when $z_{1}^{I}<-4 \& z_{2}^{I}>-3$
(d) $H_{v}^{I}=\min \cdot$ at $\theta_{I}^{I}=0$
\& $0 \leq \theta_{2}^{I} \leq 18$ when $z_{1}^{I}>-4 \& z_{2}^{I}=-3$
(e) $r_{v}^{I}=\min$. at $0 \leq \theta_{I}^{I} \leq 18 \& 0 \leq \theta_{2}^{I} \leq 18$ when $z_{I}^{I}=-4 \& z_{2}^{I}=-3$
(f) $\quad H_{V}^{I}=\min$. at $\theta_{1}^{I}=18 \quad \& \theta_{2}^{I}=0 \quad$ when $z_{I}^{I}<-4 \& z_{2}^{I}=-3$
(g) $H_{V}^{I}=\min$. at $\theta_{1}^{I}=0 \quad \& \theta_{2}^{I}=18 \quad$ when $z_{1}^{I}>-4 \& z_{2}^{I}<-3$
(h) $H_{V}^{I}=\min$. at $\theta_{I}^{I}=0 \quad \& \theta_{2}^{I}=18 \quad$ when $z_{I}^{I}=-4 \& z_{2}^{I}<-3$
(i) $H_{v}^{I}=\min$. at $0 \leq \theta_{1}^{I} \leq 18 \& 0 \leq \theta_{2}^{I} \leq 18$ when $z_{1}^{I}<-4 \& z_{2}^{I}<-3$.

In a similar manner, the values of $z_{1}^{n}, z_{2}^{n}, \theta_{1}^{n}$, and θ_{2}^{n} are determined for the rest of the demand points (stages), $n=2,3$ and 4 , which makes H_{v}^{n} a minimum. These values of $z_{1}^{n}, z_{2}^{n}, \theta_{1}^{n}$ and θ_{2}^{n} are shown in Table 6 .

Table 6. Conditions necessary for H_{v}^{n} to be minimum
for Example (2)

n	Minimum of H_{V}^{n} occurs at			
	θ_{1}^{n}	θ_{2}^{n}	z_{1}^{n}	$\mathrm{z}_{2}^{\mathrm{n}}$
1	$\begin{gathered} 0 \\ 0 \leq \theta_{1}^{1} \leq 18 \\ 18 \\ 0 \\ 0 \leq \theta_{1}^{1} \leq 18 \\ 18 \\ 0 \\ 0 \\ 0 \leq \theta_{1}^{I} \leq 18 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \leq \theta_{2}^{1} \leq 18 \\ 0 \leq \theta_{2}^{1} \leq 18 \\ 0 \\ 18 \\ 18 \\ 0 \leq \theta_{2}^{1} \leq 18 \end{gathered}$	$\begin{aligned} & >-4 \\ & =-4 \\ & <-4 \\ & >-4 \\ & =-4 \\ & <-4 \\ & >-4 \\ & =-4 \\ & <-4 \end{aligned}$	$\begin{aligned} & >-3 \\ & >-3 \\ & >-3 \\ & =-3 \\ & =-3 \\ & =-3 \\ & <-3 \\ & <-3 \\ & <-3 \end{aligned}$
2	$\begin{gathered} 0 \\ 0 \leq \theta_{1}^{2} \leq 29 \\ 29 \\ 0 \\ 0 \leq \theta_{1}^{2} \leq 29 \\ 29 \\ 0 \\ 0 \\ 0 \leq \theta_{1}^{2} \leq 29 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \leq \theta_{2}^{2} \leq 29 \\ 0 \leq \theta_{2}^{2} \leq 29 \\ 0 \\ 29 \\ 29 \\ 0 \leq \theta_{2}^{2} \leq 29 \end{gathered}$	$\begin{aligned} & >-4 \\ & =-4 \\ & <-4 \\ & >-4 \\ & =-4 \\ & <-4 \\ & >-4 \\ & =-4 \\ & <-4 \end{aligned}$	$\begin{aligned} & >-? \\ & >-7 \\ & >-7 \\ & =-7 \\ & =-7 \\ & =-7 \\ & <-7 \\ & <-7 \\ & <-7 \end{aligned}$

Table 6. (Continued)

The conditions for all F_{v}^{n} to be minimum are tabulated in Table 6. As given by Equation (14) , $z_{1}^{1}, z_{1}^{2}, z_{1}^{3}$ and z_{1}^{4} are identical. Similarly, $z_{2}^{1}, z_{2}^{2}, z_{2}^{3}$ and z_{2}^{4} are also identical. From the values of z_{1}^{n} and z_{2}^{n} given in Table 6, Figs. $4 a$ and $4 b$ show the boundary values of z_{1}^{n} and z_{2}^{n}; i.e.; \bar{z}_{1}^{n} and \bar{z}_{2}^{n}.

By systematic search of each combination of the interior and/or boundary values of z_{1}^{n} and z_{2}^{n} (see Figs. $4 a$ and $4 b$) for feasible solutions, cases wich do not satisfy the constraints are eliminated. For instance, the value z_{1}^{n} in the region $z_{1}^{n}>0$, together with any values of z_{2}^{n} will yield $\sum_{n=1}^{n} \theta_{I}^{n}=0$, which does not satisfy the constraint $W_{1}=20$. Similarly the combination of $z_{1}^{n}=0$ and $z_{2}^{n}=0 ; z_{1}^{n}=0$ and $z_{2}^{n}=-4 ; z_{1}^{n}=-1$ and $z_{2}^{n}=0 ; z_{1}^{n}=-1$ and $z_{2}^{n}=-3$ etc., does not give feasible solution except that $z_{1}^{n}=0$ and $z_{2}^{n}=-3$. For example, the values of $\theta_{\dot{i}}^{n}$ corresponding to the values of $z_{1}^{n}=-1$ and $z_{2}^{n}=-3$ are presented in Table 7 .

Table 7. ε_{i}^{n} corresponding to the values of $\bar{z}_{1}^{-1}=-1$ and $\bar{z}_{2}^{n}=-3$.

i	1	2	3	D^{n}
1	0	$0 \leq \theta \leq 18$	0	18
2	0	0	29	29
3	23	0	0	23
4	0	25	0	25
W_{i}	(20)	(30)	(45)	95

Fig. 4a. Boundary values of adjoint vector z_{l}^{n} for Example (2).

Fig. 4b. Boundary values of adjoint vector z_{2}^{n} for Example (2).

Again, the constraint of $W_{I}=20$ cannot be satisfied.
The results at $z_{1}^{n}=0$ and $z_{2}^{n}=-3$ are shown in Table 8 .

Table 8. $\theta_{\dot{j}}^{n}$ corresponding to the values of z_{1}^{n} at $z_{1}^{n}=0$ and $z_{2}^{n}=-3$.

1	1	2	3	D^{n}
1	0	$0 \leq \theta_{2}^{1} \leq 18$	$18-\theta_{2}^{1}$	18
2	0	0	29	29
3	$0 \leq \theta_{1}^{3} \leq 23$	0	$23-\theta_{1}^{3}$	23
4	0	25	0	25
W_{1}	θ_{1}^{3} (20)	$25+\theta_{2}^{1}$ (30)	$70-\left(\theta_{2}^{1}+\theta_{1}^{3}\right)$ (45)	95

From Table 8, it can be seen that $\theta_{2}^{7}=W_{2}-25=30-25=5$, and $\theta_{1}^{3}=20$. The solution is presented in Table 9 .

The total cost for the solution show in Table 9 is

$$
\sum_{n=1}^{4} \sum_{i=1}^{3} c_{i}^{n} \theta_{i}^{n}=\$ 337
$$

This is the only feasible solution, therefore, the optimal solution. The solution obtained by the linear programming method is the same.

Table 9. The solution for $z_{1}^{n}=0$ and $z_{2}^{n}=-3$.

1	1	2	3	D^{n}
1	0	(5)	(13)	18
2	0	0	29	29
3	(20)	0	(3)	23
4	0	25	0	25
W_{i}	20	30	45	95

COMPUTATIONAL PROCEDURES FOR PROBLENS WITH LINEAR COST FUNCTION

The computational procedures for problems with linear-cost function may be developed and summarized as follows:

Since the linear cost function is

$$
F_{i}^{n}\left(\theta_{i}^{n}\right)=c_{i}^{n} \theta_{i}^{n}
$$

the variable part of the Kamiltonian function given by Equation (15) is

$$
\begin{equation*}
H_{v}^{n}=\sum_{i=1}^{s-1} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{s} c_{i}^{n} \theta_{i}^{n}, n=1,2, \ldots, N . \tag{16}
\end{equation*}
$$

Since H^{n} is linear in θ_{i}^{n}, the values of θ_{i}^{n} are determined in such a way the μ^{n} is absolute minimum. It should be noted that, since z_{i}^{n} is undetermined at the beginning of calculation, it plays a role similar to the Lagrange multiplier in differential calculus. The values of z_{i}^{n} are to be determined at the end of calculation from the condition that the values of X_{i}^{N} are W_{i}.

Equation (16) can be written in the form

$$
\begin{equation*}
H_{v}^{n}=\sum_{i=1}^{s-1}\left(z_{i}^{n}+C_{i}^{n}\right) \theta_{i}^{n}+c_{s}^{n} \theta_{s}^{n} \tag{17}
\end{equation*}
$$

Substituting $\theta_{s}^{n}=D^{n}-\sum_{i=1}^{s-i} \theta_{i}^{n}$ into this equation yields

$$
\begin{align*}
H_{v}^{n} & =\sum_{i=1}^{s-1}\left(z_{i}^{n}+c_{i}^{n}\right) \theta_{i}^{n}+c_{s}^{n}\left(D^{n}-\sum_{i=1}^{s-1} \theta_{i}^{n}\right) \\
& =\sum_{i=1}^{s-1}\left\lfloor z_{i}^{n}+\left(c_{i}^{n}-c_{s}^{n}\right)\right\rfloor \theta_{i}^{n}+c_{s}^{n} D^{n} \tag{18}
\end{align*}
$$

Since $C_{s}^{n} D^{n}$ is constant, values of θ_{i}^{n}, which give the minimum H_{v}^{n}, depend on the sign of the bracketed quantity $\left[z_{i}^{n}+\left(C_{i}^{n}-C_{s}^{n}\right)\right]$. For any i, the value
of z_{i}^{n}, at which this bracketed quantity changes its sign, may be called the boundary value of z_{i}^{n}. It is located mere

$$
z_{i}^{n}+\left(c_{i}^{n}-c_{s}^{n}\right)=0
$$

or

$$
\begin{equation*}
\bar{z}_{i}^{n}=c_{s}^{n}-c_{i}^{n} \tag{19}
\end{equation*}
$$

In addition, the three constraints are
(i) $\quad \theta_{i}^{n} \geq 0$
(ii) $\sum_{i=1}^{s} \theta_{i}^{n}=D^{n}$
(iii) $\sum_{n=1}^{N} \theta_{i}^{n}=x_{i}^{N}=W_{i}$

Therefore, based on Equations (18) and (19) and constraints (i). (i1) and (iii), the computational procedure may be summarized:
(1) For any particular value of z_{i}^{n} considered,
(a) If, for any $i, z_{i}^{n}>\bar{z}_{i}^{n}$, then $\theta_{i}^{n}=0$
(b) If, for any i, $z_{i}^{n}<\bar{z}_{i}^{n}$, then θ_{i}^{n} is a positive value such that $0 \leq \theta_{i}^{n} \leq D^{n}$. And, as a special case, if $z_{j}^{n}<\bar{z}_{j}^{n}$ ior only one j, and $z_{i}^{n} \geq \bar{z}_{i}^{n}$ for all $1 \neq j$, then θ_{j}^{n} takes the extreme value, that is $\theta_{j}^{n}=D^{n}$ 。
(c) If, for any $i, z_{i}^{n}=\bar{z}_{i}^{n}$, then the corresponding θ_{i}^{n} is such that $0 \leq \theta_{i}^{n} \leq D^{n}$ except the special case mentioned in (b).
(2) Then all the values of z_{i}^{n} and eventually θ_{i}^{n} are fixed from Equation (II) and constraints (ii) and (iii).
(3) Finally, an optimal solution or solutions which give the minimum cost function are selected from all the resulting feasible solutions.

EXAMPLE (3). FOUR ORIGINS AND FIVE DEMAND POINTS (ITNEAR COST FUNCTION)

The problem is represented by Table 10.
Table 10. Transportation costs and requirements for Example (3)

The variable part of the Hamiltonian equation for this problem is [equation (18)]

$$
H_{V}^{n}=\sum_{i=1}^{3}\left\lfloor z_{i}^{n}+\left(C_{i}^{n}-C_{4}^{n}\right)\right\rfloor \theta_{i}^{n}+C_{4}^{n} D^{n}, \quad n=1,2,3,4,5 .
$$

The boundary values of z_{i}^{n}, i.e., $\bar{z}_{i}^{n}, i=1,2,3$, obtained by the use of Equation (19), are plotted on Figs. 5a, 5b and 5c and are listed in Table 11.

The systematic search for feasible solutions combining the interior and/or boundary values of z_{i}^{n} (see Figs. 5a, 5b, and 5c) is as follows:

Fig. 5a. Boundary values of adjoint vector z_{1}^{n}.

Fig. 50. Boundary values of adjoint vector z_{2}^{n}.

Fig. 5c. Boundary values of adjoint vector z_{3}^{n}.

Table 11. Boundary values of z_{i}^{n}.

n	1	2	3
1	1	1	-2
2	4	7	-1
3	3	1	5
4	6	0	8
5	4	9	9

There is no feasible solution for the conditions $z_{1}^{n}=6, z_{2}^{n}=9$ and $\mathrm{z}_{3}^{\mathrm{n}}>-1$.

The feasible solution for conditions $z_{1}^{n}=6, z_{2}^{n}=9$ and $z_{3}^{n}=-1$ is presented by Table 12.

Table 12. θ_{i}^{n} corresponding to the values $z_{1}^{n}=6$, $z_{2}^{n}=9$, and $z_{3}^{n}=-1$.

n	1	2	3	4	D^{n}
1	0	0	0	10	10
2	0	0	$0 \leq \theta_{3}^{2} \leq 20$	(14)	20
3	0	0	10	(0)	10
4	$0 \leq \theta_{1}^{4} \leq 18$	0	$0 \leq \theta_{3}^{4} \leq 18$	(0)	18
5	0	(20)	(0)		
W_{1}	16	$0 \leq \theta_{2} \leq 20$	$0 \leq 0_{3} \leq 20$	(0)	20

The total cost for the above solution $=\$ 384.00$.

The conditions $z_{1}^{n}=6, z_{2}^{n}=9$ and $z_{3}^{n}<-1$ give the feasible solution but is not considered as it involves one more undecided control variable.

The feasible solution for conditions $z_{1}^{n}=6, z_{2}^{n}=7$ and $z_{3}^{n}=9$ is
presented by Table 13.

Table 13. θ_{i}^{n} corresponding to the values of $z_{l}^{n}=6$ 。 $z_{2}^{n}=7$, and $z_{3}^{n}=9$.

The total cost for the above solution $=\$ 318.00$.
The conditions $z_{1}^{n}=6, z_{2}^{n}=7$ and $z_{3}^{n}=5$ or $z_{3}^{n}<9$ give feasible solutions but also increase the number of undecided control variables and hence is not considered.

The feasible solution for conditions $z_{1}^{n}=6, z_{2}^{n}=1$ and $z_{3}^{n}=9$ is presented by Table 14.

The total cost for the above solution is $\$ 322.00$.
The conditions $z_{1}^{n}=6, z_{2}^{n}=1$ and $z_{3}^{n}<9$ are not considered as they involve more undecided control variables.

Table 14. θ_{i}^{n} corresponding to the values $z_{i}^{n}=6$, $z_{2}^{n}=1$, and $z_{3}^{n}=9$.

	1	2	3	4	D^{n}
1	0	$\begin{gathered} (0) \\ 0 \leq \theta_{2}^{7} \leq 10 \end{gathered}$	0	(10)	10
2	0	20	0	(0)	20
3	0	$\begin{gathered} (0) \\ 0 \leq \theta_{2}^{3} \leq 10 \end{gathered}$	0	(10)	10
4	$\begin{gathered} (16) \\ 0 \leq \theta_{1}^{4} \leq 18 \end{gathered}$	0	0	(2)	18
5	0	$\begin{aligned} & (0) \\ & 0 \leq \theta_{2}^{5} \leq 20 \end{aligned}$	$\begin{aligned} & \text { (18) } \\ & 0 \leq \theta^{5} \leq 20 \end{aligned}$	(2)	20
W_{i}	16	20.	18	24	78

The feasible solution for the conditions $z_{1}^{n}=4, z_{2}^{n}=9$ and $z_{3}^{n}=8$ is presented by Table 15.

Table 15. θ_{i}^{n} corresponding to the values $z_{1}^{n}=4$ 。

$$
z_{2}^{n}=9, \text { and } z_{3}^{n}=8
$$

n	1	2	3	4	$\mathrm{D}^{\text {n }}$
1	0	0	0	10	10
2	$\begin{gathered} (16) \\ 0 \leq \theta_{1}^{2} \leq 20 \end{gathered}$	0	0	(4)	20
3	0	0	0	10	10
4	$\begin{gathered} (0) \\ 0 \leq \theta_{1}^{4} \leq 18 \end{gathered}$	0	(18) $0 \leq 8_{3}^{4} \leq 18$	(0)	18
5	$0 \leq \theta_{1}^{5} \leq 20$	$\begin{gathered} (20) \\ 0 \leq \theta_{2}^{5} \leq 20 \end{gathered}$	$\begin{aligned} & (0) \\ & 0 \leq \theta^{5} \leq 20 \end{aligned}$	(0)	20
W_{1}	16	20	18	24	78

The total cost for the above solution is $\$ 332.00$.
The conditions $z_{1}^{n}=4, z_{2}^{n}=9$ and $z_{3}^{n}<8$ are not considered as they involve more undecided control variables.

The feasible solution for conditions $z_{1}^{n}=4, z_{2}^{n}=7$, and $z_{3}^{n}=8$ is presented by Table 16.

Table 16. θ_{i}^{n} corresponding to the values $z_{i}^{n}=4$,

$$
z_{2}^{n}=7, \text { and } z_{3}^{n}=8
$$

n	1	2	3	4	D^{n}
1	0	0	0	10	10
2	$0 \leq \theta_{I}^{2} \leq 20$	$0 \leq \theta_{2}^{2} \leq 20$	0		20
3	0	0	0	10	10
4	$0 \leq \theta_{I}^{4} \leq 18$	0	$0 \leq \theta_{3}^{4} \leq 18$	18	
5	$0 \leq \theta_{I}^{5} \leq 20$	$0 \leq \theta_{2}^{5} \leq 20$	$0 \leq \theta_{3}^{5} \leq 20$	20	
W_{1}	16	20	18	24	78

This solution involves too many undecided control variables; therefore, no final solution is obtained here.

Comparing the cost of all feasible solutions and the number of undecided control variables, the solution which gives the least cost and the least undecided control variables is chosen. This is met by the solution given in Table 13.

The next is to try the feasible solution which has the z_{1}^{n} in the vicinity of the z_{i}^{n} given by Table 13. This new feasible solution may have
one or more undecided control variables than the one given by Table 13. Then the total cost will be compared, and the optimal solution obtained.

In this problem, the feasible solution for conditions $z_{1}^{n}=6, z_{2}^{n}=7$ and $z_{3}^{n}=8$ is presented by Table 17. This has one more undecided control variable than the one given by Table 13. The resulting solution from the above is presented by Table 18.

Table 17. θ_{i}^{n} corresponding to the values $z_{i}^{n}=6$, $z_{2}^{n}=7$, and $z_{3}^{n}=8$.

	1	2	3	4	D^{n}
1	0	0	0	10	10
2	0	$0 \leq \theta_{2}^{2} \leq 20$	0	$20-\theta_{2}^{2}$	20
3	0	0	0	10	10
4	$0 \leq \theta_{1}^{4} \leq 18$	0	$0 \leq \theta^{4} \leq 18$	$\begin{aligned} & 18- \\ & \left(\theta_{1}^{4}+\theta_{3}^{4}\right) \end{aligned}$	18
5	0	$0 \leq \theta_{2}^{5} \leq 20$	$0 \leq 0{ }^{5} \leq 18$	$\begin{aligned} & 20- \\ & \left(\theta_{2}^{5}+\theta^{5}\right) \end{aligned}$	20
W_{i}	$\begin{array}{r} \theta_{1}^{4} \\ (16) \\ \hline \end{array}$	$\theta_{2}^{2}+\theta_{2}^{5}$ (20)	$\theta_{3}^{4}+\theta_{3}^{5}$ (18)	(24)	78

The total cost for this solution is $\$ 316.00$.
The solution given by Table 18 is the optimal solution. This is in contrast to the fact that the feasible solution having least number of undecided control variables usually gives the optimal solution.

This method is still not perfect. There should exist some better methods which may be found in future research work.

Table 18. The optimal solution for z_{i}^{n} in the regions of

$$
\mathrm{z}_{1}^{\mathrm{n}}=6, \mathrm{z}_{2}^{\mathrm{n}}=7, \text { and } \mathrm{z}_{3}^{\mathrm{n}}=8
$$

i	1	2	3	4	D^{n}
1	0	0	0	10	10
2	0	(16)	0	(4)	20
3	0	0	0	10	10
4	(16)	0	(2)	(0)	18
5	0	(4)	(16)	(0)	20
W_{i}	(16)	(20)	(18)	(24)	78

The solution given by Table 18 is the same as given by Simplex Technique for solving such problems [13].

EXAMPLE (4) TNO ORIGINS AND THREE DEMAND POINTS (NON-LINEAR COST FUNCTION)

The non-linear cost function is expressed here by

$$
F_{i}^{n}\left(\theta_{i}^{n}\right)=a_{i}^{n} \theta_{i}^{n}+b_{i}^{n}\left(\theta_{i}^{n}\right)^{2}
$$

where a_{i}^{n}, b_{i}^{n} are constants. The values of a_{i}^{n}, b_{i}^{n} with D^{n} and W_{i} are shown in. Table 19.

Table 19. Transportation costs and requirements for Example (4)

	1		2		D^{n}
	a_{1}^{n}	$\mathrm{b}_{1}^{\mathrm{n}}$	a_{2}^{n}	$\mathrm{b}_{2}^{\mathrm{n}}$	
1	1.0		3.0		10
2	3.0	0.01	2.1		45
3	3.0		1.0	0.2	20
Wi	30		45		75

The variable part of the Hamiltonian equation for this problem is

$$
\begin{aligned}
\dot{q}_{v}^{n} & =\sum_{i=1}^{2-1} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{2} F_{i}^{n}\left(\theta_{i}^{n}\right) \\
& =z_{1}^{n} \theta_{1}^{n}+\left\{a_{1}^{n} \theta_{1}^{n}+b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}+a_{2}^{n} \theta_{2}^{n}+b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}\right\} .
\end{aligned}
$$

Since $\theta_{2}^{n}=D^{n}-\theta_{1}^{n}$, then

$$
H_{v}^{n}=\left(z_{1}^{n}+a_{1}^{n}-a_{2}^{n}-2 b_{2}^{n} D^{n}\right) \theta_{1}^{n}+\left(b_{1}^{n}+b_{2}^{n}\right)\left(\theta_{1}^{n}\right)^{2}+a_{2}^{n} D^{n}+b_{2}^{n}\left(D^{n}\right)^{2}
$$

Stage 1:
The variable part of the Hamiltonian equation for the first demand
point (stage) is

$$
H_{V}^{I}=\left(z_{I}^{I}-2\right) \theta_{I}^{I}+30
$$

This stage is the linear cost function; therefore, it can be treated as shown previously for linear cost function case. Thus

$$
\bar{a}_{1}^{1}=2=a_{2}^{1}-a_{1}^{1}
$$

From this three conditions at which $H_{\nabla}^{\mathcal{I}}$ may be minimum result:
(a) $H_{\square}^{I}=\min$. at $\quad \theta_{I}^{I}=0 \quad$ when $z_{I}^{I}>2$ 。
(b) $\quad \mathbb{q}_{\square}^{I}=\min$. at $0 \leq \theta_{I}^{I} \leq 10$ when $z_{I}^{I}=2$.
(c) $H_{V}^{I}=\min$. at $\quad \theta_{I}^{I}=10$ when $z_{I}^{I}<2$.

Stage 2:
The variable part of the Hamiltonian equation for the second demand point (stage) is

$$
H_{\square}^{2}=\left(z_{I}^{2}+.9\right) \theta_{I}^{2}+.01\left(\theta_{1}^{2}\right)^{2}+94.5
$$

Taking partial derivative of H_{V}^{2} with respect to θ_{I}^{2} and equating it to zero, the following is obtained:

$$
\begin{aligned}
& \frac{\partial r_{v}^{2}}{\partial \theta_{I}^{2}}=0=z_{1}^{2}+.9+.02 \theta_{1}^{2} \\
& \therefore \theta_{1}^{2}=-45-50 z_{1}^{2}
\end{aligned}
$$

when $\theta_{1}^{2}=0, \quad z_{1}^{2}=-.9$
and when $\theta_{1}^{2}=45, \quad z_{1}^{2}=-1.8$

$$
\begin{array}{r}
H_{v}^{2}=\min , \text { at } \theta_{I}^{2}=0 \text { if } z_{I}^{2} \geq-0.9 \\
\text { and at } \theta_{I}^{2}=45 \text { if } z_{I}^{2} \leq-1.8
\end{array}
$$

Hence, H_{\square}^{2} is minimum at $\theta_{1}^{2}=-45-50 z_{1}^{2}$ if $-1.8 \leq z_{I}^{2} \leq-0.9$.

Stage 3:

The variable part of the Hamiltonian equation for the third demand point (stage) is

$$
r_{V}^{3}=\left(z_{1}^{3}-6\right) \theta_{1}^{3}+0.2\left(\theta_{1}^{3}\right)^{2}+100
$$

Taking partial derivative of H^{3} with respect to θ_{1}^{3} and equating it to zero results in

$$
\frac{\partial r^{3}}{\partial \theta_{1}^{3}}=0=z_{1}^{3}-6+0.4 \theta_{1}^{3}
$$

$$
\therefore \theta_{1}^{3}=15-2.5 z_{1}^{3}
$$

when $e_{1}^{3}=0, z_{1}^{3}=6$
and when $e_{1}^{3}=20, z_{1}^{3}=-2$
Hence, H_{V}^{3} is minimum at $\theta_{I}^{3}=25-2.5 z_{I}^{3}$ in $-2 \leq z_{I}^{3} \leq 6$
The conditions for all $\mathrm{F}_{\mathrm{V}}^{\mathrm{n}}$ to be minimum are summarized in Table 20.
Table 20. Conditions necessary for F_{V}^{n} to be minimum
for Example (4).

The value of z_{1} can now be determined by the condition

$$
\sum_{n=1}^{3} \theta_{1}^{n}=30
$$

By systematic search for the value of z_{I} which satisfies this given condition, the optimal solution will result.

For instance, for the value of z_{1} in the region of $-2<z_{1}^{n}<-1.8$, the solution corresponding to this value of z_{I} will be

n^{i}	1	2	D^{n}
I	10	0	10
2	45	0	45
3	$15-2.5 \mathrm{I}_{1}$	$20-\theta_{1}^{3}$	20
W_{i}	(30)	(45)	75

This does not satisfy the end-point condition $\sum_{n=1}^{3} \theta_{1}^{n}=30$. Next, the value of z_{1} in the region of $-1.8<z_{1}^{n}<-0.9$.

n^{i}	1	2	D^{n}
1	10	0	10
2	$-45-50 z_{1}$	$45-\theta_{1}^{2}$	45
3	$15-2.5 z_{1}$	$20-\theta_{1}^{3}$	20
W_{1}	(30)	(45)	75

This gives - $20-52.5 \mathrm{z}_{I}=30$

$$
\therefore z_{1}=\frac{50}{-52.5}=-0.9525
$$

Here $\sum_{n=1}^{3} \theta_{I}^{n}=30.00625$

Hence, $z_{1}=-0.9525$ satisfies the given end-point condition. The result is presented by Table 21. Substituting this value of z_{1}, then $\theta_{1}^{2}=2.62$ and $\theta_{1}^{3}=17.38$. In practical situation, there cannot be a fraction of a unit. so these figures are rounded off to the nearest whole number.

Table 21. θ_{i}^{n} corresponding to the value of $z_{l}^{i}=-0.9525$ for Example (4).

n^{1}	1	2	D^{n}
1	10	0	10
2	(3)	42	45
3	(17)	3	20
W_{i}	30	45	75

The total cost for the above solution is

$$
\sum_{n=1}^{3} \sum_{i=1}^{2} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 163.09
$$

This is the only feasible solution. Checking the condition of optimality of the solution given by Table 21 by the perturbation method results in

n^{i}	1	2	D^{n}
1	10	0	10
2	4	41	45
3	16	4	20
W_{i}	30	45	75

The total cost for the above is

$$
\sum_{n=1}^{3} \sum_{i=1}^{2} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 163.46
$$

Hence, the optimal solution is that given by Table 21.

EXAMPLE (5). THREE ORIGINS AND THREE DEMAND POINTS (NON-LINEAR COST FUNCTION)

The problem is represented by Table 22.

Table 22. Transportation costs and requirements for Example (5).

Depots

${ }^{1}$	1		2		3		
	a_{1}^{n}	b_{1}^{n}	a_{2}^{n}	b_{2}^{n}	a_{3}^{n}	b_{3}^{n}	D^{n}
1	2.5		2.6		1.0		20
2	3.0	.01	2.7		9.0		60
3	6.0		5.0	.01	6.6		40
W_{i}	50		30		40		120

The variable part of the Hamiltonian equation for this problem is

$$
\begin{aligned}
H_{v}^{n}= & \sum_{i=1}^{2} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right) \\
= & z_{1}^{n} \theta_{1}^{n}+z_{2}^{n} \theta_{2}^{n}+\left\{a_{1}^{n} \theta_{1}^{n}+b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}\right\}+\left\{a_{2}^{n} \theta_{2}^{n}+b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}\right\} \\
& +\left\{a_{3}^{n} \theta_{3}^{n}+b_{3}^{n}\left(\theta_{3}^{n}\right)^{2}\right\}, \quad n=1,2,3 .
\end{aligned}
$$

Since $\theta_{3}^{n}=D^{n}-\theta_{1}^{n}-\theta_{2}^{n}$, then

$$
\begin{gathered}
4_{v}^{n}=\left(z_{1}^{n}+a_{1}^{n}-a_{3}^{n}-2 b_{3}^{n} D^{n}\right) \theta_{1}^{n}+\left(a_{2}^{n}+a_{2}^{n}-a_{3}^{n}-2 b_{3}^{n} D^{n}\right) \theta_{2}^{n} \\
+\left(b_{1}^{n}+b_{3}^{n}\right)\left(\theta_{1}^{n}\right)^{2}+\left(b_{2}^{n}+b_{3}^{n}\right)\left(\theta_{2}^{n}\right)^{2}+a_{3}^{n} D^{n}+b_{3}^{n}\left(D^{n}\right)^{2} \\
n=1,2,3 .
\end{gathered}
$$

Stage 1:
The variable part of the Hamiltonian equation for the first demand
point (stage) is

$$
H_{v}^{I}=\left(2_{1}^{1}+1.5\right) \theta_{1}^{1}+\left(z_{2}^{1}+1.6\right) \theta_{2}^{1}+20
$$

This stage is the linear cost function and can be treated as previously illustrated. Here,

$$
\bar{z}_{1}^{1}=-1.5=a_{3}^{1}-a_{1}^{1} \text {, and } \frac{1}{2}_{2}^{-1}=-1.6=a_{3}^{1}-a_{2}^{1}
$$

Following are the nine conditions at which H_{v}^{7} may be minimum:
(a) $H_{H_{V}^{1}}^{1}=\min$. at $\quad \theta_{1}^{1}=0$ \& $\quad \theta_{2}^{1}=0 \quad$ when $1_{1}^{1}>-1.5 \& 2_{2}^{1}>-1.6$
(b) $\quad \mathbb{K}_{8}^{1}=\min$. at $0 \leq \theta_{1}^{1} \leq 20 \& \quad \theta_{2}^{1}=0 \quad$ when $\mathrm{z}_{1}^{1}=-1.5 \& \mathrm{z}_{2}^{1}>-1.6$
(c) $H_{V}^{1}=\min$. at $\quad \theta_{1}^{1}=20 \& \quad \theta_{2}^{1}=0 \quad$ when $z_{1}^{1}<-1.5 \& r_{2}^{1}>-1.6$
(d) $H_{v}^{1}=\min$. at $\quad \theta_{1}^{1}=0 \quad \& 0 \leq \theta_{2}^{1} \leq 20$ when $\mathrm{z}_{1}^{1}>-1.5 \& \mathrm{z}_{2}^{1}=-1.6$
(e) $H_{q}^{1}=\min$. at $0 \leq \theta_{1}^{1} \leq 20 \& 0 \leq \theta_{2}^{1} \leq 20$ when $q_{1}^{1}=-1.5 \& \mathrm{z}_{2}^{1}=-1.6$
(f) $\quad H_{v}^{I}=$ min. at $\quad \theta_{1}^{I}=20 \& \quad \theta_{2}^{I}=0 \quad$ when $I_{I}^{I}<-1.5 \& \mathrm{z}_{2}^{1}=-1.6$
(g) $H_{\square}^{1}=$ min. at $\quad \theta_{1}^{1}=0$ \& $\quad \theta_{2}^{1}=20$ when $z_{1}^{1}>-1.5 \& \mathrm{z}_{2}^{1}<-1.6$
(h) $\quad H_{v}^{1}=\min$. at $\quad \theta_{1}^{1}=0 \quad \& \quad \theta_{2}^{1}=20$ when $\mathrm{z}_{1}^{1}=-1.5 \& \mathrm{z}_{2}^{1}<.1 .6$
(i) $H_{v}^{I}=\min$. at $0 \leq \theta_{1}^{1} \leq 20 \& 0 \leq \theta_{2}^{1} \leq 20$ when $\mathrm{r}_{1}^{1}<-1.5 \& \mathrm{z}_{2}^{1}<-1.6$ Stage 2:

The variable part of the Hamiltonian equation for the second demand point (stage) is

$$
H_{v}^{2}=\left(z_{1}^{2}-6\right) \theta_{1}^{2}+\left(z_{2}^{2}-6.9\right) \theta_{2}^{2}+0.01\left(\theta_{1}^{2}\right)^{2}+540
$$

Talding partial derivative of H_{∇}^{2} with respect to θ_{1}^{2} and equating it to zero
results in

$$
\frac{\partial H_{v}^{2}}{\partial \theta_{l}^{2}}=z_{l}^{2}-6+0.02 \theta_{l}^{2}
$$

$\theta_{1}^{2}=300-50 \mathrm{z}_{1}^{2}$
when $\theta_{l}^{2}=0, z_{l}^{2}=6$
and when $\theta_{1}^{2}=60, z_{1}^{2}=4.8$.
Hence, H_{V}^{2} is minimum at $\theta_{1}^{2}=300-50 \mathrm{z}_{1}^{2}$ for $4.8 \leq \mathrm{z}_{1}^{2} \leq 6$.
Following are the nine conditions at wich H_{y}^{2} may be minimum.
(a) $H_{V}^{2}=$ min. at $\theta_{I}^{2}=0 \quad \& \quad \theta_{2}^{2}=0$ when $\quad z_{l}^{2} \geq 6 \& z_{2}^{2}>6.9$
(b) $H_{V}^{2}=\min \cdot$ at $\theta_{1}^{2}=0 \quad \& 0 \leq \theta_{2}^{2} \leq 60$ when $\quad z_{1}^{2} \geq 6 \& z_{2}^{2}=6.9$
(c) $H_{\nabla}^{2}=\min$. at $\theta_{1}^{2}=0 \quad \& \quad \theta_{2}^{2}=60$ when $\quad z_{1}^{2} \geq 6 \& z_{2}^{2}<6.9$
(d) $f_{y}^{2}=\min$. at $\theta_{I}^{2}=300-50 z_{1}^{2} \& \quad \theta_{2}^{2}=0$ when $4.8 \leq z_{I}^{2}<6 \& z_{2}^{2}>6.9$
(e) $H_{v}^{2}=\min$. at $\theta_{1}^{2}=300-50 \mathrm{z}_{1}^{2} \& 0 \leq \theta_{2}^{2} \leq 60$ when $4.8 \leq \mathrm{z}_{I}^{2}<6 \& \mathrm{z}_{2}^{2}=6.9$
(f) $H_{v}^{2}=\min$. at $\theta_{1}^{2}=300-50 z_{1}^{2} \& 0 \leq \theta_{2}^{2} \leq 60$ when $4.8 \leq z_{1}^{2}<6 \& \mathrm{z}_{2}^{2}<6.9$
(g) $H_{y}^{2}=\min$ at $\theta_{1}^{2}=60 \quad \& \quad \theta_{2}^{2}=0$ when $\quad z_{2}^{2}<4.8 \& z_{2}^{2}>6.9$
(h) $H_{1}^{2}=\min \cdot$ at $\theta_{1}^{2}=60 \quad \& \quad \theta_{2}^{2}=0 \quad$ when $\quad z_{1}^{2}<4.8 \& z_{2}^{2}=6.9$
(i) $H_{v}^{2}=\min$. at $0 \leq \theta_{1}^{2} \leq 60 \quad \& 0 \leq \theta_{2}^{2} \leq 60$ when $\quad z_{1}^{2}<4.8$ \&i $z_{2}^{2}<6.9$

Stage 3:
The variable part of the Hamiltonian equation for the third demand point (stage) is

$$
H_{v}^{3}=\left(z_{1}^{3}-0.6\right) \theta_{1}^{3}+\left(z_{2}^{3}-1.6\right) \theta_{2}^{3}+0.01\left(\theta_{2}^{3}\right)^{2}+264
$$

Tailing partial derivative of H^{3} with respect to θ_{2}^{3} and equating it to zero results in

$$
\begin{aligned}
& \frac{\partial F_{v}^{3}}{\partial \theta_{2}^{3}}=0=z_{2}^{3}-1.6+0.02 \theta_{2}^{3} \\
& \therefore \theta_{2}^{3}=80-50 z_{2}^{3}
\end{aligned}
$$

when $\theta_{2}^{3}=0, \quad z_{2}^{3}=1.6$
and when $\theta_{2}^{3}=40, \quad z_{2}^{3}=0.8$
Hence, H_{v}^{3} is minimum at $\theta_{2}^{3}=80-50 z_{2}^{3}$ for $0.8 \leq z_{2}^{3} \leq 1.6$
Following are the nine conditions at which H may be minimum.
(a) $H_{v}^{3}=\min$. at $\theta_{1}^{3}=0 \quad \& \quad \theta_{2}^{3}=0 \quad$ when $z_{1}^{3}>.6 \& \quad z_{2}^{3} \geq 1.6$
(b) $H_{v}^{3}=\min$. at $\quad \theta_{1}^{3}=0 \& \theta_{2}^{3}=80-50 z_{2}^{3}$ when $z_{1}^{3}>.6 \& .8 \leq z_{2}^{3}<1.6$
(c) $H_{y}^{3}=\min$. at $\quad \theta_{1}^{3}=0 \& \theta_{2}^{3}=40$
when $z_{1}^{3}>.6 \& \quad z_{2}^{3}<.8$
(d) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 40 \& \theta_{2}^{3}=0 \quad$ when $z_{1}^{3}=.6 \& \quad z_{2}^{3} \geq 1.6$
(e) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 40 \& \theta_{2}^{3}=80-50 z_{2}^{3}$ when $z_{1}^{3}=.6 \& .8 \leq z_{2}^{3}<1.6$
(f) $H_{v}^{3}=\min$. at $\quad \theta_{1}^{3}=0 \quad \& \quad \theta_{2}^{3}=40 \quad$ when $z_{1}^{3}=.6 \& \quad z_{2}^{3}<0.8$
(g) $H_{v}^{3}=\min$. at $\quad \theta_{1}^{3}=40 \& \theta_{2}^{3}=0 \quad$ when $z_{1}^{3}<.6 \& \quad z_{2}^{3} \geq 1.6$
(h) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 40 \& \theta_{2}^{3}=80-50 z_{2}^{3}$ when $z_{1}^{3}<.6 \& .8 \leq z_{2}^{3}<1.6$
(1) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 40 \& 0 \leq \theta_{2}^{3} \leq 40 \quad$ when $z_{1}^{3}<.6 \& \quad z_{2}^{3}<0.8$

The conditions for all H_{v}^{n} to be mininum are summarized in Table 23.

Table 23. Conditions necessary for H_{\square}^{n} to be minimum for
Example (5).

n	Minima occur at			
	θ_{1}^{n}	θ_{2}^{n}	z_{1}^{n}	z_{2}^{n}
1	0	0	> - 1.5	>-1.6
	$0 \leq \theta_{1}^{1} \leq 20$	0	$=-1.5$	>-1.6
	20	0	<-1.5	>-1.6
	0	$0 \leq \theta_{2}^{1} \leq 20$	>-1.5	$=-1.6$
	$0 \leq \theta^{7} \leq 20$	$0 \leq \theta^{1} \leq 20$	$=-1.5$	$=-1.6$
	20	0	<-1.5	$=-1.6$
	0	20	>-1.5	<-1.6
	0	20	$=-1.5$	<-1.6
	$0 \leq \theta_{1}^{1} \leq 20$	$0 \leq \theta_{2} \leq 20$	<-1.5	<-1.6
2	0	0	≥ 6	>6.9
	0	$0 \leq \theta_{2}^{2} \leq 60$	≥ 6	$=6.9$
	0	60	≥ 6	<6.9
	300-50 z_{1}^{2}	0	$4.8 \leq z_{1}^{2}<6$	>6.9
	$300-50 z_{2}^{2}$	$0 \leq \theta_{2}^{2} \leq 60$	$4.8 \leq z_{1}^{2}<6$	$=6.9$
	$300-50 \mathrm{z}_{2}^{2}$	$0 \leq \theta_{2}^{2} \leq 60$	$4.8 \leq 2_{1}^{2}<6$	<6.9
	60	0	<4.8	>6.9
	60	0	<4.8	$=6.9$
	$0 \leq \theta \leq 60$	$0 \leq \theta \leq 60$	<4.8	<6.9

Table 23. Conditions necessary for H_{∇}^{n} to be minimum for Example (5) (Continued)

n	θ_{1}^{n}	θ_{2}^{n}	z_{1}^{n}	z_{2}^{n}
3	0	0	$>.6$	≥ 1.6
	0	$80-50 z_{2}^{3}$	$>.6$. $8 \leq \mathrm{z}_{2}^{3}<1.6$
	0	40	$>.6$	<0.8
	$0 \leq \theta_{1}^{3} \leq 40$	0	$=.6$	≥ 1.6
	$0 \leq \theta_{1}^{3} \leq 40$	$80-50 z_{2}^{3}$	$=.6$. $8 \leq \mathrm{z}_{2}^{3}<1.6$
	0	40	$=.6$	<0.8
	40	0	$<.6$	≥ 2.6
	$0 \leq \theta_{1}^{3} \leq 40$	$80-50 z_{2}^{3}$	$<.6$. $8 \leq 2{ }_{2}^{3}<1.6$
	$0 \leq \theta_{1}^{3} \leq 40$	$0 \leq \theta_{2}^{3} \leq 40$	$<.6$	<0.8

By systematically searching each combination of the interior and/or the boundary values of z_{1}^{n} and z_{2}^{n} for feasible solutions, cases which do not satisfy the constraints are eliminated.

A possible feasible solution corresponding to the values of z_{1}^{n} in the region of $4.8<z_{2}^{n}<6$ and z_{2}^{n} in the region of $0.8<z_{2}^{n}<1.6$ which satisfies the constraints is presented in Table 24.

Here two conditions are obtained:
(i) $80-50 z_{2}^{n}=30$ which gives $z_{2}^{n}=1$.
(ii) $90-50 z_{2}^{n}=30$ which gives $z_{2}^{n}=1.2$.

It is not advisable to consider condition (i) given above since it gives higher total cost. The feasible solution given by condition (ii) is also presented in Table 24. The total cost for this solution is $\$ 452.00$.

Table 24. θ_{i}^{n} corresponding to the values of z_{1}^{n} and z_{2}^{n} in the regions of $4.8<z_{1}^{n}<6$, and $0.8<z_{2}^{n}<1.6$.

i	1	2	3	D^{n}
1	0	0	20	20
2	50	(10) $0 \leq \theta_{2}^{2} \leq 60$ (20) $80550 z_{2}^{n}$	(0)	60
3	0	(30)	(40)	120
W_{1}	(50)		40	

Another possible feasible solution corresponding to the palues $z_{1}^{n}=0.6$ and $z_{2}^{n}=2.6$ is presented by Table 25.

Table 25. θ_{i}^{n} corresponding to the values $z_{1}^{n}=0.6$ and $z_{2}^{n}=1.6$.

$n i$	1	2	3	D^{n}
1	0	0	20	20
2	$0 \leq \theta_{1}^{2} \leq 60$	$0 \leq \theta_{2}^{2} \leq 60$	$60-\left(\theta_{1}^{2}+\theta_{2}^{2}\right)$	60
3	$0 \leq \theta_{1}^{3} \leq 40$	0	$40-\theta_{1}^{3}$	40
W_{i}	(50)	(30)	(40)	120

A feasible solution resulting from Table 25 is given by Table 26.
The solution of Table 26 is obtained as follows:
As there is no other choice, $\theta_{2}^{2}=30$ has to satisfy the end condition $W_{2}=30$. Comparing the cost functions for deciding among the control variables $\theta_{1}^{2}, \theta_{3}^{2}, \theta_{1}^{3}$ and θ_{3}^{3}, it is advantageous to assign maximum value
to the control variable θ_{l}^{2} by comparing the costs given by Table 22. Then $\theta_{I}^{2}=D^{2}-\theta_{2}^{2}$ which is $\theta_{I}^{2}=60-30=30$ units can be assigned. After θ_{l}^{2}, the rest of the solution is obtained by meeting the end-point constraints.

Table 26. The optimal solution for $z_{1}^{n}=0.6$ and $z_{2}^{n}=1.6$.

n	1	2	3	D^{n}
1	0	0	20	20
2	(30)	(30)	(0)	60
3	(20)	0	(20)	40
W_{i}	50	30	40	120

The total cost for the solution given in Table 26 is

$$
\sum_{n=1}^{3} \sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 434.00
$$

Comparing the feasible solutions in Tables 24 and 26, Table 26 is the optimum solution.

Checking by perturbation the condition of optimality, the solution is:

n^{1}	1	2	3	D^{n}
1	0	0	20	20
2	31	29	0	60
3	19	1	20	40
W_{1}	50	30	40	120

The total cost for the above is

$$
\sum_{n=1}^{3} \sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 434.52
$$

Checking by perturbation the condition of optimality, the solution is:

n	1	2	3	D^{n}
1	0	0	20	20
2	29	30	1	60
3	31	0	19	40
W_{i}	50	30	40	120

The total cost for the above solution is

$$
\sum_{n=1}^{3} \sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 438.81
$$

Hence, the optimal cost of $\$ 434.00$. as given by Table 26.

EXAMPLE (6). TWO ORIGINS AND THREE DEMAND POINTS (NON-LINEAR COST FUNCTION WITH SET UP COST)

The non-linear cost function for this problem is defined as

$$
F_{i}^{n}\left(\theta_{i}^{n}\right)=a_{i}^{n} \theta_{i}^{n}+b_{i}^{n}\left(\theta_{i}^{n}\right)+c_{i}^{n}\left[\theta_{i}^{n}\right]
$$

where a_{i}^{n} and b_{i}^{n} are constants and $c_{i}^{n}\left\lfloor\theta_{i}^{n}\right\rfloor$ is called a "set-up" cost or "fixed charge." It is equal to zero if $\theta_{i}^{n}=0$ and is equal to a positive constant C_{i}^{n} if $\theta_{i}^{n}>0$.

The problem is represented by Table 27.

Table 27. Transportation costs and requirements for Example (6).

The variable part of the Hamiltonian equation for this problem is

$$
\begin{aligned}
Y_{v}^{n}= & \sum_{i=1}^{2-1} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{2} F_{i}^{n}\left(\theta_{i}^{n}\right) \\
= & z_{1}^{n} \theta_{1}^{n}+\left\{a_{1}^{n} \theta_{1}^{n}+b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}+c_{1}^{n}\left\lfloor\theta^{n}\right]\right\}+\left\{a_{2}^{n} \theta_{2}^{n}+b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}+\right. \\
& \left.c_{2}^{n}\left[\theta_{2}^{n}\right]\right\}, \quad n=1,2,3 .
\end{aligned}
$$

Since $\theta_{2}^{n}=D^{n}-\theta_{1}^{n}$, then

$$
\begin{aligned}
H^{n}=\left(z_{1}^{n}\right. & \left.+a_{1}^{n}-a_{2}^{n}-2 b_{2}^{n} D^{n}\right) \theta_{1}^{n}+\left(b_{1}^{n}+b_{2}^{n}\right)\left(\theta_{1}^{n}\right)^{2}+c_{1}^{n}\left\lfloor\theta_{1}^{n}\right\rfloor \\
& +c_{2}^{n}\left\lfloor D^{n}-\theta_{1}^{n}\right\rfloor+a_{2}^{n} D^{n}+b_{2}^{n}\left(D^{n}\right)^{2} .
\end{aligned}
$$

Stage 1:
The variable part of the Hamiltonian equation for the first demand point (stage) is

$$
H_{\nabla}^{I}=\left(\mathrm{z}_{1}^{1}-0.1\right) \theta_{1}^{1}+13 .
$$

This stage is linear cost function and therefore can be treated in the way shown previously. Thus

$$
\bar{z}_{1}^{I}=0.1=a_{2}^{1}-a_{1}^{1}
$$

From this three conditions at which H_{\square}^{1} may be minimum result:
(a) $H_{Y}^{I}=$ min. at $\quad \theta_{I}^{I}=0$ when $z_{I}^{I}>0.1$.
(b) $H_{V}^{I}=\min$. at $0 \leq \theta_{1}^{1} \leq 5$ when $z_{1}^{I}=0.1$.
(c) $H_{Y}^{1}=\min$. at $\quad \theta_{1}^{1}=5$ when $z_{I}^{1}<0.1$

Stage 2:
The variable part of the Hamiltonian equation for the second demand point (stage) is

$$
\mathrm{P}_{V}^{2}=\left(\mathrm{z}_{1}^{2}+0.6\right) \theta_{1}^{2}+0.01\left(\theta_{1}^{2}\right)^{2}+104
$$

Taking partial derivative of H_{\square}^{2} with respect to θ_{1}^{2} and equating it to zero, the following is obtained:

$$
\frac{\partial H_{v}^{2}}{\partial \theta_{I}^{2}}=0=z_{I}^{2}+0.6+0.02 \theta_{I}^{2} .
$$

$$
\therefore \theta_{1}^{2}=-30-50 z_{1}^{2}
$$

when $\theta_{1}^{2}=0, \quad z_{1}^{2}=-0.6$ when $\theta_{1}^{2}=20, z_{1}^{2}=-1$

$$
\begin{aligned}
q_{\square}^{2}=\min , \text { at } \theta_{1}^{2} & =0 \text { if } z_{1}^{2} \geq-0.6 \\
\text { and at } \theta_{1}^{2} & =20 \text { if } z_{1}^{2} \leq-1 .
\end{aligned}
$$

Hence, H_{v}^{2} is minimum at $0 \leq \theta_{1}^{2} \leq 20$ if $-1 \leq z_{1}^{2} \leq-0.6$.
Stage 3:
The variable part of the Hamiltonian equation for the third demand point (stage) is

$$
H_{v}^{3}=\left(z_{1}^{3}+2\right) \theta_{1}^{3}-0.01\left(\theta_{1}^{3}\right)^{2}+10\left[\theta_{1}^{3}\right]+45 .
$$

Here, when $\theta_{I}^{3}=0$, $H_{y}^{3}=45$
and when $\theta_{1}^{3}=15$, then

$$
\begin{aligned}
H_{v}^{3}=45 & =\left(z_{1}^{3}+2\right) 15-0.01(15)^{2}+10+45 \\
z_{1}^{3} & =-\frac{11}{60} .
\end{aligned}
$$

Following are the three conditions at which $\mathrm{H}_{\mathrm{y}}^{3}$ may be minimum
(a) $H_{y}^{3}=\min$. at $\theta_{1}^{3}=0 \quad$ when $z_{1}^{3}>-\frac{151}{60}$
(b) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 15$ when $z_{1}^{3}=-\frac{151}{60}$
(c) $H_{y}^{3}=\min$. at $\theta_{1}^{3}=15$ when $z_{1}^{3}<-\frac{151}{60}$

The conditions for all H_{V}^{3} to be minimum are summarized in Table 28.
By systematic search for the value of z_{1}^{n} which satisfies the given condition $\sum_{n=1}^{3} \theta_{1}^{n}=25$, the optimal solution will be obtained.

Table 28. Conditions necessary for H_{v}^{n} to be minimum for Example (6).

n	Minima occur at
	$\theta_{1}^{n} \quad z_{1}^{n}$
1	$\begin{array}{lll} 0 & >0.1 \\ 0 \leq \theta_{1}^{I} \leq 5 & & >0.1 \\ 5 & & <0.1 \end{array}$
2	$\begin{array}{cc} 0 & \geq 0.6 \\ -30-50 \mathrm{z}_{1}^{n} & -1 \leq \mathrm{z}_{1}^{n}<0.6 \\ 20 & <-1 \end{array}$
3	$\begin{array}{cl} 0 & >-\frac{151}{60} \\ 0 \leq \theta_{1}^{3} \leq 15 & =-\frac{151}{60} \\ 15 & <-\frac{151}{60} \end{array}$

The region $-0.6<z_{I}^{n}<0.1$ does not give the feasible solution. Considering the region $-1<z_{I}^{n}<-0.6$, the feasible solution corresponding to this value of z_{l}^{n} is given by Table 29.

Table 29. θ_{i}^{n} corresponding to the value of z_{1} in

$$
\text { region of }-1 \leq z_{1} \leq-0.6
$$

1	1	2	D^{n}
1	5	0	5
2	$-30-50 z_{1}$	$20-\theta_{1}^{2}$	20
3	0	15	15
W_{1}	$5+\theta_{1}^{2}$ (25)	$35-\theta_{1}^{2}$ (15)	40

This satisfies the given end-point condition which gives
$-25-50 z_{1}=25$

$$
\therefore z_{1}=-1
$$

The optimal solution corresponding to the value of $z_{1}=-1$ is given by Table 30.

Table 30. The optimal solution for $z_{1}=-1$.

1	1	2	D^{n}
1	5	0	5
2	20	0	20
3	0	15	15
W_{1}	(25)	(15)	40

The total cost for the solution given by Table 30 is

$$
\sum_{n=1}^{3} \sum_{i=1}^{2} F_{i}^{n}\left(\theta_{i}^{n}\right)=\$ 177.50
$$

Checking the condition of optimality of the solution given by
Table 30 by the perturbation method results in

1	1	2	p^{n}
1	5	0	5
2	19	2	20
3	1	14	15
W_{1}	(25)	(15)	40

The total cost for the above is

$$
\sum_{n=1}^{3} \sum_{i=1}^{2} F_{1}^{n}\left(\theta_{i}^{n}\right)=\$ 183.49
$$

Hence, the optimal solution is that given by Table 30.

EXAMPLE (7). THREE ORIGINS AND FOUR DEMAND POINTS (NON-LINEAR COST FUNCTION WITH SET UP COST)

The problem is represented by Table 31.

Table 31. Transportation costs and requirements for Example (7).

$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \\ & \text { rín } \\ & 0 \end{aligned}$		1			2			3			0^{n}
		a_{1}^{n}	b_{1}^{n}	c_{1}^{n}	a_{2}^{n}	$\mathrm{b}_{2}^{\mathrm{n}}$	c_{2}^{n}	a_{3}^{n}	b_{3}^{n}	c_{3}^{n}	
	1	1.0			3.1		2	7.0			25
	2	2.0		1	4.1			3.0			40
晛	3	5.0	-. 01	10	3.0			2.0		5	30
-	4	3.0			1.0	0.2	5	4.0			35
	W_{1}		40			30			60		130

The variable part of the Hamiltonian equation for this problem is

$$
\begin{aligned}
H_{v}^{n}= & \sum_{i=1}^{3-1} z_{i}^{n} \theta_{i}^{n}+\sum_{i=1}^{3} F_{i}^{n}\left(\theta_{i}^{n}\right), \quad n=1,2,3,4, \\
= & z_{1}^{n} \theta_{1}^{n}+z_{2}^{n} \theta_{2}^{n}+\left\{a_{1}^{n} \theta_{1}^{n}+b_{1}^{n}\left(\theta_{1}^{n}\right)^{2}+c_{1}^{n}\left\lfloor\theta^{n}\right]\right\} \\
& +\left\{a_{2}^{n} \theta_{2}^{n}+b_{2}^{n}\left(\theta_{2}^{n}\right)^{2}+c_{2}^{n}\left\lfloor\theta_{2}^{n}\right]\right\}+\left\{a_{3}^{n} \theta_{3}^{n}+b_{3}^{n}\left(\theta_{3}^{n}\right)^{2}+c_{3}^{n}\left\lfloor\theta_{3}^{n}\right]\right\}
\end{aligned}
$$

Since $\theta_{3}^{n}=D^{n} \cdots \theta_{1}^{n}-\theta_{2}^{n}$ then

$$
\begin{aligned}
& H_{v}^{n}=\left(z_{1}^{n}+a_{1}^{n}-a_{3}^{n}-2 b_{3}^{n} D^{n}\right) \theta_{1}^{n}+\left(z_{2}^{n}+a_{2}^{n}-a_{3}^{n}-2 b_{3}^{n} D^{n}\right) \theta_{2}^{n} \\
&+\left(b_{1}^{n}+b_{3}^{n}\right)\left(\theta_{1}^{n}\right)^{2}+\left(b_{2}^{n}+b_{3}^{n}\right)\left(\theta_{2}^{n}\right)^{2}+b_{3}^{n}\left(D^{n}\right)^{2} \\
&+2 b_{3}^{n} \theta_{1}^{n} \theta_{2}^{n}+c_{1}^{n}\left\lfloor\theta_{1}^{n}\right]+c_{2}^{n}\left[\theta_{2}^{n}\right\rfloor+c_{3}^{n}\left\lfloor D^{n}-\theta_{1}^{n}-\theta_{2}^{n}\right\rfloor+a_{3}^{n} D^{n}
\end{aligned}
$$

Stage 1:

The variable part of the Hamiltonian equation for the first demand point (stage) is

$$
\mu_{v}^{1}=\left(z_{1}^{1}-6\right) \theta_{1}^{1}+\left(z_{2}^{1}-3.9\right) \theta_{2}^{1}+2\left\lfloor\theta_{2}^{1}\right\rfloor+175
$$

when $\theta_{1}^{I}=0$ and $\theta_{2}^{I}=0$. $H_{v}^{I}=175$

$$
\bar{z}_{1}^{1}=6
$$

When $z_{1}^{1}>6, \theta_{1}^{1}=0$, and for $\theta_{2}^{1}=25$ in the following equation

$$
H_{v}^{1}=\left(z_{2}^{1}-3.9\right) \theta_{2}^{1}+2\left\lfloor\theta_{2}^{1}\right\rfloor+175=175
$$

gives $\bar{z}_{2}^{-1}=3.82$
To see the effects of different values of z_{2}^{1} on the Hamiltonian function of H_{v}^{I} when $\theta \frac{1}{1}=0$ and θ_{2}^{l} varying from 0 to 25 , a computer program is written for IBM 1620 computer. The results thus obtained are presented graphically (see Fig. 6).

Following are the nine conditions at which if may be minimum:
(a) $\quad H_{v}^{I}=\min$. at $\quad \theta_{1}^{I}=0 \quad \& \quad \theta_{2}^{I}=0 \quad$ when $z_{1}^{I}>6 \& z_{2}^{I}>3.82$
(b) $\quad H_{y}^{I}=\min$. at $\quad \theta_{1}^{1}=0 \quad \& \quad \theta_{2}^{1}=25$ when $z_{1}^{1}>6 \& z_{2}^{I}=3.82$
(c) $H_{\square}^{I}=$ min at $\quad \theta_{1}^{1}=0 \quad \& \quad \theta_{2}^{1}=25$ when $2_{1}^{1}>6 \& 2_{2}^{1}<3.82$
(d) $\quad H_{v}^{I}=\min$. at $0 \leq \theta_{I}^{I} \leq 25 \& \quad \theta_{2}^{I}=0 \quad$ when $\mathrm{z}_{1}^{I}=6 \& \mathrm{z}_{2}^{I}>3.82$
(e) $H_{v}^{I}=\min$. at $0 \leq \theta_{1}^{I} \leq 25 \& \theta_{2}^{I}=0$ or 25 when $z_{1}^{I}=6 \& z_{2}^{1}=3.82$
(f) $H_{v}^{1}=$ min. at $0 \leq \theta_{1}^{1} \leq 25 \& 0 \leq \theta \frac{1}{2} \leq 25$ when $z_{1}^{1}=6 \& z_{2}^{1}<3.82$

Fig. 6. Effects of z_{2}^{I} on H_{v}^{I} when $\theta_{1}^{I}=0$, and $\theta \frac{7}{2}$ varies from 0 to 25 .
(g) $F_{v}^{I}=\min$. at $\quad \theta_{1}^{I}=25 \& \quad \theta_{2}^{1}=0 \quad$ when $z_{1}^{1}<6 \& z_{2}^{I}>3.82$
(h) $H_{v}^{I}=\min$. at $\quad \theta_{1}^{I}=25 \& \quad \theta_{2}^{I}=0 \quad$ when $z_{1}^{I}<6 \& z_{2}^{I}=3.82$
(i) $H_{8}^{I}=\min$. at $0 \leq \theta_{1}^{1} \leq 25 \& 0 \leq \theta_{2}^{1} \leq 25$ when $z_{1}^{I}<6 \& z_{2}^{I}<3.82$

Stage 2:

The variable part of the Hamiltonian equation for the second demand point (stage) is

$$
H_{v}^{2}=\left(z_{1}^{2}-1\right) \theta_{1}^{2}+\left(a_{2}^{2}+1.1\right) \theta_{2}^{2}+1\left\lfloor\theta_{1}^{2}\right\rfloor+120
$$

when $\theta_{1}^{2}=0$ and $\theta_{2}^{2}=0, H_{v}^{2}=120$
when $\theta_{2}^{2}=0, \bar{z}_{2}^{2}=-1.1$.

$$
\begin{aligned}
q_{v}^{2}=120 & =\left(z_{1}^{2}-1\right) \theta_{1}^{2}+1\left[\theta_{1}^{2}\right]+120 \\
\text { at } \theta_{1}^{2} & =40 \\
\bar{z}_{1}^{2} & =0.975
\end{aligned}
$$

Following are the nine conditions at which H_{v}^{2} may be minimum:
(a) $H_{v}^{2}=\min$. at $\quad \theta_{1}^{2}=0 \quad \& \quad \theta_{2}^{2}=0 \quad$ when $z_{1}^{2}>.975 \& z_{2}^{2}>-1.1$
(b) $H_{v}^{2}=\min$. at $\quad \theta_{1}^{2}=0 \quad \& 0 \leq \theta_{2}^{2} \leq 40$ when $z_{1}^{2}>.975 \& z_{2}^{2}=-1.1$
(c) $H_{y}^{2}=\min$. at $\quad \theta_{1}^{2}=0 \quad \& \quad \theta_{2}^{2}=40$ when $z_{1}^{2}>.975 \& z_{2}^{2}<-1.1$
(d) $\eta_{v}^{2}=\min \cdot$ at $\theta_{1}^{2}=0$ or 40 \& $\quad \theta_{2}^{2}=0$ when $z_{1}^{2}=.975 \& z_{2}^{2}>-1.1$
(e) $\eta_{\square}^{2}=\min$. at $\theta_{1}^{2}=0$ or $40 \& 0 \leq \theta_{2}^{2} \leq 40$ when $z_{1}^{2}=.975 \& z_{2}^{2}=-1.1$
(f) $\eta_{v}^{2}=\min$. at $\theta_{1}^{2}=0 \& \quad \theta_{2}^{2}=40$ when $z_{1}^{2}=.975 \& z_{2}^{2}<-1.1$
(g) $H_{v}^{2}=\min$. at $\quad \theta_{1}^{2}=40 \& \quad \theta_{2}^{2}=0 \quad$ when $z_{1}^{2}<.975 \& z_{2}^{2}>-1.1$ (h) $\quad H_{v}^{2}=\min \cdot$ at $0 \leq \theta_{1}^{2} \leq 40 \quad \& 0 \leq \theta_{2}^{2} \leq 40$ when $z_{I}^{2}<.975 \& z_{2}^{2}=-1.1$ (i) $H_{v}^{2}=\min$. at $0 \leq \theta_{I}^{2} \leq 40 \& 0 \leq \theta_{2}^{2} \leq 40$ when $z_{I}^{2}<.975 \& z_{2}^{2}<-1.1$ Stage 3:

The variable part of the Hamiltonian equation for the third demand point (stage) is

$$
\begin{aligned}
H_{v}^{3}=\left(z_{1}^{3}+3\right) \theta_{1}^{3}+\left(z_{2}^{3}\right. & +1) \theta_{2}^{3}-0.01\left(\theta_{1}^{3}\right)^{2}+10\left\lfloor\theta_{1}^{3}\right\rfloor \\
& +5\left\lfloor 30-\theta_{1}^{3}-\theta_{2}^{3}\right\rfloor+60
\end{aligned}
$$

when $\theta_{1}^{3}=0$ and $\theta_{2}^{3}=0$, then

$$
H_{V}^{3}=5+60=65
$$

when $\theta_{1}^{3}=30$, and $\theta_{2}^{3}=0$, so

$$
\begin{aligned}
H_{v}^{3}=65 & =\left(z_{1}^{3}+3\right) \theta_{1}^{3}-0.01\left(\theta_{1}^{3}\right)^{2}+10\left\lfloor\theta_{1}^{3}\right\rfloor+60 \\
& =\left(z_{1}^{3}+3\right) 30-0.01(30)^{2}+10+60 \\
\therefore \bar{z}_{1}^{3} & =-\frac{86}{30}=-\frac{43}{15}
\end{aligned}
$$

Similarly, when $\theta_{1}^{3}=0$, and $\theta_{2}^{3}=30$, then

$$
\begin{aligned}
& H_{v}^{3}=65=\left(z_{2}^{3}+1\right) \theta_{2}^{3}+60 \\
& \therefore \bar{z}_{2}^{3}=-\frac{25}{30}=-\frac{5}{6}
\end{aligned}
$$

Following are the nine conditions at which H_{8}^{3} may be minimum:
(a) $H_{v}^{3}=\min$. at $\quad \theta_{1}^{3}=0$ \& $\quad \theta_{2}^{3}=0$ when $z_{1}^{3}>-\frac{43}{15} \& z_{2}^{3}>-\frac{5}{6}$
(b) $H^{3}=\min$. at $\quad \theta_{1}^{3}=0 \& \theta_{2}^{3}=0$ or 30 when $z_{1}^{3}>-\frac{43}{15} \& z_{2}^{3}=-\frac{5}{6}$
(c) $H_{v}^{3}=\min$. at $\quad \theta_{1}^{3}=0$ \& $\quad \theta_{2}^{3}=30$ when $z_{1}^{3}>-\frac{43}{15} \& z_{2}^{3}<-\frac{5}{6}$
(d) $H_{v}^{3}=\min$. at $\theta_{1}^{3}=0$ or $30 \& \theta_{2}^{3}=0$ when $z_{1}^{3}=-\frac{43}{15} \& z_{2}^{3}>-\frac{5}{6}$
(e) $H_{v}^{3}=\min$. at $\theta_{1}^{3}=0$ or $30 \& \theta_{2}^{3}=0$ or 30 when $z_{1}^{3}=-\frac{43}{15} \& z_{2}^{3}=-\frac{5}{6}$
(f) $H_{v}^{3}=\min$. at $\quad \theta_{2}^{3}=0$ \& $\quad \theta_{2}^{3}=30$ when $z_{I}^{3}=-\frac{43}{15} \& z_{2}^{3}<-\frac{5}{6}$
(g) $H_{V}^{3}=\min$. at $\quad \theta_{I}^{3}=30 \& \quad \theta_{2}^{3}=0$ when $z_{1}^{3}<-\frac{43}{15} \& z_{2}^{3}>-\frac{5}{6}$
(h) $H_{v}^{3}=\min$. at $\theta_{1}^{3}=30 \& \quad \theta_{2}^{3}=0$ when $z_{1}^{3}<-\frac{43}{15} \& z_{2}^{3}=-\frac{5}{6}$
(i) $H_{v}^{3}=\min$. at $0 \leq \theta_{1}^{3} \leq 30 \& 0 \leq \theta_{2}^{3} \leq 30$ when $z_{1}^{3}<-\frac{43}{15} \& z_{2}^{3}<-\frac{5}{6}$ Stage 4:

The variable part of the Hamiltonian equation for the fourth demand point (stage) is

$$
F_{v}^{4}=\left(z_{1}^{4}-1\right) \theta_{1}^{4}+\left(z_{2}^{4}-3\right) \theta_{2}^{4}+0.2\left(\theta_{2}^{4}\right)^{2}+5\left[\theta_{2}^{4}\right]+140
$$

Taking partial derivative of H_{v}^{4} with respect to θ_{2}^{4}, and equating it to zero gives

$$
\begin{aligned}
\frac{\partial F_{v}^{4}}{\partial \theta_{2}^{4}}=0 & =z_{2}^{4}-3+0.4 \theta_{2}^{4} \\
\therefore \theta_{2}^{4} & =7.5-2.5 z_{2}^{4} \quad \text { or } \quad z_{2}^{4}=3-0.4 \theta_{2}^{4}
\end{aligned}
$$

Considering $\theta_{1}^{4}=0$ and

$$
H_{v}^{4}=\left(z_{2}^{4}-3\right) \theta_{2}^{4}+0.2\left(\theta_{2}^{4}\right)^{2}+5\left\lfloor\theta_{2}^{4}\right\rfloor+140
$$

Taking partial derivative of H_{v}^{4} with respect to θ_{2}^{4} and equating it to zero gives

$$
\begin{aligned}
& \frac{\partial r_{v}^{4}}{\partial \theta_{2}^{4}}=0=z_{2}^{4}-3+0.4 \theta_{2}^{4} \\
& \therefore \theta_{2}^{4}=7.5-2.5 z_{2}^{4} \\
& \text { or } \quad z_{2}^{4}=3-0.4 \theta_{2}^{4}
\end{aligned}
$$

For $\theta_{2}^{4}=35$

$$
z_{2}^{4}=3-0.4(35)=-11
$$

For $\theta_{2}^{4}=0$.

$$
z_{2}^{4}=3
$$

Referring to Fig. 7, some intermediate point for the condition $z_{2}^{4}=3-0.4 \theta_{2}^{4}$ at which $H_{v}^{4}=140$ is found. For this, the value of θ_{2}^{4} follows:

$$
\begin{aligned}
H^{4} & =140=\left(3-0.4 \theta_{2}^{4}-3\right) \theta_{2}^{4}+0.2\left(\theta_{2}^{4}\right)^{2}+5\left\lfloor\theta_{2}^{4}\right\rfloor+140 \\
-5 & =-0.4\left(\theta_{2}^{4}\right)^{2}+0.2\left(\theta_{2}^{4}\right)^{2} \\
& =-0.2\left(\theta_{2}^{4}\right)^{2}
\end{aligned}
$$

$$
\therefore\left(\theta_{2}^{4}\right)^{2}=25
$$

and

$$
\theta_{2}^{4}=5
$$

Hence, the value of z_{2}^{4} corresponding to the value of $\theta_{2}^{4}=5$ is

$$
\begin{aligned}
& \mathrm{z}_{2}^{4}=3-0.4(5)=3-2=1 \\
& \mathrm{H}_{\mathrm{v}}^{4}=\text { minimum when } \mathrm{z}_{2}^{4} \text { is in the region }-11 \leq \mathrm{z}_{2}^{4} \leq 1
\end{aligned}
$$

Fig. 7. Rolation between r_{V}^{4} and z_{2}^{4} when $e_{2}^{4}=0$ and θ_{2}^{4} varies from 0 to 35.

Following are the twelve conditions at which H_{v}^{4} may be minimum.
(a) $H_{V}^{4}=\min$. at $\quad \theta_{1}^{4}=0 \quad \& \quad \theta_{2}^{4}=0 \quad$ when $2_{1}^{4}>1 \& \quad z_{2}^{4}>1$
(b) $H_{v}^{4}=$ min. at $\quad \theta_{1}^{4}=0 \quad$ \& $\quad \theta_{2}^{4}=0$ or $5 \quad$ when $z_{1}^{4}>1 \& \quad z_{2}^{4}=1$
(c) $H_{v}^{4}=\min$. at $\quad \theta_{1}^{4}=0 \quad \& \theta_{2}^{4}=7.5-2.52_{2}^{4}$ when $2_{1}^{4}>1 \&-11 \leq 2_{2}^{4}<1$
(d) $H_{v}^{4}=\min$. at $\quad \theta_{1}^{4}=0 \quad$ \& $\quad \theta_{2}^{4}=35$
when $z_{1}^{4}>1$ \& $\quad z_{2}^{4}<-11$
(e) $H_{v}^{4}=\min$. at $0 \leq \theta_{I}^{4} \leq 35$ \&
$\theta_{2}^{4}=0$
when $2_{1}^{4}=1$ \& $\quad 2_{2}^{4}>1$
(f) $r_{v}^{4}=\min$. at $0 \leq \theta_{1}^{4} \leq 35 \& \quad \theta_{2}^{4}=0$ or $5 \quad$ when $z_{1}^{4}=1 \& \quad z_{2}^{4}=1$
(g) $H_{y}^{4}=\min$. at $0 \leq \theta_{1}^{4} \leq 35 \& \theta_{2}^{4}=-7.5-2.5 z_{2}^{4}$ when $z_{1}^{4}=1 \&-11 \leq 2_{2}^{4}<1$
(h) $\quad r_{v}^{4}=\min$. at $0 \leq \theta_{1}^{4} \leq 35 \& \quad 0 \leq \theta_{2}^{4} \leq 35 \quad$ when $2_{1}^{4}=1 \& \quad 2_{2}^{4}<-11$
(i) $H_{y}^{4}=\min$. at $\quad \theta_{1}^{4}=35 \& \quad \theta_{2}^{4}=0 \quad$ when $z_{1}^{4}<1 \& \quad z_{2}^{4}>1$
(j) $H_{v}^{4^{4}}=\min$. at $0 \leq \theta_{1}^{4} \leq 35$ \& $\quad \partial_{2}^{4}=0$ or 5 when $2_{1}^{4}<1$ \& $\quad 2_{2}^{4}=1$
(k) $H_{v}^{4}=\min$. at $0 \leq \theta_{1}^{4} \leq 35 \& \theta_{2}^{4}=7.5-2.5 z_{2}^{4}$ when $z_{1}^{4}<1 \&-11 \leq z_{2}^{4}<1$
(1) $H_{v}^{4}=\min$. at $0 \leq \theta_{1}^{4} \leq 35 \& \quad 0 \leq \theta_{2}^{4} \leq 35 \quad$ when $2_{1}^{4}<1$ \& $\quad 2_{2}^{4}<-11$

The conditions for all H_{V}^{n} to be minimum are summarized in Table 32. The values of z_{1}^{n} and z_{2}^{n} in Table 32 may be defined as boundary values. By systematic search of each combination of the interior and/or the boundary values of z_{1}^{n} and z_{2}^{n} for the feasible solutions, cases which do not satisfy the constraints are eliminated. The procedure is as follows:

Consider first the value of $z_{1}^{n}=6$ and the combination of all the values of z_{2}^{n} in steps to find the feasible solutions.

Table 32. Conditions necessary for H_{V}^{4} to be minimum for Example (7)

n	minima occur at			
	θ_{1}^{n}	θ_{2}^{n}	z_{1}^{n}	z_{2}^{n}
1	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \leq \theta_{1}^{1} \leq 25 \\ 0 \leq \theta_{I}^{I} \leq 25 \\ 0 \leq \theta_{I}^{I} \leq 25 \\ 25 \\ 25 \\ 0 \leq \theta_{I}^{I} \leq 25 \end{gathered}$	$\begin{gathered} 0 \\ 25 \\ 25 \\ 0 \\ 0 \text { or } 25 \\ 0 \leq \theta^{\frac{1}{2}} \leq 25 \\ 0 \\ 0 \\ 0 \leq \theta_{2}^{1} \leq 25 \end{gathered}$	$\begin{aligned} & >6 \\ & >6 \\ & >6 \\ & =6 \\ & =6 \\ & =6 \\ & <6 \\ & <6 \\ & <6 \end{aligned}$	$\begin{aligned} & >3.82 \\ & =3.82 \\ & <3.82 \\ & >3.82 \\ & =3.82 \\ & <3.82 \\ & >3.82 \\ & =3.82 \\ & <3.82 \end{aligned}$
2	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \text { or } 40 \\ 0 \text { or } 40 \\ 0 \\ 40 \\ 0 \leq \theta_{1}^{2} \leq 40 \\ 0 \leq \theta_{1}^{2} \leq 40 \end{gathered}$	$\begin{gathered} 0 \\ 0 \leq \theta_{2}^{2} \leq 40 \\ 40 \\ 0 \\ 0 \leq \theta_{2}^{2} \leq 40 \\ 40 \\ 0 \\ 0 \leq \theta_{2}^{2} \leq 40 \\ 0 \leq \theta_{2}^{2} \leq 40 \end{gathered}$	$\begin{aligned} & >.975 \\ & >.975 \\ & >.975 \\ & =.975 \\ & =.975 \\ & =.975 \\ & <.975 \\ & <.975 \\ & <.975 \end{aligned}$	$\begin{aligned} & >-1.1 \\ & =-1.1 \\ & <-1.1 \\ & >-1.1 \\ & =-1.1 \\ & <-1.1 \\ & >-1.1 \\ & =-1.1 \\ & <-1.1 \end{aligned}$

Table 32. (continued)

Table 32. (continued)

Take $z_{1}^{n}=6$ and $z_{2}^{n}=3.82$. This does not give the feasible solution as $z_{1}^{n}=6$ does not satisfy the constraint $\sum_{n=1}^{4} \theta_{1}^{n}=W_{1}$. Hence, any combination of this value of z_{1}^{n} with z_{2}^{n} will not give feasible solutions.

Next, consider the value of $z_{1}^{n}=1$.
The value of $z_{1}^{n}=1$ with the values of z_{2}^{n} as $3.82,1$ and $-\frac{5}{6}$ does not give feasible solutions.

The values of $z_{1}^{n}=1$ and z_{2}^{n} in the region $-1.1<z_{2}^{n}<-\frac{5}{5}$ give the feasible solution shown by Table 33. This solution has four undecided control variables.

The values of $z_{1}^{n}=1$ and $z_{2}^{n}=-1.1$ also give a feasible solution and is shown by Table 34. This solution has five undecided control variables. No more combinations with $z_{I}^{n}=1$ will be considered as they would give an increasing number of undecided control variables. Similarly, the values of $z_{1}^{n}=0.975$ and $z_{2}^{n}=3.82$ do not give a feasible solution.

The feasible solution for the combination $z_{1}^{n}=0.975$ and $z_{2}^{n}=1$ is presented by Table 35. This solution has five undecided control variables.

The feasible solution for the combination of $z_{1}^{n}=0.975$ and $z_{2}^{n}=-\frac{5}{6}$
is show by Table 36. This solution has five undecided control variables. The other combinations of z_{1}^{n} and z_{2}^{n} will have an increasing number of undecided control variables and hence will not be considered.

Table 33. e_{i}^{n} corresponding to the values of $z_{I}^{n}=1$ and z_{2}^{n} in the region $-1.1<z_{2}^{n}<-\frac{5}{6}$

	1	2	3	D^{n}
1	$0 \leq \theta_{1}^{4} \leq 25$	$0 \leq \theta_{2}^{4} \leq 25$	(0)	25
2	0	0	40	40
3	0	30	(0)	30
4	$\begin{gathered} (15) \\ 0 \leq \theta_{1}^{4} \leq 35 \end{gathered}$	$7.5-2.5 z_{2}^{4}$	(20)	35
W_{i}	40	30	60	130

The total cost for the feasible solution of Table 33 is $\$ 360.00$.

Table 34. θ_{i}^{n} corresponding to the values of $z_{1}^{n}=1$ and $z_{2}^{n}=-1.1$

\overbrace{n}^{i}	1	2	3	D^{n}
1	$0 \leq \theta_{I}^{7} \leq 25$	$\begin{gathered} (0) \\ 0 \leq \theta_{2}^{7} \leq= \end{gathered}$	(0)	25
2	0	$0 \leq \theta_{2}^{2} \leq 40$	(40)	40
3	0	30	(0)	30
4	$\begin{gathered} (15) \\ 0 \leq \theta_{1}^{4} \leq 35 \end{gathered}$	$\begin{gathered} (0) \\ 7.5-2.5 \mathrm{z}_{2}^{4} \end{gathered}$	(20)	35
W_{i}	40	30	60	130

The total cost for the feasible solution shown in Table 34 is $\$ 360.00$.

Table 35. θ_{i}^{n} corresponding to the values of $z_{i}^{n}=0.975$ and $z_{2}^{n}=1$.

$\overbrace{}^{1}$	1	2	3	D^{n}
1	$0 \leq \theta_{1}^{1} \leq 25$	$0 \leq \theta \frac{1}{2} \leq 25$	(0)	25
2	$\begin{aligned} & (40) \\ & 0 \text { or } 40 \\ & \hline \end{aligned}$	0	(0)	40
3	0	0	30	30
4	$0 \leq \theta_{1}^{4} \leq 35$	$\begin{aligned} & (5) \\ & 0 \text { or } 5 \end{aligned}$	(30)	35
W_{i}	40	30	60	130

The total cost for the feasible solution shown in Table 35 is $\$ 360.50$.

Table 36. θ_{i}^{n} corresponding to the values of $z_{1}^{n}=0.975$ and $z_{2}^{n}=-\frac{5}{6}$

n	1	2	3	D^{n}
1	(0) $0 \leq \theta_{1} \leq 25$	(0) $0 \leq \theta_{2} \leq 25$	(25)	25
2	(40) 0 or 40	0	(0)	40
3	0	(30) 0 or 30	(0)	30
4	(0) or 40	0	(35)	35
W_{1}	40	30	60	130

The total cost for the feasible solution of Table 36 is $\$ 486.00$. Comparing the total costs for the feasible solutions, the optimal solution is given by Tables 33 and 34. Checking the condition of optimality of the solution given by Tables 33 and 34 by the perturbation method results in

i	1	2	3	D^{n}
1	25	0	0	25
2	0	1	39	40
3	0	29	1	30
4	15	0	20	35
W_{i}	40	30	60	130

The total cost for the above is $\$ 365.10$.
Hence, the optimal solution is given by Tables 33 and 34 and the optimal cost is $\$ 360.00$.

CONCLUDING REMARKS

The discrete version of maximum principle satisfies only a necessary condition, but not the sufficient condition, so it cannot pin-point the optimal solution in most of the cases.

The systematic search method eliminates the conditions which do not give feasible solutions. A feasible solution, among the few obtained by the systematic search method, having least number of undecided control variables usually gives the optimum solution. However, this is not the case with example (3). This method is still not perfect. There should exist some better methods which may be found in the future research work.

Very recently, in a paper titled "A Note on the Discrete Maximam Principle and Distribution Problems," by Charnes and Kortanek $\lfloor 12\rfloor$ citing a simple linear cost function example, commented that the maximum principle has a cumbersome computational approach for finding an optimal solution. In their words, it runs as "the number of choices (and indeterminates) builds up at a combinatorial rate as the number of depots, which is one greater than the number of z_{i} is, and the number of destinations, which equal the number of Hamiltonians or sets of $\theta_{i}^{n_{1}} s$, increases. Thus, a great deal more than direct application of the discrete maximum principle is required for effective solution. In addition to this, we may point out, using this tiny example, another serious difficulty with numerical procedures -obtaining an optimum requires the exact values for the z_{i}, i.e., missing the correct values by however small an amount can yield the wrong values for the θ_{i}^{n}."

This is investigated using the commentator's own example (Example (2))
by the systematic search method. There is only one feasible solution to their particular example and, of course, this is the optimum one. It appears that the criticism is premature at this early stage of development of this method. Compared to established linear and non-linear programing techniques, this is in its infancy and needs future developments before it can be compared for efficiency:

I am taking this opportunity to extend my sincerest thanks to Dr. C. I. Hiwant, major professor, and D:. G. F. Schrader, professor and Head of the Industrial Engineering Department, whose inspiration, words of confidence and suggestions made this report a success.

I wish to express my sincere appreciation to Dr. I. T. Fan, professor, Department of Chernical Engineering, for his generosity and cooperation in assisting me in interpreting the fundamentals of the maximum principle and applying this basic technique to the solution of this type of problems.

This study was partly supported by NASA Grant No. NsG - 692.

1. Lantzざ, C. B., "Linear Programming and Extensions," Princeton University Press, Princeton, New Jersey, 1963.
2. Bownan, E. H., and Fetter, R. B., "Analysis for Production Management," Richard D. Irwin, Inc., 1961.
3. Sasieni, M., Yaspan, A., and Friedman, L., "Operation Research Methods," John "iiley \& Sons, Inc., New York, 1961.
4. Schrader, G. F., Fwang, C. L., Fan, L. S., Fan, L. T., "The Discrete Maximum Principle Solutions of Multidepot Transportation Problems with Linear Cost Function," submitted for publication, 1965.
5. Bellman, R. E., and Dreyfus, S. E., "Applied Dynamic Programming," Princeton University Press, Princeton, New Jersey, 1962.
6. Fan, L. T., and Wang, C. S., "The Discrete Maximum Principle - A Study of Nultistage Systems Optimization," John Wiley \& Sons, Inc., New York, 1964.
7. Fan, L. T., and Wang, C. S., "The Application of the Discrete Maximum Principle to Transportation Problems," J. Math. \& Physics, 43, 255 (1964).
8. Hwang, C. L., Chen, S. K., Schrader, G. F., and Fan, L. T., "The Discrete Maximum Principle Solution of Multidepot Transportation Problems with Non-Linear Cost Function," unpublished report (1965).
9. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V, and Mishchenko, E. F., "The Nathematical Theory of Optimal Processes (English translation by Trirogoff, K. N.)." Interscience Publishers.
10. Chang, S. S. L., "Digitized liaximum Principle," Proceedings of I. R. E., 2030-203I, Dec., 1960.
11. Katz, S., "Best Operating Points for Staged Systems," I. \& E. C. Fundamentals, Vol. 1, No. 4, Nov., 1962.
12. Charnes, A., and Kortanek, K., "A Note on the Discrete Maximum Principle and Distribution Problems," Systems Research Memorandum No. 117, Northwestern University, Feb., 1965.
13. Saaty, T. I., "Mathematical Methods of Operations Research," McGraw-Hill Book Co., Inc., New York, 1959.

THE APPLICATION OF THE DISCRETE KAXINM PRINCIPLE TO TRANSPORTATION PROBLEVLS IITH LINEAR AND NON-IINEAR COST FUNCTIONS

by

JAGDISHCHANDRA MAGANLAL PANCHAL
B. E. (mech.) Maharaja Sayajirao University Baroda, India, 1959

AN ABSTRACT OF A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIEINCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Optimization of transportation problems, with only one type of resource and with its total supply equal to the total demand, is studied through the application of the discrete version of maximum principle. An outline of general algorithm of the discrete version of maximum principle and formulation of the transportation problem in terms of this algorithm are given.

The purpose of this report is to present an elegant stepwise approach to solve the transportation problems by the application of the discrete version of the maximum principle. An algorithm based on this principle reduces such problems to a standard form from which a number of feasible solutions are obtainable. A systematic search method is developed to obtain feasible solutions and to find an optimum solution or solutions among the feasible solutions.

A feasible solution, among few obtained by the systematic search method, having least number of undecided control variables, usually gives the optimum one. However, this is not the case with Example (3).

Simple problens involving linear cost functions with two and three depots are systematically analysed in order to obtain generalized computational procedure for solving problems of more than three depots. A problem with four depots is solved using this procedure. Problems involving non-linear cost functions, with and without set-up costs, having two and three depots, are systematically analysed.

A very recent comment, on the application of the maximum principle to linear cost function transportation problems, that it is a cumbersome computational approach for an optimum solution is investigated by solving
the commentator's example, Example (2), by the systematic search method. It appears that the criticism is premature at this early stage of the development of this method.

[^0]: * The superscript, n, indicates the stage number. The exponents are written with parentheses or brackets such as $\left(x^{n}\right)^{2}$ or $\left\{\phi\left(x^{n}\right)\right\}^{2}$.

