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Abstract

Networks are defined as sets of items and their connections. Interconnected items are

represented by mathematical abstractions called vertices (or nodes), and the links connecting

pairs of vertices are known as edges. Networks are easily seen in everyday life: a network

of friends, the Internet, metabolic or citation networks. The increase of available data

and the need to analyze network have resulted in the proliferation of models for networks.

However, for networks with billions of nodes and edges, computation and inference might

not be achieved within a reasonable amount of time or budget. A sampling approach

seems a natural choice, but traditional models assume that we can have access to the entire

network. Moreover, when data is only available for a sampled sub-network conclusions tend

to be extrapolated to the whole network/population without regard to sampling error.

The statistical problem this report addresses is the issue of how to sample a sub-network

and then draw conclusions about the whole network. Are some sampling techniques better

than others? Are there more efficient ways to estimate parameters of interest? In which

way can we measure how effectively my method is reproducing the original network? We

explore these questions with a simulation study on Mesa High School students’ friendship

network. First, to assess the characteristics of the whole network, we applied the traditional

exponential random graph model (ERGM) and a stochastic blockmodel to the complete

population of 205 students. Then, we drew simple random and stratified samples of 41

students, applied the traditional ERGM and the stochastic blockmodel again, and defined a

way to generalized the sample findings to the population friendship network of 205 students.

Finally, we used the degree distribution and other network statistics to compare the true

friendship network with the projected one.



We achieved the following important results: 1) as expected stratified sampling outper-

forms simple random sampling when selecting nodes; 2) ERGM without restrictions offers a

poor estimate for most of the tested parameters; and 3) the Bayesian stochastic blockmodel

estimation using a stratified sample of nodes achieves the best results.
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Chapter 1

Introduction

1.1 Motivation

Networks (also known as “graphs”) are easily seen in everyday life: a network of friends,

the Internet, companies or organizations networks, human’s neural networks, metabolic net-

works, books or papers citation networks. With the growing popularity of social networks

many social media websites, such as Facebook, Linkedin or Twitter, have gained thousands

of millions of users. The topology of these social networks helps users promote connections

and exchange of information. It has also become an attractive way to reach target popula-

tions, for uses as diverse as the people engaged in social media, from marketing companies

trying to sell their products to government and health officials looking to estimate the size

of populations at risk (Handcock [1]) or to understand how information sharing in online

communities may affect health behaviors (Balatsoukas [2]).

We will define Network as a set of items and their connections. The interconnected

items are represented by mathematical abstractions called vertices (or nodes), and the links

that connect pairs of vertices are called edges. On one hand, if edges point in a certain

direction such as the relationships in a prey-predator network, it is called directed network.

On the other hand, when all the edges are bidirectional or when the direction is of no

interest, it is called undirected network. Moreover, one network may contain both directed
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and undirected edges. Figure 1.1 shows the two types of edges: on the right edges run in

only one direction, while in the left edges do not have a directional property.

Figure 1.1: Undirected Network (left) and Directed Network (right).

Social networks share some common node and edge properties such as degree distribu-

tion, mean shortest distance (between vertex pairs, clustering coefficients, and community

structure, which will be defined and explained in detail in Chapter 2.2. By studying those

properties, we can investigate the correlation between nodes and structures, estimate node

activity, predict future emerging edges or find hidden edges and so on. However, for net-

works with billions of nodes and edges, computation and inference might not be achieved

within a reasonable amount of time and money when dealing with the complete network

database. When data is too massive to be processed thoroughly, a sampling approach seems

a natural choice. In addition, for many cases as pointed out in Shalizi and Rinaldo [3], data

is only available for a sampled sub-network. The increase of available data and the need to

analyze it have resulted in the proliferation of models for network data [4, 5, 6]. In terms of

sampling methodologies, we can go as far back as Goodman’s [7] snowball sampling, which

evolved into response driven sampling (RDS). RDS is still the most used way to investigate

and draw conclusions about hard to find populations. More recent examples of efforts into

sampling networks include Blagus et al. [8] and Rezvanian et al. [9]. Typically, however,
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models are developed assuming we have access to the entire network and conclusions based

on a sampled sub-network are generalized to the whole network/population. Shalizi and

Rinaldo [3] showed that the assumption of consistency under sampling that is required to

make such generalizations is violated by many popular models. They discussed how the

popular class of exponential random graph models (ERGM) and other similar models re-

quire strong assumptions to be able to project sampled data into the population network.

One key issue that Shalizi and Rinaldo [3] left unanswered is how to obtain information

from a part of the network and then draw conclusions about the whole population. Which

sampling mechanism will make a network sample more “representative” of the whole net-

work? After inference has been made using a sample from a network, how can we project

it? In other words, how or what conclusions can be made about to the population network?

How can we compare the estimated population network parameters with their true values?

The main focus of this work is to explore these questions with a simulation study on a high

school student friendship network.

In the following section, we will introduce the friendship network that will be used. We

will define networks, network statistics of interest and traditional network models, such as

ERGM in detail in Chapter 2. Chapter 3 will cover an alternative Bayesian method to

model networks that we expect has the potential of satisfy the assumption of consistency

under sampling. Finally, Chapter 4 describes sampling techniques and inference approaches

that we explored to assess whether network information can be estimated using only a

sub-network.

1.2 Faux Mesa High Dataset

For our empirical study, we used an example of a typical social network using the “Faux

Mesa High” data set of Resnick et al [10], which is built in the R package called “ERGM”

as a network object. It represents a simulation of an in-school friendship network. The

school community is in the rural western U.S., and has a student body largely Hispanic and
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Native American. The network has 205 vertices (students, in this case) and 203 undirected

edges (mutual friendship). Furthermore, for each student three attributes are known: grade,

gender and race. Grade has values 7 through 12, indicating each student’s grade. Gender

has two values: male and female. Race is based on the answers to two questions, one on

Hispanic identity and one on race, and takes six possible values: White (non-Hisp), Black

(non-Hisp), Hispanic, Asian (non-Hisp), Native American, and Other (non-Hisp). The basic

information of the dataset is listed in Table 1.1.

Table 1.1: Student Distribution by Attributes
Distribution by Grade

Grade 7 8 9 10 11 12
Student 62 40 42 25 24 12
Percent 30.24 19.51 20.49 12.20 11.71 5.85

Distribution by Gender
Gender female male
Student 99 106
Percent 48.29 51.70

Distribution by Race
Race Black Hisp NatAm Other White

Studuent 6 109 68 4 18
Percent 2.93 53.17 33.17 1.95 8.78

Graphs of the friendships network showing grade, gender and race are displayed in Fig-

ure 1.2.
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Figure 1.2: Friendship Network Showing Grade (top), Gender (middle) and Race (bottom).
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Chapter 2

Traditional Network Modeling

2.1 Networks in the Real World

For networks introduced in Section 1.1 such as network of friends, the Internet, company

or organization networks, human’s neural networks and many others, we can calculate their

properties and model their vertices and edges statistically. This chapter reviews some com-

mon properties in many of these networks and describe works on mathematical modeling of

networks.

Watts and Strogatz [11] studied networks from different fields of application. Their

findings on the common properties and mathematical models to simulate those properties

are described in their ground-breaking paper. Inspired by their work, we followed the same

way of dividing real world networks into four loose types as Newman [12]: social networks,

information networks, technological networks, and biological networks.

A social network is a set of people or groups of people who have some patterns of interac-

tions between them, such interactions could be friendship, business relationships, intermar-

riage between families and so on. An information network is sometimes called a “knowledge

networks”. For example, the network of citations between academic papers. Citations form

a network where articles are vertices, and “article A cites article B” means that we have a

directed edge from A to B. One thing worth mentioning is that a citation network is always
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acyclic: newer papers can cite older papers, but older papers can never cite those that have

yet to be written. A technological network is a man-made network designed for the distri-

bution of commodity or resources, for example, the electric power grid, networks of roads,

telephone networks and the Internet. One common feature of technological networks is that

their structure is governed by space and geography to some degree. Nodes are connected

by edges when they are technologically desirable and geographically feasible. The fourth

category, biological network, is any biological systems with sub-units that are linked into a

whole big unit. Classic examples of this kind are metabolic pathways, genetic regulatory

network, neural network and the food web.

2.2 Networks Properties

Rapoport [13] was one of the first theorists that found the common properties of these

networks and modeled them mathematically. He studied the degree distribution in all kinds

of networks using random graphs, the simplest model of a network. A random graph is a

graph in which properties such as the number of graph vertices, graph edges and connections

between them are determined in some random way, for instance, edge probabilities between

two vertices can distribute uniformly in the (0, 1) interval. We will give a more detailed

mathematical definition of random graph in Section 2.3. In this Section, we will discuss

some important network properties defined in Newman [12] that are observed in many of

those mentioned in Section 2.1.

2.2.1 Mean Shortest Distance between Vertex Pairs

Consider an undirected network with a fixed n number of vertices, there are 1
2
n(n + 1)

possible edges in this network. If we treat the distance from each vertex to itself as zero,

then the mean shortest distance between pairs is defined as:
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` =
1

1
2
n(n+ 1)

∑
i≥j

dij (2.1)

where dij is the shortest distance from vertex i to vertex j, and n is the total number of

vertices in the network. In this report, for distance we mean that the geodesic distance

between vertex i and vertex j. It is the shortest path (in the number of edges) through the

network from one vertex to another.

One problem with the quantity ` in equation (2.1) arises when networks have more than

one component. In graph theory, a component of a network is a subgraph that can be

reached from a vertex by paths running along edges of the graph. Therefore when there

is more than one component, we could have vertex pairs with no connecting path. If one

assigns infinite shortest distance dij to such pairs, then the value of ` becomes infinite. A

way to avoid this kind of problem is to define ` to be the “harmonic mean” shortest distance

between all pairs, i.e., the reciprocal of the average of the reciprocals:

`−1 =
1

1
2
n(n+ 1)

∑
i≥j

d−1ij (2.2)

In equation (2.2) infinite values of dij contributes nothing to the sum, thus nothing to the

quantity `.

2.2.2 Clustering Coefficient

Different from the random behavior of a random graph, network clustering is a commonly

seen property. In many such networks, it is found that if vertex A is connected to vertex B

and vertex B is connected to vertex C, then there is a higher probability that vertex A is also

connected to vertex C. For instance, in a social network, it simply means that the friend of

your friend is also likely to be your friend. To interpret it mathematically, clustering means

to measure the number of triangles - set of three connected vertices forming a triangle. The

clustering coefficient C is defined as:
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C =
3× number of triangles in the network

number of connected triples of vertices
(2.3)

where a “connected triple” means we have one single vertex with edges going to the other

two vertices. For example, in the network figure 2.1, this network has one triangle and eight

connected 3-vertex-loops, therefore it has a clustering coefficient of 3 × 1
8

= 3
8
. Similarly

the clustering coefficient of a node is the number of triangles that pass through this vertex,

relative to the maximum number of 3-vertex-loops that could pass through the node. It is

always a number between 0 and 1.

Alternatively, we can define a clustering coefficient for specific vertex i as:

Ci =
number of triangles to vertex i

number of triples centered on vertex i
(2.4)

If both numerator and denominator are zero, we put Ci = 0. Then the average of the

clustering coefficients for all vertices in the network is:

C =
1

n

∑
i

Ci (2.5)

Normally equation (2.4) is easier to calculate by hand. However, equation (2.5) is easier

to obtain for a computer and is widely used in data analysis. Generally speaking, no

matter which formula is used, the clustering coefficient measures the density of triangles in

a network. Also the coefficient of a real world network tends to be higher than that of a

random graph with similar number vertices and edges.

2.2.3 Degree Distribution

A vertex in an undirected network has degree k if the number of edges connected to that

vertex is k. The vertex degree distribution of an undirected network gives the number (or

fraction in some formulas) of vertices with degree k for k = 0, 1, .... In a directed network,

the in-degree of a vertex k is the number of incoming edges and the out-degree is the number
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Figure 2.1: Illustration of the Clustering Coefficient: In this case C = 3× 1
8

= 3
8

of outgoing edges. In this report, we will focus on the undirected network case.

Usually pk is defined to be the fraction of vertices with degree k. It is interpreted as

the probability that a randomly chosen vertex has degree k. A plot of pk for a network can

be obtained by drawing a histogram of the vertex degrees. This histogram is the degree

distribution of the network.

A popular formula to describe the degree distribution is to use the plot of the cumulative

distribution function:

Pk =
∞∑
k′=k

pk′ , (2.6)

which is the probability that the degree is greater than or equal to k. For example, in

a random graph defined by Erdős and Rényi [14], each edge is either present or not with

constant probability 0.5. Therefore the degree distribution of that random graph is binomial,

or Poisson in the limit of large graph size. Real world networks are hardly random, hence

it is unlikely for us to find its degree distribution strictly following binomial or poisson

distributions. They are highly right-skewed most of time. Many degree distributions follow

power law in their tails, i.e., pk ∼ k−α for some constant exponent α. Networks with power-

law degree distributions has been studied extensively in literature. They are sometimes
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referred to as scale-free networks. A cumulative degree distribution following power law can

be written as:

Pk ∼
∞∑
k′=k

(k′)−α ∼ k−(α−1). (2.7)

2.2.4 Community Structure

A network is said to have community structure if the vertices of the network can be easily

grouped into sets of vertices such that each set of vertices is densely connected internal-

ly. Most social networks show this kind of community structure since we can tend to find

groups of vertices (i.e., groups of people) having a higher density of edges within them than

between them. Groups of people can be divided based on some common characteristics such

as age, gender, company, sorority and so on. Identifying those community structures in a

network would provide useful insights into the process driving the network. The traditional

method is called cluster analysis or sometimes called hierarchical clustering. This method

requires defining a similarity measurement between any two vertices and then grouping sim-

ilar vertices into communities according to this measurement. In social network literature,

the so-called block models are basically divisions of networks into communities or blocks

based on some criterion. Two vertices are said to be structurally equivalent if two vertices

have the same neighbors. However, exactly the same structural equivalence is hard to find,

but approximate equivalence is often used for doing hierarchical clustering.

2.3 Random Graph Models

In this section, we briefly discuss two random graph models: the classic Poisson random

graph of Solomonoff and Rapoport [15], and Erdős and Rényi [16]; and the generalized

random graph whose degree distribution follows a power law.
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2.3.1 Poisson Random Graph

Paul Erdős and Alfréd Rényi’s [16, 14, 17] model consists of n vertices joined by edges which

are chosen and placed between vertices uniformly at random. They defined the random

graph as Gn,p, in which each possible edge is present with a probability p. The average

number of edges on the graph as a whole is 1
2
n(n− 1)p, and the average number of ends of

edges is twice of this because each edge has two ends. Thus the average degree of a vertex

is:

z =
n(n− 1)p

n
= (n− 1)p ' np,

where the last approximate equality holds when n is large. If we assume n is fixed, p is

proportional to z. The degree distribution of a random graph is also pointed out in the

paper of Barabaási and Albert [18]. The probability that a vertex has degree k, pk is given

by the binomial distribution:

pk =

(
n− 1

k

)
pk(1− p)n−k−1. (2.8)

In the limit of large n and holding the mean degree z = p(n − 1) constant, equation (2.8)

becomes:

pk =
zke−z

k!
, (2.9)

which is the well-known Poisson approximation to the binomial distribution, thus, the model

is also called “Poisson random graph”.

The structure of the random graph varies with the value of p. The model shows a phase

transition as z increases, which means from a low-density, low-p state where all components

are small to a high-density, high-p state where a large fraction of all vertices are joint together

to form a giant component. There is a critical value of z above which the giant component

in the graph contains a finite fraction S of all vertices. The phase transition where the giant

component forms occurs at z = 1.

12



2.3.2 Generalized Random Graph

As we have mentioned in Section 2.1, most real world networks or graphs have heavy-tailed

degree distributions. We can improve our random graph model by incorporating non-Poisson

degree distribution, which leads us to the “configuration model”. Degree distribution is still

denoted as pk, and the number of edges k originating from a given vertex i (i.e., ki) can

follow a degree sequence, which does not have to be Poisson distribution. If k exhibits a

power law distribution, then:

pk =
{

0 for k = 0;
k−α/ζ(α) for k ≥ 0.

A power-law network can be constructed by progressively adding vertices to an existing

network. The probability of vertex j being connected to a new vertex depends on its own

degree kj. So the higher its degree, the more likely it will get a new connection.

pj ∼
kj∑
i ki

This type of networks occur in many areas of sciences, including the internet and the

World Wide Web. Only a few web pages have quite a large number of links, whereas most

other pages (more than 80%) are only connected with four or less links.

2.3.3 Exponential Random Graph Models

Strauss [19] considers exponential random graph, also called p∗ models. Exponential random

graph models (ERGM) represent a general class of models based on exponential theory

for specifying the probability distribution underlying a set of random graphs or networks.

Instead of modeling the edges, ERGM treats the whole graph as a random variable Y and

defines a probability model for P (Y = y), which is defined in equation (2.10). The support

of Y is the space with all possible graphs among n vertices. Within this framework, one can

obtain maximum-likelihood estimates for the parameters of a specified model for a given
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network data; simulate additional networks with the underlying probability distribution

implied by that model and perform various types of model comparison.

The basic expression for the ERGM class can be written as:

P (Y = y) =
exp(θ′g(y))

k(θ)
, (2.10)

where Y is the random variable for the state of the network (with realization y), g(y) is the

vector of model statistics for network y. θ is the vector of coefficients for those statistics, and

k(θ) represents the quantity in the numerator summed over all possible networks (typically

constrained to be all networks with the same node set as y).

This can be re-writen in terms of the log-odds of a single actor pair given the rest:

logit (Yij = 1|ycij) = θ′δ(yij),

where Yij is the random variable for the state of the actor pair i, j (with realization yij),

which means the presence or absence of an edge between vertex i and vertex j. ycij denotes

the complement of yij, i.e., all dyads in the network except yij. That means all the random

variables associated with potential pairs in the network except yij. The variable δ(yij) equals

g(y+ij) − g(y−ij), where y+ij is defined as ycij along with yij set to 1, and y−ij is defined as ycij

along with yij set to 0.

That is, δ(yij) equals the value of g(y) when yij = 1 minus the value of g(y) when

yij = 0, but all other dyads are as in g(y). This emphasizes the log-odds of an individual tie

conditional on all others. We call g(y) the statistics of the model, and δ(yij) the “change

statistics” for actor pair yij.

In this report, we consider the simplest possible model, the Bernoulli or Erdős-Rényi

model, which contains only an edge term and therefore is estimated by a essential log-linear

model. When covariate information about nodes, also known as attributes, is available a

linear function Xβ can be included in g(y).
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2.3.4 Faux Mesa High ERGM

The ERGM package in R the user to fit exponential-family random graph (ERG) models to

network datasets. These models, also known as p*, are described in Section 2.3.3. Let us

fit the ERGM of the Mesa High School friendship network, and see how the probability of

connection between student i and student j are determined in this model. The fitted model

is:

logit(Yi,j = 1) = −10.01277 + 3.23105grade+ 1.19646race+ 0.88438gender (2.11)

where grade, race and gender are all categorical variables. All four terms in equation (2.11)

are significant. How should we interpret these coefficients? One can interpret the coefficients

of this model in terms of the log-odds of different types of links: the log-odds of a link that is

completely heterogeneous (the two members differ from each other in race, sex, and grade)

is −10.01; the log-odds of a link that is homogeneous by race only is −8.82 (= −10.01+1.20,

with rounding error); the log-odds of a link that is homogeneous in all three attributes is

−4.70 (= −10.01 + 3.23 + 1.20 + 0.88) and etc. The probability between two students that

corresponds to the log-odds is exp(−10.01)/(1 + exp(10.01) = 0.00044946 if student i and

student j are completely heterogeneous. From the coefficients we can see that grade has a

larger influence on the probability of friendship than gender or race.
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Chapter 3

Stochastic Blockmodels

As discussed in the previous chapter, a network describes a relational structure on a set of

vertices. Each edge in the network describes a relationship between two vertices it connects.

The network can be undirected, indicating symmetric relationships between vertices, or it

could be directed, which means relationship from vertex i to vertex j does not necessarily

imply the same relationship from vertex j to vertex i. Person A states that person B is his

or her friend and hence there is a direction to the ties between individuals. It may also be

that person B states that person A is his or her friend, but it does not have to be the case.

This chapter will discuss a model when community structure, such as the ones defined

in Section 2.2.4, are relevant. In social science, a social network consists of a group of

people, variously referred to as vertices or actors, connected by social interactions or ties

of some kind. Those relationships between actors are defined by social interactions such as

friendship, acquaintance, cooperations, and so on. In this chapter, we consider networks

whose ties represent friendship. Friendship networks have been the subject of scientific

study since at least the 1930s. A classic example can be found in the studies by Rapoport

and collaborators [20] of friendship among schoolchildren in the town of Ann Arbor, MI,

in the 1950s and 1960s, in which the authors distribute questionnaires among the students

in a school asking them to name their friends. Many similar studies have been done since

then, with different levels of complexity, but most employ a similar questionnaire-based
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methodology.

In the social network analysis friendship clusters are observed for some reason. This

analysis depicting social interactions between people have been studied by Scott [21] and

Wasserman and Faust [22]. The patterns of friendship relationships between the actors

are often affected by the attributes of those actors, e.g., age, gender, race, income among

others. Actors having the same attributes tend to gather together and form friendship, and

thus a group. These attributes enhance our interpretation of network structure, and they

enable use to study subsections of the network. For example, in the paper of Reddy et

al. [23] identifying clusters of customers with similar interests in the network of purchase

relationships between customers and products of online retailers (e.g., www.amazon.com)

enables the cyber-market to set up efficient recommendation systems that better guide

customers through the list of items of the retailer and enhance the business opportunities.

Clusters of large graphs can be used to create data structures in order to efficiently store the

graph data and to handle navigational queries, like path searches, as studies in the paper

by Agrawal and Jagadish [24], and another by Wu and Huberman [25].

Block modeling is a common approach in statistics and social network analysis to de-

compose a graph in classes of actors with common properties. Actors are usually grouped

in classes of equivalence. In terms of equivalence, we mean that pairwise relationships with-

in the group exhibit similar structure, while relationships between different groups exhibit

different structures. Revealing those hidden structures of a network is the heart of many

data analysis problems. In this report, we will build a hierarchical Bayesian model for an

exchangeable network to identify grouping patterns, in specific, a type of stochastic block-

model. Given a network, the goal in stochastic blockmodels is to divide the vertices such

that pairs of vertices are grouped together if their connecting pattern to the other groups

in the network is similar.
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3.1 Exchangeability

Relationships between two actors are assumed binary: an edge joining a pair of actors either

exists or not. yi, j are the relation between actor i and actor j, therefore:

yi, j =


1 i and j are friends

0 i and j are not friends

The adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected,

the adjacency matrix is symmetric. Based on this definition, we can draw the adjacency

matrix for the Mesa High School friendship network:

Figure 3.1: Adjacency Matrix of Mesa High School Friendship Network

In Figure 3.1 those black dots are those “1”(friendship connections) and those black

spaces are those “0”(no friendship connections) in 205 high school students’ friendship net-

work.

A stochastic blockmodel is a generative model for blocks, groups, or communities in

networks. The group structure and the pattern of the edges between groups are supposed

to capture the main features of an empirical network.
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Fienberg and Wasserman [26] defined a stochastic blockmodel as a probability distri-

bution (or family of distributions) for networks of which the vertex set is partitioned into

subsets called blocks, which have the property that the probability distribution for the

network is invariant under permutations of vertices within blocks. The property is called

exchangeablity, which means that the vertices in the same block are stochastically equiv-

alent in the following way. Consider there is a block Bi and any vertex j in the network.

The likelihood of the pattern of edges with vertex j is the same for all vertices in this block

Bi. That is, if i and i′ are two actors in Bi. Exchanging Yi,j and Yi′,j will not change prob-

ability model about Y . Before setting up the stochastic blockmodel, we will first discuss

exchangeability on two dimensions.

For illustration we will use the following toy example: assume a network of 4 people

illustrated by the 4× 4 adjacency matrix of 1’s and 0’s below:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

.


If one is to switch the position of row 1 and row 3 of it. A exchangeable permutation

in this case requires that one has also to switch the position of column 1 and column 3 in
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order to preserve the joint probability distribution and the matrix becomes:

a33 a32 a31 a34

a23 a22 a21 a24

a13 a12 a11 a14

a43 a42 a41 a44

.


3.2 Building the Hierarchical Stochastic Blockmodel

After defining exchangeability in the above section, which is the root of the non-parametric

Baysian model discussed in this report, then we can continue to build the hierarchical

stochastic blockmodel. Let I be the number of actors in the network and K the number of

groups or blocks. Each I actor is assigned to one of the K blocks, groups, or communities. I

is assumed to be known when we are given the dataset. Furthermore, relationships between

two actors are assumed to be binary, i.e., an edge joining a pair of actors either exists or

not. Since a network can be represented as an I × I adjacency matrix Y , such that yi,j are

the relation between actor i and actor j, therefore:

yi,j =


1 i and j are friends

0 i and j are not friends

, (3.1)

K is a latent random variable with a given prior distribution. For given values of I and

K, the stochastic blockmodel describes a random process for assigning the actors to groups

and then generate the whole network. The latent clustering structure which indicate the

groups among network actors is represented by a random vector ξ of length I such that

ξ = (ξ1, . . . , ξI)
′ and ξi ∼iid multinomial(w1, w2 . . . , wk). Here wi is the probability of an

actor being assigned to cluster i (
∑K

k=1wk = 1).
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The matrix Θ = [θk,l] is a K ×K matrix, where θk,l ∼iid Hλ, a parametric distribution

indexed by the hyperparameter λ. w = {w1, w2, . . . , wK} is such that
∑N

k=1wk = 1. w =

{w1, w2, . . . , wK} and it tells how those I vertices are assigned to the K clusters.

The unique group indicators ξi ∈ 1, ..., k are independently sampled from a Chinese

Restaurant Process (CPR) process:

ξi|w ∼iid
N∑
k=1

wkδk, wk = uk
∏
s<k

(1− us), uk ∼iid Beta(β2 + ηα). (3.2)

Equation (3.2) implies a joint distribution for ξ = (ξk,1, ..., ξk,J) represented by a predictive

distribution with ξk,1 = 1 and:

ξk,i|ξk,i−1, . . . , ξ1 ∼
Li−1∑
l=1

ni−1k,l

η + i− 1
δl +

η

η + i− 1
δLi−1+1, 2 ≤ i ≤ I, (3.3)

where δa is the degenerate probability distribution on a, Ki−1 = maxj<i{ξj} is the number

of unique values among ξ1, . . . , ξi−1, m
i−1
k =

∑i−1
j=1 1(ξj=k) is the number of indicators equal

to k among ξ1, . . . , ξi−1, and η > 0 is a constant. This sequence of predictive distributions

is known as the Chinese restaurant process.

The CRP places a probability distribution on all possible partitions of I actors, whose

shape is controlled by the parameter η and implies that Pr(ξi = ξj) =
∑∞

k=1 E {w2
k} =

1/(1 + η) for all i and j.

Figure 3.2: The Chinese restaurant process. Circles denote infinite number of tables and
the letters around them are the customers sitting at that table.
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Because the seating arrangement showed in Figure 3.2 can be described using the analogy

of sitting customer at a Chinese Restaurant. ξi means the table is occupied by customer

i. Customer 1 sits at table 1; customer i sits at any of the occupied tales with probability

proportional to the number of customers sitting at that table, and sits at a new table with

probability proportional to η. In Figure 3.2, customer 6 who is missing would sit at table 1

with probability 4/(η+ 9), at table 2 with probability 3/(η+ 9), at table 3 with probability

2/(η + 9), and at table 4 with probability η/(η + 9). Any seating arrangement creates a

partition.

Based on Bayes’ theorem, the hierarchical priors described above, times the observed

relationships between any two actors i and j, will determine the posterior probability of

connection between pairs of actors. The observed relationships between actor i and j, the

yi,j are assumed to be conditionally independent such that:

yi,j ∼iid ψ(yi,j|θξi,ξj), (3.4)

where ψ is a parametric distribution associated with the network, θk,l is the parameter that

controls the rate of interaction among factions k and l in network, and ξi is the faction

membership indicator for actor i in network.

On a Bayesian framework, the Stochastic Blockmodel produces an estimation of the

parameter distributions instead of just a point estimate. We chose a Bernoulli-Beta model

for yi,j. The joint posterior distribution of all the parameters in the model can be describe

by the equation below:

p(Θ, ξ,λ, η|Y ) ∝
I∏
i=1

I∏
i′=1,i 6=i′

ψ(yi,j|θξi,ξj)p(Θ|λ)p(ξ|η)p(λ)p(η), (3.5)

where λ = (aD, bD, aOD, bOD), ψ(yi,j|ξi, ξj,Θ) is assumed Bernoulli(θξi,ξj); and for the prior

p(Θ|λ), θl,l ∼i idbeta(aD, bD) for diagonal elements, and θl,k ∼ beta(aOD, bOD) for off-

diagonal elements. p(ξ|η) ∼ CRP introduced in equation (3.3). Hyperparameters aOD
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and aD follow a gamma(αa, βa). bOD and bD follow a gamma(αb, βb). Finally, p(η) ∼

gamma(a, b).

Since the posterior distribution does not have a closed form we used an MCMC sampler

to explore the joint posterior distribution from equation (3.5). The MCMC uses a Gibbs

sampler to iteratively draw from the following full conditionals:

1. p(ξ | λ, η, Y ).

2. p(Θ | ξ, λ, η, Y )

3. p(λ | ξ, Y ).

4. p(η | ξ).

3.3 Faux Mesa High Posterior Grouping

We applied the algorithm described in Section 3.2 under three different initial settings for

ξ0: 1) 205 students are in 205 different groups, i.e., ξ0 = 1, 2, ..., 205; 2) 205 students are

in the same group, i.e., ξ0 = 1, 1, ..., 1; and 3) initial groups are sampled from the Chinese

Restaurant Process prior. We ran 10, 000 iterations with 1000 burn-in. Initial values of αa,

βa, αb, βb are all set to be equal to 2 in our code. The marginal likelihood of Y seems to be

stable after first 2000 iterations, as shown in Figure 3.3 below.

Figure 3.4 shows the resulting group or block structures for the high school friendship

network. There are 10 main communities found by running the MCMC algorithm after we

tune parameters. To better see the relational structure of each community, a pivot table

with different summary statistics is given in Table 3.1.

Based on Table 3.1, we can see differences by race, Hispanic students are in every group

except group 10 and account for 60% of all students group 1. Second largest proportion of

student in group 1 are Native American with 28%. All “Other” races only stay in group

1. Four Black students are evenly split in group 1 and 3, the rest two stay in group 4 and

group 5 separately. White students are only in group 1, 2, 3, 6 and 8.
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While if we look at the grade attribute of the 10 groups, students from grade 8, and 9

are the two largest parts. Group 2 is only consist of students from grade 7. Around 70%

of students in group 5 is from grade 8. Six students of grade 9 construct the whole group

8 and 9 students of grade 7 construct the whole group 6. Group 9 has only one student of

grade 7 while group 10 has only one student of grade 10.

As for the gender attribute, except for group 9 and 10 which has one student in each

group, group 1 has almost twice more males than females and group 2 has more than twice

females than males.

Figure 3.3: Marginal likelihood of Y (left), Marginal likelihood of Y after thinning (right)
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Figure 3.4: Estimated Posterior Probability.
Estimated Posterior Probability that Two Actors Belong to the Same Group (top); Estimated

Posterior Probability of Adjacency Matrix (middle); Estimated Posterior Probability of a
Connection between Student i and Student j (bottom).
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Table 3.1: Posterior Group Distribution: frequencies, row percentages between parenthesis

Race Gender

Group Black Hisp NatAm White Other Female Male Total

1 2 (2.0) 60 (60.0) 28 (28.0) 6 (6.0) 4 (4.0) 38 (38.0) 62 (62.0) 100

2 16 (61.5) 6 (23.1) 4 (15.4) 19 (73.1) 7 (26.9) 26

3 2 (8.3) 12 (50.0) 4 (16.7) 6 (25.0) 14 (58.3) 10 (41.7) 24

4 1 (12.5) 5 (62.5) 2 (25.0) 3 (37.5) 5 (62.5) 8

5 1 (4.4) 4 (17.4) 18 (78.3) 11 (47.8) 12 (52.2) 23

6 6 (66.7) 2 (22.2) 1 (11.1) 7 (77.8) 2 (22.2) 9

7 4 (57.1) 3 (42.9) 3 (42.9) 4 (57.1) 7

8 1 (16.7) 4 (66.7) 1 (16.7) 3 (50.0) 3 (50.0) 6

9 1 (100.0) 1 (100.0) 1

10 1 (100.0) 1 (100.0) 1

Total 6 (2.9) 109 (53.2)68 (33.2) 18 (8.8) 4 99 (48.3) 106 (51.7) 205

Grade

Group 7 8 9 10 11 Total

1 19 (19.0) 23 (23.0) 26 (26.0)18 (18.0)10 (10.0) 100

2 26 (100.0) 26

3 1 (4.2) 6 (25.0) 5 (20.8) 9 (37.5) 24

4 1 (12.5) 4 (50.0) 8

5 16 (69.6) 3 (13.0) 1 (4.3) 1 (4.4) 23

6 9 (100.0) 9

7 7 (100.0) 7

8 6 (100.0) 6

9 1 (100.0) 1

10 1 (100.0) 1

Total 62 (30.2) 40 (19.5) 42 (20.5)25 (12.2)24 (11.7) 205
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Chapter 4

Network Models for Sampled Data

In the previous chapter, we have shown that stochastic blockmodels can find useful grouping

information from a network. However, in reality, for large or hard to find population of

actors, it might be difficult to get information on all actors or all links between them.

For example, in Ribeiro and Towsley [27], networks from Flickr and Youtube were studied

having millions of vertices and edges. The large size of these social networks makes it costly

querying the entire network, particularly if the goal is to monitor these networks regularly

over time. In addition, only few people or organizations have complete access to the data.

Without knowing the true underlying structure of a population network, sampling becomes

a natural way to solve this issue. A further statistical question in such case emerges: how

well the properties of the true network can be modeled from those of the sampled network.

In what follows, we will explore some traditional sampling techniques. Furthermore, we

provide some evidence on whether and how a sampled network can be used to estimate

the true population network and to what extent the degree distribution of the estimated

network reflects that of the true network.

Different sampling methods can be applied based on how we can access the network data

and what is the goal of sampling. In some cases, the entire network data could be accessed

fully then a random edge or vertex can be selected. It could also be accessed restrictively

when the network is hidden but allows analyzing (Handcock [1]).
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4.1 Simple Random Sampling

Simple random sampling consists of directly selecting a random sample from the total pop-

ulation. A random sample of 41 students was drawn from the population of 205 student

in Mesa High School. Assuming that, we asked all 41 students whether they were friends

with each other. We applied the algorithm described in Chapter 3 to the 41× 41 adjacency

matrix and two different initial settings of ξ0 are introduced: 41 students are in 41 different

groups, i.e., ξ0 = 1, 2, ..., 41; 41 students are in the same group, i.e., ξ0 = 1, 1, ..., 1. We ran

10, 000 iterations with 1000 burn-in. The 41× 41 posterior mean probability matrix θ is:
0 4.68e−3 . . . 4.45e−3

...
...

. . .
...

4.45e−3 4.26e−3 . . . 0


41×41

where each element θij represent the posterior mean probability that actor i and actor j are

friends in this sampled friendship network of 41 students. Diagonal elements are assumed

to be 0 because students are not friends of themselves (no self-loop).

Next, this 41 × 41 matrix is enlarged into a 205 × 205 matrix Θ, whose element θij

represents posterior mean probability of actor i and actor j are friends in the 205 × 205

estimated friendship network of 205 students. The enlargement method of the 41 × 41

matrix θ is as follows: for each off-diagonal element θij, we extend it into a 5 × 5 matrix

with the same values as element θij since the new “cloned” students are assumed to have

the same probabilities of making friends as the original elements. For each diagonal element

θii, we extend it into a 5× 5, whose diagonal elements are still 0 based on the no self-loop

assumption and off-diagonal element values are the same as the highest values in the same

row. For example, extending the 41× 41 matrix into a 205× 205 matrix, applying this rule
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gives:

0 4.43e−3 4.43e−3 4.43e−3 4.43e−3 . . . 4.45e−3 4.45e−3 4.45e−3 4.45e−3 4.45e−3
4.43e−3 0 4.43e−3 4.43e−3 4.43e−3 . . . 4.45e−3 4.45e−3 4.45e−3 4.45e−3 4.45e−3
4.43e−3 4.43e−3 0 4.43e−3 4.43e−3 . . . 4.45e−3 4.45e−3 4.45e−3 4.45e−3 4.45e−3
4.43e−3 4.43e−3 4.43e−3 0 4.43e−3 . . . 4.45e−3 4.45e−3 4.45e−3 4.45e−3 4.45e−3
4.43e−3 4.43e−3 4.43e−3 4.43e−3 0 . . . 4.45e−3 4.45e−3 4.45e−3 4.45e−3 4.45e−3

...
...

...
...

...
. . .

...
...

...
...

...

4.45e−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0


205×205

By the binary network assumption in Chapter 3, yi,j ∈ 0, 1. Therefore yi,j = 1 if student

i is friend with student j, and yi,j = 0 otherwise. Thus, yi,j|Θ205×205 ∼ Ber(θi,j), by which

we can generate an estimated population network of 205 students. Finally, we compute

some of the network properties introduced in Section 2.2 for both estimated network and

true network to compare them.

Each 41 × 41 simple random sample of the true 205 × 205 true friendship matrix can

give an estimated 205× 205 friendship matrix for us to compare with the true one. In this

report, we draw 100 different simple random samples of 41 students and fit the stochastic

blockmodel in Equation (3.5). Each is used to generate 100 realizations of the posterior

probability matrix θ, we extend them to Θ and generated an adjacency matrix Y . We

randomly pick up the 47th, the 74th and the 89th 41× 41 simple random samples to show

the results. The 100 realizations of the posterior degree distribution are shown in the left

three columns of Figure 4.1. To better see the posterior degree distribution of each of the

three simple random samples, we also draw their posterior mean of degree distributions, the

true degree distribution of friendship network and the 95% credible intervals respectively.

Plots are shown in the right three columns of Figure 4.1. In order to check the stability of

our method, the 95% posterior credible interval of degree distribution of the 100 estimated

networks is shown in Figure 4.2.

From both Figure 4.2 and Figure 4.1, we can tell that the 95% posterior credible interval

of the estimated population network includes the true degree distribution of the students’

friendship network. However, if we look at some randomly chosen samples, some of them
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Figure 4.1: Degree Distribution Inferences for Three Simple Random Samples.
Left : 100 Realizations of the Posterior Degree Distribution; True Degree Distribution (red solid
line); True Degree Distribution of 47th, 74th and 89th Simple Random Sample of Size 41(black

dashed line);
Right : 95% Credible Interval (blue dotted line) of Degree Distribution of Sample 47, 74, and 89;

Posterior Mean Degree Distribution (blue dashed line); True Degree Distribution (red solid line).
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can estimate the true degree distribution well, while some of them does not.

4.2 Stratified Sampling

Stratified sampling is a probability sampling technique wherein the researcher divides the

entire population into different subgroups or strata. The strata are homogeneous and rep-

resent possible subpopulation that may be of interest. The sample is drawn within each

strata to guarantee an adequate representation of each subpopulation. Moreover, as with

blocking of experimental units stratification tends to reduce standard errors. Suppose the

population consists of N elements and they are divided into S strata. Each element of

the population can be assigned into one and only one stratum. Therefore, the number of

observations within each stratum Ns is known and N = N1 +N2 + . . .+NS. We draw stu-

dents proportional to Ns of each stratum. Stratified sampling offers us several advantages

over simple random sampling. Stratified sample can provide greater precision than a simple

random sample of the same size. It can help avoid those “unrepresentative” simple random

samples, for example, an all-male sample from a mixed-gender population. For Mesa High

School data, the following strata are defined: students from grade 7 and 8 are “younger”,

grade 9 and 10 are “medium” and grade 11 and 12 are “older”. Students whose races are

black, white or others are combined into an “others” group to have three levels of race:

Hispanic, Native American and Others. This leads to a total of 2 × 3 × 3 = 18 strata to

draw sample from. In Table 4.1 is the number of observations Ns and sample size ns from

each stratum.

Based on stratification, a proportional stratified sample 41 students are drawn and sim-

ilar steps as in Section 4.1 are followed to get the estimated population networks. We draw

100 stratified samples and apply the MCMC algorithm with two initial ξ0 settings as in

Section 4.1. An MCMC chain of 10, 000 replicates was used to estimate the posterior mean

probability that actor i and actor j are friends, which is a 41× 41 matrix. This matrix then

is expanded into a 205× 205 matrix using Section 4.1 method. For each expanded matrix,
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Figure 4.2: Degree Distribution Inferences for Simple Random Sampling Method.
95% Credible Interval (blue dotted line) of Degree Distribution; Mean Posterior Means of Degree

Distribution (blue dashed line); True Degree Distribution (red solid line).

Table 4.1: Strata Summary

Gender Race Grade Ns ns

Female Hisp older 11 2

medium 16 3

younger 28 6

NatAm older 4 1

medium 7 1

younger 17 3

Other older 2 0

medium 9 2

younger 5 1

Male Hisp older 8 1

medium 17 3

younger 29 6

NatAm older 8 2

medium 14 3

younger 18 4

Other older 3 1

medium 4 1

younger 5 1

Total 205 41
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we generated 100 realizations of the posterior connection probability matrix, which is a

205×205 matrix Y of 0’s and 1’s. To better see the estimated results of stratified sampling,

we also present the 95% credible intervals and the spaghetti plots of 100 realizations from

the three random picked samples of size 41. In particular, the 13th, 28th and 86th stratified

samples, which are listed in Figure 4.3.

Again to check the stability of our method, we also draw 95% credible intervals for the

degree distribution we obtained from the 100 estimated networks in Figure 4.4. Figure 4.4

shows that the 95% posterior credible interval is narrower than that of the simple random

sample case and that the estimated mean degree distribution is closer to the true one at

degree 0, 1 and 2.

By comparing Figure 4.1 with Figure 4.3, we can find that stratified sampling produces

better estimation for the true friendship network of the 205 students in Mesa High School

than simple random sample. Possibly because there is a greater chance to get a more

representative sample in stratified sampling, if the strata are associated with the variable of

interest. In this case such variable is the network and the results validates the assumption

that grade, gender and race may influence the formation of friendship ties.

4.3 Egocentric Sampling

In this section, we will use the traditional network estimation method introduced in sec-

tion 2.3.3 to estimate the friendship network of 205 students.

In many empirical contexts, it is not feasible to collect a network census or even an

adaptive (link-traced) sample. Egocentrically sampled data, the data comprising infor-

mation about respondents (egos) and their immediate partners (alters), are much easier

to collect and may contain temporal information about the network ties, in the form of

each respondents past history and duration of ongoing ties. Examples include the National

Health and Social Life Survey (NHSLS) by Laumann, Gagnon, Michael, and Michaels [28]

and Wave III of the National Longitudinal Study of Adolescent Health by Harris, Florey,
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Figure 4.3: Degree Distribution Inferences for Three Stratified Samples
Left : 100 Realizations of the Posterior Degree Distribution; True Degree Distribution (red solid
line); True Degree Distribution of 13th, 28th and 86th Simple Random Sample of Size 41(black
dashed line); Right : 95% Credible Interval (blue dotted line) of Degree Distribution of Sample

13, 28, and 86; Posterior Mean Degree Distribution (blue dashed line); True Degree Distribution
(red solid line).
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Tabor, Bearman, Jones, and Udry [29].

Assuming that information of the population network is unobservable, a simple random

sample of 41 student has summary statistics listed in Table 4.2 and Table 4.3.

Table 4.2: Degree Distribution of 41 Students’ Friendship Network

Degree Frenquency Fraction Links

0 28 0.68 0

1 8 0.20 8

2 5 0.12 10

Total 41 1.00 18

Table 4.3: Mixing Matrices of 41 Students: Friendship Links between Gender, Grade and
Race Seperately

Gender Grade Race

FemaleMale YoungerMediumOlder NatAmHispOther

Female 3 5 Younger 5 10 10 NatAm 10 15 10

Male 5 1 Medium 10 5 15 Hisp 15 5 5

Older 10 15 0 Other 10 5 0

We can use an ERGM model introduced in Section 2.3.3 to fit the parameters associated

with these observed statistics, then use the fitted model to simulate the population network

of size 205 whose degree distribution is centered around these statistics. The output is

shown in figure 4.5.

Regardless of the type of comparison, 95% credible interval or the spaghetti plot fitting

a ERGM model does a worse job than the stochastic blockmodel from Sections 4.1 and 4.2

to replicate the degree distribution. The simulated credible band does not cover the true

degree distribution of the population on the majority.

We have seen that using totals from the sample are not enough, but sometimes we

may obtain summary statistics of the true population network in Table 4.4 and Table 4.5.

ERGM introduced in Section 2.3.3 can be used to fit the parameters associated with these
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observed statistics, then we use the fitted model to simulate the population network of size

205 directly. The output is shown in figure 4.6.

Table 4.4: Degree Distribution of 205 Students’ Friendship Network

Degree Frenquency Fraction Ties

0 57 0.28 0

1 51 0.25 51

2 30 0.15 60

3 28 0.14 84

4 18 0.09 72

5 10 0.05 50

6 2 0.01 12

7 4 0.02 28

8 1 0.00 8

9 2 0.01 18

10 1 0.00 10

13 1 0.00 13

Total 205 1.00 406

Table 4.5: Mixing Matrices of 205 Students: Friendship Links between Gender, Grade and
Race Seperately

Gender Mixing Matrix Grade Mixing Matrix Race Mixing Matrix

Female Male YoungerMediumOlder NatAmHispOther

Female 82 71 Younger 108 7 5 NatAm 46 41 23

Male 71 50 Medium 7 39 16 Hisp 41 53 31

Older 5 16 28 Other 23 31 9

Figure 4.6 fits the true population’s degree distribution better than Figure 4.5, which

is an ERGM model based on a 41 sample of the population. It fits degree 0 better than

stochastic blockmodel but fits the rest of the degree distributions worse. Its 95% credible

interval is not as good and inclusive as the one by stochastic blockmodel.

Furthermore, another test of whether a model fits the data is how well it reproduces

some other network properties such as mean shortest distance, diameter, transitivity that
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are introduced in Section 2.2. We do this by comparing the values of these statistics observed

in the true network with the values we get in simulated networks from our different models.

We compute and report those properties introduced in Chapter 2: diameter, density, mean

shortest distance, and transitivity. For example, the diameter of a network is the length of

the longest geodesic path between any two vertices. Density is calculated by m/n(n − 1),

where m is the total number of edges and n is the total number of vertex in a network.

Besides the true 205× 205 students’ friendship network, we investigate four simulated net-

works: the 205× 205 friendship network simulated from a simple random sample of 41× 41

friendship network using stochastic blockmodel (SBMsrs); the 205×205 friendship network

simulated from a stratified sample of 41×41 friendship network using stochastic blockmodel

(SBMstratified); the 205×205 friendship network fitted from the egocentric data of a 41×41

sample network using ERGM (ERGM41); and the 205× 205 friendship network fitted from

egocentric data of a 205 × 205 friendship network using ERGM (ERGM205). For network

SBMsrs and network SBMstratified, we construct 100 realization networks based on the

posterior probability of connection between actor i and actor j. Therefore the diameters,

densities, mean shortest distances and transitivities for them in Table 4.6 are the averages of

those corresponding properties of 100 networks. Properties for those two ERGM columns

are computed directly according to equations in Chapter 2. The results are listed in columns

of table 4.6.

From Table 4.6, we can see that stochastic blockmodel estimations offer better measures

of the true population network than ERGM estimation. In particular, stochastic block-

model based on a more representative stratified sample gives better measure statistics than

that of a simple random sample, in terms of all properties listed in the table.
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Figure 4.4: Degree Distribution Inferences for Stratified Sampling Method.
95% Credible Interval (blue dotted line) of Degree Distribution; Mean Posterior Means of Degree

Distributions (blue dashed line); True Degree Distribution (red solid line).

Table 4.6: Comparison Inference of Network Metrics

TRUE SBMsrs SBMstratified ERGM41 ERGM205

Mean Shortest Distance 6.8098 4.3890 4.4839 0.0498 0.0648

Diameter 16.0000 11.0370 11.1300 1.1100 1.1500

Transitivity 0.2822 0.2662 0.1365 0.0064 0.0020

Density 0.0097 0.0103 0.0154 0.0001 0.0001

1. Column one uses the true 205× 205 network information to compute network properties.

2. Column two uses a 205 × 205 friendship network simulated from a simple random sample of 41 × 41
friendship network using stochastic blockmodel (SBMsrs).

3. Column three uses a 205×205 friendship network simulated from a stratified sample of 41×41 friendship
network using stochastic blockmodel (SBMstratified).

4. Column four uses a 205 × 205 friendship network fitted from the egocentric data of a 41 × 41 sample
network using ERGM (ERGM41).

5. Column five uses a 205 × 205 friendship network fitted from egocentric data of a 205 × 205 friendship
network using ERGM (ERGM205).

6. For network SBMsrs and network SBMstratified, we construct 100 realizations based on the posterior
probability of connection between actor i and actor j. Therefore the diameters, densities, mean
shortest distances and transitivities for them in Table 4.6 are the averages of those properties of
these 100 networks. Properties for ERGM41 and ERGM205 are computed directly according to
equations in Chapter 2.
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Figure 4.5: Degree Distribution Inferences for ERGM Method based on a Sample of 41
Students
Left : 95% Credible Interval (blue dotted line) of Degree Distribution of the Simulated Networks;
Mean Degree Distribution (blue dashed line); True Degree Distribution (red solid line); Right :

Spaghetti Plot of Degree Distribution of the Simulated Networks; True Degree Distribution (red
solid line); True Degree Distribution of the Sample Network (black dashed line).
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Figure 4.6: Degree Distribution Inferences for ERGM Method based on 205 Students.
Left : 95% Credible Interval (blue dotted line) of Degree Distribution of the Simulated Networks;
Posterior Mean Degree Distribution (blue dashed line); True Degree Distribution (red solid line);

Right : Spaghetti Plot of Degree Distribution of the Simulated Networks; True Degree
Distribution (red solid line).
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Chapter 5

Conclusion and Future Work

In this report we explore the statistical challenge of dealing with sampled network data

when collecting true population network is impossible. We presented the concept of network,

talked about different properties of complex networks and compared the population network

estimations based on stochastic blockmodel and ERGM .

We began by talking about our motivation and introducing the Faux Mesa High School’s

friendship network. Then in the first part of Chapter 2, we discussed some important net-

work properties that are calculated in this report, such as mean shortest distance, clustering

coefficient, degree distribution, community structure and etc. What followed in the second

part is a discussion on different random graph models. Particularly we describe the Ex-

ponential Random Graph Models and showed its application on analyzing the Faux Mesa

High School friendship network.

Chapter 3 includes basic concepts and application of stochastic blockmodels, which are

used to decompose a network in classes of actors with common properties so certain grouping

patterns can be found. By applying the stochastic blockmodel on our high school friendship

network, we found 10 main communities after tuning parameters. Each of these 10 groups

shows a different grade, gender and race proportions from the whole network.

Then in the next Chapter 4, we explore some traditional sampling techniques when

assuming the true network information is not available. We provide some evidence on
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whether and how a sampled network can be used to estimate the true population network

and to what extent the degree distribution of the estimated network reflects that of the

true network. Stochastic blockmodels and ERGM are both used to model the sampled

network. We expand both models to simulate the whole 205× 205 population network and

stochastic blockmodel seems to give better results in terms of degree distribution, mean

shortest distance, transitivity, and density, which are the properties discussed in Chapter 2.

We found that different sampling methods can be applied based on how we can access

the network data and what is the goal of sampling. In some cases, the entire network

data could be accessed fully then a random edge or vertex can be selected. It could also

be accessed restrictively when the network is hidden but allows analyzing. Applied social

network analysis often use graphs constructed from data collected from a sample of nodes.

We have seen that when nodes are selected purely randomly, the less representative sampling

induces biased estimates of population network. ERGM based only on degree distribution

and egocentrically sampled network data offers a poor estimate. In our application, we

have shown that the stochastic blockmodel method from a more representative stratified

sample gives a better estimation. We could have some valid inference for the properties

of the network based on its stratified sample. Network-based applied work must proceed

cautiously, paying close attention to network data quality. From an application perspective,

researchers should be careful to work with network analysis results when facing sampled

data.

However even using the stochastic blockmodel with stratified sample, our simulated

population network stills show some bias when estimating the 0 degrees of the true network’s

degree distribution. Our future work includes finding a network dataset with more links and

adjusting parameter settings to better fit the stochastic blockmodel.
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