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CHAPTEB i

INTHO.0VJ'.; ' ..".'..
.

During the past decade and & naif, process dynamics and

control, specifically optimal Control, has been a subject of

considerable interest to engineers in all fields. Basically an

optimal control problem can be stated as follows i given

equations which describe a dynamic system, determine how the

Systems controls must be manipulated as a function of time in

order to maximize or minimize a performance, criterion subject

to constraints on the controls and/or on the elements of the

system itself.

The problem of optimal control of distillation columns has

been of continued interest to chemical engineers in recent years

and all sorts of sophistication from the most recent developments

in automatic control theory has been employed in solving these

problems. However, nearly all of these investigations have been

based on ideal models with the assutnptiorj of complete mixing in

the liquid phase on each tray. And this In spite of the

development of several models for the representation of liquid

phase mixing on distillation tray.? (see the book by Holland [l]).

The present -Study was motivated by the belief "tHat the effect

of liquid phase mixing on the optimal control of distillation

columns has not been sufficiently highlighted in the past. This

thesis is intended to be a contribution toward obtaining a better

understanding of. the problems involved in obtaining an optimal

control policy for a distillation column wherein the liquid phase



mixing on each tray Is described t:j the so-called mixing pool

model rather than the conventional completely mixed tray.

The system studied in this work is a two tray column

separating a binary mixture wherein the stlllpot acts ss the

bottom tray while the top tray serves as a rectifier. The

special feature of this column is that the top tray is not

considered as an ideal tray with complete mixing, instead it is

considered as being divided into stages or pools, each pool

consisting of completely mixed liquid. This is Kirschbaura's [2]

assumption that there are pools of liquid on the tray which are

completely mixed. The so-called mixing pool model is described

as being divided into a number of completely mixed stages or

pools [3, *0« The concentration gradient across the tray is

assumed to be made up of a series of pools with each mixing pool

having a uniform composition. For a very large number of very

small pools, the concentration gradient becomes continuous and

plug flow exists. Conversely for a tray that Is completely mixed,

there is no concentration gradient and the entire tray has a

uniform composition. These two limiting cases, however, may not

be realized in practice. The effect of the degree of mixing

indicated by the number of mixing pools, on the control polipy of

the column -le->the chief purpose of this investigation.

For the sake of comparison, a second system which Is

referred to as the "reference system" Is also considered in this

work. It is identical to the system under consideration except

for the top tray which is a conventional ideal tray with complete

mixing, i.e. with r. single pool. This system serves as a basis



for comparison In this Investigation.

The procedure used here Is to consider a single specific
I.

example wherein the system suffers a disturbance through the

feed composition which in turn displaces the overhead distillate

composition from its steady state, and then to apply Pontryagtn's

Maximum Principle in order to obtain the control policy which

villi return the overhead composition to its steady state value

in the shortest possible time (time optimal problem). An

extension is also made to the case where the deviation from the

steady state composition is kept at a minimum. We assume that

control is effected by manipulation of the overhead reflux flow

rate.

The basic theoretical reference on the Maximum Principle is

thl1 book by Pontryagin and. his co-workers [5]. A good

elementary account of the Maximum Principle in both continuous

and discrete form, along with numerous engineering applications

can be found in the two works by Fan et al [6, 7 J, While many

significant applications of the Maximum Principle have been

demonstrated in other engineering fields, it is only during the

past few years that chemical engineers have begun to apply this

mathematical theory to problems of chemical engineering

importance. *

One of the first and most extensive of all studies In this

area was accomplished by Ciebenthel and Aris [8], They treated

the optimal regulation of a continuous stirred tank reactor.

Coward [9] In his work on the time optimal problem, is among

the early investigators of the Maximum Principle as applied to
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distillation.

In this study the Maximum Principle coupled with certain

numerical techniques is employed for the purpose of determining

the optimal control policy. The mathematical models used are

adequate to represent the phenomenon being investigated without-

having to go into the complexities of either the hydrodynamics

or the energy balance of the system.

Chapter 2 deals with the analysis of the reference system

and here a control policy is arrived at for the regulation of

the overhead reflux rate for the time optimal problem. In

Chapter 3 a similar analysis is carried out with the mixing pool

model with two pools or tanks in series, wherein the parameters

retain the same values as those in Chapter 2 except for the

introduction of the mixing pool model in place of the conventional

conrpletely mixed tray. Once more a control policy is derived for

the regulation of the overhead reflux rate for the time optimal

problem. In Chapter 4 an extension is made to the case where

the control is optimum In the sense of minimum total deviation.

First the control policy is obtained for the reference system

and then for the nixing pool model system. Chapter 5 summarizes

the various results from Chapters 2, 3 and k and these results

are then analyzed and conclusions drawn. Also Several

supporting appendices deal with the analog computer flow charts

and digital computer programs, derivation of the Maximum

Principle algorithm and steady state analyses of the systems

considered In Chapters 2, 3 and t-.
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CHAPTE8 2

THE HEFEHENCE SYSTEM

In this chapter the reference system is considered.

Initially the performance equations of the system are derived.

The exact nature of the problem stated and finally the

application of the Maximum Principle and the derivation of the

optimal control policy terminates the chapter.

1. DEVELOPMENT OF PERFORMANCE EQUATIONS.

The assumptions and column characteristics involved in the

derivation of performance equations are listed below.

(a) A column with two theoretical trays including the

Stlllpot and using a total condenser, is to be considered.

(d) The column is separating a biliary mixture assuming a

linear vapor-liquid equilibrium relationship, i.e., y ^ mx, 4 c.

(c) The top tray and the stlllpot show constant molal

holdup which is invariant with time.

(d) There is constant molal overflow, i.e., liquid and

vapor flows from tray to tray are constant.

(e) Vapor holdup Is assumed negligible.

(f) Adequate cooling water and steam are available.

(g) To pel-silt ample boiling surface, the stlllpot holdup

is assumed to be 2.5 times the holdup on the top tray.

(h) The feed is a completely condensed liquid at saturation.

The essential features of the system along with the various

flow streams are shown in Figure 1. The feed is introduced
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Fig. I. Distillation column with top tray described

by a single-; completely mixed tank (Reference-

System) .
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directly Into the stillpot as a condensed saturated liquid. In

the stillpct heat is transferred to the liquid and the vapor

leaving the stillpot passes upward through the rectifying section

which consists of a single theoretical tray (a single completely

mixed tray). The overhead vapor is completely condensed and

part of the resulting liquid is drawn off as overhead product

while the rest of the liquid is returned to the top tray as

reflux. Liquid also leaves the reboiler and is drawn off as

bottoms product.

On the basis of the above assumptions and description the

mathematical relationships between the various variables can

now be derived. The dynamic behavior of the column in the

transient state may be written in the differential form by

performing a light component balance on each tray along with

overall material and light component balances over the entire

system as follows} (see Figures 2 and 3).

For the top tray, the light component balance gives

Input - Output n Accumulation

Lx
fi

+ Vy
2

- LXl - Dr
x
. H

T
-2

Since

>;':

X
D = yl = mX

l
+ °

jr
2

r= mx + c,

we have



v.y,

H T ,XTi *l

L.Xi

L,X D = L,y

~S"

v,y
2

Fig.2 Material balance stream:

for top tray.

8



L , x , A

F, x F

~L H B >X;

V,y
2

.
B f x.

Fig. 3 Materiel bolonce streams

for bottom tray.



L(mx, + o) + V{mx„ + e) - Lx. - V(mx, * o) =.- H,_ —i

10

dx-

which o>i rearranging yields

dx^
K„, -tr- = Lmx, •;• Lo + Vux

2
; Vc - Lx, - Vax. - Vc

and finally

5
X1 (Lra - L - Vm) _ . Vta * * M m__ „ __ Xi + __ x

2
+ __ (1)

For the bottom tray, the light component balance gives

Input - Output = Accumulation

I,x
1
+ Fx

p
,
- Vy

2
- Bx

2
. H

B ^2

Hence

fo-9
H
B IF = LX

1 * FX
F " V(mX

2
+ 0) " BX

2

A total balance around the bottom tray shows that

B « F + L - V (la)

whereby

E
Binf 3

Lx
l t FX

F " VmX
2 " V ° " FX

2 " LX
2 * VX

2

which on rearranging yields

dx2 Lx
l (Vi t F t L " V) , j

PxF Vc , 9l
dt - -fi

B
" - H

fi

— X
2 + 1

B
' H~

The overall flow rate balance around the entire system gives
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P = D + B ( 3

)

while the overall light component balance around the entire

system, gives

Px„ = Dx
T, f Bx, (3a)

Equations (1) and (2) describe the unsteady state behavior Of

the system.

The following specific values are assigned to the various

parameters of the system.

F a 0.5 lb mole/mln. " x = 0,6$
P

L b 1 lb mole/min. H = 1 lb mole (4)

V > 1.33 lb moles/min. H m 2.5 lb moles

The linear vapor-liquid equilibrium employed is

y^ ,, 0.W Xj^ + O.56, 1 . 1, 2 (4a)

Equations (1) and (2) have been used for simulation on an EAI

TR48 analog computer to obtain several transient responses and

phase plane plots. The analog computer f3ow charts and scaled

equations are given in Appendix A. Also for the purposes Of

determining the physically realizable bounds of the system, the

steady state and limiting case analyses of the system have been

carried out. The results of the analyses are given in detaij in

Appendix B.

2, NATURE OF THE PROBLEM.
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Using the parameter values established in section 1, the

set of simultaneous equations, equations (1) and (2) with

the right hand side set equal to zero can be solved to obtain

the steady state values of x and x , which represent the liquid!

composition of the top tray and the liquid composition of the

bottom tray and also the product stream, respectively. The

results are

X m 0.6300 (5)

and

X m 0.276? . (6)
z

Since

x
D
„ y

x
,- mr

x
+ c.

Vic have

x = O.kh x 0.6300 t 0.56 (?)

B 0.837

If, at an instant, the feed composition x is instantaneously
F

changed from its steady state value of 0.65, this change will

constitute a disturbance to the overall system which in turn

will eventually result in a new steady state.

Let the initial steady state (x. = O.63OO, x = O.2767)

corresponding to x = O.65 be designated by S. , and at some
t -*

instant let x be instantaneously increased to x = 0.75,
F F

(i.e. we're assuming a known disturbance to have occurred). As

a result of this disturbance, x will tend to approach a new
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steady state value as can be seen in Figure k by the path OP.

It is possible to determine a value of reflux rate L which will

steer x from a certain point on the path, say the point P, back

to its initial steady state value along FQ asymptotically.

However, a better policy would be to change the reflux L not at

y but at 0, and thus steer x to its desired steady state value

along OKH thereby resulting In a time saving of OQ less OB.

Such a value of the reflux rate can be obtained from equations

(1), (2) and (3).

From equation (3) we have

Fx - Dx
D + Bx

2

= (V - L)y
1

+ (F + 1 - V)z

= (V - L)(mx, + c) f (F + L -• V)x
3 ?.

This loads to

Fx
F

- (V - L)(mxj + c)

*
2 = Fim (8)

From equation (1), at steady state, we get

V(mx, - mxo)
L m'xrTc~-"xr (9)

and from equation (2) at steady state we obtain

Vc - FXp - Vx,, »• VmXg + Fx
?

x - x
1 2

where equations (8) and (10) contain the new value of x .

F

(10)
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By a trial and error method, an L is first assumed and x

is calculated from equation (8). Next this value of x is
2

used in equations (9) and (10) and L is calculated from each of

equations (9) and (10) and checked with the original assumed

value of L. The L that satisfies equations (8), (9), and (10)

shall be designated L'. The value of L" for the reference

system has been found to be 0.9152 lb aoles/Mn and the steady

state resulting from it is S = (x. = O.6300, x? =_• O.3067)

The increased value of x_ is consistent with the material
2

balance since the feed composition has been increased from 0.65

to 0.75. It can be seen from Figure h that the overhead

composition x can be returned to it's Initial undisturbed

state in at least two different ways, one of which (path OKK)

achieves the objective in a shorter time than the other.

Kosjever, even the use of path ONR takes a considerable amount of

tljae, almost to the extent that it becomes Impractical to Walt

for x to return to its undisturbed state. Hence a control
D

policy has to be devised for the manipulation of L whereby x

is restored to its undisturbed state in the shortest possible

time. This is what constitutes time optimality.

3. APPLICATION OP THE MAXIMUM PRINCIPLE ALGORITHM.

The Maximum Principle will now be applied to the reference

system so as to investigate how the reflux rate should be

manipulated in order to attain the state S in the shortest
2

possible time. A complete derivation of the Maximum Principle

Algorithm is discussed in the Appendix C. Stating the problem
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more explicitly we havei

Given a system with the performance equations

^ . JLin - Vm -_Lj Vm Lc , .

dt - H
T

X
l + H

T
X
2 + H

T
U1 >

dxo Lx-, /„„ , v. . r _ »\ Fx_ - Vc"2
2: (Vm + F + L - V) _ .

,1

" " A^ T H

dt - Eg H
B

2 H
B

we wish to determine L(t) which moves the system from the initial

state at S
1
m (x. = 0.6300, x n 0.276?) to the final state at

S
2
= (x. =5 O.63OO, x

?
=: O.3067) in a minimum period of time. In

other words we wish to determine L(t) so as to minimize the

objective function S where

T
S « / dt (12)

o

where T is unspecified. Physical realizability of the system

requires that the range of the control L(t) must be finite

(cf. Appendix B), that is,

L . < L < L (13)min •- — max "

Operation at the lower Dimit corresponds to the minimum reflux

L = L , and operation at the upper limit corresponds to the

maximum reflux L = L .

max

If we introduce an additional state variable such that

T
x (t) = ; dt

-> o

we have



1?

-^2 = l, i (o) = o (a*)

The Kamiltonian function Is defined as [see equation (C-8)]

it,, .,,, ri Viax., Loz-i T
H _ (Lm - Vm - L) 2 1 Jj. _

H "11 + H "1 + H * H„ T.z2
rp j qi 3

iVm ±F_±_L - Vi
Fx

p - Vc

B B

The adjoint differential system is [see equation (C-9)]

"dt = H ^ fT 2 l
'

T B

dz„ Vmz, /,, ,. T ,.\

T B c

"df=° ' tis)

The boundary conditions on the adjoint variables are [see

equation (C-9)]

z-, (0) unspecified z (T) unspecifiedx 1

z
2

(0) unspecified 7.

?
(T) unspecified (19)

z (0) unspecified e (T) = 1

Equation (18) along with the final condition on z (t) implies

z^ = 1 , < t < T (20)

The fact that the final time T is unfixed implies, at every

moment



18

bz,Xt x-, 7n oz-, z-i's-o x Zq Vmx z,
ibxh a _ » g H + + -g - /i, +

T T T B B T

Vmx
1
z
1

Vmx
2
z
2 ^

P " V 'X2Z2 ^
Fx

P " Vc ^ 2 2_ ._„__. __ TT~ _. + _ __
1' B B B

+ X = (21)

[see equation (A-39)]» Also the Hamiltonian has been written

so as to show it linear in the control variable L. Inspection

of the Hamiltonian allows us to determine the basic structure

of the time optimal control policy as being a bang-bang policy.

That is, the control variable L assumes either its maximum value

L or its minimum value L as the system is transferred from
max min

an initial state to the specified final state. Of course, once

the specified final state is reached, the control variable

must be switched once again to L' to maintain the new steady

state. The conditions for the Hamiltonian to be a minimum are

max H
T

" H
T

+ H
T

+ H
fi

H
B

;

„ ,

mzlxl x
l
z
l

cz
l

x
l
z
2

X
2
Z
2, ^ nVn " (~h; Hj" + H^ +~ " "H"^ * °

(21a)

In the case where the coefficient of L (sometimes known as the

switching function) vanishes over a finite length of time we

have the possibility of singular control. In the likelihood of

singular control the control variable may take on values which

are intermediate to I, and L M ; hence the name intermediatemax min

control is also used in place of singular control.
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The Maximum Principle now requires that the system

equations, equations (11) and (14), be integrated simultaneously

with the adjoint equations, equations (16) and (17) such that

the two point boundary conditions

x (0) ^ 0.6300 x, (T) = 0.6300
1 1

X (0) = 0.2767 X (X) =: 0.3067
2 2

x (0) =0. x (T) unfixed (21b)
3 i

Z (0) unfixed z (T) unfixed
1 •*-

z (0) unfixed 8«(T) unfixed
2 2

are satisfied and assures us that the tiiae optimal control is

one which minimizes the Hamiltonian at every point of its response.

Since the final time is unspecified this mlnltauiu of the

Hanlltonlan is zero, as indicated in equation 21 [also see equation

CC-39)].

4. COMPUTATIONAL PROCEDURES

The numerical solution of this problem Involves guessing

the initial values of z~ and z such that the final conditions

x (T) and x (T) may be reached simultaneously when the sec of

five differential equations Is integrated in a forward manner.

Actually the guesswork csn be reduced to the guessing of only

one of the initial values - either z (0) or z„(0) - by makir.g

use of equation (21), If all the parameter values specified

in equations (4) and (4a) (except L) are substituted into

equation (21) along with the initial values of x. and x , we

get
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Co.2?73z
a
(o) - 0,6300

2l
(0) + 0.56z (0) + 0.2521z

2
(0)

- 0.1108z (0)]L(0) + 0.16258^(0) - 0.3696z-(O)

- 0.065z (0) 4 0.O923Z (0) - 0.l486z
2
(0) +1=0

which on rearranging yields
i

(0.20?1L(0) - 0.2071)2^0) -i- (0.Hfl3L(0)

- 0.1213)z (0) + 1 a

1 + [0.141 31,(0) - 0.1213]z
2
(0)

z
1
(o) m - 67WnnW~-~o'72ofi'~' * 22 *

This equation indicates that it suffices to guess the initial

value

1.(0).

value of z„ only, since z (0) novr is dependent on z (0) and

The system equations, equations (11), (16) and (1?) have

been Integrated on an IBM system 360 computer with the help of

the IBM supplied subroutine HKGS (Runge-Kutta Gill subroutine).

The HKGS subroutine solves a set of simultaneous differential

equations with given initial conditions. The overall logic flow

diagram for the trial and error solution can be seen in Figure

5 where the following procedure is indicated in the corresponding

numbered boxes.

(1) The known initial values namely, x, (0), x (0) and x (0)12 3

are read In.

(2) A choice of either L or L is made for L.
max min

(3) The initial .value of z Is assumed.

{k) The corresponding initial value of 2 is calculated from
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Sel

L=L
.:,:;;

Assume
2,(0)

Calculate

z^Olfrom

equation (22)

9-

Calculate value

of
switching

function

.-•.-- 10

It. si?:-
, of switch-

ing function cons-

istent with choice

of L?

No

Select L
according to sijr

of switching

function in boxll

Ye

1

READ ~] s~ N
0),x,(0)/— -( START )

•:.

Sat total

' integrating

time at V

Call

RK6S
Set

At = 0-OI

-£.

jt = t +0 01

Fig. 5. Computer logic diagram for trial and error

solution of equations (II),(I4),{!6) and (17).
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equation (22).

(5) 1'he integration procedure is set to terminate at some large

value T'

.

(6) The increment in time is set at 0.01.

(?) Subroutine HKGS is called, and the integration commences.

HeD'e mention must be made that the commands to be executed

in boxes 8 to \Ur inclusive, take place over each t.

(8) The current values of x , x , x , z t z and t are written

out

.

(9) The value of the switching function is calculated,

(10) The sign of the switching function is checked for consistency

with the choice of L in box 2. If the choice of L is con-

sistent with current sign, then command transfers to box 12,

if not, to box 11.

(11) A choice of L is made to match the current sign of the

switching function.

(12) The current value of the Hamiltonian is written out. The

reason for doing this is to check whethei* H maintains a

constant value of zero during the transient response.

(13) The time is incremented to the next higher value.

(,1k) The current value of time is compared with the total

Integrating time specified in box 5>
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For the initial guess zJ.O) to be the right one, the desired

final values of x. and s Should oocur at the same/lt. Also it

is Imperative that the Bamlltonian vanish throughout the optimal

transient response.

The above procedure of calculation was applied to the

reference system after selecting suitable values for L and
max

L , . Initially a preliminary case was Investigated wherein
nin

L was set at 0.930 and L at O.896. The optimal policy was
max mi n

found to be to start with L and then to switch to L , after
max lain

2. 46 minutes. The final state was attained via L , in an
nun

additional 1.28 minutes. For the preliminary case above, the

values of L and L , were selected in an arbitrary manner;max min

however, for furthur analysis of the system, L and L , were
max mln

selected in a manner symmetric about L' = 0.9152, (which is the

reflux rate that maintains the desired final state) as seen in

Figure 6. A point symmetric with L = 0,833 on the right side

of L' was found, to be L ^ 0.997'u Hence, L = 0,833 and

L 0.997*} were taken as the 0% and 100$ points of the range

within which L and L . were selected. (The maximum and
max min

minimum bounds en L have been established in Appendix B). The

different cases investigated weret

Case 1 L , = O.8330 L m 0.9974mm max

Case 2 L , = 0. 86588 L - 0.96452min max

Case 3 L , = 0. 89876 L = 0.93164
min max

In each of the above cases the average of L and L is L 1
.

max min



'A

0.833 0.&I52 Q9974 |333

Case I

Lmax = 0.99740 100%
Lmin =0.83300 0%

Ca<,e2
Lmax = 0.96452 80%
Lmin =0.86588 20%

Co,e3 Lmax =0.93164 60%
Lmin =0.89876 40%

Case 4 Lmax
= 1-3330 '

Lmin "0.8330

Fig. 6. Physical bounds within which L

is constrained for cases I, 2, 3 and 4.
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In addition to the above tfrree cares a fourth case was Investigated

wherein the whole horizontal line in Figure 6 was included. For

this case we have

Case* LBin
,- 0.833 ^ - 1.333

Apart from the preliminary case where L « 0,980 and
TdcX'K.

L , = 0,896, Case 1 was also solved by the trial and errornun

method outlined in Figure 5, wherein the adjoint equations were

solved along with the system equations. However, this method

was found to be tedious and time consuming and in place of It the

phase plane method, used by Siebenthal and Arls [8], was

employed to obtain the solutions for Cases 2, 3 : and k. In using

the phase plane method Pontryagin's Maximum Principle was

employed only to find that bang-bang control was necessary and

then the adjoint equations were discarded and phase plane

diagrams were used to obtain the solutions. This enables us to

circumvent to some extent, the inherent difficulties of the two

point boundary value problem. Before going into the description

of the phase plane method, the following two facts are worth

noting.

1. The state equations are autonomous, (i.e. time does not

appear explicitly on the right hand side of the equations)

Theorems on the uniqueness of solutions for autonomous systems

[10] guarantee that for a given value of the control variable

L, trajectories in the phase plane do not intersect at any point

except at the steady state point corresponding to L.
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2- It Is known that during the transient period, the optimal

control policy is bang-bang- and furthermore, the number of

switches In the value of the control variable will be kept at a

minimum since the time taken to get from the initial state to

the final state would increase as the number of switches is

increased [ll].

In Figures 7, 8, and 9 phase planes are presented for the

preliminary case where the values of L . = 0.896, L' = 0.9152min

and L a O.98O respectively, (this is the preliminary case
max

already solved by the trial and error method on the digital

computer). .In Figure 7, point A is the steady state point, and

in Figure 9, point B is the steady state point. The steady

state point S on Figure 8 is the desired final state. This

point is also shown on Figures 7 and 9. Since the system is

autonomous, only one curve passes through the point S In the

Figures 7 and 9 [10] these curves are lettered DS and E3

respectively. If Figures 7 and 9 are superimposed as shown in

Figure 10, it becomes obvious that there are an infinite number

of paths consisting of alternating L , and L response
nun max

segments which connect a given initial point to the point S .

However, all of these possible paths approach S via either the

I. segment E5„ or the I. . segment D3 .

max 2 min 2

Closer inspection of Figure 10 shows that it is possible

to connect every point on the x , x
? plane to the point S by

means of a path consisting of one I. and one L segment or
max min

vice versa. Such a path is S FS in Figure 10 where S

corresponds to the initial state of the reference system
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0-5 •

0-1

0.3 -

0.2
0.G5

Fig, 7.

0.-'5

Phase plane of reference system

with L = 0-896 ib moles/min. (Preliminary Case).
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0.55 Q6C 0.65 0.70 0.75

Fig. 8. Phase Plane of Reference System

with l> 0.9152 lb. moles /mia.

Preliminary Cose.
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0.75

Fig. 9. Phase plane of reference system

with Lmax = 0.980 lb.mo!es/min,

(Preliminary Case).
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02 L
0.75

Fig. 10 . Superimposifion of Figures 7 end 9

{Preliminary Ccse)-
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(0.6300, 0.2?67). This path has only one switch at point F,

Also the path S FS oonflitis the phase plane method of solution

since the point P agrees with the point in the digital computer

solution, previously obtained, at Which the snitching function

changes sign and the control policy switches from L to L . .

max mj.n

.

Hence, the only control policies which satisfy the Maximum

Principle equations contain just one control switch which occurs

when the response Intersects the curve DS E in Figure 10. Curve

DS E is called the "switching boundary" due to the fact that it

divides the phase plane into regions of L and I. operation.* * max min

In Figure 10, operation in the region above DS^E is with L

while operation in the region below DSgE is with L
nax > This

method of phase plane analysis was also used in obtaining the

optimal control policy for Cases 1, 2, 3> and & as follows!

First the phase plane plots were obtained on an analog

computer by integrating the system equations only and then

phase plane plots similar to Figure 10 were obtained individually

for the 4 cases by superimposition of L . and L _ response
mln max

phase planes. These can be seen in Figures 11, 12, 13 and Ik.

Next, on the digital computer, the system equations were first

integrated forward in time from the point S, using L as the

control variable, and next integrated backward in time from the

point S , using L as the control variable. By comparing the
2 mln

computer outputs the common point F was located. Once more a

forward integration was carried out from S and using L as
1 -max

control variable. Also this time, a command was Included for

the control variable to switch from L„„„ to L . when F wasmax mln
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0.45

0.40

0.35

030

0.25

0.20

Q55 0.75

Fig. II. Superimposi.fion of Lmcix Qria t-min response phase planes for

Case I. Paths directed to point B are l.-^* response curves

orxi paths directed to point A ere L
lnin

response curves.
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0.45

Q40

Q35

Q3C>

025

0.20L

0.80

Fig. 12. Supe (imposition of Lmax and Lmjn response phase planes

for Case-2. Paths directed to point B ore L mox response

curves ond paths directed 1o point A are Lmjn response

curves.
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0.45

0.

0.35

0.30

0.25

0.?.0

0.75

Rg.13. SuperimposMon of LmQX and |_m j n
response phase planes

for Case 3. Paths directed to poirrt B ore Lmox response

curves ond paths directed to point A ere Lft,jn resp

curves.
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0.45

0.40

0.35

0.30

0.25

0.20

Fig 14. SuperimposWon of Lmm end L,n j n
response phase planes for

Case 4. Paths directed to point B ore LmQX response curves

end paths directed to poinl A ore L
rn jn response curves.
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reached. The integration was then allowed to proceed with

L until S was reached at which stage the computation vias
Kiln <-

terminated. The value of x at the final state gave the desired

minimum of the objective function.

Table 1 shows the results of the above computations as

applied to Cases 1, 2, 3 and 4. In each case control starts

with L and switches to L . at the switching time t .

max mln s

Figures 15, 16, 1?, and 18 show the transient response of the

system and the corresponding control policy for Cases 1, 2, 3 and

4.
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TABLE 1

RESULTS OF REFERENCE SYSTEM ANALYSIS FOR THE TIME
OPTIMA], PROBLEM

Order in which Switching time Final time
T, inin

Case 1 L 0.9974 2.24 2.80

Case 2 L 0.964-52 3.41 4-. 05

control is applied t , mln.
s

L
max

0.9974 2.24

L
,

=
mln

0.833

L =
max

0.96452 3.41

L , =
mln

O.86588

L
max

0.93164 ' 7.63

L , =
min

0.89876

L B
max

1.333 0.56

L , =
min

0.833 -

Case 3 L 0.93164 ' 7.63 8. 16

Case 4 L = I.333 0.56 1.68



0.64

< y^-"\
0.63

,

' \
0.33

£J 0.30 -

——" -

0.H7

0.9974

J 0.3i52 _

0.833 -

--

Time miniutos

Fig- 15. Responses of reference system to bang-

bong policy (cose I) for time optimal pro-

blem (path S,FS>of Fig.
1 1.)
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CM
X

640 -

"''

•630 >ss^

0'3I

•

0-290 ^-
0-270 —

0-96457

0-9152

0-86588

\ 1

10 3- 4 -02

Time, . minutes

Fig. 16. Response of reference system to bang-

bang po!icy(Case.2.) for time optimal pr

oblem(path S.FS.of Fig. 12.)

5-0
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630

xf'0- 625

0- 620

0-3 10

CM

0-30
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0' 93164

-J 0-91520

0-89876
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^^t^"

-
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-
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—
y^

—

•- * •

J _ i, i i .

4 6

Time, minutes

10

F"ig.'i7 Response of reference system to bang-

bong policy (Case 3) for time optimal

problem (path S,FS2 of Fig. 13).



ia

X

X

0-660
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Fig. 18. Response of reference system to bong-bang policy

(Case. 4.) for time optimal problem. (Path S.FS^of

Fig. 14.).
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CHAPTER 3

SYSTEM WITH A TOP TRAY DESCRIBED BY THE MIXING POOL
MODEL WITH TWO TANKS IN SERIES

In this chapter we shall consider the same problem as in

the previous chapter, i.e., the time optimal problem, except

that the top tray of the column will be described by the mixing

pool model with two tanks in series j henceforth referred to as

the TTIS system.

1. DEVELOPMENT OF PERFORMANCE EQUATIONS

The following assumptions and column characteristics will

be appended to those already made in Chapter 2.

(a) The top tray is described by a mixing pool model with two

completely mixed pools of equal volume in series.

(b) The vapor rising from the bottom tray is assumed to divide

in half before entering each pool of the top tray and likewise

after emerging from each pool, the vapor streams merge into a

single stream before being totally condensed.

(c) The overhead liquid composition is equal to the mean of the

compositions of the vapor streams emerging from the two pools

I.e.

XD=l (y
i
+y

2
) <23)

Figure 19 shows a block diagram of the mixing pool model system

with the various flow streams involved.

The dynamic behavior of the column in the transient state



^3

Fig. 19. Distillation column with top tray described by

mixing pool model with two tanks in series.
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may now be written in the different rial form by performing a

mass balance on each trr.y along with overall material and light

component balances, as follows .(see Figures 20, 21, and 22);

For the top tray pool 1,

Input - Output = Accumulation

Lx + Jf y - Lx - V
y m h^k

D 2 *3 1 2 1 2 at

Substituting from equation (23) gives

K dy.

|(y2 + y
2

) + \ jf
3

- lXi - | yx = -J -^

Also since

y = mx + c , i = 1, 2,

we have

|(mx
1

+ c + mx
£
+ c) + f(mx3 + c) - Lxj - jdBXj + c)

2 at

and finally rearranging gives

dx-

ir - -e~- -1 T h
t
-2

1 _ .(I.m„ - 2L - Vml Lm Vm 2Lc , ,
._ _ J_ __ :J- x.. + Tf-X„ + „-X„ + „ IZ*J

For the top tray pool 2,

Lx
1
+ f y

3
- Lx

2
-p-

2
= T7[r

Since



L.x.
t • i

^

V,y,
2

v

L,x,

^5

Fig. 20. Material balance streams for

poo! S of the top tray.
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L.Xj ilT, x2

g%
-,X,

2 3

i

Fig. 21 Material balance streams for

poo! 2 of the top tray.



_fe__^

I X

v,v

i B,x.
3

Fig. 22 Material balance streams for the

bottom tray.



y
x
= mxj + c , 1 = 1, 2, 3.

wc have

^ * i<-3 •>-*, -*-*•>-££

which on rearrangment yields

And for the bottom tray,

Fxp+ Lx
2

- Vy
3

- Bx^ H
B
-^

Since

y = mx„ + c,

we, have

k8

dx2 2L ., (Vm + 2L) Vin ,„ r ,

"dF = BT
X
l " J—iL™ x

2 + H~
x
3

(25)

dx_
Fx + Lx„ - V(mx„ + c) - Bx_ = Ht, —-2

F 2 J 3 B it

and reari'anging yields

^2 , i x - fo» + y + l - v).
. 2e . Ic .

6dt "
' H 2 H x

3
+ H H UbJ

B B B B

Equations {2k), (25), and (26) are the performance equations of

the TTIS system. The various parameter values are identical to

those in equation CO and once more the linear vapor-liquid

equilibrium i.e.

y = O.Wtx + 0,56 , i = l. 2, 3
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Is obeyed. The above performance equations were used for

simulation purpose on the analog computer whereby the various

phase plane plots and transient responses were obtained. The

analog computer circuit diagrams are explained in Appendix A.

Also the steady state and limiting case analyses are performed

in Appendix B.

2. NATURE OF THE PROBLEM

As in the case of the reference system, equations (2k), (25),

and (26) were solved simultaneously (after setting the left hand

sides equal to zero) to obtained the steady state values of x ,

x and x„. These were found to be
2 3

x = 0.7146?

and

x =r 0.60909
2

x = 0.24899

Since

x = ^(mx + mx + 2c)

= 0.22 x. + 0.22 x, + c, (27)

we have

x = 0.22 x 0.7146? + 0.22 x 0.60909 * O.56

= 0.85123.

Let the Initial steady state corresponding to x =0.65
F

be designated S« 2 (x
n
= .71467, x„ = .24899). If x is11 2 p

instantaneously increased to x = 0,75 the transient response
F

given by curve OP in Figure 23 results, showing the displacement
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i

corresponds

85123

/

o ?a
^. X
c

a. a:

V '

\

\

-

^\ >
o
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of x at S' to a higher steady state. Once more a value L' of

the reflux, rate can be corcDuted, which villi return x to its
D

initial steady state either via PQ or ONE. Such an L' can be

deternlned as follwsj

From the overall light component balance, we have

Fx
F

a ta
D

+ Bx
3

Fxp - DxDx
3 "

35

~

FxF
- (V-L)xD

P + L - V (28)

At steady state equation (24) gives rise to,

Vc ~ Fxv, + Vmx-j - Vx-j + Fx-,
L = 1— 2 2 1. (29)

x„ - x„
2 3

equation (25) to

Vmx
?

- Vmx.

2(x
1

- x~T
L = __2_^^ , ( 30)

and equation (26) to

Vmx-, - Vbjx-5

x, - BjS + mxp + 2c (3D

The trial and error procedure for deterralng L from these four

equation.^ is similar to the one used in the case of the reference

system i.e. a value for L is assumed e.nd x is calculated from

equation (20). Next this value of x is used and L is calculated
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from each of equations (29). (30), and (31) and checked with

the assumed value of L. That value of L which satisfies

equations (28), (29), (30), and (3D simultaneously Is designated

L'. The value of L* for the TTIS system was found to be 0.922

lb. moles/min., and the steady state resulting from L' is S* s

(x = 0.71399, x, = 0.60986, x = 0.2824?). Even though L' does

return x to its initial steady state, the time taken to do so is

impractical and hence an optimal policy for L has to be determined

so as to restore x„ in a time optimal manner. Hotel x_ as
D D

defined by equation (2?) Is the same in S' and S' even though x
.1 c. X

and x in the two states are' different.
2

3. APPLICATION OF THE MAXIMUM PRINCIPLE ALGORITHM

Once again the optimum reflux policy shall be determined via

the Maximum Principle. The performance equations of the system

are equations (2*0, (25), and {26) and are repeated below for

convenience.

dX
l (Lm - Vm - 2L) _ Lin Vm 2Lc

dt " H
T

x
l + H

T
X
2

+ H~
X
3 * "K^

ff2_2L - J2L •;• Vm), Vm , ,

dt - H x
l H x

2 + H
x
3

* 3Z '

T T T

51 - H
E
H H

fi

X
3 + ~-H-~-

The system is to be transferred from an Initial state S' 5

U
1

" °-7^(>7, x
?

= 0.60909. x = 0,24899) to the terminal state

S^ B (^ o O.71399, x
2
= 0.60986, x = 0.2824?) by manipulating

the reflux rate L and simultaneously minimizing the objective
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function

T
s - / at (33)

o

where T is unspecified. The control variable is constrained by

L . < L < L (34)ram - - max

An additional state variable is defined such that

T
x (T) = S a I dt (35)
4 o

thus

dt " a

According to equation (C-8), the Hamiltonian for this system

becomes

F = lLm_- Vm- 2L
). +

La
+
|m

+ 21^
ii

a
11 T

H
T

A
2"l v H

rj?

A
3"l T

H "1

+ uj\ Z Hm
X
2
Z
2

+ H„
X
3 2 + H

r
yz - 3^2*3

(V. t ,+ L - V)
+ (ISLLl^ + (36)

B B

and the adjoint differential system, according to equation

(C-9), becomes

dZ
l _ _ .(Lin^- Vm - 2L) _ _

_2L, - -r-" *o (37)
T

dt "1 H
T

"2



at
--. -

>

2
1

+ i£

d z

dt
= - Viu

Z
l

- Via

dzj,
_

5'+

I^AJSslz, . JLZ (33 )H
T

2 H
B j

+ (VtL^JLtJi^J/) « (39)

(to)

(to)

h
b

"3

at

The boundary conditions on the adjoint equations are

z (0) unspecified z (T) unspecified

z (0) unspecified z.(T) unspecified

e (0) unspecified. z (T) unspecified

z. (0)' unspecified zj,( T ) - J

From the final condition on z^(t) and equation (40), we obtain

z. » 1, < t < T ' (42)

Since the final tine T Is unspecified and the top tray-

hold up H , is unity, the minimum of the Hamiltonian may be

rewritten as

min H = (in-.z, - 2x, z, + mx z, + 2cz n + 2x, z„ - 2x„z„11 11 c 1 1 12 <c <:

X.jZ-. X0Z3
+ __^J „ _^)L + vte^ . vm^Zj ,. Vta

2
z
2

- Vaa
3
z
23

E
H
B

Vmx-,2., / D ,m Fx„ - Vc
_J2_2 „ <f - v>

+ (
_JL___„, + x . (43 j3 3 H 3

B B
J J B

Once more the Hamilfconian is shown linear in the control



variable L which implies that the optimal control poDiey Is

probably s. bang-bang policy as in the case of the reference

system. The control policy will be governed by the sign of the

switching function, i.e.

L - Lmaxif (BX
l
z
i

" 2x
l
z
l
+ mx

2
Z
l
+ 2cSl*2xlZ2- 2*^

H
B

H
B

L = L , if (mx-Z-- 2x.,z..-fr. n!x z..(. 2cz,+ 2x-z„- 2x_z»
min 11 11 ^ i- 1 12 ii <L

W)

+ -|-3 - -3-3) > o

B B

Now it is required that the system of equations (32) and

(35) be integrated simultaneously with the adjoint system,
t

equations (37), (38) and (39). such that the two point boundary

conditions

x (0) = 0.7146?

x (0) ^ 0.60909

x (0) = 0.24899

x^O) =,0.0

z (0) = unspecified

z (0) = unspecified

z_(0) = unspecified

x (T) » 0.71399

x (T) = 0.60986
2

x. (T) = 0.28247

x (T) unspecified

z (T) unspecified

z (T) unspecified

z (T) unspecified

are satisfied and the resulting control minimizes tne Harailtonia.n



56

at every point of Its response. Once again the final time is

unspecified and hence the minimum value of the Hamlltonian is

zero throughout the optimal respor.ee

.

k. COMPOTATIONAL KHOCEDURES

The direct numerical solution of the above set of differential

equations is considerably more difficult than that of the

reference system since the present solution involves the guessing

of two of three initial values z (0), z (0) and z (0) instead of
X c J

a single initial value as In the case of equation (22). By

employing the property that the Hamlltonian must vanish at very

point of the optimal transient response we obtain at the initial

point, an expression of the form

.
, r l+(0.2112L(0)~0.2112)z-(0)+<Hl^lL(0)-0.12to)zo(0).,

z t o j = - l—

•

fi — '
J

0.2?32L(0) - 0.2732

145)

In order to eliminate the complexities of the two point boundary

value problem, the adjoint equations were discarded and once more

the phase plane method of analysis was resorted to. However,

due to the three dimensional nature of the problem we are confrontec

with a phase space rather than a phase plane. Hence, a single

phase space will be represented by a set of three phase plane

diagrams [ that Is, the phase space of x x x will be spanned by

the phase planes X-jXg, r
?
x , and x_x,. Also the constraints on

L, i.e. L and. L are picked symmetric with respect to the

reflux rate which restores the system to the desired final state,
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L
1

i

0-833 0922 l-OII
i-;

Case 1 LmQx= io no 100 %
Lmin = 0-8330 %

Case 2 L-max =0 9754 80%
L min

h 0-8686 20%

Case 3 LmQX - 9398 60%
Lmin =0-9042 40%

Case 4 LmQX = 1-3330

Lrnin =0-8330

I'iS

Fig.24. Physical bounds within which L is constrained

for Cases 1,2.3 and 4 .
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i.o. symmetric to L - 0.922 (which was earlier denoted as L'

from equations (28), (29). (30) and (3D. This gives rise to

the following three cases (see Figure 2>4),

Case X I, = 0.833 L a 1.011
o i i max

Case 2 L 0.8686 L .-_ 0.975'*
mi n max

Case 3 L . 0.90^2 h = 0.9393
ffl-in max

In addition to the above three cases a fourth case was

investigated wherein the entire range of L, as determined in

Appendix B, was considered. This corresponds to the total length

of the horizontal line in Figure 2'!. For this case we have

Case h L 0.833 L - 1.333
min max

Please plane diagrams for the above four cases were plotted

with the help of an analog computer and are of the type shown In

Figures 25, 26, and 27. Which are the phase planes for Case k

In each of the phase planes the initial state is denoted by S'

and the desired final state is denoted by S'.

Before going into the search for the optimal control policy,

the above four cases were simulated on the analog computer and

the resulting phase plane plots were examined. An Interesting

observation was made from studying these phase planes closely.

Starting from the initial state at S" , the system travels along

path S'T or S'Q depending on whether the Initial control action

Is L or L respectively. Once the system travels along one

of these initial paths, then no matter what combination of L' max
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0.85

Fig. 25. Superimposed phase planes (x,,x3 ) of

two tanks in series system for Case 4

.

(Lmax. = 1-333, Lmin.=0-833).
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0.40

0,5 :

..

o.so

<v .

0.20

0.15

0.50 ass 0.700.60 0.65

Fig.26. Superimposed phase planes (x2 ,x3 ) of

two tanks in series system for Case 4
(Lmin = 0-833, L max = 1-333).
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0.75

0.70

0.65

0.60

'..•,:

0,50..

0.80 0,G5 0.70 0.75 0.S0 C.jd

X|

Fig.27 Superimposed phase planes (x, ,x
? ) of

two tanks in series system for Case 4

1 1^^=0-833, L rflflV
- 1-333).max
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and L paths is used, the desired final state at S' can never
miti 2

bs attained. It is essential at this point to explain the

fact that even though it may appear from Figures 2$, 26 and 27

that a path does exist which passes through S', this is not so.

In order to elaborate a little on this point let us consider

Case k whose phase space is represented by the phase planes in

Figures 25 5 ?-6 and 27. In Figure ?5r for instance t it seems

obvious that an L , path can pass through S', however, on closenun 2

examination it is found that at S' only the final values of x_

and x^ are satisfied while x has a value of 0.61W6 which is
3 2

higher than the desired value of 0.60986. Similarly in Figure

26 at S' the final values of x and x are satisfied while x is

found to be 0. 71033 which is lower than the desired value of

0.71399. And likewise in Figure 27 at S' the final values of

x and x are satisfied while x is found to be considerably
J 2 J

lo.sr than the desired value of 0.282^'7.

The above piece of observation leads to the conclusion that

bang-bang control alone cannot achieve the desired terminal

state In a finite number of switches. It may be that the

terminal state can be attained in an infinite, number of bang-

bang switches but this being highly impractical, the possibility

can be safely abandoned. Therefore, the likelihood of singular

or intermediate control becomes a certainty since it seems

logical that if the final state cannot be arrived at by purely

bang-bang control, some control variable other than L or
max

L has to be used in conjunction with L and L .Bin max min
In general, a singular control is indicated whenever the
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switching function becomes identically zero over one or more

positive intervals of t.V.uc. When such a situation arises the

Hamlltonian becomes independent of the control variable and

consequently the Maximum Principle falls to yield a well defined

control policy. At present thei'e is no generally applicable

analytic method by which one can determine, a priori, whether

a singular candidate actually represents an optimal trajectory,

except in the case of certain restricted classes of problems

[12]. Also whenever the singular control is used, the existence

theorems of Marcus and Lee [13] does not guarantee the existence

of an optimal control policy. A statement of these theorems is

given in Appendix C.

Thus the problem of synthesizing the optimal control becomes

one of determining the optimal switching hypersurfa.ee S which is

the union of a bang-bang switching surface S and a singular

control surface S . As an optimal trajectory is traced out in

the x, t space, the representative point penetrates the surface

S at each switch of the bang-bang control given by equation (44),

When the optimal control becomes singular, the representative

point impinges upon and continues to. follow along the surface

8 . A typical situation is illustrated in Figure 28.

In general, the singular trajectories become unstable

solutions of the canonical equations, equations (32), (35), (37),

(3S)» (39) and (40), when the bang-bang control as represented

by equation (44) la utilized. That is, the control function

defined by equation (44) will not cause the representative

point to remain along the singular control surface S . For this
s
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Fig. 28. A typical optima! trajectory in x,t space

showing singular and nonsingular subarcs [9].
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reason, It is easy to overlook singular solutions when ordinary

computer searching methods are used to integrate the canonical

equations [12]. In principle, the determination of the

switching surface S is accomplished by expressing the initial

value of the (optimal) adjoint vector z as a function of the

initial conditions vector x(0). In practice, this procedure

leads to a rather difficult analytic problem which, so far, has

been solved in only a few special cases. Nevertheless, If the

solution for the optimal control involves subarcs of singular

control, then it may be possible (with emphasis on the word "may")

to determine z(x, t) on S without knowing the general expression

for z(x, t), by making use of the fact that on S the switching
s

function and all Its time derivatives are identically zero [12].

However, this method involves the heaviest of algebraic

manipulations even for two dimensional problems, and certainly

encumbers the analytic procedure for three dimensional problems

such as the present case. Also the fact that in addition to the

algebraic manipulations, a certain line integral has to be

evaluated, makes the above mode of approach to determining the

singular solution quite formidable.

A more direct numerical approach, as outlined by Grethlein

and I.apidus [15] In the paper entitled "Time optimal control of

non linear systems with consti-aints", was used to obtain the

control policy for the present problem. It should be borne

firmly In mind that the physical realizabillty of singular

control situations is not sufficient to establish the optircality

of singular control and consequently the control policy as
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obtained by the method of Grethleln and Lapidus may not be a

truely optimal policy but It oertainly is one of the methods

available for determining autoptical policies.

The approach taken by Grethleln and Lapidus is to predict,

over one sampling period by means of the na their,atical process

models, the responses for a selected number of control levels.

A modified objective function (usually of the least squares

form) Is defined, and by evaluating this objective function

for the predicted values, the dptimum control action is selected

at each sampling period. It is that control action which

minimizes the objective function. The overall control system

with its optimizing scheme is called the "optimum predictor-

controller".

In general the dynamic description of a process can be

represented by a set of first order differential equations

written in vector form as

^^[i(t)i e(t)] (M]

where x(t) represents the state variables and 0(t) represents

the control variables. Thus the state of the process is

interpreted as a vector in state space and each state of the

process which Is different from another has a unique set of

coordinates.

In principle the transient behavior is obtained by solving

the differential equations simultaneously with the proper

initial conditions and control variables. As a result a future
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state of the process at any time x car. be evaluated If some

initial state x(t.) is given in addition to the control vector

0(t) for all time t < t < T. The existence of a solution does

not imply that it is necessarily an analytic solution. In

most nonlinear cases only numerical solutions are obtainable.

Since a computer can only operate on digits vihich represent

the state of the process at a discrete point In time, any control

system utilizing a digital computer will necessarily be a

sampled data system. From the point of view of the controller,

a process Is represented as a sequence of numbers spaced in time.

Similarly the control action is a sequence of numbers. It is

convenient to take the time Interval between sampling points

equal to X so that real time can be represented at the sampling

points by

t -n X , 2\ , 3X , . . . , kX , ...

Althoiigh the control and state vectors of the process vary

continuously with time, their specific value at the sampling

point t = kX is represented by 6(kX) and x(kX) respectively or

more simply by 6(k) and x(k). If the sampling period is taken

small enough so that the control 0(t) for kX < t < (k -i 1)X can

be considered essentially constant and equal to e(k) for the

entire period, the dynamic equation for the process will become

£§=<£[>; 6(k)] (jty)

for

kX < t < (k + 1)X.
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Thus the dynamic behavior of the process can be expressed in

the form

x(k + 1) a £[x(k)| o(k)j X] (40)

With a knowledge of the state of the process and the input vector

at any time t a k, equation (43) gives the state of the process

at the next sampling point.

Before it is possible to single out a particular controller

as being optimum, it is necessary to define quantitatively some

measure of merit by which the performance of the system is

evaluated. The simplest type of measure of performance is some

function of the difference between the actual output of a process

at a given time and that desired for the dynamic system. A

convenient measure may be defined as

S(t) * a
1
[x

i
(t) - a*] + a O (t) - x*] + ... (49)

where a , a , ... are appropriate weighing factors and x.. , x*, .,,

are the coordinates of the desired final state. Assuming that

the control vector is changed only at the sampling point,

equation (49) is summed over all time

N
J(N) a £ S(kX)X N —> oo (50)

k=l

where N is taken sufficiently large to cover the entire transient

period. Thus the optimum dynamic response is obtained when a

discrete set of control inputs e(k) are found such that
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N
J (H) = Kin I 8(kX) N --—>«> (51)

6(k) k=l

At this stage mention must be made that if the system is table,

the dynamic response will ultimately come to an equilibrium or

steady state at some k -. N
eqUii"

The optimum control action at any given sampling period is

generated by the following computation scheme. Since the present

state of the process x(k) is known as a result of a feedback

measurement the state of the process at the next sampling

period x(k •;• 1) can be calculated from equation (^8) for any

number of control actions. Specifically, the state of the process

Is calculated for the maximum control G , the minimum control
max

action , and three intermediate control actions 6,, 8 and
niin J- <!

6 ; thus
3

'

, x
a
(k + i) =^[x(k), e

max i x]

x
2
(k + 1) -_-<£[x(k)j 8 i X]T L min

x3 (k + 1) = <£[>(k); 8 | X] (32)

*(X + 1) = £|>(k)i 6
2

s X]

x5 (k + 1) =^[x(k); G
o!

X]

where the superscript numbers are used to distinguish the

predicted states. The responses to the various control actions

are evaluated with the aid of the objective function for the

(k + 1) period, namely

P
1
(k + 1) = P[x*i x

X
(k + l)j (53)
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P'(k + 1) =. P[x*; S*(k + 1)]

P
3
(k + 1) = P[x*j x3 (k H 1)]

(53 cor.t.)

P (k + 1) = P[x*j x^k + 1)]

P5 (k + 1) = P[x*; x5 (k + X)]

The possible configurations for the predicted objective function

and the control action are shown in Figure 29. The computer

routine selects the optimum control action at t = kX on the

basis of a predicted minimum objective functions at t a (k + 1)X.

For configuration (a) or (b), 9 is selected as the optimum
max

control action. For configuration (c) or (d), 6 is selected
min

as the optimum control action. The need to predict the performance

for some intermediate control action becomes clear when the

optimum is not one of the extreme values. When configuration

(e), (f) or (g) occurs, the computer fits a second order curve

through the minimum point and its two neighboring points already

calculated, and finds the minimum in the curve. The corresponding

value of 9 becomes the optimum control action for that period.

The computer logic flow chart for the above method is

shown in Figure 30. The explanation of the various steps in the

corresponding numbered boxes in Figure 30 is as folloifs.

1. The five values of the decision variable are read in,

where AL(1) = L . AL(5) -.- L and AL(2), AX.(3), and AL(4)
min max

are three intermediate values of the decision variable L,

?.. The lower boun;l of the first sampling period (PRNT(U),
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(b)

\
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/

(c) (d)

i i i i . , t , _i 1 >_

(e) (f)

^N«*
/
/

y/

Fig. 29. Possible configurations for predicted

performance function.
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/2T\ M
<DEV(J)<DMi^>J JMIN= J

\ y «——

'

Fig.30. Computer logic flow chert for method of

Grefhlein ond Lopidus.
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Fig. 30. (cont)
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(7)v

.46
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ZT"

Fig.30.(Cont.)
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the upper bound of the first sampling period (PHMT(2)), and

the integrating increment (PBMT(3)) are initialized.

3. The number of sampling periods (KN). the current

sampling period (N) , and the Initial minimum deviation (SUMT)

are initialized. The switch II is set equal to unity. (II.

can be either 1 or 0).

4< Tlie subscript J is Initialized.

5. The decision variable (AP) is initialized.

6-8. The current value of the sampling period is checked

and accordingly the initial values of each sampling period are

specified. For N n 1, the Initial values are specified in Box

8, For N > 1, the initial values are specified in box 7 wherein

the terminated state of the Nth sampling period becomes the

initial state of the (N-j-l)th sampling period.

9. Subroutine RKGS is called and the integration commences.

10, 11. The extent of the integration is checked to see

whether the upper bound of the current sampling period has been

reached if so, command transfers to box 12, and if not, command

passes to box 11 where the time is incremented and the

integration proceeds.

12. The value of the switch II is checked. If II = 1,

command transfers to box 13; otherwise to box 41,

13. The quantity SUM is defined as the minimum deviation

up to the (K-l).th sampling period (3UHT) plus the current

deviation (S)

.

14. The variable DEV(J) is set equal to SUM and this

represents the total deviation corresponding to the curz-ent value
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of J.

15. - DEV(J) is written out.

16, 17. The subscript J is checked to make sure all the

5 decision variables defined in box 1 have been used. If J is

less than 5, it is incremented by unity and command is passed

to box 5. If J is equal to 5 command passes to box 18.

18-24. The minimum of the five DEV(J) is determined, and

the value of J corresponding to the minimum DKV(J) is stored as

JMIN.

25. 26. The new variables AL1 to AL5 and DEVI to DEV5

are defined..

27-30. If JMIN = 1, then ALEM is defined as the decision

variable corresponding to JMIN and DEVJ is defined as the

deviation corresponding to JMIN. DEVJ is written out and

command is transferred to box 38.

31-34. If JMIN = 5, then ALEM Is defined as the decision

variable corresponding to JMIN and DEVJ is defined as the

deviation corresponding to JMIN, DEVJ is written out and command

is transferred to box 38.

35-3?. If JMIN = 2, 3, or 4, command is transferred to

box 44, 45 or 46 respectively whereby a second order curve will

be fitted as shown in Figure 29 (e), (f) and (gj and the minimum

of the curve determined.

38. The decision variable is set equal to the minimizing

decision variable as determined from boxes 28, 29, or 50.

39. SUKT is set equal to DEVJ as the minimum total

deviation up to the present sampling period.
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40. The switch II Is set eqml to zero and command Is

transferred to box 6. The reason for setting II = is that

once the minimizing decision variable has been determined then

the computer can skip all the command from boxes 13 to 40

inclusive, thereby command being transferred from box 12 to box

41.

41. The values of the state variables x. , x and x are12 3

written out along with the minimizing decision variable end the

number of the current sampling period.

42. Herein are initialized the various parameters for the

next sampling period and II is again set equal to 1.

43. If the number of the new sampling period has not

exceeded the value of NN then command is transferred to box 4

and the above procedure repeated. If the number of the new

sampling period exceeds NN, the computation in terminated.

44-49. The coefficients of a second order polynomial

through three points are calculated. The polynomial is of the

2
form y = ax - bx + c where y corresponds to the deviation and

x corresponds to the decision variable.

50. The minimizing decision variable is determined by

setting d£ _ 0, I.e. 2ax - b = 0, x = b/2a.
dx

51. From the minimizing decision variable, the corresponding

minimum deviation Is determined.

52. The minimum deviation DEVJ is written out and command

is transferred to box 38.

The above method was applied to Cases 1, 2, 3 and 4 and the



7»

optimal (or suboptimal) policy was obtained In each case. In

order that the method be applicable to our problem a few changes

were incorporated! namely the control action was selected so that

the dynamic response would minimize an objective function of the

.type given in equation (49) rathers than the original form in

equation (33). Since in the present example concentrations are

being controlled a suitable overall objective function would be

that defined by

N
J(N) = £ S(k)X

k=l

with

2 2 2
S(k) » aCx

1
(k) - x*] + b[x

2
(k) - x*] + eOgdO - x*]

(5*)

where x. x , and x are the coordinates of the desired final12 3

state S' 5 (x = 0.71399, x = 0.60966, x = 0.2824?) , and a, b,

and c are appropriate weighting factors. According to

Grethlein and Lapidus [1 5] there is no prior way of determining

the exact weights, but the dynamic properties of the system can

serve as a guide line. In our particular problem the system is

to be transferred from an Initial state S* "= (x = 0.7146?,

x = 0.60909, x = 0.24899) to the terminal state S' e (x =

0.71399. x a O.60986, x - 0.2824?) in a time optimal manner.

Comparing S' and S' we see that x^ and x„ don't have as much12 12
distance to cover in the state space as x does and consequently

we weigh the deviation of x more heavily that the deviation of
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x and x . The rationale for doing this Is that in view of the

larger margin of operation in x and hence a larger margin for

its deviation, we penalize it heavily thus making sure that it

attains the desired final state without undue deviation. Thus

the control action is biased mainly towards the deviation of

x . In making x attain its desired final state in the most

direct manner we also ensure that x and x attain their desired

final states since x , x , and x are interrelated by material
J. c }

balances and also the system dynamics are based on these

material balances.

The predictor controller that is used along with an objective

function of the type in equation (5*1), makes certain that the

system attains the final state S' for a wide range of values of

the weighting factors a, b and c. However since we're Interested

in time optimality we must select a, b and c such that S* is

a^'.alned in the shortest possible time.

In experimenting with the above controller it was found

that the response time T in going from S* to S' was significantly

decreased as the ratio of cia and cib was increased. Thus the

weighting factors were picked such that a and b are equal and

the ratio cia or cib is an integral power of 10.

The scheme used for selecting the optimal values of a, b

and c is as follows

i

1. Given the initial state S' the optinal predictor

controller was utilized so as to minimize the objective function

in equation (5*0 with ratio of weighting factors cia - cib - 10,

2. The time at which the desired state S' is attained
2
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is noted as T, «

3. The procedure In step 1 is repeated with eta = ctb

= 10 for 1 = 2, 3, ... and the time at which state S' 3k

attained is noted as f , , i =• 2, 3i •••

The above listing of X gives the times required to transfer

the system form state S* to the state S' for increasing values
J. *-

of the ratios eta or cib. It was found that as i increases X

decreases and that there is a certain 1 beyond which any further

increase in 1 does not produce any decrease in f . This is the

1 that determines the optimal ratio eta = ctb B - 10 . These

values of a, b and c and the corresponding control policy which

transfers the system from S' to S' was then accepted as the

optimum predictor controller achieving time optimality. The

value of 1 and hence the values of a, b and c are found to vary

as we go from Case 1 to Case k.

Hence in recapitulating we must realize that the original

objective function in equation (33) which demands time optimality

has been discarded and in its place a modified objective function

of the type in equation (^9) is adopted. The weighting factors

in equation (49) are then experimented with so that the system

is transferred from the state S' to the state S' in the most

direct way 8nd In a time optimal manner.

The optimal response for the four cases is shown In Figures

31. 32, 33, and 3^» Basically two types of control policies

are encountered. The first type (in cases 1, 2 and 3) wherein

initially L is used until the first switch after which
max

singular control is used finally ending up asymptotically at L'.
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The second type (in Case k) uses L
_

initially until the first

switch after which L . is used until a second switch after
min

which singular control is used. In all four cases the control

variable L tends to a final value of L' and as a result the

system approaches the desired final state saymptotieally without

overshoot (in contrast to the case of the reference system where

purely bang bang control was used) and maintains the desired

final state. The results for the four cases are tabulated, in

Table 2. In Figure 35 a comparison is made between the bang-

bang policy as obtained from the reference system analysis and

the singular policy as obtained from the mixing pool model

system analysis, for the time optimal problem.

The method of Grethlein arid Lapidus [15] was also applied

to the time optimal problem for the Reference system treated in

Chapter 2. The original objective function In equation (12),
T

I.e. / dt, was replaced by a weighted least squares objective
o

function and the procedure described above was carried out to

obtain a tine optimal policy. These results are compared, in

Table 3, with the rigorously determined bang-bang policy of

Chapter 2, end the corresponding responses are compared in

Figures 36, 37, 38 and 39. It is quite evident that the bang-

bang policy does indeed achieve time optimality. The responses

from the two policies differ only in that the singular response

approaches the final desired state asymptotically, while the

bang-bang response tends to overshoot at the final state.
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TABLE 3

COMPARISON OF RESULTS FROM BANG-BANC, (OBJECTIVE
T

FUNCTION IS / at) AND SINGULAR. (OBJECTIVE FUNCTION
o

IS OF THE WEIGHTED LEAST SQUARES TYPE) POLICIES OF
THE TIME OPTIMAL PROBLEM FOB THE REFERENCE SYSTEM.

Bans Bang S •
,:<;<•'' T.i'

Final time
T, mln

Final time
T , mln

Case 1 2.8 4.85

Case 2 4.05 5.45

Case 3 8.16 8.46

Case 4 1.68 4.3
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Fig. 35. Comparison of bang bang (reference system) and

singular (two tanks in series system) control policies

for the time optimal problem.
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CHAPTER ':

CONTROL WHICH IS OPTIMUM IN THE SENSE OF MINIMUM TOTAL
DEVIATION

In this chapter attention Hill be fooussed on the minimi:

tion of an objective function of the form

T , 2

9 «= / [x* - x(t)] at
o

wjilch is a measure of the deviation from some desired quantity

x over the unspecified time interval T, A control policy L(t)

ie sought, which transfers the system from some known initial

state to a desired final state such that S is minimised.

The two systems which will be subjected to such a

minimization are the reference system and the system with the

mixing condition on the top tray described by the two-tanka in-

s cries model.

1. REFERENCE SYSTEM

In this section we shall consider the reference system

only. The performance equations of the system are those of

Chapter 2 and are repeated here for convenience

dt " K
T

XX + H
T
X
2
+

H
fJ
,

««

B B B

The boundary, conditions are



y...

x (0) = O.63OO x (TJ =- 0.6300

x (0) = 0.2767 x (T) = 0.3067
2 2

where T is unfixed.

The problem is to determine the control L(t) such that the

system is transferred from the initial state S = (O.63OO,

0.2767} to the final state S a (O.630O, O.3067) simultaneously

minimising the objective function

m

S ,- / [z* - x (t)]
2

dt

where

x* =, 0.837 [cf. equation (7)]

x (t) = y =-• 0.4b (t) + 0.56 [cf. equation (7)]

t

and the final time T is unspecified. Thus we essentially want

to minimize

T

0'

Introducing an additional state variable, wa have

S ,= / [0.837 - O.Wx,(t) - 0.56]
?
~ dt (57)

n 1

T 2
x (T) •.= S' -_: / [0.837 -- 0.'44x ft) - O.56] dt
3 1

dx, 2
-%£ = [0.837 - O.^ - 0.56] ; x

3
(0) = (58)

The Haralltonlan for the system becomes



95

„ /Lra - Vm - Li-. „ . Vm. . „ Lc L

T T T B

/ Vm +XtJL." _i
r

'
'
; —_- -r

B B

+ [0.63? - m^ •- o] a
3

(59)

The adjoint equations can be derived from the Hamiltonian

<g m .
(
^ -^ '^ -^ 2^(0.837 - Ml - o) Z3

(60)

dz

IF =
B - + (

Vm + F
H
tL- Y

} Zg (6l)

T B

dz,
-jg - (62)

The boundary conditions on the adjoint variables are

z (0) unspecified Z (T) unspecified

z (0) unspecified z„(T) unspecified

8,(0) unspecified z (T) =

Equation (62) along with the boundary condition on z Implies

that

z «= 1, < t < I

Making use of the property that the minimum of the Hamiltonian

Is zero when T Is unspecified, we have



mzlXl x1 z1 Czx Xl?2 x2 z 2 Vm xgZi Vm xlZ%
H
T

H
T

h,
r

,
H
B

H
fi

H
T

h
T

Vm x
2
Z
2

(F - V)X22
2

(Fx
p

- Vo)Zg
....... ... _~ : + _. _BE B

+ [0.837 - mx - c]
2

„ (63)

wherein the Hamiltonian has been rearranged and shown linear

in the control variable L, Once more a bang-bang policy is

indicated vihereby

L a L if —-L-1- - -3L1 + —1 4 -1—2
- - -?~-2) < (6ftJmax h H H II Hfl

T T T B
H
B

or

mln H
T

E
T

H
T

H
r

H
r

Comparing equations (63) and {6k) with equations (21) and (21a)

respectively it appears that the minimum total deviation and

time optimal problems have similar solutions. As a matter of

fact, the performance equations being the same for the two

oases, the phase planes are identicaland hence the bang-bang

policy obtained for the time optimal problem seems to be feasible

for the minimum total deviation problem. However, this is not

so. The trial and error method outlined in Figure 3 was applied

to the present problem wherein the initial value of z was
2

assumed and the initial value of a was obtained froa

z (0) - - 0.HH3 L(0) - 0.1213 ,
C65)V U; ~ -0.2071 L(o) - 0.2071 V ' V 5 '
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Equation (65) is the analog of equation. (22) in the time optimal

case. A bang-bang polio/ vias obtained for the four cases

investigated in Chapter 2 i.e.

Case 1 L , = 0.833 L = 0.997^
min max

Case 2 L , = 0. 86588 L = 0.96'l-52
min . max

Case 3 L , *-. 0. 89876 L = 0«93l6^
min max

Case I* L . = O.833
min

I. = 1.333
max

however, the Hamlltonian retained a positive value along the

optimal response, instead of attaining a minimum at zero for all

four cases, thus indicating that the objective function could

not be minimized by mere bang-bang control. Once more a singular

policy was obtained by using the method of Grethlein and Lapidus

CV].

In order to apply the singular control method a modified

objective function was defined of the form

N
J(N) -_- Z S0O

toal

H —Js> °° (66)

with

S(k) a [0.83? -- O.kk Y - 0.56]' (6?)

Equation (67) should be Interpreted as

,2
s(k) -, [ x: - x (t)]

where
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x = 0.837
D

and

x (t) = O.k'i x - O.56 [cf. equation (?)]

Note that in equation (6?) the weighting factor is taken as unity

The sequence of control variables vias selected so as to

minimize equation (6?) at each sampling point in tine. Also,

the variable x (t) as defined by equation (58) was evaluated all

along the optimal trajectory (optimal with respect to equation

(66)). Becall that x (T) (T is the time at which the final

desired state is reached) is indeed the objective function that

we originally wished to minimize according to equation (58).

It vias found that x (T) as obtained by the singular policy

is indeed lower then Xo(T) as obtained by the bang-bang policy.

Comparison of the two is made in Table k, for all four cases.

The response to the singular policy is shown in Figures ho, k\,

kZ and 43. The response to the bang-bang policy is identical

to that In Figures 15. 16, 17 and 18. In Figure kk, comparison

is made of the control policies resulting from bang-bang and

singular control. Rather significant differences can be seen in

the form of control as well as the duration of control.

Though acheivlng a smaller deviation, singular control must be

applied for a longer time while bang-bang control which does

not acheive as small a deviation as singular control is applied

for a very short time. It seems as though in a practical

situation the most likely objective function to minimize would
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TABLE 4

COMPARISON OF RESULTS FROM BANG-BANG AND SINGULAR POLICIES
FOR MINIMUM DEVIATION PROBLEM (REFERENCE SYSTEM)

Bang-Bang Singular
Total minimum Final time Total minimum Final time

deviation T, ruin. deviation T, rain

x
3
(T) x (T)

-4 -6
Case 1 0.2154 x 10 2.80 O.38OO x 10 ?.?0

Case 2 0.1034 x 10 4.05 O.6730 x 10" 7,80

-4 -4
Case 3 0.2583 x 10 8. 16 0.248?1 x 10 9-90

Case 4 0.1031 x lo" 3 1.68 O.368O x 10"6 7. 60



a oo

Time, minutes

Fig. 40. Response of reference system to the

singular policy for the minimum deviation

problem (Case I).
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Fig.41. Response of reference system to the singular

policy for the minimum deviation problem (Case 2)
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4 6

Time, minutes

Fig. 43. Response of reference system to the

singular policy for the minimum deviation

problem (Cose 4).
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be of the type

(t)]~ + 1\ dtslH - xM * J

wherein a compromise Is made between minimum time and minimum

deviation.

2. SYSTEM WITH TOP TRAY DESCRIBED AS TWO TANKS IN SERIES

The performance equations of Chapter 3 are repeated here

for convenience.

ux
l ,Lm - Vm - 2Lv, . Ltn . Vm 2Lc ,-„,

Tt B < 5T~ )X
1
+ H~

X
2 * H"x3 + H~ (68)

T T T T

dx
2 2L _ r2L + Vm> . Vm fiCa ,__ . -- x - ( *—~ )x + — x (69)

T T T

dt - H
x
2 l H ;

3
+

H
uu '

B B B

c

and the boundary conditions are

x (0) B 0.71W7 x (T) -., 0.71399

x (0) = 0.60909 x (T) = 0.60986

X (0) * 0.2^99 x (T) = 0.232^7

where T is unfixed.

The problem, once again, is to determine the control L(t)

which will transfer the system from the initial state S' =
1

(0.71^67, 0.60909, 0.2W399) to the final state S' 5 (0.71399,

0.60986, 0.282'J-7) and in so doing will minimize the objective
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function

S = / [x* - r (t)] dt

where

x* = 0.85123 [of. equation (2?)]

x (t) » 0.22x + 0.22x + 0.56 [cf. equation (27)]
D A. C.

and the final time T is unfixed. Thus, essentially we have to

minimize

S' = / [0.85123 - 0.22X, - 0.22x„ - 0.56]
2

dt (71)12
Next a new variable x. is introduced such that

T
x. (T) „ S' m ! [0.85123 - 0.22X. - 0.22xo - 0.56]

Z
dt4 12

or

dxa 2
-
d
-~ = [0.85123 - 0.22x

2
- 0.22x

2
- O.56] j xk (0) =

(?2)

The Hamiltonian for the system becomes

H . (£" - Vm - 2L
)Xi2^ imXoZi+

gn^^ 2Lc

' T
"IT H 2T HnTl H 1

* J- J H

/Vm +F+ L - V\ ,

Fx
F " Vc

,- (._±___ )xf3 + ( '^ ) ,3

2
+ [O.85123 - 0.22x

n
- 0.22x„ - 0.56"J z. (73)
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and the adjoint differential system derived from the Bafiiiltonian

is,

dz
l f Lm - Vm - 2LW

+ O.W[0.85123 - 0.?2x
1
~ 0.22x

2
~- 0.56]z^ (7';-)

dt - H^l + l H
T

;Z
2 H

B 3

4 0.44[ 0.85123 - 0.22x - 0.22x • 0.56]z (?5)

dt - H *1 H z
2 + K H ;2

3
uo;

T T B

-dF - ° CWJ

and the boundary conditions on the adjoint variables are

z (0) unspecified z (T) unspecified

z (0) unspecified z„(T) unspecified

z (0) unspecified z (T) unspecified

z, (0) unspecified z, (T) „ 1

From the final condition on z and equation (?4), it follows that

z = 1, < t < T

The Hamiltonian can be rewritten as follows,

H = (mx
1
z
1

-- 2x1^ + mrgZi + 2cz.
x

+ 2x z
g

- 2x z

(73)
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jj. _^..^i _ _-^.-^}l + V-Tijc.z.- Vmx-z.- Vmx z„+ Vmx„ z,.

+ L0. 85123 - 0.22x •• 0.22x - O.56]

wherein the H_ has been omitted since it has a value of unity,.

Also the Hamiltonian is shown linear in the control variable

L, thus implying a bang-bang policy. The switching function of

the bang-bang policy Is Identical with equation (kk) which is

not unexpected. From the analysis of phase planes in Chapter 3

it was shown that the final state could not be reached by purely

bang-bang control and hence in the present problem we straightaway

resort to singular control.

In order to apply the singular control method a modified

objective function was defined of the form

N
J(N) = Z S(k) N —& ~ (80)

k=l

with

S(k) = [0.85123 - 0.22Xl - 0.22x
2

- 0.56]
2

(81)

Equation (81) should be interpreted as

8(k) , [>* - x
D
(t)]

2

where

and

x
d

= 0.85123
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X (t) = 0.22x + 0.22x + 0.56 [of. equation (72)]

Note that in equation (81) the weighting factor has been taken

as unity. The sequence of control variables was determined

so as to minimize equation (81) at each sampling point In time.

Also, the variable x, (t) as defined by equation (72) was

evaluated all along the optimal trajectory (optimal with respect

to equation (80)). The following four cases were investigated

Case 1. L- =0.833 L= 1.011
min max

Case 2. L . a 0.8686 L » 0.975 2*

min max

Case "3. L
mln

,0.90to L^ . 0.9398

Case 4. L^- 0.833 L
ffiax

- 1.333

and the corresponding values of x. (T) are presented in Table $,

The response of the system for the four cases is plotted la

Figures 4-5, 46, 47 and 48.
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TABLE

RESULTS OF MINIMUM DEVIATION PROBLEM FOR SYSTEM
WITH TOP TRAY DESCRIBED AS TWO TANKS IN SERIES

Final time Minimum deviation
T, mln. x

4
(T)

Case 1 9-50 0.1 x 10
-8

Case 2 9.60 0.227 x 10

Case 3 10.95 0.2.5 x 10"'4,

Case k 9.40 0.1 x 10"9



Ill
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2 4 8
time, minutes

Fig. 45. Response of the two tonlts in series system

to singular control for the minimum deviation

problem (Case. !.)
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Fig. 46. Response of the two tanks in series

system to singular control for the mini-

mum deviation problem (Case 2 ).
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deviation problem ( Case 3.)
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CRAFTEK 5

SUMMARY OF RESULTS. CONCLUSIONS
AND RECOMMENDATIONS

The results presented in the proceeding chapters demonstrate

the variations in control policy and also in the methods for

obtaining the same when the tanks-ln-series model Is substituted

for the conventional completely mixed tray. The mathematical

models used were adequate to represent the phenomenon to be

investigated without having to go into the complexities of the

hydrodynamics or the energy balance of the system. Basically

two types of problems have been treated, the time optimal problem,

and the minimum deviation problem.

In Chapter 2, the reference system (conventional completely

mixed single tank model) was set up and the time optimal problem

was treated. The control policy was determined so as to transfer

the system from soue initial state to a desired final state in

the shortest possible time. The optimal control as determined

via the Maximum Principle was found to be purely bang-bang and

the results are presented in Table 1 and Figures 15, 16, 1? and

18.

In Chapter 3« the two tanks in series system was set up

and the time optimal problen i;as once again treated. Herein

was noticed the first change in control policy. It was found

that the final desired state could not be attained by merely

using bang-bang control and hence singular control was resorted

to. The results are presented In Table 2 and Figure 31, 32, 33,
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and 3^> Also as a check on the berg-bang policy obtained In

Chapter 2 with regard to the reference system, the time optimal

problem of Chapter 2 was solved again by using singular control.

The comparison of result;: from the two modes of control is made

In Table 3 and Figures 36, 37, 38 and 39. from which it was

quite evident that for the reference system, the bang-bang policy

indeed achieves time optimality

.

Next the minimum deviation problem was considered in

Chapter k for both systems. For the reference system it seemed

quite obvious that bang-bang control should suffice once more,

as it did far the time optimal problem, however, the results

turned out quite opposite to the obvious, and in truth singular

control had to be used to obtain minimum deviation optimality.

This was confirmed by comparison with the bang-bang response in

Table 4.

Perhaps it should be pointed out at this stage that a

significant observation made from the results of this thesis is

the different conditions under which the necessity for singular

control should be recognized. The usual conditions is that the

switching function becomes zero over. a positive interval of time,

however, as pointed out by Johnson [12], it is not always

possible to detect this when ordinary computer searching methods

are used. Another condition is that sometimes the desired final

conditions on the state variables cannot be attained by merely

using bang-bang control. When such a situation occurs it is

only natural that singular control be used to achieve the final

state and hence perhaps optimality. This was the situation
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encountered in Chapter 3 vv 1 fch the two tanks in series system

and the time optimal problem. In the case where the final

state can be arrived at by bang-bcmg control, a check has to be

made on the Hamlltonian to see whether it has stayed at its

minimum throughout the transient response (In the case where

the final time is unspecified, this minimum is zero). If the

Hamiltonlan maintains a non zero value then this is an indication

that even though the bang-bang policy gets us to where we want

to go, in doing so it does not achieve the desired optimality

and thus singular control has to be used. This precisely is

what happened In Chapter k when the minimum deviation problem

was being considered with the reference system. Also the

superiority of the singular policy over the bang-bang policy in

achieving a minimum deviation is shown in Table 4.

In the latter part of Chapter k, the minimum deviation

problem is applied to the mixing pool system and results are

tabulated in Table 5 and corresponding responses are shown in

Figures k5, k& , k7 and W3 . A singular policy was used to achieve

a minimum deviation.

In Tables 6 and 7 are given the comparisons of response

times of the reference system and the two tanks in series system,

for the time optimal and minimum deviation problems respectively.

Only responses from singular control policies are considered.

From Table 6 we see that fcr the tine optimal problem the refer-

ence system has a slower optimal response time than the two

tanks in series system while from Table 7 we see that for the

minimum deviation problem the reference system has a faster
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TABLE 6

COMPARISON OF RESPONSE TIMES TO SINGULAR CONTROL
POLICIES AS APPLIED TO THE REFERENCE SYSTEM AND THE
TWO TANKS 111 SERIES SYSTEM (TIME OPTIMAL PROBLEM)

Reference System Two tanks in series
system

T, mln T, mln

Case 1 4.85 3.45

Case 2 5.45 4.15

Case 3 8.46 7,35

Case 4 4.30 2.71
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TABLE ?

COMPARISON OP RESPONSE TIME TO SINGULAR CONTROL
POLICIES AS APPLIED TO THE REFERENCE SYSTEM AND THE

TWO TANKS IN SERIES SYSTEM (MINIMUM DEVIATION PROBLEM),

Reference System Two tanks in series
system

T, min T, min

Case 1. 7.70 9-50

Case 2 7.80 9.6c

Case 3 9-90 10.95

Case h 7.60 9.^0
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optimal response time than the two tanks in series system.

These results from Tables 6 and 7 show how the response times of

a particular system can be? quickened or slowed down due to a

change in the objective function, i.e., dependence of response

time on variation in objective function. Similarly other

dependences may be noted. For Instance in the time optimal

problem, in going from the reference system to the two tanks in

series system, the control policy changed from bang-bang to

singular thus indicating the dependence of control policy on

variation in model. Also in the reference system, when going

from the time optimal problem to the minimum deviation problem,

the control policy changes from bang-bang to singular which

shows the dependence of the control policy on changes in objective

function when the model is held constant. The problem of

meaningfully e\'aluatlng these dependences would immediately give

rise to a host of sensitivity problems. It may seem vague at

this stage to try to obtain expressions for the above sensitivities

by the generally accepted perturbation techniques that have been

used so far in the automatic control literature. However, as

Srldhar et al. [14] have put it, "Sensitivity is a concept

which can be meaningfully defined only by considering specific

systems and their particular purposes for existence". We do not

wish to go into this problem presently but rather point out the

possibilities for further research in this area.

To some readers the method of Grethlein and Lapidus [15]

may not seem to be a competent method to arrive at a singular

policy but, as was stated previously, there Is no general method
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at present by which a singular policy can be decreed optimal.

Because of the difficulty in obtaining solutions, the present use

of optimization theory for control systems engineering Is

limited to determining the nature of the optimal control law.

This information is useful in evaluating alternate control schemes

and in indicating approximations to the optimal control which

may be more easily implemented. On a similar note the method of

Grethlein and Lapidus was incorporated in the present work not-

only to achieve simplicity in obtaining a solution but also

because of the proven versatility of the method in a somewhat

similar problem as described in [l5]«

The above results, discussion and observations hold only

for a particular model with a particular set of parameters,

disturbance and initial state. It should be recognized that

changes in the various parameters or in the assumptions of

Chapters 2 and 3 would lead to diverse situations with diverse

results and making any generalizations at this stage may not

be prudent.

By way of extensions to the present study several

recommendations can be put forth for further study. The question

of sensitivity analysis has already been raised in an earlier

paragraph. In addition different objective functions could bs

investigated and especially of the type

S = ; [1 + (x* - x(t))
2
]dt

wherein both time and deviation are minimised. Also various
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modifications can be made on the mixing pool model. In Chapter

3 the assumption was made that the vapor rising from the bottom

tray divided into half and each half entered each pool. It

would be Interesting to study the effect of uneven division of

the vapor stream, on the performance of the model. Another

problem, of a more complicated nature, is one in which there is

feedback between the mixing pools.

As stated above, extensive work has to be done on the present

model before any general conclusions can be drawn. However, if

the present Investigation Induces the reader to pursue the

subject further, the purpose of this thesis will have been

fulfilled.
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NOMENCLATURE

B Bottoms product flow rate, lb mole/min.

c Constant used in vapor-liquid equilibrium expression,

y = mx + c.

D Overheads product flow rate, lb mole/min.

H Hamlltonian function.

H Bottoms tray, liquid holdup, lb moles.
B

H Top tray liquid holdup, lb moles.

L Liquid flow rate in column, lb mcles/inin.

L' Reflux flow rate which maintains desired steady state
in the two tanks in series system, lb mole/min.

m Constant used in vapor-liquid equilibrium expression,
y = nx + C

.

S , S Initial and terminal states of the reference system.
1 2

S' , S* Initial and terminal states of the two tanks in
-* ^ series system. ,

T Terminal time, minutes.

V Vapor flow rate in column, lb moles/min.

x Light component composition in liquid phase on top
* tray of reference system. Light component composition

in liquid phase in pool 1 of top tray in two tanks
in series system.

x Light component composition in liquid phase on
2 bottom tray of reference system. Light component

composition in liquid phase in pool 2 of top tray
in two tanks in series system.

x Light component composition in liquid phase on
3 bottom tray of two tanks In series system.

y. Light component composition in vapor phase in
1 equilibrium with liquid phase of composition x,

.

2. Adjoint variable corresponding to state variable
x .

•

i
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APPENDIX A

ANALOG AND DIGITAL COMPUTER PROCEDURES

In this section attention will toe f ooussed on the analog

computer circuit diagrams and the digital computer programs of

the various simulations and computations used in Chapters 2, 3

and *K

1. ANALOG COMPUTER SIMULATION OP THE REFERENCE SYSTEM.

The system equations used in the simulation of the reference

system are those shown in equation (11) namely,

dx-

'T "T " "t

/Lm - Vm - Ln„ Vm . Lc II t\w - (—s:
)x

i
+ c 2

+
r: {a" 1)

and

,

dx2 ffl .

f
Vm + F t L - V>

F*F Vc
dt = " H

fi

(
-

H
B ;

'

•-'

2 " -H
B
- * H

B

x,. -- mxL -i- c
*v - mx

i

The above equations were magnitude scaled according to the

scale factors shown in Table A-l. The corresponding magnitude

scaled equations are

T T T

- [i
2
] - •- £ [ij] * (

Vm t F t I- - ?
>[ ] _ jg£ + g (A-2)

E ' B B B

Od]
* m[ Xl ] + c



TABLE A-l

SCALE FACTORS FOR REFERENCE SYSTEM

x 1.0 1.0 1.0

X

12?

Problem Expected
Maximum

1 Scale
Factor

Computer
Variable Expected Nax. Variable

X 1.0 1.0 1.0 [x ]

'*J

1.0 1.0 1.0 [x ]
1) « d

j
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The time scale factor p, defined as the ratio of computer tine

to the independent problem variable t, was taken as unity; thus

one second on the analog computer represents one minute of

problem time. The scaled circuit diagram for the reference

system is shown in Figure A-l.

2. ANALOG COMPUTER SIMULATION OF THE MIXING POOL MODEL SYSTEM.

The system equations used in the simulation of the mixing

pool model system are those shown in eqiiatlon (32) namely

,

ffl /Lm - Vm - 2Lv Lm Vm ,2Ln

dt - K H ' 1
r Hm

x
2
+ H_ *3 H_

dxo

a?
-

" I: *i * ^h*--^ *
2 - £ *

3
(A- 3)

and

x = 0.5(mx + mx + 2C )

.

D 12
The above equations were magnitude scaled according to the

scale factors shown in Table A-2. The corresponding magnitude

scaled equations are

r* -> /La - Vra - 2Lsr -i , Lit, r -i
, Vm r- l , 2Lc

T T T T

-^ - - 1 [x
i ] + ^f3^ - e t>

3
] ( -w+)

T X T

Fx„ - Vc
[x

3
] , i [x

2
] - (

V* t r t L - V)^] + _ F_
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TABLE A-

2

SCALE FACTORS FOR MIXING POOL MODEL SYSTEM

Problem Expected 1 Scale Computer
Variable Maximum Expected Max. Factor Variable

X, 1.0 1.0 1.0 [x,]

S. 1.0 1.0 1.0 [x,.]
2 L

Z-

l.o i.o l.o [> ]

*
D

i-o i.o l.o [x
d
]

x
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[x
D
] = 0.2?[ X;l ] + 0,22 [x

2]
+ 0,56

The time scale factor was again taken as unity. The scaled

circuit diagrams for the nixing pool model system is shown in

Figure A-2.

3. DIGITAL COMPUTER SOLUTION OF'TrlE REFERENCE SYSTEM.

The canonical equations of the reference system comprising

of equations (11) , {Ik), (16) and (17), were solved along With

the boundary conditions of equation (21a) by a trial and error

method outlined in Figure 5«. The various symbols used in the

program are explained In Table A-3 and a sample program is given

in Table A-4.

4. DIGITAL COMPUTER SOLUTION OF THE MIXING POOL MODEL SYSTEM.

Due to the singular nature of the control policy for the

mi -lng pool model system, the sampled data method of Grethlein

and Lapidus was applied to the system equations (32) > The

symbols used in the digital computer program according to

Figure J6 are explained in Table A-5 and a sample program is

given in Table A-6. This program had to be run by double

precision due to the very small numbers that were Involved in

the computations.
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TABLE A-3. NOMENCLATUBE FOR TRIAL AND ERROR
SOLUTION OP MAXIMUM PRINCIPLE EQUATIONS.

Program Symbol

A

AL

AUX

DERY (NDIH)

FCT

H

NDIM

OUTP

PRMT (1)

PRMT (2)

PRMT (3)

PBMT (k)

PRMT (5)

X

Y(I)

Des ignation

Switching function

Control variable L

Auxiliary storage array

The differential equations that are
integrated by subroutine RKGS

Name of external subroutine which defines
the differential equations DERY (NDIH)

Hamlltonian

Number of differential equations to be
integrated by subroutine RKGS

Name of external subroutine for handling
output from subroutine RKGS

Initial time of integration

Final time of integration

Increment of independent variable t,
over which integration is performed

Tolerated error

Parameter used to terminate subroutine
RKGS at any desired output point

Decimal counter used to monitor the
printing of results at various points in
time. Initially Q is zero and after inte-
gration commences Q is incremented by
0.01 each time results are printed

Independent vai'iable t

Dependent variable x
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TABLE A-4. COMPUTER PROGRAM FOR TRIAL AMD ERROR SOLUTION
OF MAXIMUM PBINCirXS EQUATIONS

EXTERNAL FCTtOUTP
DIMENSION PRMT15) , Y I 3 1 , DERY I 3 » i AUX i 8, 3)

COMMON A.L.Q

1 FORMATUH ,6HIHLF =i 13)
PRMT(1)=0.
PRMT<2)=4.
PRMT(3)=.0l
PRMTI4)=.00Q1
AC* 1.3 33
Q=0.0
ND!M=5
DERY(1)=NDIM
DERY(l) = l.F.O/DERY(l)
DO / I=2 t NDIM

7 DERYU)=DERYU)
Y( 1)30.6300
Y(2)=--.2767
YI3)=C.O
Y<5)=-.03
Y(4)»-tl.+t.l413*AL-.12l3)*Y(5) )/( .207l*Al-.2071]
CALL RK.GS(PRMT,Y,DERY,NOIM,II!LF,rCT,OUTP,AUX>
IF(IHLF.GT.10JWRITE(3,4)IHLF
CONTINUE

1?. STOP
ENO
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TABLE A-h. (CON?.

)

SUBROUTINE FCT (X.Y.DtBVI
DIMENSION VII) ,DERY( 11

COMMON AL,Q
DERY(i) = .44*AL*YC)-.5865*Y(I}-AL*YtlX„5865*Y(2H-.5ft*AL
OERY(2) = .'i*AL*Y( 1! ! .0986*Y( 2 1-.4*AL*Y 12 )-0. I486
DERY(3)=l.
DtRY(A)=-.A4*AL*Y('! !l.5865*Y(4)tAL<,Y(4) «-. 'i*AL*Y ( 5 )

DERY<5)=-.5865*Yt<.!-.09S6*Y<5)«-.4*AL*Y(5)
RETURN
END

SUBROUTINE OUTPU,Y,DERY, IHLF, NDIM.PRMT

I

DIMENSION PRMrUI.YI 1),DERY(1)
COMMCN AL,0

20 F0RMATI5X.F6.3)
15 FOXHftfllX,*H T =,E11.4,6HX(1) - , E I 1 .4, 6HX f 2 ) = , El 1 .4, 6!iX ( 3)

ll.<i,6Hm) = ,E11.4,6H?.(2) =,E11.4,4HL =,F6.3)
IF(X-O) 99,16,16

16 WRITE! 3, 15 IX, (Yd), 1-1,5), AS.

A=.4't*Y(l)*Yl'i)-Y(l)*Y(4)*.56*-Yl41*.4*Ytl)*Y<5)-.4*Y(2)*Yl5)
IF1A) 17,17,18

17 Al=1.333
CO TC 101 I

18 AL=>833
101 Q=Q+0.G1

H=(.44*ftL*Ylll-.5865*Ytl)-AL*YllJ f»5865*Y( 2) «• ,56*AL)*Y( 41

1+(.4*AL*Y11M.0986*Y12)-.4*AL*Y(2)-.1'.S6)*Y(5) + 1.
WRITE 13,20) H
GO TO 99

9 PRMT1 51=1.0
99 RETURN

END



136

TABLE A-4. (CONT.)

SUBROUTINE RKGStPRM .YtDERY.NOiN.lHLFtFCT.OUTP.AUX)
DIMENSION VII) ,DERY(i),AUXC8tl 5 , A I 4 1 ,B I 4 ) ,C(<> ) , PRMT t 1

}

DO I I=l,NOIM
1 AUX(8,I) = .06666667>S'O--:RYm

X=PRM1 (1)
XEND=PRHT(2)
H=PRMT(3)
PRMT(5)«0.
CALL FCT (X,Y,DERY)

C

C. ERROR TFST
1F(H*(XEND-XI)38,37,2

C

C PREPARATIONS FOR RUNGE-KUTTA METHOD
2 AU>=.5

A(2)=. 2928932
A(3)=l. 707107
A(4)=. 1666667
B(l)=2.
B(2I=1.
B(3)±l.
BC») = 2.

CI1)=.5
C(2>=. 2928932
C(3)»l. 707107
CU) = .5

C

C PREPARATIONS OF FIRST RUNGE-KUTTA STEP
00 3 I'UNOIN
AUX(1,I)=Y(1)
AUX(2,I)=DERY( I

>

AUX(3, I 1=0.
3 AUX(6,t)=0.

IRFC=0
H=H + H

IHLF=-1
ISTEP=0
IEND=0

C

C
C START OF A RUNGE-KUTTA STEP

4 IF( (X*H-XFND)*H)7,6,5
5 H=XEND-X
6 IEND»1

C

C RECORDING OF INITIAL VALUES OF THIS STEP
7 CALL OUTP(X,Y,DERY, IREC, NOI M.PRMT

)

IF(PRMT(5)KO,8,40
8 irEST=0
9 ISTEP=ISTEP<-1
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1 - LB A-4. (CUNT.

)

C
c

C START OF INNERMOST RUNGE-KUTTA LOOP
J=l

10 AJ=A(J)
BJ=B(JI
CJ=CiJ)
DO 11 1=1,NDIM
R1=H*DERY< I )

R2=AJ*(R1-BJ*AUX(6,I)>
Y(I)=Y(I J*R2
R2=R2+R2+R2

11 AUX(6,I)=AUX(6,t HR2-CJ*R1
IF(J-4)12, 15,15

12 J=JH
IFIJ-3)13,14,13

13 X=X+.5*H
14 CALL FCT(X,Y,OERY)

GOTO 10
C END OF INNERMOST RUNGE-KUTTA LOOP
C

C

C TEST OF ACCURACY
15 IF<ITEST)16,I6,20

C

C IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURA
16 DO 17 1=1,NDIM
17 AUX(',,I) = Y{I)

ITEST=1
ISTEP=ISTEP+ISTEP-2

18 IHLF=IHLF+1
X = X-H
H=.5*H
DO 19 I=1,NDIM
Y(I)=AUX(1,I)
DERY(I)=AUX(2,II

19 AUX(6,I)=AUX(3, I

!

GOTO 9

c

C IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE
20 IM0D=lSTEP/2

IF ( I STEP- IHOD- I MOD 121,23,21
21 CALL FCT(X,Y,DERYI

DO 21 1--1.NDIM
AUX(5,I)=Y(I)

22 AUX(7,I)=!)FRY( I )

GOTO 9

C
C COMPUTATION OF TEST VALUE DELT

23 OELT=C.
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TABLE A-'!-. (CO.iT.)

DO 24 I=i,NDIM
24 DELT=0ELT+AUX(8,I KA3S ( AUXl«i. !J-Y( II)

ir(DELT-PRMII't) >2C,2G,25
C

C ERROR IS TOO GREAT
25 !F(IHLF-10)26,36,36
26 DO 27 I=1,NDIH
27 AUX(4,l)=AUX(5,I !

ISTEP=ISTEP< ISTEP-4
X=X-H
IEND=0
GOTO 18

C

C RESULT VALUES ARE GOOD
2C CALL FCUX.Y.DERY)

DO 29 I-1,NDIM
AUX(1,1) =YU)
AUX(2,I)*DERYU)
AUX(3,I>=AUX(6,I)
Y(I)=AUX(5,t)

29 DERYf F)=AUX(7» I)

CALL OUTP(X-H,Y,DERY,IHLF,NDlM.PRMT)
lF(PRMTt5l 140,30,40

30 DO 31 I=1,NDIM
Ytf )=AUXIl,I )

31 0ERYU) = AUX(2,I)
1REC=IHLF
IF(IEND)32,32,39

C

C INCREMENT GETS DOUBLED
' 32 IHLF=IHLF-l

lSTEP=ISTEP/2
H=H+H
IF<IHLF)4,33,33

33 IM0D«ISTEP/2
IFUSTEP-IM00-IM0D)4,34,4

34 IF(DELT-.02*PRMTI4I)3S,35,4
35 IHLF=IHLF-1

ISTEP^ISTEP/2
H=H+H
GOTO 4

C

C

C RETURNS TO CALLING PROGRAM
36 IHLF=11

CALL FCTCX,Y,DERY>
COTO 39

37 IHLF=12
GOTO 39

38 IIILF=13
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TABLE A--'J. (COOT. )

39 CALL OUTPlX,Y,DERY,IHLF,NDIH,PRMT)
40 RETURN

ENO
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TABLE A-5. NOMENCLATURE FOR THE SAMPLED DATA METHOD
OF GHETHXEIN AND LAPIDUS

Program Symbol

AL(J)

AP

ALEM

DERY (NDIM)

DSV(J)

FCT

f

NN

NDIM

OUTP

PRMT (1)

PRMT (2)

PRMT (3)

PRMT (4)

PRMT (5)

Designation

Array containing five values of control
variable L with values between L and
t max
Hiin

Control variable L used in conjunction
with the differential equations

Minimizing decision variable L from among
the 5 specified in AL(J)

The differential equations that are inte-
grated by subroutine RKGS

Deviations corresponding to the control
variables from array AL(J)

External subroutine wherein the differential
equations DERI (NDIM) are defined

Number of current sampling period

Total number of sampling periods

Number of differential equations to be
integrated by subroutine RKGS

External subroutine used for purposes of
handling output from subroutine RKGS

Initial time of integration of current
sampling period

Final time of integration of current
sampling period

Increment of independent variable t, over
which integration is performed

Tolerated error

Parameter used for terminating subroutine
RKGS at any desired output point
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TABLE A-5. (CONT.

)

Q

SUM

SUMT

X

Designation

Decimal counter used to ensure the com-
pletion of Integration over entire.
sampling period before evaluating DEV(J)

Value of deviation computed from
objective function before being stored
into DEV(J)

Summation of minimum deviations over all
sampling periods upto and including
present sampling period

Independent variable t

Dependent variables x



TABLE A-6. COMPUTER PROGRAM FOR THE SAMPLED DATA METHOD
OF GRETHLEIN AND LAPIDUS

IMPLICIT REAL*8< A-H,0-Z)
EXTERNAL FCT.OUTP

C

C

DIMENSION PRMT(6»,Y(4) ,DERY

;

h) , AUX ( B, 4) ,YS(3) , AL 1 10 I , DEV ( 5

)

COMMCN AP.N.YS, J,M,I I , ALEM, YA, YB t YC, YD, AL , SUM!
C

C READ NUMERICAL DAI A ***************************************<.
c

NDIMM
PRMT«1)=0.0
PRMT(2I=0.05
PRMT<3>=0.010
P«MT(4J=0.1
YS<1)=C. 71399
YS(2)=0. 60986
YS(3)=0. 26247
ALU)*.833
AL(2>=.953
AL<3)=1.083
ALI1I=1.208
AL(5)=1.333
N=l
NN=25C
11 = 1

M-0
SUMT=0„0

C /

c
C READ PARAMETERS FOR ITERATION KITH ALII) *******************
C

100 J=l
AP=AL(J>
IF(M.EQ.l) GO TO 150
V«l)»C. 71467
Y(2)=0. 60909
Y(3)=0. 24899
V(4)=0.0
GO TC 101

150 Y( 11-YA
Y(2)=YB
YI3)=YC
Y(4)=YD

101 CALL RK.GS(PRMT,Y,D£RY,NDlM t tHLF,FCT,OUTP,AUXI
CONTINUE

C

C READ PARAMETERS FOR ITERATION1 WITH AL(?) *******************>
C

AP=AL(J)
IF(H.EQ.l) GO TO 160
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Table a-6, (COOT.

)

Y(1)=0. 71467
Y12>=0. 60909
Y(3!=C. 24899
YCVI'0.0
GO TC 102

160 Y( l) = YA
Y(2!=YB
Y(3)=YC
Y(4)=YD

102 CALL RKGS(PRMT,Y,DERY,NDIM, IHLF, FCT, OUTP , AUX

)

CONTINUE

READ PARAMETERS FOR ITERATION WITH Al ( 3 ) *******************

AP=AL( J)

IF(H.EQ.l) GO TO 170
Y( 11=0,7146 7

Y(2)=C. 60909
Y(3>=0. 24899
Y(4)=0.0
GO TC 103

170 Y(l)~YA
Y(2)=YR
Y(3)=YC
Y(4)=Y0

103 CALL RKGS(PRMT,Y,DERY,N01M, IHLF, FCT, OUTP, AUX)
CONTINUE

READ PARAMETERS FOR ITERATION WITH AL(4) *******************

AP=AL(J)
IFIM.EQ.1) GO 10 180
Yl U=C. 71467
Y(2>=0. 60909
Y(3)=0. 24899
Y(4) =C0
GO TC 104

ISO Y( 1)=YA
Y(?I=YB
Y(3)=YC
Y(4)=Y0

104 CALL RKGS!PRKT,Y,DFRY,NDIM, IHLF , FC I , OUTP, AUX

I

CONTINUE

READ PARAMETERS FOR ITERATION WITH AL ( 5 ) *******************

AP=AL(J!
IF(K.EQ.l) GO TO 190
Yd )=C. 71467
Y( 2) =0.60909
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TABLE A-6. (CONT.)

Y>3)=C. 24899
Y(4) =C0
GO TC 105

190 Y(1)=YA
Y(21=YB
Y13I=YC
Y(A)=YD

105 CALL RKGSIPRr-IT.Y.DERYtNDIM.IHLF.FCT.OUTP.AUX)
CONTINUE

READ PARAMETERS FOR ITERATION WITH ALEH *******************

AP=ALEK
IF(H.EO.l) GO TO 2C0
Yll)»0.7K67
Y<2)=0. 60909
Y13)=0. 24899
Y(4)=0.0
GO TC 106

200 Y(1)=YA
Y(2)=YB
Y(3)-YC
Y(4)=YD

106 CALL RKGSIPRMT,Y,0ERY,NDIK,IHLF,FC1,0UTP,AUX)
CONTINUE

RETURN FOR REITERATION AT (N+11TH SAMPLING PERIOD***********

II^l
M=l
N=N
AN»N
Y(l)
Y(2)
Y(3)
VHI
PRM1
PRMT
IF(N
STOP
END

1

-I
= YA
= YB
= YC
= YD
<1)=AN*0.05
(2l=PRHT(l)+0.05
.LE.NNI GO TO 100



TABLE A-6, ('JOKT.)

SUBROUTINE RKGSIPRM , Y , DERY , NO I H , I FLF , F CT, CUTP, AIM )

IMPLICIT REAL*8IA-H,G-Z)

01 HEN SIGN Y(1),DERY( 1) , AUX ( 0, 1 ) , A < 4 ) ,8 < 4 ) , C (4 l.PRMTtl)
X=PRPT(1>
H = PRI>'T(3)
PRMT(5)=0.
CALL FCT(X,Y,DERY>

PREPARATION'S FOR RUNCE-KUT FA METHOD
2 A(l)=,5

A(2)=. 2928932
A(3)=l. 707107
A(4)=. 1666667
B(l)=2.
B[2)=l.
B(3)«l.
B(4)--2.
C!l)=.5
C(2)=. 2928932
C(3)=l. 707107
C ('.) = . 5

PREPARATIONS OF FIRST RUNGE-KUTTA STEP
00 3 t=l,NDIM
AUXU.I ) = YiI) /

AUXI2.I )=DERYl I I

AUX(3,I 1*0.
3 AUX I 6, I 1-0,

RECORDING OF INITIAL VALUFS OF THIS STEP
7 CALL CUTP(X,Y,DERY, I REC , NDI M, PRMT

I

IF(PRCT(5) 140,8,40

START OF INNERMOST RUNGE-KUTTA LOOP
8 J=l

10 AJ=A(JI
BJ=B(J)
CJ=C(J)
DO 11 I-l.NOIM
Rl=H + [JERY( I

J

R2-AJ*(FU-FiJ*AUX(6,I ) I

Y(I)=Y( I I+K2
R2=R2+R2+R2

11 AUX(6,D=AUXI6,I )*R2-CJ*R1
IHJ-4112, 15,15

12 J=J+1
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TABLE A-5. (CONT.

)

irU-3J13,U,13
13 X=X+.5*H
14 CALL FCT(X,Y,DER

GOTC 10
c END CF INNERMOST
c

c

15 DO 2$ [=l,NOIM
AUX(I,I )=YU)

RUNGE--KUHA LGQP

AUX(2,I i=t)ERY( 1 )

29 AUXlfci D-AUXI3, I

!

CALL CUTP!X,Y,DERY, IHLF.NDIM, PRMT)
IFIPRMT(5)K0,30,40

30 00 31 I=l,NOIM
Y( t ) = AUX(1, I)

31 DERYI l) = AUX(2, i!

GO TO 8

'.0 RETURN
END

SUBROUTINE FCT I X , Y , DERY

)

IMPLICI1 REAL*8(A-H,G-Z)

DIMENSION YUI , DERYU) , YS < 3) , AL I lu

>

COHMCN AP,N,YS, J,M, II

,

ALEM . YA , YB , YC, YD, AL, SUMT

DEFINE DIFFERENTIAL EQUATIONS ******************************

DERYtl)=-l.'36*AP*Y{l)-.56652*Y( I ) <• , ','t*AP*Y ( 2 )<• . 5B65 2*Y ( 3 1 H . 1

DERY (2 )^2.0*AP*Y(l)-.5e652*Y(2)-2.C*AP*Y(2)+.58652*Y(3)
DERY(3» = AP*.4*Y(2)+O.Oy86*Y(3)-0.'.*AP*Y(3)-0.1't8'592
DERY (4 )*'( . B5123-.22*Y ( 1 ) -.22*Y ( 2 )-. 56 ) *

M.85123-.22*YU)-.22*Y<2)-.56)
RETURN
END
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TABLE A-6. (CONT.

)

SUBRCU1 1NE OUTP(X,v,DERY, IHLF,NDIM,PRMTJ
IHPLICiT REAL*S(A-M,0-Z)

C

c

01 KENS I ON PRMTie'sYCt) tOERY(4),VS(3),AL(lO»,DEV( r
j)

COMMCN AP,N,YS, J,M, I I , ALEM, YA, YB , YC, Y[), AL t SUMT
1 FORMAT (5X,<iHCEV( , II, Ml) = ,!-"].'.. B)

2 FORMAT! 5X.4HN = , I3i
3 FORMA T<5X t 5HAP ,F10.5)
'. FORMATI5X.7HXU) = , F10. 5, 5X, 7HX ( 2 I = , F10.5.5X ,7HX( 3 ) - ,F1C
15X,7HX(4) = ,F14.9)

5 FORMAT(5X,7H0EVM - ,F14.8I
111 BN=N

Q»BN*0.05
IF(X-C) 20,10,10

20 RETURN
10 IF(II.LE.O) GO TO 50

r.

C CALCULATE DEVIATIONS FROM STEADY STATE FOR JTH REFLUX RATE****:
C

SUM=SUMT*
1 (.28247-YI3) I *( .20247-YI 3)

)

DEVU)»SUN
WRITE(3,l) J, DEV(J)
IFIJ.GE.5) GO TO 30
J=J + 1

PRMT(5)=1.0
RETURN i

C

C FIND MINIMUM DFVIATION **************************«********'
£

30 0MIN=DEV(1)
JMJN=J
DO AC J=2,5
IFIDEVI Jj.LT.DMIN) JMIN=J
IFIDEVI Jl.LT.DMIN) DMIN=DEV(J)

40 CONTINUE
AL1=ALII)
AL2=AL(2!
AL3=AL(3!
AL4=AL(4!
AL5=AL(5I
OEV]=CEV( 1)

DEV2=CEV(2)
DEV3=CEV(3]
DEV4=0EVC41
DEV5=DEV(0)
IF! JMIN.EQ.l) ALEM-ALI JMIMI
IFUMIN.EO.l) WRITE ( 3. 5) DEVI JM IN I

IFUMIN.EQ.l) DEVJ=DEV(JMIN)
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IFtJCIN.EQ.5) ALEM=AL(JMIN)
IFUHN.EQ.5I WRITE<3 f 5)DEV(JMINI
IFUPIN.EQ.5) DEVJ=DEV(JMIN)
IFt JMIN.EQ.2) CALL POL 1 < DE VI , PEV2 , CEV3, AL I , AL2» AL3, ALEM, DEV

J

IF( JPIN.EQ.3) CALL POL 1 ( OEV^, UL1 V3 , DEV4 t AL2 , AL3 , AL't, ALEM, DEV J

IFIJPIN.E0.4) CALL P0Ll<DEV.3,r>EV4.CEV5, AI.3, AL4|AL5,ALEM,DEVJ
AP«ALEM
SUMT=DEVJ
11=0
PRMT(5)=1.0
RETURN

C

C WRITE SOLUTIONS FOR NTH SAMPLING PERIOD********************
i

50 WRITF;(3,2) N
WRITE(3,3) AP
WRITE13.41 Y(1),Y(2),Y(3),Y(4)
YA=Y(1)
YB=YI2)
YC=Y(3)
YD=Y('i>
PRHT(5)=1.0
RETURN
ENO

SUBROUTINE POL l( Fl , F2t F3, Rl ,R2, R3.RMIN, FMIN)
IMPLICIT RFAL*R(A-H,0-Z)

200 F0RPATC>X,7HRMIN = ,F10.5 f 5X, 7HDEVM = .Fl't.S)
C

C CALCULATE COEFFCIENTS OF 3 POINT LAGRANGI AN*****************
C

112 DI=CR1-R2)*IR1-R3)
D2=(R2-R1 )*IR2-R3)
03=(R3-R1)*[R3-R2)
EI=F1/D1
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CE A-6. (CONT.

)

E2=F2/02
E3=F3/03
GUR2 + R3
G2=RHR3
G3=R1+R2
H1=R2*R3
H2=Rl*R3
H3=R1*R2
A=E1+E2«E3
B=E1*G1+E2*G2+E3*G3
C=E1*H1+E2*H2+E3*H3

C

C CALCULATE RMIN AND FMIN
C

RMIN=B/(2.0*AI
FKIN=A*RMIN*RMIN-B*RMIN+C
WRITE(3,20C) RMIN, FMIN
RETURN
END
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APPENDIX B

STEADY STATE AND LIMITING CASE ANALYSES

In order to determine the physically realizable bounds of

the two systems studied in this work, steady state and. limiting

case analyses have been carried out for each system. This

Appendix deals with these analyses starting with the reference

system analysis.

1. REFERENCE SYSTEM ANALYSIS.

The performance equations of the reference system are

dx

m5-. (La.- Via - L) Vm
*1 + U Xo + TJ~

Lc
H ^'H
T T

dx Px.—2 _ _L x _ .(Vm H- F + L - V) „ ,
»]

dt - H *1 H
X
2
+ T~ ~ H~

B B ' B B

(B-l)

(B-2)

Multiplying equations (B-l) and (B-2) by H and H respectively,
T B

and setting the derivatives with respect to time, of the

resulting equations, equal to zero yields

(Lm - Vm -• L)x + Vm x = - Lc

L x. - (Vra + B)x = Vc - Fx

which can be put in matrix form as

[Lm - Vm - L Vra

L -(Vm + B).

Equation (B-5) is of the form

r

l. X

-Lc

Vc - Fx

(B-3)

(B-'t)

(B-5)
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AX = B (B-6)

from which X can be solved for uniquely by applying Cramer's

Rule, provided the coefficient matrix A is nonslngular. Hence,

the system has the unique solution

-Lc Vm

Vc - Fx„
F

-(Vm + B)

x
l

-

Lm - Vra - L Vm

1 * •(Vm + B)

(B-V)

and

X
2

=

Lm - Vm - L -Lc

Vc - Fx

Lm - Vm - L Vm

L -(Vm -i- B)

Equations (B-7) and (B-8) can be further simplified to

2LVmc + BLc - V 'mc + FVmx,
?

V m - LVm + BVra - BI,m + BL

and

LVcc - V2mc - LVc - FLex„ + FVmxT , + FLx„ + L2

,
F F F

V
2m2 - LVm2 + BVm - BLm + BL

(b-8)

(B-9)

(B-10)

Hence x_ and x can be generally written as
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x = x (L, V, P, B, m, o, x
? )

(B-ll)
x
g
= x

2
(L, V, F, B, m, o, x )

however, in find o are fixed by the equilibrium relation of

equation (4a)

y, = 0.44 x. 4 0.56 1 = 1, 2

and B is itself a function F, V and L as can be seen in equation

(la),

B = F + L •• V

whereby

x
l

= x
i^
L

'
Vl F

<
X
F

'

(B-12)
x
2

- x
2
(L, V, F, x

F
)

Thus x and x have been reduced to being dependent on the four

parameters L, V, F and x . It is obvious that for each set of
F

values for the above parameters, x and x have unique values

corresponding to a unique steady state; and also innumerable

combinations of the above parameters will, give rise to innumer-

able steady states. Hence, in order to narrow down the range

of steady state solutions of the reference system, we shall

restrict ourselves to the case where V, F, and x are held
F

constant as prescribed by equation (4), i.e.

V = 1.333 lb. moles/min.

F r: 0.5 lb. moles/min,
(B-13)
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x = 0.65 (B-13 cunt.)
F

Utilizing the overall material balance and a material balance

around the reflux drum, >:e have

F =, D + B

and

V=L + D

respectively; and using the values of V and F as in equation

(B-13) we find that L is restricted to values between 0.8 33 and

1.333« Physically this means that the overhead reflus flow

rate can be varied from a minimum of O.833 lb. moles/ruin, to a

maximum of 1.333 lb. moles/min.

The steady state analysis consists of using values of V, F

and x given by equation (B-13), in equations (B-9) and (B-10)

and evaluating x and x as L is varied between its lower and
1 2

upper limits. This same procedure is then repeated for different

values of x (since ultimately we wish to determine an optimal
r

path for L so as to counteract a known disturbance in x„).
r

The results are plotted in figure B-l, for x = 0.55, O.65,
F

and 0.75. Also in the plot are Included curves for the overhead

composition x since

x = jr. «= mx^ + c

Figure B-l acts as an a:5d in determining the range within

which the reference system can operate for the given set of

parameters.
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2. MIXING POOL MODEL SYSTEM ANALYSIS

The pcrf ormance equations of the mixing pool model ara,

dx

"dt
1 (Lm ~ Vm - ?L) _ . Lm _ .Vm „ . 2Lo

"•1 T H
-
2

-r g -3
T T

dx
2 _ 2L _ (Vm + 2L)

dt - H
A

Va
x
2 + ^ X;j

Fxr
5^2 _ -L x - 1Y.MJ: F + L -jrj "J _ Vc
dt - H

B
X
2 H

fi
3 ' H

B
H
B

(B-HO

(B-15)

(B-16)

Multiplying equations (B-1'0 and (B-IS) by H and equation
T

(B-l6) by H n and setting the time derivatives in the resulting

equations equal to zero gives

(Lm - 2L - Vm)x, + Lmx? + Vmx^ a -2Lo

2Lx
1

« (Vm 4 2L)x
2 + Vmx-, ~

Lx„ - (Vm + F + L - V)x„ a Vo - Fx,,

(B--X7)

(B-18)

(B-19)

which in matrix form becomes

Lm - 2L - Vm Lm Vm

2L -(Vm + 2L) Vm

-(Vm + F + L - V)

- 2Lc
"

iVc - Ft

~3 J

(B-20)

Again, equation (B-20) is of the form
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AX = B

froiii which X can be solved for by using Cramer's Rule, provided

the coefficient matrix A is nonslngular. Hence, the unique

solution of the system is

Vm

Vm

•-(Vm+F+L-V)

-2Lc Lm

-(2L+Vm)

Vc-Fx„
F

L

S
I

-

A

Lm~Vm-2L -2Lc

2L

Vc-Fx^

Vm

Vm

-(Vm+F+L-V)

(B-21)

(B-22)

and

' Lm-Vm~2I. Lm -2Lc

2L -(2L+Vm)

L Vc-Fx
F

3
_ (B-23)

where

Lm-2L-Vm Lm

2L ~(Vm+2L)

L

V'"i

Vm

•(Vm+F+L-V)
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Equations (B-21), (B-22), and (B--2.")} can be further simplified

to
K

^ - ^ (3-2/1)

where

N, r- -4cL - kFol, + (')-c - 4mc)L V - (2Fmc + ft i + 2Fnx )1 P F

where

LV + (W. - m2o)LV
2

- Fm
2
x V

2
+ m2cV3

D = ('to - 'J) I,
3
+ (tea - 4F)L

2
+ ('to

2 - 8m + 4)L
2
V

+ (Pm2 - tem)LV + ('Ma - 5m
2
+ m3 )LV2 - Fin

2
V
2

- (m3- ro
3 )V 3

N
?

x
2
= -f (B-25)

N b --4el.3 - teiL2 + (4o -' *tonc)L
2
V + (FxFm

2 - ^FZjajLV

+ (4-mc - n^cjLV^ - Fxja
2
V
2
* m

2
cV3

N
*
3
= -g (B-26)

where

N = -if-cL3 + (tex„m - texjL2 + (^0 - 4ffie)I,
2V

+ (PXjja - tetptajLV + (tone - m2c)LV2- Fm
2
xFV

2
+ m

2
oV3

Hence, x , x and x can be generally written as
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Xj = x
1
(L, ,V, F, m, c, a

f )

x^ = x
2
(L, V, F, m, c, x

p ) (B-27)

x a x (L, V, F, m, c, x )

which can be further reduced as in the reference system to

x = x_(L, V, F, xj11 F

X = x (L, V, F, x ) (B-28)
*Z ti r

x e x (L, V, F, x_)
3 3 F

Arguing along the same lines as in the reference system analysis,

we have V, F, and x„ held constant as in equation (B-13) and
r

find that L is restricted to taking on values between 0.833 and

1.333- Hence, the steady state analysis consists of holding

V, F, and x constant in equations (B-2^), (B-25) and (B-26)
F

and evaluating x, , x , and x as L is varied between its lower

and upper lomltsj the procedure being repeated for different

values of x •

F

The results are plotted in figure B-2 for x = 0.55, 0.65,
r

and 0.?5« Also in the plot are included curves for the overhead

composition x since
D

x = 0.22(x, + x ) + C
D 12

Figure B-2 acts as an aid in determining the range within

Which the mixing pool model can operate for the given set of

parameters.

Diagrams of the type of figures B-l and B-2 should form an

integral part of any sort cf analysis work involving systems
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with several parameters since they give at a glance an overall

picture of the limits within which the system operates.
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append;;-';, c

COMPUTATIONAL ALGORITHM OF POHTHXAGIN ' S MAXIMUM PRINCIPLE
AND STATEMENTS OF THEOBEMS ON EXISTENCE OP OPTIMAL CONTROLS

A continuous process is best represented by a set of

simultaneous 1'irst-order differential equations; the number of

equations depending on the order of the system. In general,

an nth order continuous system can be represented by n

simultaneous first order differential equations by using the

concept of state space. The differential equations are called

the performance equations of the process.

We shall now proceed to state the algorithm based en the

Maximum Principle associated with continuous, autonomous (i.e.

time does not appear explicitly) systems.

C-l. STATEMENT OF THE MAXIMUM PRINCIPLE ALGORITHM.

Let the performance equations of a process have the form

dx
-gi=, f^x-Jt), x

2
(t), .... x

n
(t), e^t), c

2
(t), .,., e

p
(t))

(C-l)

or the vector form

ff = f(x(t); e(t)) (C-2)

where x(t) is an n-dimenslonal vector function representing the

state of the process at time t and 6(t) is an r-dimensional

vector function representing the decision at time t,

(In the case where the system is linear, the equation
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comes

dX
l

dt *

n r
- £
j=l

a
ij

x
j

+ ^ b
ik

!>k ) (C-3)

with Initial conditions

x(t) = x (0) = a 1 = 1,2 n (C-k)
1 t=0 1 1

The problem associated with such a process is to find or choose

0(t) subject to the constraint

6(t).£§ (C-5)

(where (p is an r~dimensional space), which makes a function of

the final values of the state

n
S = X c, x, (T), C, = const. (C-6)

1=1 i x 1

a maximum (or a minimum). The function S to be extroniized is

called the objective function, and the decision vector function

so chosen is called the optimal decision 0(t).

The first step in solving such a problem is to Introduce a

new state variable so that the desired form of the objective

function may "be obtained. For example, if

T
/

is the objective function, then an additional state variable

S = / (1 t 8
2
)dt

x is introduced such that
n+3
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T
x (T) = S „ / (1 + e")dt

-&~ m X * e
•

xml (,) °

and hence the objective function novi becomes

S . X (T) (C-?)
n+l

Finally an n-dimenslonal adjoint vector f:(t) Is Introduced along

with a Hamiltonlan function H which satisfy the following

relations,

n
H(z(t), x(t), 6(t) = 2 z. f(x(t), 6(t) (C-8)

1.1 x *

and

where

£fi = .iiL = _ I z .ih--*$ "jfl
z

jpr
I- !.*.•••.

<

c-9>

The set of equations (C-l) and (C-9) constitutes a split

boundary value problem, whose solution depends on 6(t). The

optimal decision vector function ¥(t) which makes S an extremua

also makes the Hamiltonlan an extremum for all t, < t < T.

Furthermore, the maximum (or minimum) value of H is a constant

for every t.

C-2. DERIVATION OF THE ALGORITHM

In this section we shall consider 3 basic types of probleiss
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and derive the Maximum riinciple algorithm In each case. For

the case where the final time is fixed we have two problems, a

fixed right-hand and a free right-hand problem, depending on

whether the final conditions on the state variables are given or

not, The third problem arises for the case where the final time

Is left unfixed.

C-2.1. PINAL TIME FIXED AND FREE EIGHT-HAND PROBLEM

The system will be the same as governed by equations (C-l)

and (C-4). The objective function is defined as in equation

(C-6), and is to be maximized. Next the adjoint vector function

along with the Hamiltonian is introduced as defined In equations

(C-8) and (C-9).

Now, if 6(t) represents the optimal decision vector such

that S attains its maximum value, then a small perturbation

6 0(t) will move the optimal state vector x(t) by a small

deviation 5x(t), (see figure C-l). That is, if

dx.

-^- = f^xU); e(t)) (CIO)

represents the optimal system, then after perturbation we have

££ (*j + 6 Xl ) = f (x + 6x; 8 + 60) (Oil)

Upon subtracting equation (C~10) from equation (C-ll) we have

dT 6x
i

"-: f
l

( * * 6x
' « H- 60) ~ ft (xt

~) (C-12)

Multiplying both sides by the sdjoint variables z (t) and then
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Fig. C-
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Perturbation trajectory due to change in

decision variable for two dimensional sys

tern. Notice how £x(O) = when initial

values are preassigned.
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taking the sum over the subscript 1 yields ,

n n
Z z 7%t>x> = £ z, f,(x + 6x s

5" + 6B ) - f,(x| 6 ) (C-13)
1=1 iat 1

1=1

Next Integrating both sides of equation (C-13) with respect to

time from t = to t = T gives

T n
d

/ £ Z,i5r.dt = / £ z f (x + 6x; 6 + 60 ) - f. (xi )at
1=1

'IcfT'-i
1=1 1 i

(C-UO

Now consider the differentiation of £ z, 6x
1=1 1 1

d n n dx, n .

dt A z
i

6x
i - / -dT 6x

i * .^
z
i It

6x
i

i=l i=l 1=1

(c-15)

hence

T n j, n
/ £ z yrr 6x dt = £ z t>x

1=1 * dt 1 1=1 3 l

T T n dz
- / £ -1

- 6x- dt (C-16)
1=1 d̂t 1

Therefore combining equations (C-l^) and (C-16) we get

£ z,6x
i=l

T n dz T n
/ z -~6x dt t / £ z f (x + 6xi 8 + 66)

1 * lo
"

1=1 " 1 ''
J

1=a i i
V

f
ji

(x( 0)dt (C-17)

Since the initial state values have been preassigned in equation

(C-4)

6x
1
(0) = (see figure C-l)

and also since z (T) = C, , we have
i 1

n
z
i

6x
in=l i=l

£ 0, 6x,(T) = 6S,
i 1

(C-16)
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where 6S represents the variation In the objective function.

From the Taylor Series expansion of a function about a point

we have,

f(xrV ••" x
n> = f(a

l'
R2 V

n i .

+ higher order terms

where the second order partial derivatives are assumed to exist.

Using this result, the factor within brackets in the second

term on the right hand side of equation (C-l?) becomes

f (x + 6x; 9 + 68) - f (xj 6)

n xf
(x, G +66)

= f,(xj e +40) - f.(xj e) + s 2_i 6x

+ higher order terms (C-19)

Recalling equation (C-l?) we have

In fe. T n
as = / z -~Hx at + / j; z [f (x+6xj ?+6e) - f,(xje)]dt

1=1 dL 1 1=1 * 1 1

and finally utilizing equations (C-9) and (C-19) gives

T fi n Jf T n
6S ,- - / 5. i; z r^6xdt + / £ z,[f, (x, +69 ) - f,(x;"e)

1=1J=l J ^ i 1 1=] * i 1

n }f
+ £ \-~(x! 8 + 68)6x Idt

J=l « x
j

J"

T n
/ I. 2 Tf (X! ? + 68) - f, (xj e")ldt

1=1 1 *•
l
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T n n if, if _ _
.;- / £ £ Z, £-i(xj8+6e) - 2_i.(xj6) 6x dt (C-20)

1=13=1 *• d x
j

d'j J

At this juncture we shall impose a restriction on the functions

f whereby we shall only consider functions that are linear in x
1

and that contain 6 in a separable fashion; i.e. the performance

equations shall be of the form shown in equation (C-3).

n
£
1=1 1J 1

f, = £ a x + Tfte) (c-21)
_n iJ J '

where a is not necessarily constant.

For this class of functions we obviously have

^- fjTx; tf + 66) = JL f^xj V) (C-22)

J J

and this fact causes the second integral in equation (C-20) to

vanish j equation (C-20) then reduces to

T n _ _
/ £ B.CM*i 6 + 66) - f (xi 6)]dt

3 U 1 1

63 =

T

/ [H(x; G •(• 66) - H(x; 6)]dt (C-23)

Since S is to be maximized, it is necessary that 6S be zero along

the optimal trajectory for all free variations 6 6 and that 6S

be negative for variations 66 at the boundary of the constraints

as expressed by equation (C-5). Therefore

63 < (C-2^)
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and hence by virtue of equation (0-23) it follows that

6H = H(xj "5 + 6 6) . H(X| I*) < (C-25)

in the total interval

< t < T

Also, since equation (C-25) holds for any small perturbation 6 8,

it is necessary for the Kamiltonian to take on a maximum value

when S is to be maximized and on the other hand it is necessary

for the Hamiltonian to be a minimum when S is to be minimized.

An interesting geometrical interpretation of the Maximum

Principle may be obtained if one considers the fact that H is

really the scalar product of the z(t) and f(x, 6) vector functions

and that the 6(t) vector should be so mainpulated so as to

maintain this scalar product at a maximum or minimum according

as we wish to maximize or minimize the objective function.

C-2.2. FINAL TIME FIXED AND STATE VARIABLES WITH EQUALITY
CONSTRAINTS

We shall now consider the case where the final state

variables have equality constraints as follows,

F [x(T)] = a = 1, 2 p (C-26)
a

P < n

Here we shall employ the variational technique using Lagrange

Multipliers. Consider the objective function of the form

n p
S= T. C x(T) .;• I: \_ F O(T)] (C-2?)

1=1 * * a=l a
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instead of the original form

n
S = X C x. (T)

1=1 1 1

and v:e desire to maximize S.

We see from equations (C-l?) through (C-20) that

n ,T T n
£ Ux. = / T. z,[f.(x; "0 + 66) - f (xi 6)jdt
1=1 i l lo 1=1 x x 1

Tn n Nf (xi'e+ee) Kitx'si")

1=13=1 * oxj
6

j

dt

(C-28)

In order that the left hand side of equation (C-28) represent

the variation in the objective function, the boundary conditions

of the z(t) vector have to be determined so that equation

(C-25) holds.

From equation (C-27) we have

n P n £ P .

6S = L C 6x (T) + £ EX
1=1 * x o=

2 X -—~6x,(T) + higher (C-29)1U°«V ' order terms

If the constraints F have finite values for second order

derivatives, then in the neighborhood of optimal values we may

choose X _ such that

B p ^F I

6S = t [C -i- 5J X ^-aj 6X <C-30)
1=1 i o-l °'^ 1 I

t = T

Now comparing the left hand side of equation (C-28) to equation

(C-30). it Is easy to see that

P >F
x SLaiz (t) = [c, + x x :L-2n

l i
0=1 * &Vt,.T

(0-31)
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Therefore, we now have n equations from equation (C-l), n

equations from equation (C~31) together with p equations from

equation (C-26) with the help of which we can solve for the 2n

unknown components of x(t) and z(t) and the p unknown components

of X a , Equation (C-31) Is equivalent to the transversality con-

dition of the final values in the calculus of variations. A

special case of the above problem is when only some of the final

values of the state variable are fixed, say

x (T) = x^ i = 1, 2, .... m

and the rest of the final values are still free. In this case,

equation (C-20) becomes,

F [x(T)] = x , (T) - X? =» (C-32)
o. 1 i

Substituting equation (C-32) into equation (C-31) yields

2 (T) m lC
x
+ X

t
] 1 « 1, 2, .... B (C-33)

zAT) = C
t

I = m+1, m+2, ,.., n

Next let us consider the case where the constraints are imposed

on the initial values of the state variables In the form

F [x(0)] * 6 p « 1, 2 p (C-3'l)

P <; n

From equation (C-28) it follows that at the optimal condition

1=1 * 1 lt-0



172

If the initial values arc preasslgned, then fix (0) = holds,

and equation (C-18) is thereby satisfied! But if the initial

values have a restriction as in the form of equation (C-3'i-).

then in general

z, fix

1=1

n n
£ C fix

, (T) - £ z, fix.

1=1 1 X lal i|t=0

63
" Ji

z
i

£x^

Since at the optimal condition we have 6S = it follows that

5Jz fix, =0 (C-36)
1 A |t=0

It should be noticed that the variation fix (0) in equation

(C-36) is under the restrictions of equation (C-3'O. Since small

perturbations around optimal conditions have been considered, the

variations fix (0) lie on the pianos tangent to the surfaces of

equation (C-34). Equation (C-36) is the transversal ity condition

of the Initial values.

C-2.3. FINAL TIME UNSPECIFIED

The previous cases considered were characterized by a

fixed final time T, we shall now consider the case where the

final time T is free and is to be determined along with the

optimal state vector x(t) and the optimal decision vector ¥(t).

This is what is known as the time optimal problem.

If the final time T appears In the objective function, we

introduce an n+1 state variable x such that
n+l
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n±i = i, x (o) = (C-37)
at n*l

and x (T) is identical to T Itself,
n+l

n+l >,

6S =
1=1 &V '

i

n+l P X F„ dx,

i=l i a-l a ix i
(T) ^ t=T

Then it follows from the above equation and equation (C-30) that

n+l p
6S = £ [C + T. \

1=1 3
a

"

n+l dx,

i=l i dt U+T

Since we want to maximize S, 6S < 0. But on the other hand 6t

may take positive or negative values and therefore as S attains

its maximum value 63 must equal zero. It therefore, follows

that

n+l dx.j
H(T) «= L z, -rp -_- (C-39)

Also since H has a constant value throughout the transient state,

it follows that

H =.-. 0, < t < T

is a necessary condition for optimality when the final time

T is unspecified,
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ZA EXISTENCE THEOREMS C? MAEKUS AND LEE [13]

Theorem 1. Given the control problem

(a) x = f
jL

(t, Xj, x
?

, ,,., x
n

, Uj u
ra

)

b 8j(ti 1) + hj(ti x) U, 1 * 1, 2, ..., n

j = 1 , 2 , . . . , in

Kith «

1 dM*- >.) Xh,(t r x)

g (t, x), h
A

J
(t, x), i -,r-i

, k = 1, 2 n
i 1 h

k
}x

k

continuous in all their variables,

(b) a nonempty, convex, compact restraint set X), in R ,

(c) the initial point x in R ,

(d) the continuously moving nonempty compact target set G(t)

on a finite interval y o
< t < v ,

(e) the cost functional

h
C(u) b / f (t, x(t), u(t))dt

t °
o

where f-(t, x, u) ~ g (t, x) + h (t, x)u and the functions

g (t, x) and h (t, x), J = 1, 2, ..,, m are continuous In all
o o

their variables.

Assume the set A of controls with responses traveling from

x to G is such that
o

(A) A Is non empty

(B) there exists a real bound B < » for all responses x(t)
. n

corresponding to u(t) in A , that is, |x(t)I- E (1 (t)j
1

i-l' i '

< B uniformly for all responses.
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Then there exists an optimal control u (t) in A.

Remark i Hypothesis B of theorem 1 la satisfied for x In R and

u in IT. If

or If

f ( t , x , u ) I < a , 1 = 1 , 2 , .... n

^(t, x, u)j

i*J
< a, 1, 2,

for some real a. Hypothesis A of theorem 1 deals with the

question of whether or not the system can be moved from x to

G(t) in a finite time. The set of initial points C from which
o

the system can be moved to G(t) in a finite time Is called the

domain of controllability and is the subject of the next theorem.

Theorem 2. Consider

dx.

dt - V x
l'

K , ix, , • • • i u )

,

n' T.' m" 1 = 1 n

where f(x, u) and A£(x, U), and -«J-(x, u) are continuous in R x

SI. The control restraint 51 Cft contains the origin in its

interior.

Assume

I

(1) f(0, 0) =

{?.) There exists a vector v £ R
m

such that Bv, ABv, ..., A Bv,

are linearly independent, where A ^ f—i.(0, 0} and E = r~-=-(0, 0),
* u

1. 2, , , n j k a 1 , 2

,

k

Then there exists a neighborhood U c R of the origin such that

raoh point x c U can be steered to the origin in R in a
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finite time interval, using a measurable control function u(t)

viith graph inJ^. Remarki Hypothesis (?) is satisfied if

det [Br, ABv, ..., f
n~ Bv] J 0«
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ABSTRACT

Host of the literature dealing with control of distillation

columns considers simplified models of complete mixing to

represent the liquid phase mixing on the distillation trays.

In this work a two tray distillation column is considered wherein

the top tray is described by the so-called mixing pool model

consisting of two tanks In series. Also for the sake of

comparison a conventional distillation column with complete

mixing on the top tray Is also considered. The control problem

is defined thusi the system suffers a disturbance through the

feed composition which in turn displaces the overhead distillate

composition from its steady value. Determine a control policy

for the overhead reflux rate such that a) the overhead distillate

composition will be returned to its steady state value in the

shortest possible time b) the overhead distillate composition

will be returned to its steady state value and in doing so Its

deviation from the steady state value will be minimum in a

least squares sense. Both problems a) and b) are applied to

both systems described above and their corresponding control

policies are obtained. It is found that the change in the model

has a significant effect on the control policy and on the methods

of obtaining the control policies. Various extensions to the

present problem are also suggested.


