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Abstract 

The signature-based radiation-scanning (SBRS) technique relies on radiation detector 

responses, called ―signatures,‖ and compares them to ―templates‖, to differentiate targets 

containing nitrogen-rich explosives from those that do not.  This investigation utilizes nine 

signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, 

nitrogen, and oxygen (HCNO) as well as two neutron signatures, produced when a target is 

interrogated with a 14.1 MeV neutron source beam.  One hundred and forty three simulated 

experiments were conducted using MCNP5.  Signatures of 42 targets containing explosive 

samples (21 of RDX and 21 of Urea Nitrate), and 21 containing inert samples were compared 

with the signatures of 80 artificial templates through figure-of-merit analysis.   A density filter, 

comparing targets with templates of similar average density was investigated.  Both high and 

low-density explosives (RDX-1.8 g cm
-3

 and Urea Nitrate-0.69 g cm
-3

) were shown to be 

differentiated from inert materials through use of neutron and gamma-ray signature templates 

with sensitivity of 90.5% and specificity of 76.2%.  Density Groups were identified, in which 

neutron signature templates, gamma-ray signature templates or the combination of neutron and 

gamma-ray signature templates were capable of improving inert-explosive differentiation.  

figure-of -merit analysis, employing the best Density Group specific templates, differentiated 

explosive from inert targets with 90.5% sensitivity and specificity of over 85%.     
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Chapter 1 - The Threat and Toll of Improvised Explosive Devices 

 1.1 The IED Defined 

The Improvised Explosive Device or IED has become a household term evoking a sense 

of dread and fear in the hearts of many.  The United States Military has described IEDs as 

―…nonstandard explosive devices used to target U.S. Soldiers, civilians, [Non-government 

Organizations], and government agencies. IEDs range from crude homemade explosives to 

extremely intricate remote-controlled devices. The devices are used to instill fear in U.S. 

Soldiers, coalition forces, and the local civilian population. Their employment is intended to 

diminish U.S. national resolve with mounting casualties. The sophistication and range of IEDs 

continue to increase as technology continues to improve and as terrorists gain experience.‖ (FM 

3-21.8, Appendix I, 2007)  The lethality combined with the simple construction of IEDs has 

made them the single most difficult foe on the modern battlefield and, as their employment 

increases the risks to innocent civilian populations also increases.  The human and financial toll 

of IEDs has become a staggering reality felt the world over.  

IEDs are generally classified by how they are triggered, the type of explosive accelerant 

used and by the means of delivery.  Victim-activated IEDs, those that employ devices such as 

trip-wires, passive infrared receivers (PIR), crush-tubes, pressure-plates, or crush-wires to initiate 

the device, are often hard to detect and pose a tremendous threat to dismounted troops.  Victim-

activated devices also threaten civilian populations because they are in no way selective and can 

be activated by small children, herding animals, or anyone unfortunate enough to come in 

contact with the initiating device.  Stacked conventional landmines can be used as part of the 

victim-activated IED group, threatening dismounted and mounted troops or civilians.  

Command-detonated devices relying on signals from devices such as telephones, two-way 

radios, or garage door openers, allow terrorists to be more selective in initiating an attack.  These 

remotely controlled initiation devices are hard to detect and prevent, requiring that their signal be 

interrupted in some way.  Command-wire initiated devices, requiring that a terrorist close to the 

IED simply touch wires to a battery to initiate the explosive, are resistant to electronic counter-

measures but pose less of a threat because of the terrorists’ proximity to the IED.   
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  IEDs using conventional munitions grade explosives or Explosive Remnants of War 

(ERW) are very dangerous because of their high explosive yield and their availability in many 

war-torn countries.  The 155 mm shell, an ERW, has had devastating effects as an IED in Iraq 

and Afghanistan.  However, there are several home-made explosives, like ammonium or urea 

nitrate, which have proven to be just as deadly as IED fuels (Almog, 2007).  A particularly 

dangerous use of ammonium nitrate is in forming an explosively formed projectile (EFP).  An 

EFP uses a metal tube, packed with an explosive, and a copper cone attached to one end.  When 

the explosive is ignited, a molten slug capable of penetrating several inches of armor plating is 

formed (Matthew, 2010).  By combining an EFP with any type of victim-activation device, 

terrorists can destroy heavily armored military vehicles with little chance of detection and 

without risking their own lives.  

 The means of IED delivery has many forms.  Terrorist may opt to use a suicide bomber 

who uses a vest carrying explosives; this form of delivery is known as a Personnel Borne IED or 

PBIED.  The use of Vehicle Borne IEDs (VBIEDs), where the explosives are concealed in a 

compartment, have proven very effective and extremely hard to prevent.  No matter what the 

trigger, the explosive, or the means of delivery, IEDs persist as an ever-growing threat to a 

nation’s security and peace.  

 1.2 The Human Toll of IEDs 

Figures 1.1 and 1.2 demonstrate the human cost of IEDs and other explosive ordinance, 

with a focus on the areas with continued armed conflict.  In Afghanistan, the number of IED 

victims in May 2010 was more than double that of May 2009.  The highest number of IED 

casualties, in Afghanistan, came in August of 2009, peaking at 388.  However, as the number of 

IED attacks continued to increase in the spring months of 2010 they were somewhat less 

effective when compared to other months with comparable numbers of attacks (Cordesman, 

2010).  

The number of victim-activated IED casualties is on the rise with nearly 70% of the 

casualties being civilians.  Worldwide, victim-activated IEDs, Explosive Remnants of War 

(ERW) and other unspecified mine types were responsible for more than 2 000 casualties in 2010 

(Landmine & Cluster Munition Monitor, 2011).  In 2010, Afghanistan and Pakistan, the two 

countries with the highest numbers of casualties due to victim-activated IEDs, each had 
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increases, Afghanistan from 293 to 383 and Pakistan from 190 to 203.  Also in 2010, 

Afghanistan accounted for 56% of the total victim-activated IED casualties worldwide 

(Landmine & Cluster Munition Monitor, 2011). 

  

 

Figure 1-1: IED Incidents in Afghanistan, May 2008-May 2010 (Cordesman, 2010). 

 

 

 

 

 

 

 

Figure 1-2: Casualties by item: 2010 (Landmine & Cluster Munition Monitor, 2011). 
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 1.3 The Financial Toll of Combating IEDs 

The focus of the majority of IED detection and defeat devices are military in nature 

because only the militaries of developed countries can afford their high cost.  Military personnel 

are also often the targets of IED attacks in conflict areas and these forces demand a high level of 

protection.  United States casualties in Afghanistan and Iraq have prompted the rapid 

development of several organizations with the purpose of developing and acquiring IED 

detection and defeat systems.  The Joint Improvised Explosive Device Defeat Organization 

(JIEDDO) was created to combat the mounting death toll of American service men and women 

deployed in support of Operations Enduring Freedom and Iraqi Freedom.  JIEDDO had an 

average budget of 3.48 billion dollars annually, from fiscal year 2006 to fiscal year 2010, and 

provided funding for IED defeat devices, training and education, and research and development 

of new IED detection and defeat technologies (JIEDDO, 2010).  Figure 1.3 shows the funding of 

JIEDDO as compared with the number of IED attacks in Iraq and Afghanistan.  JIEDDO 

provides many counter-IED (C-IED) technologies to the war-fighters in Iraq and Afghanistan 

and continues to spearhead advancements in training and force protection.   In 2007 the 

Department of Defense (DoD) awarded $2.2 billion, to Force Protection, Inc., and Armor 

Holdings, Inc., for armored vehicles and armor kits to help protect military personnel in combat 

zones (DoD Office of Inspector General, 2007). 

 

Figure 1-3: JIEDDO Budget in Historical Perspective. 
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In addition to the billions of dollars spent in protecting fighting men and women in 

conflict areas around the world the financial loss due to IEDs is nearly incalculable.  The 

disruption to normal trade, by destroying roads and buildings, is immense.  The costs to civilians 

in areas rife with IEDs, both in lost goods and repair costs, are also massive. 

 1.4 Protection of Military Personnel from IEDs 

Protecting military personnel from IEDs is of great importance to any country currently 

involved in peacekeeping or combat operations.  Any nation sending its military personnel into 

harm’s way must contemplate how best to protect those individuals from small arms fire, rockets 

and mortars, landmines and IEDs.  Soldiers, Airmen, and Marines of the US military are issued 

body armor to protect them from small arms fire and shrapnel, bunkers to protect them from 

mortars and rockets, and vehicles with increased protection to safeguard against attacks from 

IEDs.    

 1.4.1 Existing IED Protection Methods 

 One of the easiest ways to protect military personnel from IED attacks is to increase the 

armor of their vehicles.  High Mobility Multipurpose Wheeled Vehicles (HMMWV) in Iraq and 

Afghanistan were given an ―up-armored‖ or FRAG 5 package increasing the armor thickness on 

the doors, belly and roof of the vehicle (Matthew, 2010).    However, any flat-bottomed vehicle 

is susceptible to damage from IEDs buried under roadways, in culverts or under bridges.  To 

combat this vulnerability the Mine Resistant Ambush Protected (MRAP) vehicle, with its V-

shaped hull and higher profile, was introduced to help protect service men and women.  

However, with the increased protection of thick armor two new disadvantages were introduced.  

Because the up-armored HMMWV and MRAP vehicles are heavier they are not as 

maneuverable and they are more likely to roll over at high speeds or on steep grades.   The 

increase in armor thickness still does not provide complete protection from EFPs.  As is the case 

with many protective measures, advantages in one area create disadvantages in another. 

 1.4.2 Electronic Countermeasures to IEDs 

 Electronic countermeasures (EC) target the remote electronic detonation radio frequency 

signals, such as a two-way radio or cordless telephone frequencies, used to detonate some IEDs.   

High power transmitters, jamming frequently used electromagnetic frequencies, prevent these 
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signals from reaching an IED initiation device.  Once the frequencies are jammed foot-patrols 

and vehicle convoys can pass an IED safely, even if the whereabouts of the IED are unknown.  

Another EC pre-detonates IEDs by broadcasting the oft-used frequencies from an aircraft.  As 

the aircraft passes over a vehicle or personnel route the IED receives a detonation signal and 

explodes before the military patrol reaches the intended engagement area. 

 1.5 IED Detection Techniques 

Many detection techniques have been developed by military forces the world over.  The 

most effective techniques employ extensive protection methods designed to safeguard equipment 

and personnel from shrapnel and the concussion of an IED explosion.  To date few techniques 

developed are truly safe, but improvements are continuing to be made.  Most detection methods 

require a great deal of time and that some person or machine physically inspect the location of a 

suspected IED.  Mitigating these aspects of the detection process is the aim of nearly all 

advancements in IED detection. 

 1.5.1 Methods of Trace Explosive Detection 

 Traces of explosive chemicals are present on nearly any object that comes in contact with 

the explosive.  These traces can be detected by a chemical analysis technique performed by 

wiping the suspect area with a cloth and examining the cloth in a machine for explosives.  

Detection by biosensors such as specially trained canines is also very effective.  Another 

biosensor method involves specially trained bees that, when released, congregate in an area 

where they detect explosive chemicals.  There are obvious drawbacks to these techniques.   

Chemical analysis is time consuming, as is canine detection, and bees, once released, may be 

hard to track and may be lost.  Also, these techniques often require that highly trained personnel 

be in close proximity to an IED. 

 1.5.2 Methods of IED Detection by Inspection 

 Physical inspection is often the most effective method for detecting IEDs.  Physical 

inspections are either passive or active in nature.  Passive searches are conducted at checkpoints 

where military or police physically inspect a vehicle or person for explosives or contraband.  

These searches can be very tedious, time consuming and once again place personnel close to a 

possible IED.  An active inspection method requires patrolling in areas where IEDs are likely to 
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be placed.  Actively patrolling suspect areas requires highly trained men and women and a set of 

special tools.   

The task of finding and destroying IEDs often falls to special military engineers and 

Explosive Ordinance Disposal (EOD) units employing anything from a knife and a hand-held 

metal detector to ground penetrating radar and infrared sensors.  These units clear roads of mines 

and IEDs by driving over the road with special Husky Mine Detection Vehicles (MDV) as seen 

in Fig. 1.4.   The Husky MDV vehicles utilize a light frame with wide wheels to help circumvent 

pressure plate mines or IEDs, and a V-shaped hull to protect the driver if there is an explosion 

directly beneath the cabin.  Under the hull of the Husky MDV is an array of metal detectors or a 

ground penetrating radar system used to locate areas where mines or IEDs may be buried.   

 

Figure 1-4: Buffalo Mine Protected Clearance Vehicle (left), Husky Mine Detection Vehicle 

(center) and MRAP with Mine Roller System (right). 

After identifying a suspect area, it is the job of the crew of a Buffalo Mine Protected 

Clearance Vehicle (MPCV), also pictured in Fig. 1.4, to inspect the area.  The crew utilizes the 

Buffalo MPCVs interrogating arm and video camera to locate the hidden IEDs and mines.  

Working in tandem these vehicles comprise the heart of a Rout Clearance Package (RCP).  The 

responsibility of destroying the explosives often falls to EOD teams, but may also be done by 

specially qualified engineers.  

The speeds at which an RCP can perform its duties is limited by the operators using the 

system and the terrain being investigated.  Usually an RCP moves between 10-15 kilometers per 

hour.  Although the Husky MDV and Buffalo MPCV protect their occupants form shrapnel and 

direct fire they still require personnel to be close to an IED and a potential explosion.  The 

concussion of an IED blast can cause many internal injuries including Mild-traumatic Brain 
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Injury (MTBI).  Many individuals with MTBI report that it affects their behavior and cognitive 

processes.  

Another active patrolling method uses airborne infrared sensors to detect heat anomalies 

in vehicle or personnel routs.  Detection via this method still requires that EOD or a RCP be used 

to investigate the suspect area, once again putting personnel in harm’s way.  In order to protect 

military and civil forces in areas where the dangers of IEDs are high, IEDs must be discovered 

and removed, tasks which often require expensive and sophisticated equipment and the lives of 

dedicated personnel. 

 1.6 The Advantage of Stand Off Bomb Detection 

The ability to rapidly detect IEDs at standoff affords military and police the greatest 

protection.  Standoff refers to the fact that all components of the detection system are at least 

several meters from the closest surface of the potential IED; of course, large standoff is preferred 

over short standoff.  Whereas users would prefer standoff distances of many tens of meters, our 

research treats standoff as 1.5 m or more.  Current methods of detection are neither fast nor 

provide service members the added protection of standoff.  The future of IED detection systems 

must be centered on providing standoff techniques that are extremely fast and highly reliable.  

The goal of the Kansas State University Stand Off Bomb Detection research project is to develop 

just such a system.  Utilizing a Signature Based Radiation Scanning technique, the project seeks 

explosive detection with appropriate levels of sensitivity and specificity to be accomplished 

within several seconds.  In practice, high sensitivity, with its low number of false negative 

readings, is preferred over high specificity, with its low number of false positive readings.  To 

accomplish this task a template matching procedure is employed, whereby back-streaming 

radiation signatures are compared to templates of known explosives signatures, to determine if a 

sample is an explosive or inert material.  Back-streaming radiation is radiation that is 

backscattered from an interrogated object or generated inside the object by the interrogating 

radiation and emitted back toward the source where it is detected.  Thus, use of back-streaming 

radiation requires only one side of an object be accessible for interrogation.   
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 1.7 Objectives and Preview 

The objective of this research was to demonstrate that  the SBRS technique using high-

energy neutron interrogation is capable of discriminating between explosive and inert targets  

with high levels of sensitivity and specificity.  In practice, a detection method should correctly 

identify nine of every 10 IEDs encountered (sensitivity of 90%).  However, the system should 

not be so sensitive that all objects tested are labeled as explosives.  The number of tested objects 

falsely identified as explosives should be less than one in four (specificity of 75% or greater).  In 

this work, explosive detection techniques using fast neutrons are explored with the intent of 

achieving sensitivity of 90% or better and specificity of at least 75%.  In order to achieve high 

levels of sensitivity and specificity it is often necessary to employ filtering processes that 

enhance a detection technique’s effectiveness.  Identifying and exploring any filtering process 

that would yield the desired sensitivity and specificity was a secondary objective in this work.  A 

final objective was to identify whether the use of neutron signatures offered any advantages in 

the discrimination of explosive from non-explosive materials.    

The proceeding chapter deals with background information pertaining to existing 

techniques of IED detection (Chapter 2).  The theoretical basis of explosive identification 

through neutron interrogation is described in Chapter 3.  Chapter 4 outlines the experimental 

setup and the Monte Carlo Neutral Particle (MCNP5) simulations employed to replicate real 

objects for interrogation by neutrons.  Explosive-non-explosive differentiation results, using 

Monte Carlo simulation data, are also presented in Chapter 4.  Then, Chapter 5 highlights the 

results of the investigation with analysis and conclusions, concluding with suggestions for future 

investigations, which could improve on the results of this work.    
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Chapter 2 - Techniques for Detecting Explosives 

In order to combat IEDs, one seeks to protect equipment and personnel from the 

hazardous effects of an explosion, by either shielding or protecting them from the blast or by 

preventing the IED from ever being detonated.  Shielding is afforded by the armor surrounding 

military vehicles or by heavy concrete structures designed to withstand the devastating effects of 

an explosion.  These shields, when combined with standoff, give personnel and equipment their 

best chance of surviving an IED blast.  There are a host of countermeasures used to prevent the 

detonation of an IED, as mentioned, but their effectiveness is based mainly on their ability to 

interrupt electronic signals.  These countermeasures blindly interrupt electronic signals even 

when there may be no IED present and their success is limited.  Detection of IEDs prior to 

detonation affords the greatest protection for military and security forces.  The focus of the 

remainder of this chapter will be to identify and explore techniques for detecting IEDs. 

 2.1 Trace Detection Techniques 

In Section 1.5.1 examples of trace detection methods were briefly discussed.  Figure 2.1 

displays many more existing trace detection technologies either in use or under investigation.  

The interested reader should consult the work ―Existing and Potential Standoff Explosives 

Detection Techniques‖ published by the National Research Council (NRC, 2004).  While some 

of these methods have proven effective, they are not the subject of this work and are mentioned 

only to outline the many advances that have been made in attempting to solve the complex 

problem of IED detection.  

 2.2 Bulk Detection Techniques 

There are a great number of bulk detection methods, also displayed in Fig. 2.1, several of 

which have shown great promise at detecting bulk explosives.  Several of these methods are 

discussed and the application of a combination of these methods will be explored as the principal 

part of this investigation.  Many bulk detection techniques rely on imaging of the associated 

spatial features of a bomb such as metal wires, detonators or batteries, or on the reflection, 

absorption or scattering of X rays, or microwaves, by the bulk explosive itself (NRC, 2004).  It 

should be noted that while many bulk detection techniques rely on imaging, the research 
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presented in this work is designed to provide information about an IED without imaging.  Thus, 

while imaging techniques are very useful, their use often requires access to multiple sides of an 

IED, and long imaging times, circumstances not practical in most field scenarios.  

 

 

Figure 2-1: Existing Trace and Bulk Detection Technologies (NRC, 2004).  
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 2.2.1 Advantages of Bulk Detection 

Bulk detection, relying on the identification of the macroscopic characteristics of an 

explosive, often utilizes electromagnetic and particle radiation techniques.  By using 

microwaves, neutrons or gamma rays, one can gain information about the shape, composition 

and density of the interrogated explosive.  Charged particles are ineffective as interrogation 

radiation as they cannot penetrate deeply into a material or through clutter materials disguising 

an IED.  Bulk detection of explosives also offers several advantages over trace detection 

methods.  These advantages include: 

Deep target penetration – Offers the ability to interrogate larger volumes, such as cargo  

            containers. 

Greater Specificity – Offers a lower number of non-explosives misidentified as   

                                     explosives. 

Greater Sensitivity – Offers a lower number of explosives misidentified as non- 

                                     explosives. 

Rapid Interrogation – Offers high intensity radiation leading to lower scanning times. 

Standoff – Offers protection to equipment and operators by interrogating at a distance  

        (Johll, 2009).   

 2.2.2 X-Rays 

X rays have long been used to search luggage and cargo containers for illicit materials 

and explosives.  The ionizing effects of X-ray radiation have detrimental effects on humans and 

thus health concerns surround the use of such scanning techniques on humans.  However, at 

standoff distances of 10 to 20 meters the radiation effects are highly reduced.  As transmitted X 

rays pass through a target they are absorbed according to the density and atomic number of the 

materials they encounter.  Thus, an image and information about a target material’s density can 

be found using transmission X-ray techniques.  High-resolution images can be formed using an 

inexpensive detector placed on the opposite side of a target from a transmitter (NRC, 2004).  

Transmission X-ray techniques can detect the components of explosive devices in small 

volumes, but are ill suited for detection of explosives in large volumes due to the difficulty of 

identifying the many complex shapes explosive materials may take.  This technique also suffers 
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from a high false positive rate making it a poor method for detecting explosives at standoff 

(Johll, 2009).   

Images can also be formed from backscattered X rays, with the detector on the same side 

of the target as the transmitter.  Images formed using backscattered X rays are shown in fig. 2.2, 

where the bright portions are organic materials and the dark spots are materials made of heavier 

elements.  Backscatter X-ray imaging techniques are good at discriminating organic and 

inorganic materials, materials with larger than average densities and materials with low atomic 

number (Singh, 2003).  

 

Figure 2-2: Standoff X-ray detection showing hidden explosives and other items on 

personnel. Images were taken from a van moving at 0.3 to 6 miles per hour using X-ray 

backscattering in “drive-by” mode. The mock suicide vest contained simulated C4 

explosives and pipe bombs. Both the explosives and the pipe bombs are easy to see and are 

distinguishable from normal objects under clothing (NRC, 2004). 

 Computed Tomography (CT) is another imaging technique utilizing X-ray radiation, and 

can produce images with high special resolution.  However, the technique requires scanning 

from many angles and thus requires a great deal of time, and data processing.   There are CT 

systems that can scan and image large volumes at standoff distances of 20 feet (NRC, 2004).  CT 

techniques require of the order of 100 views from 1 024 elements in a linear X-ray detector to 

produce a single slice image of 1 000 x 1 000 pixels (Singh, 2003).  The number of transmitter-
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detector geometries required to produce an acceptable image and the required expertise of the 

operator to interpret the image does not make this method practical for many standoff explosive 

detection scenarios.   

 2.2.3 Electromagnetic Detection Methods 

 Infrared (IR) Imaging  

Most items including clothing and explosives are opaque to IR radiation with spectral 

wavelengths of 1 to 10 microns (NRC, 2004).  Nearly all objects emit thermal IR radiation, 

which can be used to image the object with special cameras.  This same technology is used 

extensively in military targeting applications.  Because different objects have slightly different 

temperatures, they can be differentiated using thermal IR techniques.  Temperature differences of 

a few tenths of a degree are detectable in many applications.  Thermal IR imaging technology is 

capable of detecting temperature differences below the surface of an object.  For instance, the 

image of a person wearing a suicide-bombing vest would show a temperature difference between 

the clothing touching the person’s skin and the clothing touching the suicide vest.  IR imaging is 

advantageous to standoff explosive detection because it is a well-developed technology offering 

real-time images, which allows fast response in suicide bomber situations.  However, a major 

drawback of this method is its lack of specificity in differentiating explosives from non-

explosives and between types of explosive materials.  Nevertheless, this technology will likely 

remain an important method to screen personnel where there is a likelihood of suicide bomber 

attack. 

 Microwave Imaging  

Microwaves, usually in the 100 to 300 GHz range, are used to form images that can be 

used to identify potential explosive threats carried by humans.  With standoff distances of around 

1 m or more, the ability to interrogate below clothing, and simple, inexpensive scanning 

equipment, microwave bomb detection is an area with great promise for person-borne IED 

identification (NRC, 2004; Johll, 2009).  At frequencies of 300 GHz microwave imaging is 

limited by water vapor absorption to 50 m standoff and at 50 GHz the standoff is limited to just a 

few meters.  The low frequency electromagnetic (EM) waves used in microwave interrogation 

are safe for humans.  Although the resolution, on the order of 1 cm, is less than that for terahertz 
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or X-ray systems it is adequate to identify concealed explosives while limiting privacy issues to 

the individual being scanned (Kuznetsov and Evsenin, 2006). 

 Millimeter Wave Imaging   

Millimeter waves, of 30 to 300 GHz and 1-10 mm wavelengths, are used to produce 

high-resolution images.  The wavelengths used in this technique are considerably longer than 

optical wavelengths and will pass through a number of materials, such as smoke, fog, and 

clothing that are opaque to ordinary light.  This fact coupled with the fact that metals, plastics, 

ceramics and the human body reflects millimeter waves, make millimeter wave imaging a good 

choice when screening individuals for concealed explosives (McMakin, 1996).  Both microwave 

and millimeter wave imaging techniques are best suited for scanning humans rather than 

compartments or large containers. 

 Nuclear Quadrupole Resonance (NQR)  

NQR is related to nuclear magnetic resonance (NMR) and magnetic resonance imaging 

(MRI), but has the advantage of not needing a large static magnetic field to split the levels of 

quadrupolar nuclei.  NQR is a solid-state radio frequency (RF) spectroscopic technique that is 

used to detect quadrupolar nuclei present in isotopes such as 
14

N, an isotope present in many 

high explosive compositions (Gudmundson, 2009).  The nucleus of a quadrupolar element is 

slightly aligned by the electrostatic interactions with its valence electrons.  By applying an 

electric pulse at the correct frequency the spin, or electric quadrupole moment, of the nucleus can 

be flipped, creating a NQR signal that can be used to identify the explosive quadrupolar elements 

in a target.  A major drawback to this method is the proximity of the NQR device to the 

interrogated volume, between 10 and 100 cm, making it a poor standoff detection technique 

(Garroway et al., 2001).     

 2.2.4 Gamma Rays 

 Gamma rays can be used to locate or image targets with 
14

N using resonance gamma-ray 

scattering at 9.17 MeV.  Locating 
14

N is important because it is an isotope present in many 

explosive substances.  Additionally, gamma rays can be used in transmission and backscatter 

configurations reminiscent of the methods used for X-rays.  Unfortunately, health concerns 

coupled with difficulties with sources capable of producing a sufficient gamma-ray flux make 
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this technology a less attractive avenue for future development as a standoff detection method 

(NRC, 2004).  

 2.2.5 Neutrons 

As was mentioned in Sections 2.2.3 and 2.2.4, nitrogen is an important element in 

identifying explosives, because most explosive compositions can be separated from non-

explosive compositions based on their proportions of hydrogen (H), carbon (C), nitrogen (N), 

and oxygen (O).  A more in-depth discussion of this feature of explosive materials will be given 

in Chapter 3.  For now, it is sufficient to state that most explosives consist almost exclusively of 

H, C, N, and O, and are mostly well separated from common benign materials by way of 

elemental composition.  Further, explosives may be distinguished by their relatively low 

proportions of C and H and relatively high proportions of N and O.  Neutron based explosive 

detection techniques rely on the characteristic gamma rays, emitted by the nuclei of H, C, N, and 

O when they are bombarded with neutrons or on the altered energy of the interrogating neutrons.  

The physics of these interactions is addressed in Ch. 3.  Neutron interrogation is preferred to 

other forms of radiation interrogation because neutrons have the ability to penetrate deep into a 

target.   Hence, the materials making up an interrogated object are identified based on the 

interrogating neutron energy and the spatial distributions of neutrons and de-excitation gamma 

rays (Buffler, 2004).  Table 2.1 summarizes several relevant features of four prominent neutron 

interrogation techniques outlined below. 

 Thermal Neutron Analysis (TNA) 

TNA is accomplished by detecting the prompt capture and or the delay gamma rays 

emitted in the (n, γ) reaction of the nuclides of an interrogated object.  Fast neutrons are 

moderated within an interrogated object to thermal energies (< about 0.2 eV).  The capture 

gamma rays of 
1
H (2.22 MeV) and 

14
N (10.83 MeV) are primarily used for explosive 

identification in the TNA method (Buffler, 2004).  Thermal neutrons generally have larger 

absorption cross sections than do fast neutrons increasing the likelihood of inducing the desired 

(n, γ) reaction and making TNA an oft preferred explosive detection technique (Johll, 2009). 
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Table 2.1: Selected features of four common nuclear physics-based techniques for the non-

intrusive interrogation of bulk samples. Adapted from Buffler (2004) and Johll (2009). 

Technique Radiation 

Source
a 

Probing 

Radiation 

Main 

reaction type 

Detection 

radiation 

Primary 

(secondary) 

signatures 

TNA 
252

Cf; d-D or 

d-T STNG 

 

Thermalized 

neutrons 

(n, γ) Prompt γ-rays 

from neutron 

capture 

H, N, Cl 

(others) 

FNA d-D or d-T 

STNG 

 

Fast neutrons (n, n’ γ) γ-rays from 

inelastic 

neutron 

scattering 

C, O, Cl  

(N, others) 

PFNA ns-pulsed 

accelerator 

 

Fast neutrons (n, n’ γ) γ-rays from 

inelastic 

neutron 

scattering 

C, O, Cl  

(N, others) 

PFTNA ns-pulsed 

accelerator 

 

White 

spectrum of 

fast neutrons 

All available 

(n, γ),  

(n, n’ γ), 

(n, p γ) 

Source 

neutrons 

which are 

transmitted 

H, C, N, O 

(others) 

a
 STNG: Sealed tube neutron generator 

 Fast Neutron Analysis (FNA) 

FNA utilizes the inelastic scattering of fast neutrons in an interrogated volume by 

detecting the de-excitation gamma rays produced in the (n, n’ γ) reaction.  Usually, collimated 

beams of continuous fast neutrons, produced in a sealed tube neutron generator, are used to 

bombard a target volume.  Explosive elements are identified by detecting the gamma rays of 
12

C 

(4.43 MeV), 
14

N (1.64, 2.31, and 5.11 MeV) and 
16

O (6.131 MeV).  FNA imaging is another 

form of FNA, but is limited to small volumes because of the lack of geometrical definition when 

there are large distances between a detector and the inner volume elements or ―voxels‖ of the 

interrogated volume (Buffler, 2004 and associated references).  The relative ease with which fast 

neutrons can be produced in interrogation devices makes FNA a feasible, although expensive, 

explosive detection method.  

 Pulsed Fast Neutron Analysis (PFNA) 

PFNA, like FNA, makes use of de-excitation gamma rays produced in the (n, n’ γ) 

reaction.  Nanosecond pulses of neutrons, around 8 MeV, are produced in the (d, n) or (p, n) 
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reaction using a beryllium or lithium target in an accelerator, such as a Van de Graaff.  Typically 

a target is scanned with pulsed neutrons while the de-excitation gamma rays are detected in 

arrays of NaI(Tl) crystals.  By measuring the time between the creation of a neutron in the target 

and the detection of the de-excitation gamma ray, the location of an interacting  nuclide may be 

found.  This spatial information can be used create a three-dimensional elemental image of the 

target volume (Buffler, 2004 and associated references).   PFNA methods reduce the imaging 

problems encountered in FNA and allows larger volumes to be investigated.  

 Pulsed Fast-Thermal Neutron Analysis (PFTNA) 

PFTNA employs sealed tube neutron generators (STNG) to create several microsecond 

long pulses of 14.1 MeV neutrons, from the 
3
H(d, n)

4
He reaction.  During a neutron pulse, 

detection of de-excitation gamma rays is used to identify C and O as in the FNA method.  

Between neutron pulses (about 100 microseconds), fast neutrons remaining in the sample are 

thermalized leading to the production of prompt capture gamma rays which are detected and 

identify the presence of  H, N, Cl and Fe, similar to the TNA method.  Detection of both de-

excitation and prompt capture gamma rays is accomplished by the same detector arrays by 

simply storing each spectrum separately.  After a few hundred pulses the neutron beam is left off 

for a longer period of time, around three milliseconds, during which time elements (O, Si, F and 

P) de-activate by emission of delayed gamma rays.  Through the combination of fast inelastic 

neutron scattering, thermal neutron capture and delayed activation analysis a great deal of 

elemental information can be gathered about an interrogated volume, which can be used to 

identify potential explosive threats (Buffler, 2004 and associated references).  

Through recent developments, compact systems using PFTNA have been marketed as 

Pulsed Elemental Analysis with Neutrons (PELAN) devices.  PELAN systems, utilizing 

microsecond-pulsed d-T STNGs and bismuth germanium oxide (BGO) detectors, are designed to 

detect and characterize explosives and military ordinance (Buffler, 2004, Vourvopoulus and 

Womble, 2001).  TNA techniques, using the radioisotopic source 
252

Cf,
  
have found applications 

in detecting chemical agents, high explosives, and characterizing unexploded ordinance (Buffler, 

2004, Caffrey et al., 1992). 
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2.3 Sealed Tube Fast Neutron Generators 

The creation of fast neutrons in sealed tubes is not a new technology.  By 1959 sealed 

tube fast neutron generators were being developed and tested.  Models achieving 10
7
 

neutrons/sec with energy of 2.5 MeV through the H
2
(d, n)He

3
 reaction were explored, however 

for energy-calibration  purposes monoenergetic neutrons of 14 MeV  generated through the H
3
(d, 

n)He
3
 reaction are desired (Gow, 1959).  Sealed tube fast neutron generators capable of 

producing 14 MeV neutrons are now commercially available through several manufacturers.  

One such manufacturer is Adelphi Technologies Inc., a company contracted to build a neutron 

generator for the Kanas State University Standoff Bomb Detection project.  The DT111 model is 

expected to achieve a production rate of 10
11

 neutrons/sec and is pictured in Figs. 2.3 (a) and (b).  

         

                                                (a)                                                                 (b) 

Figure 2-3: (a) Schematic of DT111 fast neutron generator (Adelphi, 2012).  (b) Photo of 

DT111 in Standoff Bomb Laboratory.    
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Chapter 3 - Theory 

 3.1 Physics of Neutron Interactions 

A description of neutron interactions in matter is helpful in grasping the role of neutron 

interrogation techniques for bulk explosive detection.   As a neutral particle, a neutron interacts 

in ways quite different from charged particles.  The neutral charge of the neutron allows it to 

pass, nearly unaffected, through the electrons orbiting the nucleus of an atom, whereas charged 

particles are likely to interact with atomic electrons.  Therefore, most neutron interactions in 

matter are with the nuclei of atoms.  Because atoms are mostly empty space, with the nucleus 

occupying only a small fraction of the volume of an atom, the distance between atomic nuclei is 

large and a neutron may penetrate deep into a material before it interacts with one of the widely 

spaced nuclei.  It is intuitive that the kinetic energy of a neutron will govern its interactions in 

matter.  There are three common categories associated with neutron energies: ―fast‖ with 

energies greater than 0.1 MeV, ―epithermal‖ with energies between 0.1 MeV and 0.2 eV and 

―thermal‖ with energies less than 0.2 eV. 

 3.1.1 Neutron –Matter Interactions   

There are two broad neutron interaction categories, ―scattering‖ and ―absorption‖.  Each 

of these categories has several subcategories as seen in Fig. 3.1.  A neutron-nucleus scattering 

event must conserve energy and thus the incident neutron will change its direction and velocity 

while the nucleus retains the same number of protons and neutrons it had prior to the collision.  

The velocity of the nucleus will change due to the collision and in some cases it will leave in an 

excited state, which may later de-excite in a radiative transition.  If a nucleus absorbs a neutron 

in a capture event, a number of transitions are possible (Fig. 3.1) as well as a possibility of an 

induced fission (in some elements).  
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Figure 3-1: Various categories of neutron interactions. The letters separated by commas in 

the parentheses show the incoming and outgoing particles (Rinard, 1991). 

 Scattering 

Scattering interactions can be divided into elastic and inelastic.  In an elastic scattering 

event, with a fast or epithermal neutron, the nucleus gains kinetic energy as it leaves the location 

of the collision with a new direction and velocity.  Similarly, the neutron losses an equal amount 

of kinetic energy in the collision as it leaves the collision location with a new direction and 

velocity.  The average energy lost by a neutron in elastic scattering is given by (Shultis and Faw, 

2000) 

2
1 1

1 ,
2 1

A
E

A

  
  

   

          (3.1.1) 

where E is the energy of the incident neutron and A is the mass number of the target nucleus.  Of 

note, from Eq. 3.1.1 one can easily see that as the mass number A  of target nuclei is increased 

the average energy lost decreases.  Thus, hydrogen with 1,A  is best for moderating or slowing 

down neutrons through elastic scattering (Rinard, 1991). 

Inelastic scattering, while similar to elastic scattering, results in a nucleus in an excited 

state.  The excited nucleus eventually de-excites by releasing radiation, such as an inelastic-

scatter gamma ray, while the incident neutron leaves the collision location having had its 

velocity and direction changed.  Inelastic scattering is only possible if the incident neutron has 

sufficient energy to excite the nucleus to one of its allowed excited energy levels.  A case where 

inelastic scattering is impossible is in hydrogen where there are no excited states possible for the 

nucleus (Rinard, 1991) for neutron energies below a few hundred MeV. 
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 Absorption 

A nucleus may absorb a neutron, leaving the new nucleus in an excited state.  The 

rearranged nucleus may de-excite by emission of delayed or prompt gamma rays, charged 

particles, more neutrons or fission fragments.  Charged particles released from a capture event 

commonly include protons, deuterons, and alpha particles.  The nucleus may rid itself of 

neutrons in order to return to a lower energy level, and in the case where two or more neutrons 

are ejected the number of neutrons is said to have been ―multiplied‖ within the media.  In the 

case of a fissioning event, two or more fission fragments, of intermediate atomic weight, and 

several neutrons are produced (Rinard, 1991).  

 Cross-Section 

The idea of a cross section is used to quantify the probability of the occurrence of any of 

the above interaction events in appropriate units.  To illustrate this concept, it is helpful to think 

of a number of mono-energetic neutrons incident on an atom-thick layer of material.  As the 

neutrons move through the material some will scatter and some will be absorbed.  The 

probability of a neutron not leaving the sample, i.e., being absorbed, is the ratio of neutrons 

absorbed to the number of neutrons incident on the material.  Likewise, the probability of a 

neutron being scattered is the ratio of scattered neutrons to the number of incident neutrons.  The 

microscopic cross section for an interaction is the probability of that interaction divided by the 

number of target atoms per unit area, thus the cross-sectional unit is centimeters squared (cm
2
) 

and is denoted by the symbol .  The unit of barns (b) is often used, where 24 21 b 10 cm .  The 

microscopic cross section is largely dependent on the energy of the incident neutron and the type 

of nucleus involved in the interaction.  However, in most applications involving bulk materials a 

different cross section is needed, one that may involve different elements in thicker samples than 

previously described.   

For the transmission of a parallel beam of neutrons through a thick sample consisting of 

several atomic layers of material as described above, the neutron beam intensity,  I x ,  of 

neutrons that have not interacted at a distance x inside the sample, is given by: 

  0 ,tN x
I x I e


           (3.1.2) 
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where
0I is the incident neutron intensity, N is the atom density, and 

t is the total microscopic 

cross section for scattering and absorption ( ...t s a elas inelas f n               )  (Rinard, 

1991; Duderstadt, 1976).   

The total macroscopic cross section, or the probability, per unit path length, that a 

neutron traveling in a material will undergo a reaction, is given by: 

 ,t tN              (3.1.3) 

where 
t has units of 1cm .  Thus, the average distance a neutron travels in a material before an 

interaction is 1/ tx   (Duderstadt, 1976).  In the case of a material consisting of many elements 

forming a compound, the total cross section is given by: 

  1 2 3 1 1 2 2 3 3... ... ,a
t

N
n n n

M


                 (3.1.4) 

where  is the density of the compound, M is the molecular weight of the compound, 

236.022 10aN    atoms mol
-1

, and in , is the number of atoms of element i in one molecule 

(Rinard, 1991).  One can easily see the importance of cross sections and cross-sectional data in 

calculating how neutrons will interact within a material, which is a key to detecting explosives 

with neutron interrogation. 

 3.2 The Composition of Explosives 

During a chemical explosion, a rapid oxidation-reduction process produces hot gasses 

that quickly expand creating a shockwave.  Chemical explosives are typically categorized by 

their ―burn rate‖, the rate at which their shock wave travels when detonated.  Compositions with 

burn rates that are supersonic are called high explosives (HE), while those with subsonic rates 

are known as low explosives (LE).  HE are generally preferred by terrorists and terror 

organizations because of their high explosive yield.  HE tend to be rich in the oxidizers oxygen 

and nitrogen and the reducers hydrogen and carbon, required for the explosive chemical process.  

Explosives with high-nitrogen content are termed ―nitrogen-rich‖ explosives.   

A study of the elemental composition of 26 common nitrogen-rich HE compounds 

conducted by the National Research Council found similar proportions of hydrogen, carbon, 

nitrogen and oxygen (H, C, N, O).  These compounds had average compositions (by weight) of 

about 3% H, 20% C, 31% N, and 46% O with standard deviations of 11% or less (NRC, 2004).  
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The density of many explosives are nearly 50% higher than the density of non-explosive HCNO 

compounds (Dunn, 2007a).    A natural extension of these observations is that a detection method 

exploiting these common characteristics offers a potentially robust technique for explosive 

detection of nitrogen-rich explosives.    

 

Figure 3-2: Atomic percentages of the elements H, C, N and O, which constitute a selection 

of explosives, illicit drugs, and miscellaneous common materials (Buffler, 2004).  

Another compelling study demonstrates that explosive compositions are differentiated 

from non-explosive compounds by way of atom fraction composition of HCNO.  Buffler’s 2004 

findings for 10 explosives, 5 illicit drugs, and 22 common HCNO compounds (see Fig. 3.2) 

showed that nitrogen-rich explosives had atom fractions of N and O that were higher than those 

in either illicit drugs or in 22 inert materials.  Again, these results point to a detection method 

utilizing the presence of nitrogen and oxygen in explosive compounds. 
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The remainder of this thesis focuses on developing a method for differentiating only 

nitrogen-rich explosives using neutron interrogation techniques.  Though there are many 

explosive materials available for investigation, the focus of the study outlined in this work will 

be to differentiate nitrogen-rich explosives from inert materials, those materials not identified as 

nitrogen-rich explosives.  The remainder of this chapter is dedicated to outlining a theoretical 

procedure   aimed at exploiting the elemental composition of nitrogen-rich explosives. 

 3.3 Template Matching 

As discussed in Section 3.1.1, there are many neutron-matter interactions resulting in 

scattered neutrons, neutron multiplication, or the emission of gamma rays, charged particles, or 

fission fragments.  The unique energies of inelastic-scatter and prompt-capture gamma-rays 

produced in interactions with H, C, N, and O allow one to form ―signatures‖.  This is possible 

because as neutrons are thermalized in a material, particularly due to elastic collisions with 

hydrogen nuclei, the slowed neutrons are captured by the nuclei of hydrogen and nitrogen 

resulting in the production of prompt-capture gamma rays.  Fast neutrons may also be scattered 

inelastically producing inelastic scatter gamma rays from collisions with carbon, nitrogen and 

oxygen nuclei (Dunn et al., 2007b).  Similarly, signatures of backscattered neutrons below and 

above the ―cadmium cutoff energy‖ (0.4 eV) may be used to help identify explosives.    

Through neutron interrogation, the H, C, N, and O concentrations of a target  can, in 

principle, be discovered.  However, rather than measure the concentrations directly to determine 

if a sample is an explosive, signatures of an unknown sample are compared to known explosive 

signatures contained in a ―template‖.  The process of comparing an unknown target ―response‖, 

or group of signatures, to known explosive templates is called ―template matching‖.  The two 

candidate neutron energy signatures and the nine inelastic-scatter and prompt capture gamma-ray 

signatures used in this study are outlined in Table 3.1.  Also shown are the average thermal cross 

section for the  1 2

1 1,H n H  reaction and the inelastic scattering cross sections at 14.1 MeV for 

the C, N, O elements.  Of course, the actual yield of each gamma ray will depend on the neutron 

spectrum in the target being interrogated.  Comparing a response from an unknown sample to a 

known explosive template offers rapid identification of nitrogen-rich explosive compounds 

contained in a target sample. 
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Table 3.1 Nine (9) HCNO prompt-capture and inelastic-scatter signature energies (Group 

T-16, 98-2007; Molnár, 2004 & Johll, 2009) and two (2) neutron signature energies. 

Gamma-Ray  Signatures    

Element Energy 

        (MeV) 

Type of Reaction Thermal 

σ (barns) 

14.1-MeV 

σ (barns) 

Hydrogen 2.2232
 

Prompt-capture 0.3326 - 

Carbon 4.4390 Inelastic-scatter - 0.2106 

Nitrogen 2.3128 Inelastic-scatter - 0.0557 

 3.3786 Inelastic-scatter - 0.0109 

 4.9151 Inelastic-scatter - 0.00687 

 5.1059 Inelastic-scatter - 0.0437 

 6.4462 Inelastic-scatter - 0.0122 

Oxygen 6.1299 Inelastic-scatter - 0.144 

 6.9171 Inelastic-scatter - 0.0317 

Neutron  Signatures    

Below Cd cutoff < 0.4x10
-6 

   

Above Cd cutoff > 0.4x10
-6

    

  

It is possible to create a large array of templates, utilizing a variety of target 

configurations and compositions, from the 11 signatures listed in Table 3.1.  The characteristic 

responses of explosive HCNO compounds are utilized to make a library of templates, which 

lends itself for use in the signature-based radiation scanning (SBRS) technique.  Based on a 
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template library representing various explosive types in a multitude of geometric and clutter 

configurations, the SBRS approach provides a means of quickly and efficiently identifying 

explosive compounds.  The proposed SBRS technique interrogates an unknown target with 

neutrons, collecting backscattered responses for comparison to known explosive templates.  The 

unknown response, when compared to a specific template, is scored with a figure-of-merit 

(FOM) and a variance, which can be used to determine if the interrogated sample contains an 

explosive.  The automated SBRS approach requires little of the user while promising a robust 

method of inert-explosive differentiation through template matching.  Testing and proving the 

SBRS method is important to IED detection because of its considerable improvements on 

existing neutron interrogation techniques.  Application of the SBRS technique will allow IED 

identification in many real world scenarios including buried mines, shielded bulk cargo 

containers and personnel baggage. 

 3.4 Template Generation for SBRS Application      

Confident that a finite number of L templates can accurately represent any proposed 

target type, one may proceed through the following SBRS technique.  Suppose a template S  is a 

vector of N signatures for a target that contains a sample of a known explosive.  The subscript  

indicates a particular target configuration (position of sample in the target, clutter configuration 

and thickness, etc.) out of a total of L configurations, such that,  

 1 2 N  ... ,  1,  2, ...,  .S S S L S          (3.4.1)  

After generating an appropriate number of templates to represent a specific target type, an 

unknown target, of the same type, is interrogated with neutrons, generating a response vector, .R   

R is a vector of the same N signatures as for the test target, and is represented as:  

 1 2 N  ... .R R RR            (3.4.2)  

The response vector is compared to the library of L templates using a figure-of-merit procedure 

that is described in the Section 3.5.  A computer code then calculates a FOM for unknown targets 

from the vectors S and ,R in a manner also explored in Section 3.5.  Below are sample templates 

with N signatures, N standard deviations (σ) with 2.  
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Signature Energy 1  

11 21     S S   

11 21        

.         .  

.         .  

.         .  

Signature Energy N  

1 2    N NS S   

1N 2Nσ     σ   

The complex characteristics of possible explosive targets and the specificity required for 

explosive identification requires that a large library of templates be generated.  Large volumes of 

thinly shielded explosives would require far fewer templates than would small explosive 

volumes with thick shields.  Thus, many factors including beam intensity, interrogation time, the 

volume of explosive, thickness and density of both the target and shield, as well as interrogation 

standoff must be considered.   

Though there are an infinite number of explosive configurations possible in real world 

scenarios, one can imagine that many of these scenarios can be modeled by a single template.  

Thus, a finite number of templates may be sufficient to differentiate nearly all explosive from 

inert materials.  This argument hinges on the ability of a single template to fit many closely 

related explosive target configurations.  Because an explosive target does not have to match 

perfectly to a template to be identified as an explosive, a template may represent a whole group 

of related target types.  Thus, there is no need for a template library containing every possible 

scenario; rather a much smaller library may quickly identify nearly all explosive targets.  In fact, 

it will be demonstrated that templates of artificial compositions, obscuring known explosives, 

adequately identify many real IED scenarios.  Templates with artificial compositions are known 

as ―artificial templates‖, and are created with different proportions of H, C, N, O, as well as other 

real materials such as copper or chromium, at specific densities.  Eighty such templates were 

created for this study and are given in Appendix A.   

It will be shown that it is possible to minimize the number of FOM calculations required 

to identify an explosive based on a density filtering process.  As mentioned in Section 2.2.2, X-

ray interrogation provides information about the density of a sample, and work conducted by a 

―Senior Design Team‖ at Kansas State University showed promise for density discrimination 
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using backscattered X rays (Horton et al., 2011).  X-ray imaging, producing what is essentially a 

density map, is ubiquitous and the Z-backscatter van (Chalmers, 2004) is a mobile imaging 

system that interrogates targets by forming a backscatter density image.  Thus, if one knows the 

average density of a sample one may determine the appropriate templates to use in calculating a 

FOM.  For example, a target with a very low density need not be compared to a template of 

medium or high density, thus reducing the number of required calculations.  A detailed 

explanation of this process and its effectiveness are discussed later in this thesis. 

 3.5 Explosive Discrimination Using Figure-of-Merit Analysis 

 A SBRS method utilizing template matching, as described above, calculates the FOM, 
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where Ri is the i 
th

 measured signature of an unknown sample, iS  is the i 
th

 signature for the 
th

 

template, N is the number of signatures,  is a factor that scales the measured signature values to 

the template values (accounting, for instance, for differences in measuring times or beam 

intensities), 2  is the variance, and i  is a normalized weight factor given by  
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with wi being a finite positive constant for the i 
th

 signature.  Note that 1/i N   for uniform 

weights ( 1, 1,2, ,iw i N  ).  The value of  would be expected to be near unity if the iR  and 

iS  were drawn from the same distribution (or if the signatures obtained from a test sample differ 

only by statistical variations from those of one of the templates) but to be large if iR  and iS  

differ substantially.  The standard deviation in the figure-of-merit, which follows from the 

standard error propagation formula assuming uncertainties only in Ri and ,iS can be estimated as  
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This estimate of standard deviation is a good approximation when Ri and 
iS  are larger than, say, 

50 counts.  In principle, effective use of   and     allows one to differentiate inert from 

dangerous targets (Brewer, et al., 2011).    

Use of normalized FOM values simplifies the task of finding appropriate cutoff values 

because the raw FOM values can assume values between zero and numbers exceeding 10
6
.  Thus 

a normalized FOM is given by, 
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The numerator of the normalization constant is an arbitrary scaling factor and the denominator is 

the figure-of-merit from Eq. (3.5.1) that would be obtained if all the Ri and  iR  were zero, 

i.e., there are no signature values for the unknown target.  The normalized error is given by, 
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A cutoff value, 0 ,  is used to determine if a sample is an explosive (its FOM is below 0 ) or 

inert (its FOM is above 0 ).  There is also a third category deemed ―suspects‖ for which a 

specified number of standard deviations of the FOM may include the cutoff value.  These three 

cases are depicted below. 

 

Figure 3-3: Graphical Depiction of Cutoff, 0 , Being Used to Identify Inert, Suspect, and 

Explosive Materials. 
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A measure of the confidence one may report when identifying a substance as inert is  

given by the following, 

 
0( )

( )

normalized

normalized

 
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 



 .        (3.5.8) 

Similarly, the confidence, or margin-of-error, given to a sample identified as an explosive 

follows,  

 
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
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


 .        (3.5.9) 

The value of gives an account of how closely the normalized FOM is to a pre-established 

cutoff value.  While developing a systematic SBRS methodology one may also use  to 

establish reasonable cutoff values.  However, there are situations when a sample is very close 

to 0 , and the specified number of standard deviations allows the sample to be classified as 

either an inert or an explosive.  In these cases the sample should be labeled as a suspect, and it is 

left to the user of the SBRS system to determine what course of action is to be taken with these 

samples.   

 An explosive correctly identified as an explosive is labeled a ―true positive‖ (TP) and an 

inert correctly identified as an inert is labeled a ―true negative‖ (TN).  If an inert material is 

identified as an explosive it is labeled as a ―false positive‖ (FP) and an explosive identified as an 

inert is labeled a ―false negative‖ (FN). The ―specificity‖ is related to the false positive rate 

through  

Number of True Positives
Sensitvity

Number of True Positives Number of False Negatives



.        (3.5.10) 

and the sensitivity is related to the false negative rate through 

 
Number of True Negatives

Specificity
Number of True Negatives Number of False Positives




.              (3.5.11) 

In Eq. (3.5.10), a sensitivity of 100% indicates no FN, and in Eq. (3.5.11), a specificity of 100% 

indicates no FP. In explosive detection both high specificity and high sensitivity are sought 

(Johll, 2009).  The sensitivity and specificity may be adjusted by changing the cutoff value, 0.   

High levels of sensitivity are preferred over high levels of specificity because in real-world 

scenarios, not detecting explosives (large numbers of FN) endangers personnel and equipment, 
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while incorrectly identifying non-explosives as explosives does not.  However, a high FP rate 

will limit the usefulness of any detection method, thus, a balance between sensitivity and 

specificity is required.     

 3.6 Simulations Using MCNP Transport Code 

 The Monte Carlo Neutral Particle (MCNP), code is used for problems requiring transport 

calculations for neutrons, photons, electrons, or combinations of neutrons/photons (where 

photons are produced by neutron interactions), neutrons/photons/electrons, photons/electrons, 

and electrons/photons (X-5 Monte Carlo Team, 2008).  Developed and maintained by the Los 

Alamos National Laboratory, MCNP is an internationally recognized code for neutral particle 

transport.  MCNP is capable of transporting neutrons of energies between 
1110

and 20 MeV for 

all isotopes and up to 150 MeV for some isotopes, photons of energies from 1 keV to 100 GeV, 

and electrons of energies from 1 keV to 1 GeV (X-5 Monte Carlo Team, 2008).  To use the 

MCNP code the user creates an ―input file‖ which specifies pertinent information about the 

specific problem being modeled.  A simulated experiment is carried out by running the MCNP 

code with an input file modeling the important aspects of the experiment.  An input file is a 

collection of ―cards‖ including a title card, cell cards, surface and data cards, source cards, 

material cards and tally cards.  A sample input code for MCNP is provided in Appendix B.  

 In MCNP the user may define three-dimensional configurations of materials in geometric 

cells bounded by surfaces or ―macrobodies‖ (basic shapes such as spheres or boxes, etc.) already 

present in the MCNP code.  The intersections, unions and complements of regions bounded by 

surfaces define cells.  Surfaces are further defined by supplying coefficients (selecting a ―+‖ for 

the outside of a surface and ―-‖ for the inside of a surface) to the analytical surface equations or, 

for certain types of surfaces, known points on the surfaces.  MCNP has more general geometry 

than is available in most other codes and provides the capability and flexibility of defining 

geometrical regions from user defined surfaces and then combining them with Boolean logic  

operators (X-5 Monte Carlo Team, 2008).  Because the MCNP code is such a powerful modeling 

tool, allowing for a multitude of geometric and material configurations, it was used extensively 

to study the feasibility of the proposed SBRS method.  

Once the geometry of a specific problem has been modeled the user must specify the 

materials contained in the cells.  This is done by specifying a materials card, containing 
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elemental information, in the form of a ZAID number, about the material.  The ZAID number of 

a cell is of the form ZZZAAA.nnX, where, Z and A are the atomic number and mass number, 

respectively, nn is a unique evaluation identifier corresponding to version of a cross-sectional 

data library, and X indicates the class of data to be used (X-5 Monte Carlo Team, 2008).  By way 

of example the ZAID number 1001.74c refers to hydrogen with Z=1 and A=1.  Note that the first 

two zeros of the atomic number 001 are simply place holders and may be omitted, thus, the 

ZAID number above is really of the form ZAAA.nnX.  In addition, 74c tells the program to use 

the ENDF/B-VI cross section file designated endef74, with a continuous energy table.  The 

ENDF/B-VI cross sections files are regularly updated using the most current experimental data. 

The user, in source definition (SDEF) and tally cards, specifies sources and tallies to be 

used in a specific input file.  Only one SDEF card is allowed per input file; however, each SDEF 

card may specify a wide variety of source conditions.  Independent probability distributions may 

be specified for the source variables of energy, time, position, and direction, and for other 

parameters such as starting cell(s) or surface(s).  In addition to input probability distributions, 

various analytic functions for fission and fusion energy spectra exist such as Watt, Maxwellian, 

and Gaussian spectra.  In addition isotropic, cosine, and monodirectional probability distribution 

functions (PDF) are included in MCNP (X-5 Monte Carlo Team, 2008).  The source used in the 

simulations for this study was a monodirectional beam of 14.1 MeV monoenergetic neutrons.  

Tallies are estimators used to calculate and score radiation events, a tally scores events similar to 

an actual detector with perfect efficiency, unless modified to represent a real detector (Johll, 

2009).  The F5, point detector tally, was used in simulations to score and sort, by energy, the 

particle flux at a point distant from a target whose bulk was interrogated with a neutron beam 

described above.  The individual scores in an F5 tally are given by the following, 

 
2

ˆ
PW p e

R

 
     (particles cm

-2
),         (3.6.1) 

where, W is the weight assigned to a particle history,  ˆ
Pp  is the probability density function 

for scattering (or starting) in the direction ˆ
P towards the point detector (assuming azimuthal 

symmetry), e 
is a term accounting for attenuation between the location of the last event and the 

detector point ( is the total number of mean free paths from a particles location to the detector), 

and R is the distance to the detector from a source or collision event.  The point detector is called 
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a ―next-event estimator‖ because it is a tally of the flux at a point as if the ―next event‖ were a 

particle trajectory directly to the detector without further collision (X-5 Monte Carlo Team, 

2008). The physical quantity measured by the F5 tally, when the source has units of particles, is 

the particle fluence, 

PdN

dA
       (particles cm

-2
),         (3.6.2) 

where,
PdN is the number of particles which penetrate into a sphere of cross-sectional area 

dA (Shultis and Faw 2000). 

 To account for the interactions of neutrons while traversing through a medium, extensive 

transport calculations are often required.  In particular, a form of the Boltzmann transport 

equation, termed the Neutron Transport Equation (NTE), is employed to provide numerical 

solutions for the neutron flux or fluence density of neutrons in a media.  Solutions to the NTE 

provide information about how the number of neutrons, with a specific energy and traveling in a 

specific direction, are affected by the media through which they are propagating.  The steady 

state NTE can be written as,  
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In the steady state NTE,  , ,E r Ω is the flux density (as a function of position, ,r energy, 

,E and direction,Ω ); t is the total interaction cross section; s is the total scattering cross 

section; f is the probability density function for the scattering angle cosine, cos ,s s   Ef is 

the energy probability density function and s is a source term. 

 Deterministic transport methods, such as discrete ordinates, solve Eq. (3.6.2) to find the 

average particle behavior, giving fairly complete information about the average flux density of 

particles throughout the phase space of the problem.  MCNP, on the other hand, simulates 

individual particles and gives solutions based on aspects (tallies) of their average behavior.  

MCNP solutions yield only information about user specified tallies, however from the average 

behavior of many simulated particles the average behavior of real particles in a system is inferred 

through the central limit theorem (X-5 Monte Carlo Team, 2008).  The central limit theorem 

gives clout to the Monte Carlo method by giving an estimate of uncertainty in the estimate of the 
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expected value; this uncertainty is proportional to1/ N where N is the number of histories 

selected from an appropriate probability distribution function.  Another pillar of Monte Carlo 

strength is the law of large numbers, which states that as long as the mean exists and the variance 

is bounded the following is true,  

lim . 
N

z z


          (3.6.3) 

Here, as the number of histories N goes to infinity the estimate of the expected value z  

approaches the actual expected value z
 
(Dunn and Shultis, 2011).  Thus, both Monte Carlo and 

deterministic transport methods are capable of ―solving‖ the NTE. 

 Monte Carlo methods are particularly useful when duplicating statistical processes (such 

as the interaction of particles with materials) and can model complex three-dimensional 

geometries that cannot be modeled by deterministic computer codes.  The individual events that 

describe a transport process are governed by several probability distributions.  Monte Carlo 

methods statistically sample these probability distributions to describe the total phenomenon.  

The number of trials comprising a Monte Carlo simulation is quite large and generally requires 

the use of digital computers (it should be noted that although many trials are needed to accurately 

approximate a solution, a large number of trials is not indicative of a precise result). Random 

numbers are generated through a random number generator and are used to statistically sample 

processes in a given problem.  The statistical sampling process resembles dice throwing games in 

a casino, from which the name ―Monte Carlo‖ is derived.  The Monte Carlo method of particle 

transport is supremely realistic and constitutes a numerical experiment, tracing a particles history 

from source to termination.  Probability distributions are randomly sampled using transport data 

to determine the outcome at each step of its life (X-5 Monte Carlo Team, 2008).  

 Because the X-5 Monte Carlo Team at the Los Alamos National Laboratory validates the 

MCNP5 code in several ―benchmark‖ tests, it is presumed capable of precisely and accurately 

describing particle behavior in a medium.  The accuracy of an MCNP5 experiment depends on 

the nuclear physics and cross section data supporting the code, and the ability of the user to 

accurately model the pertinent aspects of the problem.  Given the precision and accuracy the 

code provides, it is theoretically possible to test the feasibility of an explosive detection 

technique utilizing simulated neutron interrogation.     
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 3.7 Techniques Employed to Generate and Analyze MCNP Data 

One hundred forty three MCNP5 experiments were performed requiring over 170 

computer hours.  Each of the 143 experiments generated over 1,600 lines of output.  Experiments 

of comparable complexity and number of histories often utilize a cluster of computers to increase 

the speed of simulations.  However, all experiments in this study were conducted on a personal 

laptop, demonstrating the incredible power and flexibility of the MCNP5 code.  The extensive 

uses of auxiliary computer programs were necessary because of the bulk and format of MCNP5 

output data.  Much of the post-processing of data output was handled by programs written in the 

―Pearl‖ language.  The regular expressions and other features of the Pearl language allow the 

user to create a program to search through a large output text file for a specific line of text and 

extract data to be stored in an array in the script.  C++ programs were used to calculate needed 

values from the data contained in the Pearl arrays.  Finally, MATLAB programs were used to 

calculate figures-of-merit, as described above, from the output of the C++ programs. 

MCNP simulations save both time and resources by simulating experiments at a much 

faster rate and in more configurations than would be possible experimentally.  Thus, for methods 

requiring more resources or time than are available, an MCNP simulation is a good alternative 

for acquiring results.  However, no matter how well the problem is modeled in MCNP or how 

promising the results, the method should be verified through experimental means. 
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Chapter 4 - MCNP Simulation Model and Results 

 4.1 Target Model Specifications 

Many IEDs are housed in metal containers and in the trunks of automobiles.  Detecting 

such IEDs is the objective of the SBRS detection method.   To this end, a mockup was developed 

with materials and geometry representing an average car trunk.  The geometry used in all 

simulations is shown in Fig. 4.1.  
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                        (a)                                                                   (b)  

Figure 4-1: Schematic of simulated target geometry, (a) 3-D mockup of car trunk, (b) 

detector configuration. 

It is crucial to define a common nomenclature to be used when describing aspects of the 

MCNP model.   

Target –    A 1 m
3
 aluminum box containing both the sample and clutter. 

Clutter –   A rectangular volume composed of an inert material that ―shields‖ the   

        sample within the target. 

Sample –   A rectangular volume (about 3.35 L) composed of either an explosive or an  

         inert material contained in the target. 

Source –    A uniform , parallel, cylindrical neutron beam, 7.62 cm in radius, emitting  

         14.1 MeV neutrons. 

Detector – A point detector, F5 tally in MCNP, to measure the particle fluence. 
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Inert –       Any material that is not identified as a nitrogen-rich explosive occupying the  

         clutter  or clutter and sample positions. 

Explosive – Nitrogen-rich explosive compound occupying the sample position. 

 Twenty-one materials commonly encountered in real detection scenarios were simulated 

as both clutter and sample materials; their densities and compositions are recorded in Appendix 

C.  Explosive compounds of cyclonite (RDX) and Urea Nitrate (UNi) were also simulated as 

samples obscured by the other 21 materials, the densities and compositions of these explosives 

are also listed in Appendix C.  Thus, 42 targets were created, 21 with an inert in both the clutter 

and sample positions (both the same inert material) and 21 with an inert in the clutter position 

and an explosive in the sample position.  Additionally, 10 artificial materials were created and 

are listed in Table 4.1 below.  All materials and explosives were modeled as being both uniform 

and homogeneous.   

 Table 4.1 Artificial Inert Clutter Materials 

N0O50C0H0Crhd N0O50C0H0Crmd N0O50C0H0Crld N0O50C0H0Crvld 

N0O60C20H0Crhd N0O60C20H0Crmd N0O60C20H0Crld N0O60C20H0Crvld 

N0O0C50H50hd N0O0C50H50md N0O0C50H50ld N0O0C50H50vld 

N0O10C30H60hd N0O10C30H60md N0O10C30H60ld N0O10C30H60vld 

N0O20C30H50hd N0O20C30H50md N0O20C30H50ld N0O20C30H50vld 

N10O10C50H30hd N10O10C50H30md N10O10C50H30ld N10O10C50H30vld 

N20O0C30H50hd N20O0C30H50md N20O0C30H50ld N20O0C30H50vld 

N0O50C0H0Cuhd N0O50C0H0Cumd N0O50C0H0Culd N0O50C0H0Cuvld 

N0O60C20H0Cuhd N0O60C20H0Cumd N0O60C20H0Culd N0O60C20H0Cuvld 

N0O30C0H70hd N0O30C0H70md N0O30C0H70ld N0O30C0H70vld 

 The artificial material nomenclature, N0O50C0H0Cr, represents a material consisting of 

0% nitrogen (N0), 50% oxygen (O50), 0% carbon (C0), 0% hydrogen, and 50% chromium (Cr).  

The number following element designation (N#O#C#H#) denotes the weight percent of each 

element contained in the material.   The chromium in the above example material, known as a 
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―filler‖ element, makes up the remaining weigh percent of the material composition.  There are 

four materials listed above containing filler elements (50% and 20% chromium, and 50% and 

20% copper respectively).  Each column of Table 4.1 represents a specific density, as defined by 

the last few letters in the nomenclature of each material.  ―hd‖ stands for high density and 

represents a density of 7 g cm
-3

, ―md‖ denotes artificial materials of medium density (2.25 g cm
-

3
), ―ld‖ indicates a low density of just 1 g cm

-3 
and finally ―vld‖ connotes very low density (0.25 

g cm
-3

) clutter.  The 40 materials listed above were placed in the clutter position shielding 

explosive samples of cyclonite and urea nitrate.  Thus, a total of 80 artificial explosive templates 

were created, in MCNP5, by recording the backscattered radiation responses of targets with 40 

artificial materials shielding a sample of RDX and the same 40 materials shielding UNi when 

interrogated with 14.1 MeV neutrons.      

 4.1.1 Mockup Geometry 

The target, with six walls of 0.2 cm thick aluminum, housed clutter and sample volumes 

of 19.6 L and 3.35 L, respectively.  Both the sample and clutter were modeled as rectangular 

parallelepipeds.  The remaining 77 L inside the target were modeled as a void, that is, particles 

would not interact unless they were inside the aluminum shell of the target or inside the sample 

or clutter volumes.  A sphere of 5 m radius surrounded the target.  The volume inside the sphere, 

but outside of the target volume, was also modeled as a void so that the entire simulation was 

conducted in a vacuum.   

One face of the sample, nearest the source, resided on the xy-plane, and was centered on 

the origin (refer to Fig. 4.1 (a)). The center of the target was positioned 50 cm from the origin in 

the z-direction. The sample was located inside the target so that it was centered at the coordinate 

(0, 41.5, 50). The parallelepiped of clutter had dimensions of 96 cm in total length (x-direction), 

10 cm in width (y-direction) and 20 cm in height (z-direction).  The clutter volume was further 

divided into three sections in the MCNP code; the left and right sections were equal in volume 

with dimensions (x=32.38 cm, y=20 cm, z=10 cm) and the middle section had dimensions 

(x=15.24 cm, y=20 cm, z=10 cm).  The clutter volume was located inside the target between the 

source and the rectangular sample, as shown in Fig. 4.1 (a), and centered on the coordinate (0, 

30, 50). The source, centered at (0, -150, 50), had a standoff of 1.5 m from the nearest face of the 

target.  It was aimed directly on the centers of the target, clutter, and sample at z=50 cm traveling 
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parallel to the y-axis in the positive y-direction. A gamma-ray point detector (refer to Fig. 4.1(b)) 

was positioned 150 cm away from the closest point of the target at the coordinates (0, -150, 85).  

The F5 tally for gamma rays utilized 4-keV wide energy bins, selected so that signature gamma-

ray energies would be at the center of a bin. The width of the energy bins was chosen to be 

similar to the energy resolution of some HPGe detectors (Johll, 2009).  A neutron point detector 

was located 158 cm from the nearest target surface at (100, -150, 50).  Neutrons with energies 

above and below the cadmium cutoff (0.4 eV) were binned separately in the neutron F5 tally.  

Several pictures of the target geometry were taken using the MCNP5 Visual Editor program and 

are displayed below.  Figure 4.2 (a) is a view from outside the aluminum box.  Figures 4.2(a) & 

(b)  show the inside of the target where both the clutter and sample are visible.  It should be 

noted that there are several cells shown in Fig. 4.1(b) that had no clutter material in their volume.  

The cells shown in the figure were created in the MCNP code to allow more configurations of 

clutter than were used in this experiment. 

  

(a)                                                       (b) 

 

(c) 

Figure 4-2: (a) Outside of Al target, (b) sample and clutter geometry, (c) sample close-up. 
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 4.2 MCNP Data and Data Processing 

Each Monte Carlo experiment traced 200 million particles through the geometry outlined 

in Section 4.1.1.  Gamma rays were tallied in each of three 4-keV-wide energy bins centered 

around each of the nine gamma-ray signature energies; thus, each of the nine signature energy 

bins had a bin on either side of it.  The MCNP5 code, provided in Appendix B, gives the energy 

bins used to detect gamma rays with energies near the desired signature energies.  A group of 

three energy bins was centered on each of the gamma-ray signature energies outlined in Table 

3.1.  The three energy bins associated with each signature energy were used, in a method 

described in the following section, to determine if the response stored in a designated signature 

energy bin was larger than that of the bins on either side, representing a peak in the gamma-ray 

fluence.  Neutrons were sorted into one of two energy bins  0.4 eV and 0.4 eVE E  .  The 

fluences at all 11 (two neutron and 9 gamma-ray) explosive HCNO signature energies were 

tallied for use in the proposed SBRS detection technique.   

 4.2.1 Signature Peaks and Error 

The output file of an MCNP experiment gives the results for a tally in three columns; the 

first is the energy of the bin, the second the fluence per source particle and the third the relative 

error of the measured fluence.  Pearl scripts were used to extract data from the many lines of text 

output.  Once the pertinent data was extracted, it was fed into a C++ program that determined if 

the fluence in a signature energy bin represented a ―peak‖ with a value larger than that of its 

neighbors.  Figure 4.3 displays two responses of gamma-ray energies binned in MCNP 

experiments, the responses were from two different targets and figure was created for 

demonstration purposes only.  A step-by-step method used to determine if the fluence in a 

signature energy bin represented a peak is presented below.  A large number of counts in a 

signature energy bin denotes the presence of characteristic gamma rays (prompt capture or 

inelastic scatter) of one of the elements under investigation for explosive differentiation (Table 

3.1).  The method  described below was applied only to the F5 tally used to measure gamma-ray 

fluence.  A sample calculation follows the description of the method used to determine the 

presence of peaks in the signature energy bins, and utilizes data from Fig. 4.3.  
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Figure 4-3: Sample Figure of Binned Responses Surrounding Signature Energies of 2.2232 

MeV (Hydrogen Prompt-Capture Gamma-Ray) and 2.3128 MeV (Nitrogen Inelastic-

Scatter Gamma-Ray) 

In Fig. 4.3, solid horizontal lines are drawn, between the 3 x  boundss of each response, 

within each 4 keV wide energy bin.  Because the error given in the MCNP output is a relative 

error R, the error must be multiplied by the tally to give the standard deviation of the sample 

mean, ,x xR   and 
1

1
, 

N

i

i

x x
N 

  where  ix are the individual scores stored in a tally (X-5 Monte 

Carlo Team, 2008).   

The following steps were performed to determine if there was a peak in the flux in a 

signature energy bin.  Sample calculations follow the procedure outlined below.   

1. An average ―background‖ value was calculated by summing the tallies of the bins 

on either side of the signature energy bin and then dividing the result by two.    

2. A confidence interval was found for the response of the signature energy bin 
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3. The background was then added to the value of 3 and the result (termed a ―three-

sigma-check‖) was compared to the tally in the signature energy bin.   

4. Tallies larger than the three-sigma-check value were determined  to be a peak; 

otherwise the tally was recorded as a zero for further analysis procedures.    

5. If a tally was deemed a peak the background was subtracted from it to give a ―net 

peak‖, also used during further analysis.   

To determine if there was a peak for the signature energy of 2.2232 MeV (hydrogen 

prompt-capture gamma-ray, left in Fig. 4.3, the response of the energy bin to the left   Left Binx , 

centered at 2.221 MeV, and the response to the right   Right Binx ,centered at 2.229 MeV, were 

averaged to form a background value as follows (Step 1), 

-9 -9
  3.68 10  cts/source particle 3.66 10  cts/source particle

2 2 2 2

Left Bin Right Binx x x x
Background     

-93.67 10  cts/source particlex .  Step 2 is to define a confidence interval for the response in the 

signature energy bin,      9 11

 E3 3 3.65 10  cts/source particle 4.75 10x Signaturex R x x       

195.20 10  cts/source particle.x    The value of 3 x
 
is then added to the background (Step 3) to 

determine whether or not the response in the signature energy bin is a peak with the confidence 

interval:  

-9 19 -93.67 10  cts/source particle 5.20 10  cts/source particle 3.67 10  cts/source particlex x x  .  Step 

4 requires that the tally response in the signature energy bin be larger than value found in Step 3.  

In this case, the background plus 3 x
 
of the signature energy bin is larger than the response 

contained in the signature energy bin and thus, there is no signature for the hydrogen prompt-

capture gamma- rays of energy 2.2232 MeV.  

There is a clearly defined peak to the right in Fig. 4.3 with signature energy 2.3128 MeV 

for nitrogen inelastic-scatter gamma rays.  Steps 1-4 are the same as in the above example, 

however there is a peak at the signature energy, thus, a net peak value must be determined.  The 

background is found to be,
-106.13 10x  cts/source particle.  This value is then subtracted from the 

peak value 
-82.88 10x  cts/source particle to give a net peak of

-82.88 10x  cts/source particle.  

Because the net peak for gamma-ray signature energies was found by subtracting random 
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variables from one another the propagation of errors was applied to find their standard 

deviations:  

  
     

2 2

2     

 E  E .
4 4

Left Bin Left Bin Right Bin Right Bin

Signature Signature

x R x R
x R                (4.2.1) 

The factor of one-fourth is needed because it was the values  2Left Binx and  2Right Binx that were 

subtracted from  E.Signaturex  Calculating the standard deviation of the sample mean for both 

neutron and gamma-ray tallies was required.  The standard deviation for the neutron F5 tally was 

found using the same method as described in Step 1 above     Tally R x R   .  Sample 

Pearl and C++ codes used to calculate the standard deviations of neutron and gamma-ray 

signatures are provided in Appendix D. 

4.2.2 Figure-of-Merit Calculations        

Figure-of-merit calculations were made using the net peak and tally values found in the 

process outlined above.  The standard deviations were also used in calculations involving 

Equations 3.5.6 and 3.5.7 of Ch. 3.  MATLAB codes were used to calculate FOM and to 

generate several useful plots.  Although calculations of FOM are easily accomplished using far 

less powerful software packages, it was the graphing capability and familiarity of use that lead 

the author to use the MATLAB platform.  Samples of the codes used are provided in Appendix 

E.   

 4.3 Results of Figure-of-Merit Analysis Using Cutoffs and Density  

The calculated FOM for samples containing RDX, UNi and an inert material were 

compared to 80 artificial templates containing either RDX or UNi.  The 21 inert clutter materials 

used to shield the sample in each experiment were used to categorize the results.  Uniform 

weights were used ( 1, 1,2, ,iw i N  ) such that 1/ .i N    Normalized figures-of-merit and 

error   ( ) and ( )normalized normalized    were used, and for brevity they are referred to 

as , and     for the remainder of this work.  Plots, with  3 
 
confidence markers, of the 

lowest FOM, , for each shielding material are shown in Figs. 4.4-4.6 and tabulated in 

Appendix F.  The lowest was used because a low represents a close match between the 
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template and the sample being interrogated.  It is only necessary for one template to identify a 

target as containing an explosive; therefore, only one from each category was needed for 

identification purposes.  By inspection, one may use a cutoff value of 0 9   (see Fig. 4.4)) to 

identify all explosive samples containing RDX.  The lowest for all samples containing UNi 

were also below the cutoff of nine (Fig. 4.5), and again all explosive samples were correctly 

identified.  However, when the same cutoff, 0 9  , was applied to the targets containing inert 

materials, 15 of the 21 inerts were incorrectly identified as containing explosives. 

Adobe Air Bricks Clay Coal Conc. Cu Cotton Fruit Glass Gyps. Lmstn. Nylon Poly. Propane Sand Silk Slate Steel Tin Wood
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Figure 4-4: Lowest Figures-of-Merit with Cutoff of 9 Identifies All 21 Samples of RDX as 

Explosives 
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Figure 4-5: Lowest Figures-of-Merit with Cutoff of 9 Identifies All 21 Samples of UNi as 

Explosives 
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Figure 4-6: Lowest Figures-of-Merit with Cutoff of 9 Identifies All 15 Inert Samples as 

Explosives 

Although all explosive samples were detected in this process (sensitivity of 100%), the 

resulting specificity (28.6% - with 15 FP) was deemed far too low for effective application.  A 

cutoff value lowered to just five resulted in only six false positives, but the number of false 

negatives increased to 13.  Applying the cutoff of five increased the specificity to nearly 71.4%, 

but the sensitivity was reduced by nearly one-fourth to just 76.2%.  Clearly, a process that misses 

nearly 1-in-4 IEDs leaves much to be desired and is far more dangerous than is acceptable.  

Thus, a filtering process that would yield suitable levels of specificity (75% or greater) and 

sensitivity (90% or greater) was sought.  Emphasis was placed on sensitivity in selecting 

appropriate cutoffs. 
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 4.3.1 Application of a Density Filter 

As was discussed in Section 3.4, the approximate density of a target can be identified via 

photon interrogation, and offers an avenue for categorizing targets.  The number of backscattered 

photons from an interrogated volume is proportional to the density of the target.  By measuring 

the intensity of backscattered radiation it is possible to gain rudimentary density measurements.  

However, density measurements made in this fashion are not highly accurate (Lawson and 

Severson, 2003).  Comparing a target to templates of similar average density, thus filtering out 

templates that should not be used for comparison, eliminates many unnecessary FOM 

calculations.  Another advantage of such a ―density filter‖ is the possibility of differentiating 

explosive from inert targets.   

A density filter was developed for comparing target signatures to templates with similar 

average densities.  Backscatter X-ray methods can provide estimates of a target’s average 

density.  Because information concerning the average density of a target is not precise, templates 

with a range of densities were used in the density filter approach.    The range of target densities 

and the templates used in FOM calculations are given in Table 4.1. 

Table 4.2: Density Filter Values and Average Densities of Templates. 

Density Range          

(g cm
-3

) 

Templates Comprising 

Tier Template Designation 

Average Density 

(g cm
-3

) 

Group-1 RDX (VLD)  RDX (HD) 4.2773  

0.0-1.0  UNi (LD) UNi (HD) 3.6961  

  UNi (VLD)  RDX (MD) 2.0144  

Group-2 RDX (MD) UNi (MD) 1.4332  

1.0-2.0 UNi (MD) RDX (LD) 1.4189  

  RDX (LD)  RDX (VLD) 1.0616  

  RDX (VLD)  UNi (LD) 0.8377  

  UNi (LD)   UNi (VLD) 0.4804  

Group-3 UNi (HD)   

  2.0-3.0  RDX (MD)  

    UNi (MD)  

  Group-4 RDX (HD) 

  3.0-4.0  UNi (HD)   

    RDX (MD)  

  Group-5 RDX (HD)   

  > 4.0  UNi (HD)   
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 An example of the filter methodology follows.  Suppose a sample is measured to have an 

average density of 3.32 g cm
-3

.  The measured density places the sample in Group-4, where only 

templates having similar densities (4.2773, 3.6961 and 2.0144 g cm
-3

) are used to calculate 

a from the response of the sample after neutron interrogation.  The is then compared to
0 , to 

determine if the target contains a nitrogen rich explosive.  Table 4.2 outlines the average density 

of all inert clutter with either inert samples and inert clutter with explosive samples. 

Table 4.3 Clutter and Sample Average Densities. 

Inert Clutter 

& Inert 

Sample 

Average 

Density  

(g cm
-3

) 

Inert Clutter & 

RDX Sample 

Average 

Density  

(g cm
-3

) 

Inert Clutter & 

UNi Sample 

Average 

Density  

(g cm
-3

) 

Air  0.0012 Air/RDX  0.9431 Air/UNi  0.3619 

Propane 0.0019 Propane/RDX 0.9434 Propane/UNi 0.3622 

Wood 0.75 Wood/RDX 1.2998 Wood/UNi 0.7186 

Gypsum 0.752 Gypsum/RDX 1.3007 Gypsum/UNi 0.7195 

Fruit 1.081 Fruit/RDX 1.4575 Fruit/UNi 0.8763 

Nylon 1.14 Nylon/RDX 1.4856 Nylon/UNi 0.9044 

Silk 1.16 Silk/RDX 1.4951 Silk/UNi 0.9139 

Clay 1.285 Clay/RDX 1.5547 Clay/UNi 0.9735 

Coal 1.29 Coal/RDX 1.5570 Coal/UNi 0.9758 

Sand 1.391 Sand/RDX 1.6052 Sand/UNi 1.0240 

Polyester 1.4 Polyester/RDX 1.6094 Polyester/UNi 1.0282 

Cotton 1.55 Cotton/RDX 1.6809 Cotton/UNi 1.0997 

Bricks 1.8 Bricks/RDX 1.8000 Bricks/UNi 1.2188 

Adobe 1.85 Adobe/RDX 1.8238 Adobe/UNi 1.2426 

Concrete 2.31 Concrete/RDX 2.0430 Concrete/UNi 1.4618 

Limestone 2.35 Limestone/RDX 2.0620 Limestone/UNi 1.4808 

Glass 2.4 Glass/RDX 2.0858 Glass/UNi 1.5046 

Slate 2.84 Slate/RDX 2.2955 Slate/UNi 1.7143 

Tin 7.365 Tin/RDX 4.4512 Tin/UNi 3.8700 

Steel 7.8212 Steel/RDX 4.6685 Steel/UNi 4.0873 

Copper 8.92 Copper/RDX 5.1920 Copper/UNi 4.6108 

 The above method was applied to all 21 RDX, 21 UNi, and 21 inert samples.  All targets 

were collected into their respective groups and their signatures were then used to 

calculate with the templates in that group.   The results are graphically depicted (with 

 3  confidence markers) below in Figs. (4.4-4.7) and are tabulated in Appendix G.  
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Figure 4-7: Density Group-1, 13 targets with density between 0 and 1 g cm
-3

.  

The notation used in this and subsequent figures is ―clutter/sample,‖ as in ―Coal/UNi,‖ 

where a sample of Urea Nitrate is obscured by coal in the clutter configuration.  With 0 5  there 

is one false negative (Clay/UNi, left in the figure) and one false positive (Wood/Inert , at the far 

right of the figure).  The Clay/UNi target had 5.05  and was only separated by 2.22  from 

the cutoff.  Similarly the Wood/Inert target had 4.95  and was just 2.17  from 0.   Each 

misidentified target is seen to be within  3  of the cutoff and would be deemed ―suspects.‖  

This study does not deal with how suspect targets should be treated, but suggests that the user of 

a SBRS system be aware of the inherent difficulty in clearly identifying all explosive or inert 

targets.  Within the bounds of this research any target whose is above 0 is an inert and any 

target whose is below 0 is an explosive.          
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There were 15 targets with density between zero and 1 g cm
-3

 but two targets (inert 

targets with clutter and sample composed of air and propane respectively) had  that were over 

80 and were not shown on the chart for clarity at lower values of  .  The targets with air and 

propane both had 800  and were very far removed   800  from targets with explosives 

shielded with air or propane as seen in Fig. (4.7).   
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Figure 4-8:  Density Group-2, targets 1-11 of 31 targets with density between 1 and  

2 g cm
-3

. 
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Figure 4-9:  Density Group-2, targets 12-21 of 31 targets with density between 1 and  

2 g cm
-3

. 
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Figure 4-10.:  Density Group-2, targets 22-31 of 31 targets with density between 1 and  

2 g cm
-3

. 

 Three targets containing explosives in Group-2 had values of above five, and were not 

correctly identified as explosive hazards.  Conversely, two targets that did not contain an 

explosive sample did have values of below five, and were deemed explosive threats.  The 

cutoff value of five is common to both Group-1 and Group-2, thus targets with density between 0 

and 2 g cm
-3

 are discriminated with 0 5.            
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Figure 4-11: Density Group-3, 8 targets with density between 2 and 3 g cm
-3

. 

The dashed line at the top of Fig. 4.9 represents 0 5  and was initially the cutoff used, 

however, a much lower cutoff, 0 3,  was found to discriminate explosive from inert targets.  

Using 0 3,  instead of 0 5,  gives two fewer false positives, represented by the boxes with 

dashed lines, and still isolates all explosive targets in the group.  Small changes in the cutoff 

value produce drastically different results in discrimination of explosive and inert targets.   
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Figure 4-12:  Density Group-4 & 5, 9 targets with density between 3 and 9 g cm
-3

. 

The first target listed in Fig. (4.7) (Tin/UNi) had density of 3.87 g cm
-3

 and belonged to 

Group-4, however with only one target in the group it was not known what cutoff would be most 

effective.  Because it had been observed that neighboring groups could share a common cutoff 

value, it was postulated that Group-4 would have the same cutoff as that of Group-5.  The theory 

proved to be correct for the single target in Group-4, as seen above.   

The cutoff shown in Fig. 4.10 was chosen because it separated the targets Copper/RDX 

and Tin/Inert.  The Copper/RDX target had a 8.723,  and was separated from the cutoff 

by 3.4.    Above the cutoff by 3.6,  the Tin/Inert target had a 8.841.    Although the 

difference between inert and explosive is narrow in Group-5, the use of 0 8.78  identified all 

explosive targets in the group and only lead to one false positive.  
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The use of 0 5  for Groups 1-3 and 0 8.78  in Groups 4 and 5 resulted in four false 

negatives and seven false positives.  The resulting sensitivity (90.5%) is within the desired limit, 

but the specificity (66.7%) remained lower than preferred.  However, if the cutoff in Groups 1-3 

is raised to 6.5 all explosive targets are classified correctly, but the number of false positives 

climbs to 10 giving a sensitivity of 100% and a specificity of just 52.4%.  

 4.4 Particle Dependent Figure-of-Merit Analysis 

The analysis completed in Section 4.3 used figures-of-merit calculated by combining the 

signatures of backscattered gamma rays and neutrons.  The Standoff Bomb Detection project at 

Kansas State University has focused mainly on IED detection using gamma-ray signatures.  The 

benefits, if any, of also using neutrons for the detection of IEDs is explored.  The results of 

Section 4.3 are compared with the results of using only neutrons or only gamma rays in 

explosive detection.  figures-of-merit are calculated using either gamma-ray signatures or 

neutron signatures and cutoffs are found for each case separately.  These results are compared to 

those found above to determine if information carried by backscattered neutrons is valuable to 

IED detection.  

 4.4.1 Density Dependent Cutoffs Using Neutron Figure-of-Merit Analysis 

The data retrieved from MCNP concerning neutrons above and below the cadmium 

cutoff, thus forming two signatures, were used in the same method as described in Section 4.3.  

Responses and templates with only neutron signatures were used to calculate figures-of-merit 

that were then filtered through the same density filters as in Section 4.3.1  Appropriate cutoffs in 

each density group were found using a non-graphical technique,  opting instead for direct 

numerical comparisons.  Numerical comparisons sought to minimize the number of false 

positives while maintaining a sensitivity of 90.5% (no more than 4 false negatives) across all five 

density groups.  The numerical comparison technique also sought to limit the total number of 

cutoffs by seeking like cutoffs between adjacent groups.  Table 4.4 outlines the density group 

cutoffs found in this manner.    

 The values of nearly all are significantly lower than were those found in Section 4.3, 

the result of neutron templates matching very closely to the signatures of individual targets.  The 

lowest calculated  for each target and its error are tabulated in Appendix H.  
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Table 4.4 Density Dependent
0 Using Neutron Signatures   

Group  0  

1 0.581 

2 0.581 

3 0.048 

4 0.83 

5 0.83 

  

 Groups 1 and 2 share a common
0 as do groups 4 and 5, while the cutoff of Group-3 is 

an order-of-magnitude smaller than any other group.   The significantly lower 0 for Group-3 is 

reminiscent of the 0 for Group-3 observed in Fig. 4.9.  The results of applying the above cutoffs, 

(number of false positives and false negatives) are tabulated in Table 4.6. 

 4.4.2 Density Dependent Cutoffs Using Gamma-ray Figure-of-Merit Analysis 

The 9 gamma-ray signatures outlined in Section 3.3 were used to form templates, as in 

Section 4.4.1, for comparison to the signatures produced through MCNP simulated neutron 

interrogation.  Calculated figures-of-merit were compared, using the same numerical comparison 

technique outlined in th above section, to find the best cutoff values for each density group.  The 

cutoffs used are summarized below and the calculated figures-of-merit are displayed in 

Appendix I. 

Table 4.5 Density Dependent 0 Using Gamma-ray Signatures 

Group  0  

1 9.5 

2 9.5 

3 9.5 

4 93 

5 93 

 

As in the analysis involving both neutron and gamma-ray signatures, a single cutoff value 

was found for groups 1-3 and another for groups 4-5.   
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 4.5 Results Using Density Dependent Cutoffs  

Table 4.6 compares the three methods discussed for FOM analysis in terms of sensitivity 

and specificity.  Because all cutoff values found in Sections 4.3 and 4.4 were found by holding 

the sensitivity constant at 90.5% (4 false negatives), the following analysis compares each 

method on the basis of how many false positives were generated using the cutoffs detailed above.  

The findings are listed in the table by the type of particle used in the FOM analysis 

 ,  -ray, and & -rayneutron neutron  .  The targets producing a false negative or false positive 

result are also listed for further discussion. 

The asterisks in the bottom right of the table, under the heading ― & -rayneutron  ,‖ 

denotes the lower cutoff  0 3  found in earlier analysis (see Fig. (4.9)).  If the lower cutoff is 

applied the number of false positives is reduced to just five with a corresponding specificity of 

76.2%, compared to 66.7% when 0 5  is used.  The method using only neutron signatures had 

the largest number of false positives resulting in a specificity of just 47.6%, however in Group-3 

no false positives or false negatives were recorded using 0 0.048  .  Finally, the 8 false 

positives found when using gamma-ray analysis techniques gives a specificity of 61.9%, still far 

below the desired 75%.     

The method relying only on gamma-ray signatures did not exhibit a lower cutoff in 

Density Group-3 as did the other two methods.  The use of neutron signatures when calculating 

the FOM markedly reduced the cutoff values in Density Group-3.   This observation is 

highlighted in Table 4.6, where the calculated figures-of-merit are listed in ascending order.  In 

Density Group-3 the figures-of-merit found using neutron signatures reveal drastically different 

values between explosive and inert targets (differing by an order-of-magnitude).   

The lowest found using gamma-ray methods in Density Group-3 is for the target 

Limestone/Inert with all explosive targets having larger  .  No clear difference between the 

figures-of-merit of explosive and inert targets in Density Group-3 was found using gamma-ray 

techniques.   
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Table 4.6 Method Comparison Using Density Dependent Cutoffs  

Group neutron  FN FP -ray  FN FP & -rayneutron   FN FP 

Cutoff 0.581     9.5     5     

  Gypsum/Inert   X Clay/UNi X   Clay/UNi X   

1 Gypsum/UNi X         Wood/Inert   X 

  Coal/UNi X               

Cutoff 0.581     9.5     5     

  Clay/Inert   X Silk/Inert   X Adobe/UNi X   

  Polyester/Inert   X Cotton/Inert   X Bricks/UNi X   

  Sand/Inert   X Nylon/Inert   X Glass/UNi X   

2 Adobe/Inert   X Coal/Inert   X Cotton/Inert   X 

  Silk/Inert   X Bricks/UNi X   Silk/Inert   X 

  Bricks/Inert   X Adobe/UNi X         

  Fruit/Inert   X Glass/UNi X         

  Coal/Inert   X             

  Nylon/Inert   X             

Cutoff 0.048     9.5     5    (*3)     

        Limestone/Inert   X Limestone/Inert   X 

3       Slate/Inert   X Concrete/Inert*   X 

        Concrete/Inert   X Slate/Inert*   X 

Cutoff 0.83     93     8.78     

  Steel/Inert   X Steel/Inert   X Steel/Inert   X 

4/5 Copper/UNi X               

  Copper/RDX X               

Total   4 11   4 8   4 7 

 Sensitivity (%) 90.5  Sensitivity (%) 90.5  Sensitivity (%) 90.5  

 Specificity (%) 47.6  Specificity (%) 61.9  Specificity (%) 66.7/76.2*  
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Table 4.7 Neutron and Gamma-ray for Group-3 

 

neutron  

   

-ray  

 
Clutter/Sample       

 

Target       

Concrete/RDX 0.003542 0.000595 

 

Limestone/Inert 0.157531 0.004804 

Glass/RDX 0.004888 0.000699 

 

Limestone/RDX 0.525309 0.009234 

Limestone/RDX 0.031877 0.001784 

 

Slate/Inert 2.019122 0.024849 

Slate/RDX 0.041522 0.002036 

 

Concrete/Inert 2.205757 0.025972 

Glass/Inert 0.112597 0.003354 

 

Concrete/RDX 3.926767 0.029956 

Slate/Inert 0.157054 0.003168 

 

Slate/RDX 5.147706 0.034298 

Concrete/Inert 0.168368 0.004101 

 

Glass/RDX 7.449551 0.033037 

Limestone/Inert 0.222573 0.004715 

 

Glass/Inert 16.36977 0.048973 
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Chapter 5 - Conclusions and the Way Ahead 

The need for explosive detection techniques that are both rapid and robust is evident from 

the battlefields of Iraq and Afghanistan, to the countryside of Cambodia, to port of entry security.  

The SBRS technique can provide rapid explosive identification with low rates of false alarms 

while maintaining adequate sensitivity.  The implementation of various SBRS methods leads to 

increased levels of detection proficiency.  Two proposed methods of implementing SBRS were 

explored. 

 5.1 Target Density 

Target density was demonstrated to play an important role in the template-matching 

process.  By utilizing target density as an indicator for which templates are best used in figure-

of-merit analysis, needless calculations are eliminated and cutoff values are identified.  X-ray 

interrogation can provide the needed target density information while neutron interrogation 

delivers stoichiometric evidence of explosives.       

A tiered density approach was used to select optimum cutoff values, 0.  Through the 

judicious use of 0 , it was found that for targets with average density below 4 g cm
-3

 a single 

cutoff value 0 differentiated most explosive from inert targets.  Similarly, it was found that for 

targets with average density between a four and 9 g cm
-3 

a singular 0 was needed for adequate 

explosive detection.    Through the use of just two cutoff values, using figures-of-merit 

calculated from both neutron and gamma-ray signatures, for target interrogated volumes with 

average density between 0 and 9 g cm
-3

,
 
it is possible to achieve of sensitivity of 90.5% and 

specificity of 66.7%.  However, a much lower cutoff was found for targets with density between 

3 and 4 g cm
-3

.  Through the use of three cutoff values it is possible to achieve of sensitivity of 

90.5% and specificity of 76.2%. 

 5.2 Particle Signatures 

Signatures of both neutrons and gamma rays are used separately and in combination to 

calculate figures-of -merit, , used for target discrimination.  The calculated using just 

neutron signatures were filtered by density to select ideal cutoff values.  Three cutoff values were 
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found to give the most favorable outcomes in terms of sensitivity and specificity.  Separate 

cutoffs were needed for targets with average densities 0-2 g cm
-3

, 2-3 g cm
-3

, and 3-9 g cm
-3

.  

However, the application of only neutron signatures in the discrimination process yielded 

specificity of only 47.6% (sensitivity was held constant at 90.5%).  A similar analysis was 

conducted on calculated using only gamma-ray signatures.  In the case of gamma-ray only 

 calculations, only two cutoff values were needed (in density ranges 0-3 g cm
-3

 and 3-9 g cm
-

3
).  Maintaining sensitivity at 90.5%, the specificity was found to be 61.9%, a marked 

improvement over neutron only techniques.  Finally,  calculated using both neutron and 

gamma ray signatures, were analyzed using density filters.   The analysis revealed that the choice 

in the number of cutoffs to be used determined the specificity (sensitivity being held constant at 

90.5%).  If only two cutoffs were used (in density ranges 0-3 g cm
-3

 and 3-9 g cm
-3

) the resulting 

specificity was found to be 66.7%.  However, if three cutoffs were chosen (in density ranges 0-2 

g cm
-3

, 2-3 g cm
-3

, and 3-9 g cm
-3

) a specificity of over 76% was found.  Using neutron 

signatures in the calculation of the figure-of-merit provides better discrimination of targets in the 

density range of 2-3 g cm
-3

. 

In the density groups investigated, different combinations of signatures give different 

results.  By using only gamma-ray signatures in Density Group-1, neutron and gamma-ray 

signatures in Density Group-2, only neutron signatures in Density Group-3 and either neutron or 

neutron and gamma-ray signatures in Density Groups-4 and 5 (Table 4.4) a specificity of 85.7% 

can be achieved while maintaining a sensitivity of 90.5%.  Thus, a SBRS system that has the 

capability of detecting and utilizing both neutron and gamma-ray backscattered radiation has the 

potential for discriminating explosive from inert targets with high levels of sensitivity and 

specificity.          

 5.3 Explosive Density and Clutter Materials 

Targets containing the low density explosive Urea Nitrate (0.69 g cm
-3

) were 

misidentified (false positive result) 11 times more often than were targets containing the higher 

density RDX (1.8 g cm
-3

) in the experiments conducted.  The clutter shielding the samples of 

Urea Nitrate consisted of materials mainly of density between 0 and 2 g cm
-3

.  By adjusting the 

cutoff values in each of the Density Groups the number of false negative responses can be 

lowered or raised.  The fact that targets with samples of Urea Nitrate were more often classified 
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incorrectly suggests that the templates used in this study were not adequate for low density 

explosive discrimination for targets with density between 0 and 2 g cm
-3

.   

The targets identified as explosive when no explosive sample was present, consisted of 

materials one is likely to encounter in common explosive detection scenarios.  Materials such as 

steel, clay, polyester, sand, and bricks are encountered more often in detection scenarios than are 

materials such as copper or gypsum.  Although the artificial templates used in this study were not 

entirely successful in differentiating all explosive from inert targets, good sensitivity and 

specificity were obtained.  Because the materials falsely identified as explosives are encountered 

often the number of false alarms given, using the templates used in this study, limits the 

effectiveness of the system in real-world application.  Thus, research to identify superior 

artificial templates is warranted.        

 5.4 Full-Scale Tests Using Operational D-T Neutron Generator 

A fully operational neutron generator is necessary for verifying the result of this study 

and to simulate actual physical conditions likely to face individuals tasked with identifying 

concealed explosives.  Laboratory designs and shielding have been created for use with a D-T 

neutron generator capable of producing 14.1 MeV neutron at a rate of 10
11

 neutrons per second.  

Full-scale tests should be conducted in preparation for a ―field-use‖ model capable of being 

operated via remote control.   

 5.5 Implementation of a Larger Number of Templates    

As previously mentioned, although the results of this investigation are encouraging more 

tests with a larger number of artificial templates are likely to improve on the results found here.  

As more tests are conducted the number of templates housed in a template library will grow.  

One cannot construct a library of an infinite number of templates, each of which will identify one 

or more IEDs.  Thus, the goal must be to construct a library with a finite number of templates 

that are reasonably effective at differentiating explosives from inters.  In order to limit the 

number of templates in a template library more experiments should be conducted to determine 

which templates perform well in a variety of situations and which most often fail to give valuable 

information. 
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Appendix A - Template Signatures 

Table A.1 Signature designations 

Signature Number Element Energy 

(MeV) 

Type of Reaction or 

Category 

Gamma-ray  Signatures   

1 Hydrogen 2.2232 prompt-capture 

2 Nitrogen 2.3128 Inelastic-scatter 

3 Nitrogen 3.3786 Inelastic-scatter 

4 Carbon 4.439 Inelastic-scatter 

5 Nitrogen 4.9151 Inelastic-scatter 

6 Nitrogen 5.1059 Inelastic-scatter 

7 Oxygen 6.1299 Inelastic-scatter 

8 Nitrogen 6.4462 Inelastic-scatter 

9 Oxygen 6.9171 Inelastic-scatter 

Neutron  Signatures   

10  < 0.4x10
-6

 Below Cd cutoff 

11  > 0.4x10
-6 

Above Cd cutoff 
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Table A.2 Templates with RDX sample.  

Template 

Nomenclature N0O50C0H0Crhd N0O50C0H0Crld N0O50C0H0Crmd N0O50C0H0Crvld 

Signature     

1 2.273250E-10 3.786250E-10 2.519500E-10 4.398000E-10 

σ (±) 8.919970E-11 5.966980E-11 7.273370E-11 4.488140E-11 

2 2.150960E-09 4.701300E-08 2.252060E-08 7.295100E-08 

σ (±) 1.339700E-10 5.418780E-10 1.039250E-10 1.502360E-10 

3 2.822400E-10 9.029730E-09 4.516180E-09 1.344600E-08 

σ (±) 1.315780E-10 7.204560E-11 6.507900E-11 7.826880E-11 

4 5.193420E-08 2.959520E-07 1.721930E-07 4.230130E-07 

σ (±) 1.407140E-10 3.279900E-10 2.283810E-10 4.240670E-10 

5 5.162250E-10 9.485180E-09 4.948540E-09 1.404980E-08 

σ (±) 5.835400E-11 7.147130E-11 5.978080E-11 8.687930E-11 

6 2.042900E-09 3.966370E-08 2.089430E-08 5.828870E-08 

σ (±) 6.074080E-11 1.080240E-10 7.453390E-11 1.365140E-10 

7 4.362920E-07 3.327030E-07 3.718140E-07 3.039770E-07 

σ (±) 4.408110E-10 4.026150E-10 4.128570E-10 3.672630E-10 

8 6.686450E-10 1.127250E-08 6.057880E-09 1.651070E-08 

σ (±) 4.880740E-11 6.143370E-11 4.753080E-11 7.590300E-11 

9 1.000440E-07 7.708080E-08 8.501190E-08 7.214830E-08 

σ (±) 2.050360E-10 1.725210E-10 1.823460E-10 1.680690E-10 

10 3.885230E-10 1.069160E-09 6.941580E-10 1.518100E-09 

σ (±) 7.420790E-12 1.903100E-11 9.787630E-12 2.201240E-11 

11 4.526050E-06 1.906710E-06 2.462360E-06 1.705470E-06 

σ (±) 1.810420E-09 9.533550E-10 1.231180E-09 8.527350E-10 
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Template 

Nomenclature N0O60C20H0Crhd N0O60C20H0Crld N0O60C20H0Crmd N0O60C20H0Crvld 

Signature     

1 0.000000E+00 3.144350E-10 3.182100E-10 4.310300E-10 

σ (±) 0.000000E+00 5.140940E-11 8.031360E-11 4.284240E-11 

2 1.699920E-09 4.394150E-08 2.007260E-08 7.193370E-08 

σ (±) 1.747270E-10 1.101580E-10 9.986070E-11 1.475780E-10 

3 2.738650E-10 8.583990E-09 3.936710E-09 1.331790E-08 

σ (±) 7.760150E-11 1.566550E-10 7.052560E-11 7.205650E-11 

4 4.213750E-07 4.264170E-07 4.082020E-07 4.599810E-07 

σ (±) 4.668650E-10 4.282500E-10 4.515300E-10 4.608870E-10 

5 4.361550E-10 8.987670E-09 4.391660E-09 1.385430E-08 

σ (±) 5.347040E-11 7.048550E-11 5.474710E-11 8.517070E-11 

6 1.453980E-09 3.770850E-08 1.876220E-08 5.760100E-08 

σ (±) 5.472670E-11 1.062200E-10 7.387090E-11 1.405590E-10 

7 7.826070E-07 4.551090E-07 5.948620E-07 3.385270E-07 

σ (±) 6.303710E-10 5.039600E-10 5.391050E-10 4.088140E-10 

8 5.356480E-10 1.081570E-08 5.499140E-09 1.634400E-08 

σ (±) 3.805220E-11 5.933630E-11 4.525830E-11 7.481640E-11 

9 1.837550E-07 1.046770E-07 1.372930E-07 7.974180E-08 

σ (±) 2.795970E-10 2.122110E-10 2.506320E-10 1.855140E-10 

10 1.300200E-09 8.237110E-10 5.747450E-10 1.443070E-09 

σ (±) 1.781270E-11 1.136720E-11 1.034540E-11 2.395500E-11 

11 4.428920E-06 1.804800E-06 2.390880E-06 1.649360E-06 

σ (±) 1.328680E-09 9.024000E-10 9.563520E-10 6.597440E-10 
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Template 

Nomenclature N0O0C50H50hd N0O0C50H50ld N0O0C50H50md N0O0C50H50vld 

 
    1 2.487680E-06 1.750110E-07 1.208540E-06 1.634840E-09 

σ (±) 1.246410E-09 3.174110E-10 8.478390E-10 4.634040E-11 

2 2.441660E-10 3.446160E-08 1.099410E-08 6.793820E-08 

σ (±) 4.449600E-11 9.384860E-11 5.651250E-11 1.454300E-10 

3 0.000000E+00 6.409020E-09 1.935690E-09 1.246990E-08 

σ (±) 0.000000E+00 5.351320E-11 4.579860E-11 6.903950E-11 

4 2.175210E-06 1.297180E-06 1.823750E-06 7.198330E-07 

σ (±) 1.088210E-09 9.084470E-10 1.094750E-09 6.483940E-10 

5 3.621100E-11 6.823110E-09 2.270850E-09 1.299540E-08 

σ (±) 1.147150E-11 5.455340E-11 2.922760E-11 8.136810E-11 

6 0.000000E+00 2.884710E-08 9.731550E-09 5.411470E-08 

σ (±) 0.000000E+00 8.870290E-11 4.826000E-11 1.317140E-10 

7 7.875970E-10 1.326560E-07 4.717180E-08 2.416690E-07 

σ (±) 1.427960E-11 2.136590E-10 1.139630E-10 3.160790E-10 

8 4.794790E-11 8.312420E-09 2.896460E-09 1.544120E-08 

σ (±) 9.401190E-12 4.960940E-11 2.737810E-11 7.346480E-11 

9 2.274950E-10 3.263150E-08 1.184180E-08 5.853190E-08 

σ (±) 9.799650E-12 1.024250E-10 5.397460E-11 1.479350E-10 

10 2.703560E-07 8.830570E-08 2.164820E-07 3.106820E-09 

σ (±) 7.840320E-10 4.238670E-10 4.762600E-10 1.124670E-10 

11 2.368750E-06 1.848140E-06 2.226450E-06 1.494110E-06 

σ (±) 1.421250E-09 1.108880E-09 1.335870E-09 8.964660E-10 
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Template 

Nomenclature N0O10C30H60hd N0O10C30H60ld N0O10C30H60md N0O10C30H60vld 

Signature     

1 2.913520E-06 3.505760E-07 1.729490E-06 3.009750E-09 

σ (±) 1.167720E-09 4.576930E-10 8.664640E-10 5.317200E-11 

2 1.562330E-10 3.261450E-08 9.441440E-09 6.720360E-08 

σ (±) 4.260570E-11 9.268030E-11 5.500220E-11 1.438710E-10 

3 0.000000E+00 5.937770E-09 1.712480E-09 1.226330E-08 

σ (±) 0.000000E+00 5.314390E-11 4.458130E-11 6.832990E-11 

4 1.347640E-06 9.186840E-07 1.185940E-06 6.090340E-07 

σ (±) 8.091460E-10 7.354900E-10 8.307940E-10 5.486760E-10 

5 0.000000E+00 6.426490E-09 1.901030E-09 1.282760E-08 

σ (±) 0.000000E+00 5.403260E-11 2.983740E-11 8.179960E-11 

6 0.000000E+00 2.701440E-08 8.295930E-09 5.334180E-08 

σ (±) 0.000000E+00 8.886350E-11 4.951590E-11 1.352450E-10 

7 3.199570E-07 2.927740E-07 3.035950E-07 2.903750E-07 

σ (±) 4.178980E-10 3.827440E-10 3.966410E-10 3.796960E-10 

8 0.000000E+00 7.757670E-09 2.419630E-09 1.516040E-08 

σ (±) 0.000000E+00 4.789180E-11 2.482830E-11 7.231030E-11 

9 7.326810E-08 6.806330E-08 6.987420E-08 6.893060E-08 

σ (±) 1.848820E-10 1.718610E-10 1.762600E-10 1.672290E-10 

10 2.375470E-07 1.145950E-07 2.097820E-07 4.913380E-09 

σ (±) 5.701130E-10 4.469200E-10 4.824990E-10 8.057940E-11 

11 1.941680E-06 1.658070E-06 1.875270E-06 1.423100E-06 

σ (±) 1.359180E-09 1.160650E-09 1.312690E-09 8.538600E-10 
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Template 

Nomenclature N0O20C30H50hd N0O20C30H50ld N0O20C30H50md N0O20C30H50vld 

Signature     

1 2.177890E-06 1.121120E-07 9.282420E-07 1.244430E-09 

σ (±) 8.737560E-10 2.722200E-10 6.516540E-10 4.449450E-11 

2 2.592530E-10 3.529620E-08 1.162000E-08 6.826640E-08 

σ (±) 4.781710E-11 9.628660E-11 5.847130E-11 1.462120E-10 

3 0.000000E+00 6.586370E-09 2.080900E-09 1.251700E-08 

σ (±) 0.000000E+00 5.580240E-11 4.855080E-11 6.813060E-11 

4 1.226420E-06 8.166360E-07 1.051840E-06 5.754770E-07 

σ (±) 8.592890E-10 6.539060E-10 7.370560E-10 5.760410E-10 

5 0.000000E+00 7.067200E-09 2.477820E-09 1.304920E-08 

σ (±) 0.000000E+00 5.818640E-11 3.855520E-11 8.216680E-11 

6 0.000000E+00 2.960610E-08 1.041590E-08 5.439130E-08 

σ (±) 0.000000E+00 9.149500E-11 5.441010E-11 1.325960E-10 

7 5.761420E-07 4.118220E-07 5.010210E-07 3.261470E-07 

σ (±) 5.787760E-10 4.556260E-10 5.034780E-10 3.936940E-10 

8 0.000000E+00 8.486570E-09 3.043500E-09 1.550610E-08 

σ (±) 0.000000E+00 5.001920E-11 2.995830E-11 7.228070E-11 

9 1.334960E-07 9.487840E-08 1.156190E-07 7.662600E-08 

σ (±) 2.423800E-10 2.111730E-10 2.335450E-10 1.781460E-10 

10 2.678420E-07 6.882020E-08 2.005430E-07 2.241670E-09 

σ (±) 5.624680E-10 3.372190E-10 4.612490E-10 5.066170E-11 

11 2.303830E-06 1.724170E-06 2.120830E-06 1.457370E-06 

σ (±) 1.151910E-09 1.034500E-09 1.272500E-09 8.744220E-10 
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Template 

Nomenclature N10O10C50H30hd N10O10C50H30ld N10O10C50H30md N10O10C50H30vld 

Signature     

1 5.141500E-07 1.083270E-08 1.430230E-07 6.413240E-10 

σ (±) 4.143230E-10 8.004630E-11 2.466050E-10 4.088810E-11 

2 7.663970E-08 7.102020E-08 7.130010E-08 7.883250E-08 

σ (±) 1.736620E-10 1.525460E-10 1.609060E-10 1.602990E-10 

3 1.303250E-08 1.314030E-08 1.269910E-08 1.450090E-08 

σ (±) 8.827020E-11 7.645830E-11 8.176510E-11 7.523180E-11 

4 1.846270E-06 1.037720E-06 1.462760E-06 6.374120E-07 

σ (±) 9.238170E-10 7.269850E-10 8.783650E-10 5.742070E-10 

5 1.355290E-08 1.353130E-08 1.298860E-08 1.509690E-08 

σ (±) 9.015860E-11 8.746550E-11 8.604720E-11 9.126720E-11 

6 5.906010E-08 5.729340E-08 5.598710E-08 6.262160E-08 

σ (±) 1.557080E-10 1.452440E-10 1.474910E-10 1.459420E-10 

7 2.668150E-07 2.598290E-07 2.549130E-07 2.803560E-07 

σ (±) 3.753010E-10 3.398850E-10 3.586670E-10 3.666330E-10 

8 1.643490E-08 1.614480E-08 1.569510E-08 1.779110E-08 

σ (±) 8.340210E-11 7.695710E-11 7.784930E-11 7.911480E-11 

9 6.294010E-08 6.141560E-08 6.013960E-08 6.679830E-08 

σ (±) 1.655530E-10 1.552050E-10 1.578410E-10 1.621200E-10 

10 1.440480E-07 1.496420E-08 8.111680E-08 1.051200E-09 

σ (±) 3.457150E-10 1.256990E-10 3.244670E-10 2.859260E-11 

11 2.858700E-06 1.854720E-06 2.448600E-06 1.537860E-06 

σ (±) 2.001090E-09 9.273600E-10 1.224300E-09 7.689300E-10 
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Template 

Nomenclature N20O0C30H50hd N20O0C30H50ld N20O0C30H50md N20O0C30H50vld 

Signature     

1 7.547050E-07 8.772480E-08 4.234630E-07 1.383900E-09 

σ (±) 2.571650E-09 2.140720E-10 4.257470E-10 4.468550E-11 

2 1.709970E-07 1.205920E-07 1.504620E-07 9.344290E-08 

σ (±) 2.593280E-10 2.194570E-10 2.431620E-10 1.798570E-10 

3 2.953870E-08 2.163670E-08 2.615130E-08 1.714090E-08 

σ (±) 1.172750E-10 9.696860E-11 1.087910E-10 8.425020E-11 

4 1.283810E-06 8.485070E-07 1.102430E-06 5.844000E-07 

σ (±) 7.709120E-10 6.794060E-10 7.723590E-10 5.849270E-10 

5 3.035610E-08 2.230360E-08 2.668180E-08 1.776340E-08 

σ (±) 1.352170E-10 1.176050E-10 1.267020E-10 1.014020E-10 

6 1.306760E-07 9.294480E-08 1.136590E-07 7.321430E-08 

σ (±) 2.362990E-10 1.966000E-10 2.171420E-10 1.626350E-10 

7 8.450010E-10 1.324660E-07 4.734160E-08 2.414670E-07 

σ (±) 2.030050E-11 2.135260E-10 1.148500E-10 3.158620E-10 

8 3.614150E-08 2.590870E-08 3.139230E-08 2.070220E-08 

σ (±) 1.233870E-10 1.044420E-10 1.170090E-10 8.988240E-11 

9 2.324130E-10 3.234970E-08 1.177060E-08 5.833210E-08 

σ (±) 1.551130E-11 1.016440E-10 5.476870E-11 1.474410E-10 

10 9.157240E-08 4.215670E-08 7.846770E-08 2.323250E-09 

σ (±) 3.205030E-10 1.897050E-10 2.667900E-10 4.971750E-11 

11 1.992020E-06 1.672430E-06 1.904010E-06 1.460710E-06 

σ (±) 1.195210E-09 1.003460E-09 1.142410E-09 8.764260E-10 
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Template 

Nomenclature N0O50C0H0Cuhd N0O50C0H0Culd N0O50C0H0Cumd N0O50C0H0Cuvld 

Signature     

1 0.000000E+00 3.256700E-10 4.617050E-10 4.849300E-10 

σ (±) 0.000000E+00 8.086440E-11 1.214950E-10 4.977980E-11 

2 2.276550E-09 4.664390E-08 2.267400E-08 7.293530E-08 

σ (±) 2.123290E-10 1.240610E-10 1.054270E-10 1.505890E-10 

3 6.158000E-10 8.999510E-09 4.446480E-09 1.350820E-08 

σ (±) 9.380940E-11 7.892400E-11 7.568030E-11 7.521260E-11 

4 4.684910E-08 2.934540E-07 1.679970E-07 4.222580E-07 

σ (±) 1.340420E-10 3.250290E-10 2.227290E-10 4.233620E-10 

5 4.679650E-10 9.418040E-09 4.849680E-09 1.405890E-08 

σ (±) 5.715050E-11 6.894740E-11 6.235350E-11 8.676960E-11 

6 2.125800E-09 3.969580E-08 2.086150E-08 5.833150E-08 

σ (±) 5.965620E-11 1.088760E-10 7.803420E-11 1.367020E-10 

7 3.575070E-07 3.070470E-07 3.243410E-07 2.969720E-07 

σ (±) 4.691130E-10 3.713660E-10 3.926160E-10 3.587700E-10 

8 6.495650E-10 1.124670E-08 6.018680E-09 1.650570E-08 

σ (±) 3.590060E-11 6.318860E-11 4.628860E-11 7.725590E-11 

9 8.136330E-08 7.122420E-08 7.395130E-08 7.052790E-08 

σ (±) 1.836340E-10 1.667040E-10 1.737740E-10 1.643850E-10 

10 6.744690E-10 3.135060E-09 1.663570E-09 5.692220E-09 

σ (±) 1.079150E-11 2.414000E-11 1.680210E-11 4.667620E-11 

11 5.174310E-06 2.085590E-06 2.794930E-06 1.753120E-06 

σ (±) 1.552290E-09 1.042800E-09 1.117970E-09 8.765600E-10 
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Template 

Nomenclature N0O60C20H0Cuhd N0O60C20H0Culd N0O60C20H0Cumd N0O60C20H0Cuvld 

Signature     

1 3.211650E-10 4.388850E-10 3.913200E-10 4.287700E-10 

σ (±) 1.167940E-10 6.668030E-11 7.756470E-11 4.602680E-11 

2 1.550190E-09 4.418610E-08 2.099430E-08 7.193590E-08 

σ (±) 1.158780E-10 1.160770E-10 8.243660E-10 1.480790E-10 

3 3.262450E-10 8.483180E-09 4.023290E-09 1.333850E-08 

σ (±) 7.990860E-11 7.226860E-11 7.009020E-11 7.282650E-11 

4 3.762370E-07 4.113690E-07 3.799840E-07 4.559610E-07 

σ (±) 4.179460E-10 4.129930E-10 4.207180E-10 4.569260E-10 

5 4.349650E-10 8.970710E-09 4.382350E-09 1.389700E-08 

σ (±) 5.556160E-11 7.005870E-11 5.586950E-11 8.519160E-11 

6 1.547640E-09 3.790780E-08 1.899990E-08 5.765590E-08 

σ (±) 5.698730E-11 1.074270E-10 7.686800E-11 1.409980E-10 

7 6.928600E-07 4.263960E-07 5.399010E-07 3.306430E-07 

σ (±) 5.580820E-10 4.721530E-10 5.434430E-10 3.993130E-10 

8 4.603940E-10 1.085680E-08 5.493140E-09 1.630980E-08 

σ (±) 3.440980E-11 5.849930E-11 4.325450E-11 7.610900E-11 

9 1.617180E-07 9.787430E-08 1.240120E-07 7.792410E-08 

σ (±) 2.628060E-10 2.084330E-10 2.264700E-10 1.813400E-10 

10 2.540550E-09 2.913830E-09 1.762060E-09 5.449220E-09 

σ (±) 2.362710E-11 2.505890E-11 1.973510E-11 4.413870E-11 

11 4.778960E-06 1.925010E-06 2.596590E-06 1.682790E-06 

σ (±) 1.433690E-09 9.625050E-10 1.038640E-09 8.413950E-10 
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Template 

Nomenclature N0O30C0H70hd N0O30C0H70ld N0O30C0H70md N0O30C0H70vld 

Signature     

1 3.134680E-06 5.151560E-07 2.067030E-06 5.089160E-09 

σ (±) 1.256390E-09 5.684850E-10 1.035380E-09 6.279030E-11 

2 1.636300E-10 3.098510E-08 8.310730E-09 6.650790E-08 

σ (±) 4.404980E-11 9.152640E-11 5.451890E-11 1.424120E-10 

3 0.000000E+00 5.554190E-09 1.515660E-09 1.213850E-08 

σ (±) 0.000000E+00 5.269770E-11 4.443370E-11 6.911450E-11 

4 6.722860E-08 2.266910E-07 1.120420E-07 3.940310E-07 

σ (±) 1.775120E-10 2.959550E-10 2.034390E-10 4.342930E-10 

5 0.000000E+00 5.999990E-09 1.670540E-09 1.269580E-08 

σ (±) 0.000000E+00 5.493340E-11 3.845220E-11 8.166760E-11 

6 0.000000E+00 2.548950E-08 7.250000E-09 5.255200E-08 

σ (±) 0.000000E+00 8.757230E-11 5.093480E-11 1.336320E-10 

7 9.255580E-07 6.314740E-07 8.162040E-07 3.984730E-07 

σ (±) 7.439110E-10 5.713760E-10 6.561540E-10 4.410010E-10 

8 0.000000E+00 7.306690E-09 2.074200E-09 1.496380E-08 

σ (±) 0.000000E+00 4.998440E-11 3.004990E-11 7.155030E-11 

9 2.094970E-07 1.424250E-07 1.845470E-07 9.225870E-08 

σ (±) 3.169920E-10 2.588470E-10 2.980300E-10 2.051550E-10 

10 5.387840E-07 3.212530E-07 4.927630E-07 2.335700E-08 

σ (±) 8.620540E-10 6.425060E-10 7.391440E-10 1.845200E-10 

11 1.199380E-06 1.191660E-06 1.191260E-06 1.307490E-06 

σ (±) 9.595040E-10 9.533280E-10 9.530080E-10 7.844940E-10 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

Table A.3 Templates with Urea Nitrate sample 

Template 

Nomenclature N0O50C0H0Crhd N0O50C0H0Crld N0O50C0H0Crmd N0O50C0H0Crvld 

Signature     

1 0.000000E+00 2.639850E-10 1.160800E-06 2.423650E-10 

σ (±) 0.000000E+00 5.489770E-11 8.140970E-10 7.025970E-11 

2 1.252600E-09 2.338490E-08 5.574680E-09 1.119960E-08 

σ (±) 9.472890E-11 4.303530E-10 5.939250E-11 8.272530E-11 

3 0.000000E+00 4.550490E-09 1.018740E-09 2.292450E-09 

σ (±) 0.000000E+00 5.830890E-11 4.179960E-11 5.953940E-11 

4 4.066190E-08 7.758540E-08 1.759760E-06 5.852250E-08 

σ (±) 1.362890E-10 1.743350E-10 1.056250E-09 1.472540E-10 

5 3.179300E-10 4.794060E-09 1.149600E-09 2.528120E-09 

σ (±) 5.824660E-11 5.671600E-11 2.338080E-11 5.570880E-11 

6 8.789800E-10 1.956300E-08 4.780160E-09 1.021300E-08 

σ (±) 5.591350E-11 8.352090E-11 3.637710E-11 6.494120E-11 

7 4.315780E-07 2.698110E-07 3.129780E-08 3.366260E-07 

σ (±) 4.359940E-10 3.811040E-10 9.764360E-11 4.077500E-10 

8 3.179400E-10 5.467360E-09 1.424480E-09 2.942440E-09 

σ (±) 4.340060E-11 4.680400E-11 2.172760E-11 3.960020E-11 

9 9.914080E-08 6.100380E-08 7.646860E-09 7.590530E-08 

σ (±) 2.029780E-10 1.617420E-10 4.580730E-11 1.786110E-10 

10 1.777420E-09 2.190760E-09 1.905060E-09 2.665230E-09 

σ (±) 2.186230E-11 2.913710E-11 2.286070E-11 4.157760E-11 

11 4.413410E-06 1.299270E-06 2.091480E-06 8.508730E-07 

σ (±) 1.765360E-09 7.795620E-10 1.045740E-09 5.956110E-10 
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Template 

Nomenclature N0O60C20H0Crhd N0O60C20H0Crld N0O60C20H0Crmd N0O60C20H0Crvld 

Signature     

1 3.511950E-10 2.621250E-10 2.712200E-10 2.695690E-10 

σ (±) 9.065410E-11 4.820440E-11 7.639330E-11 3.646650E-11 

2 6.720350E-10 2.171330E-08 9.971890E-09 3.550010E-08 

σ (±) 1.068840E-10 8.894360E-11 7.901730E-11 1.138330E-10 

3 3.660950E-10 4.404720E-09 1.984680E-09 6.763010E-09 

σ (±) 8.094430E-11 1.464750E-10 5.893420E-11 5.296470E-11 

4 4.124890E-07 2.157690E-07 3.031750E-07 1.374360E-07 

σ (±) 4.830840E-10 3.472320E-10 3.966830E-10 2.759400E-10 

5 0.000000E+00 4.561480E-09 2.192380E-09 7.012420E-09 

σ (±) 0.000000E+00 5.744390E-11 5.012250E-11 6.471690E-11 

6 5.545600E-10 1.854170E-08 9.200500E-09 2.849730E-08 

σ (±) 5.377780E-11 8.010160E-11 6.292100E-11 1.023600E-10 

7 7.788530E-07 3.930790E-07 5.608270E-07 2.499760E-07 

σ (±) 6.274330E-10 4.749620E-10 5.646570E-10 3.774190E-10 

8 3.079650E-10 5.263380E-09 2.713200E-09 7.926760E-09 

σ (±) 3.899750E-11 4.642830E-11 4.052850E-11 5.532820E-11 

9 1.829020E-07 8.868120E-08 1.283590E-07 5.723320E-08 

σ (±) 2.783490E-10 2.067460E-10 2.342610E-10 1.622380E-10 

10 5.636400E-09 1.701320E-09 1.461700E-09 2.471750E-09 

σ (±) 4.734580E-11 2.347820E-11 2.192550E-11 4.152540E-11 

11 4.357010E-06 1.284230E-06 2.110270E-06 8.317300E-07 

σ (±) 1.307100E-09 7.705380E-10 1.055130E-09 4.990380E-10 
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Template 

Nomenclature N0O0C50H50hd N0O0C50H50ld N0O0C50H50md N0O0C50H50vld 

Signature     

1 2.487480E-06 1.476060E-07 1.160800E-06 9.713650E-10 

σ (±) 9.972900E-10 2.973240E-10 8.140970E-10 3.746950E-11 

2 0.000000E+00 1.693850E-08 5.574680E-09 3.352870E-08 

σ (±) 0.000000E+00 7.221510E-11 5.939250E-11 1.063770E-10 

3 0.000000E+00 3.198010E-09 1.018740E-09 6.343630E-09 

σ (±) 0.000000E+00 4.044530E-11 4.179960E-11 5.056910E-11 

4 2.173860E-06 1.118970E-06 1.759760E-06 4.072210E-07 

σ (±) 1.087430E-09 8.954740E-10 1.056250E-09 5.297170E-10 

5 0.000000E+00 3.481760E-09 1.149600E-09 6.588130E-09 

σ (±) 0.000000E+00 4.179040E-11 2.338080E-11 6.190970E-11 

6 0.000000E+00 1.412530E-08 4.780160E-09 2.668730E-08 

σ (±) 0.000000E+00 6.758580E-11 3.637710E-11 9.804490E-11 

7 5.582060E-10 8.742680E-08 3.129780E-08 1.595390E-07 

σ (±) 1.336680E-11 1.848460E-10 9.764360E-11 2.728740E-10 

8 0.000000E+00 4.057360E-09 1.424480E-09 7.496880E-09 

σ (±) 0.000000E+00 3.636270E-11 2.172760E-11 5.403740E-11 

9 1.448890E-10 2.091320E-08 7.646860E-09 3.759380E-08 

σ (±) 9.591730E-12 8.462270E-11 4.580730E-11 1.254340E-10 

10 6.841080E-07 2.005740E-07 5.421200E-07 5.138820E-09 

σ (±) 1.094570E-09 6.618940E-10 8.131800E-10 8.376280E-11 

11 1.955030E-06 1.504180E-06 1.862550E-06 8.601760E-07 

σ (±) 1.173020E-09 1.052930E-09 1.117530E-09 6.021230E-10 
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Template 

Nomenclature N0O10C30H60hd N0O10C30H60ld N0O10C30H60md N0O10C30H60vld 

Signature     

1 2.914970E-06 3.045850E-07 1.679420E-06 1.846320E-09 

σ (±) 1.168250E-09 4.279680E-10 1.009420E-09 4.313340E-11 

2 1.399440E-10 1.603820E-08 4.667070E-09 3.321300E-08 

σ (±) 4.373400E-11 9.850600E-11 4.702570E-11 1.087170E-10 

3 0.000000E+00 2.996470E-09 8.526610E-10 6.246590E-09 

σ (±) 0.000000E+00 4.045520E-11 4.251220E-11 4.994480E-11 

4 1.345790E-06 7.565420E-07 1.133680E-06 3.038830E-07 

σ (±) 8.080510E-10 6.813510E-10 7.940160E-10 4.562510E-10 

5 0.000000E+00 3.251160E-09 9.981990E-10 6.475630E-09 

σ (±) 0.000000E+00 4.166730E-11 2.719270E-11 6.136430E-11 

6 0.000000E+00 1.326200E-08 4.037180E-09 2.634020E-08 

σ (±) 0.000000E+00 6.810030E-11 3.667560E-11 9.946360E-11 

7 3.192840E-07 2.490850E-07 2.895860E-07 2.083630E-07 

σ (±) 4.170870E-10 3.756640E-10 4.073190E-10 3.353600E-10 

8 0.000000E+00 3.813940E-09 1.220750E-09 7.356250E-09 

σ (±) 0.000000E+00 3.781360E-11 2.315400E-11 5.310610E-11 

9 7.316980E-08 5.687720E-08 6.610640E-08 4.809880E-08 

σ (±) 1.846210E-10 1.608540E-10 1.735590E-10 1.459190E-10 

10 6.054800E-07 2.648210E-07 5.304310E-07 9.047350E-09 

σ (±) 9.687680E-10 5.826060E-10 9.017330E-10 1.176160E-10 

11 1.573810E-06 1.316050E-06 1.532580E-06 8.154390E-07 

σ (±) 1.101670E-09 9.212350E-10 1.072810E-09 6.523510E-10 
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Template 

Nomenclature N0O20C30H50hd N0O20C30H50ld N0O20C30H50md N0O20C30H50vld 

Signature     

1 2.179640E-06 1.872200E-09 8.848280E-07 7.533760E-10 

σ (±) 8.743210E-10 2.324580E-10 1.595130E-09 3.594930E-11 

2 0.000000E+00 1.740770E-08 5.837750E-09 3.367500E-08 

σ (±) 0.000000E+00 7.492320E-11 5.188180E-11 1.078270E-10 

3 0.000000E+00 3.329190E-09 1.132760E-09 6.369040E-09 

σ (±) 0.000000E+00 4.539340E-11 4.553710E-11 5.024570E-11 

4 1.224980E-06 6.422840E-07 9.883690E-07 2.659340E-07 

σ (±) 8.582480E-10 6.427820E-10 7.913070E-10 4.259770E-10 

5 0.000000E+00 3.593690E-09 1.221050E-09 6.598050E-09 

σ (±) 0.000000E+00 4.487090E-11 3.327970E-11 6.214880E-11 

6 0.000000E+00 1.451110E-08 5.052830E-09 2.683960E-08 

σ (±) 0.000000E+00 7.056250E-11 4.225730E-11 9.891840E-11 

7 5.751430E-07 3.631880E-07 4.826110E-07 2.420770E-07 

σ (±) 5.778210E-10 4.382890E-10 5.334570E-10 3.653150E-10 

8 0.000000E+00 4.157660E-09 1.504070E-09 7.526270E-09 

σ (±) 0.000000E+00 3.776780E-11 2.405160E-11 5.346780E-11 

9 1.331690E-07 8.251050E-08 1.108640E-07 5.537060E-08 

σ (±) 2.419690E-10 1.999860E-10 2.238660E-10 1.623270E-10 

10 6.787960E-07 1.532790E-07 5.001870E-07 3.910010E-09 

σ (±) 8.824350E-10 5.058210E-10 7.502800E-10 6.568820E-11 

11 1.892830E-06 1.383500E-06 1.770620E-06 8.067880E-07 

σ (±) 1.135700E-09 9.684500E-10 1.062370E-09 6.454300E-10 
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Template 

Nomenclature N10O10C50H30hd N10O10C50H30ld N10O10C50H30md N10O10C50H30vld 

Signature     

1 5.146440E-07 8.099150E-09 1.318360E-07 3.799100E-10 

σ (±) 6.207550E-10 7.354090E-11 2.403410E-10 3.312970E-11 

2 7.653450E-08 5.101190E-08 6.380280E-08 4.325890E-08 

σ (±) 1.740730E-10 1.408390E-10 1.566460E-10 1.284870E-10 

3 1.317350E-08 9.504020E-09 1.124680E-08 8.191600E-09 

σ (±) 8.798250E-11 6.797370E-11 7.783600E-11 5.834180E-11 

4 1.843960E-06 8.453250E-07 1.380710E-06 3.209800E-07 

σ (±) 9.227070E-10 7.612210E-10 8.290420E-10 4.497690E-10 

5 1.355340E-08 9.671290E-09 1.148490E-08 8.476210E-09 

σ (±) 9.274120E-11 7.769450E-11 8.482810E-11 7.238610E-11 

6 5.867170E-08 4.048740E-08 4.915380E-08 3.435210E-08 

σ (±) 1.551160E-10 1.277540E-10 1.397620E-10 1.152780E-10 

7 2.656950E-07 2.084960E-07 2.329120E-07 1.956650E-07 

σ (±) 3.738540E-10 3.356180E-10 3.511280E-10 3.149930E-10 

8 1.629540E-08 1.132760E-08 1.368720E-08 9.612240E-09 

σ (±) 8.244520E-11 6.865470E-11 7.607930E-11 6.211290E-11 

9 6.251600E-08 4.816930E-08 5.438500E-08 4.531700E-08 

σ (±) 1.643430E-10 1.461200E-10 1.537040E-10 1.420480E-10 

10 3.885130E-07 3.397660E-08 2.092260E-07 1.975340E-09 

σ (±) 1.592900E-09 2.140530E-10 5.230650E-10 4.009940E-11 

11 2.613760E-06 1.517550E-06 2.228840E-06 8.428690E-07 

σ (±) 1.306880E-09 9.105300E-10 1.114420E-09 5.900080E-10 
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Template 

Nomenclature N20O0C30H50hd N20O0C30H50ld N20O0C30H50md N20O0C30H50vld 

Signature     

1 7.505730E-07 7.335910E-08 4.064180E-07 7.989150E-10 

σ (±) 5.278610E-10 1.938100E-10 4.086820E-10 3.621790E-11 

2 1.711610E-07 1.010610E-07 1.440180E-07 5.790490E-08 

σ (±) 2.594700E-10 2.041570E-10 2.328070E-10 1.524980E-10 

3 2.955770E-08 1.823870E-08 2.503650E-08 1.091480E-08 

σ (±) 1.170760E-10 9.050800E-11 1.062270E-10 6.899470E-11 

4 1.282510E-06 6.774660E-07 1.042380E-06 2.761980E-07 

σ (±) 7.701470E-10 6.778440E-10 7.301910E-10 4.147110E-10 

5 3.026890E-08 1.879880E-08 2.549980E-08 1.126720E-08 

σ (±) 1.345620E-10 1.122740E-10 1.263760E-10 8.612950E-11 

6 1.304430E-07 7.738680E-08 1.083670E-07 4.527140E-08 

σ (±) 2.360900E-10 1.869560E-10 2.178630E-10 1.373360E-10 

7 5.791490E-10 8.735680E-08 3.137270E-08 1.594500E-07 

σ (±) 1.883790E-11 1.848350E-10 9.822140E-11 2.727470E-10 

8 3.605610E-08 2.150390E-08 2.974280E-08 1.265870E-08 

σ (±) 1.231190E-10 9.748850E-11 1.138330E-10 7.401590E-11 

9 1.782910E-10 2.080180E-08 7.592930E-09 3.749720E-08 

σ (±) 1.763370E-11 8.422520E-11 4.752850E-11 1.251160E-10 

10 2.531840E-07 1.038810E-07 2.146870E-07 4.154380E-09 

σ (±) 5.316860E-10 3.531950E-10 4.508430E-10 8.225670E-11 

11 1.830350E-06 1.391050E-06 1.735060E-06 8.243250E-07 

σ (±) 1.098210E-09 9.737350E-10 1.041040E-09 5.770280E-10 
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Template 

Nomenclature N0O50C0H0Cuhd N0O50C0H0Culd N0O50C0H0Cumd N0O50C0H0Cuvld 

Signature     

1 0.000000E+00 1.750550E-10 4.450650E-10 0.000000E+00 

σ (±) 0.000000E+00 7.161990E-11 8.613820E-11 0.000000E+00 

2 1.080030E-09 2.308420E-08 1.121920E-08 3.597580E-08 

σ (±) 1.022200E-10 9.988650E-11 1.215660E-10 1.172740E-10 

3 4.205850E-10 4.592640E-09 2.301520E-09 6.878730E-09 

σ (±) 8.508380E-11 6.843080E-11 6.941080E-11 5.715430E-11 

4 3.545290E-08 7.541840E-08 5.489340E-08 9.677840E-08 

σ (±) 1.281740E-10 1.772030E-10 1.387950E-10 2.143940E-10 

5 1.842250E-10 4.773630E-09 2.442650E-09 7.141440E-09 

σ (±) 5.535980E-11 5.559330E-11 5.053400E-11 6.617210E-11 

6 1.119380E-09 1.954720E-08 1.017580E-08 2.886650E-08 

σ (±) 6.771280E-11 8.293190E-11 6.718670E-11 1.036830E-10 

7 3.532530E-07 2.446890E-07 2.896820E-07 2.083730E-07 

σ (±) 3.925640E-10 3.453640E-10 3.799390E-10 3.147690E-10 

8 3.466970E-10 5.481290E-09 2.989570E-09 8.005150E-09 

σ (±) 4.231540E-11 4.673910E-11 4.208280E-11 5.599500E-11 

9 8.032280E-08 5.558610E-08 6.514190E-08 4.814070E-08 

σ (±) 1.811410E-10 1.529670E-10 1.667160E-10 1.464200E-10 

10 5.319840E-10 1.672220E-09 1.054950E-09 2.568470E-09 

σ (±) 9.575710E-12 2.157160E-11 1.371430E-11 4.058180E-11 

11 5.055510E-06 1.457680E-06 2.397570E-06 8.945840E-07 

σ (±) 1.516650E-09 8.746080E-10 1.198790E-09 6.262090E-10 
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Template 

Nomenclature N0O60C20H0Cuhd N0O60C20H0Culd N0O60C20H0Cumd N0O60C20H0Cuvld 

Signature     

1 5.580400E-10 0.000000E+00 0.000000E+00 2.608560E-10 

σ (±) 1.212080E-10 0.000000E+00 0.000000E+00 4.020170E-11 

2 8.441050E-10 2.177840E-08 1.008460E-08 3.547690E-08 

σ (±) 1.079350E-10 9.342460E-11 8.765000E-11 1.144180E-10 

3 0.000000E+00 4.311190E-09 1.958670E-09 6.826290E-09 

σ (±) 0.000000E+00 6.045840E-11 6.356950E-11 5.469920E-11 

4 3.671790E-07 2.004190E-07 2.748420E-07 1.332600E-07 

σ (±) 4.079770E-10 3.427350E-10 3.876650E-10 2.677450E-10 

5 1.892950E-10 4.579460E-09 2.186190E-09 7.050440E-09 

σ (±) 5.426680E-11 5.579850E-11 4.808990E-11 6.550020E-11 

6 7.328500E-10 1.868570E-08 9.249270E-09 2.852390E-08 

σ (±) 5.488270E-11 8.052590E-11 6.530270E-11 1.023890E-10 

7 6.895030E-07 3.644010E-07 5.060320E-07 2.420500E-07 

σ (±) 5.553790E-10 4.402980E-10 5.095430E-10 3.654540E-10 

8 2.395970E-10 5.277750E-09 2.642710E-09 7.906690E-09 

σ (±) 3.671950E-11 4.733040E-11 3.827890E-11 5.874810E-11 

9 1.608520E-07 8.226260E-08 1.154030E-07 5.553660E-08 

σ (±) 2.614540E-10 1.919370E-10 2.227850E-10 1.575490E-10 

10 1.988420E-09 1.493190E-09 1.120350E-09 1.120350E-09 

σ (±) 2.087840E-11 1.941150E-11 1.680520E-11 1.680520E-11 

11 4.711610E-06 1.385650E-06 2.297680E-06 2.297680E-06 

σ (±) 1.413480E-09 8.313900E-10 1.148840E-09 1.148840E-09 
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Template 

Nomenclature N0O30C0H70hd N0O30C0H70ld N0O30C0H70md N0O30C0H70vld 

Signature     

1 3.134420E-06 4.528230E-07 2.014750E-06 2.914040E-09 

σ (±) 1.256280E-09 5.449960E-10 1.009130E-09 4.920150E-11 

2 1.218930E-10 1.534910E-08 4.225680E-09 3.286080E-08 

σ (±) 4.416330E-11 6.978370E-11 5.346160E-11 1.085230E-10 

3 0.000000E+00 2.899240E-09 7.846570E-10 6.179210E-09 

σ (±) 0.000000E+00 4.261820E-11 4.335230E-11 5.064980E-11 

4 6.694520E-08 8.299330E-08 7.113190E-08 9.907480E-08 

σ (±) 1.766860E-10 1.841300E-10 1.727050E-10 2.187900E-10 

5 0.000000E+00 3.078120E-09 8.411510E-10 6.408330E-09 

σ (±) 0.000000E+00 4.480360E-11 3.463490E-11 6.184340E-11 

6 0.000000E+00 1.249190E-08 3.481280E-09 2.599890E-08 

σ (±) 0.000000E+00 6.641250E-11 4.189080E-11 9.845530E-11 

7 9.254420E-07 5.873860E-07 8.025540E-07 3.155940E-07 

σ (±) 7.438230E-10 5.905450E-10 6.452060E-10 4.127780E-10 

8 0.000000E+00 3.530690E-09 1.027590E-09 7.247430E-09 

σ (±) 0.000000E+00 3.414740E-11 2.483920E-11 5.225960E-11 

9 2.094600E-07 1.314230E-07 1.811180E-07 7.142840E-08 

σ (±) 3.169530E-10 2.521820E-10 2.925450E-10 1.877190E-10 

10 5.387970E-07 2.919700E-07 4.893500E-07 1.315590E-08 

σ (±) 8.620750E-10 6.715310E-10 7.340250E-10 1.578710E-10 

11 1.199360E-06 1.057830E-06 1.179580E-06 7.326120E-07 

σ (±) 9.594880E-10 8.462640E-10 9.436640E-10 6.593510E-10 
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Appendix B - Example MCNP Code 

Mockup of Car Bomb experiment 

c THIS HAS A GAMMA PNT DETECTOR MOVED ALONG THE POSITIVE Z-AXIS 

c AND TWO NEUTRON PNT DETECTORS MOVED ALONG THE POSITIVE X-AXIS 

c 

C ************ BLOCK 1 -- CELLS  ******************************** 

1   0        -20 (-200:-100:103:-110:111:245) imp:n,p=1 imp:n,p=1  $between Al box & clutter 

7   3  -2.7    20 -21               imp:n,p=1  $aluminum box 

8   0          21 -999              imp:n,p=1  $inside void 

13  0         999                   imp:n,p=0  $outer void/killzone 

c 

c -------------------clutter boxes----------------------------------- 

c -THE FIRST BOX of each set IS NEAREST TO THE SOURCE-  

c  the boxes to the left of the source are the 400s 

c  the middle boxes are the 200s 

c  the boxes to the right of the source are the 300s 

c =================================================================== 

c ---------------------------------------------------------------------- 

401  0           102 -103 110 -111 200 -201 imp:n,p=1  $Right Clutter Box 1 

402  0           102 -103 110 -111 201 -202 imp:n,p=1  $Right Clutter Box 2 

403  0           102 -103 110 -111 202 -203 imp:n,p=1  $Right Clutter Box 3 

404  0           102 -103 110 -111 203 -204 imp:n,p=1  $Right Clutter Box 4 

405  0           102 -103 110 -111 204 -205 imp:n,p=1  $Right Clutter Box 5 

406  0           102 -103 110 -111 205 -206 imp:n,p=1  $Right Clutter Box 6 

407  0           102 -103 110 -111 206 -207 imp:n,p=1  $Right Clutter Box 7 

408  0           102 -103 110 -111 207 -208 imp:n,p=1  $Right Clutter Box 8 

409  0           102 -103 110 -111 208 -209 imp:n,p=1  $Right Clutter Box 9 

410  0           102 -103 110 -111 209 -210 imp:n,p=1  $Right Clutter Box 10 

411  0           102 -103 110 -111 210 -211 imp:n,p=1  $Right Clutter Box 11 

412  0           102 -103 110 -111 211 -212 imp:n,p=1  $Right Clutter Box 12 

413  0           102 -103 110 -111 212 -213 imp:n,p=1  $Right Clutter Box 13 

414  0           102 -103 110 -111 213 -214 imp:n,p=1  $Right Clutter Box 14 

415  0           102 -103 110 -111 214 -215 imp:n,p=1  $Right Clutter Box 15 

416  0           102 -103 110 -111 215 -216 imp:n,p=1  $Right Clutter Box 16 

417  0           102 -103 110 -111 216 -217 imp:n,p=1  $Right Clutter Box 17 

418  0           102 -103 110 -111 217 -218 imp:n,p=1  $Right Clutter Box 18 

419  0           102 -103 110 -111 218 -219 imp:n,p=1  $Right Clutter Box 19 

420  0           102 -103 110 -111 219 -220 imp:n,p=1  $Right Clutter Box 20 

421  0           102 -103 110 -111 220 -221 imp:n,p=1  $Right Clutter Box 21 

422  0           102 -103 110 -111 221 -222 imp:n,p=1  $Right Clutter Box 22 

423  0           102 -103 110 -111 222 -223 imp:n,p=1  $Right Clutter Box 23 

424  4  -1.8500  102 -103 110 -111 223 -224 imp:n,p=1  $Right Clutter Box 24 

425  4  -1.8500  102 -103 110 -111 224 -225 imp:n,p=1  $Right Clutter Box 25 

426  4  -1.8500  102 -103 110 -111 225 -226 imp:n,p=1  $Right Clutter Box 26 
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427  4  -1.8500  102 -103 110 -111 226 -227 imp:n,p=1  $Right Clutter Box 27 

428  4  -1.8500  102 -103 110 -111 227 -228 imp:n,p=1  $Right Clutter Box 28 

429  4  -1.8500  102 -103 110 -111 228 -229 imp:n,p=1  $Right Clutter Box 29 

430  4  -1.8500  102 -103 110 -111 229 -230 imp:n,p=1  $Right Clutter Box 30 

431  4  -1.8500  102 -103 110 -111 230 -231 imp:n,p=1  $Right Clutter Box 31 

432  4  -1.8500  102 -103 110 -111 231 -232 imp:n,p=1  $Right Clutter Box 32 

433  4  -1.8500  102 -103 110 -111 232 -233 imp:n,p=1  $Right Clutter Box 33 

434  0           102 -103 110 -111 233 -234 imp:n,p=1  $Right Clutter Box 34 

435  0           102 -103 110 -111 234 -235 imp:n,p=1  $Right Clutter Box 35 

436  0           102 -103 110 -111 235 -236 imp:n,p=1  $Right Clutter Box 36 

437  0           102 -103 110 -111 236 -237 imp:n,p=1  $Right Clutter Box 37 

438  0           102 -103 110 -111 237 -238 imp:n,p=1  $Right Clutter Box 38 

439  0           102 -103 110 -111 238 -239 imp:n,p=1  $Right Clutter Box 39 

440  0           102 -103 110 -111 239 -240 imp:n,p=1  $Right Clutter Box 40 

441  0           102 -103 110 -111 240 -241 imp:n,p=1  $Right Clutter Box 41 

442  0           102 -103 110 -111 241 -242 imp:n,p=1  $Right Clutter Box 42 

443  0           102 -103 110 -111 242 -243 imp:n,p=1  $Right Clutter Box 43 

444  0           102 -103 110 -111 243 -244 imp:n,p=1  $Right Clutter Box 44 

445  0           102 -103 110 -111 244 -245 imp:n,p=1  $Right Clutter Box 45 

c ---------------------------------------------------------------------- 

201  0           101 -102 110 -111 200 -201 imp:n,p=1  $Middle Clutter Box 1 

202  0           101 -102 110 -111 201 -202 imp:n,p=1  $Middle Clutter Box 2 

203  0           101 -102 110 -111 202 -203 imp:n,p=1  $Middle Clutter Box 3 

204  0           101 -102 110 -111 203 -204 imp:n,p=1  $Middle Clutter Box 4 

205  0           101 -102 110 -111 204 -205 imp:n,p=1  $Middle Clutter Box 5 

206  0           101 -102 110 -111 205 -206 imp:n,p=1  $Middle Clutter Box 6 

207  0           101 -102 110 -111 206 -207 imp:n,p=1  $Middle Clutter Box 7 

208  0           101 -102 110 -111 207 -208 imp:n,p=1  $Middle Clutter Box 8 

209  0           101 -102 110 -111 208 -209 imp:n,p=1  $Middle Clutter Box 9 

210  0           101 -102 110 -111 209 -210 imp:n,p=1  $Middle Clutter Box 10 

211  0           101 -102 110 -111 210 -211 imp:n,p=1  $Middle Clutter Box 11 

212  0           101 -102 110 -111 211 -212 imp:n,p=1  $Middle Clutter Box 12 

213  0           101 -102 110 -111 212 -213 imp:n,p=1  $Middle Clutter Box 13 

214  0           101 -102 110 -111 213 -214 imp:n,p=1  $Middle Clutter Box 14 

215  0           101 -102 110 -111 214 -215 imp:n,p=1  $Middle Clutter Box 15 

216  0           101 -102 110 -111 215 -216 imp:n,p=1  $Middle Clutter Box 16 

217  0           101 -102 110 -111 216 -217 imp:n,p=1  $Middle Clutter Box 17 

218  0           101 -102 110 -111 217 -218 imp:n,p=1  $Middle Clutter Box 18 

219  0           101 -102 110 -111 218 -219 imp:n,p=1  $Middle Clutter Box 19 

220  0           101 -102 110 -111 219 -220 imp:n,p=1  $Middle Clutter Box 20 

221  0           101 -102 110 -111 220 -221 imp:n,p=1  $Middle Clutter Box 21 

222  0           101 -102 110 -111 221 -222 imp:n,p=1  $Middle Clutter Box 22 

223  0           101 -102 110 -111 222 -223 imp:n,p=1  $Middle Clutter Box 23 

224  4  -1.8500  101 -102 110 -111 223 -224 imp:n,p=1  $Middle Clutter Box 24 

225  4  -1.8500  101 -102 110 -111 224 -225 imp:n,p=1  $Middle Clutter Box 25 

226  4  -1.8500  101 -102 110 -111 225 -226 imp:n,p=1  $Middle Clutter Box 26 
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227  4  -1.8500  101 -102 110 -111 226 -227 imp:n,p=1  $Middle Clutter Box 27 

228  4  -1.8500  101 -102 110 -111 227 -228 imp:n,p=1  $Middle Clutter Box 28 

229  4  -1.8500  101 -102 110 -111 228 -229 imp:n,p=1  $Middle Clutter Box 29 

230  4  -1.8500  101 -102 110 -111 229 -230 imp:n,p=1  $Middle Clutter Box 30 

231  4  -1.8500  101 -102 110 -111 230 -231 imp:n,p=1  $Middle Clutter Box 31 

232  4  -1.8500  101 -102 110 -111 231 -232 imp:n,p=1  $Middle Clutter Box 32 

233  4  -1.8500  101 -102 110 -111 232 -233 imp:n,p=1  $Middle Clutter Box 33 

234  0           101 -102 110 -111 233 -234 imp:n,p=1  $Middle Clutter Box 34 

235  12  -1.8000  101 -102 110 -111 234 -235 imp:n,p=1  $Sample Box 35 

236  12  -1.8000  101 -102 110 -111 235 -236 imp:n,p=1  $Sample Box 36 

237  12  -1.8000  101 -102 110 -111 236 -237 imp:n,p=1  $Sample Box 37 

238  12  -1.8000  101 -102 110 -111 237 -238 imp:n,p=1  $Sample Box 38 

239  12  -1.8000  101 -102 110 -111 238 -239 imp:n,p=1  $Sample Box 39 

240  12  -1.8000  101 -102 110 -111 239 -240 imp:n,p=1  $Sample Box 40 

241  12  -1.8000  101 -102 110 -111 240 -241 imp:n,p=1  $Sample Box 41 

242  12  -1.8000  101 -102 110 -111 241 -242 imp:n,p=1  $Sample Box 42 

243  12  -1.8000  101 -102 110 -111 242 -243 imp:n,p=1  $Sample Box 43 

244  12  -1.8000  101 -102 110 -111 243 -244 imp:n,p=1  $Sample Box 44 

245  12  -1.8000  101 -102 110 -111 244 -245 imp:n,p=1  $Sample Box 45 

c ---------------------------------------------------------------------- 

101  0           100 -101 110 -111 200 -201 imp:n,p=1  $Left Clutter Box 1 

102  0           100 -101 110 -111 201 -202 imp:n,p=1  $Left Clutter Box 2 

103  0           100 -101 110 -111 202 -203 imp:n,p=1  $Left Clutter Box 3 

104  0           100 -101 110 -111 203 -204 imp:n,p=1  $Left Clutter Box 4 

105  0           100 -101 110 -111 204 -205 imp:n,p=1  $Left Clutter Box 5 

106  0           100 -101 110 -111 205 -206 imp:n,p=1  $Left Clutter Box 6 

107  0           100 -101 110 -111 206 -207 imp:n,p=1  $Left Clutter Box 7 

108  0           100 -101 110 -111 207 -208 imp:n,p=1  $Left Clutter Box 8 

109  0           100 -101 110 -111 208 -209 imp:n,p=1  $Left Clutter Box 9 

110  0           100 -101 110 -111 209 -210 imp:n,p=1  $Left Clutter Box 10 

111  0           100 -101 110 -111 210 -211 imp:n,p=1  $Left Clutter Box 11 

112  0           100 -101 110 -111 211 -212 imp:n,p=1  $Left Clutter Box 12 

113  0           100 -101 110 -111 212 -213 imp:n,p=1  $Left Clutter Box 13 

114  0           100 -101 110 -111 213 -214 imp:n,p=1  $Left Clutter Box 14 

115  0           100 -101 110 -111 214 -215 imp:n,p=1  $Left Clutter Box 15 

116  0           100 -101 110 -111 215 -216 imp:n,p=1  $Left Clutter Box 16 

117  0           100 -101 110 -111 216 -217 imp:n,p=1  $Left Clutter Box 17 

118  0           100 -101 110 -111 217 -218 imp:n,p=1  $Left Clutter Box 18 

119  0           100 -101 110 -111 218 -219 imp:n,p=1  $Left Clutter Box 19 

120  0           100 -101 110 -111 219 -220 imp:n,p=1  $Left Clutter Box 20 

121  0           100 -101 110 -111 220 -221 imp:n,p=1  $Left Clutter Box 21 

122  0           100 -101 110 -111 221 -222 imp:n,p=1  $Left Clutter Box 22 

123  0           100 -101 110 -111 222 -223 imp:n,p=1  $Left Clutter Box 23 

124  4  -1.8500  100 -101 110 -111 223 -224 imp:n,p=1  $Left Clutter Box 24 

125  4  -1.8500  100 -101 110 -111 224 -225 imp:n,p=1  $Left Clutter Box 25 

126  4  -1.8500  100 -101 110 -111 225 -226 imp:n,p=1  $Left Clutter Box 26 
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127  4  -1.8500  100 -101 110 -111 226 -227 imp:n,p=1  $Left Clutter Box 27 

128  4  -1.8500  100 -101 110 -111 227 -228 imp:n,p=1  $Left Clutter Box 28 

129  4  -1.8500  100 -101 110 -111 228 -229 imp:n,p=1  $Left Clutter Box 29 

130  4  -1.8500  100 -101 110 -111 229 -230 imp:n,p=1  $Left Clutter Box 30 

131  4  -1.8500  100 -101 110 -111 230 -231 imp:n,p=1  $Left Clutter Box 31 

132  4  -1.8500  100 -101 110 -111 231 -232 imp:n,p=1  $Left Clutter Box 32 

133  4  -1.8500  100 -101 110 -111 232 -233 imp:n,p=1  $Left Clutter Box 33 

134  0           100 -101 110 -111 233 -234 imp:n,p=1  $Left Clutter Box 34 

135  0           100 -101 110 -111 234 -235 imp:n,p=1  $Left Clutter Box 35 

136  0           100 -101 110 -111 235 -236 imp:n,p=1  $Left Clutter Box 36 

137  0           100 -101 110 -111 236 -237 imp:n,p=1  $Left Clutter Box 37 

138  0           100 -101 110 -111 237 -238 imp:n,p=1  $Left Clutter Box 38 

139  0           100 -101 110 -111 238 -239 imp:n,p=1  $Left Clutter Box 39 

140  0           100 -101 110 -111 239 -240 imp:n,p=1  $Left Clutter Box 40 

141  0           100 -101 110 -111 240 -241 imp:n,p=1  $Left Clutter Box 41 

142  0           100 -101 110 -111 241 -242 imp:n,p=1  $Left Clutter Box 42 

143  0           100 -101 110 -111 242 -243 imp:n,p=1  $Left Clutter Box 43 

144  0           100 -101 110 -111 243 -244 imp:n,p=1  $Left Clutter Box 44 

145  0           100 -101 110 -111 244 -245 imp:n,p=1  $Left Clutter Box 45 

 

C ************ BLOCK 2 -- SURFACES *****************************  

20  RPP  -50   50    -100   0   0   100     $aluminum box outer    

21  RPP  -50.2 50.2  -100.2 0.2 -0.2 100.2  $aluminum box inner     

999 SO   500.0 

c 

c ====================== surfaces for clutter boxes============= 

c 

c -----------------Planes parrallel to the beam----------------- 

100 px -48   $left side of clutter 

101 px -7.62 $left side of middle clutter/sample box 

102 px 7.62  $right side of middle clutter/sample box 

103 px 48    $right side of clutter 

110 pz 40.0  $bottom plane 

111 pz 60.0  $top plane 

c 

c ---------------- Planes perpendicular to the beam ------------ 

c THE FIRST PLANE IS NEAREST TO THE SOURCE 

c ==============================================================  

200 py  -98.0 $Plane 1 

201 py  -97.0 $Plane 2 

202 py  -96.0 $Plane 3 

203 py  -95.0 $Plane 4 

204 py  -94.0 $Plane 5 

205 py  -93.0 $Plane 6 

206 py  -92.0 $Plane 7 

207 py  -91.0 $Plane 8 
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208 py  -90.0 $Plane 9 

209 py  -89.0 $Plane 10 

210 py  -88.0 $Plane 11 

211 py  -87.0 $Plane 12 

212 py  -86.0 $Plane 13 

213 py  -85.0 $Plane 14 

214 py  -84.0 $Plane 15 

215 py  -83.0 $Plane 16 

216 py  -82.0 $Plane 17 

217 py  -81.0 $Plane 18 

218 py  -80.0 $Plane 19 

219 py  -79.0 $Plane 20 

220 py  -78.0 $Plane 21 

221 py  -77.0 $Plane 22 

222 py  -76.0 $Plane 23 

223 py  -75.0 $Plane 24 

224 py  -74.0 $Plane 25 

225 py  -73.0 $Plane 26 

226 py  -72.0 $Plane 27 

227 py  -71.0 $Plane 28 

228 py  -70.0 $Plane 29 

229 py  -69.0 $Plane 30 

230 py  -68.0 $Plane 31 

231 py  -67.0 $Plane 32 

232 py  -66.0 $Plane 33 

233 py  -65.0 $Plane 34 

234 py  -64.0 $Plane 35 

235 py  -63.0 $Plane 36 

236 py  -62.0 $Plane 37 

237 py  -61.0 $Plane 38 

238 py  -60.0 $Plane 39 

239 py  -59.0 $Plane 40 

240 py  -58.0 $Plane 41 

241 py  -57.0 $Plane 42 

242 py  -56.0 $Plane 43 

243 py  -55.0 $Plane 44 

244 py  -54.0 $Plane 45 

245 py  -53.0 $Plane 46 

 

C ************ BLOCK 3 -- COMMANDS *****************************  

mode n p  

PHYS:n 20.0 0.0000000001 0 0   

NPS 20000000  

c  

c ------ SOURCE: plane parallel cylindrical beam  

SDEF  POS= 0 -150 50  
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      AXS= 0 1 0  

      EXT= 0  

      RAD= d1   

      PAR= 1  

      VEC= 0 1 0  

      DIR= 1  

      ERG= 14.1 

      ARA= 182.4      

SI1  0  7.62         

SP1  -21  1          

c  

F15:n         100 -150 50 0  ND  

c  

c  Note: ND implies do not include uncollided flux component  

c  Energy Bins:  

E15 0.0000004 20  

c       

F25:n         200 -150 50 0  ND  

c  

c  Note: ND implies do not include uncollided flux component   

c  Energy Bins:  

E25 0.0000004 20 

c   

c 

F35:p         0 -150 85 0  ND  

c  

c  Note: ND implies do not include uncollided flux component  

c  Energy Bins:  

E35  0. 0.865 .869 .873  0.877 1.256 

     1.260 1.264  1.268    

     1.629 1.633  1.637 1.641 

     2.217 2.221  2.225 2.229   

     2.307 2.311  2.315 2.319 

     3.372 3.376  3.380 3.384  

     3.888 3.892 3.896 4.432 4.436 

     4.440 4.444  4.908 4.912 

     4.916 4.920  4.939 4.943 

     4.947 4.951  5.099 5.103 

     5.107 5.111  6.123 6.127 

     6.131 6.135  6.439 6.443 

     6.447 6.451  6.910 6.914 

     6.918 6.922  7.009 7.113 7.117 

     7.121 10.823 10.827 10.831 10.835 

c    

c   

c ------- MATERIALS: 
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c 

c   **************************************************************  

c   Aluminum   density 2.70 g/cm^3  

c   **************************************************************  

m3   13027.74c   1.00000  

c ---------------------------------------------------------------------------------------------- 

C  RDX    (C3H6N6O6)  (WITH CHN0 STOICHIOMETRY)  

C  composition by weight  

C  density of 1.8 g/cm^3  

C                       

C ----------------------------------------------------------------------------  

m12         

        1001.74c .142857   

        6012.50c 0.28571   

        7014.70c 0.28571   

        8016.70c 0.28571 

c ------------------------------------------------- 

c Adobe Brick, rho = 1.8500 

c  

m4  

        1001.74c -0.005962 

        8016.66c -0.539829 

        14000.60c -0.407098 

        13027.70c -0.020181 

        12000.50c -0.003876 

        11023.70c -0.005034 

        19000.50c -0.004160 

        20000.50c -0.005830 

        26000.50c -0.008030 
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Appendix C - Sample Compositions and Density  

  Table C.1 Inert Compositions (Williams III, 2006). 

Material Density Element ZAID Atomic 

fraction 

(or mass 

fraction 

indicated 

by a - 

sign) 

Air 0.00121 C 6012 0.000151 

  

 

N 7014 0.784437 

  

 

O 8016 0.21075 

  

 

Ar 18000 0.004671 

          

Aluminum 2.7 Al 13027 1 

Bricks 1.8 O 8016 0.663062 

  

 

Al 13027 0.003916 

  

 

Si 14000 0.32314 

  

 

Ca 20000 0.007272 

    Fe 26000 0.00261 

Concrete 2.35 H 1001 -0.0056 

  

 

O 8016 -0.4983 

  

 

Na 11023 -0.0171 

  

 

Mg 12000 -0.0024 

  

 

Al 13027 -0.0456 

  

 

Si 14000 -0.3158 

  

 

S 16032 -0.0012 

  

 

K 19000 -0.0192 

  

 

Ca 20000 -0.0826 

    Fe 26000 -0.0122 

Copper 8.92 Cu 29000 1 

Cotton 1.55 H 1001 0.4762 

  

 

C 6000 0.2857 

    O 8016 0.2381 
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Glass 2.4 O 8016 0.603858 

  

 

Na 11023 0.088145 

  

 

Si 14028 0.251791 

    Ca 20000 0.056205 

Limestone 2.35 C 6000 0.2 

  

 

O 8016 0.6 

    Ca 20000 0.2 

Nylon 1.14 H 1001 0.578932 

  

 

C 6012 0.315803 

  

 

N 7014 0.052632 

    O 8016 0.052633 

Propane 0.0019 H 1001 0.72726 

    C 6012 0.27274 

Steel 7.85 C 6012 -0.0015 

  

 

N 7014 -0.0025 

  

 

Si 14000 -0.0075 

  

 

Cr 24000 -0.16 

  

 

Mn 25055 -0.05 

  

 

Fe 26000 -0.7385 

    Ni 28000 -0.04 

Wood 0.75 H 1001 0.4762 

  

 

C 6012 0.2857 

    O 8016 0.2381 

 

Table C.2 Inert Compositions. 

Adobe                                                      1.85 H 1001 -0.006 

Brick   

 

O 8016 -0.5398 

(Molnar, V.  Na 11023 -0.005 

CEA-021227-A) Mg 12000 -0.0039 

  

 

Al 13027 -0.0202 

  

 

Si 14000 -0.4071 

  

 

K 19000 -0.0042 

  

 

Ca 20000 -0.0058 

    Fe 26000 -0.008 
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Clay 1.285 H 1001 -0.026 

(Likos, 2001) O 8016 -0.5707 

(Nelson, 2011) Na 11023 -0.0098 

50/50 

 

Mg 12000 -0.0104 

Montmorillinite/ Al 13027 -0.1425 

Halloysite   Si 14000 -0.2406 

Coal 1.29 H 1001 -0.0636 

(Gloyn, 2003) C 6012 -0.8159 

  

 

N 7014 -0.0146 

    O 8016 -0.1059 

Fruit &  1.081 H 1001 -0.6417 

Vegetables  C 6012 -0.0375 

(USDA)   O 8016 -0.3208 

Gypsum  0.752 H 1001 -0.0234 

Board 
 

O 8016 -0.5576 

(Park et al., 2009) S 16000 -0.1862 

  
 

Ca 20000 -0.2328 

Polyester 1.4 H 1001 -0.042 

(Chawla, 198) C 6012 -0.625 

  
 

O 8016 -0.333 

Sand 1.391 O 8016 -0.5326 

(Lo Presti et al., 

1992) Si 14000 -0.4674 

Silk 1.16 H 1001 -0.07 

(Goodings &  C 6012 -0.344 

Turl, 1940) N 7014 -0.166 

    O 8016 -0.42 

Slate 2.84 O 8016 -0.3424 

(Nelson, 1906) Na 11023 -0.0703 

  

 

Mg 12000 -0.0372 

  

 

Al 13027 -0.0825 

  

 

Si 14000 -0.0429 

  

 

K 19000 -0.1195 

  

 

Ca 20000 -0.0613 

  

 

Ti 22048 -0.0732 

    Fe 26000 -0.1707 

Tin 7.365 Sn 50000 -1 
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Table C.3 Explosive Compositions. 

Material Density Element ZAID Atomic 

fraction 

(or mass 

fraction 

indicated 

by a - 

sign) 

Cyclonite  1.8 H 1001 0.0272 

(RDX) 

 

C 6012 0.1622 

C3H6N6O6 N 7014 0.3784 

(Williams III, 

2006) O 8016 0.4322 

Urea  0.69 H 1001 0.0409 

nitrate (UNi) C 6012 0.0976 

CH5N3O4 N 7014 0.3414 

(Woodfin, 2007) 

(Johll, 2009) 

O 8016 0.52 
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Appendix D - Sample Pearl Script and C++ Codes for MCNP5 Data 

Processing 

Table D.1 Pearl Script for isolating neutron signatures. 

#! /usr/bin/perl 

 

open ($Neutron_Response, ">", "Neutron_Response.txt") or die "$!";  #opens the ouput file 

named Neutron_Response.txt 

 

@a; 

@b; 

@c; 

$length; 

 

 

@files = <*.o>;  #stores the names of all .o files into an array named @files 

foreach $filename (@files) 

{ 

  open(INFILE, '<', $filename) || die("can't open inputfile: $!");  #opens each .o file for 

reading 

 # print $output "\nThe name of this file is: $filename\n" ; 

  $i=0; 

  while ($line = <INFILE>) 

  { 

       

             if($line =~ /^\s*(\d\.\d+E[+-]\d+)\s+(\d\.\d+E[+-]\d+)\s(\d\.\d+)/) #Finds the line of       

                                                                                               #MCNP5 output for processing 

             { 

              

                                     $line =~ /^\s*(\d\.\d+E[+-]\d+)\s+(\d\.\d+E[+-]\d+)\s(\d\.\d+)/; 

                      @a[$i] = $1;   #stores the left column 

                      @b[$i] = $2;   #stores the middle column 

                      @c[$i] = $3;   #stores the right column 

                      $i++; 

                       

                                       

             } 

 

        } 

 $length = $#a/2+1; 

        for($i=0; $i<$length; $i++) 

        {    

            $az[$i]=$a[$i]; 
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            $bz[$i]=$b[$i]; 

            $cz[$i]=$c[$i]; 

        } 

        for($i=$length; $i<=$#a+1; $i++) 

 {    

     $ax[$i-$length]=$a[$i]; 

     $bx[$i-$length]=$b[$i]; 

     $cx[$i-$length]=$c[$i]; 

        } 

       print $Neutron_Response "   $filename\n"; 

        for($i=0; $i<=$#a; $i++)  

        { 

  if ($a[$i]==0.0000004){ 

    print $Neutron_Response "$a[$i]  $b[$i]  $c[$i]\n"   

            } 

        if ($a[$i]==20.0){ 

    print $Neutron_Response "$a[$i]  $b[$i]  $c[$i]\n" 

            } 

  } 

         ; 

    

        close INFILE; 

   

  Neutron_Response 

 } 
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Table D.2 C++ code for extracting gamma-ray signatures. 

#include <iostream> 

#include <string> 

#include <sstream> 

#include <fstream> 

#include <vector> 

#include <cmath> 

 

 

using namespace std; 

//sets of signatures 

struct Template { 

     double column1, column2, column3; 

}; 

 

//does not need to be a friend of template 

istream& operator >> (istream& ins, Template& r) { 

    ins >> r.column1 >> r.column2 >> r.column3; 

    return ins; 

} 

int main(){ 

 

 

    ifstream input ("tin.txt"); 

    if ( !input ){ 

 

        cerr << "Cannot open file\n"; 

    } 

ofstream output1 ("Response.txt",ios::app); 

 

if (output1.is_open()){ 

output1 << "tin" << endl; 

vector<Template> data; 

Template datum; 

//Test for end of file (eof) 

while ( input >> datum ) 

    { 

        data.push_back (datum); 

    } 

//This loop displays the data. 

 

 

    double average;            //average of counts in the bins on either side of the desired energy bin. 

    double net_peak;           //energy bin counts minus average of the bins on either side. 

    double three_sigma_check;  //variable used to determine if an energy bin is a 'peak'. 
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    double peak;               //variable assigned to a bin that is investigated to determine if it is a  

      //'peak'. 

    double sigma;             //relative standard error determined by MCNP. 

 

    for ( double i=0; i < data.size(); ++i) 

    { 

            if (data[i].column1==2.31500E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                 } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==2.22500E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

               if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 
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                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==3.38000E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==4.44000E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 
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                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==4.91600E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==5.10700E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 
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            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==6.13100E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 
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                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==6.44700E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 

                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

        } 

 

            if (data[i].column1==6.91800E+00){ 

            average = (data[i-1].column2 + data[i+1].column2)/2; 

            peak = data[i].column2; 

            sigma = data[i].column3; 

            three_sigma_check = average + 3 * sigma * peak; 

            net_peak = peak - average; 

 

                if (peak > three_sigma_check){ 

                net_peak = net_peak; 

                } 

                else { 

                net_peak = 0; 

                } 

                output1  <<  net_peak << endl; 

                if (net_peak > 0){ 

                sigma = sqrt(((data[i].column2*data[i].column3)*(data[i].column2*data[i].column3))+ 
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                             0.25*((data[i-1].column2*data[i-1].column3)*(data[i-1].column2* 

                             data[i-1].column3))+0.25*((data[i+1].column2*data[i+1].column3)* 

                             (data[i+1].column2*data[i+1].column3))); 

                } 

                else{ 

                sigma =0; 

                } 

                output1  <<  sigma << endl; 

            } 

 

            } 

            output1  <<  endl; 

 

output1.close(); 

} 

 

            else cout << "Unable to open file"; 

            return 0; 

} 
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Appendix E - Sample MATLAB (2010a) codes for calculating 

Figures-of-Merit. 

Table E.1 Code calling “Response” script to retrieve signatures for templates and 

responses of targets. 

%Code for determining the FOM for Samples Vs. Templates 

%Program is configured for beta=1 and alpha=1/N (uniform weight factors) 

%Author: CPT Heider, Samuel 04MAR12 

%Revised: 17MAR12 

%-------------------------------------------------------------------------- 

%Initializes values to be used in calculating FOM for each  

T=80;                           %T=number of templates 

S=21;                           %S=number of samples 

G=9;                            %G=number of gamma signatures 

N=2;                            %N=number of neutron signatures 

G_N=G+N;                        %G-N=sum of gamma and neutron signatures 

FOM_gamma=zeros(G,1);           %Figure of Merit from gammas array 

FOM_neutron=zeros(N,1);         %Figure of Merit from neutrons array     

FOM=zeros(T,S);                 %Total Figure of Merit array 

Sigma_FOM=zeros(T,S);           %Error in the Figure of Merit array 

Norm=zeros(G_N,1);              %Norm=vetor of normalization vlaues for  

                                %each template 

Norm_z=0;                       %Norm_z=variable used to hold value of  

                                %sum(Norm) 

Norm_zeta=zeros(T,S);           %Norm_zeta=array of normalized FOM values 

alpha=1/G_N;                    %Alpha value for uniform weight factors 

beta=1;                         %Beta value 

k=1; 

l=1; 

Response                     %Calls ―Response‖ script 
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Table E.2 “Response” script, places signatures inside response vectors and calls 

“Template” script.  

while k<=S    

    if k<=1 

       Response_gamma=adobeg;          %Gamma sample signature vector 

       Response_neutron=adobe1;          %Neutron sample signature vector 

       Template                                       %Uses 'Template' script 

       k=k+1; 

    end 

    if k>=2 && k<3 

       Response_gamma=airg;            %Gamma sample signature vector 

       Response_neutron=air1;           %Neutron sample signature vector 

       Template                                   %Uses 'Template' script 

    end 

. 

. 

. 

if k>=21 && k<22 

       Response_gamma=woodoakg;       %Gamma sample signature vector 

       Response_neutron=woodoak1;      %Neutron sample signature vector 

       Template                                         %Uses 'Template' script 

    end 

 

     k=k+1; 

end   
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Table E.3 “Template” script, places signatures inside template vectors and calls 

“FOM_Calc” script. 

while l<=T 

    if l<=1 

       Template_gamma=N0O0C50H50hdg;   %Gamma template signature vector                   

        

       Template_neutron=N0O0C50H50hd;     %Neutron template signature vector               

       

        FOM_Calc                                              %"FOM_Calc" Script file to calculate FOM                        

        

       %Puts calculated zeta values in FOM Matrix 

       FOM(l,k)=sum(FOM_gamma)+sum(FOM_neutron);         

        

       Sigma_FOM(l,k)=2*(sqrt(alpha*FOM(l,k)));     %Puts error in zeta into Sigma_FOM matrix             

        

       Norm_zeta(l,k)=100*FOM(l,k)/(sum(Norm));               %Normalized FOM      

        

       Norm_sigma(l,k)=100*Sigma_FOM(l,k)/(Norm_z);     %Normalized error   

    end 

. 

. 

. 

if l>=80 && l<81 

       Template_gamma=N0O30C0H70vldgU;                  %Gamma template signature vector 

        

       Template_neutron=N0O30C0H70vldU;                   %Neutron template signature vector 

        

       FOM_Calc                                                    %"FOM_Calc" Script file to calculate FOM 

           

       %Puts calculated zeta values in FOM Matrix 

       FOM(l,k)=sum(FOM_gamma)+sum(FOM_neutron);         

        

       Sigma_FOM(l,k)=2*(sqrt(alpha*FOM(l,k)));     %Puts error in zeta into Sigma_FOM matrix             

        

       Norm_zeta(l,k)=100*FOM(l,k)/(sum(Norm));               %Normalized FOM      

        

       Norm_sigma(l,k)=100*Sigma_FOM(l,k)/(Norm_z);     %Normalized error 

    end 

        

      l=l+1; 

end 

l=1; 
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Table E.4 “FOM_Calc” script, calculates FOM and normalization factor 

i=1;j=1; 

while i<=23 

    if i<=17 

       if Response_gamma(i+1,1)<=0 && Template_gamma(i+1,1)<=0 

          FOM_gamma(j)=0; 

       else 

    FOM_gamma(j)=alpha*(beta*Response_gamma(i,1)-

Template_gamma(i,1))^2/(beta^2*Response_gamma(i+1,1)^2+Template_gamma(i+1,1)^2); 

       end 

        

       if Template_gamma(i,1)<=0 || Template_gamma(i+1,1)<=0 

            Norm(j)=0; 

       else 

            Norm(j)=alpha*Template_gamma(i,1)^2/Template_gamma(i+1,1)^2; 

       end 

    end 

     

    if i>17 && i<=21 

       if Response_neutron(i-17,1)<=0 && Template_neutron(i-17,1)<=0 

          FOM_neutron(j-9)=0; 

       else 

     FOM_neutron(j-9)=alpha*(beta*Response_neutron(i-18,1)-Template_neutron(i-

18,1))^2/(beta^2*Response_neutron(i-17,1)^2+Template_neutron(i-17,1)^2); 

        

       end 

        

       if Template_neutron(i-18,1)<=0 || Template_neutron(i-17,1)<=0 

            Norm(j)=0; 

       else 

            Norm(j)=alpha*Template_neutron(i-18,1)^2/Template_neutron(i-17,1)^2; 

       end 

        

    end    

    j=j+1; 

    i=i+2; 

     

end 

Norm_z=sum(Norm); 
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Appendix F - Lowest Figures-of-Merit for RDX, UNi, and inert 

samples versus all templates. 

Clutter/Sample           

 

Clutter/Sample         

Adobe/RDX 2.4080 0.0128   Adobe/UNi 6.1140 0.0203 

Air/RDX 0.2118 0.0036   Air/UNi  1.0406 0.0117 

Bricks/RDX 2.0787 0.0119   Bricks/UNi  6.2493 0.0117 

Clay/RDX 3.8880 0.0156   Clay/UNi  5.0489 0.0220 

Coal/RDX 1.9142 0.0113   Coal/UNi  1.9395 0.0114 

Concrete/RDX 1.7713 0.0111   Concrete/UNi  2.1009 0.0129 

Copper/RDX 8.7227 0.0170   Copper/UNi  8.6382 0.0170 

Cotton/RDX 3.9496 0.0160   Cotton/UNi  3.7716 0.0156 

Fruit/RDX 0.9979 0.0089   Fruit/UNi  1.7303 0.0131 

Glass/RDX 2.5814 0.0132   Glass/UNi  5.7851 0.0198 

Gypsum/RDX 1.6510 0.0114   Gypsum/UNi  3.7568 0.0199 

Limestone/RDX 0.7369 0.0058   Limestone/UNi  0.8009 0.0074 

Nylon/RDX 2.2934 0.0132   Nylon/UNi  2.1941 0.0138 

Polyester/RDX 3.1304 0.0146   Polyester/UNi  2.7965 0.0138 

Propane/RDX 0.2122 0.0036   Propane/UNi  1.0884 0.0120 

Sand/RDX 2.8063 0.0133   Sand/UNi  3.9812 0.0195 

Silk/RDX 2.5657 0.0132   Silk/UNi  3.2220 0.0174 

Slate/RDX 1.5944 0.0105   Slate/UNi  1.9696 0.0125 

Steel/RDX 6.0619 0.0142   Steel/UNi  6.1358 0.0143 

Tin/RDX 6.8798 0.0151   Tin/UNi  7.1576 0.0154 

Wood/RDX 2.1119 0.0120   Wood/UNi  3.7194 0.0187 
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Clutter/Sample       

Adobe/Inert 7.3040 0.0222 

Air/Inert  80.9972 0.0921 

Bricks/Inert 7.8681 0.0249 

Clay/Inert 10.0060 0.0260 

Coal/Inert 5.6373 0.0195 

Concrete/Inert 3.3602 0.0163 

Copper/Inert 10.5538 0.0187 

Cotton/Inert 2.4273 0.0125 

Fruit/Inert 9.8975 0.0314 

Glass/Inert 6.7111 0.0213 

Gypsum/Inert 8.1638 0.0297 

Limestone/Inert 1.9068 0.0114 

Nylon/Inert 5.1086 0.0197 

Polyester/Inert 5.9022 0.0170 

Propane/Inert 80.3154 0.0918 

Sand/Inert 9.5333 0.0274 

Silk/Inert 2.6971 0.0136 

Slate/Inert 4.6184 0.0193 

Steel/Inert 7.1532 0.0154 

Tin/Inert 8.8412 0.0172 

Wood/Inert 4.9532 0.0216 
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Appendix G - Lowest Figures-of-Merit using density filter. 

 
Density Group-1 

   
Density Group-2 

 
Clutter/Sample                         

 

Clutter/Sample                       

Air/UNi  1.0406 0.0117 

 

Adobe/Uni 6.1140 0.0203 

Air/RDX  0.2118 0.0036 

 

Adobe/RDX 2.4080 0.0128 

Air/Inert  80.9972 0.0921 

 

Adobe/Inert 7.3040 0.0222 

Clay/UNi  5.0489 0.0220 

 

Bricks/Uni 6.2493 0.0246 

Coal/UNi  2.1363 0.0140 

 

Bricks/RDX 2.0787 0.0119 

Fruit/UNi  1.7303 0.0131 

 

Bricks/Inert 7.8681 0.0249 

Gypsum/UNi  3.7568 0.0199 

 

Clay/RDX 3.8880 0.0156 

Gypsum/Inert 8.1638 0.0297 

 

Clay/Inert 10.0060 0.0260 

Nylon/UNi  2.1941 0.0138 

 

Coal/RDX 1.9142 0.0113 

Propane/UNi  1.0884 0.0120 

 

Coal/Inert 5.6373 0.0195 

Propane/RDX 0.2122 0.0036 

 

Concrete/Uni 2.1009 0.0129 

Propane/Inert 80.3154 0.0918 

 

Cotton/Uni 3.7716 0.0156 

Silk/UNi  3.2220 0.0174 

 

Cotton/RDX 3.9496 0.0160 

Wood/UNi  3.7194 0.0187 

 

Cotton/Inert 2.4273 0.0125 

Wood/Inert 4.9532 0.0216 

 

Fruit/RDX 0.9979 0.0089 

    

Fruit/Inert 9.8975 0.0314 

    

Glass/Uni 5.7851 0.0198 

    

Gypsum/RDX 1.6510 0.0114 

    

Limestone/Uni 0.8009 0.0074 

    

Nylon/RDX 2.2934 0.0132 

    

Nylon/Inert 5.1086 0.0197 

    

Polyester/Uni 2.7965 0.0138 

    

Polyester/RDX 3.1304 0.0146 

    

Polyester/Inert 5.9022 0.0170 

    

Sand/Uni 3.9812 0.0195 

    

Sand/RDX 2.8063 0.0133 

    

Sand/Inert 9.5333 0.0274 

    

Silk/RDX 2.5657 0.0132 

    

Silk/Inert 2.6971 0.0136 

    

Slate/Uni 1.9696 0.0125 

    

Wood/RDX 2.1119 0.0120 
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Density Group-3 

   
Density Group-4 &  Group-5 

 
Clutter/Sample          

 

Clutter/Sample          

Concrete/RDX 1.7713 0.0111 

 

Tin/UNi 7.1576 0.0154 

Concrete/Inert 3.3602 0.0163 

 

Copper/UNi 8.6382 0.0170 

Limestone/RDX 2.5814 0.0132 

 

Copper/RDX 8.7227 0.0170 

Limestone/Inert 6.7111 0.0213 

 

Copper/Inert 10.5538 0.0187 

Glass/RDX 0.7369 0.0058 

 

Steel/UNi 6.1358 0.0143 

Glass/Inert 1.9068 0.0114 

 

Steel/RDX 6.0619 0.0142 

Slate/RDX 1.5944 0.0105 

 

Steel/Inert 7.1532 0.0154 

Slate/Inert 4.6184 0.0193 

 

Tin/RDX 6.8798 0.0151 

    

Tin/Inert 8.8412 0.0172 
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Appendix H - Lowest Figures-of-Merit using neutron signatures and 

density filter. 

 
Density Group-1 

   
Density Group-2 

 
Clutter/Sample                        

 

Clutter/Sample                       

Air/RDX  0.0100 0.0010 

 

Limestone/UNi 0.0050 0.0007 

Propane/RDX 0.0103 0.0010 

 

Slate/UNi 0.0092 0.0010 

Silk/UNi 0.0380 0.0027 

 

Clay/Inert 0.0110 0.0013 

Fruit//Uni 0.0970 0.0047 

 

Clay/RDX 0.0134 0.0014 

Gypsum/Inert 0.1604 0.0056 

 

Polyester/Inert 0.0155 0.0017 

Nylon//Uni 0.2053 0.0060 

 

Glass/UNi 0.0156 0.0012 

Clay//Uni 0.2638 0.0061 

 

Adobe/UNi 0.0197 0.0014 

Air//Uni 0.3004 0.0098 

 

Sand/Uni 0.0260 0.0019 

Propane/UNi 0.3155 0.0101 

 

Concrete/UNi 0.0375 0.0019 

Wood/Uni 0.5798 0.0091 

 

Sand/Inert 0.0401 0.0024 

Woodoak/Inert 0.5813 0.0091 

 

Bricks/UNi 0.0404 0.0020 

Gypsum/Uni 0.6647 0.0114 

 

Bricks/RDX 0.0406 0.0020 

Coal//Uni 0.8140 0.0124 

 

Fruit/RDX 0.0421 0.0030 

Propane/Inert 74.0004 0.1032 

 

Sand/RDX 0.0428 0.0021 

Air/Inert  74.5940 0.1036 

 

Adobe/Inert 0.0435 0.0021 

    

Gypsum/RDX 0.0528 0.0028 

    

Silk/Inert 0.0584 0.0033 

    

Adobe/RDX 0.0599 0.0024 

    

Polyester/RDX 0.1217 0.0047 

    

Bricks/Inert 0.1592 0.0040 

    

Fruit/Inert 0.1858 0.0065 

    

Polyester/UNi 0.2209 0.0054 

    

Silk/RDX 0.2284 0.0065 

    

Coal/Inert 0.2532 0.0058 

    

Nylon/RDX 0.2585 0.0070 

    

Coal/RDX 0.3204 0.0076 

    

Nylon/Inert 0.3458 0.0081 

    

Woodoak/RDX 0.4375 0.0091 

    

Cotton/UNi 0.4810 0.0080 

    

Cotton/RDX 0.5804 0.0088 

    

Cotton/Inert 0.7084 0.0097 
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Density Group-3 

 

Density Group-4 & 5 

 

Clutter/Sample                       

 

Clutter/Sample                              

Concrete/RDX 0.0035 0.0006 

 

Tin/UNi 0.3326 0.0035 

Glass/RDX 0.0049 0.0007 

 

Steel/UNi 0.0481 0.0013 

Limestone/RDX 0.0319 0.0018 

 

Steel/RDX 0.1800 0.0025 

Slate/RDX 0.0415 0.0020 

 

Steel/Inert 0.6288 0.0048 

Glass/Inert 0.1126 0.0034 

 

Tin/RDX 0.8062 0.0054 

Slate/Inert 0.1571 0.0032 

 

Tin/Inert 1.4511 0.0072 

Concrete/Inert 0.1684 0.0041 

 

Copper/UNi 1.8618 0.0082 

Limestone/Inert 0.2226 0.0047 

 

Copper/RDX 2.2958 0.0091 

    

Copper/Inert 3.3025 0.0109 
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Appendix I - Lowest Figures-of-Merit using gamma-ray signatures 

and density filter. 

 
Density Group-1 

   
Density Group-2 

 
Clutter/Sample                       

 

Clutter/Sample                       

Air/UNi  0.4788 0.0141 

 

Limestone/UNi 0.9617 0.0142 

Propane/UNi 0.5027 0.0144 

 

Fruit/RDX 1.5433 0.0139 

Air/RDX  0.5490 0.0096 

 

Gypsum/RDX 1.5933 0.0164 

Propane/RDX 0.5534 0.0097 

 

Coal/RDX 1.6306 0.0144 

Gypsum/UNi 2.8299 0.0315 

 

Nylon/RDX 2.4694 0.0177 

Fruit/UNi 2.9972 0.0230 

 

Silk/Inert 3.0659 0.0201 

Coal/UNi 3.4082 0.0248 

 

Woodoak/RDX 3.5343 0.0215 

Nylon/UNi 4.0642 0.0261 

 

Silk/RDX 3.5381 0.0216 

Woodoak/UNi 5.3895 0.0318 

 

Sand/RDX 3.8631 0.0266 

Silk/UNi 6.4073 0.0347 

 

Polyester/RDX 3.8881 0.0226 

Woodoak/Inert 8.6298 0.0402 

 

Cotton/Inert 4.0414 0.0234 

Clay/Urea Nitrate 13.4083 0.0622 

 

Polyester/UNi 4.4829 0.0243 

Gypsum/Inert 19.8781 0.0927 

 

Clay/RDX 4.5004 0.0287 

Propane/Inert 96.0094 0.2036 

 

Bricks/RDX 4.7147 0.0314 

Air/Inert  97.9901 0.1995 

 

Cotton/RDX 5.1931 0.0256 

    

Cotton/UNi 6.0011 0.0285 

    

Adobe/RDX 6.3240 0.0363 

    

Nylon/Inert 6.4903 0.0287 

    

Concrete/UNi 7.0968 0.0515 

    

Slate/UNi 7.4362 0.0527 

    

Coal/Inert 8.7873 0.0335 

    

Sand/UNi 9.3434 0.0462 

    

Polyester/Inert 10.8018 0.0329 

    

Bricks/UNi 12.2106 0.0521 

    

Adobe/UNi 13.0611 0.0522 

    

Glass/UNi 15.1728 0.0581 

    

Fruit/Inert 15.2405 0.0316 

    

Sand/Inert 18.8638 0.0648 

    

Clay/Inert 19.5457 0.0639 

    

Bricks/Inert 19.9873 0.0667 

    

Adobe/Inert 20.6238 0.0656 
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Density Group-3 

   
Density Group-4 & 5 

 
Clutter/Sample                       

 

Clutter/Sample                              

Glass/Inert 0.1575 0.0048 

 

Tin/UNi 91.0308 0.1520 

Glass/RDX 0.5253 0.0092 

 

Steel/RDX 78.6175 0.1868 

Slate/Inert 2.0191 0.0248 

 

Steel/UNi 81.2290 0.1899 

Concrete/Inert 2.2058 0.0260 

 

Tin/RDX 81.7996 0.1906 

Concrete/RDX 3.9268 0.0300 

 

Steel/Inert 87.6330 0.1972 

Slate/RDX 5.1477 0.0343 

 

Copper/RDX 88.0004 0.1976 

Limestone/RDX 7.4496 0.0330 

 

Copper/UNi 92.2280 0.2023 

Limestone/Inert 16.3698 0.0490 

 

Copper/Inert 100.0000 0.2107 

    

Tin/Inert 100.0000 0.2107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


