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SECTION I
INTRODUCTION

Lol Overview

This report examines the performance of a frequency-
hopped Quadrature Phase Shift Keyed (QPSK) modulater for a
partially coherent communications environment. The
performance is examined under different channel conditions
such as noise jamming and fading. The performance criteria

used is the average bit error probability.
Analytical equations for the performance are derived
and the results are computed using numerical methods., The

performance characteristics are plotted for these results.

1.2 Modulation System

Among the wide class of digital modulation techniques
used in satellite communications, the more important
techniques include Amplitude Shift Keying (ASK), Frequency
Shift Keying (FSK), and Phase Shift Keying (PSK). However,
among these techniques, the only band-width efficient
modulation techniques are Quadrature Phase-Shift Keying

(QPSK) and Quadrature Amplitude Shift Keying (QASK).



In many military communications systems, an issue
which ordinarily must be addressed is the threat of
jamming. The jammer intercepts a transmitted signal,
performs some real-time signé? processing upon it, and
radiates a derived signal of his choosing in the direction
of the intended receiver terminal to jam the originating
communications from the transmitter, In the absence of
enough protection, such "intelligent" jamming can be far
more disruptive than the more commonly encountered wide-
band threats. Frequency-hopped (FH) spread spectrum
systems have been found as a good remedy which when super-
imposed on the conventional techniques will resist the
intentional interference introduced by the jammer.
Although FH techniques have received a great deal of
attention over the years, not many operational systems
have been constructed because of the extra complex and

expensive sub systems involved.

A frequency hopping modulator is no more than a code
sequence generator similar to those employed in direct
sequence systems, driving a frequency synthesizer that it
commands to hop from frequency to frequency in a pattern
that is determined by the code sequence being generated.

There are two possible ways to implement the FH modulation.



0 Non-coherent FH

The spread spectrum technique is reffered to as
non-coherent FH if the individual hop pulse phases

bear no relation to each other.

0 Coherent FH

If the phase continuity is maintained from one hop
pulse to another, then the spread spectrum technique

is reffered to as coherent FH.

However, in either case, it is assumed in this report
that the hop pulse phase is constant over a single hop
interval. The performance of coherent FH modulation scheme
is always superior to that of non-coherent scheme. However,
it is not always possible to implement coherent schemes.
Particularly, in a frequency hopped system where ejther the
transmitter or the receiver is mobile, the doppler shift
can cause phase arror. Another source of phase error can
be intentional or unintentional interference. Even with
some phase error, it may be preferable to implement a
coherent FH scheme as long as this phase error is not large
enough to significantly degrade the performance. In this

report, the performance of FH coherent scheme is analyzed



in the presence of phase error and jamming. Since in all
of the results derived in this report, phase error is
assumed to be present, this scheme is called partially-
coherent FH scheme. The main structure of the modulation

system is shown in Figure 1.1,

The transmitted signal may undergo fading, additive
noise, and jamming. The received signal is a sum of
additive white Gaussian noise, the jammer, and a random
phase shifted version of the transmitted signal. This
signal is first frequency dehopped and then demodulated.
It is assumed that the "intelligent" jammer has the
knowledge of data rate, spreading bandwidth, and hop rate,
but no knowledge of the frequency hopping code. The jammer
will spread his energy over a fraction of the whole
bandwidth to cause the maximum bit error rate. The
analysis in this report assumes the fraction of the total
bandwidth jammed as a parameter. The bit error rate is
examined as a function of this parameter. The performance
characteristics of the QPSK modulator can be examined
separately under fading and non-fading channel conditions.
Under the fading media it could be assumed that the signal
will suffer a slow Rician fading impairment, so that the
random parameters do not change appreciably during the

transmission interval (i.e., over one hop interval).
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Therefore the first order density distribution of the

random parameters will suffice to describe the fading media.
Further, it can be assumed that the transmission path of

the fading media is composed of a fixed component, known as
specular component and a random component, known as scatter

component.

The average bit error probabilities are computed and
compared for different cases, as functions of signal-to-

noise ratio (SNR) and signali-to-jammer ratio {SJR). The

error probabilities are plotted for easier comparison.

1.3 Background Work

The analysis presented in this report is an extension
of the work done by Marvin X, Simon and Polydoros [3] on
coherent detection of FH-QPSK modulations in the presence
of jamming. It was assumed in Simon's paper that the
signals undergo ideal coherent demodulation by the frequency
hopper so that the phase continuity is maintained from one
hop pulse to another. However, this is not usually true in
practical communications systems. There will be some phase
error either due to doppler shift or due to intentional or
unintentional interference. The modulation scheme employed

in this analysis, called partially coherent FH scheme,



assumes that some phase error is present in the received
signal. The analysis technique follows the same procedure
adopted by M. X, Simon. However, due to the presence of
this phase error, the closed form computation of bit error
rate probability turns out to be more complicated and the
results can not be reduced mathematically in terms of
elementary functions. Numerical methods are used as an

alternative in arriving at the final results.



SECTION II

THE SYSTEM MODEL

The system model for the frequency-hopped QPSK
modulator is presented in this section. Section 2.1
introduces a special density function fe(e;ﬂh) which
is used Tater to examine the performance characteristics
of the partially-coherent FH-QPSK modulator. Section 2.2
describes the general mathematical model for the non-fading
communication media. The channel interferences are the
additive white Gaussian noise n(t) and the jammer j(t).

The model for the fading communication media is described

in Section 2.3.

2.1 Special Density Function f (e;A )

In this study, instead of choosing a particular
density function, a family of densities indexed by a single
parameter is specified for the analysis It is important
to choose a family, that will enable one to model as many
cases of interest as possible. A family that will turn

out to be useful is given below[2]:

(o34 ) exp(4ycose)
fales = ; -m¢ 8 <t (2.1)
° 2 Io(Ag)




Figure 2.1 jllustrates this family of density
functions for different values of Jm. The function
Io(A,) 1s a modified Bessel function of the first kind
which is included so that the density will integrate to

unity. .Am is a parameter that controls the spread of

the density.

From the Figure 2.1, it is seen that for Jm = 0;

fe(a) = 1/27 ; -7 < & < *r (2.2)

sll

which indicates a uniform probability density function
between -» and +x., This is a logical density function for
the radar problem. As Am increases, the density becomes
more peaked. Finally as Am approaches infinity, it
approaches the known signal case, Thus by varying Am’

it is possible to move continuously from the known signal
problem to the other extreme, the uniform random variable

problem.
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2.2 Mathematical Model - Non-fading Communications Media

The block diagrams for the frequency-hopped QPSK

modulator and QPSK demodulator are given in Figure 2.2.

The quadriphase modulation encodes each pair of bits
into one of four phases (Figure 2.3). Alternately, one
can code each pair of bits into a change in phase. One of
the principle advantages of QPSK is that, under certain
transmission conditions, QPSK achieves the same power

efficiency as BPSK using only half the bandwidth,

The ideal QPSK signal waveform can be represented in

two equivalent forms:

s(t) = ASin[u°t+em(t)]

or
A ; X -A x
s(t) = 73 Us(t)S1n[uot + 4] - Uc(t)Cos[uot + 4]
(2.3)
where,
em = (0, n/2, v, 372/2)

and US, Uc = * 1 represents the data modulation,

Each symbol Tlasts TS seconds.

A frequency hopped QPSK signal in the ith signaling

interval is represented by

11
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st gy - /75 Sin[u,g”t + olily, (i-1)T, ¢ t ¢ 1T,
(2.4)

where

S = transmitted average power,

uH(i) particular carrier frequency selected by

the frequency hopper for the given interval,
(i)

] = the information symbol which is one of

four possible values; »/4, 3rn/4, 5n/84, 7n/4.

During the transmission, a white Gaussian noise n(t)
and a jammer j(t) will be added. n(t) is a bandpass noise

and with a narrow band representation

n(t) = VZIN_(t)Cos(ul ! tre) - N (t)sin(o) T tre) ],

(2.5)

where N _(t) and Ns(t) are statistically independent low
pass white Gaussian noise processes with single sided noise
spectral density No w/Hz, and j(t) is a partjal-band

multitone jammer having n jammer tones,

Let J be the total jammer power evenly divided among

the n tones, each tone having a power

J, = d/n. (2.6}

14



Since the jammer is assumed to have knowledge of hop
frequencies, i.e., the exact location of the spreading
bandwidth w, and the number N of hops in this bandwidth,
it is assumed that the jammer will randomly locate each of

his n tones coincident with n of the N hop frequencies.

Thus the fraction of the total bandwidth which 1is
continuously jammed with tones, each having power JO, is

given by
a = {n/N). (2.7)

Further, the jammer's strategy is to distribute his
total power J in such a way as to cause the communicator
to have maximum probability of error. At the receiver,

the transmitted signal corrupted by noise and jammer will

arrive as

yU ey o s ese) + n(e) + 30t (2.8)
where

s(i)(t;e) = V2s Sin(uéi)t + e(i) + 9) (2.9)

8 is the phase shift introduced by the channel,
n(t} is given by (2.5), and

jlt) = ./2Jo Cos(uﬁi)t + ej + g). (2.10)

15



aj is the jammer phase and is a random variable,
uniformly distributed between (0, 2x) and independent of

the information symbol phase 9(1),

i.e.;
Jl 6 21T
0; elsewhere (2.11)

fe.(e = |1/2%; 0 ¢ @

;)
j J

Over an integral number of hop bands, the fraction «
of the total number of signaling intervals will be
characterized by (2.6). In the remaining fraction (l-a) of
the signaling intervals, the received signal does not

include the jammer and is simply given by.
y ) = st 50y + niey. (2.12)

The system performances and the calculatijon of

probability of errors are described in Chapter 3.

2.3 Fading Communications Media

This section discusses the FH-QPSK model in a fading
communications media. As mentioned earlier, a signal will
generally undergo a slow Rician fading impairment in the

communications channel,

16



An FH-QPSK signal in the ith signalling interval is
represented by equation {2.4) and is repeated again for

convenience:

sty o vz sintalVe ¢ ot DT ¢t T,
When this signal undergoes fading, it will no Tonger
be in this form. Amplitude and carrier phase will be random

variables and equation (2.4) can now be represented as

je

st (t,00) = V25 age - Tsin(ufPle v o(1)) (2.13)

The fading media comprises of frequency non-selective
path which is characterized by two quantities: ag, the
strength and Oc, the carrier phase shift. These
quantities are random and must therefore be described
interms of probability density distributions. Since a slow
fading environment is assumed, ag and ¢ do not change
appreciably during the transmission interval. Hence the
first-order joint density distribution, fr(af, ef) of
the two path parameters will suffice to describe the fading
medium. It is also assumed that as and 8; are statisti-
cally independent of T, ﬁodu1ation delay and hence only the
distribution fr(af, ef) is necessary to complete the

description of the medium instead of fr(af, ef,‘T).

17



It is further assumed that the transmission path is
composed of a fixed component (specular component) and a
random component (scatter component), so that equation

(2.13) may be written as

séi)(t;ef) = /75 (ye I8 4 Be'jE)Sin(uﬁi)t + gl1))
(2.14)

where, y and s are the strength and phase shift of
the fixed component respectively, while B and ¢ are the
strength and phase shift for the random component. The
relationships among the quantities v, 6, B8, €, a, and o

are depicted pictorially in Figure 2.4.
The joint distribution of 8 and ¢« are given by[4]

fB E(B’E) = (B/Znazlexp(-ﬁz/Zcz); [0 < B <oy 0 < ¢ ¢ 27
0; elsewhere (2.15)

Here g and ¢ are independent quantities and;

2

B8 : Rayleigh distributed with mean square 2¢° and

e : Uniformly distributed over the interval (0, 2r)

It is easily shown [5] that the joint distribution
of the strength and angle of the sum of fixed vector{y, &)

and the random vector(g, ¢) described by (2.15) is

18



FIGURE 2+4

RELATIONSHIPS AMONG STRENGTHS AND PHASé SHIFTS
OF THE FADING MEDIA
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{ a¢ a%+ 72- ZYafCos(ef-s)
5 expl- 5 ]
270 20
fAf,aéaf’ °f) =9 for O € 3y ¢ @ and 0 g (ef-s) < 27,

L0; elsewhere (2.16)

The marginal distribution of strength 2 cbtained

by integrating (2.16) over 6, is given by

a¢ a?* Yag

:§~exp [- ™ ] Io(—zgﬁ; 0 & 2@
fAf{af) =

0; a <0 (2.17)

where I0 ijs the zeroth-order modified Bessel function of

the first kind.

The assumption of Rician fading implies a strong
specular or direct path as well as a scatter path which by

itself would produce a Rayleigh channel,

For a short-term description of the channel, where
"short" term is taken to be the period of time of
sufficient duration to allow a carrier tracking loop to
lockup to the specular component, and hence, permit
coherent reception, the specular component is taken to be
constant., However, over the long term, it is assumed that

the specular component of the received signal fades



accordingly to a Rayleigh density [6].

In order to find the probability of error for the
fading case, it is necessary to find the probability of
error, given that s is constant {Pr(e/s)). The result

can be easily extended to the case of random variables.

If the probability density of the parameter s is

known, then it can be easily shown that;

&0

P le) = 5Pr(e/s)fs(s)ds | (2.18)

-0
where fs(s) is the probability density function of the

parameter s.

21
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SECTION III

SYSTEM PERFORMANCES

The objectives of this section are to introduce
appropriate definitions of the system error probability and
to obtain expressions from which this probability may be
evaluated. The performance of the system can be described
by several different error probabilities. The most commonly
used error probability, the bit error probability criteria

is used in this analysis.

3.1 System Performance Under Non-fading Channels

The system performance and the evaluation of probabi-
1ity of error for the non-fading channels is described in
this section. The noise and jammer interferences are also

taken into account,

The worst-case jammer and the worst-case performance
will be determined as functions of the signal-to-noise
(background noise) ratio (SNR) and signal-to-jammer power
ratio (SJR). An analysis is presented which derived the
average probability of bit error rate. The information
rate, total bandwidth, and average transmitted power are

held constant., The receiver is a partially-ccherent
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inphase/quadrature detector employing matched filter
detection. The system is stressed by the presence of an
intentional jammer and the expression for the probabjlity
of error is determined, A partially-coherent QPSK detector

model is shown in Figure 3-1.

The received signal will undergo partially-coherent
demodulation by the frequency de-hopper. The inphase and
quadrature components of the received signal, obtained from

the matched filter detector are

Eg(t) = vy e /2 sintal e + 83 (3.1a)

and

Eqlt) vy /7 cos(ulilt + 8)) C(3.1b)
Unlike the coherent case, 8 will be different from e
for the partially-coherent case. Substituting the value of

y[1)(t) from (2.8), equation (3.1) can be rewritten as

£ (t) = [s' T (t50)en(0)+500) IV sintoeed)

[VZs sinfuf i trel Thea)en(e)+5(£) 10/ sintalTle+8) 1.

Simplifying and ignoring the double harmonic terms,

the above equation simplifies to
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Vs Cos(e(1)+e-3)-NC(t)Sin(e-a)-Ns(t)Cos(e-Q)
-f3051n(aj+a-$)]. (3.2a)

£y (t)

Similiarly,

Vs Sin(a(i]+e-3)+NcEt)Cos(e-S)-Hs(t)Sin(e-%)
+JJOCos(ej+e-3)]. (3.2b)

Eq(t)

These signals are then passed through matched filters
of duration equal to the information symbol interval Ts

to produce the in-phase and quadrature phase decision

variables
iTs
ZI = J EI(t)dt and (3.3a)
('i-l)TS
1‘TS |
ZQ = .{ EQ(t)dt (3.3b)
(i-1)T

Let (9-3) = 8y. Then,

i1
Z; = f [ J?Cos(e(i)+ 81)-N (t)Sine;-N_(t)Cose,
(1-1)74 -/T sinle e, ) 1dt (3.4a)
and
T,
g = ) [ /2sinte! )+ o )eN (t)Cose;-N (t)Sine,

(1-1)7 /T Cos(e +e ) 1dt,  (3.4b)

25



which inturn can be written as

ZI = [ J?TSCos(e(i)+ al)-NQSinel+NICosel
-/ﬁbTSSin(9j+91)] (3.5a)
and
ZQ = [ J?TsSin(eti)+ 91)+NQCosel+N151n91
+/3;TSC05(91+91)]. (3.5b)
N

I and NQ are zero-mean Gaussian random variables

with varijance NoTs/2 and given by

1Ts
Ny = - J Ns(t)dt and (3.6a)
(i—l)Ts
1Ts
NQ = + NC(t)dt. | (3.6b)
(-7
Let /2 Cos e(i) = [ai] (3.7a)
JZ sin ol 1) . b1, (3.7b)

where {ail and [bi] are the equivalent independent in-
phase and quadrature binary information sequences which

take on values +1 or -1,.

Substituting this in (3.5), the equations reduce to

26



Zp = [ Vs/2 Ts(aiCosel- bisinal)-NQSin91+NICosel

= JEQTSSin(ej+ 8;)] (3.8a)
and
ZQ = [ Js/2 Ts(bicosel- aiSin91)+NQCosel+NISinel

+ Jﬁ;TsCos(ej+ e;) 1. {3.8b)

The in-phase and quadrature decision variables ZI

and ZQ are passed through hard limiters (threshold

A

devices) to obtain the receiver estimates 31 and bi’
where

& *

a, = sgn ZI and

N

i *
b, = sgn Zq. (3.9)

Hence, given ay, bi’ 8y and ej, the
probability that the ith symbol is in error is the

probability that either a;.or b1 is in error, i.e.,

A A
PEi(Gj) = Prob {éi f a; or b, ¢ bi} (3.10)

* The function sgn x (pronounced as signum x) is equal to

*1 or -1 according to the sign of x. Thus
Sgnx ‘P
+

Sgn x{z -1; x < 0

= +1; x » 0 X
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PEi(ej) = Prob {51 # ai} + Prob {gf # bi}
- Prob {51 £ ai} Prob {QH # b&.
(3.11)

Since the signal set is not symmetric, (3.11) must be
computed for four points in four different quadrants in
order to obtain the average probability of symbol error

conditioned on the jammer phase PE(ej). Thus there are

four possible combinations of [ai] and [bil.

[a_i = 1, b_i = 13

[a_i = 1, i = -1]
[ai = —1, b'i - 1]
[a_i = ""1, bi = '1]

Averaging over these four cases

PE(ej) = 1/4[PE1(ej) * PEZ(ej) + PE3(ej) # PE4(ej)],
(3.13)

where each of the terms inside brackets corresponds to the
different cases of (3.12) respectively. Each of these four

cases will be considered separately in the following

subsections.

3.1.1 Calculation of PEl(ej)

PEllaj) = Prob[ZI<0; ai=1’bi=13 + Prob[ZQ<0; ai=1’bi=1]
- Prob[ZI<0; ai=1’bi=1] Prob[ZQ<0; aizl,bi=1]

(3.14)
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Vi€ s PElfej) = [PSI(BJ) + PCl(GJ) - PSl[ej) PCI(BJ)]
(3.15)
where
Psl(ej) = Prob {[ vs/2 Ts(Cosel- Sinel)-NQSine1
+ NICosal- /ELTSSin(ej+ el)] < q},
and (3.16a)

Pcltej) = Prob {[ Js/2 TS(Cosal+ Sin91)+NQCose1
+ NISinel+ /30T5C05(9j+ 91)3 < 0}.
(3.16b)

Rewriting (3.16) yields

Psl(ej) = Prob {[NICosel- NQSinell <
[« Js/2 TS(COSel- Sinel) + J50T551n(aj+ el)j},
and (3.17a)
Peqle;) = Prob {Nysine* NCose;1 <

/3;T5605(9j+ el)]}.
(3.17b)

[' VS/Z TS(COSSI*' Sinel)

At this stage, it can be noticed that NI’ Nq, 01>
and aj are all random variables, However, if one tries
to find the value of the probability, the difficult problem
of finding the joint probability density function of
f(NI,Nq,el,ej) will be encountered. Hence, slightly
modifying the probiem, at this stage only NI and NQ will be

treated as random variables and the probability of error is
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conditioned on the variables e, and ej. The unconditional
probability of error can be determined by averaging the
conditional probability of error over the distributions of 8
and .. The calculations are simplified by creating two

J
new random variables X and Y, given by

><
|

(NICose1 " NQSinel) {3.18a)

-~
L]

{NISinel + NQCosel), (3.18b)

whose density functions fy(x) and f,(y) are found to be

(see appendix):

Fy(x) = [L//ZTNT7D ] exp [-x2/2(N T /2)1,  (3.1%)

fely) = IIVZT N T_72)] exp [-y%/2(8,T /2)].  (3.19b)

Now equation (3.17) take the form

%
1
Psl(ej[el) = Prob {X < xlk = j fx(x)dx (3.20a)
- 00
and
Y1
Pcl(ejlel) = PrOb [Y < yl} = S fY(y)dy, (3.20b)
_®
where
Xy = [« F5/2 Ts(Cosel« Sinel) + JELTSSin(aj+ el)J
(3.21a)
and
Yy = [- /s/2 TS(Cosel+ Sine;) - fﬁ;TsCos(ej+ 91)].

(3.21b)
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Substituting (3.19) in (3.20) leads to

o0
Psltej]al) = 1//Zs j- exp(-x2/2)dx = erfc(Z )  (3.22a)
zsl
and ©0
Pcl(ejlel) = 1//27 I. exp(-yz/Z)dy = erfcl(Z ;)  (3.22b)
zc1
where
Zsl = 7 xl/'(NoTs/ZH
= JZTS/No[Js/Z (Cosel4 Sinsl) - Jﬁ:Sin(ej+ 91)]
{3.23a)
ch = - yI/J(NOTS/Z)
= J?TS/NOEJEYZ (Cosel+ Sinel) + /ﬁ;Cos(aj+ 91)].
(3.23b)

Rewriting yields

Zoy = - /2TS/N°[JE Sin{e;- =/4) + J3;51n(ej+el)] (3.24a)
Zoy =¥ JZTS/NOEJE Cos{e,- n/4) + Jﬁ;Cos(aj+el)]. (3.24b).

Thus summarizing the expressions for PEl(ej):

where

Poplegleg) = erfe(zy)
Pc1(°j|°1) = erfc(chl
and

zSl = - JZTS/NDEJ? Sin(el- m/4) + /3;Sin{ej+el)1
2.4 = - JET;}NO[J?‘Cos(el- r/4) + Jﬁ;COS(ej+sl)]
(3.25)
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3.1,2 Calculation of PEZ(aj)

- Prob[ZI<0; ai=1,b1=-1] Prob[ZQ<0; a1=1,b1=-1]
(3.26)
i.e.,
PEz(Gj) = [PSZ(ej) + Pcz(aj) = Psz(aj) Pcztej)]
(3.27)
where
Psz(ej) = Prob {[ /s/2 TS(Cosel+ Sinel)-N031nel
+ N;Cose,- Jﬁ;TsSin(ej+ el)J < 0},
(3.28a)
and

Prob {[ Js/2 TS(-C0591+ Sin91)+NQCoseI
+ NISinel+ Jﬁ;TsCos(ej+ al)] < 0}.
(3.28b)

Pcz(ej)

Rewriting (3.28) yields

Psz(ej) = Prob {[NICosel- NQSinel] <
[= /572 Ts(c°sel+ Sinel) + JEETSSin(ej+ al)]},
(3.29a)
and
Pcz(ej) = Prob {[NISin91+ NQCosel] <

[- /s/2? TS(-Cosel+ Sin91) - fﬁgTsch(aj+ 91)]}.
' (3.29b)

Using equations (3.18) and (3.19), equation (3.29)

can be written as
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X
2
Psz(ejlal) = Prob {X < xz} = S fx(x)dx (3.30a)
and
(4]
Pc2{9j|91) = Prob {Y < yz} = S fY(y)dy (3.30b)
Y2
where
X, = [- V/s/2 Ts(Cosel+ Sinel) + JELTSSin(ej+ 91)]
{3.31a)
and
Y, = [- Vs/2 TS(-Cosel+ Sine;} - Jﬁ;TsCos(ej+ el)],

({3.31b)

which further take the form

[« o]
Psz(ejlal) = 1//2x .K expl-x /g)dx = erfe(Z,) (3.32a)
ls2
and oo
Pealejfer) = 1/WZr [i exp(-y2/2)dy = erfe(Z_,)  (3.32b)
Zc2
where
lgp = - XZ/JTﬁ;T;7§T

-\/ET;7H;[J§ Sin(e - 37/4) + /3;Sin(aj+el)] (3.33a)

+ yz/\/(NoT‘S/ZJ

c2
- VTN [/S Cosley- 31/4) *+ J/J Cosles*e))]. (3 33p)

Thus summarizing the expressions for PEZ(Gj)
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PEz(ej)

where:

Psz(sjiell = erfc(Z,)

Pc2‘9jlal) = erfc(Z,,)

and

Zoo = - /2T /N I/S Sinle;- 3n/4) *+ /I Sin(e;*e;)]
Zop = - JEIS7N0[JE'C05(91- 3n/4) + /3;Cos(ej+el)]

= [Psz(ej) + Pcztej) - Psz(ej) Pcz(ej)]

(3.34)

3.1.3 Calculation of PE3(ej)

PEB(ej)
i.e.,

PE3(9j)
where

Ps3(ej)

and Pc3(ej)

- Prob[21<0; ai=-1,b.=1] Prob[ZQ<0; ai=-1,b1=1]

1
{3.35)

[PSB(QJ) + PCB(ej) - PS3(9j) Pc3(9j)]
{3.36)

Prob.[[ /572 T(-Cose - Siney)-NoSine,
* NjCose - VI T Sinle;+ 6;)] < 0},
(3.37a)
Prob {[.JS/Z T (Cose,- Sinel)’fNQCose1
+ N;Sine,+ /35T5005(9j+ ;)] < q}.
(3.37b)

Rewriting (3.37) yields
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"

Prob {[NICosal- N051n91] <
[+ /s/2 Ts{Cosel+ Sinel) + JihTsSin(ej+ 91)]},
(3.38a)

Ps3(ej)

Prob{'[NISinel+ NQCosel] <
[- /s/2 TS(Cosel- Sineq) - JE;TSCOS(Bj+ 91)]}.
(3.38b)

and PC3(ej)

Using equations (3.18) and (3.19), equation (3.38)

can be written as

P53(9J.[91) = Prob {X < x3} = T fylx)dx (3.39a)
X3
Y3
and Pc3(°jl°1) = Prob{‘f < y3} = S fY(_y)dy (3.39h)
-0
where
X3 = [- ¥s/2 TS(Cosal+ Sinel) + /ﬁ;TSSin(ej+ 91)]
(3.40a)
and Y3 = [- Vs/2 TS(Cosel- Sinel) - /5;T5C05(9j+ 91)3

(3.40b),

which further take the form

o0
P53(aj|91) = 1/J?; ) exp(-xz/Z)dx = erfc(Z 3) (3.41a)
z
sjm
2
and P yles|e;) = 1//27 ] expl-y*/2)ay = erfelz g). (3.410)
Z
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where,

~
|
+

¢3 = * X3/{(N T /2)
= + JZTS7N0[-J§'Sin(el+ 57/4) + Jﬁ;Sin(aj+el)] (3.42a)

=+ V2T /N [~/ Cosley+ 5x/4) + /I Cosles*ey)]. (3 42p)

+

Thus summarizing the expressions for PE3(ej)

PE3(ej) = [Ps3(ej) + Pc3(ej) - Psa(ej) Pc3(ej)]

where:

Pss(QJIQI) = er‘fC(Zs3)

Pc3(ej191) = erfc(2c3)

and

Zo3 = V2T NGI-/5 Sinley+ 51/4) + /T Sinle;+e;)]

ZC3 = .{ZTS/No["\f? COS(91+ 51’[/4) * B/J—(-)COS(Bj+91)]
{3.43)

3.1.4 Calculation of PE4(aj)

PE4(ej) Prob[ZI<0; ai='1’bi='1] + Prob[ZQ<0; ai=~1,bi=-1]
= Prob[21<0; ai=-1,bi=-1] Prob[ZQ<0; ai=“1’bi='1]

(3.44)

(3.45)
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where

—
I

= Prob{;[ vVs/2 TS(-—Cosel+ Sinall-NQSinel
+ NICosel- Jﬁ;TsSin(ej+ 91)3 < 0},
(3.46a}
Prob {I Js/2 T (-Cose,- Sinel)+NQCose1
+ NySine,* /E;TsCos(aj+ 8,01 < o}.
(3.46b)

s4(°j

and Pc4(9j)

Rewriting (3.46) yields

P .(s.)

s4' 73

Fa

Prob {[NICosel- MQSinell

[+ /s/2 T (Cosey~ Siney) * JE;T551n(ej+ el)]},
(3.47a)

and Pc4(ej) = Prob {[NISinel+ NQCosall

[+ /s/2 Ts(Cosel+ Sinel) = Jﬁ;TsCos(ej+ al)]}.
{3.47b)

"

Using equations {3.18) and (3.19), equation (3.47)

can be written as

8a
Ps4(°ji°1) = Prob [X < x4} = I fx(x)dx {3.48a)
Xg
and i
Pc3{ej 91) = Prob'{Y < y3} = ‘I fY(y)dy (3.48b)

Y3

where
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[+ /s/2 TS(C0591~ Sinel} + JE;T551n(ej+ 91)]

X4 =
{3.49a)
and yqg = [+ {s/2 TS(Cosel+ Sinel) - Jﬁ;TsCos(ej+ 91)]
(3.49b)
which further take the form
00
P54(ej|al) = 1//Z« g exp(-x2/2)dx = erfc(Z )  (3.50a)
z54
) 2
and  Pegleg|ey) = 1//2x j- exp(-y®/2)dy = erfe(Z_,)  (3.50b)
zc4
where
254 = + x4/J(N0TS/2)
=+ V2T /N [-/s Sinley+ 7x/4) + /I Sinle;*e;)] (3.51a)
and Zc4= +y4/V(NDTS/2)

H

+ JZTS/N°[+JE Cos(e,* 7n/4) - Jﬁ;Cos(ej+91)] (3.51b)

Thus summarizing the expressions for PE4(9j)

PE4(Bj) = [P54(aj) + PC4(ej) - P54(Bj) PC4(ej)]

where

Ps4(aj|91) = erfc(Z,)
Pc4(°j|°1) = erfcl(Z,y)
and

Igg = V2T /N L-/5 Sinfer* Tx/4) + /I Sin(e;+e))]
¥2T5/N0[+f; c05(91+ 7?/4) - JU;COS(Gj+91)]o
{3.52)

O
Pw
i
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Using the end results of the subsections 3.1.1
through 3.1.4, the expression for the average probability
of symbol error PE(ej) for symbol intervals which are

jammed, can be written from equation (3.13) as:

PEij) = 1/4EPE1(ej) + PEz(aj) * PE3(ej) # PE4(°j)]
(3.53)
This conditional probability value is calculated
assuming that 6 and ej are not random, but known
quantities. However, this is not true in practice.
Proceding one step further, the probability conditioned on

the jammer phase 85 is given by averaging (3.53) over the

density distribution of P fel(el).

Hence,

tq
PE(°j) = 1/4 [ [le(ej)+PE2(ej)+PE3(ej)+PE4(ej)]feltel)del
T (3.54)

Finally, the unconditioned average probability is
obtained by averaging PE(ej) of (3.54) over the uniform
distribution of ej between -» and +x.

This yields

tqg tq

1
PEJ = 5o g f [PEl(ej)+PE2(ej)+PE3{ej)+PE4(ej)]fegel)deldej
=% = (3.55)



3.2 Calculation of Bit Error Rate Probability

For a QPSK signal, the symbol time TS is twice the

bit time T The bit energy is given by

bl
(3.56)
Therefore

STS/N0 = ZSTb/N0 = Z(Eb/NO) (3.57)

The factor (Eb/NO) is the signal to background noise

ratio and is denoted as SNR for simplicity.
Hence, ST /N = 2{SNR) {-3..88)
Furthermore, from equations (2.6) and (2.7)

J /S = J/aNS§ (3.59)

0

The total number of frequency hops, N is given by

=
[}

H/(l/TS) = WTs = ZNTb (3.60)

where, W total hop frequency band and

(1/7)

width of individual frequency slot
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Substituting (2.60) in (2.59)
JO/S = (J/W)/ZaEb = l/ZQ(Eb/NJ)

where the quantity (J/W) represents the effective jammer power
spectral density in the hop band and is denoted by NJ. The
factor (Eb/NJ) represents the signal to jammer power

ratio and is denoted as SJR for simplicity. This yields

JO/S = I/ZQ(SJR}

L

Further, representing zsl’ ch, 252, zc2’ 233,
Zc3’ 254, and Zc4’ interms of SNR and SJR, their

expressions take the form:

Z51 = 2 v¥SNR [-Sin(al- v/84) - J1/2a(SJR) Sin(ej+91)}
ch = 2 VSNR [+Cos(91- 7/4) + J1/2a(SJR) Cos(sj+el)]

Z, = 2 JSNR [-Sin(91~ 3r/4)

Zc2 = 2 JSNR [-Cos(el- 3r/4)
253 = 2 /SNR [-Sin{91+ 5x/4) + V1/2a(SJR} Sin(ej+el}]

Z.3 = 2 JSNR [-Cos(e;* 5x/4) *+ /1/2a(SJR) Cos(e;*ey)]

Y172a(SIRY Sinfes*e;)]
V1/2a{SJR) Cos(ej+el)]

+

Zgg = 2 JSNR [-Sin(ey* 7x/4) V1/2a(SJR) Sin(ej+el)]

J/1/2a(SJR) Cos(e;*e;)]

(3.61)

Zc4 = 2 JYSNR [+C05(91+ 7w/4)
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Using equation {3.55), the unconditioned average
probability of symbol error for symbol intervals which are
Jjammed, PEJ’ can be calculated for different values of

SNR, SJR, and a, where;

SNR
SJR

Signal to background noise ratio

Signal to jammer power ratio and

the fraction of total bandwidth which is

=]
n

continuously jammed

For the fraction (1-a) of symbol intervals where the jammer
is absent, the average symbol error probability PEO is
given by mearly substituting ejzo in the previous

equations upto (3.54). Equation (3.55) now takes the form

tq
1
PEG =3 [ [PElgej)+PE2g°j)+PE3£BJ)+PE4éej)]feigl)del’
-7 (3.62)

where the terms inside the brackets correspond to the same

terms in equation (3.55), except that ej=0 in this case.

Thus the average error probability over all symbols

(jammed and unjammed) is given by



Peo= [ Pyt (l-a)PEol, (3.62)

E

where, P, and PEO are given by equations (3.55) and
(3.62) respectively.

The final step in the characterization of the
performance of frequency-hopped QPSK modulator in the
presence of multitone jamming is the conversion of average

symbol error probability to average bit error probability.

If the information symbols are assumed to be encoded
using a Gray code, the average bit error probability Pb

is then approximated for large SNR by:
(3.63)
where, Py is given by (3.62).

These results can not be reduced mathematically in
terms of elementary functions and their closed form evalu-
ation requires complicated computations and approxi mations.
Hence, numerical methods are used to compute the final
results. The numerical results along with the computer
program used t6 calculate these results are presented in

the appendix.
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These results are used to obtain the performance
characteristics of the FH-QPSK modulator, which are

presented graphically in the concluding section of this

report.

44



45

SECTION IV

PERFORMANCE CHARACTERISTICS AND CONCLUSIONS

The performance characteristics of a partially
coherent FH-QPSK modulator in the presence of jamming is
presented in this section. The performance criteria is the

bit error rate probability.

The probability of error is plotted for different
values of a, as a function of SNR (Eb/No) and SJR
(Ey,/Nj). The factor o is the fraction of frequency
band which is continuously jammed. o =1 indicates full-band
jamming as the worst case, However, in the worst case
jammef strategy, the worst case o for which the bit error
rate probability approaches a maximum occurs for the values

of a between 0 and 0.1.

The performance characteristics for SNR = 4dB and
6dB are shown in Figure 4-1 and 4-2 respectively. The
probability of error, Pb’ is plotted against a, for
different values of SJR. It is seen that for fixed
Eb/N0 and Eb/NJ, and for o« greater than 0.1, the
probability value decreases as a function of a. However,
there exists a value of a between 0 and 0.1, which

maximizes Pb and thus represents the worstcase multi-tone
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jammer situation. The plot is not expanded between 0 and
0.1 due to program limitations. Further, it is also seen
that the probability value decreases as the signal to noise
ratio increases. It can be noticed from both the plots,
that for signal to jammer ratio greater than about 25dB,
the curves tend to trace a horizontal line and approach
each other. This indicates that the effect of jammer is
significantly reduced for SJR greater than about 25dB., In
other words, the jammer effect becomes insignificant for

higher values of signal to jammer power ratio.
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APPENDIX
CALCULATION OF DENSITY FUNCTIONS

This appendix describes the procedure to calculate

the density functions fy(x) and fy(y); where

>
I

(NICose1 - NQSinel) and

-
1]

(NISine1 + NQCosel)

NI and NQ are zero mean Gaussian random variables with
variance NOTS/Z. The density functions of NI and

NQ are given by

2
N S -
fNI(nI) = Wy exD[Z(NOTS/Z)] {A-1a)
—n2
1
qu(nQ) = J??TW;T;7ET exP[?Tﬁ:%;7?T] (A-1b)

Since NI and NQ are Gaussian random variables, X
and Y, linear combinations of NI and NQ are also

Gaussian random variables.
Thus,

(A-2a)
(A-2b)

H
<

E{x)
Ely)

H

CoselE(NI) - SinelE(NQ)

[}
o

SinelE(NI) + CoselE{NQ)
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Var{x) = E(xz)
= E(N?Coszel + NéSinze1 - ZNINQCOSGISinQI)
2 , 2
- (NOTS/Z)CDS 8, * (NOTS/Z)S1n °, - 0
i.e. Var{x) = NOTS/Z (A-3a)
Similarly,
Yar(y) = NOT5/2 (A-3b)

Using equations (A-2) and (A-3), the density functions

fy(x) and fyly) can be written as

2
1 -x
fxx ) = 7w 1L el 7oy {A=3e)
__;jéi___.
fyly) = 73 NT.72 exp[ztuoTS/Z)3 (A-4b)
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ABSTRACT

This report examines the performance of a frequency-hopped
QPSK modulator for a partially coherent communications
system in the presence of jamming environment, The average
bit error rate probabilities are computed and compared as
functions of signal-to-noise ratio (SNR) and signal-to-
jammer power ratio (SJR). Asymptotic results depict that
the effect of jammer significantly reduces for SJR greater

than about 25dB.



