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Abstract 

Hantaviruses are zoonotic, RNA viruses that are harbored by muroid 

rodents of the families Muridae and Cricetidae.  While the virus is endemic, and 

mostly non-symptomatic in its rodent reservoirs, when humans contact the virus 

it can result in serious disease.  My purpose in this dissertation is to investigate 

the effect that landscape patterns and land cover condition can have on 

pathogen prevalence in a hantavirus reservoir species (Akodon montensis) within 

the Atlantic Forest region of Eastern Paraguay and to investigate ways to 

analyze those patterns using remotely sensed data.  The first component to this 

research is to test potential improvements to image classifications on land 

use/land cover classifications useful for the study of small mammal communities.  

An object-based classification produced the best results with seven classes: 

Forest, Wet Cerrado, Dry Cerrado, Latifundia, Minifundia, Dry Pasture, and Wet 

Pasture.  The classified imagery was then used to assess landscape effects on 

the presence of hantaviral antibodies (a 'marker' for exposure to the virus) in 

populations of A. montensis.  In the overall landscape, proximity of similar habitat 

patches was related to seroprevalence in Akodon.  When considering only the 

forest class, high amount of forest, high number of forest patches, and high 

diversity in forest patch sizes were all associated with seroprevalence. 

Next, was an analysis of ways to distinguish understory density variables 

through the use of satellite imagery.  Horizontal and vertical density in the 

understory has been associated with the presence of hantavirus in A. montensis.  



  

Vertical and horizontal density measurements were correlated with NDVI and the 

Fourth band in the Tasseled Cap transformation.  Finally, I consider the 

relationship between small mammal community diversity and seroprevalence, 

and their association with NDVI.  Diverse small mammal communities are 

associated with low hantavirus seroprevalence.  Low diversity metrics and high 

hantavirus seroprevalence were associated with high mean NDVI values.  Many 

aspects of landscape patterns are important to hantavirus seroprevalence in 

small mammal communities in Eastern Paraguay.  Several of the landscape 

patterns important to hantavirus seroprevalence can be studied using satellite-

derived data. 
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Hantaviruses are zoonotic, RNA viruses that are harbored by muroid 

rodents of the families Muridae and Cricetidae.  While the virus is endemic, and 

mostly non-symptomatic in its rodent reservoirs, when humans contact the virus 

it can result in serious disease.  My purpose in this dissertation is to investigate 

the effect that landscape patterns and land cover condition can have on 

pathogen prevalence in a hantavirus reservoir species (Akodon montensis) within 

the Atlantic Forest region of Eastern Paraguay and to investigate ways to 

analyze those patterns using remotely sensed data.  The first component to this 

research is to test potential improvements to image classifications on land 

use/land cover classifications useful for the study of small mammal communities.  

An object-based classification produced the best results with seven classes: 

Forest, Wet Cerrado, Dry Cerrado, Latifundia, Minifundia, Dry Pasture, and Wet 

Pasture.  The classified imagery was then used to assess landscape effects on 

the presence of hantaviral antibodies (a 'marker' for exposure to the virus) in 

populations of A. montensis.  In the overall landscape, proximity of similar habitat 

patches was related to seroprevalence in Akodon.  When considering only the 

forest class, high amount of forest, high number of forest patches, and high 

diversity in forest patch sizes were all associated with seroprevalence. 

Next, was an analysis of ways to distinguish understory density variables 

through the use of satellite imagery.  Horizontal and vertical density in the 

understory has been associated with the presence of hantavirus in A. montensis.  



  

Vertical and horizontal density measurements were correlated with NDVI and the 

Fourth band in the Tasseled Cap transformation.  Finally, I consider the 

relationship between small mammal community diversity and seroprevalence, 

and their association with NDVI.  Diverse small mammal communities are 

associated with low hantavirus seroprevalence.  Low diversity metrics and high 

hantavirus seroprevalence were associated with high mean NDVI values.  Many 

aspects of landscape patterns are important to hantavirus seroprevalence in 

small mammal communities in Eastern Paraguay.  Several of the landscape 

patterns important to hantavirus seroprevalence can be studied using satellite-

derived data. 
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Chapter 1.   Introduction 

  

 1.1.  Background 

Hantavirus Pulmonary Syndrome (HPS, below) is an emerging infectious 

disease (Despommier, 2007).  Hantaviruses, the etiologic factor for HPS, are a 

genus of zoonotic RNA viruses that belong to the Bunyaviridae family (Jonsson 

and Schmaljohn, 2001; Plyusnin and Morzunov, 2001).  Hantaviruses can cause 

several serious diseases in humans.  In Eurasia, hantaviruses cause 

Nephropathia Epidemica (NE) and Hemorrhagic Fever with Renal Syndrome 

(HFRS) (Klein and Calisher, 2007).  Throughout the Americas, the hantavirus-

associated disease is Hantavirus Pulmonary Syndrome (HPS) (Klein and 

Calisher, 2007; Raboni et al., 2005; Butler and Peters, 1994).  The first 

recognition of HPS was in 1993 during an outbreak in the southwestern United 

States (Hjelle et al., 1994).  Since that time, hantaviruses have been discovered 

to be endemic throughout the Americas (Klein and Calisher, 2007).  Cases of 

HPS were first discovered in Paraguay in 1995 (Williams et al., 1997), Laguna 

Negra virus (LNV) was the name given to this strain of hantavirus (Chu et al,. 

2009).  

Taxonomically, hantaviruses are composed of numerous serotypes or 

'strains'.  Over twenty different serotypes have been identified throughout the 

Americas, each of these has a different rodent host species or reservoir (Klein 

and Calisher, 2007).  In Paraguay (where the analysis in this dissertation was 
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done), there are at least five serotypes (Figure 1.1), these types with their 

reservoirs are: Laguna Negra virus (LAN) with Calomys laucha, Alto Paraguay 

virus (ALPA) with Holochilus chacarius, Ape Aime virus (AAI) with Akodon 

montensis, Itapua virus strain 37 (IP37) with Oligoryzomys nigripes, and Bermejo 

- Ñeembucu (BMJ-ÑEBU) with Oligoryzomys chacoensis (Chu et al., 2003; Chu 

et al., 2009). 

 

Figure 1.1.  Map of general locations of strains of hantavirus in Paraguay. All 
strains have dispersed habitat, locations are approximate location of initial 
discovery (Chu et al., 2003). 
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Despite the prevalence of virus within their reservoirs and the wide 

geographic distribution of hantavirus reservoirs, outbreaks of HPS are sporadic 

and unpredictable.  This situation has resulted in efforts to understand and 

predict relationships between the virus, the reservoir host, human contact, and 

landscape and climate variables.  Variation in rodent hantavirus prevalence 

occurs seasonally, annually (Mills et al., 1999), with varying climate conditions 

(Williams et al.,1997), and with varying habitat (Kuenzi et al., 1999, Root et al., 

1999).  In North America, HPS outbreaks have been primarily associated with 

precipitation patterns (Engelthaler et al., 1999; Gubler et al., 2001; Yates et al., 

2002).  High precipitation levels increase food availability for the reservoir, which 

increases population size and risk between rodents of exposure to hantavirus 

(Parmenter et al., 1999).  Remotely sensed indices of vegetation greenness have 

been associated with HPS in the Southwestern U.S. (Glass et al., 2000).  Similar 

dynamics have been noted in HPS cases in the Paraguayan Chaco region 

(Williams et al., 1997), another rainfall limited region.  While climatological 

aspects play a role in the prevalence of hantavirus in rodent communities, there 

are additional factors that also play important roles (Calisher et al., 2007), such 

as landscape patterns (Langlois et al., 2001) and some anthropogenic land 

use/land cover changes (Goodin et al., 2006; Suzan et al., 2006).  Like 

hantavirus, about 75% of emerging and reemerging diseases are zoonotic 

(Taylor et al., 2001).  Climate change and increased human impacts on the 

landscape play a role in the emergence of hantavirus (Dearing and Dizney, 

2010).  Part of the evidence for the effect of climate change on hantavirus is the 
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effect of other climate cycling patterns (e.g., the El Niño Southern Oscillation 

(ENSO)) and an expansion in the range of hantavirus incidences in Europe.  

Increased human impacts on the landscape are generally in the form of habitat 

fragmentation and alteration of habitat quality.  Most of these changes increase 

hantavirus prevalence (Dearing and Dizney, 2010; Mills et al., 2006; Root et al., 

1999). 

My purpose in this dissertation is to investigate the effect landscape has 

on pathogen prevalence in a hantavirus reservoir, specifically, how changes to 

the Atlantic Forest system in Eastern Paraguay affect Akodon montensis and its 

association with hantavirus.  There are multiple ways that landscape could affect 

hantavirus, including effects on inter-species interactions (Keesing et al., 2006; 

LoGiudice et al., 2003), intra-species interactions (Eisenberg et al., 2006; 

Rotureau, 2006), and individual organism health (LoGiudice et al., 2003; Ecke et 

al., 2002), through connectedness (Eisenberg et al., 2006; Goosem, 2001) and 

quality of the landscape (Lehmer et al., 2008; Ecke et al., 2002).  In addition to 

changing presence or prevalence of active pathogens, landscape change can 

cause some pathogens to emerge or re-emerge (Eisenberg et al., 2007).  These 

landscape interactions provide a tool to potentially use for the management of 

human exposure to pathogens through the management of landscapes. 

There were a number of components to this research.  These include 

image classification of the study region, which was done using a combination of 

spectral and spatial classification techniques.  The classified imagery was then 

used to assess landscape effects on the spatial epidemiology of hantavirus.  
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Forested regions were then classified into different forest types and aspects of 

the forests that can be distinguished in remotely sensed imagery were analyzed 

for their impact on the presence of hantavirus seropositive rodents in rodent 

communities.  Finally, the effect of rodent community diversity on prevalence of 

hantavirus within its reservoir organism was analyzed.  

 

 1.2. Research Questions 

The research goals are addressed via a series of questions and 

hypotheses outlined below. 

 

 1.2.1. Overall Question 

What roles do landscape composition and structure play in the distribution 

of hantavirus in Akodon montensis populations in Eastern Paraguay?    

 

 1.2.2. Secondary Questions 

1.  How can land cover mapping of different types of forest and forest 

disturbances be improved to facilitate landscape epidemiology studies of 

hantavirus in the Paraguayan Atlantic Forest? (Chapters 4 and 6) 

 

2.  What landscape spatial patterns are associated with increased 

hantavirus presence? (Chapter 5) 
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3.  What effect does small mammal community diversity have on 

hantavirus seroprevalence in Akodon montensis? (Chapter 7) 

 

 1.3.  Research Hypotheses 

1.  Object-based classification of Landsat data of the study area produces 

a more accurate LULC classifications than pixel-based classifications because 

the different land use types in rural Paraguay are spectrally similar. (Chapter 4) 

 

2.  Landscape metrics calculated using landscape classifications from 

satellite imagery (Landsat) will have threshold values that distinguish a potentially 

high prevalence landscape from a low prevalence landscape for hantavirus in 

Akodon montensis in the Atlantic Forest in Paraguay because different 

landscapes affect the nature of population interactions in rodent communities. 

(Chapter 5) 

 

3.  The scale of measurement for landscape metrics (pattern) will affect 

how well that metric is associated with hantavirus because different types of 

population interactions (process) take place at different scales. (Chapter 5)  

 

4.  Forest understory density parameters (horizontal density and vertical 

density) that are associated with hantavirus in Akodon montensis will be 

detectable in Landsat imagery. (Chapter 6) 
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5.  High diversity of the small mammal community will be associated with 

low seroprevalence of hantavirus due to a dilution effect from reduced amounts 

of intraspecies contacts. (Chapter 7) 

 

6.  Diversity of the small mammal community and seroprevalence of 

hantavirus will be associated with vegetation index measurements in Landsat 

imagery. (Chapter 7) 

 

 1.4.  Outline of the Dissertation 

In Chapter 2, I review the relevant literature and outline the broader scope 

of this research.  The study area and data collection methods are discussed in 

Chapter 3.  In Chapter 4 classification of land cover in the study area is 

presented, and the relative accuracies of per-pixel and object-based 

classifications is analyzed.  This classification is then used in Chapter 5 to 

investigate the effects of landscape structure and composition on hantaviral 

seroprevalence.  Other aspects of spectral information that can be used to 

measure forest understory variables important to serostatus of hantavirus in 

Akodon montensis are analyzed in Chapter 6.  In Chapter 7 rodent community 

diversity and its association with hantavirus in A. montensis communities is 

explored, and the relationship between diversity and remotely sensed information 

is considered. 
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Chapter 2.   Literature Review 

 2.1.  Landscape Epidemiology  

 2.1.1.  Introduction and History 

Landscape epidemiology is the study of the effect that landscape has on 

pathogen or disease occurrence, transmission, and persistence (Ostfeld et al., 

2005; Elliot and Wartenburg, 2004).  It is, in part, a sub-discipline of landscape 

ecology/biogeography, especially in its consideration of the roles of land use/land 

cover (LULC) and landscape structure on the spatial aspects of disease or 

pathogens.  Effects of landscape on disease can occur directly on the pathogens 

or indirectly, through the impact of landscape on behavior and health of pathogen 

vectors or reservoirs (Clements and Pfeiffer, 2009; Ostfeld et al., 2005).  

Landscape epidemiology is a subset of the more general field of spatial 

epidemiology.  Spatial epidemiology involves any spatial aspect of studying 

disease or pathogens.  Along with being concerned about the role of landscape 

and landscape patterns, spatial epidemiology is additionally used to analyze 

more general patterns of disease or pathogens and what those patterns can say 

about potential causes of disease and how disease moves through populations 

(Glass, 2000). 

Use of the terms spatial epidemiology and landscape epidemiology have 

not been completely standardized.  For the purposes of this dissertation the term 

landscape epidemiology will be used to refer specifically to study of disease 

related processes happening on the landscape and how they are affected by 
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landscape patterns or landscape forming processes.  This definition of landscape 

epidemiology extends beyond the distribution and processes of the disease itself 

and includes aspects of the entire environment-host-pathogen system (White et 

al., 1996).  The term spatial epidemiology can also be used in more general 

situations where the spatial analysis might include elements that would not 

normally be considered 'on the landscape' or when the spatial aspects of the 

analysis do not concern landscape issues.  For example, the study of disease 

spread through a feedlot might account for spatial factors in its analysis 

(Hessman et al,. 2009), but the only important factor might be pen proximity and 

not other landscape issues.  Some of the literature discussing landscape 

epidemiology uses the more general term spatial epidemiology (Ostfeld et al., 

2005).  Other literature does not give it a special name or simply calls it 

epidemiology and applies it to aspects of the landscape (Eisenberg et al., 2007; 

Panah and Greene, 2005; Pavlovsky, 1966). 

The concepts and ideas of landscape epidemiology were developed by 

Pavlovsky and his colleagues (see Pavlovsky, 1966 for a comprehensive 

summary of this work).  Pavlovsky's work took place within a strong tradition of 

landscape studies taking place in Russian academia (Shaw and Oldfield, 2007).  

Pavlovsky recognized that some infectious diseases are associated with specific 

landscape factors.  In his 1966 book, Pavlovsky states that many diseases have 

a specific focal geographic region or natural environment, which he called a 

natural nidality (i.e., hearth or locus).  He also noted that spatial variation in the 

distribution of many diseases can be accounted for by variation in biophysical 
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factors that affect vectors and reservoirs of pathogens.  He further suggested that 

we can use the understanding of these factors to map and predict risk areas.  For 

several diseases that were present in Russia at the time, Pavlovsky identified the 

types of landscapes that are associated with the hosts or vectors of their 

pathogens.  He also discussed the role of other factors like climate, weather, 

terrain, biology and habitats.  He then identified how these factors can be used to 

map the potential distribution of diseases and even showed a few maps for 

disease in the northern subcaspian region in Russia. 

Despite its potential for understanding the distribution of disease, 

Pavlovsky's work remained little known outside of Russia, and little landscape 

epidemiology work was done by western scientists until the late 1990's.  Since 

then, Pavlovsky's work has gained recognition by western epidemiologists and 

disease ecologists (Ostfeld et al., 2005).  The recent growth in the importance of 

landscape epidemiology is due to several factors.  One is improved technology, 

which allows more complicated analysis to be readily achieved (Panah and 

Greene, 2005).  Another factor is improved access to various types of inherently 

spatial data, including remotely sensed data (Tran et al., 2007; Goetz et al., 

2000; Hay, 2000) along with GIS tools (LaRoque, 2007; McLafferty, 2003; Hay et 

al., 2000) with which relevant landscape information can be derived across a 

wide spectrum of spatial scales (Elliot and Wartenburg, 2004; Langlois et al., 

2001; Turner et al., 2001).  In addition, there has been a concurrent development 

of landscape ecology which relies on many of the same resources as landscape 
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epidemiology and does much to help inform landscape epidemiology (Kitron et 

al., 2006; Curran et al., 2000). 

 

 2.1.2.  Landscape Controls on Pathogens 

This research is primarily concerned with the effect of landscape on 

pathogen prevalence in a reservoir.  For the purposes of this dissertation, 

landscape is defined as the natural and anthropogenic mesoscale arrangement 

of land use/land cover on the Earth's surface.  Turner et al. (2001) define 

landscape as “area that is spatially heterogenous in at least one factor of 

interest”; this is a more inclusive definition that is also consistent with the way 

landscape is used here.  In landscape epidemiology studies a variety of other 

vegetative, geologic, climatic, and other environmental conditions can be 

considered.  Additionally, landscape epidemiology can be used to look at aspects 

of both disease and health (Ostfeld et al., 2005; Panah and Greene, 2005; Elliot 

and Wartenburg, 2004; Rushton, 2003).  The ways that landscapes can have an 

effect pathogen prevalence are multifold and often includes its effects on inter-

species interactions, (Keesing et al., 2006; LoGiudice et al., 2003) intra-species 

interactions, (Eisenberg et al., 2006; Rotureau, 2006) and individual organism 

health (LoGiudice et al., 2003; Ecke et al., 2002), through connectedness 

(Eisenberg et al., 2006; Goosem, 2001) and quality of the landscape (Lehmer et 

al., 2008; Ecke et al., 2002).  Ways that changes to the landscape can influence 

disease processes and health are also often a subject of interest (Lehmer et al., 

2008; Sallares, 2006; Patz et al., 2004).  In addition to changing levels of active 
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pathogens, changes made to landscapes can cause some pathogens to emerge 

or re-emerge (Eisenberg et al., 2007). 

Landscape controls on the emergence, reemergence, or distribution of 

pathogens can occur directly or indirectly.  Direct control generally occurs with 

pathogens that are not reservoir- or vector-borne.  For example, 

coccidioidomycosis (Kolivras and Comrie, 2004) is a disease caused by a type of 

soil fungus.  It occurs in parts of the Southwest US, Central America, and South 

America.  The occurrence of coccidiodomycosis requires that a local environment 

have a period of time wet enough to allow the fungus Coccidioides immitis to 

complete a life-cycle and then dry enough that the soil and fungus becomes 

wind-borne, which is how humans are exposed to the fungus.  Areas that stay 

too dry don't have the fungus and areas that stay too wet don't have airborne C. 

immitis and also may have less C. immitis due to competition from other soil 

fungi.  There is also some speculation that certain types of anthropogenic 

landscape changes can increase the amount of C. immitis in the environment. 

Indirect landscape controls on disease generally occur through the impact 

of landscape on pathogen reservoirs and vectors.  Impact of landscape on the 

ability of pathogen reservoirs and vectors to carry pathogens occurs through its 

impact on reservoir and vector distribution, health, and interactions (Keesing et 

al., 2006; LoGiudice et al., 2003).  These impacts on pathogen reservoirs and 

vectors are not just important to the maintenance of existing diseases, but also to 

the introduction of new diseases.  About 75% of emerging and reemerging 

diseases are zoonotic (Taylor et al., 2001).  The example of hantavirus will be 
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more thoroughly discussed later, a few general examples that illustrate some 

important points regarding landscape epidemiology of reservoir- and vector-

borne diseases are reviewed here. 

Malaria is caused by a vector-borne pathogen that has a relatively clear 

link to the landscape and is probably the most widely studied disease in the 

context of landscape epidemiology.  Humans contract the malaria parasite 

(Plasmodium falciparum) through the bite of infected female mosquitoes (Hay et 

al., 2000).  The larval life stages of mosquitoes need water, so mosquitoes are 

found near water sources, a fact often used in malaria control and surveillance 

(Li et al., 2009; Wood et al., 1991).  In many habitats the amount of water present 

influences the amount and vigor of vegetation.  By measuring the amount of 

vegetation using remotely sensed imagery the potential mosquito population can 

be estimated (Hay et al., 2000; Wood et al., 1991).  In other cases the water in a 

habitat can be estimated by monitoring rainfall through the use of remote sensing 

platforms (Savigny and Binka, 2004).  Efforts to control mosquito populations 

operate through controlling the amount of water present or limiting the ability of 

mosquitoes to reproduce when water is present (Li et al., 2009).  Additionally, 

understanding when mosquito numbers are apt to be high can help decisions 

regarding when and where to strengthen malaria prophylactic efforts.  Other 

mosquito-borne pathogens and the various mosquito species that carry them 

have different specific water requirements, so different aspects of the 

environment are analyzed to control or monitor different mosquito species 

(Meade and Earickson, 2005). 
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Landscape controls on Lyme disease are more complicated, and appear 

to show some consequences of anthropogenic landscape change.  Lyme 

disease is caused by Borellia burgdorferi, which is a tick-borne pathogen.  Many 

different species of mammals are hosts for B. burgdorferi, but the vector through 

which it is spread between individual animals is the Ixodes scapularis tick.  While 

there are many adequate mammal hosts for B. burgdorferi, Peromyscus 

leucopus (white-footed mouse) is a particularly good host.  Many of the changes 

humans have made to the landscape, especially forest fragmentation, have been 

favorable for P. leucopus and detrimental to other mammal species.  This means 

that an individual tick is more likely to encounter P. leucopus in a blood meal, 

increasing the likelihood that the pathogen will be transmitted.  This in turn 

results in a situation where a higher proportion of the ticks present in the 

landscape carry B. burgdorferi and consequently human-tick encounters are 

more likely to end up in the human contracting Lyme disease (Brownstein et al., 

2005; LoGiudice et al., 2003; Frank et al., 1998) regardless of the total tick 

population. 

Rabies is an example of a non-vector-borne pathogen, or a pathogen 

transmitted directly from its animal reservoir to a human (Biek and Real, 2010).  

Landscape controls on the rabies virus include affecting how different strains of 

rabies virus spread through the landscape (Barton et al., 2010) and how different 

interactions between mammal species and mammals and humans occur 

(Clements and Pfeiffer, 2009; Biek and Real, 2010; Barton et al., 2010).  
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 2.1.3.  Landscape Ecology 

As evidenced in the previous examples, both the spatial aspects of the 

landscape and the biology of the interactions are important to the various 

landscape epidemiology interactions (Kitron, 2006).  Landscape ecology is an 

academic field that lies at the intersection of biology and geography (Turner et 

al., 2001), landscape ecological concepts link landscape effects and biological 

systems.  Some of the important concepts in landscape ecology are the 

connections between pattern and process and the importance of scale in its 

application to biological studies (Turner et al., 2001). 

Connections between pattern and process in ecology have been 

academically recognized since at least 1947 (Watt, 1947).  Depending on the 

situation, active processes can leave behind specific patterns or patterns can 

constrain some processes (Turner et al., 2001).  For disease processes (and in 

landscape epidemiology) patterns of disease provide clues about important 

processes in the maintenance and spread of that disease.  The effect the pattern 

has on increasing or decreasing disease quantity can be analyzed.  Patterns can 

suggest processes that were not previously recognized as important.  Finally, 

patterns can also be used as proxies for measuring processes that are not 

directly measurable, are difficult to measure, or are not ethically directly 

measurable (Meade and Earickson, 2005; Saunders and Mohammed, 2009). 

Scale plays an important role in pattern analysis in part by allowing processes 

that operate at different scales than the pattern we are analyzing to be 

eliminated, scale will be discussed later.  
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An example of a disease process that has been elucidated using patterns 

is one involved in the spread of West Nile Virus (WNV) in the United States.  

West Nile Virus is a mosquito-borne virus that was introduced in the New York 

City area in 1999 (Nash et al., 2001).  Because the virus is mosquito-vectored, it 

was assumed that the virus would spread at a more or less predictable rate 

(Peterson et al., 2003).  Then, a second locus of WNV was found in the 

Southeastern U.S. (Peterson et al., 2003) and WNV quickly spread throughout 

the Southeastern U.S.  This pattern of multinodal spread suggested that another 

factor influenced the spread of the virus, which was discovered to be migratory 

birds (Dusek et al., 2009; Peterson et al., 2003).  In this case the pattern 

indicated that there were processes in addition to mosquitoes at work; the pattern 

also suggested that migratory birds could be involved and further studies 

confirmed that possibility (Dusek et al., 2009).  Further, the pattern could indicate 

that there are even more unknown processes at work in the spread of WNV 

throughout the U.S. (Koch and Denike, 2007). 

Landscape pattern can also affect disease processes.  This generally 

happens through the effect of the landscape pattern on the way that individuals 

and populations interact.  These interactions then affect how disease is spread 

through those communities and how vectors contact susceptible populations.  An 

example of this is Lyme disease, mentioned above, where changes to the 

patterns of forests favors P. leucopus which ends up increasing the risk for 

humans contacting Lyme disease.  Understanding the ways that landscape 
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patterns affect various disease processes can help better define the potential 

impacts of human caused changes to landscapes.  

 

 2.1.4.  Landscape Metrics 

Landscape metrics are commonly used to quantify landscape patterns 

(Wu and Hobbs, 2002; Turner et al., 2001).  There are many different metrics, 

but in general the various landscape metrics quantify things like size, shape, 

connectedness, and composition of landscape patches and habitats.  By 

correlating the values obtained from landscape metrics with the presence of 

pathogens or reservoirs, the association of landscape patterns and diseases can 

be analyzed.  

One important point about using patterns to analyze disease processes is 

that causality can not be absolutely determined through pattern analysis.  

However, many of the environmental causes of disease are very difficult to 

establish and many of the techniques used to analyze disease processes do not 

absolutely prove causality.  What pattern analysis can do is help to reasonably 

determine likely causality and also add support to other types of analysis. 

 

 2.1.5.  Scale 

While not often discussed in epidemiology literature, scale is an important 

aspect of epidemiologic (and general scientific) understanding that is introduced 

via spatial analysis (Jacquez, 2000).  Scale can be used to help fit pattern and 

process together; the scale of pattern and expected process need to match for 
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them to be connected.  However, analysis done at one scale is not always 

transferable to other scales (Kitron, 2006).  The use of hierarchy theory can help 

determine the relationships among different scales; for example, how larger scale 

processes constrain smaller scale processes and how finer scale processes add 

up to larger scale processes. 

Scale, as used here, refers to the characteristic spatial (or temporal) 

dimension of a phenomenon.  Scale is generally measured in two different 

aspects, grain and extent.  Extent refers to the overall size of the area in which a 

process or phenomenon occurs.  The grain is the size of individual units of 

observation (Turner et al., 2001).  When discussing issues of scale in reference 

to biological systems it is also important to define the level of community 

organization within which one is working. 

Scales important to the analysis of landscape epidemiology can vary from 

global to individual organisms.  At the global scale processes like global climate 

(Anyamba et al., 2006) and plate tectonics affect the patterns and distribution of 

disease transmission and maintenance.  At the scale of an individual, how that 

individual changes its immediate environment can affect its ability to resist 

contracting disease or its potential for becoming exposed to pathogens 

(Pavlovsky, 1966).  Of course, there are processes that act at many scales 

between those scales.  Each process leaves a signature in the patterns that it 

leaves behind.  For example, global climate places a limit on the areas that can 

support malaria because the mosquitoes that carry malaria are limited by 

temperature.  Thus, malaria occurs in tropical and sub-tropical zones, can occur 
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seasonally in warm temperate zones, but is relatively easy to control there 

(Meade and Earickson, 2005), and does not occur in polar zones.  Within the 

large, global scale, tropical/sub-tropical zone there are regional limits placed on 

malaria by the amount of rainfall and altitudinal temperature variations, and other 

limitations and interactions can be associated on down in scales to individual 

habitat patches. 

Different processes can operate at different scales in a single system.  At 

times maybe even processes that are apparently diametrically opposed may be 

important at different scales.  For example, schistosomiasis is a parasitic disease 

caused by exposure to Schistosoma japonica, which is carried by a species of 

snails (Oncomelania hupensis).  Water is essential to the maintenance of 

schistosomiasis.  Yang, et al. (2009) found that, when using remotely sensed 

imagery to map the potential schistosomiasis habitat it may be necessary to look 

for higher or lower values of NDVI, depending on the scale of the imagery (grain 

or spatial resolution).  In coarse scale imagery higher values of NDVI are 

associated with higher levels of schistosomiasis, because at larger grains the 

pixels that represent water areas also contain a lot of vegetation and pixels with 

little vegetation represent dry land with no water.  Conversely, in fine scale 

imagery lower NDVI values are more frequently associated with higher 

occurrence of schistosomiasis, because at smaller grains the pixels that 

represent vegetation are separate from the pixels that represent open water and 

open water is the habitat most associated with high schistosomiasis levels. 
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These issues of seeing different things at different scales helps highlight 

important aspects involved in applying data obtained at one scale to other scales.  

Various issues and techniques related to upscaling and downscaling information 

need to be recognized when considering the multiple scales of various processes 

and patterns (Kitron, 2006; Levin, 1992).  Care must be exercised because while 

for some processes upscaling and downscaling can be done, for others one 

might get an incorrect answer. 

 

 2.2.  Geospatial Technologies and Disease  

 2.2.1.  Introduction 

An improved understanding of the importance of spatial aspects of the 

physical environment on disease processes (Clements and Pfeiffer, 2009; 

Ostfeld et al., 2005) has played an important role in the current increased interest 

in landscape epidemiology (Ricketts, 2003).  Also playing a role in the increased 

interest is an increase in the widespread availability of remotely sensed data 

(Hay, 2000) and GIS tools (Cromley, 2003), and the computing power needed to 

better analyze them to extract relevant landscape information from a wide 

spectrum of spatial scales (Reisen, 2010; Ricketts, 2003). 

Remote sensing and Geographic Information Systems (GIS) are two 

geographic tools that can be used for analyzing the landscape ecology of 

disease and pathogen vectors (Clements and Pfeiffer, 2009).  The role of remote 

sensing in researching and monitoring disease primarily involves the detection of 

secondary indicators that are associated with disease or pathogen vectors and 
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also monitoring changes to those indicators (Ostfeld et al., 2005; Cline, 1970).  

GIS is a set of spatial analysis tools that are used to collect, store, analyze and 

display spatially referenced data (Panah and Greene, 2005; Ricketts, 2003) and 

is an essential part of most spatial and geographic analysis, including the 

analysis of spatial aspects of health and disease.  I will review remote sensing 

and GIS separately, but these two aspects of geospatial technology are 

frequently used together as a cohesive unit. 

 

 2.2.2.  Geographic Information Systems (GIS) 

GIS is essentially a collection of software and hardware tools designed for 

acquiring, storing, and analyzing geospatial data (Panah and Greene, 2005; 

Ricketts, 2003).  Nearly anything involving spatial data can be analyzed with the 

assistance of a GIS.  GIS can be used to display spatial data, either for 

exploratory spatial data analysis (Arambulo and Astudillo, 1991) or for the 

presentation of final results (Clarke et al., 1996).  Within a GIS, remote sensing 

data can be combined with other locational information important to disease and 

disease processes (Hay, 2000) and this combination can be analyzed or 

displayed.  Appropriate spatial statistics, such as cluster analysis (Hay et al. 

2000; Wakefield et al., 2000), kriging (Cressie, 2000), and spatial associations 

(Moore and Carpenter, 1999; Best et al., 2000; Langlois et al., 2001) can be used 

to analyze spatial data with the help of GIS programs.  The ability to connect 

various sources and types of spatial data make GIS an appropriate platform to 

use in analyzing various aspects of spatial relationships relating to disease, 
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including the dispersion of disease through communities (Morris and Wakefield, 

2000) and access to health care (McLafferty, 2003).  The biggest limitation in the 

use of GIS for analysis of spatial aspects of disease is data availability and data 

quality (Elliot et al., 2000; Stines and Jarup, 2000). 

 

 2.2.3.  Remote Sensing 

Remote sensing is the measuring of properties of the Earth's surface 

without being in contact with it, which is done through the detection of reflected or 

emitted electromagnetic radiation.  The three major ways that remote sensing 

information is collected is by hand, by airplane, or by satellite.  Data collected by 

hand (field data) are generally collected by portable or semi-portable 

spectrometers and are often used to characterize the electromagnetic spectra of 

particular land surface types.  The biggest limitation to field data is that it is 

difficult to get full two dimensional coverage of any particular area, but the data 

tend to be detailed in terms of pixel size and/or spectra.  Aircraft collected data 

generally give full two dimensional coverage of an area, but are limited in extent 

and are generally collected when commissioned, which means that there is 

typically no repetitive coverage of a particular area.  Remotely sensed data 

collected by satellite usually has global coverage and has regularly repeating 

coverage, with the major limitation being grain size.  The research in this 

document is based on satellite collected data. 

There are four different resolutions important to remote sensing data: 

spatial, temporal, spectral, and radiometric.  Radiometric is not generally a 
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limiting factor, so I will not discuss it here.  Spectral resolution refers to the 

electromagnetic radiation spectra measured by the detectors.  The importance of 

spectral resolution is that through careful selection of spectra, classes can be 

effectively separated or important biophysical parameters can be determined.  

What kind of data satellites collect cannot be changed, but data can be selected 

from satellites that collect data closest to the needed type.  With remotely sensed 

satellite data, spatial and temporal data are often inversely related.  Satellites 

that have coarse spatial resolution generally collect data frequently and satellites 

that have fine resolution collect data less often. 

Satellite systems that have very fine spatial resolution generally have pixel 

sizes of less than 5m and as small as 0.6m (Note: pixel resolution is expressed in 

terms of a single dimension, so that a resolution of 5m means that the pixel area 

is actually 5m x 5m or 25m2).  Data collection from these satellites is by user 

request, so there is not a complete global record at this resolution.  In the next 

step up for spatial resolution are satellites that collect moderate resolution data, 

with pixel dimensions of about 15-100m.  These satellites generally have a 

temporal resolution of about two weeks and there is a good global record of data 

within this set of resolutions.  At coarse spatial resolution are satellites that 

collect data with pixel sizes from 250m to 5000m, these satellites usually obtain 

global coverage on a daily basis. 

The potential for use of remote sensing data in the analysis of health has 

been recognized at least since 1970 (Cline, 1970).  Satellite remote sensing data 

is the only major data source that provides a combination of global coverage and 



24 

 

regular updates.  The mixture of global scale coverage and repeated updates 

offers several advantages.  The global nature of satellite data means that data 

can be collected regardless of political boundaries and the large scale two 

dimensional coverage in data means that patterns can be relatively easy to see, 

define, and measure.  Repeated coverage means that changes to the landscape 

can be monitored as they happen and the importance of those changes to 

disease processes can be analyzed. 

Remote sensing data can be processed to provide two types of 

information: biophysical and categorical.  Both of these are useful in landscape 

epidemiology.  Biophysical data includes information such as temperature, 

precipitation, or amount of vegetation.  Currently, regularly updated global data 

sets of many biophysical parameters that can be used in landscape epidemiology 

work are available. 

Remote sensing data can also be classified into discrete habitat types.  

The specific types that are useful depend on each specific vector/pathogen 

system, so there are fewer useful global data sets in this format and it is more 

common that individual studies will make their own classifications using available 

satellite data or modify other habitat classifications to fit the particular 

vector/pathogen system.  Most habitat classifications use the spectral information 

available in each pixel and classify habitat types based solely on that spectral 

information.  Recently, more techniques have been developed that use spatial 

information to help define habitat types.  Usually, the spatial information methods 

group spectrally similar neighboring pixels together, and then analyze the spatial 
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characteristics within each object or group of pixels.  This spatial information can 

help separate otherwise spectrally similar habitats from each other.  

An important feature of the satellite remotely sensed data is that it is 

inherently two dimensional data, which is a prerequisite for performing spatial 

analysis.  Additionally, this inherent two dimensional property means that 

associations between disease, vector, or pathogen data and environmental 

conditions at a location can be made.  Actual landscape patterns can be 

measured and the effects of those patterns can be measured.  And a variety of 

scales can be analyzed, from as small as a few pixels up to global, and look for 

the scales important to a particular system.  

 

 2.2.4.  Combining GIS and Remote Sensing 

Remotely sensed data in conjunction with GIS have been applied to a 

wide variety of landscape epidemiological studies (Beck et al., 2000), and have 

been especially effective for analysis of a number of reservoir- and vector-borne 

and zoonotic pathogens with environmental co-factors.  One of the principal 

advantages of using satellite remote sensing for analyzing disease-related 

environmental factors is the capability for rapid and repetitive collection of 

information, even from remote or inaccessible places (Curran et al., 2000).  

Some of the diseases analyzed using remotely sensed data include malaria 

(Beck et al., 1994; Mushinzimana et al., 2006), Lyme disease (Guerra et al., 

2002; Allan et al., 2003; Brownstein et al., 2005), Chagas disease (Kitron, 2006), 

West Nile fever (Rogers et al., 2002; Ruiz et al., 2004), Ebola Hemorrhagic Fever 
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(Tucker et al., 2002; Pinzon et al., 2004), and Rift Valley Fever (Linthicum et al., 

1987).  Lately, good predictions have been made of Rift Valley Fever epidemics 

from remote sensing data (Anyamba, 2009; Linthicum et al. 1991).  Hantavirus is 

also one of the diseases where remote sensing and GIS have been useful in 

understanding its dynamics (Glass et al., 2000; Langlois et al., 2001). 

 

 2.3.  Hantavirus 

 2.3.1.  Introduction 

Hantaviruses are a genus of RNA viruses that belong to the Bunyaviridae 

family (Jonsson and Schmaljohn, 2001; Plyusnin and Morzunov, 2001).  While 

most viruses in the Bunyaviridae family are arboviruses - that is, they are 

transmitted by arthropod vectors - hantaviruses are solely maintained in their 

rodent hosts (Plyusnin and Morzunov, 2001).  The name hantavirus comes from 

the Hantaan River, which is located near the village of Songanaeri in Korea, 

where the prototype strain was obtained around 1982 (Johnson, 2001).  The 

human diseases associated with hantavirus were described more than 1000 

years ago in China (Klein and Calisher, 2007).  However, identification of 

hantaviruses as the etiologic agent of those diseases occurred in the late 1970's 

in Eurasia and 1993 in the Americas (Johnson, 2001). 

Hantaviruses can cause serious disease in humans.  In Eurasia, 

hantaviruses can cause Nephropathia Epidemica (NE) or Hemorrhagic Fever 

with Renal Syndrome (HFRS) (Klein and Calisher, 2007).  Throughout the 

Americas, the hantavirus-associated disease is Hantavirus Pulmonary Syndrome 
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(HPS) (Klein and Calisher, 2007; Raboni2005).  Nephropathia Epidemica has a 

fatality risk of about 0.1%, HFRS has a case fatality risk of about 10%, and HPS 

is generally more serious, with fatality risk of about 35 to 50% depending on the 

strain (Klein and Calisher, 2007; Young et al., 2000; Schmaljohn and Hjelle, 

1997; Williams et al., 1997).  These diseases are thought to occur primarily 

through contact with the virus via the inhalation of rodent feces and urine, 

typically aerosolized while cleaning indoors or working outdoors (Young et al., 

2000). 

Hantaviruses are primarily hosted by rodents of the Muridae Family, with 

Subfamilies Murinae, Arvicolinae, and Sigmodontine (Chu et al., 2003; 

Schmaljohn and Hjelle, 1997).  The exceptions are two shrew species, Urotrichus 

talpoides (Arai et al., 2008) and Suncus murinus (Johnson, 2001).  The viruses 

are believed to have co-evolved with the rodents that carry them.  Each of the 

individual species of rodent that carries hantavirus has a particular strain 

associated with it (Young et al., 2000, Williams et al., 1997).  In general, 

presence of hantavirus does not cause disease-like symptoms in their reservoir 

species.  The only known exception to this is Seoul virus infection, which 

produces symptoms in very young Norway rats (Klein and Calisher, 2007).  

There are, however, thought to be some minor effects of infection in some rodent 

species.  These include changes in aggression (Klein and Calisher, 2007) and an 

interaction between ectoparasites and hantavirus (Deter et al., 2008) that may be 

protective for the rodent. 
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In rodent communities, hantavirus passes between adult animals, but not 

from a dam to her offspring.  In other words, hantavirus is passed horizontally, 

not vertically in rodent communities (Klein and Calisher, 2007).  This means that 

anything that affects the way rodents interact in their communities will affect the 

amount of hantavirus in that community, which makes hantavirus transmission in 

rodent communities a good candidate for study with Landscape epidemiology 

(Ostfeld et al., 2005; Langlois et al., 2001; Glass et al., 2000). 

From a landscape perspective, the increased risk of human disease is 

determined by both the distribution of the host rodent population and the human 

population on the landscape.  Both of these depend to some degree on land use 

and land cover, although the relationship between host, landscape, and human 

population varies (Yates, 2002).  Variation in rodent hantavirus prevalence can 

occur seasonally, annually (Mills et al., 1999), with varying climactic conditions 

(Williams et al.,1997), and with varying habitat (Kuenzi et al., 1999, Root et al., 

1999).  While these factors play important roles in the prevalence of hantavirus in 

rodent communities, there are additional unidentified factors that play important 

roles (Calisher et al., 2007), likely these include factors like landscape patterns 

(Langlois et al., 2001) and possibly some anthropogenic land use/land cover 

changes. 

 

 2.3.2.  Hantavirus in the Americas 

Hantavirus is found in rodents throughout the Americas (Figure 2.1).  The 

first New World strain of hantavirus identified and the one most often found in 
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North America is the Sin Nombre virus, which is carried by Peromyscus 

maniculatus and is found mostly in western North America (Mills et al., 1998). 

This strain of hantavirus is also responsible for the majority of HPS cases in 

North America (Schmaljohn and Hjelle, 1997).  In South America there is a more 

diverse set of hantavirus strains generally spread throughout the southern portion 

of the continent (Figures 2.1 and 2.2).  Several of these strains are responsible 

for HPS cases in South America (Klein and Calisher, 2007). 

 

 2.3.3.  Hantavirus in Paraguay  

At least four distinct strains of hantavirus are thought to be circulating 

within Paraguay, two of which have been identified in the study area (Chu et al., 

2003).  The strain of hantavirus that has most directly impacted the human 

population in Paraguay is called Laguna Negra and is endemic to Calomys 

laucha.  This strain first emerged in 1995, (Johnson et al., 1997; Williams et 

al.,1997) and since then, there have been periodic occurrences of disease.  

Other Sigmodontine rodent species in Paraguay that were found to carry a 

hantavirus include Akodon montensis, Holochilus chacarius, Oligoryzomys 

nigripes, and O. chacoensis (Chu et al., 2003).  Research suggests that the 

dynamics of hantavirus in South America is especially complex (Chu et al., 

2003). 
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Figure 2.1.  First identified locations for hantaviruses known to cause HPS (data 
from Klein and Calisher, 2007).  Locations are approximate location of first 
confirmed case. 
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Figure 2.2.  Number of HPS cases per country throughout the Americas.  Most 
cases in North America are due to the Sin Nombre virus carried by P. 
maniculatus.  Cases of HPS in South America are due to a broader variety of 
hantavirus strains carried by different rodent species (PAHO, 2010). 
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Chapter 3.   Study Area and Data Collection 

 3.1.  Paraguay 

Paraguay is a small, landlocked country in the central part of South 

America.  It has a nearly even ratio of rural to urban population, with 43% of the 

population living in rural areas (de la Mora, 2004) and the remainder in a few 

urbanized places.  It is considered to be the most agrarian of South American 

countries (Carter et al., 1996).  The major rural economic activity in Paraguay is 

farming, but forestry and hydroelectric generation also form significant portions of 

the economy.  Agriculture and forestry sectors account for 26% of the total GDP 

of Paraguay and 90% of the exports (Glatzle and Stosiek, 2005), and 62% of the 

rural population is employed in farming (Robles, 2000).  Paraguay a relatively 

poor country with the fourth lowest per capita gross national income out of 17 

Latin American countries (Rowntree, 2008).  Paraguay is made up of three 

distinct regions, which differ in several cultural and ecological aspects (Figure 

3.1).  One is east of the Paraguay River (Eastern Paraguay), another is west of 

the Paraguay River (the Chaco) (Glatzle and Stosiek, 2005), and the third is the 

urban area of Asuncion.  Eastern Paraguay is primarily made up of the Interior 

Atlantic Forest ecoregion, but also contains some Cerrado, or natural grasslands, 

in the northeast, some Humid Chaco ecoregions near the Paraguay River, and 

small pieces of other ecoregions (Figure 3.1).  In general, rainfall is not a limiting 

factor in Eastern Paraguay.  The northern part of Eastern Paraguay is tropical 

and the southern part of this region is subtropical. 
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Figure 3.1.  Map of Paraguay showing the three general regions and the 
Ecoregions (Olson et al., 2001). 

 

In Paraguay, rural land cover changes are largely driven by two differing 

processes applied with a variety of intensities.  These two processes correspond 

to the two major agricultural systems in Paraguay, termed the small-holder (or 

minifundia) and the commercial (latifundia) systems.  The minifundia system is 

typically centered around subsistence agriculture with some cash crops.  These 
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small farms contain the majority of the rural population and are typically less than 

20 hectares in size (Zoomers and Kleinpenning, 1996; Turner, 1993).  The most 

common cash crop grown is cotton (Carter et al., 1996).  Other typical cash crops 

for small farmers include tomatoes, sweet peppers, carrots, and cassava.  Beef 

cattle and other animal products are also raised for income.  Some cash crops 

that are a bit more specialized, but are either growing in importance, have an 

impact in some specific communities, or have strong future potential include: 

garlic (Douglas, 2003), pineapple, banana, sesame seed, nuts (pecan and 

macademia) (Rojas, 2001), citrus, and stevia (Douglas, 2003; Fuente, 2001).  In 

the minifundia system land cover changes occur in small parcels, often times 

less than a hectare at a time. 

Latifundias are typically from 1000 to 5000 hectares, but can be over 

50000 hectares in area (Glatzle and Stosiek, 2005; Zoomers and Kleinpenning, 

1996).  The two predominant products produced on latifundias are beef and 

soybean.  Other products that are produced on latifundias in Paraguay are yerba 

mate, sorghum, rice, and milk.  In the latifundia system land cover changes occur 

in very large parcels of hundreds to thousands of hectares (Glatzle and Stosiek, 

2005).  These two types of land clearing impose very different patterns on the 

landscape.  Large area land holders sometimes leave larger forest fragments on 

the landscape, but they are separated by much larger distances.  Small area land 

holders leave smaller forest fragments on the landscape, but they are often 

closer to each other.  Also, the levels of disturbance within the forest fragments 

can be different, with small area land holders often visiting their forest parcels 
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more regularly to obtain firewood and building materials.  Current laws require 

farmers to leave 25% of their land forested (Glatzle and Stosiek, 2005), but that 

law does not seem to be well enforced. 

 

 3.2.  Atlantic Forest 

The site chosen for this research lies within the Atlantic Forest region of 

Eastern Paraguay.  Although not as well known as the Amazon rain forest, the 

Atlantic Forest (Figure 3.2) is among the most threatened ecosystems on Earth.  

Its rate of land cover conversion is among the fastest in the world and it is 

thought that only about 8% of the original 1.5 million km2 of the ecosystem 

remains today (Hansen and DeFries, 2004; Galindo-Leal and Gusmao-Camara, 

2003).  The rapid anthropogenic Atlantic Forest conversion includes Paraguay 

(Huang et al., 2007) and the dynamics of that change are evolving fast (Cartes 

and Yanosky, 2003).  As of 2000 it was estimated that about 25% of the 

Paraguayan Atlantic Forest remained, with nearly 15% of that deforestation 

happening since 1990 (Huang, 2009).  The entire Atlantic Forest consists of eight 

biogeographic subdivisions, the Atlantic Forest in Paraguay lies entirely within 

the Interior Atlantic Forest subdivision (Silva and Casteleti, 2003). 
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Figure 3.2.  The Atlantic Forest ecoregion in Paraguay showing both historical 
distribution (Olson et al., 2001) and remaining forest as of 2001 (Eva et al., 
2003). 

 

 

 3.3.  Mbaracayú (Biosphere and Reserve) 

The research for this dissertation took place within the Mbaracayú 

Biosphere (RBM, Reserva de Biosfera del Bosque Mbaracayú) in the 
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Department of Canindeyu in Eastern Paraguay (Figure 3.3).  The Biosphere is a 

protected multi-use zone which contains the Mbaracayú Forest Reserve (RNBM, 

Reserva Natural del Bosque Mbaracayú) and various types of farm land and 

some small urban communities (FMB/BM, 2005).  The Reserve and Biosphere 

were established in 1991 (FMB/BM, 2005).  

The Biosphere consists of the entire watersheds of the Rio Jejui'mi and 

Rio Jejui Guazu upstream from their confluence, approximately 15 km West of 

Villa Ygatimi (Figure 3.4) and is 280,000 ha in area (FMB/BM, 2005).  The main 

land use/land cover types in the biosphere include undisturbed forest in the 

Reserve, natural cerrado areas, and various farming communities that are 

comprised of forest fragments, crop fields, and pasture lands.  As of 2003 the 

Biosphere was approximately 50% forest and 33% agricultural cover (FMB/BM, 

2005) with ongoing relatively rapid conversion of some forest land to agriculture 

(Huang et al., 2007). 

The Mbaracayú Forest Reserve (hereafter referred to as RNBM) is 64,400 

ha, most of which is in the Rio Jejui'mi watershed (Figure 3.4).  Less than 1% of 

the Reserve land area is actively occupied by humans, the rest is protected 

natural area, with about 85% forest cover and the remainder as cerrado 

(savannah) and other grasslands (FMB/BM, 2005).  The Reserve contains the 

largest remaining fragment of Atlantic forest in Paraguay (Galindo-Leal and 

Gusmao-Camara, 2003). 
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Figure 3.3.  Map of Paraguay showing the location of the Mbaracayú Biosphere 
and Forest Reserves. 
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Figure 3.4.  The Mbaracayú Biosphere and Reserve showing their relationship to 
the local watersheds. 

 

 3.4.  Data Collection  

A combination of remotely sensed and field-collected data was used in 

this research.  With a minor exception, all of the field data were collected within 

the boundaries of the Biosphere.  These data consisted of rodent seroprevalence 

data, vegetation data, and georectification data.  Some of the georecitification 
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data (used to correct locational accuracy in satellite imagery) was collected 

outside of the Biosphere.  All rodent data was collected following field protocols 

in the ASM guidelines for the use of wild mammals in research (Gannon et al., 

2007) and the CDC guidelines for handling potentially infected rodents (Mills et 

al., 1995) and were approved by the Texas Tech University Animal Care and Use 

Committee (Note: trapping campaigns were organized and conducted by 

personnel from Texas Tech). 

 

 3.4.1.  Mark/Recapture Rodent Trapping Data  

 3.4.1.1.  Mark/Recapture Rodent Trapping Sites 

Rodent trapping to obtain hantavirus seroprevalence data was done using 

two main types of trap sites.  One set of trap sites were a series of 

Mark/Recapture trapping grids.  These were located within the Reserve and in 

the Biosphere near the East and West sides of the Reserve (Figures 3.5 and 

3.8).  The other type is described in section 3.4.2.  The Mark/Recapture grids 

were established to collect demographic and ecological information and to collect 

physical samples from captured rodents within a single land cover/disturbance 

type.  

There were ten Mark/Recapture sites, selected to represent a range of 

human disturbance.  Two of the sites (Jejui-mi A and Jejui-mi B) were selected to 

represent forested areas with minimal levels of human disturbance.  Both of 

these sites had some evidence of prior selective logging disturbance, more on 

Jejui-mi A than on Jejui-mi B, but those disturbances were more than 20 years in 
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the past.  Two more sites (Rama III A and Rama III B) were selected to represent 

high levels of human disturbance of the latifundia (see Section 3.1), or large 

agriculture, type.  Rama III B was a forested site adjacent to the RNBM, which 

showed signs of recent and ongoing selective logging.  Rama III A was a 

deforested grassland/pasture site that had some scattered woody shrubs and 

trees on it.  The remaining 6 sites were selected to represent disturbance 

associated with the minifundia (see Section 3.1), or small agriculture, type.  

Originally, the minifundia trap sites were at the Maria Auxiliadora sites.  This site 

had been a small farmer community that had been abandoned within a few years 

prior to trapping.  It was chosen because it had all the landscape characteristics 

of a minifundia community and was accessible.  Shortly after trapping 

commenced, the sites were claimed by a group of small farmers who did not wish 

to allow the trapping to continue there.  The minifundia sites were then moved to 

Horqueta-mi, which was also an abandoned minifundia site.  This site was 

abandoned 15 years prior to commencement of trapping and was more secure 

against resettlement.  These sites were eventually determined to be unsuitable 

for this study due to low rodent capture numbers.  The final move of the 

minifundia sites was to an active small farmer community, Britez Kue.  

Permission to trap was obtained from two of the residents in this community and 

trapping occurred here until the end of the trapping portion of the study.   
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 3.4.1.2.  Mark/Rapture Rodent Trapping Method 

The Mark/Recapture sites were monitored on a rotating basis between 

February, 2005 and December, 2007 (Table 3.1).  Each trapping session lasted 

for eight consecutive nights.  Each of the grids consisted of an 11 x 11 array of 

trap stations placed 10 m from each other, covering an area of 1 ha.  Each trap 

station had one standard Sherman live-trap (7.5 × 9.0 × 23.0 cm; H. B. Sherman 

Traps, Tallahassee, Florida) placed on the ground and, where vegetation 

structure permitted, also had one placed about 1-2m above-ground to capture 

arboreal small mammal species.  

During the trapping sessions, each trap was checked each morning.  All 

rodent data were collected following field protocols in the ASM guidelines for the 

use of wild mammals in research (Gannon et al., 2007) the CDC guidelines for 

handling potentially infected rodents (Mills et al., 1995) and were approved by the 

Texas Tech University Animal Care and Use Committee (Note: trapping 

campaigns were organized and conducted by personnel from Texas Tech).  

Trapped animals were processed and released at the site of capture.  For the 

first capture, each animal had a Passive Integrated Transponder (PIT) tag 

(Biomark Inc., Boise, ID, USA) implanted subdermally and a 1-2 mm snip taken 

from its tail.  The PIT tag allowed identification of each individual during 

subsequent captures.  The tail snip provided material for DNA confirmation of 

specific identification, when needed.  If the capture was the first for an animal 

during an 8-day trapping session, demographic information, such as the animals 

specific identity, sex, age class, reproductive condition, weight, general 
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appearance, and presence of lesions or scars were noted.  Additionally, a blood 

sample was obtained by retro-orbital bleeding.  The blood sample was stored in a 

2ml cryotube in liquid nitrogen and was tested for hantaviral antibodies using 

Immunofluorescence Assay (IFA) (Chu et al., 2003).  A positive IFA test result, 

indicating that the animal was seropositive (S+), was used as an indication that 

the animal had been exposed to hantavirus in its past.  Any subsequent captures 

of individual animals during a trapping session was confirmed by reading their 

identification from the PIT tag using a hand-held electronic reader held within 10 

cm of the animal.  

 

 3.4.2.  Megagrid Rodent Trapping Data  

 3.4.2.1.  Megagrid Rodent Trapping Site  

The second type of sampling strategy used to obtain hantavirus 

seroprevalence data was a large grid of trap transects (hereafter referred to as 

the Megagrid) that were located in the Eastern side of the reserve and in the 

Britez Cue minifundia community along the Eastern side of the reserve (Figures 

3.6 and 3.8).  

The Megagrid trap sites totaled 71 sites.  The sites were selected to 

represent a range of human disturbance.  Each site consisted of two 500m long 

transects (Figure 3.6), with traps set every 10m along each transect.  The two 

transects were perpendicular to each other and the center point of the two 

transects intersected. 
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Figure 3.5.  Locations of the Mark/Recapture trap sites.  Labels match 
abbreviations given with the site names in Table 3.1. 
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Table 3.1.  Trap dates and site description for all Mark/Recapture trapping grids. 

Site name Trap dates Site description 

Jejui-mi 
(JJA and JJB) 

12 FEB-18 FEB, 2005 
14 JUN-21 JUN, 2005 
12 SEP-19 SEP, 2005 
10 NOV-17 NOV, 2005 
27 FEB-06 MAR, 2006 
19 MAY-26 MAY, 2006 
27JUL-03AUG, 2006 
03DEC-10DEC, 2006 
21MAY-28MAY, 2007 
18NOV-25NOV, 2007 

Native forest with some 
evidence of prior 
selective logging history.  
Least disturbed sites of 
all sites trapped for small 
mammals. 

Rama III 
(R3A and R3B) 

15MAR-22MAR, 2005 
07AUG-14AUG, 2005 
01OCT-09OCT, 2005 
15FEB-22FEB, 2006 
09JUL-16JUL, 2006 
22NOV-29NOV, 2006 
05MAY-12MAY, 2007 
27NOV-04DEC, 2007 

A – Heavily managed 
pasture land.  Seasonal 
burning, some woody 
shrubs on site. 
B – Native forest cover 
with recent and 
occasional logging 
activity. 

Maria Auxiliadora 
(MAA and MAB) 

18MAY-25MAY, 2005 
13JUL-20JUL, 2005 

Heavily disturbed 
minifundia site.  
Heterogenous land 
cover. 

Horqueta-mi 
(HMA and HMB) 

23AUG-30AUG, 2005 
20OCT-27OCT, 2005 
03FEB-10FEB, 2006 
17JUN-24JUN, 2006 
22SEP-29SEP, 2006 

Forest area growing 
from minifundia activity 
10 years prior to 
trapping. 

Britez Kue 
(BKA and BKB) 

22FEB-01MAR, 2007 
27JUN-04JUL, 2007 

Heavily disturbed 
minifundia site.  
Heterogenous land 
cover. 
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 3.4.2.2.  Megagrid Rodent Trapping Method  

The Megagrid sites were each trapped for one two night session 

sometime between February, 2006 and August, 2006.  Each trap station within 

the transects had one standard Sherman live-trap (7.5 × 9.0 × 23.0 cm; H. B. 

Sherman Traps, Tallahassee, Florida) placed on the ground and, where 

vegetation structure permitted, also had one placed about 1-2m above-ground.  

During the trapping sessions, each trap was checked each morning.  All 

rodent data was collected following field protocols in the ASM guidelines for the 

use of wild mammals in research (Gannon et al., 2007) the CDC guidelines for 

handling potentially infected rodents (Mills et al., 1995) and were approved by the 

Texas Tech University Animal Care and Use Committee (Note: trapping 

campaigns were organized and conducted by personnel from Texas Tech).  

Trapped animals were euthanized via methoxyflurane inhalation, and the animals 

specific identity, sex, age class, reproductive condition, weight, general 

appearance, and presence of lesions or scars was noted.  In addition, each 

animal had lung, liver, kidney, heart, and muscle tissues and blood samples 

collected.  All samples were frozen in liquid nitrogen and transported to the 

Museum of Texas Tech University where they were stored in a -80°C freezer.  

Blood samples were tested for hantaviral antibodies using Immunofluorescence 

Assay (IFA) (Chu et al., 2003).  A positive IFA test result means that the animal is 

seropositive (S+), which was used as an indication that the animal had been 
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exposed to hantavirus at some point in its life cycle (Note: a positive IFA does not 

necessarily mean that the individual rodent is currently hosting live virus). 

 

Figure 3.6.  Map of Megagrid sites showing transect patterns and landscape. 
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 3.4.3.  Vegetation Data 

Data about vegetation characteristics (Table 3.2) were collected from a 

variety of sites in and around the Reserve (Figure 3.8).  The sites were 

somewhat limited due to accessibility, but examples of all the major land cover 

types on and off the reserve were represented.  In addition to the displayed 

vegetation sites, vegetation data was collected for all of the Mark-Recapture sites 

and several of the Megagrid sites. 

Each sample plot had a nested sub-plot design (Figure 3.7) based in part 

on the design described in Lu et al. (2004).  This type of plot design is common in 

vegetation structure analysis and accommodated vegetation data that was 

previously collected at the rodent trapping sites.  The larger plot was a 100m2 

plot, in this plot all trees were counted and each tree had its diameter at breast 

height (DBH), tree height and stem height recorded.  Trees were defined as 

woody stems with a DBH > 10cm.  The middle sized plot was a 9m2 plot with its 

center in the center of the larger plot, this plot had all saplings counted and each 

sapling had its height and DBH recorded.  Saplings were defined as woody 

vegetation with a DBH < 10cm and >2.5cm.  The smallest plot had nine 

locations, the center of the larger plots, and the corners of the larger plots.  

These plots were 0.1m2, from each of these plots ground cover information 

following the Daubenmire method (1959) and vertical density information was 

collected in each plot.  In addition, horizontal density information (Kelt et al., 

1994) was collected from the central point.  The ground cover, vertical density, 
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and horizontal density data collected was the same as had been previously 

collected by me for the hantavirus project. 

 

Figure 3.7.  Nested sub-plot design used to collect forest vegetation data in the 
study area. 
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Table 3.2.  Summary of vegetation data. 

Name Variables Notes 

Horizontal 
Density 

Ground level, 0.25m, 
0.5m, and 1m. 

Measure density of vegetation using 
a white board.  A 10 x 20cm white 
board placed at sample site, the 
distance at which half of the board is 
visible is measured. 

Vertical 
Canopy 
Density 

Primary (top), 
secondary, and tertiary 
canopies. 

Measured presence or absence of 
vegetation immediately above 
sample site.  Tertiary canopy is from 
2-5m above site, secondary canopy 
is from 5-15m above site, primary 
canopy is >15m above site. 

Ground Cover Soil, Litter, Grass, 
Bromeliad, Bamboo, 
Overall vegetation, 
Herbacious vegetation, 
Fern, Woody debris. 

Ground cover percentage estimated 
into one of seven categories within a 
20cm x 50cm sampling frame.  0 – 
not present, 1 – 0 to 5% cover, 2 – 5 
to 25% cover, 3 – 25 to 50% cover, 
4 – 50 to 75% cover, 5 – 75 to 95% 
cover, 6 – >95% cover. 

Tree Variables Count, DBH, height, 
distance from center. 

Count of trees within plot.  Height, 
distance from center, and Diameter 
at Breast Height measured for each 
tree. 

Sapling 
Variables 

Count, DBH, height, 
distance from center. 

Count of saplings within plot.  
Height, distance from center, and 
Diameter at Breast Height (if over 
1cm) measured for each sapling. 

 

 3.4.4.  Georectification Data 

Data for georectifying satellite imagery (i.e., ground control points) were 

collected throughout the Biosphere and in some locations outside of the 

Biosphere.  These data primarily consisted of road intersections and were 

collected while traveling in and out of the region and during data collection 

episodes.  The regions outside of the Biosphere were primarily to the West and 

South of the Biosphere.
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Figure 3.8.  Map showing all sample collection sites and their spatial relationship 
to each other. 
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Chapter 4.   Landscape Classification 

 4.1.  Introduction 

 4.1.1.  Review 

Geospatial analysis technologies such as remote sensing and GIS provide 

tools for gathering and analyzing spatial data over a range of spatial scales.  An 

additional advantage of using classifications from remotely sensed imagery for 

analyzing disease-related environmental factors is the capability for rapid and 

repetitive collection of information, even from remote or inaccessible places 

(Curran et al., 2000).  This capability for generating a responsive spatio-temporal 

set of data has led to an increase in the interest in using satellite imagery as a 

data source in epidemiological work (Beck et al., 2000), especially when dealing 

with zoonotic diseases (Glass et al., 2006). 

A common use of remote sensing images is to classify them into land 

use/land cover information.  In landscape epidemiology, that information is 

generally in the form of vector or host habitat maps (Kazmi and Usery, 2001).  

Most classifications are based on using spectral information associated with 

individual pixels.  However, this per-pixel classification approach does not use 

the spatial information that also exists in the imagery, which can be used to help 

correctly identify habitat types.  Object-based classifications (Jansen and van 

Amsterdam, 1991) are an alternative way to map land use/land cover and habitat 

types, including ones that can be useful for studying the influence of landscape 

on disease processes.  Object-based classifications work by partitioning images 
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into sets of homogenous regions, or objects.  The objects are then analyzed for 

the spectral properties and geometric patterns that can help distinguish the 

habitats of interest (Jansen and van Amsterdam, 1991; Lobo et al., 1996).  In this 

chapter an object-based classification of the study area is presented, which will 

then be used for landscape epidemiological analysis of rodent hantavirus 

seroprevalence in a subsequent chapter.  

In the study area, the different land use/land cover types that are expected 

to play a role in hantavirus prevalence are spectrally very similar.  Anthropogenic 

land cover disturbance is one of the factors that has been shown to be 

associated with prevalence of hantavirus in rodent communities (Goodin et al., 

2006).  Different land uses like minifundia agriculture and latifundia agriculture 

(see Section 3.4) have nearly identical spectral signatures, but vary greatly in the 

size of their patterns (Figure 4.1).  Specifically, latifundia agriculture typically 

consists of very large cleared fields (100s to 1000s of ha) that are rectangular in 

shape with distinct edges, whereas minifundia agriculture consists of land 

holdings of 10-20 ha with individual fields of 1ha or less being common.  An 

additional pattern imposed by minifundia agriculture is that fields cleared for 

farming are typically nearer a road and the part of the farm farther from the road 

remains forested, this results in a 'fishbone' type pattern imposed on the larger 

landscape.  The minifundia landscape is also much more densely populated by 

humans than the latifundia landscape (Robles, 2000). 
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Figure 4.1.  False color satellite image showing the spectral similarities and 
spatial size differences between latifundia and minifundia agriculture.  Latifundia 
agriculture is on the left, minifundia is on the right, both images are the same 
scale.  Image is from Koch et al. (2007). 

 

 4.1.2.  Objectives 

The objective of this chapter is to classify habitat types.  This method is an 

object-based technique, which is an improvement over traditional per-pixel 

classifications in this site.  One of the reasons for this improvement is that many 

of the habitat types are spectrally very similar, but vary in spatial properties.  

These spatial properties can be measured using the object-based classification.  

This chapter is largely based on the data from Koch et al. (2007).  
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 4.2.  Materials and Methods 

 4.2.1.  Study Area 

The region of this classification is centered on the Reserva Natural del 

Bosque de Mbaracayú (RNBM) in Eastern Paraguay.  The RNBM is a protected 

forest area that is surrounded by the Mbaracayú biosphere: much of the 

biosphere is included in the image.  The forest fragment that constitutes the core 

of the classified region has had minimal human impacts for more than 20 years.  

Conversion of forest to agriculture in the surrounding region is ongoing, with most 

of the agriculture having been established within the last couple of decades.  

Along with the forest, minifundia, and latifundia land use/land cover, there are 

savanna and grassland areas, some of which have also been converted to 

agriculture and pasture use (Sarmiento, 1983).   

 

 4.2.2.  Satellite Image 

The satellite image used for classifications was a Landsat ETM+ image 

from path 225/row 77 that was acquired on 28 February 2003.  This was the 

latest cloud-free image available in this scene before the failure of the ETM+ 

scan line corrector (Howard and Lacasse, 2004).  The image was prepared for 

analysis by subsetting the study area from the full scene and georectifying it 

using the Universal Transverse Mercator grid (zone 21S), WGS84 datum, and 

using a 1st order polynomial with nearest neighbor resampling (Richards and Jia, 

1999).  Georectification data consisted of in-situ surveys, a minimum of ten 

points were used for each georectified image.  Total root mean square error for 



56 

 

the georectification was less than 1.0.  Raw pixel digital numbers were corrected 

for atmospheric backscatter (Song et al., 2001) using the IDOS model (Chavez, 

1988).  

 

 4.2.3.  Classification  

The classification was designed to obtain information about both rodent 

habitat and anthropogenic aspects of that habitat, so it was important to 

distinguish different land uses from the same land cover habitats.  The landscape 

classes used here are: Forest, Wet Cerrado, Dry Cerrado, Minifundia, Latifundia, 

Pasture, and Unclassified.  These seven classes were chosen based on a variety 

of sources including previous classifications (Naidoo and Hill, 2006) from the 

region, and expert opinions from others familiar with the study area.  These 

habitat categories matched habitat preferences of various rodents from the 

region, but especially Akodon montensis (Owen, et al., 2010).  In this 

classification I originally attempted to separate forest into different classes (Koch 

et al., 2007), the two forest classes were the least effectively separated classes, 

so they were collapsed into one forest class for the landscape analysis 

conducted in Chapter 5.  Chapter 6 discusses ways to improve the separation of 

different forest classes. 

Non-forest classes were defined by a combination of vegetation cover and 

disturbance history. Cerrado (savanna) regions were divided into two classes, 

wet and dry. Dry cerrado is found in areas where fire reduces tree cover; the 

vegetation in this area consists of grasses, forbs, palm trees, and some fire-
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tolerant tree species.  Wet cerrado occurs in areas that are too persistently wet to 

support tree growth; vegetation in these areas consists of grasses, forbs, and 

some shrubs.  Pasture areas are dominated by both native and introduced 

grasses; they typically were converted from both cerrado types and from 

previously forested areas.  Agricultural areas (both latifundia and minifundia) are 

generally converted from previously forested areas and they are dominated by a 

variety of cultivated crops.  Crops in the latifundia system primarily consist of 

soybean and corn.  Minifundia system crops are much more diverse and typically 

include cotton, sesame, corn, mandioca, and various vegetable and fruit crops. 

 

 4.2.4.  Classification Method 

Along with producing a classification to use with a landscape study, this 

classification served to evaluate the potential improvement of object-based 

classifications over per-pixel classifications.  To do this I produced a classification 

using each of the two strategies.  

The per-pixel classification used a supervised, maximum likelihood 

classification algorithm (Richards and Jia, 1999) implemented in the ENVI 

software package (v. 4.2, ITTVIS).  Training site selection was guided by ground 

truth data collected during two visits to the study area (October 2002 and June 

2005), along with inspection of high-resolution satellite data of the study area.  

Mixed training pixels were reduced by avoiding transitional and edge areas for 

training sample selection.  A minimum of 800 training pixels were used per land 

use/land cover category.  Prior to classification, I used the transformed 
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divergence index (Jensen, 1996) to optimize the spectral features for 

classification.  Based on the transformed divergence index, ETM+ bands 1, 3, 4, 

and 6 were used to classify the image.  A 3 x 3 majority filter was also applied to 

reduce random pixel classification errors and noise (Gurney and Townshend, 

1983). The per-pixel classification is shown in Figure 4.2. 

The object-based classification was conducted in two steps. The first step 

was segmentation, where the spatial objects were formed.  Segmentation was 

based on the fractal net evolution approach implemented in the eCognition 

software, v.4.2 (Baatz et al., 2004).  Objects are formed by merging adjacent 

pixels based on similarity in pixel values until a set of heterogeneity factors are 

exceeded.  The heterogeneity factors are defined by both spectral and geometric 

properties (Benz et al., 2004) and are user-defined, the factors are: scale 

parameter, shape factor, and compactness.  The values that yielded an optimal 

segmentation for this image were: scale parameter, 16; shape factor, 0.1; and 

compactness, 0.5.  

The second step in the object-based classification is to sort the objects 

into classes.  Each object from the segmentation is described by a number of 

spectral, geometric, and textural features.  Spectral information used in this 

classification were mean spectral values and standard deviations for ETM+ 

bands 1-5 and 7.  Geometric information used in this classification were area and 

assymetry metrics (Baatz et al., 2004).  Textural information used in this 

classification were dissimilarity and standard deviation for each band derived 

from the grey-level co-occurrence matrix (Haralick and Shanmugam, 1974).  The 
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classes were then determined using a minimum distance decision algorithm with 

fuzzy class boundaries.  A proximity algorithm using contextual information 

separated objects with nearly equal probabilities of belonging to two or more 

classes.  The object-based classification is shown in Figure 4.3. 

 

 4.2.5.  Accuracy Assessment 

Accuracy was assessed similarly for both of the classifications.  In both 

classifications, validation sites were selected by proportional stratified random 

sampling (Beyer, 2004).  For the per-pixel classification, pixels were selected 

randomly from within the area of objects selected for assessing the object-based 

classification.  Sites in which the cover type could not be identified through either 

field data or high resolution imagery were eliminated.  The final sample sizes 

were 632 validation pixels for the per-pixel classification and 225 objects for the 

object-based classification.  

Objects and pixels were assessed for correctness and the results were 

tabulated into error matrices (Table 4.1 and 4.2).  The error matrices were used 

to quantify producer and user accuracies for each cover class and the total 

accuracy for all classes (Jensen, 1996).  Additionally, Cohen's Kappa statistic 

(Cohen, 1960; Congalton and Mead, 1983), a measure of improvement of the 

classification over random, was calculated as was the significance of the 

difference between the two Kappa statistics. 

This accuracy assessment method is commonly used for comparing per-

pixel and object-based classifications (Wang et al., 2004, Matinfar et al., 2007, 
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Perea et al., 2009, Ouattara et al., 2010, Mas et al., 2010).  However, there are 

potential issues involved with comparing pixels against objects.  The pixels and 

objects are different sizes, and thus present potential problems related to having 

different scales.  Whether a per-pixel or object-based classification might be 

more poorly represented by the traditional error matrix would depend on how the 

accuracy model is used and relationships between pixel size and real (field) 

object size (Dungan, 2006, Mas et al., 2010).  Additionally, objects that cover two 

different basal LULC types present problems in determining whether or not they 

should be considered accurate (Congalton, 2008).  Potential solutions to the 

problems of comparing pixels and objects have been presented in map feature 

comparison research.  For example, Hargrove et al. (2006) have presented a 

quantitative goodness-of-fit model that is designed for comparing categorical 

maps.  The goodness-of-fit model compares the percentage of spatial matching 

between features, but appears to be potentially adaptable to a pixel v. object type 

of system. 
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Figure 4.2.  Map of the study area classified by the per-pixel method. 
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Figure 4.3.  Map of the study area classified by the object-based method. 



63 

 

 4.3.  Results and Discussion 

 4.3.1.  Comparison of Object-based and Per-pixel Classifications 

Qualitatively, the object-based classification appears to be superior to the 

per-pixel classification (Figures 4.2 and 4.3).  Both classifications show the same 

overall pattern, but the map from the per-pixel classification is much noisier and 

there is poor definition between the class regions.  Quantitatively, that 

observation is confirmed (Tables 4.1 and 4.2).  The object-based classification 

correctly classified 92% of scene objects, whereas only 43% of the pixels in the 

per-pixel classification were correct.  In addition, the Kappa statistic for the 

object-based classification is significantly higher than that of the per-pixel 

classification (z= 11.5, p < 0.001).  

Both classifications showed that their best ability was in separating the 

forest class from other classes.  The most accurately classified class in the 

object-based classification was the forest, which was over 95% accurate in both 

user's and producer's accuracy.  The most accurate classification in the per-pixel 

classification was the forest class at 78% accurate.  Only two out of seven 

classifications fared worse than that in the object-based user's and object-based 

producer's accuracies, the worst of those coming in at 74% accurate.  The 

majority of the classes in the pixel-based classifications were less than 50% 

accurate. 

 



64 

 

Table 4.1.  Error matrix for the per-pixel based classification.  

Map Class Reference Class 

Forest Wet 
Cerrad
o 

Dry 
Cerrado 

Latifundia Minifundia Wet 
Pasture 

Dry 
Pasture 

Total User’s 
Accuracy 

Forest 118 9 0 47 12 0 0 186 0.63 

Wet 
Cerrado 

4 15 0 20 2 20 0 61 0.25 

Dry 
Cerrado 

0 5 16 27 7 0 14 69 0.23 

Latifundia 16 4 4 64 19 2 1 110 0.58 

Minifundia 12 4 9 40 18 3 1 87 0.21 

Wet 
Pasture 

1 5 0 21 25 3 1 56 0.05 

Dry 
Pasture 

0 4 15 11 10 1 22 63 0.35 

Total 151 46 44 230 93 29 39 632  

Producer’s 
Accuracy 

0.78 0.33 0.36 0.28 0.19 0.10 0.56   

 Overall Accuracy = 0.43   Kappa = 0.30   
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Table 4.2.  Error matrix for the object-based classification. 

Map Class Reference Class 

Forest Wet 
Cerrad
o 

Dry 
Cerrado 

Latifundia Minifundia Wet 
Pasture 

Dry 
Pasture 

Total User’s 
Accuracy 

Forest 65 0 0 0 0 0 0 65 1.00 

Wet 
Cerrado 

0 11 0 0 1 2 0 14 0.79 

Dry 
Cerrado 

0 1 20 2 0 0 4 27 0.74 

Latifundia 0 0 2 42 3 1 1 49 0.86 

Minifundia 0 0 0 0 17 0 1 18 0.94 

Wet 
Pasture 

1 0 0 0 1 20 1 23 0.87 

Dry 
Pasture 

0 0 4 1 1 1 22 29 0.76 

Total 66 12 26 45 23 24 29 225  

Producer’s 
Accuracy 

0.98 0.92 0.77 0.93 0.74 0.83 0.76   

 Overall Accuracy = 0.92   Kappa = 0.91   
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User's accuracy (equivalent to Type I statistical error) is the type of 

accuracy that describes how the map performs in the field; that is, from the 

perspective of a map user, would observed cover type agree with the map.  Both 

classifications struggled with cerrado classes and the dry pasture classification.  

In general, confusing dry cerrado and dry pasture was a common mistake for 

both classifications, which seems reasonable as the land cover is nearly 

identical, and spatial clues are not strong distinguishers between these classes.  

A user who saw wet cerrado on a map might not be overly surprised to find wet 

pasture or a large farm at the site when they are in the field.  In terms of user's 

accuracy, the per-pixel classification struggled the most with wet pasture 

classifications. 

Producer's accuracy (equivalent to Type II statistical error) is the type of 

accuracy that describes how well the field is represented on the map; that is, 

from the perspective of an observer in the field, would the map agree with the 

observed cover type.  Both classifications showed considerable confusion 

between the dry cerrado and minifundia classes.  In both, the minifundia was 

frequently mistaken for latifundia, however, the per-pixel classification mistakenly 

classified minifundia sites as every other available class.  This is not surprising, 

as the minifundia agricultural system is a heterogenous mixture of many land 

cover types in a much smaller spatial scale.  The object-based classification was 

able to use the spatial factors to help distinguish this class from the other 

classes.  
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 4.4.  Conclusion 

Object-based classification was clearly superior to the per-pixel based 

classification.  The least accurate classes in the object-based classification were 

about as accurate as the best classes in the per-pixel classification.  In the 

object-based classification, the forest class was the most accurate, which is 

important because the forest class is the habitat class preferred by Akodon 

montensis.  The overall accuracy of 92% is an improvement over other 

classification's from the region (Huang et al., 2007), even though we used a 

single image, whereas others have used multi-image classifications.  Some 

experimentation was needed to establish the proper parameters for the object-

based classification, but successive classifications should be able to use these 

same parameters in the future.  

Using this technique with multi-date imagery might improve the ability of 

the classification to distinguish many of the classes.  Another potential 

improvement, which is addressed in Chapter 6, would be distinguishing between 

different forest classes.  In Koch et al. (2007) this classification distinguished two 

forest types, which was the weakest part of that classification scheme.  

Use of satellite-derived land use/land cover maps are an important facet of 

landscape epidemiological studies of infectious disease. Adding geometric and 

textural components to the spectral information that is commonly used is one 

way to improve the usefulness of habitat classifications for landscape 

epidemiology studies. 
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Chapter 5.   Landscape Ecology of Hantavirus in Akodon 

montensis in the Atlantic Forest in Eastern Paraguay 

 

 5.1.  Introduction 

 5.1.1.  Literature Review 

Composition and configuration of landscapes can play an important role in 

the maintenance and spread of pathogens, especially for reservoir-borne 

pathogens like hantavirus (Langlois et al., 2001) or other reservoir- or vector-

borne pathogens and diseases. Composition and configuration of landscapes 

tend to exert significant control over disease processes when habitats favorable 

to vectors or reservoir species are one of the mosaic of cover types present on 

the landscape (i.e. composition, Pavlovsky, 1966) and/or when the juxtaposition 

of differing cover types favors the movement or interaction of individuals or 

communities of disease reservoir species (i.e. composition, McCallum, 2008).  

In rodent communities, hantavirus is passed between reservoir species 

(transmission) or between a competent reservoir and another host (spillover). 

Transmission does not occur between a dam and her offspring. In other words, 

hantavirus is transmitted horizontally, but not vertically in rodent communities 

(Klein and Calisher, 2007). Horizontal transmission implies that factors that affect 

the way individuals and communities interact will affect the quality and quantity of 

pathogen transmission on those communities. Habitat type and habitat patterns 

are landscape factors that can affect animal interactions and thus may impact 
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pathogen transmission within reservoir communities (McCallum, 2008). 

Additionally, anthropogenic changes to landscapes often leave specific patterns 

on the landscape; if these patterns are associated with increased hantavirus 

presence in reservoir communities, then there can be increased potential for 

human contact with the virus.   

Whenever landscape effects are considered it is also important to 

recognize the spatial scales at which those interactions take place (Turner, 

2001).  As different landscape spatial scales are analyzed, different potential 

levels of interactions occur within small mammal populations. Each species has a 

different range of interactions, so the scales at which different populations 

interact need to be determined empirically for each species (Holland, 2009). With 

hantavirus in rodent populations in other regions, scale of observation and 

landscape configurations have been found to important in the analysis of the 

rodent communities (Langlois et al., 2001; Yahnke et al., 2001; Goodin et al., 

2006; Suzan et al., 2006).  

 

 5.1.2.  Objectives 

The objectives of this chapter are to analyze what types of landscape 

compositions and configurations are the most important for hantavirus 

seroprevalence on the landscape. In particular, I look at what types of 

anthropogenic disturbances are important, at what scales are they important, and 

what type of effect they have on hantavirus seroprevalence. Anthropogenic 

disturbance in Paraguay and other parts of North and South America have been 
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shown to affect the presence of hantavirus within the rodent communities 

(Langlois et al., 2001; Yahnke et al., 2001; Goodin et al., 2006; Suzan et al., 

2006). Once the types of anthropogenic changes that affect hantavirus presence 

on the landscape are elucidated, it becomes possible to make recommendations 

regarding the way anthropogenic changes are conducted in order to reduce the 

risk of hantavirus exposure to the human population. An additional objective of 

this study is to investigate the size of some important mesoscale interactions in 

Akodon montensis, both in terms of the individual rodents and community 

dynamics and how they affect hantavirus seroprevalence, to help guide future 

research efforts. 

 

 5.2.  Methods 

 5.2.1.  Study Area 

The study area was located within the Mbaracayú biosphere in the 

Department of Canindeyu in Eastern Paraguay, which is described in Section 

3.3. The trapping for this study was conducted in the Megagrid (Section 3.4.2), 

which was a grid of transects located along the eastern side of the reserve and in 

the neighboring small farmer community.  Transect sites were chosen by placing 

a regular grid through a diverse set of LULC types typical for this area.  Sites 

within the RNBM Reserve included forest and dry cerrado habitats. The rest of 

the grid was located within the mostly minifundia community of Britez Kue (there 

are some latifundia/pasture sites).    

 



71 

 

 5.2.2.  Rodent Trapping 

Trapping was done on a grid consisting of a central point and two 

transects, which were 500m long and intersected perpendicularly at their 

midpoints (Figure 3.5).  Traps were placed at the center point and then every 

10m along each transect.  Trapping was conducted between February and 

August 2006.  Each site was trapped for two nights, traps were checked each 

morning during the trapping session, captured rodents were kept, euthanized via 

methoxyflurane inhalation, and their tissues and blood were harvested and 

frozen.  These samples were used to determine hantavirus seropositive status of 

the captured rodents.  This site was originally set up to measure some rodent 

demographic parameters, due to the variety in the landscape it was later 

recognized that this setup would also allow for a comparison of the effect of 

different landscape patterns on rodent communities.   All procedures involving 

animals followed American Society of Mammalogists guidelines (Gannon et al., 

2007) and the CDC guidelines for handling potentially infected rodents (Mills et 

al., 1995) and were approved by the Texas Tech University Animal Care and Use 

Committee (Note: trapping campaigns were organized and conducted by 

personnel from Texas Tech).  

 

 5.2.3.  Landscape Classification  

The land use/land cover (habitat) map used for this analysis is from the 

classification described in Chapter 4, which is a minor modification from Koch et 

al. (2007).  The two forest classes from Koch et al. (2007) were collapsed to give 
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one forest class and a total of seven classes of LULC, all of which are included in 

the analysis here. This was done because the two forest classes were not well 

separated, potential solutions for this issue are further analyzed in Chapter 6. 

The landscape classes used here are: Forest, Wet Cerrado, Dry Cerrado, 

Minifundia, Latifundia, Pasture, and Unclassified.  

 

 5.2.4.  Landscape Structure Metrics 

Landscape metrics can be calculated at two different levels: class, and 

landscape (McGarigal et al., 2002).  Class level metrics are calculated for each 

class type in the mosaic (all patches for each class type).  With these results, if 

there is more than one patch in an analysis area, averages and distributions for 

the metrics regarding each class type can be obtained.  Class level metrics are 

used primarily with the Forest and Minifundia class in this analysis.  Landscape 

metrics are calculated for the entire landscape mosaic (all patches for all class 

types).  Here, too, averages and distributions of the group of patches can be 

obtained from each analysis site.  I calculated and analyzed metrics associated 

with hantavirus seroprevalence for the landscape mosaic as a whole. I then 

calculated and analyzed metrics associated with seroprevalence for the two most 

numerous classes in the mosaics, Forest and Minifundia.  

The landscape structure metrics for the area surrounding each trap site 

were extracted using a series of different sized windows, with the center of the 

trapping transect at the center of each window. These windows were squares 

with side length of 250m (6.25 ha), 500m (25 ha), 1000m (100 ha), and 2000m 
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(400 ha) (Figure 5.1).  Fragstats 3.3 (McGarigal et al., 2002) was used to 

calculate the spatial pattern metrics for each window. These metrics (Table 5.1) 

were then tested for associations with seroprevalence and used to determine 

what aspects of landscape patterns were the most important for hantavirus 

prevalence in this landscape.  The output from Fragstats included metrics for the 

overall landscape as well as for each classification type present in each window.   

Fragstats is a program developed for the spatial pattern analysis of 

categorical maps in a raster data format.  The program calculates a variety of 

areal and shape configuration metrics at patch, class, and landscape scale.  

Selected areal and shape configuration metrics are calculated for each patch in 

an landscape input.  For class level calculations, the metric calculations for all 

patches of one class are combined and their statistical distributions are reported 

(mean, standard deviation, etc.).  For landscape level calculations, the metric 

calculations for all patches are combined and their statistical distributions are 

reported.  Adjacency metrics can also be reported for class and landscape level 

calculations.  Shape configuration metrics that Fragstats can calculate include 

metrics that measure patch shape compactness and metrics that measure patch 

shape edge complexity (McGarigal et al., 2002), shape configuration metrics 

used in this study are described in Table 5.1.   
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Figure 5.1.  Example of the windows used to extract landscape metrics.  This 
example shows the 500m (25ha) windows. The center of each square is the 
center of one trap transect. 
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Table 5.1.  Description of metrics discussed in Chapter 5 (McGarigal et al., 
2002). 

Metric Metric Type Description 

Area Area Patch area.  

Circle Shape Measure of the smallest circle able to 
contain entire patch. 

Core Area Area Area in patch that is 50m or more from 
the edge of that patch. 

Core Area Index Area Percentage of patch area that in the core 
area. 

Fractal Dimension Shape A measure of the complexity of the shape 
edge, very little effect from patch size. 

Gyration Density A measure of how disperse the patch is, 
or how much of the patch is far away from 
the patch center. 

Nearest Neighbor Proximity A measure of the shortest Euclidean 
distance between two patches. 

Number Patches Count Number of patches of a class present in a 
landscape mosaic. 

Perimeter-area Ratio Shape A simple measure of shape complexity, 
value affected by patch size. 

Proximity Proximity A measure of number of patches within a 
certain radius and how close those 
patches are. 

Shape Shape A ratio of the patch perimeter and the 
smallest possible perimeter for a patch of 
the same area. Similar to Perimeter-area 
ratio, but corrects for patch size. 

 

 5.2.5.  Statistical Analysis 

Seropositivity is a binary variable.  That is, an individual rodent is either S+ 

or S-, as determined by IFA (see Section 3.4.2).  Odds ratios and logistic 

regression are appropriate statistical tests for these types of data (Dohoo et al., 

2003), and were used to measure association between presence of seropositive 

rodents and the various landscape metrics.  Logistic regression was used in a 
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bivariable comparison of seroprevalence against all landscape metrics and in a 

multivariable comparison of seroprevalence with select landscape metrics.  All 

tests were run at each of the four landscape window scales.  The transects are 

assumed to be spatially independent, as home range sizes for A. montensis are 

on the order of 1600 m² (40 x 40 m) or less (Owen et al., 2010).  For clarity, 

selected examples from the bivariable and multivariable tests will be shown in 

Section 5.3, the full set of results significant at a p-value < 0.1 for the bivariable 

tests and all of the final multivariable models can be seen in Appendix A. 

 

 5.2.5.1.  Odds Ratio 

Odds ratios were used in cases where the predictor and response 

variables are both discrete.  Specifically, odds ratios were used to evaluate the 

presence/absence of seropositive rodents in comparison to the 

presence/absence of the different LULC classes within a window. Additionally, 

odds ratios were used to test presence/absence of rodents and 

presence/absence of A. montensis against the presence/absence of the seven 

LULC classes.   

 

 5.2.5.2.  Logistic Regression (Bivariable) 

Logistic regression was used in cases where the response variable (S+) 

was discrete, but the predictor variables (landscape metrics) were continuous. 

For the bivariable tests, each individual predictor variable (i.e. each of the 
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landscape metrics listed in Table 5.1) was tested against the presence of 

seropositive A. montensis.  

 

 5.2.5.3.  Logistic Regression (Multivariable) 

For the multivariable tests, backward stepwise regression was used to find 

the set of landscape metrics that best explained the presence of seropositive A. 

montensis. The initial set of potential predictor variables tested were those that 

had some association with seroprevalence based on the results from the 

bivariable test, but were not too closely correlated with each other.  Potential 

predictors that were correlated with each other with an r > 0.95 had one 

representative selected to include in the initial multivariable model.  Screening for 

the initial set of predictor variables involved using all potential predictor variables 

that correlated with seroprevalence with a bivariable p-value <0.2 (Tables A.1-

A.4).  Backward stepwise regression consisted of starting with the initial full 

model, then dropping one term from the model, putting it back in and dropping 

another until all the terms have been tested.  Goodness of fit for the model was 

determined using the Akaike Information Criteria (AIC).  The model that had the 

lowest AIC that was at least 2 units less than the original model was kept (i.e. 

that predictor variable was dropped from further consideration).  This process 

was then repeated starting with the new model until there were no more 

improvements from the previous model, that is when testing stopped and the 

multivariable model was established.  Statistical results were calculated using R 
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version 2.8.0 (R Development Core Team, 2009) and the R Commander 

package (version 1.4-10).  

 

 5.3.  Results and Discussion 

 5.3.1.  Rodent Trapping 

Trap success for the 71 trapped transects used in this analysis is 

summarized in Table 5.2.  The majority of sites had some rodents captured.  Just 

under half of the transects registered a capture of at least one A. montensis.  

About a tenth of all transects, and about a quarter of transects that had A. 

montensis had some seropositive rodents trapped in them.  Two analyses were 

conducted, one with the entire data set including A. montensis and one with only 

A. montensis, as A. montensis is the primary hantavirus reservoir in the study 

area. 

Table 5.2.  Summary of trap success and serostatus for Akodon montensis 
(AKMO) and other rodent species. (S+ indicates seroposive). 

 All 
Species 

AKMO All Species 
S+ 

AKMO 
S+ 

Other Species 
S+ 

Total Number 268 165 10 9 1 

Number of 
Trapsites (of 71) 

54 32 7 7 1 

 

 5.3.2.  Site Composition (Odds Ratio) 

The 71 trapped sites contained a mixture of forest, dry savanna, wet 

savanna, latifundia, minifundia, pasture, and other land use/land cover types. 

The number of sites containing these land use/land cover types varied with scale 

of observation (varying window size), the number of sites containing a particular 
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land use/land cover type are listed in Table 5.3. As expected, there are fewer 

LULC types represented in the smaller window. Forest and Minifundia were the 

only classification types to be represented more than 30 times at all four of the 

observational scales, so these two classes (along with overall landscape) were 

used for additional site composition analysis.  

Results from the odds ratio evaluation of the strength of association 

between presence or absence of a particular landscape type and the presence of 

seropositive rodents (Table 5.4) show that there are no associations between the 

presence (or absence) of any particular LULC type and presence of seropositive 

rodents.  There was no association at any of the four scales of observation.  

There were associations between the presence of LULC types and presence of 

A. montensis and between the presence of LULC types and the presence of 

other rodent species (Table 5.4).  The presence of forest was strongly associated 

with the presence of A. montensis.  This is not surprising, as the species is 

recognized as a forest generalist species (Owen et al., 2010).  This association 

did not show up at the 1000m and 2000m diameter observational windows.  In 

the case of the 2000m windows, every site had some forest present, so that 

particular scale could not make a prediction based on presence/absence, at the 

1000m window size, only 5 windows did not have any forest, so this also had 

little chance to make a prediction.  While the presence of forest does predict the 

presence of A. montensis, but not the presence of seropositivity, I will show that 

the amount of forest present will be associated with seroprevalence at some 

scales of observation (Section 5.3.5).  
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Presence of a few landscape types was associated with the absence of A. 

montensis.  In particular, the presence of the two types of savanna (wet cerrado 

and dry cerrado) were associated with the absence of A. montensis at all 

observational scales, with the exception of wet cerrado observed through 2000m 

windows, which was another landscape type that was present in all windows at 

that scale of observation.  There is something about the savanna landscape 

types that is repellent to A. montensis, or perhaps the forest types bordering the 

cerrado landscape types are not particularly attractive to A. montensis.  Another 

association that involves presence of a particular LULC type and absence of A. 

montensis, is the presence of latifundia or pasture in the larger window sizes.   

Finally, there were some associations between presence of wet and dry 

cerrado and the absence of all rodent species in general.  These results were 

less consistent than the results for A. montensis, but still the cerrado 

environment, or otherwise suitable habitat near cerrado LULC types, seems to be 

generally unfavorable for rodents. 

 

Table 5.3.  The number of sites that contain a particular LULC type for each 
window size.  

 2000 m 1000 m 500 m 250 m 

Forest 71 66 59 50 

Wet Cerrado 71 58 38 22 

Dry Cerrado 27 22 16 14 

Minifundia 69 59 52 40 

Latifundia 31 13 7 3 

Pasture 65 41 20 11 

Unclassified 51 24 12 5 
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Table 5.4.  Association of land use class presence and rodents, A. montensis, 
and presence of seropositive rodents. Odds Ratios and p-values reported only 
for those with p-value <0.05. Odds ratios higher than 1 indicate presence of that 
land use class has a positive impact on the factor and odds ratios lower than 1 
indicate that presence of that land use class has a negative impact on the factor. 

 250 m 500 m 1000 m 2000 m 

 Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

All rodents 

Forest         

Dry 
Cerrado 

    0.282 0.0248 
  

Wet 
Cerrado 

0.200 0.0044   0.088 0.0417 
  

Lati-
fundia 

        

Mini-
fundia 

        

Pasture         

Akodon montensis 

Forest 5.409 0.0043 12.179 0.0050     

Dry 
Cerrado 

0.027 0.0003 0.052 0.0004 0.109 0.0004 
0.099 <0.01 

Wet 
Cerrado 

0.109 0.0004 0.300 0.0142 0.183 0.0107 
  

Lati-
fundia 

    0.170 0.0173   

Mini-
fundia 

        

Pasture     0.346 0.0306 0.142 0.049 

Seropositive rodents 

Forest         

Dry 
Cerrado 

        

Wet 
Cerrado 

        

Lati-
fundia 

        

Mini-
fundia 

        

Pasture         
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 5.3.3.  Scale of Influence 

Results show a stronger association between seroprevalence and 

landscape metrics in the 250m and 2000m diameter window sizes, where the 

500 and 1000m windows were less strongly associated (Table 5.5).  The number 

of bivariable associations is the total number (sum) for the three different types of 

landscapes measured (whole landscape, forest class, and minifundia class). 

There were fewer associations significant with a p-value < 0.1 at the 500m and 

1000m diameter window scale.  Additionally, at the 500m window scale, there 

were no bivariable associations at a p-value < 0.1 in the landscape mosaic tests 

and at the 1000m window scale, there  were no bivariable associations at a p-

value < 0.1 in the forest mosaic tests.  Higher AIC values indicate a poorer 

overall model fit.  With the multivariable models, at the 1000m diameter window 

scale, the model had consistently higher AIC values and usually needed more 

variables to achieve this poorer explanation.  

The 250m windows are most likely capturing the effects of landscape on 

one population interaction scale of rodents, whereas the 2000m windows may be 

capturing the effects of landscape on another scale of rodent population 

interactions.  The 500m and 1000m windows would then be at or near the 

transition scale between these two population scales and in that case would be 

expected to be less meaningful.  While the 250m and 2000m windows are at the 

extremes of the scales measured here, they are by no means the extremes of 

potential rodent interaction, but rather are two important scales of community 

organizational levels.  Finding both scales of interaction and transition zones is 
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important, so that future research efforts do not try to measure activity at a 

transition scale, which often yields unreliable results (Turner et al., 2000).  

Further study would need to be done to know with certainty what population 

levels are being captured at the 250m and 2000m scales.  This further study 

would need to look specifically at movement within the A. montensis community 

and also include genetic tests to see if the 2000m scale is a metapopulation 

scale or simply a larger population interaction scale.  The remainder of the 

results that will be shown and discussed will focus on the 250m and 2000m 

windows. 

 

Table 5.5.  Some of the factors that show the relatively improved association of 
landscape metrics and presence of seropositive rodents at the 250m and 2000m 
window sizes. 

 250 m 500 m 1000 m 2000 m 

Number of bivariable 
associations 

36 14 8 27 

Average AIC 38 35 46 36 

 

 

 5.3.4.  Metrics From the Entire Landscape Mosaic (LULC Independent) 

With the overall landscape mosaic patterns metrics (Table 5.6), there is an 

association between the nearest neighbor metric and seroprevalence.  In the 

landscape mosaic calculations, nearest neighbor measures the separation 

between patches of the same type. In the 250m windows, increasing nearest 

neighbor values are associated with seroprevalence. This suggests that rodents 

can move between patches that are 100-200m from each other well enough to 
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maintain enough of a population to have seropositive A. montensis.  In the 

2000m window, there is also an association with nearest neighbor (range), in this 

case indicating that diversity in distances between patches is associated with 

seroprevalence.  Additionally, two shape metrics, perimeter-area ratio and fractal 

dimension, are added to the associations with seroprevalence.  Both the 

perimeter-area ratio and fractal dimensions are measures of shape complexity.  

Both are negatively associated with seroprevalence, which means that less 

complex shapes in the overall landscape are associated with increased 

seroprevalence.  In the minifundia system at the 2000m windows a higher 

number of patches with less complex shapes are expected.  This indicates that 

this land use system may have more potential for seroprevalent small mammal 

communities.  The perimeter-area ratio is significantly associated in both the 

bivariable and multivariable tests (Table 5.6), with a stronger association in the 

multivariable test.  The fractal dimension is only significantly associated in the 

multivariable test.  These three metrics (nearest neighbor, perimeter-area ratio, 

and fractal dimension) were the only components for the multivariable model for 

the 2000m window landscape mosaic test, the significance of all associations 

was improved in the multivariable model over the bivariable test, which suggests 

there are some issues with confounding that appear to be accounted for in the 

multivariable model. 
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Table 5.6.  Selected metrics from the Landscape mosain tests. 

 Bivariable Multivariable 

Window 
size 

Metric 
Odds 
Ratio 

p-value 
Odds 
Ratio 

p-value 

 

250 m 
Nearest neighbor 
(median) 

1.0264 0.0060 1.0754 0.0300 

 

2000 m 

Perimeter-area 
ratio (SD) 

0.9925 0.0476 0.9853 0.0136 

Nearest neighbor 
(range) 

1.0019 0.0522 1.0034 0.0108 

Fractal dimension 
(mean) 

<0.0001 0.1940 <0.0001 0.0896 

 

 

 5.3.5.  Metrics from the Forest Mosaic  

Metrics from the forest mosaic give the clearest links between LULC 

patterns and seroprevalence. Presence of forest was associated with the 

presence of A. montensis, but not seroprevalence (Section 5.3.2).  In the results 

presented here, (Table 5.7) the amount of forest present, as measured by area, 

was associated with seroprevalence.   

There were some associations between the amount of forest and the 

presence of seropositive rodents within some of the smaller window sizes.  In the 

250m windows, landscapes with at least 1 hectare of forest were positively 

associated with seroprevalence. With the 500m windows landscapes with at least 

6 hectares and at 1000m at least 35 hectares of forest were positively associated 

with seroprevalence.  At coarser scales, the area of forest present become less 

significantly associated with seroprevalence.  In the 250m windows the number 
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of patches of forest was also significantly positively associated with 

seroprevalence.  Combining the forest area and number of forest patches says 

that, within 250m windows, A. montensis populations are mixed and can move 

between forest patches enough to have the type of community connectivity 

needed to be positively associated with seroprevalence.  In other words, rodents 

travel between patches that are closer than 100-200m from each other, and 

when there is enough forest they can sustain a population that is large enough to 

maintain the presence of the virus, even when that forest is highly fragmented.  

The multivariable model for forest (Table 5.8) in the 250m window that 

best explained the presence of seropositive rodents contained just two metrics as 

independent variables.  Those two metrics were the total area of forest and the 

coefficient of variation (CV) of the forest patch areas, both were positively 

associated with seroprevalence. This supports the basic composition discussed 

in the previous paragraph, increasing total forest area in a 250m window was 

associated with the presence of seropositive rodents. The inclusion of CV of 

patch area in the multivariable models indicates that one or some of those 

patches should be relatively large. However, just having a large patch does not 

appear to be enough, because the average size is not associated with 

seroprevalence, there appears to be some interaction between a diversity of 

patch sizes that plays a role.  This modifies the picture from the last paragraph by 

adding the stipulation that there should be one relatively large fragment, probably 

to give a suitable large habitat patch for the rodent population and the 
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maintenance of hantavirus in that large fragment would then allow for 

seropositive rodents to exist in all nearby fragments.   

The AIC score for the multivariable model for forest in the 2000m window 

was the lowest (strongest association) among all multivariable models tested. 

This model result shows that, while the number of patches is associated 

bivariably with presence of seropositive A. montensis, when several other 

variables (core area index, core area, proximity, circle, and gyration) were 

accounted for, the number of patches is significant. More patches associated 

with presence of seropositive rodents at this scale indicates that A. montensis 

populations are connected at this scale. 

 

Table 5.7.  Forest composition metrics that were tested using logistic regression. 
The columns labeled +/- indicate the direction of the relationship, positive 
indicates an increase in the metric is associated with the presence of 
seropositive A. montensis. 

 250 m 500 m 1000 m 2000 m 

Metric Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

Odds 
Ratio 

p-
value 

Area 1.40 0.0588 1.09 0.0594 1.02 0.1450 1.00 0.2826 

Mean 
Patch Area 

1.27 0.1370 1.07 0.1080 1.01 0.3890 0.99 0.5270 

Number 
Patches 

12.14 0.0045 1.49 0.3774 1.32 0.2751 1.28 0.0437 

Core Area 1.02 0.0874 1.02 0.0769 1.02 0.1680 1.01 0.3762 
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Table 5.8.  Selected metrics from the Forest mosaic tests. 

 Bivariable Multivariable 

Window 
size 

Metric type Odds 
Ratio 

p-value Odds 
Ratio 

p-value 

 

250 m 
% landscape 1.0231 0.0874 1.0416 0.0455 

Area (CV) 1.0398 0.0103 1.0551 0.0065 

 

2000 m 

Number 
patches 

1.2755 0.0437 13.451 0.0098 

Core Area 
Index (mean) 

0.9962 0.8620 1.5715 0.0190 

Core Area 
(SD) 

1.0079 0.3520 1.1635 0.0147 

Proximity 
(median) 

1.0007 0.4380 0.9945 0.1007 

Circle 
(median) 

0.4272 0.8310 >1000 0.0429 

Gyration 
(range) 

1.0027 0.1929 1.0251 0.0200 

 

 

 5.3.6.  Metrics from the Minifundia Mosaic 

With the minifundia LULC type, the distribution of metrics (rather than the  

mean) was associated with seroprevalence (Table 5.9).  Distributions (coefficient 

of variation and standard deviation) were positively associated with 

seroprevalence, which means that more diverse arrangements of minifundia 

LULC types was associated with a higher rodent seroprevalence.   

The coefficient of variation of shape and core area were positively 

associated with seroprevalence in A. montensis in both the 250m windows and 

the 2000m windows.  Individual farm sizes are around 10-20ha, which is between 

the 250m and 500m window sizes.  A diversity in size and shape of minifundia 
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LULC type at the scale of an individual farm is thus associated with 

seroprevalence in A. montensis.  The 2000m window size would include several 

farms within it, the association with these two metrics at this scale says that the 

way a minifundia community is arranged can play a role seroprevalence in those 

minifundia communities.  Combined with relatively high human population levels 

in these communities, there is likely a high risk for human exposure to hantavirus 

in the minifundia communities. Further study should be able to elucidate whether 

changing the way that forest fragments are arranged could alleviate this potential 

problem. 

 

Table 5.9.  Selected metrics from the Minifundia mosaic tests.  

 Bivariable Multivariable 

Window 
size 

Metric 
Odds 
Ratio 

p-value 
Odds 
Ratio  

p-value 

 

250 m 

Shape (CV) 1.0907 0.1020   

Core Area (CV) 1.0240 0.0444 1.1172 0.0507 

Fractal 
Dimension (SD) 

>1000 0.0518 >1000 0.0815 

 

2000 m 

Shape (CV) 1.0390 0.0852   

Core Area (CV) 1.0076 0.0555   

Nearest 
Neighbor (CV) 

1.0211 0.0762 1.1060 0.0548 

 

 

 5.4.  Conclusion 

Many aspects of landscape patterns are important to hantavirus 

seroprevalence in small mammal communities in Eastern Paraguay.  Patterns of 
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LULC patches are associated with seroprevalence, especially patterns 

associated with anthropogenic disturbance, like highly fragmented forest 

patches, and smooth edged patch shapes.  These patterns of LULC patches are 

most apparent when viewed using 250m windows and 2000m windows, which 

likely correspond to different A. montensis population interaction scales.  In the 

overall landscape, patches of the same type that are within 100-200m of each 

other are sufficient to have seropositive rodents in the landscape.  At the larger 

(2000m window) scale nearness of patches is still associated, but shape metrics 

are also associated.  These shape metrics (perimeter-area ratio and fractal 

dimension) show that some anthropogenic changes, rectangular patches with 

relatively straight edges, are important to seroprevalence in A. montensis.  

Metrics from the forest mosaic give the clearest links between LULC patterns and 

seroprevalence.  The presence of forest is associated with A. montensis 

presence, but not hantavirus seroprevalence.  However, forest area in the 250m 

window size is positively associated with seroprevalence in A. montensis, 

especially when it is highly fragmented.  Highly fragmented forest patch 

landscapes were also associated at the 2000m window size, with area being less 

important.  When analyzing the minifundia LULC type, both 250m and 2000m 

windows show high coefficient of variation of shape and core area was 

associated with high seroprevalence.  In the smaller window size, an additional 

shape metric (fractal dimension, a measure of shape complexity) is important, 

highlighting the importance of shape at this scale.  In the larger window size, 
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closeness of minifundia patches is an additional important factor in high 

seroprevalence. 
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Chapter 6.   Forest Disturbance 

 

 6.1.  Introduction 

 6.1.1.  Review 

Some of the indicators associated with human disturbance of the Atlantic 

Forest ecoregion in Eastern Paraguay are associated with higher Akodon 

montensis populations and with increased seroprevalence levels in rodents in the 

Atlantic Forest (Goodin et al., 2009, Chapter 5). In this analysis, ways to use 

spectral information in satellite imagery to better classify some of the types of 

forest and landscape changes associated with changes in hantavirus prevalence 

in rodent communities were examined.  

The types of forest canopy structure associated with higher A. montensis 

populations include less upper and middle canopy and more dense low 

vegetation (especially if that vegetation is bamboo). Hantavirus seroprevalence in 

A. montensis was associated with denser upper canopy (Goodin, 2007). On a 

landscape scale, human disturbed forests are susceptible to high seroprevalence 

levels in A. montensis populations.  

Forest classifications tend to be presence/absence type of classifications. 

In the classification scheme used in Chapter 4, the research attempted to 

separate undisturbed from disturbed forests. Unfortunately, the different forest 

types present in the ecosystem are rather complex and separating the forest 

types was the weakest part of the classification. The object-oriented classification 
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used in Chapter 4 was an improvement over traditional per-pixel classifications. 

Subsequent analysis has shown that vegetation density is the canopy variable 

most associated with the presence of hantavirus reservoir species, particularly A. 

montensis (Owen et al., 2010). Additionally, successional stages in forest 

regeneration (Lu, 2004; Viera, 2003) and forest disturbance from logging (Asner, 

2004; Souza et al., 2005) in the Amazon can be detected. Better elucidation of 

the spectral behavior of detailed aspects of vegetation densities in the Atlantic 

Forest, especially when that is combined with object-oriented classification, 

should result in improved classification of forest sub-types in the study region.  

 

 6.1.2.  Objectives 

The purpose of this chapter is to examine ways to classify forest 

understory densities in satellite imagery. Of particular interest are the types of 

disturbances that are associated with high A. montensis populations or 

hantavirus seroprevalence in A. montensis populations.  

 

 6.2.  Methods 

 6.2.1.  Data Collection  

Vegetation data were collected during July of 2008 and 2009. Sample 

plots were randomly selected from forested sites in the Mbaracayú Biosphere. 

Samples were also taken from the trap sites (Sections 3.4.1 and 3.4.2) to help 

correlate with other existing data) and samples were taken from disturbed and 

undisturbed forest sites that were misclassified in Koch et al. (2007), as well as 
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from other disturbed and undisturbed forest sites that were correctly classified in 

Koch et al. (2007). Disturbed sites are forested sites known to have had 

anthropogenic activity in the last 20 years.  Sample plots for disturbed forest 

were primarily on private property, so permission to enter those sites was 

obtained from the landowners. When access was denied, an appropriate 

replacement site was selected, either nearby or one that has similar spectral 

properties. Sites were primarily within 1km of road or trail access. Data were 

collected from 148 sites.  Data collection is described in Section 3.4.3. 

   

 6.2.2.  Satellite Data 

Cloud free March and June Landsat images from both field years were 

analyzed, results from the 2008 images are shown below as both years gave 

very similar results. June images were used because they were near the time of 

data collection and are a relatively consistently cloud free time of the year. March 

images were used because March was also relatively cloud free. Additionally, 

June corresponds with winter, which is a season where some leaf loss from trees 

has occurred, but the vegetation phenology is relatively stable and March is near 

the end of the summer and for vegetation is another vegetatively stable time of 

year.   

Landsat imagery was georectified to a root mean square error of less than 

one pixel with nearest neighbor resampling, using ground control points collected 

in situ. NDVI and the Tasseled Cap transformations were calculated using ENVI 

4.5 (ITT Visual Information Solutions). Responses of vegetation data were 
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compared with the original data bands, NDVI, and Kaufman-Thomas 

transformation bands.  

 

 6.2.3.  Statistics 

Statistical results were calculated using R version 2.8.0 and the R 

Commander package (version 1.4-10) (R Development Core Team, 2009). For 

the Disturbed/Undisturbed and On/Off Reserve data, significance of band 

response was determined with logistic regression. Continuous data, vertical and 

horizontal densities, was tested against spectral response using linear 

regression.   

 

 6.3.  Results and Discussion 

 6.3.1.  Disturbance and Location On/Off Reserve 

Results from the logistic regression tests are shown in Table 6.1. The 

Disturbed/Undisturbed site classifications led to strong associations with Band 4, 

NDVI, Brightness, and Greenness in both the March and June images. The 

On/Off RNBM site classifications were strongly associated with several satellite 

bands and band transformations, but with few June image bands. None of the 

sites off of the RNBM were classified as undisturbed, some sites on RNBM were 

classified as disturbed by those familiar with the past history of the area, these 

were primarily sites that had been cleared for agriculture or logging prior to the 

time that RNBM was established and since then were allowed to revert to forest. 

This suggests that, in March imagery, sites that have had 20 years or more of 
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undisturbed forest growth can be distinguished from sites that have recent 

disturbance activity. 

 

Table 6.1.  Satellite band imagery response to disturbed sites and on/off reserve 
sites. 

 Undisturbed 
2008-03-29 

Undisturbed 
2008-06-17 

On Reserve 
2008-03-29 

On Reserve 
2008-06-17 

L7-Band 1   *  

L7-Band 2 *  **  

L7-Band 3   **  

L7-Band 4 *** **  . 

L7-Band 5 * . *  

L7-Band 6a   ***  

L7-Band 6b   ***  

L7-Band 7   **  

NDVI * ** .  

Brightness *** **   

Greenness ** ** . . 

Wetness *  **  

TC4   * . 

TC5     

TC6   .  

For the significance codes: '.' = p < 0.1, '*' = p < 0.05, '**' = p < 0.01,  
and '***' = p < 0.001. 

 

 

 6.3.2.  Vertical Density 

In Tables 6.2 and 6.3, are results from logistic regression of vertical 

density measurements with spectral information. The March image does not 

show many associations with vertical density, but it does suggest that further 

study might be able to show middle canopy density using Tasseled Cap 
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transformations. In June, however, there seems to be good potential to 

distinguish density of the highest canopy. The association was especially strong 

in the Fourth category of the Tasseled Cap transformation. The existence of this 

canopy is one of the factors associated with rodent seroprevalence in this forest 

area.  In the images from the region, high values in the Tasseled Cap Fourth 

(TC4) band are associated with areas that  have exposed soil (especially tilled 

latifundia fields) or areas that are composed of high amounts dead plant matter 

(grassland areas within the reserve).  The TC4 was associated with areas that 

contain the highest canopy in the June imagery because some of the high 

canopy trees lose their leaves during this time of year, thus exposing the soil and 

leaf litter below at this time of year. 

 

 6.3.3.  Horizontal Density 

Horizontal density measurement associations with imagery are shown in 

Tables 6.4 and 6.5. Here, March imagery shows the stronger relationship and the 

June imagery does not show many strong relationships. Most of the horizontal 

density measurements were somewhat associated with Band 4, NDVI, and 

Greenness. There is one interesting and relatively strong association with the 

June imagery. The Fourth band in the Tasseled Cap transformation is associated 

with horizontal density at ground level. This is the same imagery information that 

is associated with the upper canopy density.   
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Table 6.2.  Satellite band imagery (image date 2008-03-29) response to vertical 
canopy density. 

 
Highest 
Canopy 

Middle 
Canopy 

Lower 
Canopy 

Average of all 
canopies 

L7-Band 1  *   

L7-Band 2     

L7-Band 3     

L7-Band 4     

L7-Band 5  *  . 

L7-Band 6a     

L7-Band 6b     

L7-Band 7     

NDVI   .  

Brightness    . 

Greenness     

Wetness  .   

TC4  *   

TC5  *  * 

TC6     

For the significance codes: '.' = p < 0.1, '*' = p < 0.05, '**' = p < 0.01,  
and '***' = p < 0.001. 
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Table 6.3.  Satellite band imagery (image date 2008-06-17) response to vertical 
canopy density. 

 
Highest 
Canopy 

Middle 
Canopy 

Lower 
Canopy 

Average of all 
canopies 

L7-Band 1 .    

L7-Band 2 .   * 

L7-Band 3 **  *  

L7-Band 4     

L7-Band 5 *   * 

L7-Band 6a *    

L7-Band 6b *    

L7-Band 7     

NDVI     

Brightness     

Greenness     

Wetness     

TC4 ***   *** 

TC5     

TC6    . 

For the significance codes: '.' = p < 0.1, '*' = p < 0.05, '**' = p < 0.01,  
and '***' = p < 0.001. 

 

The heavy dependence of NDVI and Tasseled Cap Greenness on Band 4 

can be seen in the apparently close associations between Band 4, NDVI, and 

Greenness in Table 6.4.  In this image from 2008-03-29, Band 4 and NDVI had a 

correlation of 0.838, Band 4 and Greenness had a correlation of 0.941, and NDVI 

and Greenness had a correlation of 0.952.  While these correlations are close, 

they are not perfect and these different bands can pick up subtle, but important, 

differences in habitat.   
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Table 6.4.  Satellite band imagery (image date 2008-03-29) response to 
horizontal vegetation density. 

 Density at 
ground 
level 

Density at 
0.5 m 
height 

Density at 
1.0 m 
height 

Density at 
2.0 m 
height 

Average 
of all 

densities 

L7-Band 1      

L7-Band 2      

L7-Band 3    .  

L7-Band 4 * . .  . 

L7-Band 5      

L7-Band 6a      

L7-Band 6b      

L7-Band 7      

NDVI * . . . * 

Brightness      

Greenness * . .  * 

Wetness      

TC4      

TC5      

TC6      

For the significance codes: '.' = p < 0.1, '*' = p < 0.05, '**' = p < 0.01,  
and '***' = p < 0.001. 
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Table 6.5.  Satellite band imagery (image date 2008-06-17) response to 
horizontal vegetation density. 

 Density at 
ground 
level 

Density at 
0.5 m 
height 

Density at 
1.0 m 
height 

Density at 
2.0 m 
height 

Average 
of all 

densities 

L7-Band 1      

L7-Band 2 *     

L7-Band 3 .     

L7-Band 4      

L7-Band 5      

L7-Band 6a      

L7-Band 6b      

L7-Band 7      

NDVI      

Brightness .     

Greenness      

Wetness      

TC4 **     

TC5      

TC6      

For the significance codes: '.' = p < 0.1, '*' = p < 0.05, '**' = p < 0.01,  
and '***' = p < 0.001. 

 

 6.4.  Conclusion 

These data show that Landsat imagery can be used to determine some 

aspects of forest disturbance and understory vegetation density in the Atlantic 

Forest in the Mbaracayú Biosphere.  Specifically, forest areas that have been 

recently impacted by humans are detectable using the Tasseled Cap Brightness 

and Greenness bands, NDVI, or ETM+ Band 4.  A dense upper canopy, which is 

a vegetative variable associated with seroprevalence can be mapped using June 
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imagery to deriving the Tasseled Cap Fourth Band.  March imagery can be used 

to detect horizontal density, another factor associated with seroprevalence, using 

ETM+ Band 4, NDVI, or Tasseled Cap Greenness Band.   

Typically, methods for distinguishing forest disturbances focus on 

comparing deforested areas with forested areas.  However, ability to use 

remotely sensed data to determine understory vegetative factors is an important 

aspect of the current development of RS data. Studies have shown that some 

aspects of understory (Eriksson et al., 2006), successional stages in forest 

regeneration (Lu, 2004; Viera, 2003) and forest disturbance from logging (Asner, 

2004; Souza et al., 2005) can be detected in the Amazon.  Because understory 

density (Goodin et al., 2009) and some of the medium levels of anthropogenic 

change in forests (Chapter 5) are associated with seroprevalence in A. 

montensis, improving forest mapping techniques will be an important tool in 

better understanding the processes involved with seroprevalence. 
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Chapter 7.   Linkages Between Small Mammal Diversity 

and Hantavirus Seroprevalence and their Association 

with Remotely Sensed Vegetation Indices. 

 

 7.1.  Introduction 

 7.1.1.  Review 

The diversity of pathogen hosts and vectors can have an affect on the 

presence and prevalence of a pathogen on a landscape.  Depending on the way 

the pathogen interacts with various hosts and vectors, diversity on the landscape 

can reduce or increase the amount of pathogen present (Begon, 2008).  

Decreases in the prevalence of pathogens in diverse communities can happen 

through species competition or through a dilution effect (Begon, 2008).  

Increases in pathogen prevalence can occur through combinatorial effects via 

multi-species interactions (Begon, 2008).  

Diversity of pathogen hosts on a landscape can be measured using a few 

metrics for species richness, evenness, and diversity (Turner, 2001; Keylock, 

2005; Legendre and Legendre, 1998).  Richness is a measure of the number of 

different species present (Turner, 2001).  Evenness is used to measure the 

equality in numbers between the species present (Legendre and Legendre, 

1998).  Simpson's Index of Species Diversity is a metric that measures the 

probability of interspecific contact, it is essentially a way of combining richness 
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and evenness into a single metric (Legendre and Legendre, 1998).  In some 

habitats, vegetative diversity or vegetative productivity as measured with NDVI is 

closely tied to diversity of animal species (St. Louis et al., 2009; Lassau et al., 

2005). 

The dilution effect is a model that explains how changes in species 

diversity may affect disease transmission (Ostfeld and Keesing, 2000; LoGiudice 

et al., 2003; Keesing et al., 2006; Clay et al., 2009). Generally the change 

explained by the dilution effect is that communities with high biodiversity will have 

lower levels of a particular pathogen, but the effect may also increase pathogens 

(Keesing et al., 2006). The dilution effect reduces pathogen prevalence by 

reducing the amount of intraspecific contacts, when those reduced intraspecific 

contacts occur among the most competent hosts, then pathogen loads are 

reduced (LoGiudice et al., 2003). One of the clearest examples is with Lyme 

disease. The white-footed mouse (Peromyscus leucopus) is an especially good 

host for the pathogen that causes Lyme disease, when habitat is fragmented and 

the number of other mammals is reduced, the ticks that can carry the pathogen 

are more likely to have the pathogen, and tick encounters with humans are more 

likely to result in Lyme disease. Regarding hantavirus, a study conducted with 

Peromyscus maniculatus, the host for SNV, showed that a more diverse small 

mammal system reduced the number of intraspecific contacts, which reduced the 

prevalence of seropostivie rodents within a natural host-pathogen system (Clay 

et al., 2009).  
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 7.1.2.  Objectives 

The objectives of this chapter are to analyze the effects of small mammal 

community diversity on Akodon montensis and the presence of hantavirus in A. 

montensis communities, and to evaluate the use of satellite-derived data (see 

Chapter 6) to help evaluate small mammal community biodiversity and the 

potential presence of hantavirus on the landscape.  Presence of hantavirus in A. 

montensis communities is represented by testing for individuals that are 

seropositive from prior hantavirus exposure.  Biodiversity is measured by 

calculating diversity metrics on the rodent species caught in trapping sessions 

and rodent species caught at trap sites.  

 

 7.2.  Materials and Methods 

 7.2.1.  Trapping Data 

The trapping data used here is from the Mark/Recapture trapping data 

(see 3.2.1), which consists of information from 53 different trapping sessions 

conducted over a course of two and a half years (February, 2005 to November, 

2007) in 10 different locations (see Figure 3.4 and Table 3.1). This analysis 

herein looks at the relationship between diversity metrics and serostatus in two 

different ways. In one, the trapping sessions are used as the sample sets, these 

results are shown in Tables 7.1 and 7.2.  Two of the available sessions were 

eliminated because there were no rodents trapped during the session (and thus 

have no diversity and no chance of presence of hantavirus seropositive rodents).  

The remaining 51 sessions were used in this analysis.   
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In the second type of analysis, the data for each Mark/Recapture grid is 

pooled together and diversity metrics from those 10 sites are compared to 

serostatus.  This arrangement also allowed for a comparison of remotely sensed 

data to the diversity metrics and in extension allows for a test of seroprevalence 

against remotely sensed data.  These data were arranged by trap site (instead of 

trap session).  The total counts of each species by trap site can be seen in 

Appendix B, this trap site data is a sum of the species caught during a number of 

trapping sessions at each Mark/Recapture site (R3A & B – 10 sessions, JJA & B 

– 8 sessions, MAA & B – 2 sessions, HMA & B – 5 sessions, BKA & B – 2 

sessions).    

  

 7.2.2.  Diversity Indices 

Species diversity was measured using three indices: species richness 

(Turner, 2001), species evenness (Keylock, 2005), and Simpson's Index of 

Species Diversity (Keylock, 2005).  Species richness is a count of the number of 

species present in a certain landscape, sometimes expressed as a percentage or 

as a raw count (both yield identical relationships).  Here, evenness is calculated 

as a count of the number of different species caught during an individual trapping 

session.  Evenness was calculated using the 'asbio' package (version 0.3-24) in 

R version 2.11.1 (R Development Core Team, 2010).  The 'asbio' package 

calculates evenness using the Pielou's measure of species evenness  

J = H'/ln(S), 
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where H' is Shannon Weiner diversity and S is the total number of species 

in a sample).  Simpson's Index of Species Diversity (1-D) was calculated using 

the 'vegan' package (version 1.17-4) in R version 2.11.1 (R Development Core 

Team, 2010). In the 'vegan' package  

D = Σ pi2, 

where pi is the proportional abundance of species i.  Once 1-D is 

calculated, Simpson's Index of Species Diversity results in a number that is 

between 0 and 1, where lower numbers mean lower diversity and higher 

numbers mean higher diversity. 

 

 7.2.3.  Statistical Analysis 

A combination of linear and logistic regressions were used to test the 

relationship between rodent diversity and the A. montensis community and the 

seroprevalence in that community.  Logistic regression was used in cases where 

the response variable (seroprevalence or presence A. montensis) was binary and 

the predictor variable (i.e. diversity metric) was continuous.  Linear regression 

was used in cases where both the response variable (count or prevalence of 

rodents or seroprevalence) and the predictor variable (diversity metric) were 

continuous.  The trapping grids are assumed to be spatially independent, as 

home range sizes for A. montensis are on the order of 1600 m² (40 x 40 m) or 

less (Owen et al., 2010), there was a small amount of temporal overlap at the 

same site for subsequent trapping sessions.  Relating spectral information about 

the trap sites with diversity and with seroprevalence was done using linear 
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regression.  All regressions were run using R version 2.11.1 (R Development 

Core Team, 2010) and the R Commander package (version 1.6-0). 

 

 7.2.4.  NDVI Calculation  

NDVI was calculated from a Landsat ETM+ image from path 225/row 77 

that was acquired on 2008-03-29, using the ENVI software package (v. 4.2, 

ITTVIS).  Means and standard deviations of NDVI were obtained from a 5 pixel x 

5 pixel window centered over the trap sites used in this analysis.   

  

 7.3 Results and Discussion 

 7.3.1.  Logistic Regression on Trap Session Presence/Absence Data.  

This test included 51 trapping sessions and compares the presence of 

seropositive A. montensis and the presence of A. montensis in a trapping 

session to diversity metrics.  The presence of seropositive rodents in a particular 

trap session was related to a small mammal community that has a higher count 

of species, but displayed less diversity (Table 7.1).  The positive association of 

richness and presence of A. montensis seroprevalence is likely due to the high 

population of A. montensis that occurs in the same type of trap session (see 

Table 7.2).  The association between low diversity and higher likelihood of 

presence of seropositive rodents is the same as is seen in the rest of the results 

herein.   
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Table 7.1.  Results from comparison of presence of A. montensis and 
seropositive A. montensis against small mammal diversity. Estimates are shown 
for associations with a p-value < 0.1. 

 
Richness Evenness 

Simpson’s Index of 
Diversity 

Estimate p-value Estimate p-value Estimate p-value 

Presence of 
S+ AKMO 

0.329 0.063 -- 0.241 -2.277 0.067 

Presence of 
AKMO 

-- 0.134 -- 0.813 -- 0.441 

(AKMO – Akodon montensis; S+ – seropositive) 

 

 

 7.3.2.  Linear Regression on Trap Session Presence/Absence Data.  

This test included 51 trapping sessions and compares the seroprevalence  

of the entire rodent community, the seroprevalence of A. montensis, and the A. 

montensis population size in a trapping session to diversity metrics.  Results from 

the analysis of seroprevalence and number of seropositive A. montensis (Table 

7.2) show that the seroprevalence in a particular trap session is related to low 

small mammal community diversity.  The number of A. montensis has the 

opposite relationship, there is a high population where there is also a rich small 

mammal community.   

These results together show that A. montensis sustains better populations 

in situations where many other species of rodents also find favorable conditions.  

When the rodent community is less even in population or less diverse, then the 

population of A. montensis shows higher seroprevalence.  Environments that 

may be somewhat less favorable for rodents and small mammals in general (i.e. 

support fewer other rodent species, and in lower numbers) are also associated 
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with greater hantavirus seroprevalence in A. montensis communities.  Combined 

with the results from presence data in Table 7.1, there is a higher potential for 

seeing at least the presence of seropositive A. montensis in rodent species rich 

communities, but the population is high and the number of seropositive A. 

montensis are low leading to a very low seroprevalence in rich communities.  

Imbalance in rodent communities is associated with high numbers of seropositive 

in A. montensis communities. 

 

Table 7.2.  Results from comparison of seroprevalence, number of seropositive 
A. montensis and number of A. montensis against small mammal diversity. 
Estimates are shown for correlations with a p-value < 0.1. 

 
Richness Evenness 

Simpson’s Index of 
Diversity 

 Estimate p-value Estimate p-value Estimate p-value 

S+ 
prevalence 

-- 0.692 -- 0.210 -0.151 0.083 

Number of 
S+ AKMO 

-- 0.822 -9.821 0.038 -7.380 0.012 

Number of 
AKMO 

6.367 0.019 -- 0.368 -- 0.160 

(AKMO – Akodon montensis; S+ – seropositive) 

 

 

 7.3.3.  Comparison by trap site (diversity metrics v. seroprevalence) 

This test included only the 10 Mark/Recapture grid locations as samples, 

the total counts of small mammals were pooled over all trapping sessions for 

each trap site.  Comparison of sites (as opposed to individual trap sessions), to 

seroprevalence (Table 7.3 and Figure 7.1) was significantly associated with 

evenness and Simpson's Index of Species Diversity. Both of these relationships 
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were negative, indicating again that low small mammal community diversity is 

correlated with seroprevalence.   

 

 7.3.4.  Comparison by trap site (NDVI v. diversity metrics and seroprevalence)  

This arrangement of trap information by trap site allowed me to investigate 

the association between vegetative indices (NDVI) and rodent diversity and 

seroprevalence.  Mean NDVI signal was somewhat negatively associated with 

evenness and Simpsons Index of Diversity.  This says that less vegetation, as 

represented with lower NDVI, is associated with the types of small mammal 

community diversity that is associated with high seroprevalence.  Seroprevalence 

was also somewhat associated with mean NDVI, although not significantly in this 

analysis.   

The standard deviation of NDVI for these trap sites was significantly 

negatively associated with richness in rodent communities.  Diverse vegetative 

communities (as measured with NDVI) are associated with low richness in rodent 

communities.  The sites that showed the highest NDVI standard deviation here 

are sites that were situated at habitat ecotones, these sites also had low richness 

in their small mammal species numbers.  It has been shown in other tests (Table 

7.1) that diverse rodent communities tend to have low seroprevalence.  The data 

also suggest that more thorough (more trap sites) tests of mean NDVI against 

small mammal communities would show that mean NDVI (weaker vegetative 

signal) is negatively associated with evenness and small mammal diversity.  

These are characteristics that were associated with more seroprevalence. 
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Table 7.3.  Comparisons between NDVI, A. montensis seroprevalence, and 
rodent biodiversity. Estimates are shown for associations with a p-value < 0.26. 

 Richness Evenness Simpsons 
Index of 
Diversity 

NDVI 
(mean 

NDVI (SD) 

 Est. p-
value 

Est. p-
value 

Est. p-
value 

Est. p-
value 

Est. p-
value 

S+ -- 0.90 -0.27 0.06 -0.18 0.08 0.60 0.16 -- 0.51 

NDVI 
mean 

-- 0.54 -0.15 0.24 -0.10 0.25    0.59 

NDVI 
SD 

-0.01 0.07 -- 0.95 -- 0.86     

(S+ – seropositive; Est. – Estimate) 
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Figure 7.1.  Plots of ten trap sites showing comparisons between A. montensis 
seroprevalence, and rodent biodiversity metrics. 
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Figure 7.2.  Plots of ten trap sites showing comparisons between NDVI and 
rodent biodiversity metrics.   
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Figure 7.3.  Plot of ten trap sites showing comparisons between NDVI and rodent 
seroprevalence.   

 

 

 7.4.  Conclusion 

Hantavirus seroprevalence in A. montensis is associated with low diversity 

in small mammal communities.  This trend is apparent both when measured for 

trap sites and when including temporal changes in those trap sites.  In addition, 

A. montensis communities have their highest populations when embedded in rich 

small mammal communities.  The high population A. montensis communities are 

not associated with high seroprevalence, although they are associated with 

presence of seropositive A. montensis, likely at low seroprevalence.   

These data suggest that A. montensis thrives in a type of habitat where 

many other rodents also do well.  A. montensis is a habitat generalist (Owen et 
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al., 2010; Umetsu and Pardini, 2007), so it follows that habitat that is good for 

more rodent species would also support larger populations of A. montensis.  On 

the other hand, when the overall rodent community was less even or less 

diverse, seroprevalence in the A. montensis community was greater.  This further 

suggests that habitat type plays a role in hantavirus seroprevalence in the A. 

montensis community.   

Relationships between habitat and seroprevalence in general (McIntyre et 

al., 2005; Mackelprang et al., 2001; Lehmer et al., 2008; Suzan et al., 2006) and 

habitat suitability and increased hantaviral seroprevalence specifically (Goodin et 

al., 2009) have been noted previously.  Dilution effects (Begon, 2008; LoGiudice 

et al., 2003) are one possible causal mechanism for lower seroprevalence in 

habitats that support more diversity.  In habitats with diverse and high small 

mammal populations, encounters between a potential viral shedder (that is, an 

individual of A. montensis that is actively infected and capable of infecting others) 

would be less frequent compared to less diverse habitats, simply because in a 

diverse habitat, encounters between competent reservoir hosts would be less 

probable.  In other words, 'dilution' of the potential host community reduces intra-

specific encounters among A. montensis.  Habitat quality might also affect 

seroprevalence indirectly, via the host physiology. Ecosystem stress might lead 

to physiological stress, which would increase susceptibility to pathogen 

exposure.  In this case, differences in seroprevalence appear in different 

habitats, but the differences could also be temporal in nature, such as a 

population explosion during exceptionally good conditions, followed by too high 
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of a population competing for limited resources later (Yahnke et al., 2001; 

Engelthaler, 1999) or by typical seasonal fluctuations (Calisher et al., 2007), or 

by changes to habitat (Mackelprang et al., 2001, Lehmer et al., 2008; Suzan et 

al., 2006).  Regardless of the cause, understanding that changes to habitat 

(temporal and spatial) play a role in seroprevalence in A. montensis, and more 

generally can play a role in pathogen maintenance in various animal 

communities can allow humans and human communities to make more informed 

land use decisions. 
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Chapter 8.   Summary and Conclusions 

Many aspects of landscape patterns are important to hantavirus 

seroprevalence in small mammal communities in Eastern Paraguay.  Patterns of 

LULC patches are associated with seroprevalence, especially some patterns 

associated with anthropogenic disturbance.  These patterns of LULC patches are 

most apparent when viewed using 250m windows and 2000m windows, which 

likely correspond to different A. montensis population interaction scales.  In the 

overall landscape, patches of the same type that are within 100-200m of each 

other are sufficient to have seropositive rodents in the landscape.  At the larger 

(2000m window) scale, proximity of patches is still associated with 

seroprevalence, but shape metrics are also associated with seroprevalence.  

These shape metrics (perimeter-area ratio and fractal dimension) show that 

some anthropogenic changes, rectangular patches with relatively straight edges, 

are important to seroprevalence in A. montensis.  Metrics from the forest mosaic 

give the clearest links between LULC patterns and seroprevalence.  The 

presence of forest is associated with A. montensis presence, but not 

seroprevalence.  However, forest area in the 250m window size is positively 

associated with seroprevalence in A. montensis, especially when it is highly 

fragmented.  Highly fragmented forest patch landscapes were also associated at 

the 2000m window size, with area being less important.  Some smaller scale 

patterns are also associated with seroprevalence in A. montensis.  Vegetative 

diversity (shown using NDVI) is associated with rodent richness, which is 
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consequently associated with high populations of A. montensis and low 

seroprevalence.  

Several of the aspects of landscape patterns important to hantavirus 

seroprevalence can be studied using satellite-derived data.  The LULC 

classification map used to analyze associations between LULC patterns and 

seroprevalence is an obvious way that satellite data can be used to analyze 

association between patterns and seroprevalence.  Remotely sensed data can 

also be used to determine understory density variables through the use of 

satellite imagery.  Horizontal and vertical density in the understory has been 

found to be associated with the presence of hantavirus in A. montensis (Goodin 

et al., 2009).  Vertical and horizontal density measurements were correlated with 

NDVI and the Fourth band in the Tasseled Cap transformation.  Seroprevalence 

in A. montensis is associated with low diversity in small mammal communities.  

Low small mammal community diversity is somewhat associated with mean 

NDVI at trap sites. High standard deviations in NDVI data is associated with 

areas that have high rodent richness, which is associated with high A. montensis 

populations, but low seroprevalence.  

The next step in the landscape pattern research might be to divide the 

forest areas into different forest types to further analyze the importance of forest 

pattern metrics on seroprevalence and A. montensis populations.  Additionally, 

habitat classification of the Megagrid site could be done using finer scale 

(QuickBird. 0.6m) and coarser scale (MODIS, 250m) imagery.  These 

classifications can then be used to look at different scales of pattern associations 
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with seroprevalence.  Differences in the results from different seasons in the 

forest density research suggest that phenological signals could be an important 

variable to include when classifying forest types in the Interior Atlantic Forest in 

Eastern Paraguay.  Many of the variables used to test against seroprevalence 

had variance as an important part of the relationship; this indicates potential 

utility for more use of spatial aspects in remotely sensed data analysis.  These 

spatial aspects include refining the use of object-oriented classification 

techniques and use of texture metrics.  Better understanding of individual animal 

movements is another potential avenue of research and could be accomplished 

through further Mark/Recapture studies or through telemetry studies.  This line of 

research would help determine what population organizational levels are being 

measured at the 250m and 2000m window landscape grains.   Finally, more 

detailed vegetative community and pattern classifications should help clarify the 

link between small mammal diversity and A. montensis; these detailed vegetative 

community and pattern classifications can be extended to include all other 

species present at the RNBM.   

This research mostly relied on Landsat for its remotely sensed data 

source.  Other satellites that are in a similar data grain scale that could also be 

used for this research include CBERS (China-Brazil remote sensing satellite), 

SPOT, and ASTER.  At a finer grain size, QuickBird could be used, these data 

would allow for finer details of the patterns to be measured and would also allow 

for an extension of the pattern metrics research into smaller scales, possibly 

even individual A. montensis habitats.  The research herein is the beginning of 
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the pieces needed to create risk maps of hantavirus based on aspects of the 

landscape.  At this point, the mapped risk zones would only be useful to guide 

further research, but some fine tuning of these results with more details would 

make a more broadly useful risk map.       

The results of this dissertation contribute to landscape epidemiology 

through its application of landscape ecology and remotely sensed data analysis 

techniques to seroprevalence of hantavirus in A. montensis in the Interior Atlantic 

Forest region in Eastern Paraguay.  Landscape pattern analysis has been 

previously applied to hantavirus research (Langlois et al., 2001; Suzan et al., 

2006), this research extends this previous research through application of a 

broader selection of landscape metrics and consideration of a wider range of 

habitat types.  This dissertation also adds to remotely sensed data analysis 

through the applications of remotely sensed data to landscape analysis, through 

improving detection of subtle habitat differences within a forest, and through 

better understanding of LULC dynamics in Paraguay.  Better understanding of 

the spectral reflectance properties of Atlantic Forest and how those properties 

may be used to map vegetation density beneath the forest canopy, combined 

with object-oriented classification, will result in improved classification of forest 

sub-types in the study region.   

The interactions between hantavirus and its rodent reservoir are complex 

in Paraguay.  This research adds to the understanding of this system, which will 

lead to better understanding of broader hantavirus dynamics.  These types of 
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improvements in understanding will eventually allow for improved ability to 

predict risks of hantavirus exposure to human populations.   
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Appendix A. Bivariable and Multivariable associations 

 

 A.1 Bivariable landscape metric associations 

All bivariable associations between presence of seropositive rodents and 

landscape metrics that are significant with a p < 0.1 are shown in Tables A.1-A.3. 

 

Table A.1.  Results from bivariable tests on association between hantavirus 
serostatus and landscape mosaic metrics. All metrics with p < 0.1 were selected. 

Landscape 
mosaic window 
size 

Metric p-value 

250 m 
Proximity (CV) 
Nearest neighbor (mean) 
Nearest neighbor (median) 

0.0379 
0.0072 
0.0060 

500 m none -- 

1000 m 

Gyrate (SD) 
Proximity (CV) 
Nearest neighbor (range) 
Nearest neighbor (SD) 
PR 

0.0928 
0.0708 
0.0697 
0.0920 
0.0870 

2000 m 

Perimeter-area ratio (mean) 
Perimeter-area ratio (range) 
Perimeter-area ratio (SD) 
Perimeter-area ratio (CV) 
Contiguity (mean) 
Contiguity (range) 
Contiguity (SD) 
Contiguity (CV) 
Nearest neighbor (range) 
Nearest neighbor (SD) 

0.0908 
0.0944 
0.0476 
0.0477 
0.0814 
0.0935 
0.0492 
0.0470 
0.0522 
0.0779 
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Table A.2.  Results from bivariable tests on association between hantavirus 
serostatus and forest patch mosaic metrics. All metrics with p < 0.1 were 
selected. 

Forest patch window size Metric p-value 

250 m1 

CA 
PLAND 
NP 
LPI 
LSI 
Area (median) 
Gyrate (median) 
Fractal dimension (SD) 
Fractal dimension (CV) 
CPLAND 
NDCA 
Core area index (median) 
Proximity (mean) 
Proximity (median) 

0.0587 
0.0588 
0.0045 
0.0864 
0.0798 
0.0971 
0.0792 
0.0535 
0.0718 
0.0874 
0.0326 
0.0751 
0.0757 
0.0757 

500 m 

CA 
PLAND 
Area (median) 
Gyrate (mean) 
Gyrate (median) 
CPLAND 
Core area index (mean) 
Core area index (median) 
Proximity (median) 

0.0594 
0.0594 
0.0886 
0.0770 
0.0622 
0.0796 
0.0442 
0.0385 
0.0968 

1000 m none  

2000 m 

NP 
Area (CV) 
Circle (range) 
NDCA 
Core (range) 
Core (CV) 
Proximity (range) 
Proximity (SD) 

0.0437 
0.0621 
0.0822 
0.0784 
0.0995 
0.0592 
0.0474 
0.0649 

1 Metrics confounded by number of patches were eliminated from the 
forest 250m window, these included metrics where standard 
deviation, range, and coefficient of variation were all associated. The 
metrics deleted were: Area, Gyrate, Shape, Perimeter-area ratio, 
Circle, Contiguity, Core, and Core Area Index.   
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Table A.3.  Results from bivariable tests on association between hantavirus 
serostatus and minifundia patch mosaic metrics. All metrics with p < 0.1 were 
selected. 

Minifundia patch 
window size 

Metric p-value 

250 m Shape (SD) 
Shape (CV) 
Fractal dimension (range) 
Fractal dimension (SD) 
Fractal dimension (CV) 
Circle (range) 
Circle (SD) 
Circle (CV) 
DCORE (CV) 

0.0969 
0.1020 
0.0823 
0.0518 
0.0583 
0.0729 
0.0466 
0.0455 
0.0444 

500 m Core area index (CV) 0.0900 

1000 m Gyrate (mean) 0.0746 

2000 m Gyrate (median) 
Gyrate (range) 
Shape (CV) 
Circle (CV) 
DCORE (range) 
DCORE (CV) 
Nearest neighbor (CV) 

0.1030 
0.0965 
0.0852 
0.1027 
0.0903 
0.0555 
0.0762 

 

 

 

 

 

 

 

 

 

 

 



143 

 

 A.2 Multivariable landscape metric associations 

Full models for multivariable associations between presence of 

seropositive rodents and landscape metrics are shown in Tables A.4-A.6. 

 

Table A.4.  Results from the multivariable test on association between hantavirus 
serostatus and landscape mosaic metrics. The combination of variables that 
gave the lowest AIC scores as determined using a backward stepwise logistic 
regression. 

Landscape 
mosaic window 
size 

Metric Relationship 
direction 

p-value 

250 m Area (range) 
Nearest neighbor (median) 
Shape (CV) 
Split 

- 
+ 
+ 
- 

0.0795 
0.0333 
0.0898 
0.0903 

500 m DCORE (range) 
DCORE (mean) 
Shape (CV) 
Shape (range) 
Shape (Standard Deviation) 
Core (CV) 

+ 
+ 
+ 
+ 
- 
- 

0.0138 
0.0135 
0.0217 
0.0172 
0.0340 
0.0148 

1000 m Area (CV) 
Area (SD) 
Core area index (SD) 
Connect 
Contiguity (CV) 
DCORE (SD) 
Nearest neighbor (mean) 
Perimeter-area ratio (mean) 
PR 
Proximity (mean) 
Proximity (CV) 
Proximity (SD) 
Shape (median) 

+ 
- 
+ 
+ 
- 
- 
- 
+ 
- 
- 
- 
+ 
+ 

0.0411 
0.0565 
0.0582 
0.0399 
0.0589 
0.2323 
0.1583 
0.0611 
0.0347 
0.0736 
0.0488 
0.0882 
0.0464 

2000 m Nearest neighbor (range) 
Fractal dimension (mean) 
Perimeter-area ratio (SD) 

+ 
- 
- 

0.0108 
0.0896 
0.0136 
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Table A.5.  Results from the multivariable test on association between hantavirus 
serostatus and forest patch mosaic metrics. The combination of variables that 
gave the lowest AIC scores as determined using a backward stepwise logistic 
regression. 

Forest patch 
window size 

Metric Relationship 
direction 

p-value 

250 m Area (CV) 
CPLAND 

+ 
+ 

0.0065 
0.0455 

500 m Perimeter-area ratio (median) 
Proximity (SD) 
Proximity (CV) 
CA 
Contiguity (mean) 
Core area (median) 

- 
- 
+ 
+ 
+ 
- 

0.0396 
0.0374 
0.0394 
0.0378 
0.0524 
0.0336 

1000 m Area (mean) 
Area (median) 
Core area index (mean) 
Gyrate (mean) 
Mesh 
NLSI 
Proximity (median) 
Proximity (mean) 
TE 

+ 
+ 
+ 
- 
- 
+ 
- 
+ 
+ 

0.1197 
0.0460 
0.0485 
0.0330 
0.0990 
0.0901 
0.0847 
0.0429 
0.0221 

2000 m Core area index (mean) 
Circle (median) 
DCORE (SD) 
Gyrate (range) 
NP 
Proximity (median) 

+ 
+ 
+ 
+ 
+ 
- 

0.0190 
0.0429 
0.0147 
0.0230 
0.0098 
0.1007 
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Table A.6.  Results from the multivariable test on association between hantavirus 
serostatus and minifundia patch mosaic metrics. The combination of variables 
that gave the lowest AIC scores as determined using a backward stepwise 
logistic regression. 

Minifundia patch 
window size 

Metric Relationship 
direction 

p-value 

250 m DCORE (CV) 
Fractal dimension (SD) 
CPLAND 
Division 

+ 
+ 
- 
- 

0.0507 
0.0485 
0.0808 
0.3608 

500 m Area (median) 
Core area index (range) 
Fractal dimension (SD) 
Gyrate (SD) 
Gyrate (CV) 
LSI 
NP 
Perimeter-area ratio (median) 
TE 

- 
+ 
+ 
- 
- 
+ 
- 
- 
- 

0.2191 
0.0752 
0.0815 
0.0811 
0.1134 
0.0804 
0.0817 
0.0850 
0.0836 

1000 m Contiguity (mean) 
Core (median) 
Fractal dimension (median) 
Gyrate (median) 
IJI 

+ 
- 
- 
+ 
- 

0.1855 
0.0788 
0.1495 
0.0354 
0.0667 

2000 m Circle (mean) 
DCORE (median) 
Nearest neighbor (CV) 
Gyrate (mean) 
Gyrate (range) 
IJI 
Perimeter-area ratio (mean) 
Proximity (SD) 

+ 
+ 
+ 
- 
+ 
- 
- 
- 

0.0977 
0.0321 
0.0548 
0.0453 
0.0415 
0.0549 
0.0260 
0.0788 
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Appendix B. Mark/Recapture species counts 

The total counts of each species by trap site. These counts are the totals 

collected over all trapping sessions conducted at each site.  Each table contains 

a different set of species. 

 

Table B.1.  Trapping data for each Mark/Recapture trap site and seven species 
of nineteen species captured. 

Trap 
Site  

AKMO AKSP CACA CSPP MDOM NELA OXDE 

R3A 30 0 14 7 0 209 115 

R3B 611 1 7 0 0 0 0 

JMA 162 0 9 0 0 0 0 

JMB 176 0 1 0 0 0 0 

MAA 30 0 0 0 0 0 0 

MAB 33 0 0 0 0 0 0 

HMA 29 1 25 0 0 0 0 

HMB 2 0 16 2 1 0 0 

BKA 29 0 1 0 0 0 0 

BKB 192 0 17 0 0 0 0 
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Table B.2.  Trapping data for each Mark/Recapture trap site and six species of 
nineteen species captured. 

Trap 
Site  

OLFO ORME OLNI OSPP LUCR DASE 

R3A 0 0 14 2 1 1 

R3B 33 16 2 1 0 0 

JMA 20 48 3 0 0 0 

JMB 12 11 0 1 0 0 

MAA 2 10 0 1 0 0 

MAB 2 7 2 0 0 0 

HMA 11 6 25 0 0 0 

HMB 1 0 4 0 0 0 

BKA 0 0 0 0 0 0 

BKB 85 5 1 6 0 0 

 

 

Table B.3.  Trapping data for each Mark/Recapture trap site and six species of 
nineteen species captured. 

Trap 
Site  

CTEN ORAN THSP GAGI OXMI MIPA 

R3A 7 0 0 0 0 0 

R3B 0 2 1 0 0 0 

JMA 0 1 0 0 0 0 

JMB 0 4 0 1 0 0 

MAA 0 0 0 0 0 0 

MAB 0 4 0 0 0 0 

HMA 2 1 0 2 0 0 

HMB 0 2 0 0 0 0 

BKA 0 1 1 0 0 0 

BKB 0 14 0 0 11 2 

 


