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Abstract 

 Tetranychus kanzawai Kishida and Panonychus citri (McGregor) are the two 

major arachnid pests of screenhouse-cultivated papayas in Taiwan. Control of these mites 

has become more difficult because both pests have become resistant to most registered 

miticides. This laboratory study investigated the feeding behaviors, predatory potential, 

and prey preference of a domesticated line of Mallada basalis Walker, a commonly-

occurring chrysopid in Taiwan, to both of these pest mites. A laboratory assessment on 

control efficacies of different predator:prey release ratios to single and mixed-pest 

species was also conducted. Behavioral study showed that all larval stages of M. basalis 

exhibited a high rate of acceptance of all life stages of both T. kanzawai and P. citri. 

Second and third instar predators foraged actively during most of the 2-h tests. Numbers 

and rates of prey consumption were measured for each instar of predator and prey.  

Results showed that consumption increased and prey handling time decreased as predator 

life stage advanced, and prey stage decreased. Mallada basalis exhibited both a shorter 

handling time and corresponding higher consumption rate on P. citri compared with T. 

kanzawai. Handling time and consumption rate also were positively affected by 

increasing prey density. Mallada basalis did not exhibit notable species or life stage 

preferences, and prior feeding experience on one mite species did not affect subsequent 

prey choice between the two mites. Lacewings significantly reduced T. kanzawai and P. 

citri populations at a predator:prey ratio of 1:30 and this improved at ratios of 1:15 and 

1:10. Control of T. kanzawai was slightly better than P. citri when the mites occurred 

singly and together. Consumption by M. basalis increased with temperature up to 30°C. I 

conclude that M. basalis has high potential for augmentative biological control of papaya 

mites. Further field investigations are needed for making final recommendations.  
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Abstract 

Tetranychus kanzawai Kishida and Panonychus citri (McGregor) are the two 

major arachnid pests of screenhouse-cultivated papayas in Taiwan. Control of these mites 

has become more difficult because both pests have become resistant to most registered 

miticides. This laboratory study investigated the feeding behaviors, predatory potential, 

and prey preference of a domesticated line of Mallada basalis Walker, a commonly-

occurring chrysopid in Taiwan, to both of these pest mites. A laboratory assessment on 

control efficacies of different predator:prey release ratios to single and mixed-pest 

species was also conducted. Behavioral study showed that all larval stages of M. basalis 

exhibited a high rate of acceptance of all life stages of both T. kanzawai and P. citri. 

Second and third instar predators foraged actively during most of the 2-h tests. Numbers 

and rates of prey consumption were measured for each instar of predator and prey.  

Results showed that consumption increased and prey handling time decreased as predator 

life stage advanced, and prey stage decreased. Mallada basalis exhibited both a shorter 

handling time and corresponding higher consumption rate on P. citri compared with T. 

kanzawai. Handling time and consumption rate also were positively affected by 

increasing prey density. Mallada basalis did not exhibit notable species or life stage 

preferences, and prior feeding experience on one mite species did not affect subsequent 

prey choice between the two mites. Lacewings significantly reduced T. kanzawai and P. 

citri populations at a predator:prey ratio of 1:30 and this improved at ratios of 1:15 and 

1:10. Control of T. kanzawai was slightly better than P. citri when the mites occurred 

singly and together. Consumption by M. basalis increased with temperature up to 30°C. I 

conclude that M. basalis has high potential for augmentative biological control of papaya 

mites. Further field investigations are needed for making final recommendations.  
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CHAPTER 1 - Introduction and Literature Review   

General information about papayas 
The papaya, Carica papaya L., belongs to the small family Caricaceae allied to 

the Passifloraceae. It is believed to be native to southern Mexico and neighboring Central 

America, and is now present in many tropical and subtropical countries (Morton, 1987; 

Nakasone and Paul, 1998). The papaya is a short-lived, fast-growing, woody, large 

perennial herb, that can reach 6-9 m in height. The hollow green or deep purple trunk is 

straight and cylindrical with prominent leaf scars. Its stem is usually hollow, herbaceous, 

and unbranched. The leaves emerge directly from the upper part of the stem in a spiral on 

nearly horizontal petioles 0.3-1.05 m long, and the blade is deeply divided into 5 to 9 

main segments. Both the stem and leaves contain copious white milky latex (Morton, 

1987). 

The papaya bears 5-petalled flowers that are fleshy, waxy and slightly fragrant. 

Some plants bear only pistillate (female) flowers, some bear hermaphrodite (perfect) 

flowers having both female and male organs, while others bear only staminate (male) 

flowers. Pollination mechanisms in papaya are not well-known. Wind, bees, and moths 

can be important agents (Prest, 1957; Stambaugh, 1960; Garrett, 1995; Nakasone and 

Paull, 1998); however, hand pollination is sometimes necessary for a proper fruit set. The 

fruit is pear-shaped with golden-yellow skin. The flesh, also golden-yellow, is juicy and 

silky smooth, with a sweet-tart flavor (Morton, 1987).  

Ripe papaya is usually consumed fresh as a breakfast or dessert fruit. It can also 

be processed and used in a variety of products such as jams, fruit juices, and ice cream. 

Unripe fruits and leaves are consumed as vegetables (Morton, 1987; Tipton et al., 1990; 

Villegas, 1997; Watson, 1997). Several enzymes have been found in papayas, of which 

papain is of commercial importance. Papain is a milky latex collected by making 

incisions in unripe papayas (Nakasone and Paull, 1998). It resembles the animal enzyme, 

pepsin, in its digestive action. Papaya latex is either sun-dried or oven-dried and sold in 

powdered form to be used in beer clarifiers, meat tenderizers, digestion aids, wound 
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debridement aids, tooth-cleaning powders, and other products (Villegas, 1997; Nakasone 

and Paull, 1998; El Moussaoui et al., 2001). 

A number of insect and mite pests attack papayas (Morton, 1987; Pena and 

Johnson, 1998; Mossler and Nesheim, 2002). These include tobacco thrips (Thrips tabaci 

Lindeman), the papaya whitefly (Trialeurodes variabilis (Quaintance)), papaya scale 

(Philephedra tuberculosa Nakahara and Gill), mealybugs (Pseudococcus longispinus 

(Targioni-Tozzetti)), papaya fruit fly (Toxotrypana curvicauda Gerstaecker), and spider 

mites (Tetranychus spp. and Panonychus citri (McGregor)). In addition, plant parasitic 

nematodes may cause problems on papayas in some areas. Species of plant parasitic 

nematodes reported to be associated with papaya plants include Rotylenchulus reniformis 

Linford & Oliveira, Meloidogyne spp., Helicotylenchus dihysteria (Cobb) Sher, 

Quinisulcius acutus (Allen) Siddiqi, and Criconemella spp. (Mossler and Nesheim, 

2002). 

The principle diseases affecting papaya include papaya ringspot virus, 

anthracnose (Colletotrichum gloeosporioides), powdery mildew (Oidium caricae), leaf 

spot (Asperiosporium caricae), blight (Phytophthora palmivora) and papaya droopy 

necrosis virus (Sun, 1978). These diseases attack papaya plants and/or fruits and can be 

great threats to papaya growth and production. 

Papayas in Taiwan 
The papaya is an important fruit crop in Taiwan. The growing area of papayas in 

Taiwan is about 3800 hectares, with annual production of 126,500 tons (Anonymous, 

2006). Most of the papayas are grown in the middle, southern, and eastern parts of 

Taiwan, but some are produced in northern Taiwan (Wang, 1991). Papaya cultivation in 

Taiwan has two seasons: spring and fall. The spring crop begins in December and harvest 

occurs from November to the following May, whereas fall papayas are planted in August 

and harvested from July to the following January. 

‘Tainung No. 2’ is the principle papaya variety cultivated in Taiwan (Wang, 

1991). This cultivar grows vigorously, matures early, and sets fruit at low stem sites. The 

long, oval fruit is medium-sized, weighs about 1 kg, has deep green skin, juicy red flesh, 

and a rich sweet flavor. 
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Papaya pest and disease problems in Taiwan 
 A number of common pests and diseases affect papayas in Taiwan (Hao et al., 

1996). Papaya ringspot virus (PRSV) is one of the most destructive diseases of papaya 

(Purcifull et al., 1984). It was discovered in Taiwan in 1975 and has spread throughout 

the country, destroying the most commercial papaya plantations within 2 to 3 years of 

infection (Wang et al., 1978; Wey et al., 1978). The most popular papaya cultivar in 

Taiwan, ‘Tainung No. 2’, is particularly susceptible to PRSV (Lin et al., 1989). This 

disease is nonpersistently transmitted by a number of aphid species, including Myzus 

persicae Sulzer, Aphis gossypii Glover, Aphis medicaginis Koch, Aphis rumicis Linn., 

and Micromyzus formosanus Tak. (Jensen, 1949; Zetter, et al., 1968; Wang, 1981; 

Purcifull et al., 1984). The virus does not multiply within the aphid vectors. Instead, it is 

carried on their mouthparts and is transmitted from plant to plant during feeding (Namba 

and Higa, 1975; 1977; Wang, 1981). The disease can also be spread by planting infected 

papaya seedlings in uninfected areas. The first symptoms are irregular mottling of young 

leaves, followed by leaf yellowing with transparent areas, leaf distortion, growth 

retardation, and dark green concentric rings or green spots on the fruit. Fruit set is sharply 

deformed and smaller when the disease progresses; and fruits borne 2 or 3 months after 

the first symptoms will have a disagreeable bitter flavor (Cook, 1972; Purcifull et al., 

1984). There is no cure for infected plants. If affected plants are not removed, the 

condition spreads throughout the plantation.  

Techniques involving cross-protection (i.e., infecting papayas with mild PRSV 

strains), disease-resistant breeding, and genetic modification have been developed 

(Wang, 1982; Wang, 1987; Wang, et. al., 1987; Yeh et al., 1988; Bau et al., 2003a; 

2003b; 2004). However, cross-protection cannot completely protect papayas from papaya 

ringspot virus (Lin et al., 1989) while disease-resistant varieties are less popular in the 

market than ‘Tainung No. 2’ (Wang, 1991). Genetically modified papayas have not yet 

been released to farmers by the Taiwanese government yet. Cultivation of papayas in 

screenhouses has also been developed to protect papayas from aphids that vector papaya 

ringspot virus, and the protection as high as 97% has been demonstrated (Shi et al., 

1990). Therefore, most papayas in Taiwan are now cultivated in screenhouses. However, 
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the unventilated, warm screenhouse conditions favor the outbreaks of mite pests (Hao et 

al., 1996). 

Mite pests 
The Kanzawa spider mite, Tetranychus kanzawai Kishida, and the citrus red mite, 

Panonychus citri (McGregor), are major pests of papayas in Taiwanese screenhouses (Ho 

et al. 1997) where they occur year-round (Anonymous 2002). Both T. kanzawai and P. 

citri belong to the family Tetranychidae of the order Prostigmata. Tetranychid mites 

develop through four life stages: egg, larva, protonymph, deutonymph, and adult 

(Jeppson et al., 1975). The nymphal and adult stages are initiated during intervening 

periods of inactivity called the protochrysalis, deutocrysalis, and teliochrysalis. During 

these periods the mite anchors itself to a leaf or to its webbing. The legs are bent upon 

themselves and a new cuticle is prepared before the exuvium is cast off (Jeppson et al., 

1975). There are two sexes in Panonychus and Tetranychus, and their reproduction is 

based on arrhenotokous parthenogenesis. That is, unfertilized females produce only male 

offspring and fertilized females produce both females and males (Taylor and Smith, 

1956; Boudreaux, 1963; Helle and van Zon, 1966). The chromosome number in males is 

haploid. Males develop slightly faster than females, which allows them to find, guard and 

fight with other males for quiescent deutonymph females (Cone, 1985). Sex pheromones 

released by the female may be involved in mate-finding (Cone et al., 1971; Oku et al., 

2005). The mating process is usually accomplished immediately after the last molt of the 

female. The male crawls head first under the posterior end of the teneral female and 

arches the end of the abdomen upward to accomplish coupling. The female is held by the 

2 pairs of fore limbs of the male in the process (Gasser, 1951; Evans, et al., 1961; 

Boudreaux, 1963). 

Tetranychid mites feed by penetrating the plant tissue with sharp stylets to remove 

the cell contents. The chloroplasts disappear and the small amount of remaining cellular 

material coagulates to form an amber mass (Jeppson et al., 1975). In the palisade layers, 

only the penetrated cells are damaged; adjacent cells show no evidence of injury. High 

citrus red mite populations on citrus cause substantial changes in photosynthesis and 

transpiration rates (Wedding et al., 1958). It has been shown that transpiration increases 
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during heavy feeding, but then decreases below normal levels after mites have been 

removed. The amount of chlorophyll in the leaf may be decreased as much as 60 percent 

(Wedding et al., 1958). Certain substances may be secreted into the plant tissue during 

feeding by tetranychids (Liesering, 1960). The puncture of new cells proceeds from one 

spot to another in the form of a circle which results in the formation of small rounded 

chlorotic spots. Continued feeding leads to irregular spots formed by the integration of 

primary suction spots; finally the typical picture of tetranychid injury appears. 

Transpiration is highly accelerated, which eventually leads to the drying out and dropping 

of leaves. Strongly injured leaves may exhibit no photosynthesis at all (Liesering, 1960). 

Tetranychids may be spread from plant to plant by air currents. They may also be 

spread by the movement of infested plants or contaminated tools or clothing. They also 

can crawl to nearby plants, especially when the infestation is severe and leaves become 

dry (Jeppson, et al., 1975). 

Tetranychus kanzawai 
Tetranychus kanzawai is an important pest mite throughout East and Southeast 

Asia, attacking over a hundred species of plants, including many crops and ornamental 

plants (Bolland et al., 1998; Zhang, 2003). It is normally an outdoor species, but can 

attack greenhouse plants as well. The eggs are often laid on the undersides of leaves. 

They are spherical in shape and are clear when freshly laid. The larvae and nymphs are 

yellowish green, and the adults are red or yellowish red depending on host plants. They 

often feed on chloroplasts on the under surface of the leaf, which causes the upper leaf 

surface to develop characteristic whitish or yellowish stippling. As mite feeding 

continues, the stippling coalesces to form brownish lesions (Helle and Sabelis, 1985; 

Yamada and Tsutsumi, 1990; Zang, 2003). Heavy damage eventually leads to wilting and 

defoliation, which further reduces plant growth.  

Development of T. Kanzawai occurs above 10.3°C. Development time from egg 

to adult is 19 to12 days at 20 to 25°C, respectively. Adult sex ratio is usually female 

biased to about 67%. Adult life span is 20-33 days in females and 19-35 days in males at 

15-30°C. Fecundity ranges from 28 eggs/female at 15°C to 76 eggs/female at 30°C 

(Zhang, 2003). Reproductive diapause is facultative and a higher proportion of females 
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enter diapause at lower temperatures. At 16°C, 100% of females enter diapause 

(Fujibayashi and Sekita, 1993). 

Panonychus citri  
Panonychus citri has a worldwide distribution and is known to occur on over 80 

species of plants, including citrus, rose, almond, pear, castor bean, and several broadleaf 

evergreen ornamentals (Bolland et al., 1998; Zhang, 2003). The eggs are pale to red, 

nearly spherical, somewhat flattened on the bottom, and stalked on the top with guy 

fibrils radiating from the tip of the stalk to the leaf surface. The larvae, nymphs and adults 

are dark red to purplish in color. This species can feed on both sides of leaves and 

produces a stippled appearance initially, which develops into pale patches later. With 

continuous feeding and damage, the leaves become grey, silver or yellow. Development 

occurs above 10°C and all stages die at 40°C. Developmental time is shorter at higher 

temperatures and is about ten days near 25°C, which is the optimal temperature. At this 

temperature, adult females live for about nine days and lay an average of 25 eggs (Zhang, 

2003). Sex ratio is biased, with about 70% females. A relative humidity of 65% is 

optimal for development and reproduction (Beitia and Garrido, 1991b; Tian and Pang, 

1997). This species prefers moderate climatic conditions. Low humidity and very high 

temperature are detrimental to population development of this mite. 

Management of T. kanzawai and P. citri 

Chemical control 

Petroleum oils, chlorinated hydrocarbons, and synthetic dinitrophenyl, 

organophosphorus and carbamate acaricides, as well as seed oil of chinaberry (Melia 

azedarach) and certain new types of pesticides, such as abamectin, have been used to 

control T. kanzawai, P. citri and other tetranychid mites (Jeppson, et al., 1975; Zhang, 

2003). However, spider mites in the genera Panonychus and Tetranychus are capable of 

rapidly developing resistance to a wide variety of toxicants (Jeppson, et al., 1975; 

Kuwahara, 1977; Cranham and Helle, 1985; Hoy and Conley, 1987; Richter and Schulze, 

1990; Herron, et al., 1993). Mite populations resistant to a toxicant are often cross-

resistant to chemically-related, and to some unrelated, compounds (Hansen et al., 1963; 
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Jeppson, 1963). Thus, the control of the spider mites has been difficult by chemical 

means. Moreover, chemical applications suppress natural enemies of the spider mites, 

which often leads to mite outbreaks (Furuhashi, 1990). To improve efficacy and reduce 

adverse impacts on the environment, newer approaches to mite control have been 

developed recently, which incorporate the principles of integrated pest management, and 

offer alternatives that reduce dependency on chemical pesticides.  

Biological control  

One such alternative is biological control, which utilizes the natural enemies of a 

pest to suppress the pest’s population, making it less abundant and thus less damaging 

than it would otherwise be. Biological control contributes to pest suppression, either by 

replacing pesticides or by reducing the amount and frequency needed. In this way, there 

is less environmental contamination and less disruption to beneficial and other non-

harmful species. Among the natural enemies that feed on mites in the genus Tetranychus 

are predatory mites, especially phytoseiids; coccinellid beetles in the genus Stethorus; 

staphylinid beetles in the genus Oligota; chrysopids; some species of coniopterygids; 

predacious Hemiptera belonging to the families Anthocridae and Miridae; predacious 

thrips; and Cecidomyiid flies (Jeppson, et al., 1975; Helle and Sabelis, 1985; Zhang, 

2003).  

Of these, phytoseiid mites have received the most intensive study, and are now 

widely-used in many parts of the world for the control of phytophagous mites (McMurtry 

and Croft, 1997; Gerson et al., 2003). Many phytoseiids have a shorter life cycle than 

their prey, equivalent reproductive potential, good searching capacity, and ability to 

survive on relatively few prey. But most phytoseiids are limited by the amount of prey 

they can consume. On the other hand, green lacewings (Neuroptera: Chrysopidae) with 

their excellent searching ability, voracious prey consumption, and wide host range have 

the potential to prevent the development of high mite populations. 

Biological control using green lacewings 

The family Chrysopidae includes over 1,200 currently recognized species and 

subspecies (Gepp 1984, Brooks and Barnard 1990). The adults have long filiform 

antennae, strong mandibles and cursorial legs. The wings are large and subequal. Much 
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of the venation is green, but some veins in a few species are dark (Stelzl and Devetak, 

1999). Eggs are normally stalked, up to 3mm in length, and elongate-oval in shape. The 

length of the stalk compared to the length of the egg differs widely and is characteristic 

for the species. Eggs can be deposited singly, in loose groups, or in clusters, which is also 

a species specific characteristic (Stelzl and Devetak, 1999). The elongate larvae are 

campodeiform and may be either active or cryptic predators. Mandibles and maxillae are 

curved and are closely associated on each side to form a channel for passage of food 

(Gepp 1984). The larval stages of many chrysopids cover their dorsum with debris, 

including their own cast cuticles, remains of prey, and fragments of vegetable or other 

matter. Such larvae are commonly referred to as “trash-carriers” or “debris-carriers” 

(Canard and Principi, 1984). It has been suggested that the debris may protect the larvae 

against natural enemies (Principi 1946, New 1969, Eisner et al. 1978). Certain non-

debris-carrying or naked larvae, in the presence of a potential enemy, can curve the 

abdomen upwards and project from the anus a droplet of liquid towards the potential 

attacker. This acts as a repellent and has been noted to paralyze antagonists (Kennett, 

1948) or even congenerics at the start of a cannibalistic encounter. 

There are three larval instars - all predaceous. The third instar spins a cocoon of 

Malpighian tubule silk in which it becomes enclosed. The larval-pupal molt occurs within 

the cocoon, and the dectious pupa leaves the cocoon a few hours before the imaginal 

ecdysis (Canard and Principi, 1984). All chrysopid larvae naturally feed on small, 

comparatively soft-bodied arthropods. They are characteristically highly voracious and 

often have a broad prey range. Prey that have been recorded include aphids of nearly all 

families; a wide range of Coccoidea, including Monophlebidae, Pseudococcidae, 

Eriococcidae, Coccidae, Diaspididae and others; various leafhoppers and related families 

including Cercopidae, Cicadellidae, Membracidae and Fulgoridae; whiteflies; psyllids; 

thrips; psocids; Lepidoptera, including eggs and larvae of Tortricidae, Pyralidae, 

Noctuidae and Pieridae; tetranychid and eriophyid mites; and, less commonly, larvae and 

eggs of beetles, the flies, sawflies and of other Neuroptera (Pariser, 1919, Killington, 

1936).  

Because of their polyphagous nature and high search rates for prey, green 

lacewings have drawn much interest as biological control agents. Investigators have 
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suggested their potential against several species of major agricultural pests, such as 

various aphids, Colorado potato beetle, European red mite, grape mealybug, bollworm, 

and tobacco budworm (Ridgway and Murphy, 1984). In addition, some green lacewings 

are known to have tolerance to commonly-used pesticides (Bigler, 1984), and they are 

relatively easy to rear in captivity (Tulisalo, 1984). These traits enhance their value for 

integrated pest management. Currently, some green lacewings are commercially 

produced for use in biological control programs (Tulisalo, 1984). 

Mallada basalis  

Mallada basalis Walker is the common chrysopid in agricultural fields in Taiwan. 

Eggs are green in color, and are laid singly on stalks. Larvae are trash-carriers and are 

predacious. Adults feed only on honey and pollen and they are attracted to light. The 

yearly average developmental time from egg to adult is 28.1 days with 4.4 days for egg, 

11.8 days for larva, and 11.9 days for pupa (temperature ranged 14 - 30°C). Adults can 

live for 2 to 3 months. Females live for a shorter time than males and can lay about 800 

eggs during their life (Chang, 2000). Previous investigations have suggested the potential 

of M. basalis as a biological control agent against several species of arthropods, such as 

Phyllocnistis citrella Stainton, Aphis spp, Nipaecoccus filamentosus (Cockerell), 

Diaphorina citri Kuwayama, and P. citri on citrus; T. kanzawai on papaya; P. citri on 

Indian jujube; T. urticae and T. kanzawai on strawberry (Lo 1997). Mallada basalis can 

be successively mass-produced using a microcapsulated artificial diet in a cost-effective 

manner. For example, it costs about $0.028 (U.S.) to produce one adult (includes diets, 

labor, utilities and facility) and each female can produce an average of 736.3 eggs 

(Chang, 2000; Lee, 2003). Besides, cold-storage techniques have been developed for 

eggs, larvae, and pupae, which improves shipping and making scheduled releases (Wu 

1992). As with other green lacewings, M. basalis has been shown to have some tolerance 

to certain insecticides, fungicides, and acaricides (Tzeng and Kao 1996, Lo 2002). All of 

this information suggests that M. basalis may be very compatible for use in integrated 

pest management. Although field evaluations of M. basalis have been done (Hao, et al., 

1996; Lo, 1997; Hao, 2002), little is known about its feeding and other predatory 
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behaviors. Moreover, precise predator:prey ratios for effective biological control have not 

yet been investigated.  

Therefore, my dissertation has focused on a series of laboratory studies – many 

involving direct observations under the microscope – to investigate the feeding behaviors, 

predatory potential, and prey preference of M. basalis to the two major papaya acarine 

pests, T. Kanzawai and P. citri. A laboratory assessment on control efficacies of different 

predator:prey release ratios of M. basalis to a single mite species, T. kanzawai or P. citri, 

and a mixture of these two mite species was also conducted. Results from these studies 

will help in making recommendations for effective application of green lacewings in the 

papaya integrated pest management program. 

Specific objectives and hypotheses of this study 
(1) To determine the prey acceptability, handling times, and relative consumption   

      rates of larval stages of M. basalis to different life stages of the       

      Kanzawa spider mite, T. kanzawai, and the citrus red mite, P. citri (the latter  

       were evaluated at two densities). 

Hypothesis: 

Feeding behaviors (e.g., prey acceptability, handling times, and  

relative consumption rates) of the predator will be affected by the predator’s age  

as well as the prey species, prey age, and prey density. 

(2)  To evaluate prey preference of each larval instar of M. basalis when exposed to  

mixture of life stages of T. kanzawai and P. citri (each mite species tested 

separately). 

Hypothesis: 

M. basalis will exhibit prey preference among different life stages of the mite 

species, and the preference will change over the lacewing’s age. 

(3)  To determine if M. basalis exhibits a preference between T. kanzawai and P. citri,   

and if the effect of prior feeding experience on one prey species will affect foraging 

behavior on the second prey species. 

Hypotheses: 

1. M. basalis will exhibit a preference for one mite species over the other.  
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2. M. basalis will change prey preference based on its previous feeding   

    experience. 

(4) To compare the control efficacies of different predator:prey release ratios of M. 

basalis for a single mite species, the Kanzawa spider mite or the citrus red mite, and 

for a mixture of these two mite species. 

Hypotheses: 

1. Control efficacy of M. basalis to the pest mites would increase as the predator-to-  

     prey ratio decreases.  

2. The response (predation rate) to predator-prey ratios would differ depending on   

    which prey species (or mixture of species) is presented to M. basalis. 

(5) To determine the effect of temperature on prey consumption rate of M. basalis. 

Hypotheses: 

1. Within the temperature range of temperature favorable for growth and   

     development, prey consumption by M. basalis will increase directly with  

     temperature. 

2. The relationship between temperature and prey consumption would differ for T.   

    kanzawai and P. citri. 
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CHAPTER 2 - Foraging, prey acceptability, handling times, 

and consumption rates by the green lacewing Mallada basalis 

Walker (Neuroptera: Chrysopidae) on two species of papaya 

pest mites, Tetranychus kanzawai Kishida and Panonychus citri 

(McGregor) (Acari: Tetranychidae) 

ABSTRACT 
We measured prey acceptability, foraging schedule, short term consumption rate, 

and handling time of larvae of a domesticated line of the green lacewing, Mallada 

basalis, in no-choice tests with different life stages of two mite pest species of papaya, 

Tetranychus kanzawai and Panonychus citri. Following a specific period without prey, 

all three larval instars of M. basalis generally exhibited considerably high rate of 

acceptance of all life stages of both T. kanzawai (59-94%) and P. citri (62-100%). In 2-h 

trials, second and third instar lacewings spent an average of 112.3 min actively foraging 

compared to only 48.5 min for 1st instars, which spent proportionately more time at rest. 

Prey consumption increased with life stage of M. basalis, but decreased with prey life 

stage. Third instar lacewings consumed an average of 311.4 T. kanzawai eggs or 68.2 

adults in 2 hours. These prey consumption rates were 2.3-2.6 times greater than those 

observed for second instar lacewings, and were 15.9-17.x times greater than those 

observed for first instar lacewings. In general, M. basalis consumed more P. citri than T. 

kanzawai in the tests. Third instar lacewings consumed an average of 303.0 P. citri eggs 

to 114.0 adults in 2 hours. These prey consumption rates were 2.0-2.6 times greater than 

those observed for second instar lacewings, and were 3.6-9.3 times greater than those 

observed for first instar lacewings. The prey handling time for M. basalis decreased with 

advancing larval age of the predator, but increased with advancing life stage of prey. 

Third instar M. basalis consumed a T. kanzawai egg in only 7 sec and consumed an adult 

within 1 min, while first instar used an average of 23 sec to consume a T. kanzawai egg, 
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and an average of 8 min and 46 sec to consume an adult. With exception of prey eggs, 

handling times of T. kanzawai were generally longer than P. citri by all M. basalis 

instars. Handling times were shorter, and numbers of P. citri consumed were greater at 

the higher mite density than at the lower density, while there were generally no 

significant differences in prey acceptability and foraging time between these two 

densities. Collectively, this study demonstrated that larvae of a domesticated line of M. 

basalis are active foragers, exhibit consistently high levels of prey acceptability, have 

short handling times relative to other predators, and possess a high capacity for prey 

consumption for both mite pests. These findings suggest that M. basalis larvae may have 

high potential for augmentative biological control of mites on papayas. 

 

Key Words: phytophagous mites; predator-prey interaction; feeding behavior; predatory 

potential; biological control 
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INTRODUCTION 
Papaya is an important fruit crop in Taiwan with annual production estimated at 

about 126,500 tons (Anonymous, 2006). The principle papaya variety in Taiwan is 

‘Tainung No. 2’ (Wang, 1991). However, this cultivar is susceptible to the papaya 

ringspot potyvirus (Lin et al., 1989), which is one of the most destructive diseases 

affecting papaya (Purcifull et al., 1984). Cultivation of papayas in screenhouses has been 

developed to help protect this crop from aphids which serve as vectors for papaya 

ringspot virus. Demonstrated levels of protection have reached 97% (Shi et al., 1990). 

Therefore, most papayas in Taiwan are now grown in screenhouses. However, the 

unventilated, warm conditions in screenhouses favor outbreaks of acarine pests (Hao et 

al., 1996). 

The Kanzawa spider mite, Tetranychus kanzawai Kishida, and the citrus red mite, 

Panonychus citri (McGregor), are two major acarine pests of papayas in screenhouses 

(Ho et al. 1997). Both occur throughout the year in Taiwan with populations peaking in 

dry months of October through May (Cheng, 1966; Huang, et al., 1997; Anonymous 

2002). T. kanzawai feed on cell chloroplasts on the under surface of the leaf, causing the 

upper surface of the leaf to develop a characteristic whitish or yellowish stippling, which 

joins and becomes brownish as mite feeding continues (Helle and Sabelis, 1985; Yamada 

and Tsutsumi, 1990; Zang, 2003). Heavy damage causes wilting and defoliation. P. citri 

feeds on both sides of leaves and produces a stippled appearance initially, which develops 

into pale patches later. With continuous feeding and damage, the leaves become grey, 

silver or yellow (Zhang, 2003).  

Control of mite pests on papayas depends mainly on chemical applications. 

However, the intensive application of miticides, and the short life cycle and high 

reproductive rates of mites have led to the development of resistance in both the Kanzawa 

and citrus red mite to many registered miticides (Cranham and Helle, 1985; Furuhashi, 

1994; Masui et al., 1995; Yamamoto, et al., 1996; Goka, 1998; Aiki et al., 2005). The 

number of miticides that can be used is further limited because many miticides produce 
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unacceptable phytotoxicity to papayas (Lo, 2002). It is therefore necessary to search for 

alternative approaches for controlling papaya mite pests. 

The green lacewing, Mallada basalis (Walker) (Neuroptera: Chrysopidae) is 

common in agricultural fields in Taiwan. The adults feed on nectar and honeydew, but 

larvae are generalist predators (Wu, 1995). Previous investigations have suggested the 

potential of this lacewing species as a biological control agent of several species of 

arthropod pests, including Phyllocnistis citrella Stainton, Aphis spp, Nipaecoccus 

filamentosus (Cockerell), Diaphorina citri Kuwayama, and P. citri on citrus; T. urticae 

Koch and T. kanzawa on strawberry; and P. citri on Indian jujube (Lo, 1997). M. basalis 

can be successfully mass-produced using a microencapsulated artificial diet in a cost-

effective manner (Lee, 1994; 1995; 2003). Cold storage techniques have also been 

established for maintaining various stages for shipping and scheduled releases (Wu, 

1992). In addition, tolerance of M. basalis to some insecticides, fungicides, and 

acaricides has been demonstrated (Tzeng and Kao, 1996, Lo, 2002). For all of these 

reasons, M. basalis may be a compatible, viable candidate species for use in integrated 

pest management programs.  

Although there have been many field evaluations of M. basalis (Lo, 1997), little is 

known about its prey selection and feeding behaviors. Knowledge of predator feeding 

behavior is crucial for evaluating M. basalis as a biological control agent of papaya mites. 

Therefore, this study investigated aspects of the feeding behavior and predatory potential, 

i.e., foraging schedule, prey acceptance, handling times and consumption rates, of M. 

basalis on T. kanzawa and P. citri in the laboratory.  

 

MATERIALS AND METHODS 

Insect and plant cultures 

Papayas: 

Papaya seedlings (Carica papaya L., ‘Tainung No. 2’) were purchased from a 

commercial nursery 3-4 weeks after germination. The seedlings were then transferred 

individually to 9-cm diameter pots, and maintained in a room at 26±2°C, 70±10% RH 
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and a photoperiod of 14:10 (L:D) until they were approximately 25 cm tall and suitable 

for rearing mites. The seedlings were watered twice a week, but without any fertilization. 

Mites: 

Tetranychus kanzawai and Panonychus citri were collected from papaya plantations 

in the Nantou area of Taiwan in 2003 and maintained in separate rooms on papaya 

seedlings at 26±2°C, 70±10% RH and a photoperiod of 14:10 (L:D).  

Green lacewings: 

The Mallada basalis used in this study were from a colony that had been 

maintained in the laboratory continually since 1999 when field collections were made, 

and thereafter, no wild individuals have been introduced into the colony. For rearing and 

experiments, lacewings were kept in a room at 26±2°C, 70±10% RH and a photoperiod 

of 14:10 (L:D). Larvae were reared on a microencapsulated artificial diet consisting of 

honey, sugar, Brewer’s yeast, yeast autolysate, casein hydrolysate, egg yolk, honeybee 

larvae and distilled water (Lee, 1994; 1995). The microcapsules had a diameter of 465 

μm and a thickness of 10μm. Larvae were reared in plastic pans (40 x 30 x 10.5 cm (L x 

W x H)). Corrugated paper rolls (10 cm diameter and 1.5 cm thick) were first placed in 

each pan, and each pan then received two tablespoons of sawdust, 25 ml of 

microencapsulated diet, and approximately 1,000 green lacewing eggs. Subsequently, 

diet was added three more times at 3-day intervals in the following amounts: 75, 100 and 

25 ml. These amounts corresponded to relative feeding rates of larvae during growth and 

development. To prevent lacewing larvae from escaping, and to avoid invasion by 

predators such as ants and spiders, a piece of 200 mesh white screen was taped over the 

top of each rearing pan.  

Most larvae pupated on or inside the corrugated paper rolls after which they were 

moved to a black acrylic box (45 x 45x 45 cm) for collection of emerging adults. The lid 

of the box was fitted with a clear acrylic cylinder (15 cm diameter and 20 cm height). 

Upon emergence, lacewing adults were attracted to light and would fly up into the 

cylinder. The adults were then placed in another acrylic cylinder with a piece of white 

paper attached to the inside wall for oviposition. The white paper was changed once 

every day. Adult lacewings were maintained on a diet of Brewer’s yeast and honey (1:1). 
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To feed adults, diet was applied to a section of plastic slide which was then hung inside 

the cylinder. Water was provided by wetting a cotton ball. 

General experimental procedures 

Tests with predators and prey were done on individual pieces of papaya leaf (size 

range: 225 mm2 to 3160 mm2 depending on size of mite life stage to maintain equal 

densities) which were floated in water with the lower leaf surface facing up in a 9-cm 

diameter plastic petri dish. Specified numbers of T. kanzawai or P. citri and one M. 

basalis larva were placed on the leaf with a fine-hair paint brush. The experimental 

setting kept the lacewing and the mites on the leaf throughout the observational period. 

The feeding activities of the lacewing larva were continuously observed under a 

microscope for two hours. Light was provided by a fluorescent illuminator (KL 1500 

electronic, SCHOTT) (~95 lux) and room temperature was 26±2°C. Tests were done with 

all combinations of the three lacewing instars and the four mite instars (egg, larva, 

nymph, adult female) for a total of 12 treatment combinations for each mite species. 

Lacewing larvae were in the first day of each instar and prior to testing had been held in 

individual vials without food for 2, 4 or 8 h for 1st, 2nd and 3rd instars, respectively, as it 

was thought that different predator instars may withstand different durations of food 

deprivation to reach the same hunger status. Preliminary tests indicated that these periods 

of food deprivation would trigger the lacewing foraging immediately after release, but 

without causing a weakened foraging ability.  

The mite densities used in various tests were as follows based on mite’s life stage: 

33 eggs, 27 larvae, 19 nymphs, and 13 adult females per 100 mm2 leaf area. These 

densities correspond to the volumetric ratios of various life stages of the two mites (egg : 

larva : nymph : adult female = 1: 3 : 5: 7), and were used to make the distances that the 

lacewings needed to travel to encounter (physically contact) a prey more similar in 

various tests. The total amount of mites provided in each test was 1.5-fold the amount 

that a lacewing usually could take during a 2-hour period. Five observations were carried 

out for each predator-prey combination. 

Data collected included a sequential record of prey handling times (measured as the 

time from a prey encounter to consumption; handling times were then averaged for each 
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individual predator), periods of active foraging (searching plus handling prey) and rest, 

and the number of prey consumed (including both fully and partially consumed). Prey 

acceptability was computed as the proportion of encountered prey that were attacked and 

consumed.  

The spatial distributions of T. kanzawai and P. citri on papaya differ in the field. T. 

kanzawai has a clumped distribution, whereas P. citri are more evenly spaced over the 

leaves. Relative abundance also differs between the two species, with P. citri occurring at 

lower densities in nature than T. kanzawai. The mite densities we used in comparisons 

between species were similar but represent a moderately high field density for T. 

kanzawai but an extremely high density for P. citri. To examine response of lacewing 

larvae to more representative densities of the latter mite, tests with P. citri at what we 

termed “low” density (i.e., 1.7 eggs, 1.4 larvae, 0.9 nymphs, and 0.6 adult females per 

100 mm2 leaf area, and papaya leaves of 14,200 – 17,400 mm2) were also carried out; 

these were about 1/20 of the high densities, and represent moderate densities of P. citri 

occurring in the field. Observations for the various predator-prey combinations (3 

predator instars x 4 mite instars x 2 mite species x 2 mite densities [for P. citri]) were 

blocked over time and the order of observations was randomized for each block.   

 

Data analyses 

Data for various comparisons were subjected to a variance check first to determine 

if the data meet the assumption underlying analysis of variance that the standard 

deviations of all categories subjected to the same comparisons are equal. In cases where 

the data were shown to have unequal variance (e.g., handling times comparisons), square 

root transformations were performed prior to analysis. Subsequently, normally distributed 

(or normalized) data were analyzed using analysis of variance (ANOVA), and non-

normally distributed data were analyzed with the Kruskal-Wallis test. Means were 

separated for significance using Fisher’s protected LSD procedure. For pair-wise 

comparisons, a t-test assuming equal variance was used to analyze normally distributed 

data, and a Mann-Whitney W test was used to analyze non-normally distributed data for 

the comparisons between different mite species, and a t-test assuming unequal variance 
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was used for comparisons between the two mite densities. The significance level was set 

at P＜0.05. All analyses were conducted using STATGRAPHICS Centurion XV, 

software, 2005 (Statpoint, Inc, Herndon, VA. USA). 

RESULTS 

Prey acceptability 

All larval stages of Mallada basalis exhibited moderate to high rates of prey 

acceptability for various life stages of T. kanzawai (59-94%) and P. citri (62-100%), and 

in general there were no significant differences in prey acceptability of the lacewing 

among various life stages of each mite species (Tables 1-3). However, prey acceptability 

of adult T. kanzawai was significantly higher for 3rd instar M. basalis than for 1st or 2nd 

instars (F = 6.53; df = 14; P = 0.01) (Fig. 1). Otherwise, prey acceptability did not differ 

among M. basalis instars (Figs. 1-3).  

Acceptance of T. kanzawai and P. citri generally did not differ for the various M. 

basalis instars except that 1st instar (t = 2.83; df = 4; P = 0.02) and 3rd instar (W = -11.5; 

df = 4; P = 0.02) predators accepted a greater proportion of P. citri larvae than T. 

kanzawai larvae (Figs. 4-6). When P. citri were present at the lower density (1.7 eggs, 1.4 

larvae, 0.9 nymphs, or 0.6 adult females per 100 mm2 leaf area), which represents a 

moderate density in the field, M. basalis exhibited prey acceptability rates that were 

mostly similar to those exhibited when P. citri were present at the higher density (33 

eggs, 27 larvae, 19 nymphs, or 13 adult females per 100 mm2 leaf area) (Fig. 7-9). 

Foraging time 

In 2-h trials, second and third instar lacewings spent most of their time actively 

foraging (mean = 112.3 min) while 1st instars spent less time actively foraging (mean = 

48.5 min) and relatively more time at rest (P＜0.05) (Tables 1-3 and Figs. 1-3). The time 

spent by M. basalis foraging for the two mites generally did not differ among various 

mite life stages (Tables 1-3) except that first instars foraged longer for later-instar T. 

kanzawai than for earlier stages (F = 8.73; df = 19; P = 0.001) (Table 1). 
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A comparison of lacewing foraging times between the two mite species showed that 

there were generally no differences between the two mites, except that 1st (t = 9.83; df = 

4; P < 0.001) and 2nd (W = -10.5; df = 4; P = 0.03) instar predators actively foraged for a 

significantly longer time on P. citri eggs than on T. kanzawai eggs (Figs. 4-6). There 

were generally no P. citri density-related differences in foraging time among M. basalis 

instars. However, first and second instar M. basalis took significantly longer to forage on 

P. citri adults at high density than at low density (t = 2.43 and 2.89; P = 0.04 and 0.02; df 

= 4, for 1st and 2nd instar, respectively) (Figs. 7-8). 

Handling time 

In all three M. basalis instars, handling times of both T. kanzawai and P. citri 

increased with advancing age/stage of prey (Tables 1-3). For example, third instar M. 

basalis consumed a T. kanzawai egg in about 7 sec and an adult in about 60 sec, 

compared to an average of 9 and 30 sec, respectively, for P. citri. On both mite species 

the handling times for M. basalis generally decreased with lacewing age (Figs. 1-3). 

Handling times were shortest for 3rd instars M. basalis and longest for 1st instars (Figs. 1-

3). Treating the average handling time of each predator as a response and using the 

analysis of variance to compare means across stages is a robust way to analyze these data. 

However, comparisons of within and among predator variances indicate that treating 

these responses as random samples from normal distributions that may only differ in 

stage means is difficult to justify. This problem cannot be fixed by transforming the data 

or using nonparametric analyses. Therefore, assessing statistical significance from the 

available data should be considered as tentative until future studies which record 

covariates, such as prey size, are carried out.  

M. basalis mostly took a shorter time to handle P. citri than to handle T. kanzawai 

except for prey eggs where the mean handling time was significantly longer for P. citri 

than for T. kanzawai (1st instar: t = -4.11; df = 4; P = 0.0147; 2nd instar: t = -4.93; df = 4; 

P = 0.0079; 3rd instar: t = 3.96; df = 4; P = 0.0167) (Figs. 4-6). With respect to P. citri 

density, handling times in most cases were consistently shorter for M. basalis at the 

higher P. citri density than at the lower one (Figs. 7-9). Greatest statistical differences 

were observed for 3rd instar predators. 
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Short-term consumption rate 

In 2-h no-choice tests, consumption of T. kanzawai by M. basalis increased 

significantly with predator life stage (P＜0.0001) (Fig. 1). Third instars consumed ~ 68 

T. kanzawai adults and ~ 311 eggs, 2nd instars consumed ~ 26 adults and ~ 136 eggs, and 

1st instars consumed ~ 4 adults and ~ 20 eggs (Table 1). There was a trend for decreased 

consumption by M. basalis as prey life stage increased. Results were significant between 

mite immature and adult stages (P＜0.05) (Table 1).  

A similar trend for increased prey consumption with advancing predator larval 

instar was observed when M. basalis fed on P. citri (Table 2 and Fig. 2). In 2-h no-choice 

trials, 3rd instar lacewing consumed ~ 114 P. citri adults, and ~ 303 eggs, while 1st instar 

consumed ~ 12 adults and ~ 83 eggs, respectively. As with T. kanzawai, consumption of 

P. citri by M. basalis decreased with advancing prey life stage (Table 2). However, there 

was a different trend between the two mite species: M. basalis consumed statistically 

similar amounts of T. kanzawai eggs, larvae and nymphs, and significantly fewer adults 

(Table 1); whereas, statistical differences in prey consumption were found for all 

immature stages of P. citri, but not between nymphs and adults (Table 2). In general, all 

larval instars of M. basalis consumed more P. citri than T. kanzawai. However, 

differences in consumption between mite species were consistently statistically 

significant only for adult prey (1st instar: t = 3.55, df = 4, P = 0.008; 2nd instar: t = 3.55, 

df = 4, P = 0.007; 3rd instar: t = 2.93, df = 4, P = 0.02, respectively) (Figs. 4-6).  

Consumption was also influenced by prey density. All instars of M. basalis 

consumed fewer prey when P. citri was offered at low density than at high density 

(P＜0.05) (Figs. 7-9). Furthermore, whereas numbers of P. citri consumed differed 

among life stages at the higher prey density (Table 2), at the low density, the only 

significant differences in prey consumption among mite life stages were found in 2nd 

instar predators (Table 3). Among M. basalis larval stages, 1st instars consumed 

significantly fewer of each prey life stage at low density than did 2nd or 3rd instars (H = 

9.12, F = 14.82, 16.05, 15.32 ; df = 14; P = 0.01, 0.001, 0.0004, 0.0005, respectively, for 
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mite egg, larva, nymph and adult), while there were no significant differences in prey 

consumption between the second and the third instars (Fig. 3). 

DISCUSSION 
Green lacewings are generalist predators, preying on many small, comparatively 

soft-bodied arthropods including aphids, scales, leaf hoppers, whiteflies, thrips, certain 

lepidopteran insects, and tetranychid and eriophyid mites. Despite their broad prey range, 

not all species of insects in these categories are accepted as prey, or at least not equally 

so. For example, Brettell (1979) found that eggs of Spodoptera littoralis and Diparopsis 

castanea are too hard for first instars of Anisochrysa boninensis to pierce, and Toschi 

(1965) reported Meleoma emuncta likewise fail to penetrate the cuticle of adult aphids 

Euthoracaphis umbellariae. Ru et al. (1975) demonstrated that adult Chrysoperla lanata 

refuse to prey on the waxy cabbage aphid, Brevicoryne brassicae, but do accept eggs of 

the noctuid moth, Trichoplusia ni. Chen and Liu (2004) found that Lipaphis erysimi 

(Kaltenbach) is not suitable prey for C. rufilabris and results in a lower prey 

consumption. Our results indicated that both T. kanzawai and P. citri had considerably 

high acceptability to all three larval instars of M. basalis, and that the high acceptability 

covered all life stages of these mite species.  

Additionally, M. basalis had a statistically similar degree of prey acceptability to 

both mites at comparable field densities. T. kanzawai and P. citri can occur 

simultaneously on papaya, including co-infestation of the same leaves. Therefore, my 

results suggest that predation rates may be similar regardless of the species or life stage 

of mite prey encountered. In general, effective biological control agents should be able to 

control the early pest life stages (Royama, 1981; Bellows et al., 1992). The fact that M. 

basalis shows high prey acceptability to all life stages of both papaya mites is a positive 

indicator when evaluating this predator for augmentative biological control.  

A comparison among M. basalis life stages showed that third instars accepted T. 

kanzawai adults to a greater extent than did first and the second instars. In some 

predators, having a sufficiently large body size relative to the size of the prey is important 

for successful predation and, hence, may affect relative acceptability (Manly et al., 1972; 

Mollers and Pietruszka, 1987; Sabelis, 1992; Dean and Schuster, 1995). In part, size 
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differences between prey and predator may contribute to prey defense (Pastorok, 1981). 

In this study, behavioral observations suggest that the lower acceptability of T. kanzawai 

adults by first and second instar M. basalis may be attributed to the greater mobility of 

adult mites, which could make it easier to evade capture. 

Most insects spend only a small part of their time feeding as compared to resting 

and other activities (Matthews and Matthews, 1978; Cohen, 1985; Wiedenmann and 

O’Neil, 1991). The duration of feeding also depends on the nutritional value of food 

(Hassell and Southwood, 1978; Lance et al., 1986; Slansky and Wheeler, 1989). My 

study indicated that during a 2-h period following an absence of prey, 2nd and 3rd instar 

M. basalis can continue foraging for most of the time on all life stages of T. kanzawai and 

P. citri, whereas first instars spent only half of the time actively foraging. One possible 

explanation for reduced foraging in first instars is that they require less food to become 

satiated than later instars.    

Foraging generally did not differ between the two mite species or between high and 

low population densities of P. citri. The long period of foraging on both pest mites 

increases the potential effectiveness of M. basalis as a biological control agent. However, 

first instar lacewings spent a significantly greater proportion of time foraging for T. 

kanzawai nymphs and adults compared to eggs or larvae. The longer activity periods on 

mite nymphs and adults may be linked to longer handling times needed or lower foraging 

efficiency for these later life stages. In fact, handling times were longer on mite nymphs 

and adults than on eggs and larvae despite the fact that the latter were fully consumed by 

first instar M. basalis while nymphs and adults were often partially eaten. Interestingly, 

there were no significant differences in predator foraging time among life stages of P. 

citri although adult prey were still often partially consumed. In addition, first and second 

instar M. basalis had significantly longer foraging times on P. citri eggs compared to T. 

kanzawai eggs regardless of the fact that eggs of both mite species are similar in size. 

Although untested, these results may reflect differences in nutritional quality among 

various life stages of different mite species which, indirectly, may have affected foraging 

time.  

Recently, phytoseiid mites have gained the most attention for biological control of 

teteranychid mites. Zhang (2003) indicated that during the nymphal stages, a 
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Phytoseiulus persimilis Athias-Herriot attacks 15 eggs of Tetranychus urticae and 13 

eggs of T. cinnabarinus, and a Neoseiulus californicus (McGregor) attacks 13 eggs of T. 

urticae and 11 eggs of T. cinnabarinus. Whereas an adult female P. persimilis consumes 

10 to 20 Tetranychus spider mites eggs per day, a N. wormersleyi female consumes 32 T. 

kanzawai eggs per day; and a N. longispinosus female consumes 26 eggs per day. My 

investigations showed that even as first instars, M. basalis possess a much greater 

predatory capability than phytoseiid mites, and the predatory capability of M. basalis 

increases with mite density. This may enable M. basalis to control the mites at high 

population densities. Although first instar lacewings exhibited a much lower predatory 

capability than second and third instars, the duration of this stage lasts only about 2–3 

days in the field. Thus the longest period of predation occurs when larvae are in the 

voracious second and third instars. We also found that total consumption was higher on 

P. citri than on T. kanzawai, and the difference was especially significant for adult mites. 

Additionally, relative consumption rates of mite life stages by different instars of M. 

basalis were not the same for the two prey species. These differences may be due to 

differences in biomass or in the nutritional contents, and it could affect control efficacy of 

M. basalis on these pest mites.  

Handling time is an important factor influencing the amount of prey consumed 

(Rogers, 1972). My results showed that the handling time of M. basalis on both mite 

species increased with prey age and decreased with predator age. This corresponds to 

most of the findings that handling time is relative to predator-prey size (Cook and 

Cockrell, 1978; Mills, 1982; Cohen and Tang, 1997). I found that 3rd instar M. basalis 

consume a Kanzawa mite adult within a minute. This handling time is much shorter than 

those recorded (~4-200 min) for predatory mites feeding on phytophagous mites (Zhang 

et al., 2000; Cote, 2001). The short handling time permits great predatory capability in M. 

basalis to these two pest mites.  

With the exception of prey eggs, M. basalis spent less time handling P. citri than T. 

kanzawai. This may account for the higher consumption of P. citri. However, for prey 

eggs, consumption of P. citri was higher than for T. kanzawai despite the fact that 

handling time for the former was longer than for the latter. In fact, I found that the 

foraging time for eggs of P. citri was longer than for eggs of T. kanzawai, which likely 

 31



explains higher consumption of P. citri eggs. We do not understand why M. basalis spent 

more time foraging for P. citri. One possible explanation is that P. citri eggs are less 

nutritious than those of T. kanzawai. However, this needs to be examined. 

My study also showed that lacewing handling times were shorter when P. citri were 

offered at the higher density than at the lower one. Handling time is a general component 

of a predator’s behavior. It has an important effect on the functional response through its 

influence on prey attack rate (Holling, 1959). Predators may increase search and handling 

efficiency through learning as prey density increases (Holling, 1959). At lower densities, 

handling times may increase, not only because predators have not learned, but because 

they may spend a longer time with individual prey to extract as much available nutrients 

as possible. The shorter handling time of M. basalis in response to increased P. citri 

density could increase the level of biological control of mite populations in the field. 

However, previous theoretical and empirical studies indicate that the type III functional 

response where attack rates increase proportionally with prey density represents the only 

response with population regulating possibilities (Holling, 1965; Huffaker et al., 1971; 

Gotelli, 1995). Moreover, research on green lacewing species has shown that they exhibit 

a type II functional response (Nordlund and Morrison, 1990; Stewart et al., 2002), thus, 

the type of functional response that M. basalis has to the citrus and Kanzawa mites needs 

further research. 

With increasing concerns about environmental issues, agricultural pest control has 

moved increasingly to a more integrated pest management approach with fewer or less 

chemical application being made. Phytoseiid mites have drawn a great deal of attention 

for use in the biological control of the phytophagous mites. Many phytoseiids have a 

shorter life cycle than their prey, equivalent reproductive potential, good searching 

capacity, and ability to survive on relatively few prey, but phytoseiids are limited in the 

amount of prey they can consume (Jeppson et al., 1975). Coccinellids in the genus 

Stethorus have also been considered for biological control of herbivorous mites, but they 

are unable to survive on low prey populations, which limits their ability to keep the prey 

at low density. Staphylinid beetles have too long of a developmental period and lack 

prey-searching ability. The life cycle of these larger predators is too long to match the 

reproductive potential of the plant-feeding mites. They consume a large number of prey 
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and thus are capable of reducing high populations; but they are generally unable to 

prevent the development of injurious mite populations. Green lacewings, with their 

excellent searching ability, relatively short life cycle, and wide host range, have the 

potential to prevent the development of high mite populations.  

This study demonstrated that a domesticated line of M. basalis possesses high prey 

acceptability to two papaya pest mites of all life stages, relatively short handling time on 

this two mites, and voracious prey consumption. In addition, they can be mass-produced 

on artificial diet in a cost-effective manner (USD 0.028 per adult including diet, labor, 

utility, and facility costs, and one female can produce an average of 736 eggs) (Chang, 

2000; Lee, 2003). Chang and Huang (1995) reported that use of M. basalis for controlling 

Tetranychus mites on strawberry costs about USD 150 / ha, and is less expensive than 

chemical pesticides. Thus, M. basalis may be promising even as a biopesticide used for 

inundative release to control the papaya pest mites in screenhouses. However, their field 

performance, predatory behavior and prey preference in the field situation, and predator-

prey release ratios need further investigation to insure the effectiveness of their 

application in the biological control programs. 
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Figure 2-1  Relative foraging and predation efficiency of various larval instars of M. 
basalis on T. kanzawai life stages on papaya (n = 5). Total observation duration = 2 
hr. Prey acceptability denotes proportion of encountered prey that are attacked and 
consumed (including both fully and partially consumed). Total foraging time 
denotes total time spent by the predator searching and handling prey. Handling 
time denotes the time from a prey encounter to consumption. Means with different 
letters are significantly different at P＜0.05 (Fisher’s protected LSD test). Error 
bars represent ±SEM. Handling times were subjected to square root transformation 
before analysis; the untransformed means are presented.  
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Figure 2-2  Relative foraging and predation efficiency of various larval instars of M. 
basalis on P. citri life stages (high density) on papaya (n = 5). Total observation 
duration = 2 hr. Prey acceptability denotes proportion of encountered prey that are 
attacked and consumed (including both fully and partially consumed). Total 
foraging time denotes total time spent by the predator for searching and handling 
prey. Handling time denotes the time from a prey encounter to consumption. Means 
with different letters are significantly different at P＜0.05 (Fisher’s protected LSD 
test). Error bars represent ±SEM. Handling times were subjected to square root 
transformation before analysis; the untransformed means are presented.  
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Figure 2-3  Relative foraging and predation efficiency of various larval instars of M. 
basalis on P. citri life stages (low density) on papaya (n = 5). Total observation 
duration = 2 hr. Prey acceptability denotes proportion of encountered prey that are 
attacked and consumed (including both fully and partially consumed). Total 
foraging time denotes total time spent by the predator for searching and handling 
prey. Handling time denotes the time from a prey encounter to consumption. Means 
with different letters are significantly different at P＜0.05 (Fisher’s protected LSD 
test). Error bars represent ±SEM. Handling times were subjected to square root 
transformation before analysis; the untransformed means are presented.  
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Figure 2-4  Influence of prey species (T. kanzawai and P. citri) on relative foraging 
and predation efficiency of first instar M. basalis on papaya (n = 5). Total 
observation duration = 2 hr. Prey acceptability denotes proportion of encountered 
prey that are attacked and consumed (including both fully and partially consumed). 
Total foraging time denotes total time spent by the predator for searching and 
handling prey. Handling time denotes the time from a prey encounter to 
consumption. Single asterisk indicates a significant difference at P＜0.05, and 
double asterisks indicate a significant difference at P＜0.01 (t-test for normally 
distributed data, and Mann-Whitney W test for non-normally distributed data; 
STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. Handling 
times were subjected to square root transformation before analysis; the 
untransformed means are presented.    
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Figure 2-5  Influence of prey species (T. kanzawai and P. citri) on relative foraging 
and predation efficiency of second instar M. basalis on papaya (n = 5). Total 
observation duration = 2 hr. Prey acceptability denotes proportion of encountered 
prey that are attacked and consumed (including both fully and partially consumed). 
Total foraging time denotes total time spent by the predator for searching and 
handling prey. Handling time denotes the time from a prey encounter to 
consumption. Single asterisk indicates a significant difference at P＜0.05, and 
double asterisks indicate a significant difference at P＜0.01 (t-test for normally 
distributed data, and Mann-Whitney W test for non-normally distributed data; 
STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. Handling 
time were subjected to square root transformation before analysis; the 
untransformed means are presented.    
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Figure 2-6  Influence of prey species (T. kanzawai and P. citri) on relative foraging 
and predation efficiency of third instar M. basalis on papaya (n = 5). Total 
observation duration = 2 hr. Prey acceptability denotes proportion of encountered 
prey that are attacked and consumed (including both fully and partially consumed). 
Total foraging time denotes total time spent by the predator for searching and 
handling prey. Handling time denotes the time from a prey encounter to 
consumption. Single asterisk indicates a significant difference at P＜0.05, and 
double asterisks indicate a significant difference at P＜0.01 (t-test for normally 
distributed data, and Mann-Whitney W test for non-normally distributed data; 
STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. Handling 
times were subjected to square root transformation before analysis; the 
untransformed means are presented.   
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Figure 2-7  Influence of P. citri density on relative foraging and predation efficiency 
of first instar M. basalis on papaya (n = 5). Total observation duration = 2 hr. Prey 
acceptability denotes proportion of encountered prey that are attacked and 
consumed (including both fully and partially consumed). Total foraging time 
denotes total time spent by the predator for searching and handling prey. Handling 
time denotes the time from a prey encounter to consumption. Single asterisk 
indicates a significant difference at P＜0.05, and double asterisks indicate a 
significant difference at P＜0.01 (t-test for normally distributed data, and Mann-
Whitney W test for non-normally distributed data; STATGRAPHICS Centurion 
XV, 2005). Error bars represent ±SEM. Handling times were subjected to square 
root transformation before analysis, and a t-test assuming unequal variance were 
used for the analysis. The untransformed means are presented.   
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Figure 2-8  Influence of P. citri density on relative foraging and predation efficiency 
of second instar M. basalis on papaya (n = 5). Total observation duration = 2 hr. 
Prey acceptability denotes proportion of encountered prey that are attacked and 
consumed (including both fully and partially consumed). Total foraging time 
denotes total time spent by the predator for searching and handling prey. Handling 
time denotes the time from a prey encounter to consumption. Single asterisk 
indicates a significant difference at P＜0.05, and double asterisks indicate a 
significant difference at P＜0.01 (t-test for normally distributed data, and Mann-
Whitney W test for non-normally distributed data; STATGRAPHICS Centurion 
XV, 2005). Error bars represent ±SEM. Handling times were subjected to square 
root transformation before analysis, and a t-test assuming unequal variance were 
used for the analysis. The untransformed means are presented.   

 

 
 

 46



 

Figure 2-9  Influence of P. citri density on relative foraging and predation efficiency 
of third instar M. basalis on papaya (n = 5). Total observation duration = 2 hr. Prey 
acceptability denotes proportion of encountered prey that are attacked and 
consumed (including both fully and partially consumed). Total foraging time 
denotes total time spent by the predator for searching and handling prey. Handling 
time denotes the time from a prey encounter to consumption. Single asterisk 
indicates a significant difference at P＜0.05, and double asterisks indicate a 
significant difference at P＜0.01 (t-test for normally distributed data, and Mann-
Whitney W test for non-normally distributed data; STATGRAPHICS Centurion 
XV, 2005). Error bars represent ±SEM. Handling times were subjected to square 
root transformation before analysis, and a t-test assuming unequal variance were 
used for the analysis. The untransformed means are presented. 
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Table 2-1. Foraging behaviors of M. basalis larvae preying on T. kanzawai on 

papaya (n = 5) 

Stage of  

M. basalis 
Mite stage

 
Feeding behavioral parameter1 (±SEM)

 

  Prey 

acceptability2

Total foraging 

time3 (min)

 Total no. of prey 

consumed4

Handling time5

    (sec) 

1st instar egg 0.73 ± 0.13a 24.50 ± 4.01a  19.6 ± 2.0a 23.59 ± 2.43a 

 larva 0.66 ± 0.08a 48.60 ± 12.99ab  19.6 ± 5.3a 60.95 ± 5.41a 

 nymph 0.83 ± 0.08a 88.29 ± 11.24c  21.6 ± 4.9a 120.19 ± 24.09a 

 adult 0.59 ± 0.09a 75.85 ± 7.47bc  4.0 ± 0.8b 633.43 ± 221.77b 

2nd instar egg 0.93 ± 0.02a 88.09 ± 12.73a  135.8 ± 26.3a 9.41 ± 2.74a 

 larva 0.84 ± 0.06a 110.73 ± 5.52ab  73.6 ± 5.6b 38.39 ± 1.25b 

 nymph 0.85 ± 0.07a 95.24 ± 10.20ab  53.4 ± 12.2bc 59.57 ± 7.14b 

 adult 0.69 ± 0.06a 115.77 ± 4.23b  26.0 ± 3.7c 170.54 ± 30.73c 

3rd instar egg 0.94 ± 0.03a 110.04 ± 8.84a  311.4 ± 26.7a 6.67 ± 0.74a 

 larva 0.79 ± 0.04a 116.22 ± 3.06a  138.2 ± 11.3b 18.76 ± 1.65b 

 nymph 0.89 ± 0.04a 119.32 ± 0.68a  139.6 ± 14.2b 27.92 ± 2.94c 

 adult 0.92 ± 0.03a 118.38 ± 0.99a  68.2 ± 4.9c 58.78 ± 2.91d 
1 Total observation duration = 2 hr. 
2 Proportion of encountered prey that are attacked and consumed (including both fully and  
  partially consumed). 
3 The time spent searching and handling the prey. 
4 Number of prey that are fully or partially consumed. 
5 The time from a prey encounter to consumption. 
Means within the same column of the same M. basalis stage followed by the same letter are not significantly different at P ＜ 0.05 
(Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data of handling time before analysis were subject to square 
root transformation; the untransformed means are presented. 
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Table 2-2. Foraging behaviors of M. basalis larvae preying on P. citri at high density 

on papaya (n = 5) 

Stage of  

M. basalis 
Mite stage

 
Feeding behavioral parameter1 (±SEM)

 

  Prey 

acceptability2

Total foraging 

time3 (min)

 Total no. of prey 

consumed4

Handling time5

    (sec) 

1st instar egg 0.97 ± 0.01a 100.53 ± 6.20a  83.4 ± 5.5a 32.33 ± 0.93a 

 larva 0.91 ± 0.04a 79.71 ± 9.50a  36.6 ± 5.1b 53.09 ± 5.90a 

 nymph 0.91 ± 0.04a 70.36 ± 13.65a  18.2 ± 3.5c 123.42 ± 23.50b 

 adult 0.62 ± 0.14a 87.40 ± 4.57a  12.2 ± 2.2c 240.77 ± 37.75c 

2nd instar egg 0.94 ± 0.02a 116.32 ± 3.68a  150.8 ± 15.6a 18.78 ± 1.31a 

 larva 0.96 ± 0.02a 112.49 ± 7.51a  114.8 ± 16.6b 25.06 ± 2.05b 

 nymph 0.96 ± 0.01a 105.64 ± 7.24a  63.2 ± 5.6c 52.64 ± 3.41c 

 adult 0.76 ± 0.08b 118.32 ± 0.76a  43.2 ± 3.1c 83.86 ± 2.72d 

3rd instar egg 0.98 ± 0.01a 116.91 ± 2.11a  303.0 ± 27.8a 9.35 ± 0.75a 

 larva 0.96 ± 0.02a 118.35 ± 0.94a  173.0 ± 22.2b 16.00 ± 1.59a 

 nymph 0.97 ± 0.01a 114.29 ± 4.14a  117.8 ± 6.2bc 30.11 ± 1.22b 

 adult 0.94 ± 0.03a 116.57 ± 1.34a  114.0 ± 14.8c 33.62 ± 7.38b 
1 Total observation duration = 2 hr. 
2 Proportion of encountered prey that are attacked and consumed (including both fully and  
  partially consumed). 
3 The time spent searching and handling the prey. 
4 Number of prey that are fully or partially consumed. 
5 The time from a prey encounter to consumption. 
Means within the same column of the same M. basalis stage followed by the same letter are not significantly different at P ＜ 0.05 
(Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data of handling time before analysis were subject to square 
root transformation; the untransformed means are presented. 
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Table 2-3. Foraging behaviors of M. basalis larvae preying on P. citri at low density 

on papaya (n = 5) 

Stage of  

M. basalis 
Mite stage

 
Feeding behavioral parameter1 (±SEM)

 

  Prey 

acceptability2

Total foraging 

time3 (min)

 Total no. of prey 

consumed4

Handling time5

    (sec) 

1st instar egg 0.96 ± 0.04a 77.53 ± 12.20a    9.8 ± 1.5a  49.78 ± 3.59a 

 larva 1.00 ± 0.00a 60.53 ± 10.26a    7.2 ± 1.7a  73.91 ± 9.85b 

 nymph 0.94 ± 0.04a 79.78 ± 20.55a    8.4 ± 1.6a  107.75 ± 11.99b 

 adult 0.87 ± 0.08a 61.36 ± 9.68a    5.4 ± 1.3a   196.30 ± 23.49c 

2nd instar egg 0.93 ± 0.02a 117.30 ± 1.04a    42.0 ± 5.6a  26.17 ± 2.00a 

 larva 0.96 ± 0.02a 116.57 ± 1.40a    31.8 ± 2.8ab  29.46 ± 2.66a 

 nymph 0.95 ± 0.01a 112.93 ± 4.50a    28.8 ± 5.1bc  62.20 ± 8.54b 

 adult 0.90 ± 0.06a 113.98 ± 1.30a    17.6 ± 1.5c  90.80 ± 7.18c 

3rd instar egg 0.74 ± 0.09a 104.07 ± 5.72a    21.6 ± 5.9a  27.37 ± 3.57a 

 larva 0.87 ± 0.05a 109.87 ± 3.65a    26.4 ± 4.8a  26.36 ± 2.95a 

 nymph 0.96 ± 0.01a 114.27 ± 2.79a    36.0 ± 3.1a  40.87 ± 3.68b 

 adult 0.97 ± 0.01a 112.52 ± 1.93a    23.8 ± 3.6a  58.50 ± 3.87c 
1 Total observation duration = 2 hr. 
2 Proportion of encountered prey that are attacked and consumed (including both fully and  
  partially consumed). 
3 The time spent searching and handling the prey. 
4 Number of prey that are fully or partially consumed. 
5 The time from a prey encounter to consumption. 
Means within the same column of the same M. basalis stage followed by the same letter are not significantly different at P ＜ 0.05 
(Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data of handling time before analysis were subject to square 
root transformation; the untransformed means are presented. 

 

 50



 

CHAPTER 3 -  Prey preference of a generalist predator, 

Mallada basalis Walker (Neuroptera: Chrysopidae), between 

two species of papaya pest mites, Tetranychus kanzawai Kishida 

and Panonychus citri (McGregor) (Acari: Tetranychidae) 

 

ABSTRACT 
 Prey preference of the generalist predator Mallada basalis Walker for two 

important papaya pest mites, Tetranychus kanzawai Kishida and Panonychus citri 

(McGregor), was investigated in the laboratory. Results of choice tests revealed that none 

of the three larval instars of M. basalis showed a preference for either species of mite or 

discriminated among the four mite life stages. Instead, lacewing larvae tended to 

consume whichever mite was encountered. Previous feeding experience on one mite 

species did not influence subsequent prey choice when lacewings were presented with 

both mite species. Absence of preference of the predator for the two mite pests found 

from this study indicates that M. basalis has potential as an effective biological control 

agent for both T. kanzawai and P. citri when the two mites occur simultaneously or 

subsequently in papaya plantations. 

 

Key Words: prey choice; feeding behavior; feeding experience; biological control. 
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INTRODUCTION 
Tetranychus kanzawai and Panonychus citri are important pests of papaya in 

Taiwan. T. kanzawai is an important pest mite throughout East and Southeast Asia, 

attacking over a hundred species of plants including many food crops and ornamental 

plants (Bolland et al., 1998; Zhang, 2003). It is normally an outdoor species, but can 

attack greenhouse plants as well. Mites pierce individual plant cells on the under surface 

of the leaf and feed by withdrawing chloroplasts. This results in the development of 

characteristic whitish or yellowish stippling on the upper leaf surface, which join to 

become brownish blotches that eventually envelope the entire leaf, reducing 

photosynthesis (Helle and Sabelis, 1985; Yamada and Tsutsumi, 1990; Zhang, 2003). 

Heavy damage may cause wilting and defoliation, which further impairs plant growth. P. 

citri has a worldwide distribution and is known to feed on over 80 plant species, 

including citrus, rose, almond, pear, castor bean, and several broadleaf evergreen 

ornamentals (Bolland et al., 1998; Zhang, 2003). This species can feed on both sides of 

leaves and produces a stippled appearance initially, which develops into pale patches 

later. With continuous feeding and damage, the leaves become grey, silver or yellow.  

Presently, control of these two mite pests depends mainly on chemical applications. 

However, the intensive application of miticides in combination with the short life cycle 

and high reproductive rates of mites have led to the development of resistance in these 

two pest mites to many registered miticides (Cranham and Helle, 1985; Furuhashi, 1994; 

Masui et al., 1995; Yamamoto, et al., 1996; Goka, 1998; Aiki et al., 2005). In addition, 

many miticides produce unacceptable phytotoxicity to papaya (Lo, 2002). It is therefore 

necessary to search for alternative approaches for controlling papaya mite pests. 

Mallada basalis (Walker) (Neuroptera: Chrysopidae) is a common predator in 

agricultural fields in Taiwan that has potential as a biological control agent against 

several species of arthropod pests, including Phyllocnistis citrella, Aphis spp, 

Nipaecoccus filamentosus, Diaphorina citri, and P. citri on citrus; T. urticae and T. 

kanzawa on strawberry; and P. citri on Indian jujube (Hao, et al., 1996; Lo, 1997; Hao, 

2002). The larvae are generalist predators while the adults feed on nectar and honeydew 

(Wu, 1995). M. basalis can be successfully mass produced in a cost-effective manner 

using a microcapsulated artificial diet (Lee, 1994; 1995; 2003). Cold storage techniques 
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have also been established for various stages, i.e., eggs, larvae, and pupae, which 

facilitates the scheduling of shipments and releases (Wu, 1992). In addition, research has 

demonstrated that M. basalis has some tolerance to selected insecticides, fungicides, and 

acaricides (Tzeng and Kao, 1996; Lo, 2002). All of these findings suggest that M. basalis 

may be a suitable candidate for augmentative biological control, and may be compatible 

for use in integrated pest management programs.  

Evidence from field investigations suggest that M. basalis has some potential for 

use in biological control programs (Wu, 1992; Chang and Huang, 1995; Lo, 1997; Hao, 

2002). In addition, I have investigated aspects of the feeding behavior of M. basalis, 

including foraging schedules, prey acceptance, handling times, and consumption rates, on 

the two major papaya pest mites, T. kanzawai and P. citri (see chapter 2). However, little 

is known about its prey preference. Generalist predators may exhibit prey preference in 

the presence of mixed prey species (Adashkevich et al., 1972; Mills, 1981; Dicke et al., 

1989; Nordlund and Morrison, 1990; Obrycki and Orr, 1990; Hanna and Wilson, 1991; 

Hazzard and Ferro, 1991; Hemptinne et al., 1993; Legaspi et al., 1994). Preference may 

be based on differences in body size between predator and prey (Manly et al., 1972; 

Mollers and Pietruszka, 1987; Sabelis, 1992; Dean and Schuster, 1995), prey mobility 

(Allan et al, 1987; Schausberger, 1997; Shimoda et al., 1997; Eubanks and Denno, 2000), 

prey defense mechanisms (Hajek and Dahlsten, 1987; Hagler and Cohen, 1991; Shimoda 

et al., 1997), relative abundance of prey (Schmitt, 1987; Huang and Sih, 1990; Holt and 

Lawton, 1994), prey habitat (Hanna and Wilson, 1991; Hopkins and Dixon, 1997), prey 

nutritional value (Muma, 1957; Hydorn, 1971; Gagné et al., 2002), or the predator’s 

specific nutritional needs (Hagen, 1962; Schausberger, 1997; Gnanvossou, 2002).  

Prey preferences exhibited by biological control agents can affect their control 

efficacy to the target pest (Nordlund and Morrison, 1990; Legaspi, et al., 2006; Provost et 

al., 2006). The two pest mites, T. kanzawai and P. citri, can occur simultaneously at the 

same papaya plantation and on the same papaya leaves. Therefore, the purpose of this 

study was to investigate whether M. basalis shows a preference for one of the two species 

of pest mites as well as among different life stages of each mite species. Because 

preference may be a learned response, tests were also done to determine whether prey 
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preference was linked to the lacewing’s previous feeding experience on either of the two 

mite species.  

MATERIALS AND METHODS 

Insects and plants 

Plants: 

Papaya seedlings (Carica papaya L., ‘Tainung No. 2’) were purchased from a 

commercial nursery 3-4 weeks after germination. The seedlings were then transferred 

individually to 9-cm diameter pots, and maintained in a room at 26±2°C, 70±10% RH 

and a photoperiod of 14:10 (L:D) with fluorescent lights at 7000 lux until they were 

approximately 25 cm tall and suitable for rearing mites. The seedlings were watered 

twice a week, but without any fertilization. 

Green lacewings: 

The M. basalis used for this study were from a laboratory colony that had been 

maintained since 1999 at 26±2°C, 70±10% RH and a photoperiod of 14:10 (L:D) with 

fluorescent lights at 500 lux. No wild individuals had been introduced into the colony 

since then. Lacewing larvae were reared on a microencapsulated artificial diet developed 

by Lee (1994; 1995). The larval diet consisted of honey, sugar, Brewer’s yeast, yeast 

autolysate, casein hydrolysate, egg yolk, honeybee larvae and distilled water and was 

produced with a machine developed by Lee (1994). The microcapsules had an average 

diameter of 465 μm and a thickness of 10 μm. The adult diet contained Brewer’s yeast 

and honey in a 1:1 ratio.   

The larvae were reared in plastic pans of 40 x 30 x 10.5 cm (L x W x H). 

Corrugated paper rolls (10 cm diameter and 1.5 cm thick) were first placed side-by-side 

in the pan, and then two tablespoons of sawdust, 25 ml of microencapsulated diet, and 

approximately 1,000 green lacewing eggs were added. Subsequently, diet was added 

three more times at 3-day intervals in the following amounts: 75, 100 and 25 ml. These 

amounts corresponded to relative feeding rates of larvae during growth and development. 

A piece of 200-mesh white screen was taped on the top of the rearing pan to prevent the 
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escape of lacewing larvae and the invasion of their predators (ants, spiders, etc.). Most 

larvae pupated on or inside the corrugated paper rolls.  

After the majority of larvae had pupated, pupae along with the paper rolls were 

removed and placed in a black acrylic box (45 x 45 x 45 cm) for collection of the adults. 

Attached to the top of the black box was a clear acrylic cylinder (15 cm diameter x 20 cm 

high). Upon emergence adult lacewings would fly up into the clear cylinder due to their 

attraction to light. The adults were then introduced into another acrylic cylinder which 

had a piece of white paper attached to the wall. The paper served as an oviposition site 

and was changed daily. Brewer’s yeast and honey (1:1) were mixed, stuck on a piece of 

plastic slide, and hung inside the cylinder for adult food. Water was also provided with a 

wetted cotton ball. 

Mites: 

Tetranychus kanzawai were collected from papaya plantations in and around 

Nantou, Taiwan in 2003 and maintained in a rearing room on papaya seedlings at 26 ± 

2°C, 70 ± 10% RH and a photoperiod of 14:10 (L:D) with fluorescent lights at 4000 lux. 

P. citri were also collected from the same fields at the same time and maintained under 

similar conditions as T. kanzawai but in a walk-in growth chamber. The temperature was 

slightly lower (25±1°C) with light intensity at 5000 lux. 

 

Preference of larval M. basalis for different life stages 

 of either T. kanzawai or P. citri 

Separate preference tests were done for each mite species and for each of the three 

larval stages of M. basalis. A piece of papaya leaf (~ 270 mm2) was floated on water (~ 4 

ml) in a Petri dish (5 cm diameter) with the undersurface of the leaf facing up. For each 

test, a total of 400 mites (100 per life stage: egg, larva, nymph, and adult female) and one 

M. basalis larva were then introduced onto the leaf. Lacewings used for this test were in 

the second day of each instar, and were fed the microencapsulated artificial diet until tests 

began to avoid possible effects on prey preference due to hunger. This set-up confined 

the lacewing and the mites on the leaf throughout the experiment. The high mite densities 
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allowed nearly equal encounter (defined by prey contact with the predator’s mouthparts) 

rates of the lacewing with various life stages of the mites.  

The feeding behaviors of the lacewing were observed under a microscope 

illuminated at an intensity of ~95 lux. During observations, the numbers of each prey life 

stage encountered and consumed by the lacewing were recorded. Observations were 

terminated when the total number of mites consumed by the lacewing reached 20. Mites 

were not replaced throughout the test. However, the initial numbers provided were far 

more than the 20 mites actually needed and made the change in encounter rates of the 

lacewing with the mites due to prey depletion negligible. Ten replications were used for 

each larval stage of M. basalis vs. each mite species. 

The relative prey encounter rates were expressed as percentages, and were 

computed by dividing the number of each mite life stage encountered by the total number 

of mites of all life stages encountered (n = 20) x 100. The relative prey consumption rate 

was measured as the percentage of the individual life stage of the mites consumed in 

relation to total mites consumed (i.e., the number of the individual life stage of the mite 

consumed divided by the total number of mites consumed during each observation x 

100). Prey acceptability for each prey life stage was measured as the percentage of 

encountered prey of each individual life stage that was consumed (i.e., for each individual 

mite life stage, the number consumed over the number encountered x 100). 

 

Preference of M. basalis for T. kanzawai and P. citri nymphs: effect of relative 

prey abundance and previous feeding experience 

The arena and experimental conditions were the same as for the previous 

experiment except that tests were done with one hundred nymphs each of T. kanzawai 

and P. citri, and one 2-d-old M. basalis 2nd instar larva. This M. basalis instar was 

selected as the representative predator life stage because it is intermediate larval stage, 

has a feeding period and stadial length that exceeds the test period, and can have feeding 

experience prior to tests. To initiate a test, one lacewing larva was introduced onto the 

leaf and the number of each species of the mite encountered and consumed by the 

lacewing was recorded. Each observation was terminated when a total of 20 mites were 
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consumed. The test was repeated 10 times. As in the previous experiment, providing a 

surplus of each species of mite allowed M. basalis to exhibit preference without a 

limitation of prey.  

To determine if offering different proportions of each prey species influenced prey 

preference in M. basalis, the procedure described above was used, but the ratio of T. 

kanzawai to P. citri nymphs was adjusted to achieve 160:40 nymphs and 40:160 nymphs. 

In addition, this study was repeated on 2nd instar M. basalis that had been conditioned 

with (i.e., had prior feeding experience on) one or the other mite species. This prior 

feeding experience occurred from hatching until tests were initiated (ca. 4 days). Tests 

with conditioned predators were done at the following T. kanzawai:P. citri ratios – 

160:40, 40:160, 100:100. Each observation was terminated when a total of 20 mites were 

consumed. The test was repeated 10 times. 

 

Data analyses 

Relative encounter and consumption rate data for M. basalis were analyzed with χ2 

goodness of fit tests (Zar, 1984). Mann-Whitney W test (for two-sample comparisons) 

and Kruskal-Wallis test (conducted with STATGRAPHICS Centurion XV, software, 

2005 (Statpoint, Inc.)) were used to analyze prey acceptability data because these data 

were not normally distributed. 

RESULTS 
M. basalis larvae exhibited little or no preference for different life stages of the two 

mites. Although there were some significant differences in the relative encounter and 

consumption rates of M. basalis larvae when given a choice of equal numbers of the 

various life stages of Tetranychus kanzawai or Panonychus citri (χ2 = 9.23 to 76.31, P < 

0.05, df = 3, n = 200; χ2 goodness of fit test) (Fig. 1 & 2), both encounter and 

consumption rates corresponded to each other. Furthermore, there were generally no 

significant differences in prey acceptability of M. basalis among the various prey instars 

(Fig. 1 & 2), except that first instar M. basalis exhibited lower prey acceptability of P. 

citri adults than of the earlier life stages (H = 10.94, P = 0.01, df = 3; Kruskal-Wallis test) 

(Fig. 2).  
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M. basalis exhibited no preference for either T. kanzawai or P. citri. When 

lacewings were offered mixtures of various ratios of the two mites, the percentage of 

each mite species encountered and consumed corresponded with the proportions of each 

mite in the mixtures (χ2 = 0.10 to 2.53, P > 0.05, df = 1, n = 200; χ2 goodness of fit test) 

(Table 1). In addition, M. basalis did not exhibit a change in prey preference following 

previous feeding experience. When lacewings were fed on either one of the two mite 

species prior to the tests, the encounter and consumption rates were still proportional to 

the relative abundance of the mites in the mixtures (χ2 = 0.32 to 3.13, P > 0.05, df = 1, n 

= 200; χ2 goodness of fit test) (Table 1). Moreover, prior feeding experience did not 

influence percentage acceptability (range of means: 95.5 to 100%), as there were no 

significant differences between the two mite species (W ranging from -6.0 to 6.0; P > 

0.05; Mann-Whitney W test) (Table 1). Direct observations showed that lacewings 

mostly consumed any mite they encountered. 

DISCUSSION 
 A generalist predator is classified as one whose prey selection is proportional to 

the relative abundance of the prey species in its environment (Begon et al., 1996). 

However, some predators show prey preference regardless of the relative abundance of 

the prey (Cock, 1978; Hassell and Southwood, 1978). Green lacewings are generalist 

predators but are known to exhibit preferences for particular prey when they are 

simultaneously offered a number of different species. Adashkevich et al. (1972) found 

that in the presence of mixed pests, Chrysopa (= Chrysoperla) carnea attacked aphids 

first, then thrips, and finally tetranychid mites. Legaspi et al. (1994) reported that larvae 

of Chrysoperla rufilabris preferred eggs of Sitotroga cerealella and Helicoverpa zea over 

eggs of Manduca sexta and Bemisia tabaci. Nordlund and Morrison (1990) found that C. 

rufilabris prefer Heliothis virescens larvae over the cotton aphid, Aphis gossypii, but 

prefer A. gossypii over H. virescens eggs. However, in the current study M. basalis 

showed a statistically similar high prey acceptability to both mites, and encounter and 

consumption rates of M. basalis to the two papaya pest mites were proportional to the 

relative abundance of the mites in the mixture. These results agree with prey acceptability 

data shown for M. basalis when the two mite species were offered in no-choice tests (see 
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chapter 2). These studies indicated that M. basalis exhibits no preference for either of the 

two mites. I observed that T. kanzawai and P. citri are approximately the same in terms 

of size, mobility, and ability to escape predators. These factors may account for the 

similarities in their acceptance by lacewing larvae. Furthermore, these two prey species 

may also provide similar nutritional value for the lacewing, but that is unknown. 

Most organisms experience increases in body dimensions from birth to adulthood. 

Accompanying these ontogenetic changes, many species undergo extensive shifts in food 

and/or habitat use. Changes in prey preference associated with the age of the predator 

have been well documented among invertebrates, including mites (Turner, 1979; Polis, 

1984; Hallas, 1988; Lubin et al., 1991; Rayor and Uetz, 1993) and insects (Fedorenko, 

1975; Thompson, 1975; Johannsson, 1978; McArdle and Lawton, 1979; Lockwood, 

1989; Rowe, 1992). Furthermore, the body size of the predator in relation to prey size is 

also an important factor in the foraging behavior of many predators (Sabelis, 1992). It has 

been reported that mean prey size increases with body size of the predator (Hespenheide, 

1973; McArdle and Lawton, 1979; Rathet and Hurd, 1983; Werner and Gilliam, 1984; 

Cisneros and Rosenheim, 1997). However, my results showed that larval M. basalis 

exhibited no preference for different life stages of either T. kanzawai and P. citri, and the 

prey preference of the lacewing did not change with its age. My previous study also 

showed that there were generally no differences in prey acceptability of M. basalis to T. 

kanzawai and P. citri among the lacewing’s ages as well as among the mites’ life stages 

in no-choice tests (see chapter 2). The absence of prey preference of the lacewing for 

either mite species may be because the body dimensions of all the mite lifestages were far 

smaller than the lacewing’s; thus, the effect of the prey size on the foraging behavior of 

the predator may be trivial in this case. 

Investigations of the influence of predator’s feeding experience on prey choice have 

not been extensive or conclusive. Rayor and Munson (2002) investigated the effect of a 

generalist predator’s larval feeding experience on its adult acceptance of chemically-

defended prey. The results showed that the adult predatory paper wasp, Polistes 

dominulus, which had experienced unpalatable Buckeye caterpillars (Junonia coenia), 

continued to attack and take back to the nest significantly more J. coenia than the wasps 

which had no experience on the unpalatable caterpillars. Houck (1986) showed that when 
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the coccinellid Stethorus punctum (LeConte), an obligate predator of tetranychid mites, 

was exposed to different ratios of Tetranychus urticae and Panonychus ulmi, there was a 

weak but consistent preference for T. urticae following preconditioning to this species; 

but no preference was elicited when the beetle was conditioned to P. ulmi. My results 

showed that previous feeding experience of M. basalis on either T. kanzawai or P. citri 

had no effects on subsequent prey choice between these two mites. This finding could 

suggest that both mite species have similar enough characteristics that a generalist 

predator like M. basalis does not discriminate. 

Tetranychus kanzawai and P. citri are the two most important acarine pests in 

papaya screenhouse plantations. Both mites can occur simultaneously at the same papaya 

plantation and on same papaya leaves. M. basalis exhibits no prey preference for either T. 

kanzawai or P. citri or for different life stages of the two papaya pest mites. These 

findings increase the probability that M. basalis could serve as an effective biological 

control agent for controlling both mite pests when they occur simultaneously in papaya 

plantations. In addition, the lacewing’s previous feeding experience on one mite species 

would not affect their subsequent prey choice on the two mites. This would enable M. 

basalis to feed successively on different mite species (prey-switching) without reducing 

predation potential. It would also allow M. basalis to control the second pest mite in the 

beginning of its invasion since T. kanzawai and P. citri often occur sequentially in papaya 

plantations. However, the prey preference of a predator may also be affected by plant 

architecture and prey spatial distributions (Flaherty and Huffaker, 1970; Eveleigh and 

Chant, 1982; Gianino and Jones, 1989; Hanna and Wilson, 1991). T. kanzawai and P. 

citri have different spatial distribution patterns on the papaya, T. kanzawai have a more 

clumped distribution and aggregate more on the older leaves while P. citri have a more 

even distribution and spread more to the young leaves (Cheng, personal observations). 

Prey preference of M. basalis for the two papaya pest mites in the field needs further 

investigation before we can fully determine the control efficacy of this lacewing against 

these two important papaya pests. 
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Figure 3-1  Relative prey encounter and consumption rates, and prey acceptability 
of larval M. basalis (A) 1st instar; (B) 2nd instar; (C) 3rd instar to a mixture of various 
life stages of T. kanzawai. Relative prey encounter rate (n = 200) = the number of the 
specific mite life stage encountered divided by the total number of the mites 
encountered during the observation x 100; relative prey consumption rate ( n = 200) 
= the number of the specific mite life stage consumed divided by the total number of 
the mites consumed during the observation x 100; prey acceptability ( n = 10) = the 
number of the specific mite life stage consumed divided by the number of the 
specific mite life stage encountered during the observation x 100. Asterisk indicates 
a significant difference in relative prey encounter and consumption rates among the 
four prey instars (P <0.05, χ2 goodness of fit tests; Zar, 1984). There were no 
significant differences in prey acceptability (P <0.05, Kruskal-Wallis tests; 
STATGRAPHICS Centurion XV, 2005) of M. basalis among various life stages of 
the mites. Error bars represent ±SEM.   
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Figure 3-2  Relative prey encounter and consumption rates, and prey acceptability 
of larval M. basalis (A) 1st instar; (B) 2nd instar; (C) 3rd instar to a mixture of various 
life stages of P. citri. Relative prey encounter rate ( n = 200) = (the number of the 
specific mite life stage encountered over the total number of the mites encountered 
during the observation) x 100; relative prey consumption rate ( n = 200) = (the 
number of the specific mite life stage consumed over the total number of the mites 
consumed during the observation) x 100; prey acceptability ( n= 10) = (the number 
of the specific mite life stage consumed over the number of the specific mite life 
stage encountered during the observation) x 100. Asterisk indicates a significant 
difference in relative prey encounter and consumption rates among the four prey 
instars at P<0.05 (χ2 goodness of fit test; Zar, 1984). Means with different letters in 
prey acceptability are significantly different at P＜0.05 (Kruskal-Wallis test and 
Fisher’s protected LSD procedure; STATGRAPHICS Centurion XV, 2005). Error 
bars represent ±SEM. 

 

 
 

 69



Table 3-1. Relative prey encounter rate, prey consumption rate, and prey 
acceptability of M. basalis larvae against a various ratios of T. kanzawai (Tk) and P. 
citri (Pc) nymphs after being conditioned on different foods (artifical diet, Tk, or 
Pc). The relative encounter and consumption rates of M. basalis to the two mites 
were statistically proportional to the mites ratios offered (χ2 goodness of fit tests; 
Zar, 1984), and there were no significant differences in the prey acceptability of M. 
basalis between the two mites of specific ratios (Mann-Whitney W tests; 
STATGRAPHICS Centurion XV, 2005) 

Previous 

food 

Prey provided 
% Encounter1 % Consumption2 % Acceptability3

 
Tk Pc Tk Pc Tk Pc 

Diet 50% Tk & 50% Pc 46.4 ± 2.9 53.6 ± 2.9 46.5 ± 3.0 53.5 ± 3.0 97.5 ± 1.7 97.0 ± 2.1 

20% Tk & 80% Pc 20.9 ± 2.3 79.1 ± 2.3 21.0 ± 2.2 79.0 ± 2.2 100.0 ± 0.0 99.0 ± 1.1 

80% Tk & 20% Pc 75.6 ± 3.6 24.4 ± 3.6 75.5 ± 3.6 24.5 ± 3.6 98.6 ± 1.4 98.9 ± 1.1 

Tk 50% Tk & 50% Pc 52.5 ± 3.6 47.5 ± 3.6 52.5 ± 3.6 47.5 ± 3.6 100.0 ± 0.0 100.0 ± 0.0 

20% Tk & 80% Pc 23.0 ± 2.3 77.0 ± 2.3 22.0 ± 2.0 78.0 ± 2.0 95.5 ± 3.0 100.0 ± 0.0 

80% Tk & 20% Pc 75.0 ± 2.6 25.0 ± 2.6 75.0 ± 2.6 25.0 ± 2.6 100.0 ± 0.0 100.0 ± 0.0 

Pc 50% Tk & 50% Pc 47.9 ± 4.2 52.1 ± 4.2 48.0 ± 4.1 52.0 ± 4.1 99.3 ± 0.7 99.1 ± 0.9 

20% Tk & 80% Pc 23.7 ± 3.1 76.3 ± 3.1 24.0 ± 3.1 76.0 ± 3.1 100.0 ± 0.0 98.7 ± 0.9 

80% Tk & 20% Pc 77.8 ± 1.8 22.2 ± 1.8 78.0 ± 1.7 22.0 ± 1.7 99.4 ± 0.6 98.3 ± 1.7 

                                                                       1 (the number of the specific mite species encountered divided by the total number of the two mite species encountered during the observation) x  

                                             100; n = 200. 
                                                                      2 (the number of the specific mite species consumed divided by the total number of the two mite species consumed during the observation) x 100; n  
                                                                       = 200. 
                                                                      3 (the number of the specific mite species consumed divided by the number of the specific mite species encountered during the observation) x 100; n      
                                                                      = 10. 
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CHAPTER 4 - Efficacy of the green lacewing Mallada basalis 

Walker (Neuroptera: Chrysopidae) on two species of papaya 

mites, Tetranychus kanzawai Kishida and Panonychus citri 

(McGregor) (Acari: Tetranychidae), at different predator:prey 

release ratios 

ABSTRACT 
 Population suppression of the phytophagous mites, Tetranychus kanzawai and 

Panonychus citri, by the green lacewing, Mallada basalis, was compared at various 

predator:prey release ratios on papaya in the laboratory. When each pest mite species was 

tested separately at a density of ~ 30 mites per seedling, three-day results showed that 

predator:prey ratios of 1:30, 1:15, and 1:10 resulted to reductions of T. kanzawai by 

66.8%, 82.6%, and 83.3%, respectively, and reductions of P. citri by 41.8%, 75.5%, and 

77.2%, respectively. When the two mite species were present simultaneously, total mite 

reduction were 48.5%, 71.9%, and 74.5% at ratios of 1:30, 1:15, and 1:10, respectively. 

At predator:prey ratios of 1:30, 1:15, and 1:10 with both mite species present, T. 

kanzawai was reduced by 50.5%, 77.4%, and 79.5%, respectively, and P. citri was 

reduced by 44.1%, 60.3%, and 63.2%, respectively. This study suggests that M. basalis 

could suppress both T. kanzawai and P. citri of various life stages, and on both sides of 

papaya leaves. However, M. basalis provided relatively greater control of T. kanzawai 

than P. citri when the two mites occurred together and when they were offered to the 

predators separately.  

 

Key Words: biological control; integrated pest management; augmentation; natural 

enemy; phytophagous mites; predator-prey interactions 
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INTRODUCTION 
Papaya is an important fruit crop in Taiwan, occupying about 3,800 hectares and 

with an annual production of 126,500 tons (Anonymous, 2006). ‘Tainung No. 2’ is the 

principle papaya variety cultivated in Taiwan (Wang, 1991). However, this cultivar is 

susceptible to papaya ringspot potyvirus (Lin et al., 1989), one of the most destructive 

diseases of papaya (Purcifull et al., 1984). This disease is nonpersistently transmitted by a 

number of aphid species, (Jensen, 1949; Zetter, et al., 1968; Wang, 1981; Purcifull et al., 

1984).  Screenhouse cultivation has been developed as an effective means of protecting 

papayas from aphids and virus infection, with demonstrated rates of protection reaching 

up to 97% (Shi et al., 1990). Therefore, most of the papayas in Taiwan are now cultivated 

in screenhouses. However, these unventilated structures result in consistently warm 

conditions which favor outbreaks of acarine pests (Hao et al., 1996). 

The Kanzawa spider mite, Tetranychus kanzawai Kishida, and the citrus red mite, 

Panonychus citri (McGregor), are major pests of papayas in screenhouses (Ho et al., 

1997), and both occur year round in Taiwan (Anonymous, 2002). Tetranychus kanzawai 

lays eggs on the undersides of leaves where larvae and adults feed on chloroplast cells. 

This feeding causes upper leaf surfaces to develop characteristic whitish or yellowish 

stippling, which joins and becomes brownish as mite feeding continues. Heavy damage 

causes wilting and defoliation, which further reduces plant growth. Panonychus citri 

feeds on both sides of the leaves and produces a stippled appearance initially, which 

develops into pale patches later. With continuous feeding and damage, the leaves become 

grey, silver or yellow.  

Presently control of these two mite pests depends mainly on chemical applications. 

However, a growing public concern about the impacts of chemicals on the environment, 

pest resurgence, secondary pest outbreaks, and increased resistance of arthropods to 

pesticides has led to a more integrated pest management approach. By combining the 

advantages of chemical, cultural, and biological control methods, greater permanence of 

pest suppression may be obtained. In an enclosed environment, it is easier to establish 

sufficient populations of natural enemy through inoculative or inundative releases so that 

desired levels of pest control can be achieved without the detrimental effects of chemical 

pesticides.  
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The green lacewing, Mallada basalis (Walker), is one of the most common 

chrysopid species in agricultural fields in Taiwan. Previously, investigators have 

suggested its potential as a biological control agent against several species of arthropods, 

such as Phyllocnistis citrella, Aphis spp, Nipaecoccus filamentosus, Diaphorina citri, and 

P. citri on citrus; T. urticae and T. kanzawa on strawberry; and P. citri on Indian jujube 

(Lo, 1997). Mallada basalis has been successfully mass produced in a cost-effective 

manner on a microcapsulated artificial diet (Lee, 1995; 2003), and cold storage 

techniques have been established for various life stages of this predator, which helps in 

shipping and making scheduled releases (Wu, 1992). Mallada basalis also exhibits 

tolerance to some insecticides, fungicides, and acaricides (Tzeng and Kao, 1996; Lo, 

2002). All of these points suggest that M. basalis is compatible for use in integrated pest 

management programs. In addition to many field evaluations documenting its potential as 

a biological control agent for a number of pests (Hao, et al., 1996; Lo, 1997; Hao, 2002), 

my previous behavioral studies also suggested that M. basalis possesses great potential 

for simultaneously controlling both T. kanzawai and P. citri on papayas (see chapter 2 

and 3). However, information about which predator-to-prey release ratios are effective is 

lacking. Therefore, this study was designed to determine and compare control efficacies 

of different predator:prey release ratios of M. basalis for T. kanzawai and P. citri 

separately, and as a mixture of the two mite species. Information from this study should 

suggest effective predator:prey release ratios for application of M. basalis in 

augmentative biological control programs on papayas. 

 

MATERIALS AND METHODS 

Insects and plants 

A laboratory colony of Mallada basalis was used for this study. This colony has 

been reared continuously since 1999 at 26±2°C, 70±10% RH and a photoperiod of 14:10 

(L:D) with microcapsulated artificial diets for larvae (Lee, 1994; 1995), and Brewer’s 

yeast and honey (1:1) for adults. No wild individuals have been introduced into the 

colony since its inception. The microcapsulated larval diets contained honey, sugar, 

Brewer’s yeast, yeast autolysate, casein hydrolysate, egg yolk, honeybee larvae and 
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distilled water (Lee 1994). The microcapsules were 465±68 μm in diameter and had a 

thickness of ~10 μm. The larvae were reared in plastic pans (40 x 30 x 10.5 cm (L x W x 

H)). Corrugated paper rolls (10 cm diameter x 1.5 cm thick) were first placed in the pan, 

and two tablespoons of sawdust, 25 ml of microcapsulated diet, and approximately 1,000 

green lacewing eggs were then introduced into the pan. The diet was added once every 

three days for a total of four times including the initial one. Amounts of diet provided 

were 25, 75, 100 and 25 ml, respectively, for the successive feedings. A piece of 200-

mesh white screen was taped on the top of the rearing pan to prevent the escape of 

lacewing larvae and the invasion of predators such as ants or spiders. Most of the 

pupation occurred on or inside the corrugated paper rolls. After the majority of lacewings 

pupated, they were removed, along with the corrugated paper rolls, and placed in a black 

acrylic box (45 x 45x 45 cm) to await adult emergence. The black box consisted of a 

clear acrylic cylinder (15 cm diameter and 20 cm height) on the top. Upon emerging, the 

positively phototaxic adults would fly up into the clear cylinder. The adults were moved 

to another acrylic cylinder which was lined with a piece of white paper on the inside wall 

for oviposition. The white paper was changed daily. Brewer’s yeast and honey (1:1) were 

mixed, stuck on a piece of plastic slide, and hung inside the cylinder for adult food; water 

was also provided on a wetted cotton ball. 

Tetranychus kanzawai and P. citri were collected from the papaya plantations in the 

Nantou areas of Taiwan in 2003, and maintained on papaya seedlings in separate rooms 

at 26±2°C, 70±10% RH and a photoperiod of 14:10 (L:D). Papaya seedlings were 

maintained in a room at 26±2°C, 70±10% RH and a photoperiod of 14:10 (L:D). 

General experimental procedures 

Papaya seedlings about 22 cm tall were each infested with approximately 12 T. 

kanzawai (mostly nymphs plus a few female adults) by placing a piece of mite-infested 

papaya leaf on each seedling. The number of mites with which the seedlings were 

infested was determined in preliminary tests to generate an initial mite density of about 

30 mites per seedling. Two days after infestation, 25 seedlings were selected based on 

homogenous mite infestation. Five seedlings were then picked at random and the total 

number of mites on each seedling was counted to estimate the initial average mite density 
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at the beginning of the experiment. The remaining 20 seedlings were placed individually 

in separate acrylic cages (40 x 40 x 40 cm), and 5 were randomly assigned to each of the 

three predator:prey ratios and a no-predator treatment, which served as a control. All 

experimental units were then arranged and kept on shelves with a RCBD experimental 

design with the blocking factor of different shelves in a walk-in growth chamber (3.6 x 

2.7x 2.5 m) at 25±1oC, 70±10% RH and a photoperiod of 14:10 (L:D). 

The three predator:prey ratios were created by introducing one, two, or three M. 

basalis 2nd instars to each of the assigned papaya seedlings. The lacewings were initially 

placed on the upper leaf surface near the top of each seedling. Observations indicated that 

the lacewings began foraging immediately. Three days after predators were released, the 

live mites on each of the papaya seedlings were counted and the numbers were recorded 

for various life stages and for P. citri on different sides of papaya leaves, respectively. 

The experiment was repeated five times for a total of 25 replications per treatment. The 

same procedures used for T. kanzawai were applied to tests with P. citri, and for the 

experiment in which M. basalis was exposed to a mixture of T. kanzawai and P. citri. 

However, in the latter tests, each papaya seedling was infested with a piece of papaya leaf 

containing approximately 6 T. kanzawai and 6 P. citri to generate approximately the 

same pre-treatment mite density (~ 30 mites per seedling) as in the tests with T. kanzawai 

and P. citri separately. Control efficacy was computed as (number mites in untreated 

check – number mites in specific release ratio treatment) / number mites in untreated 

check).  

Data analysis 

 Mite data were analyzed with analysis of variance (ANOVA), and significantly 

different means were separated with Fisher’s protected LSD procedures. Mite age class 

and locality distribution data were analyzed with ANOVA if normally distributed, or with 

the Kruskal-Wallis test if non-normally distributed. All data were subjected to square root 

transformation prior to analysis. All analyses were conducted using STATGRAPHICS 

Centurion XV, software, 2005 (Statpoint, Inc). 
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RESULTS AND DISCUSSION 
 Results showed that at all three predator:prey ratios, lacewings significantly 

reduced the number of T. kanzawai alone (H = 61.10; df = 124; P < 0.0001) (Table 1), P. 

citri alone (H = 43.69; df = 124; P < 0.0001) (Table 2), and the two mite species together 

(H = 47.84; df = 124; P < 0.0001) (Table 3), within three days compared to the untreated 

check. However, at predator:prey ratios of 1:15 and 1:10, mites numbers were 

significantly lower than at the 1:30 ratio.  

Most studies that have reported on the release of green lacewings for pest 

management have cited predator to prey ratios between 1:5 and 1:30 (see review by 

Tulisalo, 1984b). Furthermore, Chang and Huang (1995) reported that M. basalis 

released at the rate of 5 first instar larvae per plant once every three weeks for a total of 

three releases could provide over 60% control of T. kanzawai on strawberry. Hao (2002) 

indicated that M. basalis released at 200 eggs per plant once every 7 – 10 days (9 

successive releases) could provide 90% control of P. citri on Indian jujube in net houses. 

Wu (1992) demonstrated that M. basalis, when released at 1,000 eggs per tree, could 

effectively reduce P. citri on citrus. Although the latter studies have investigated the 

application of M. basalis against T. kanzawai and P. citri in the field, none of them were 

carried out on papayas. My study on papaya indicated that M. basalis could significantly 

reduce both T. kanzawai and P. citri densities under laboratory conditions with 

predator:prey ratio of 1:30. A higher release rate of 2 lacewings per 30 mites (1:15 

predator:prey) elicited over 80% control of T. kanzawai, or about 75% control of P. citri, 

but 3 lacewings per 30 mites (1:10 predator:prey) did not result in any greater 

effectiveness than the 1:15 ratio, perhaps due to cannibalism or other negative 

interactions among the predators.  

My results also showed that at the time counts were made, the majority of the mites 

were eggs, and there were no differences in the age class distributions of the mite 

populations among almost all treatments, including the control (H = 2.73 – 7.62; df = 98; 

P > 0.05) (Figs. 1-2). Although the populations of P. citri in the 1:15 and 1:10 treatments 

consisted of fewer eggs than in the 1:30 treatment and the untreated check (H = 11.00; df 

= 98; P = 0.0117) (Fig. 2), the same phenomenon was not observed when P. citri was 

presented simultaneously with T. kanzawai (H = 0.47 – 3.31; df = 97; P > 0.05) (Fig. 3). 
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This implies that M. basalis exerted the same level of predation on all age classes of both 

mite species. This result agrees with my previous finding that M. basalis exhibits no 

preference for different life stages of the two mites (see chapter 3).   

Previously, no-choice tests revealed that M. basalis had a shorter handling time on 

P. citri than on T. kanzawai, which resulted in a greater consumption rate on P. citri (see 

chapter 2). Furthermore, choice tests indicated that M. basalis has no preference for either 

mite species (see chapter 3). It is therefore interesting that in the current study, M. basalis 

controlled T. kanzawai more effectively than it did P. citri when the two mite species 

were offered as a mixture (Table 3). One explanation may be that my previous study was 

conducted on a very small spatial scale (i.e., a leaf area of 270 mm2) and was of short 

duration (observations ended when a total of 20 mites were consumed). In contrast, the 

current study was done over 6 days and was conducted on a larger scale (20-cm 

seedling). These differences allowed for changes in population density between the two 

mite species as well as different spatial distributions when they co-occurred on the same 

papaya leaves. For example, we found that when papaya seedlings were infested with 

approximately the same amount of both T. kanzawai and P. citri without introducing 

lacewings, the population density of T. kanzawai was always higher than that of P. citri.  

I observed a similar trend on papayas in the field (Cheng, personal observation). I also 

noted that in tests with individual mite species, T. kanzawai were mostly distributed on 

the undersurfaces of the papaya leaves, while P. citri was distributed about equally on 

both sides of the papaya leaves. However, when papaya seedlings were infested with both 

T. kanzawai and P. citri at approximately the same initial density, T. kanzawai became 

the dominant species and distributed itself on the undersurfaces of the leaf while P. citri 

became the secondary one, and was distributed mainly on the upper surfaces. However, 

the local distribution of the two mite species probably does not explain differences in 

observed predation rates because results (Fig. 4) showed that there were no differences in 

mite populations on either side of the leaf (H = 5.10 and 2.00; df = 98; P = 0.16 and 0.58 

for undersurfaces and uppersurfaces of the leaf, respectively), suggesting that M. basalis 

produced the same degree of control on both leaf surfaces.   
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When two species of prey have a shared enemy, the enemy might attack the one 

with the higher density to a greater degree than the one at lower density (Holt, 1977; 

Janssen et al., 1998; Liu, 2006) because of more frequent encounters of the more 

abundant species and possibly adaptation or learning. These arguments likely explain 

why M. basalis attacked T. kanzawai more than P. citri. Besides, T. kanzawai exhibited a 

more clumped distribution whereas P. citri was distributed more evenly on papaya 

leaves. Therefore, lacewings may have foraged more efficiently on prey with a clumped 

distribution, but this remains to be determined experimentally. In addition to the different 

spatial distribution patterns of the two mites on a papaya leaf, T. kanzawai are more 

likely to be found on older leaves in the field (Chang and Huang, 1995). Conversely, P. 

citri are found more often on younger leaves (Cheng, 1966). In papaya plantations, this 

additional difference in prey location could have an added influence on predator foraging 

efficiency and predator-prey dynamics as leaves of different maturity occupy different 

heights on larger papaya trees. How the interactions among the predator and prey, and the 

different distribution patterns of the two mites on papayas at different spatial scales 

would influence the biological control capability of M. basalis needs further 

investigation. 

The environmental conditions of screenhouses are easier to manipulate than those in 

the open field. This capability could increase the success of biological control 

applications. For example, previous researchers have suggested that the use of lacewings 

is best suited to glasshouses or other enclosed systems (Daane et al., 1997). Chang and 

Huang (1995) reported that use of M. basalis for controlling Tetranychus spp. mites on 

strawberry costs about USD 150 / ha, and is cheaper than use of the chemical means. 

Although it has been indicated that fecundity, longevity, feeding and searching ability of 

green lacewings were decreased with the number of generations in mass rearing, the 

common green lacewing has been proven to be a resilient laboratory insect which when 

reared on a diet of Sitotroga eggs, yeast hydrolysate, and sugar, retain their properties 

rather well through many generations (Tulisalo and Tuovinen, 1975; Ushchekov, 1976; 

Shuvakhina, 1977; Radzivilovskaya, 1980; Tulisalo, 1984a). The current study 

demonstrated that the domesticated line of M. basalis could suppress both T. kanzawai 

and P. citri populations in laboratory cages. However, how they will survive under field 
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conditions, and what their predatory potential might be is unknown and needs further 

investigation. My study showed that M. basalis at predator:prey ratio of 1:30 could 

provide significant control of both T. kanzawai and P. citri. But, it also indicated that a 

higher release rate is needed when this two mites occur simultaneously. I found less than 

half the released lacewings inside the cages at the end of the tests, which reflects the kind 

of losses observed under field conditions. However, field conditions are even more 

complicated because dispersal, intraguild predation, parasitism, and starvation all can 

influence the effectiveness of the augmentation program. Evaluations in real agricultural 

settings with higher predator: prey ratios than those used in our laboratory tests are 

needed before recommendations can be made to growers. 
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Figure 4-1  Age class distribution (shown as the percentage of each of the 4 mite 
instars) of T. kanzawai among various predator:prey ratios of 1:30, 1:15, 1:10 and 
an untreated check (n = 24-25) 3 days after release of M. basalis. Means with the 
same letters are not significantly different at P＜0.05 (F-test for normally 
distributed data, Kruskal-Wallis test for non-normally distributed data; 
STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. Data were 
subjected to square root transformation before analysis; untransformed means are 
presented.   
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Figure 4-2  Age class distribution (shown as the percentage of each of the 4 mite 
instars) of P. citri among various predator:prey ratios of 1:30, 1:15, 1:10 and an 
untreated check (n = 24-25) 3 days after release of M. basalis. Means with different 
letters are significantly different at P＜0.05 (Fisher’s protected LSD test; 
STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. Data were 
subjected to square root transformation before analysis; untransformed means are 
presented. 
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Figure 4-3  Age class distribution (shown as the percentage of each of the 4 mite 
instars) of T. kanzawai (A) and P. citri (B) among various predator:prey ratios of 
1:30, 1:15, 1:10, and an untreated check when the two mites present simultaneously 
(n = 24-25) 3 days after release of M. basalis. Means with the same letters are not 
significantly different at P＜0.05 (F-test for normally distributed data, Kruskal-
Wallis test for non-normally distributed data; STATGRAPHICS Centurion XV, 
2005). Error bars represent ±SEM. Data were subjected to square root 
transformation before analysis; untransformed means are presented. 
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Figure 4-4  Locality distribution (shown as percentages) of P. citri on papaya leaves 
among various predator:prey ratios of 1:30, 1:15, 1:10, and an untreated check (n = 
24-25) 3 days after release of M. basalis. Means with the same letters are not 
significantly different at P＜0.05 (F-test for normally distributed data, Kruskal-
Wallis test for non-normally distributed data; STATGRAPHICS Centurion XV, 
2005). Error bars represent ±SEM. Data were subjected to square root 
transformation before analysis; untransformed means are presented.  
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Table 4-1. Control efficacy of different predator:prey release ratios of M. basalis to 

T. kanzawai (n = 25)    

Predator:prey ratio Mean no. mites / seedling (±SEM)1 Control efficacy 

1 : 30      42.4 ± 9.0b           66.8% 

2 : 30      22.2 ± 4.7c           82.6% 

3 : 30      21.3 ± 4.0c           83.3% 

Untreated Check    127.7 ± 7.8a  

1Mean no. mites per seedling followed by the same letter are not significantly different at 
P＜0.05 (Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data 
were subject to square root transformation prior to analysis. Untransformed means are 
presented. 
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Table 4-2. Control efficacy of different predator:prey release ratios of M. basalis to 

P. citri (n = 25)   

Predator:prey ratio Mean no. mites / seedling (±SEM)1 Control efficacy 

1 : 30     67.0 ± 14.5b          41.8% 

2 : 30     28.3 ± 6.7c          75.5% 

3 : 30     26.2 ± 8.0c          77.2% 

Untreated Check    115.1 ± 18.3a  

1Mean no. mites per seedling followed by the same letter are not significantly different at 
P＜0.05 (Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data 
were subject to square root transformation prior to analysis. Untransformed means are 
presented. 
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Table 4-3. Control efficacy of different predator:prey release ratios of M. basalis to 

mixtures of T. kanzawai (Tk) and P. citri (Pc) (n = 25) 

Predator:prey ratio Mean no. mites / seedling (±SEM)1 Control efficacy 

 Tk Pc Total Tk Pc Total 

1 : 30 42.8 ± 0.3b 22.8 ± 3.0b 65.6 ± 11.0b 50.5% 44.1% 48.5% 

2 : 30 19.6 ± 4.0c 16.2 ± 2.6bc 35.8 ± 4.7c 77.4% 60.3% 71.9% 

3 : 30 17.8 ± 5.8c 15.0 ± 2.5c 32.7 ± 6.1c 79.5% 63.2% 74.3% 

Untreated Check 86.6 ± 11.7a 40.7 ± 4.3a 127.3 ± 12.0a    

1 Mean no. mites per seedling followed by the same letter are not significantly different at 
P＜0.05 (Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). Data 
were subject to square root transformation prior to analysis. Untransformed means are 
presented. 
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CHAPTER 5 - Effect of temperature on prey consumption rate 

of the green lacewing Mallada basalis Walker (Neuroptera: 

Chrysopidae) to two species of pest mites, Tetranychus 

kanzawai Kishida and Panonychus citri (McGregor) (Acari: 

Tetranychidae) 

 ABSTRACT 
The green lacewing, Mallada basalis, has been shown to have high potential as a 

biological control agent against two mites species of economic-importance on papaya: 

the Kanzawa mite, Tetranychus kanzawai, and the citrus mite, Panonychus citri. 

However, the impact that this predator can have on mite populations is dependent on 

prevailing environmental temperatures, which influence predator-prey dynamics by 

affecting developmental rates, survival, reproduction, and longevity. This study 

investigated the consumption rates of 2nd instar M. basalis on T. kanzawai and P. citri at 

five temperatures (15, 20, 25, 30, and 35 oC) in the laboratory. Results indicated that prey 

consumption by 2nd instar lacewings was temperature-dependent between 15 and 30 oC 

for both mite species, but consumption declined at 35 oC. Numbers of T. kanzawai 

nymphs consumed in a 30-min trial ranged from 16.3 ± 1.0 at 15 oC to 45.7 ± 2.5 at 30 

oC. On P. citri, predators consumed 26.4 ± 1.8 nymphs at 15 oC and 48.0 ± 3.3 at 30 oC. 

There were slightly different trends in the consumption rate of the lacewing in response 

to the five temperatures between the two mites, and this might be the result of the 

different spatial distribution patterns of the two mites as well as the different handling 

times of the lacewing for the two mites. Considerably high prey consumption rates at a 

wide temperature range including the temperature as low as 15 oC suggests that M. 

basalis may be suitable for year-round application in Taiwan against both T. kanzawai 

and P. citri. However, further investigations on the effect of temperature on the predatory 
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potential of M. basalis under field conditions are needed for effective application of this 

lacewing in papaya mite management programs. 

 

Key Words: phytophagous mites; predator-prey interaction; feeding behavior; predation 

rate; biological control 
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INTRODUCTION 
The Kanzawa spider mite, Tetranychus kanzawai Kishida, and the citrus red mite, 

Panonychus citri (McGregor), are two important acarine pests of a wide range of crops in 

many parts of the world (Bolland et al., 1998; Zhang, 2003). They cause injury by 

penetrating their stylets into plant tissue to feed on cell chloroplasts. This results in leaf 

stippling, wilting, and defoliation, which ultimately reduces plant growth and 

productivity. Intensive application of miticides, combined with short life cycle and strong 

fertility of the mites, have led to the development of resistance to most registered 

miticides (Cranham and Helle, 1985; Furuhashi, 1994; Masui et al., 1995; Yamamoto, et 

al., 1996; Goka, 1998; Aiki et al., 2005). Therefore, the search for alternative control 

measures has become essential. 

 Mallada basalis (Walker) is a common chrysopid in agricultural fields in Taiwan. 

Previous investigations have suggested its potential for controlling several species of 

arthropods. These include Phyllocnistis citrella, Aphis spp, Nipaecoccus filamentosus, 

Diaphorina citri, and P. citri on citrus; T. urticae and T. kanzawa on strawberry; and P. 

citri on Indian jujube (Hao, et al., 1996; Lo, 1997; Hao, 2002). A further benefit is that 

M. basalis can be mass-produced on a microcapsulated artificial diet in a cost-effective 

manner (Lee, 1995; 2003). In addition, cold storage techniques have been established to 

store immature life stages for shipment and scheduled releases (Wu, 1992). Finally, 

research has demonstrated tolerance in M. basalis to some insecticides, fungicides, and 

acaricides (Tzeng and Kao, 1996; Lo, 2002). All of these suggest that M. basalis is very 

compatible for use in integrated pest management.  

 My earlier studies have provided further support that M. basalis has high potential 

as a biological control agent for both T. kanzawai and P. citri on papaya (see chapters 2 – 

4). However, one factor that has not been investigated is how temperature influences 

predator-prey interactions between M. basalis and papaya mites. In general, temperature 

plays a crucial role in the bioecology of insects. Studies have demonstrated effects of 

temperature on development and population growth (Obrycki and Tauber, 1982; Tauber 

et al. 1987; Lopez-Arroyo et al. 1999; Pervez, 2004), foraging behavior, functional 
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response, and predation capability of a number of insect species (Dreisig, 1981; Flinn, 

1991; Runjie et al., 1996; Cocuzza et al., 1997; Nielsen, 1999; Mohaghegh et al., 2001; 

Flinn and Hagstrum, 2002; Menon et al., 2002; Perdikis et al., 2004; Simmons and 

Legaspi, 2004; Mahdian et al., 2006; Parajulee et al., 2006). This study investigated the 

effect of temperature on the consumption rate of M. basalis to two species of pest mites, 

T. kanzawai and P. citri, to provide information for understanding and effectively 

applying M. basalis in augmentative biological control programs for these two pest mites. 

 

 

MATERIALS AND METHODS 

Insects and plants 

Green lacewings: 

A laboratory colony of Mallada basalis was used for this study. This colony has 

been reared continuously, with no introduction of wild individual, since 1999 at 26±2 oC, 

70±10% RH and a photoperiod of 14:10 (L:D) on microcapsulated artificial diets 

developed for larvae (Lee, 1994; 1995), and a Brewer’s yeast and honey (1:1) diet for 

adults. The larvae were reared in plastic pans of 40 x 30 x 10.5 cm (L x W x H). 

Corrugated paper rolls (10 cm diameter and 1.5 cm thick) were first placed in the pan, 

after which two tablespoons of sawdust, 25 ml of microcapsulated diet, and 

approximately 1,000 green lacewing eggs were added. The diets were replenished three 

times with 75, 100 and 25 ml of diet being added on a 3-day schedule. A piece of 200-

mesh white screen was taped on the top of the rearing pan to prevent the escape of 

lacewing larvae and to prevent invasion by their predators (e.g., ants, spiders, etc).  

After the majority of the larvae formed cocoons, they were removed along with the 

paper rolls to a black acrylic box (45 x 45x 45 cm). A clear acrylic cylinder (15 cm 

diameter and 20 cm high) was attached to the top of the black box. Upon emergence, 

adults would fly into the clear cylinder. Adults were then introduced into another acrylic 

cylinder that was lined on the inside wall with a piece of white paper, which served as a 

substrate for oviposition. The paper was changed daily. Brewer’s yeast and honey (1:1) 
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were mixed, stuck on a piece of plastic slide, and hung inside the cylinder for adult food, 

and the water was also provided through a wetted cotton ball. 

Mites: 

Tetranychus kanzawai were collected from the papaya plantations in Nantou areas, 

Taiwan in 2003, and maintained on papaya seedlings at 26 ± 2 oC, 70 ± 10% RH and a 

photoperiod of 14:10 (L:D). Panonychus citri were also collected from the same fields at 

the same time as mentioned above, and maintained in a walk-in growth chamber on 

papaya seedlings at 25±1 oC, 70±10% RH and a photoperiod of 14:10 (L:D). 

Plants: 

Papaya seedlings (Carica papaya L., ‘Tainung No. 2’) were purchased from a 

commercial nursery 3-4 weeks after germination. The seedlings were then transferred 

individually to 9-cm diameter pots, and maintained in a room at 26±2 oC, 70±10% RH 

and a photoperiod of 14:10 (L:D) until they were approximately 25 cm tall and suitable 

for rearing mites. The seedlings were watered twice a week, but without any fertilization. 

Experimental procedures 

A piece of papaya leaf (~ 470 mm2) with the undersurface facing up was floated on 

water (~ 4 ml) in a 5-cm diameter Petri dish. One hundred mite nymphs (either T. 

kanzawai or P. citri) were introduced onto the leaf and the unit was then placed in a 

growth chamber at 70 ± 10% RH and one of the following temperatures: 15, 20, 25, 30 

and 35 oC. One green lacewing second instar larva (at their 2nd day) which had been 

starved and kept in the growth chamber for 4 h prior to the test was then added onto the 

leaf in the Petri dish. The Petri dish was then covered with the lid. Thirty minutes later, 

the number of the mites consumed by the lacewing was recorded. Tests for each mite 

species and at each temperature were replicated at least 20 times. Because of a limited 

numbers of growth chambers, tests were blocked over time and the order was randomized 

for each block.   
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Data analysis 

 Extreme data (where total consumption was less than 10 mites for both mite 

species) were excluded from the analysis. To equalize the variance among temperatures, 

the first 20 sets of data for each species were used for the analysis. Since the shape of the 

data was not consistent with an assumption of normality, the Kruskal-Wallis test was 

used to test for differences among the distributions. For those situations where the 

hypothesis of equal distributions was rejected at the type one error rate 0.05, means were 

separated with Fisher’s protected LSD procedures using STATGRAPHICS Centurion 

XV, software, 2005 (Statpoint, Inc). 

 

RESULTS AND DISCUSSION 
On both T. kanzawai and P. citri, prey consumption by 2nd instar M. basalis 

increased between 15 and 30oC, and then declined between 30 and 35oC (Fig. 1). Except 

at the highest temperature (35oC), consumption was consistently higher on P. citri than 

on T. kanzawai (Table 1). On T. kanzawai, the lacewing exhibited a statistically 

nonsignificant prey consumption rate between 15 and 20 oC (mean separation = 7.1; LSD 

= 7.8). Consumption then increased significantly with increasing temperature to 30 oC (H 

= 47.05; df = 99; P < 0.0001). Whereas on P. citri, the lacewing’s prey consumption rate 

at 20 oC was significantly higher than at 15 oC (mean separation = 9.0; LSD = 8.15), but 

was similar between 20 and 25 oC. Consumption then increased significantly between 20 

and 30 oC. In both species, the consumption rate decreased between 30 and 35 oC, but the 

difference was only significant in P. citri (mean separation = 9.1; LSD = 8.15) (Table 1). 

The slightly different trend in consumption rate of M. basalis in response to temperature 

between the two mites may be due to the different spatial distribution patterns of the two 

mites, as well as the different handling times of the lacewing to the two mites. T. 

kanzawai has a clumped distribution, but P. citri is more evenly distributed. This 

difference in spatial distribution between these two mite species is quite significant. At 

the lower temperature (e.g., 15 oC), the lacewing might have a lower mobility. The effect 

of temperature on the lacewing’s consumption rate might be less pronounced with species 

that have a clumped distribution because the lacewing does not have to move much to 

 95



forage. This would assume that movement is limited to a greater degree by low 

temperature than prey handling. In a separate study, I had demonstrated that the handling 

time of M. basalis with P. citri was shorter than with T. kanzawai (see Chapter 2). Thus, 

at higher temperatures (e.g., between 30 and 35 oC), the comparatively shorter handling 

times might make the effect of temperature on the consumption rate of M. basalis more 

pronounced with P. citri. The shorter handling time might also provide an explanation for 

the higher consumption rate of P. citri compared with T. kanzawai in this study. In 

addition, the effect of temperature on predator metabolism may also play a role in the 

consumption rates among various temperatures.  

A number of studies have shown the relationship between temperature and various 

responses in predators, including green lacewings (Harbaugh and Mattson, 1973; Dreisig, 

1981; Obrycki and Tauber, 1982; Nee, 1983; Ding and Chen, 1986; Tauber et al., 1987; 

Cocuzza et al., 1997; Lopez-Arroyo et al., 1999; Nielsen, 1999; Mohaghegh et al., 2001; 

Pervez, 2004; Simmons and Legaspi, 2004; Mahdian et al., 2006; Parajulee et al., 2006). 

For natural enemies in general, it has been suggested that increased feeding activity and 

search rates at high temperatures, as well as decreased handling times, enhance the 

functional response and, thus, have important impacts on the potential of natural enemies 

to control target pests (Dreisig, 1981; Flinn, 1991; Runjie et al., 1996; Flinn and 

Hagstrum, 2002; Mohaghegh et al., 2001; Menon et al., 2002; Skirvin and Fenlon, 2003; 

Xia et al., 2003; Mahdian et al., 2006; Parajulee et al., 2006).  

In a study with M. basalis, Chang (2000) indicated that the effective temperature 

range for larvae is about 15 to 43 oC. The current study demonstrated that prey 

consumption by M. basalis increased within a narrower range of temperature, and that 

temperatures above 30 oC were not optimal for prey consumption. Although M. basalis 

exhibited lower predation rates at the lower temperatures of 15 and 20 oC, at these 

temperatures both pest mites also have lower development rates. While P. citri has an 

optimal population growth rate at 25 oC (Zhang, 2003), and T. kanzawai at 34 oC (Chang, 

2000), M. basalis showed increased predation rates at these temperatures. My other 

studies have provided further support that M. basalis has strong potential as a biological 

control agent against both T. kanzawai and P. citri (see chapter 2 – 4). Based on the 

current study, it would appear that M. basalis is suitable for year-round application in 
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Taiwan because mean monthly temperatures in Taiwan range between 16 and 30 oC. 

However, my tests were conducted in small arenas and over a short period. Effects of 

temperature on the predator’s search rate and the prey’s ability to escape predation, and 

effects of prey spatial distribution on the predator’s foraging efficiency, would be more 

prominent in field conditions. In addition, temperature fluctuations in the field may affect 

predator responses differently than the constant temperature conditions used for the 

laboratory investigation. Therefore, how temperature would affect the overall predatory 

potential of M. basalis in the field needs further investigation before this natural enemy 

can be effectively applied in pest management programs against mites. 
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Figure 5-1  Prey consumption of T. kanzawai and P. citri nymphs by M. basalis 
second instar larvae at various temperatures (total duration = 30 minutes) (n = 20). 
Means with different letters are significantly different at P ≤ 0.05 within a species 
(LSD = 7.80 and 8.15 for T. kanzawai and P. citri, respectively) (Fisher’s protected 
LSD test; STATGRAPHICS Centurion XV, 2005). Error bars represent ±SEM. 
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Table 5-1. Prey consumption of M. basalis second instar larvae to T. kanzawai and P. 

citri nymphs at various temperatures (total duration = 30 minutes) (n = 20)    

Temperature °C Mean (±SEM) number mites consumed
 

 
T. kanzawai P. citri 

15
 

16.3 ± 1.0a 26.4 ± 1.8a 

20
 

23.5 ± 1.9a 35.4 ± 2.8b 

25
 

34.3 ± 2.4b 37.5 ± 3.5b 

30
 

45.7 ± 2.5c 48.0 ± 3.3c 

35 38.8 ± 4.7bc 38.9 ± 2.9b 

Means within the same column of the same M. basalis stage followed by the same letter 
are not significantly different at P≤0.05 (LSD = 7.80 and 8.15 for T. kanzawai and P. 
citri, respectively) (Fisher’s protected LSD test; STATGRAPHICS Centurion XV, 2005). 
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SUMMARY 

Environmentally-friendly approaches have been the trend in agricultural pest 

management for the past few decades. The aims of these alternative approaches are to 

reduce adverse impacts of pest control on natural and managed environments, and to 

foster a more sustainable means of producing crops. Glasshouse/screenhouse cultivation 

is an environmentally-supportive practice because it serves as a partial physical barrier to 

insect pests and diseases, thus, reducing reliance on chemical pesticides for producing 

high-quality crops. Currently, most papayas in Taiwan are cultivated in screenhouses for 

protection against aphids which vector papaya ringspot potyvirus. However, the warm 

screenhouse conditions induce outbreaks of two pest mites, Tetranychus kanzawai 

Kishida and Panonychus citri (McGregor). Pressure from mites, and overreliance on 

chemicals to control them, has brought about a predicted, but undesirable result: many 

mite populations are resistant to most if not all of the registered miticides. This situation 

has made it necessary to seek alternative forms of papaya mite management.   

Biological control, which utilizes natural enemies to suppress pest populations, is 

considered an environmentally-safe method and a viable alternative to pesticides. When 

done in glasshouses or screenhouses, the effectiveness of biological control may be 

greater than in open fields because environmental conditions are more moderate and can 

be controlled. Among the natural enemies used in augmentative biological control 

programs against tetranychid mite pests, phytoseiid mites have gained much attention 

because they specialize on tetranychids, have favorable attributes relative to the pest, and 

are commercially available at relatively low cost. Green lacewings, which have been 

demonstrated as a generalist predator of many important agricultural pests, provide 

another option. 

Mallada basalis Walker is a common Chrysopid in Taiwan agricultural fields. 

Results of previous research have suggested that this green lacewing may have potential 

as a biological control agent against several species of arthropod pests, including 

tetranychid mites such as T. kanzawai, P. citri, and T. urticae. Its tolerance to some 
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insecticides, fungicides, and acaricides has also been reported. In addition, cold storage 

techniques were established to store its various stages, i.e., eggs, larvae, and pupae, for 

shipment and scheduled release. All of these enhance the promise of M. basalis as a 

biological control agent. However, very little is known about the predatory response of  

M. basalis to T. kanzawai or P. citri.  In general, behavioral and ecological studies 

provide information on natural enemy-pest interactions that it is crucial for the effective 

application of biological control agents. More specifically, laboratory assessments 

provide data that is helpful in understanding basic mechanisms by which natural enemies 

control pests, thus contributing essential knowledge for further field investigations. For 

these reasons, I conducted a series of experiments involving predator foraging behavior 

and prey-selection involving a domesticated line of M. basalis and the two primary mite 

pests on papaya, T. kanzawai and P. citri. 

In no-choice tests, I showed that all larval instars of this green lacewing were active 

searchers, exhibited considerably high prey acceptability of both T. kanzawai and P. citri, 

and had relatively short handling times, and voraciously consumed all life stages of both 

mites. The magnitude of M. basalis’ responses varied depending on the life stage of the 

predator and prey, as well as which mite species was available as prey. The handling time 

decreased, and the consumption rate increased as age of the predator increased, and as 

prey age decreased. Handling times were shorter and consumption rates were greater at 

higher than lower P. citri density, and M. basalis consumed more P. citri than T. 

kanzawai.  

In choice tests, M. basalis did not show an age-class preference for either species of 

prey mite. They also did not prefer one mite species over the other, and prior feeding 

experience of the lacewing on one mite species did not affect their subsequent prey 

choice.  

A laboratory assessment of the ability of M. basalis to suppression populations of 

the two mites, showed that a predator:prey ratio of 1:30 significantly reduced both T. 

kanzawai and P. citri densities of all life stages whenever the two mites occurred singly 

or simultaneously. However, population suppression was similar but better at the two 

higher predator-prey ratios (1:15 and 1:10). 
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Finally, I investigated the relationship between temperature and consumption rate of 

T. kanzawai and P. citri by M. basalis. Results showed that M. basalis is capable of 

preying on the mites at temperatures as low as 15 oC, and prey consumption increases 

with temperature up to 30 oC after which rates decline. The consumption-temperature 

curves differed for the two mite species suggesting that differences in the spatial 

distribution and handling times of the prey species may have had effects on foraging 

efficiency that interacted with temperature effects.   

Tetranychus kanzawai and P. citri can occur simultaneously at the same papaya 

plantation and on same papaya leaves. The high prey acceptability and voracious prey 

consumption of M. basalis to all life stages of both mites suggest the potential of M. 

basalis to serve as a useful biological control agent regardless of which papaya mite pest 

is present. No preference in M. basalis between the two mites even with previous feeding 

experience enhances the capability of M. basalis against this two mites when they occur 

simultaneously or sequentially. The positive density-dependent responses – decreased 

handling time and increased consumption rate with increasing mite density – further 

suggest that M. basalis may be capable of responding to, and contain, pest populations. 

Finally, the relatively high consumption of both mites across a range of temperatures, 

which include those found seasonally in screenhouses, suggests that M. basalis could be 

applied as an effective augmentative biological control agent year-round in Taiwan. 

The promise of a natural enemy for biological control programs depends not only 

on its predatory/parasitizing potential, but also on its ability to be mass-produced and the 

field performance of those mass-produced individuals. M. basalis can be mass-produced 

on artificial diet in a cost-effective manner. With the current techniques, production of a 

M. basalis adult has been estimated being about 0.028 USD including diets, labor, utility, 

and facility, and one female could produce an average of 736.3 eggs. It was also reported 

that use of M. basalis for controlling Tetranychus mites on strawberry costs about 150 

USD / ha. It is cheaper than use of the chemical means. My current study indicates that 

laboratory colonies of M. basalis continue to possess high predatory capability even after 

10 years. My research, combined with prior knowledge, provides an expanding basis on 

which to promote the use of M. basalis as a biological control agent for the two important 

papaya pest mites. However, as field conditions are much more complicated than the 
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laboratory, and factors such as plant architectural structures, predator and prey spatial 

distributions, varying prey population densities, cannibalism, and changes in climatic 

conditions all influence predator-prey interactions in a dynamic manner, the performance 

of mass-produced M. basalis under more realistic field settings needs to be investigated 

before an effective papaya pest mite biological control program can be established. 
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Appendix A - Tables of Statistics 

Table A-1   Statistics of comparisons on feeding behavioral parameters of M. basalis 

larvae preying on various life stages of T. kanzawai on papaya (Table 1 / Chapter 2) 

Stage of 

M. basalis 

Statistics 
Feeding behavioral parameter

 

  Prey acceptability

 

Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

1st instar n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    F = 1.13     F = 8.73     F = 4.71   F = 17.35 

  P     0.3669     0.0012     0.0153   ＜ 0.0001 

2nd instar  n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    F = 3.21     H = 7.87     F = 9.85   F = 39.00 

  P     0.0514     0.0488     0.0006   ＜ 0.0001 

3rd instar n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    F = 2.99     H = 2.1431     F = 40.19   F = 102.88 

  P     0.0622     0.5432     ＜ 0.0001   ＜ 0.0001 

* F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 
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Table A-2  Statistics of comparisons on feeding behavioral parameters of M. basalis 

larvae preying on various life stages of P. citri at high density on papaya (Table 2 / 

Chapter 2) 

    

Stage of 

M. basalis 

Statistics 
Feeding behavioral parameter

 

  Prey acceptability

 

Total foraging time

 

Total no. of prey 

consumed

 
Handling time 

1st instar n        5 5        5        5 

  df        19        19     19     19 

 Test statistic*
      H = 4.6166       F = 1.94     F = 58.93   F = 26.28 

  P         0.2021        0.1640     ＜ 0.0001   ＜ 0.0001 

2nd instar n         5         5        5        5 

 df        19       19     19     19 

 Test statistic*
      H = 8.9599     H = 2.3368     F = 17.12   F = 140.02 

  P          0.0298        0.5055     ＜ 0.0001   ＜ 0.0001 

3rd instar  n          5          5        5        5 

  df         19        19     19     19 

 Test statistic*
      H = 2.9353       F = 0.47     F = 20.47   F = 14.94 

  P          0.4017        0.7095     ＜ 0.0001   ＜ 0.0001 

* F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 
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Table A-3   Statistics of comparisons on feeding behavioral parameters of M. basalis 

larvae preying on various life stages of P. citri at low density on papaya (Table 3 / 

Chapter 2) 

Stage of  

M. basalis 

Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

1st instar n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    H = 2.8920     F = 0.55     H = 4.7877   F = 24.47 

  P    0.4086     0.6567    0.1880   ＜ 0.0001 

2nd instar n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    F =1.28     H = 3.8457     F = 5.97   F = 33.26 

  P     0.3162     0.2786     0.0062   ＜ 0.0001 

3rd instar n        5        5        5        5 

 df     19     19     19     19 

 Test statistic*
    H = 5.8267     F = 1.38     F = 1.99   F = 16.38 

  P     0.1204     0.2843     0.1556   ＜ 0.0001 

* F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 
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Table A-4   Statistics of comparisons on feeding behavioral parameters of various 

M. basalis larval instars preying on T. kanzawai on papaya (Figure 1 / Chapter 2)  

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg  n       5        5       5        5 

 df     14     14     14     19 

 Test statistic*
F = 2.37     H = 10.82     F = 45.91   F = 18.11 

   P 0.1356     0.0045     ＜ 0.0001   ＜ 0.0001 

larva n       5        5       5        5 

 df     14     14     14     19 

 Test statistic*
F = 2.11     F = 20.29     F = 56.82   F = 48.68 

 P 0.1645     0.0001     ＜ 0.0001   ＜ 0.0001 

nymph n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
F = 0.22 H = 6.9067     F = 29.91   F = 14.99 

 P 0.8026 0.0316     ＜ 0.0001   ＜ 0.0001 

adult n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F =6.53     H = 9.6222     F = 82.86   F = 12.68 

 P     0.0121     0.0081     ＜ 0.0001   ＜ 0.0001 

* F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 

 

 111



 

Table A-5  Statistics of comparisons on feeding behavioral parameters of various M. 

basalis larval instars preying on P. citri at high density on papaya (Figure 2 / 

Chapter 2)    

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F = 1.82     F = 4.58     F = 36.45   F = 119.59 

 P     0.2041     0.0332     ＜ 0.0001   ＜ 0.0001 

larva n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
  H = 1.4539     H = 8.8563     F = 17.72   F = 34.19 

 P   0.4834     0.0119     0.0003     ＜ 0.0001 

nymph n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F = 1.75     F = 6.35     F = 90.22   F = 17.65 

 P     0.2147     0.0132     ＜ 0.0001   ＜ 0.0001 

adult n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F = 2.98     F = 38.97     F = 34.79   F = 40.11 

 P     0.0888     ＜ 0.0001     ＜ 0.0001   ＜ 0.0001 

* F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 
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Table A-6  Statistics of comparisons on feeding behavioral parameters of various M. 

basalis larval instars preying on P. citri at low density on papaya (Figure 3 / Chapter 

2) 

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    H = 4.9985     F = 6.73     H = 9.1164   F = 16.53 

  P     0.0821     0.0109     0.0105   ＜ 0.0001 

larva n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    H = 6.832     H = 10.5     F = 14.82   F = 25.42 

 P     0.0328     0.0052     0.0006   ＜ 0.0001 

nymph n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F = 0.13     H = 2.24     F = 16.05   F = 16.03 

  P     0.8827     0.3263     0.0004   ＜ 0.0001 

adult n       5       5       5        5 

 df     14     14     14     19 

 Test statistic*
    F = 1.31     F = 27.17     F = 15.32   F = 34.08 

  P     0.3069     ＜ 0.0001     0.0005   ＜ 0.0001 

F for normally distributed data with F test; H for non-normally distributed data with Kruskal-Wallis test. 
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Table A-7  Statistics of comparisons on feeding behavioral parameters of 1st instar 

M. basalis larvae between preying on T. kanzawai and P. citri on papaya (Figure 4 / 

Chapter 2)   

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n       5       5       5        5 

 df     4     4     4      4 

 Test statistic*
    t = 1.8922     t = 9.8341     t = 11.4001   t = - 4.11 

  P     0.0951     ＜ 0.0001     ＜ 0.0001   0.0147 

larva n       5       5       5        5 

 df     4     4     4      4 

 Test statistic*
    t = 2.8263     t = 1.9329     t = 2.3002   t = 0.78 

 P     0.0223     0.0893     0.0505   0.4791 

nymph n       5       5       5        5 

 df     4     4     4      4 

 Test statistic*
    t = 0.8237     t = -1.0128     t = -0.5651   t = - 0.09 

 P     0.4340     0.3408     0.5875   0.9300 

adult n       5       5       5        5 

 df     4     4     4      4 

 Test statistic*
    t = 0.1443     t = 1.3195     t = 3.5485   t = 2.12 

 P     0.8888     0.2235     0.0075   0.1019 

* t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-8  Statistics of comparisons on feeding behavioral parameters of 2nd instar 

M. basalis larvae between preying on T. kanzawai and P. citri on papaya (Figure 5 / 

Chapter 2)   

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 0.1855     W = -10.5     t = 0.4903   t = - 4.93 

  P     0.8574     0.0311     0.6371   0.0079 

larva n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    W = -6.5     W = -3.5     t = 2.3564   t = 4.39 

  P     0.2087     0.4802     0.0462   0.0118 

nymph n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 1.4563     t = 0.8314     t = 0.7313   t = 1.06 

  P     0.1834     0.4299     0.4855   0.3483 

adult n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 0.7221     W = 3.5     t = 3.5526   t = 3.05 

 P     0.4908     0.4802     0.0075   0.0382 

t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-9  Statistics of comparisons on feeding behavioral parameters of 3rd instar 

M. basalis larvae between preying on T. kanzawai and P. citri on papaya (Figure 6 / 

Chapter 2) 

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 1.4322     W = -1.5     t = -0.2180   t = - 4.04 

 P     0.1900     0.8325     0.8329   0.0156 

larva n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    W = -11.5     W = -1.5     t = -1.1673   t = 1.61 

 P     0.0208     0.7972     0.2767   0.1822 

nymph n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 1.6802     W = 7.5     t = -1.4048   t = - 0.84 

 P     0.1314     0.1188     0.1977   0.4465 

adult n      5      5      5        5 

 df     4     4     4      4 

 Test statistic*
    t = 0.4495     t = -1.0905     t = 2.9288   t = 3.96 

  P     0.6650     0.3072     0.0190   0.0167 

* t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-10  Statistics of comparisons on feeding behavioral parameters of 1st instar 

M. basalis larvae between preying on high and low densities of P. citri on papaya 

(Figure 7 / Chapter 2) 

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    W = 5.5     t = 1.6805     W = -12.5   t = - 4.9927 

4.2 P     0.2636     0.1314     0.0111   0.0041 

larva n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    W = 9.5     t = 1.3718     t = 5.4501   t = - 1.92 

 P     0.0449     0.2074     0.0006   0.0963 

nymph n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = -0.6736     t = -0.3817     t = 2.5560   t = 0.4586 

  P     0.5195     0.7126     0.0339   0.6626 

adult n       5      5      5    5 

 df     4     4     4  5 

 Test statistic*
    t = -1.5828     t = 2.4332     t = 2.7092   t = 0.9787 

  P     0.1521     0.0410     0.0267   0.3603 

* t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-11  Statistics of comparisons on feeding behavioral parameters of 2nd instar 

M. basalis larvae between preying on high and low densities of P. citri on papaya 

(Figure 8 / Chapter 2) 

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n      5      5      5        5 

 df     4     4     4      8 

 Test statistic*
    t = 0.5020     W = -5.5     t = 6.5628   t = - 3.2883 

  P     0.6292     0.2652     0.0002   0.0111 

larva n      5      5      5        5 

 df     4     4     4      8 

 Test statistic*
    W = 0.5     W = -7.5     t = 4.9366   t = - 1.3383 

  P     ＞0.9999     0.1314     0.0011   0.2176 

nymph n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = 0.1907     W = 1.5     t = 4.5295   t = - 0.9789 

 P     0.8535     0.8340     0.0019   0.3726 

adult n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = -2.6546     t = 2.8914     t = 7.3901   t = - 0.8469 

 P     0.0290     0.0202     0.0001   0.4357 

* t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-12  Statistics of comparisons on feeding behavioral parameters of 3rd instar 

M. basalis larvae between preying on high and low densities of P. citri on papaya 

(Figure 9 / Chapter 2)   

Mite stage Statistics 
Feeding behavioral parameter

 

  Prey 

acceptability

 
Total foraging 

time

 
Total no. of prey 

consumed

 
Handling time 

egg n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = 2.6315     t = 2.1071     t = 9.9158   t = - 5.9218 

 P     0.0301     0.0682     ＜ 0.0001   0.0020 

larva n      5      5      5        5 

 df     4     4     4      7 

 Test statistic*
    W = -6.0     t = 2.2502     t = 6.4578   t = - 3.2095 

  P     0.2463     0.0546     0.0002   0.0149 

nymph n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = 0.4666     t = 0.0027     t = 11.73   t = - 2.8623 

 P     0.6533     0.9979     ＜ 0.0001   0.0353 

adult n      5      5      5        5 

 df     4     4     4      5 

 Test statistic*
    t = -0.9682     t = 1.7221     t = 5.9011   t = - 3.0164 

 P     0.3613     0.1234     0.0004   0.0295 

* t for normally distributed data with a t test; W for non-normally distributed data with Mann-Whitney W test. 
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Table A-13  Statistics of comparisons on relative prey encounter and consumption 

rates, and prey acceptability of M. basalis larvae conditioned with different diet to a 

mixture of T. kanzawai and P. citri nymphs at various ratios (Table 1 / Chapter 3) 

Previous 

food 

Prey provided 
% Encounter 

(n = 200; df = 1) 

% Consumption 

(n = 200; df = 1)

 
% Acceptability 

(n = 10; df = 9) 

  χ2 χ2 W* P 

Diet 50% Tk & 50% Pc 1.037 0.98 0.0 0.9569 

 
20% Tk & 80% Pc 0.1013 0.125 -0.5 ＞0.9999 

 
80% Tk & 20% Pc 2.42 2.531 0.5 ＞0.9999 

Tk 
50% Tk & 50% Pc 0.5 0.5 0.0 0.9421 

 
20% Tk & 80% Pc 1.125 0.5 6.0 0.5036 

 
80% Tk & 20% Pc 3.125 3.125 0.0 0.9421 

Pc 
50% Tk & 50% Pc 0.3528 0.32 -0.5 ＞0.9999 

 
20% Tk & 80% Pc 1.7113 2.0 -6.0 0.5036 

 
80% Tk & 20% Pc 0.605 0.5 -0.5 ＞0.9999 

            * Mann-Whitney W test. 
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Table A-14  Statistics of comparisons on relative prey encounter and consumption 

rates, and prey acceptability of M. basalis larvae to a mixture of various life stages 

of T. kanzawai (Figure 1 / Chapter 3) 

Stage of  

M. basalis 

% Encounter 

(n = 200; df = 3) 

% Consumption 

(n = 200; df = 3)

 
% Acceptability 

(n = 10; df = 39) 

 χ2 χ2 H* P 

1st instar 9.23 13.84 0.1890 0.9793 

2nd instar 3.22 3.08 2.1544 0.5410 

3rd instar 17.68 16.68 1.1009 0.7769 

   * Kruskal-Wallis test. 
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Table A-15 Statistics of comparisons on relative prey encounter and consumption 

rates, and prey acceptability of M. basalis larvae to a mixture of various life stages 

of P. citri (Figure 2 / Chapter 3) 

Stage of  

M. basalis 

% Encounter 

(n = 200; df = 3) 

% Consumption 

(n = 200; df = 3)

 
% Acceptability 

(n = 10; df = 39) 

                   χ2 χ2 H* P 

1st instar 76.31 34.94 10.9428 0.0120 

2nd instar 28.36 21.84 7.9836 0.0464 

3rd instar 61.03 66.28 5.9010 0.1165 

                                          * Kruskal-Wallis test. 
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Table A-16  Statistics of comparisons on mean number mites of various 

predator:prey ratio treatments of M. basalis to T. kanzawai (Table 1 / Chapter 4)   

Statistics  

n 25 

df 124 

H* 61.1006 

P ＜ 0.0001 

* Kruskal-Wallis test. 
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Table A-17  Statistics of comparisons on mean number mites of various 

predator:prey ratio treatments of M. basalis to P. citri (Table 2 / Chapter 4)  

Statistics  

n 25 

df 124 

H* 43.6854 

P ＜ 0.0001 

* Kruskal-Wallis test. 
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Table A-18  Statistics of comparisons on mean number mites of various 

predator:prey ratio treatments of M. basalis to mixtures of T. kanzawai and P. citri 

(Table 3 / Chapter 4)   

Statistics  

 T. kanzawai P. citri Total 

n 25 25 25 

df 124 124 124 

H* 35.0412 38.9982 47.8361 

P ＜ 0.0001 ＜ 0.0001 ＜ 0.0001 

* Kruskal-Wallis test. 

 

 125



 

Table A-19 Statistics of comparisons on age class distribution of T. kanzawai 3 days  

after release of M. basalis at predator:prey ratios of 1:30, 1:15, 1:10, and  

an untreated check (Figure 1 / Chapter 4) 

Statistics Mite age class 

 Egg Larva Nymph Adult 

n 24-25 24-25 24-25 24-25 

df 98 98 98 98 

Test statistic* H = 2.9810 F = 1.15 H = 2.7323 H = 7.6198 

P 0.3946 0.3329 0.4348 0.0546 

* F for normally distributed data with F test; H for non-normally distributed data with 

Kruskal-Wallis test. 
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Table A-20 Statistics of comparisons on age class distribution of P. citri 3 days  

after release of M. basalis at predator:prey ratios of 1:30, 1:15, 1:10, and  

an untreated check (Figure 2 / Chapter 4) 

Statistics Mite age class 

 Egg Larva Nymph Adult 

n 24-25 24-25 24-25 24-25 

df 98 98 98 98 

H * H = 10.9993 H = 3.8175 H = 4.3185 H = 5.8066 

P 0.0117 0.2819 0.2291 0.1214 

* Kruskal-Wallis test. 
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Table A-21  Statistics of comparisons on locality distribution of P. citri on papaya 

leaves 3 days after release of M. basalis at predator:prey ratios of 1:30, 1:15, 1:10,  

and an untreated check (Figure 3 / Chapter 4)    

Statistics Locality distribution of P. citri 

 undersurfaces uppersurfaces 

n 24-25 24-25 

df 98 98 

H * 5.0981 1.9676 

P 0.1648 0.5792 

* Kruskal-Wallis test. 
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Table A-22  Statistics of comparisons on age class distribution of T. kanzawai and P. 

citri 3 days after release of M. basalis at predator:prey ratios of 1:30, 1:15, 1:10,  

and an untreated check when the two mites present simultaneously  

(Figure 4 / Chapter 4)   

Mite species Statistics Mite age class 

  Egg Larva Nymph Adult 

T. kanzawai n 19-25 19-25 19-25 19-25 

 df 90 90 90 90 

 Test 

statistic*

H = 3.392 F = 1.21 F = 0.17 F = 1.00 

 P 0.3350 0.3097 0.9165 0.3989 

P. citri n 23-25 23-25 23-25 23-25 

 df 97 97 97 97 

 Test 

statistic*

H = 3.3139 H = 2.92 H = 0.4728 F = 0.95 

 P 0.3457 0.4041 0.9248 0.4180 
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Table A-23  Statistics of comparisons on prey consumption of M. basalis to T. 

kanzawai and P. citri among various temperatures (Table 1 / Chapter 5)   

Statistics Mite species 

 T. kanzawai P. citri 

n 20 20 

df 99 99 

H* 47.0471 20.9579 

P ＜ 0.0001 0.0003 

* Kruskal-Wallis test. 

 

 

 

 

 

 

 

 130


	CHAPTER 1 -  Introduction and Literature Review  
	General information about papayas
	Papayas in Taiwan
	Papaya pest and disease problems in Taiwan
	Mite pests
	Tetranychus kanzawai
	Panonychus citri 
	Management of T. kanzawai and P. citri
	Chemical control
	Biological control 
	Biological control using green lacewings
	Mallada basalis 

	Specific objectives and hypotheses of this study
	REFERENCES

	CHAPTER 2 -  Foraging, prey acceptability, handling times, and consumption rates by the green lacewing Mallada basalis Walker (Neuroptera: Chrysopidae) on two species of papaya pest mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae)
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Insect and plant cultures
	Papayas:
	Mites:
	Green lacewings:

	General experimental procedures
	Data analyses

	RESULTS
	Prey acceptability
	Foraging time
	Handling time
	Short-term consumption rate

	DISCUSSION
	 REFERENCES

	CHAPTER 3 -   Prey preference of a generalist predator, Mallada basalis Walker (Neuroptera: Chrysopidae), between two species of papaya pest mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae)
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Insects and plants
	Plants:
	Green lacewings:
	Mites:

	Preference of larval M. basalis for different life stages  of either T. kanzawai or P. citri
	Preference of M. basalis for T. kanzawai and P. citri nymphs: effect of relative prey abundance and previous feeding experience
	Data analyses

	RESULTS
	DISCUSSION
	REFERENCES

	CHAPTER 4 -   Efficacy of the green lacewing Mallada basalis Walker (Neuroptera: Chrysopidae) on two species of papaya mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae), at different predator:prey release ratios
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Insects and plants
	General experimental procedures
	Data analysis

	RESULTS AND DISCUSSION
	REFERENCES

	CHAPTER 5 -  Effect of temperature on prey consumption rate of the green lacewing Mallada basalis Walker (Neuroptera: Chrysopidae) to two species of pest mites, Tetranychus kanzawai Kishida and Panonychus citri (McGregor) (Acari: Tetranychidae)
	 ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Insects and plants
	Green lacewings:
	Mites:
	Plants:

	Experimental procedures
	Data analysis

	RESULTS AND DISCUSSION
	REFERENCES
	Appendix A - Tables of Statistics



