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Abstract 

Dietary nitrate supplementation via beetroot juice (BR) has been shown to have positive 

effects on mitochondrial and muscle efficiency during large muscle mass exercise in humans, 

and more recently on locomotory muscle blood flow (Q̇) in rats. To date, an integrated measure 

of these effects has not been performed in humans. Therefore, we assessed the influence of BR 

on Q̇ and muscle oxygenation characteristics during moderate and severe intensity handgrip 

exercise. Seven healthy men (age: 25 ± 3 yrs; height: 179 ± 4 cm; weight: 82 ± 9 kg) completed 

four constant-power exercise tests randomly assigned to condition (BR or placebo (PL)) and 

intensity (moderate (40% peak) or severe (85% peak)). Resting mean arterial pressure was 

significantly lower after BR compared to PL (79.3 ± 5.8 vs 86.8 ± 6.7 mmHg; p < 0.01). All 

subjects were able to sustain 10 min of exercise at moderate intensity in both conditions. BR had 

no significant effect on exercise tolerance during severe (342 ± 83 vs 382 ± 138 s, p = 0.382). 

Brachial artery Q̇ was not significantly different after BR at rest or any time during exercise in 

either intensity. Deoxygenated-[hemoglobin + myoglobin] was elevated at min 2 & 3 for 

moderate (p < 0.05) and throughout severe exercise (p = 0.03) after BR. The estimated metabolic 

cost (V̇O2) was not significantly different during either intensity after BR. These findings support 

the notion that an acute dose of BR may be valuable to reduce blood pressure in young adults, 

but revealed that it does not augment Q̇ or V̇O2 during small muscle mass handgrip exercise. 
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Chapter 1 - Introduction 

Dietary nitrate supplementation (including beetroot juice (BR)) is well documented to 

have positive effects during large muscle mass exercise in man (7, 61, 72, 100, 105). These 

effects include lowering the O2 cost, or oxygen consumption (V̇O2) (7, 72) and/or reducing the 

ATP cost of work (5, 39) during submaximal exercise, which may translate to the enhanced 

exercise tolerance found during severe intensity exercise. The precise mechanism(s) for these 

effects still remains uncertain, but they are facilitated through the reduction of the dietary nitrate 

(NO3
-
) to nitrite (NO2

-
) in the mouth (75). Once absorbed into the circulatory system, NO2

- 
is 

readily converted to nitric oxide (NO) in hypoxic (27, 95) and acidic (77) environments, which 

may be present at the exercising muscle. 

 A fundamental role of NO is that of a potent vasodilator (32, 35, 89); as such it has been 

demonstrated that BR supplementation augments blood flow (Q̇) to the working muscle. This 

was first experimentally investigated in rats during submaximal treadmill running (37). These 

authors found that BR supplementation resulted in an increased Q̇ to the hindlimb, despite a 

lower exercising mean arterial pressure (MAP). These findings demonstrate that BR may change 

the regulation of Q̇ relative to V̇O2, as V̇O2 and Q̇ generally increase in proportion to one another 

across a range of exercise intensities (1, 84). In a follow up study, Ferguson and colleagues (36) 

repeated the previous experiment using both a low (0.3 mmol·kg
-1

·day
-1

) and high (1 mmol·kg
-

1
·day

-1
) dose of BR and found no difference in Q̇ or microvascular partial pressure of O2 (PmvO2) 

with the low dose. Importantly, the high dose yielded similar findings to the original study with 

an increased Q̇, while further providing evidence of increased PmvO2, supporting that BR 

increased Q̇ relative to V̇O2. Recently the effect on Q̇ was investigated in human subjects (19, 

62), but no change in brachial artery blood flow (Q̇BA) was found in healthy, young men and 
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women during moderate intensity handgrip exercise, consistent with the findings of low dose BR 

in rats. 

These data in humans may provide valuable insights into the efficacy of BR as a therapy 

for patient populations, because handgrip exercise (with duty-cycles ≥ 50%) provides an 

opportunity to measure the effects of BR in an exercise model in which the O2 delivery is 

inadequate to support the V̇O2 requirements due to mechanical impediments to Q̇ (15, 99). This 

condition of reduced O2 delivery is experienced in several patient populations (e.g., chronic heart 

failure (CHF), chronic obstructive pulmonary disease (COPD), and diabetes). Additionally, 

handgrip exercise may prove useful for investigation of these patient populations directly 

because of the reduced dependence on central cardiorespiratory adjustments, specifically of 

cardiac output. 

Importantly, previous studies in humans using BR provided no measure of V̇O2, PmvO2, 

or fractional O2 extraction (which can be estimated noninvasively via deoxygenated-[hemoglobin 

+ myoglobin] (deoxy-[Hb + Mb]) and used to estimate V̇O2) (15, 29, 31, 66). Moreover, when 

measurements were made, it was after fixed durations of moderate intensity submaximal work, 

leaving the effects of BR on exercise tolerance and the resulting end-exercise variables unknown. 

These latter findings carry important implications for patient populations, such as CHF, as 

accumulating evidence suggests BR may be effective for enhancing quality of life through 

improvements in exercise and/or daily activity tolerance (106).  

Therefore, the purpose of this investigation was to resolve whether or not BR 

supplementation provided beneficial effects in small muscle mass exercise at both moderate and 

severe exercise intensities. Specifically, we tested the hypotheses that with BR supplementation, 



3 

1) Q̇BA would not be significantly different during exercise; 2) V̇O2 would be lower during 

exercise; and 3) tolerance of exercise (Tlim) would be increased during severe intensity exercise. 
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Chapter 2 - Review of Literature 

 Theory of measurements 

 Doppler ultrasound 

 Doppler ultrasound is a powerful tool to noninvasively and precisely measure vascular 

hemodynamics across a variety of vessels, exercise modes, exercise intensities, and importantly 

across the crucial rest-to-exercise transition. Instantaneously and continuously measuring Q̇ for 

kinetic analysis and without stopping exercise was a significant advance of methodology for 

exercise physiologists over the previous standard, venous occlusion plethysmography. The value 

for Q̇ is calculated using the variables directly measured by the ultrasound, vessel radius (r) and 

mean blood velocity (Vmean) in the formula: Q̇ = π r
2 

Vmean. The measurement of r is taken in B-

mode, or 2D mode, which utilizes the transducers of the ultrasound probe to scan a plane through 

the interrogated tissue. This mode allows for accurate measurement of vessel diameters, which 

are subsequently converted to r by dividing the diameter in half.  

 The measurement of Vmean is taken in pulsed wave Doppler mode. This mode takes 

advantage of the Doppler Effect and the interaction between the emitted sound waves and red 

blood cells (RBCs). Briefly, the frequency of the waves will be altered based on the direction of 

travel and velocity of the RBCs. If the RBCs are moving toward the probe, the frequency will 

increase with further rise compounded by their velocity. If the RBCs are moving away from the 

probe, the frequency will decrease and this drop will be further exacerbated by their velocity. 

This allows real time measure of the pulsatile nature of Q̇ and gives researchers the ability to 

distinguish between antegrade and retrograde flow. The strength of these signals are maximized 

by controlling the angle of insonation (< 60°) as the above phenomenon requires movement 

toward or away from the probe. 
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 Near infrared spectroscopy 

 Near infrared spectroscopy (NIRS) provides a measure of microvascular oxygenation 

characteristics with great accuracy and temporal resolution. This is accomplished by 

interrogating the tissue of interest with light composed of visible and near infrared (NIR) 

wavelengths and measuring the light that is able to traverse the tissue. The range of viable 

wavelengths has been defined at the upper limit of approximately 1000 nm due to the overriding 

absorption by water and at the lower limit of about 650 nm due to the vast absorption by 

hemoglobin (Hb). Many substances present in human tissue have well documented absorption 

spectra at NIR wavelengths and importantly have variable concentrations during exercise, of 

note to this investigation are oxygenated hemoglobin and myoglobin (Mb) (oxy-[Hb + Mb]), 

deoxygenated hemoglobin and myoglobin (deoxy-[Hb + Mb]), and the summation of these 

variables in total hemoglobin and myoglobin (total-[Hb + Mb]). The presence of oxygen alters 

these absorption characteristics and allows the technique to estimate the oxygenation 

characteristics of the tissue. Sampling at a rate of 50 Hz, the OxiplexTS (ISS, Champaign, IL, 

USA) used in the current study, allows for accurate kinetic analysis of NIRS signals. 

 The NIRS technique is not without limitations as it must deal with unresolved questions 

regarding the effect of adipose tissue thickness (ATT) on the signals, the contribution of Mb 

during exercise, and the effect of scattering within the tissue (38). Scientist have become aware 

of the negative effects of ATT on NIRS signal strength and some have proposed corrective 

formulas (12), but there are still questions concerning the anatomical and physiological make-up 

of the tissues underlying the NIRS probe. The deleterious effects of ATT have been addressed in 

the current study by selecting handgrip exercise and observing the oxygenation status of the 

flexor digitorum superficialis (FDS), which regularly has a low ATT compared to sites in the 

legs and allows for complete description of the active muscle.  
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While NIRS is unable to differentiate the contribution of Hb from Mb to oxygenation 

characteristics, studies have made effort to reveal their influence on deoxy-[Hb + Mb] and total-

[Hb + Mb]. These studies suggest that while Mb may contribute 80% of the NIRS signal, it does 

restrict the interpretation of NIRS measurements. The time-course change of deoxy-[Hb + Mb] is 

similar to that of the microvascular partial pressure of oxygen (PmVO2) and remains a viable tool 

to index local O2 extraction (66, 96). The increase in total-[Hb + Mb] with exercise can be used 

as an indication of microvascular hematocrit (28) because the volume of Mb remains unchanged 

and appears to match the increase of microvascular hematocrit of in vivo models (65). 

Scattering of photons is a limitation of the NIRS measurement if the equipment used does 

not account for this effect. Briefly, scatter is the chaotic deflection of light particles as they pass 

through and interact with substances in the environment. An increase in scatter results in an 

increase in the path length of the photons, leading to artificial increases in the absorption of the 

photons. The largest source of scatter in this study is the melanin of the skin and to a lesser 

extent bone tissue. The NIRS system used in the current study corrects for this scatter by use of a 

frequency-domain multi-distance technique that alters the frequency and intensity of the emitted 

light as well as the distance between the emitters and sensors to develop a real-time scattering 

coefficient (μs
’
). This coefficient allows correction of the scattering and absolute quantification 

of the measured variables in micro-molar (μM) concentration. 

 Non-invasive blood pressure 

 The non-invasive blood pressure (NIBP) measurement used in the current investigation 

makes use of the oscillometric measuring principle. To accomplish this, the cuff is inflated to a 

pressure that exceeds systolic blood pressure (SBP) and is slowly released while measuring the 

pressures associated with oscillations in the cuff produced by the pulsating artery. The first and 



7 

last oscillations will approximate the Korotkoff sounds that designate the SBP and diastolic 

blood pressure (DBP), respectively. Using these values the mean arterial pressure (MAP) can be 

calculated as 1/3 (SBP – DBP) + DBP. The two-handed ergometer used in the current 

investigation precluded the use of the brachial artery and necessitated the use of the posterior 

tibial artery. To account for the increased hydrostatic pressure in the ankle while seated, a 

correction factor was used based on the distance between the heart and ankle which equated to 

subtracting 76 mmHg per meter difference (42). Pilot work in our laboratory validated the 

correction factor with measurements taken from the ankle and arm at heart level while the 

subjects were seated at the ergometer. 

 Exercise: Stress, parameters, and kinetics 

The majority of physiological systems in humans have evolved with the function to 

maintain homeostasis in the face of a wide array of stressors. Exercise is a common, highly 

taxing stress imposed on the body that requires the systems to sustain energy supply and ATP 

concentration (14), regulate acid-base balance (54), and regulate core body temperature (86). 

Commensurate with the first contraction, ATP demand increases instantaneously and is supplied 

by the immediate and anaerobic energy pathways. These pathways are limited in capacity and 

thus the ATP must be supplied by alternative pathways as exercise continues, specifically 

oxidative phosphorylation. Oxygen uptake (V̇O2) measured at the mouth is a vital tool for the 

interpretation of whole body and synergistic muscle group performance during exercise as it has 

been shown to represent oxygen uptake at the muscle (V̇O2m) (9). 

Central to the understanding of V̇O2 is the Fick principle, which describes V̇O2 as the 

product of cardiac output (CO) and the arteriovenous difference (a-v̄O2). As exercise continues 

or increases in intensity, the parameters of the Fick principle adjust accordingly to match the 
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metabolic demands. Any given increase in V̇O2 will be the result of an increase in CO, increase 

in a-v̄O2, or a combination of the two. The increase in CO is accomplished via central regulation 

with increases in heart rate (HR), stroke volume (SV), or a combination of both. The increase in 

a-v̄O2 is accomplished via a maintained arterial O2 content (in most instances) and a decrease in 

venous O2 content, indicative of an increased O2 extraction by the active muscle. Small 

adjustments to the parameters allow characterization of V̇O2m as the product of blood flow (Q̇) 

and a-v̄O2. These muscle parameters are regulated in the same fashion as whole body V̇O2, with 

the further emphasis of resistance (R) or vascular conductance (VC) influencing Q̇, which will be 

described in further detail below in the control of blood flow section. 

Intensities below critical power (CP) (57) allow variables including V̇O2, Q̇, lactate ([La
-

]), pH, and phosphocreatine (PCr) to reach steady-state values before precipitous increase or 

decrease to levels that induce failure (58, 83). Exercise performed at intensities below CP will 

result in kinetic responses to steady-state lasting from seconds to minutes depending on the 

variable measured (45), the intensity of exercise (56), and the training status of the individual 

(10). Investigation of these variables in exercising forearms (53) revealed similar kinetic 

responses as Grassi et al. (45) found in lower body exercise. 

 Heterogeneity of Q̇ during active hyperemia 

 During the transition from rest to maximal intensity exercise CO increases 5- to 6-fold 

that of resting values.  This augmented Q̇ during exercise, or active hyperemia, is not evenly 

distributed within the body. Areas of high demand (the active, exercising muscle) receive a 

substantial proportion of the CO (approximately 75-85%), increasing Q̇ up to 100-fold that of 

resting values in individual areas and muscles. Even within the exercising muscle there exists 

important heterogeneity between the recruited regions and different muscle fiber types (68). By 
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prioritizing the distribution of Q̇ to actively working muscle, the body ensures adequate O2 

delivery and the ability to sustain the effort (48, 49). Acknowledging this understanding, when 

the system is observed as whole body or limb exercise, the heterogeneity appears homogenous 

with Q̇ and V̇O2 expressing a linear relationship from rest through increasing exercise intensity 

(1, 41, 84). Therefore, the next sections will describe the main factors influencing the control of 

Q̇ at the onset of contraction and during continuous exercise with a universal view of the system. 

At the onset of exercise Q̇ shows a biphasic increase with an initial rapid portion that plateaus at 

approximately 10 seconds (phase 1) and a second increase that begins around 20 seconds and 

progresses to the steady-state or maximal value at a slower rate lasting up to 2 minutes (phase 2). 

 Rapid increase of Q̇ at onset of exercise 

 Q̇ is defined using a variation of Ohm’s law, stating Q̇ is equal to the pressure gradient 

across a segment (ΔP) multiplied by VC. As a liquid, blood conforms to the laws of physics and 

will flow from an area of high pressure to one of low pressure. These areas are typically 

measured as the arterial (Pa) and venous (Pv) pressure on either side of a muscle bed. 

Mathematically VC is defined as the inverse of R (1/R) and in theory is the ease of flow through 

the vasculature. Therefore, Q̇ can be augmented by increasing ΔP, increasing VC, or a 

combination of the two.  

There are two prevailing hypotheses on the mechanism for phase 1 including the muscle 

pump and rapid vasodilation. The muscle pump theory suggests that with muscle contraction the 

increase in intramuscular pressure leads to compression of the veins consequently shunting the 

blood out and toward the heart. This venous emptying reduces Pv and increases the ΔP, thus 

augmenting Q̇ (8, 82). This mechanism is particularly valuable during upright exercise as 

standing posture increases the hydrostatic column on venous blood returning to the heart. It has 
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been suggested that the pumping action of the muscles contributes more than 30% of the energy 

needed to circulate blood in humans (92) and 60% in rats (73). The hydrostatic pressure appears 

to be required to elicit any increase of Q̇ as shown by the removal of an apparent muscle pump 

effect when the limb is elevated above heart level both in the leg (103) and the forearm (90, 98). 

Muscle contraction frequency is thought to have a more prominent effect on the muscle pump 

than the intensity of the contraction (73, 87), although contractions of sufficiently high intensity 

have been shown to impede Q̇ during exercise (76). The muscle pump is not without controversy 

as studies have shown no muscle pump effect on Q̇ when the vasculature is previously 

maximally dilated (47) or prevented from dilating during contractions (46).    

The rapid vasodilation theory suggests that Q̇ is increased at exercise onset due to a rapid 

increase in VC stimulated by mechanical factors, vasodilatory products of muscle contraction, or 

some combination of the two. These mechanical factors include myogenic response to vessel 

compression and lengthening. Muscle induced vessel deformation elicits endothelium-dependent 

and -independent dilation (25, 78) which may be crucial to the rapid Q̇ increase at exercise onset, 

both independently via the increased VC and in combination with the muscle pump as suggested 

by the two studies of Hamann et al., (46, 47). Clifford et al., (25) suggest this compression 

induced dilation, rather than the artificial muscle pump, may account for the increased Q̇ shown 

by Tschakovsky et al., (98) even in the presence of ideal muscle pump circumstances. These in 

vitro studies (25, 78) suggest a time-course of 5-7 s for the mechanically induced dilation, but 

when studied in the human forearm this dilation was found to occur rapidly within 1-2 cardiac 

cycles (64, 97). 

There are many vasodilatory substances that have been shown to impart effects during 

the onset of skeletal muscle contraction with varying time-courses and effectiveness. These 
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include adenosine and ATP (18, 34), potassium (K
+
) (33, 46), nitric oxide (NO) (18, 20), and 

prostaglandins (PG) (11, 79). Similar to the mechanically induced rapid vasodilation, the 

metabolically induced vasodilation has opposition because of an occasional delay that could 

negate the rapid augmentation of Q̇. A study that used direct application of vasodilators (104) has 

suggested a time delay of 5-12 s in animal vessels. While it is easy to discount this hypothesis 

based on this finding, it is important to consider the complexity of the system in which these 

vasodilatory substances exist and that a metabolic demand or change in oxygen pressure (PO2) is 

likely elemental to the dilatory process. This is emphasized by the largely attenuated Q̇ following 

a single contraction when K
+
 flow across a membrane is blocked or concentration is altered (2, 

46).  

 Rise of Q̇ to steady-state or peak 

The second phase of Q̇ augmentation is a matching phase during which Q̇ is regulated in 

an attempt to match the metabolic demand. This matching is critical to the health of cells as 

hyperoxic and hypoxic environments have been shown to increase the rate of reactive oxygen 

species (ROS) production (22).  Phase 2 has a slower rate of change relative to phase 1, but can 

see much greater absolute changes being influenced by the mass of the active muscle, exercise 

intensity, and environmental factors. Phase 2 is thought to be largely driven by the presence of 

vasoactive substances released locally consequential to metabolic increases and mechanical 

activation. Importantly, these vasodilators act to attenuate the local sympathetic vasoconstriction 

caused by the increased systemic sympathetic nerve activity which accompanies physical activity 

and exertion. There are many vasodilatory substances that have been shown to impart effects 

during skeletal muscle contraction with varying time-courses and efficacies including adenosine 

and ATP (18, 34), potassium (K
+
) (33), nitric oxide (NO) (11, 26), and prostaglandins (PG) (11, 
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79). The predominant determinant of this control remains controversial and is currently under 

heavy investigation, but a general consensus supports redundancy between the dilators. 

However, the vasodilator of interest to the present study is NO and will be discussed further 

below. 

 Sources of NO 

 Endogenous production 

 Skeletal muscles in all mammals contain enzymes whose function is to produce NO. 

Called nitric oxide synthases (NOS), these enzymes make use of L-arginine and oxygen to 

produce NO (81). There are three forms of NOS that have been identified, with the most 

abundant and active being neuronal NOS (nNOS) (91). The function of NOS is greatly 

attenuated when oxygen availability is reduced, which may explain the lower NOS function 

shown in CHF and advanced age. Once produced, if not utilized quickly, NO is rapidly 

scavenged by hemoglobin, myoglobin, and free radicals. This suggests NO is a powerful, but 

local signaling molecule. 

 Nitrite to NO 

 For many years, nitrite (NO2
-
) was considered an inactive ion. Recently, it was 

discovered that NO2
-
 is converted to NO when proper environmental conditions are present. This 

conversion occurs rapidly in hypoxic (27, 95) and acidic (77) conditions. Hemoglobin (26, 27, 

52) and myoglobin (52, 95), the primary O2 transporting molecules in mammals, facilitate this 

process. These considerations make the contracting muscle a prime location for this conversion 

to take place. It is possible that this pathway evolved to offset the reduced NO availability (via 

reduced NOS function) imparted by exercise. 
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 Nitrate – NO2
-
 – NO 

  Nitrate (NO3
-
) is present in substantial concentrations in many green leafy and root 

vegetables (e.g. spinach, arugula, lettuce, and beets) (74). Unfortunately, mammals lack the 

pathways to directly make use of this higher form of NO. Commensal anaerobic bacteria present 

in the oral cavity, however, maintain these functions. When NO3
-
 is consumed, some will be 

converted to NO2
-
 while in the mouth, but a majority will be swallowed and proceed to the 

stomach. Once in the digestive tract, NO3
-
 is readily absorbed into the blood stream and begins 

circulating the body. The salivary glands attract and concentrate the NO3
-
 allowing the bacteria 

sufficient time to facilitate the conversion to NO2
- 
(75). The discovery of this pathway introduced 

the possibility of dietary nitrate supplementation to be used as a therapeutic and ergogenic agent.  

 Actions of NO2
-
 in the body 

 The discovery of NO and its critical importance as a signaling molecule in the 

cardiovascular system led to the award of the 1998 Nobel Prize in physiology or medicine to 

Louis Ignarro, Ferid Murad, and Robert F. Furchgott. NO has many targeted areas of effect 

within the body and these have been reviewed in detail elsewhere (see (91)). The effects of 

particular interest to this study are NO’s actions as a potent vasodilator and modulator of 

metabolic efficiency. With NO2
-
 used to increase the opportunity for NO formation, many 

studies have investigated these vasodilatory and efficiency effects in vitro and in vivo.  

 One of the first studies to investigate the vasodilatory properties of NO2
-
 supplementation 

was performed by Modin and colleagues, (77). This study utilized isolated rat aortas exposed to 

physiological levels of NO2
-
 in both neutral and acidic pH conditions. The relaxation was 

augmented by the lower pH conditions and was correlated with the NO release. Two years later, 

Cosby et al., (26) investigated the effects of NO2
-
 in vivo with direct infusion into the brachial 
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arteries of human subjects at rest and during handgrip exercise. Q̇ was significantly elevated 

during both rest and during exercise, and this augmentation remained when NOS function was 

inhibited by L-NMMA.  

 In addition to the vasoactive properties of NO2
-
, accumulating evidence suggests that 

mitochondrial and muscle functions are impacted. The direct impact of NO on mitochondrial 

respiration has been observed since the early 1990s, and appears that NO inhibits the O2 binding 

sites of cytochrome c oxidase by directly competing with O2.  The net outcome of this 

competition is an enhanced efficiency resulting from reduced O2 consumption of the 

mitochondria and maintained ATP production (24). These findings have been further supported 

with the addition of NO2
-
 and deoxygenated myoglobin to the mitochondrial solution (88). These 

findings inspired the work of Larsen and colleagues (72), which tested the effects of a dietary 

NO3
-
 supplement on whole body O2 consumption during cycling exercise. This study was the 

first to reveal that a dietary supplement could reduce the V̇O2 associated with a given work rate 

in humans. Subsequent investigation by Larsen et al., (71) revealed this increase in 

mitochondrial efficiency was attributable to a reduced proton leak across the inner mitochondrial 

membrane. In 2012, Hernandez and colleagues (50) showed that dietary NO3
-
 supplementation 

increased fast-twitch muscle force production through effects on calcium handling and 

sensitivity.  

 Effects of beetroot supplementation 

 Control of Q̇ 

A huge burst of investigations utilizing beetroot (BR) supplementation has happened over 

the last decade. This “hot topic” of research was triggered by the work of Larsen and colleagues 

(72) paired with the high nitrate concentration found in BR (74). It has been demonstrated that 
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BR supplementation augments Q̇ to the working muscle. This was first experimentally 

investigated in rats during submaximal treadmill running (37). These authors found that BR 

supplementation resulted in an increased Q̇ to the hindlimb, despite a lower exercising mean 

arterial pressure (MAP). These findings conflict with the reduced V̇O2 shown with BR 

supplementation in other studies, as V̇O2 and Q̇ generally increase in proportion to one another 

across a range of exercise intensities (1, 84), and may reveal a dissociation of this relationship 

induced by BR. In a follow up study, Ferguson and colleagues (36) repeated the previous 

experiment using both a low (0.3 mmol·kg
-1

·day
-1

) and high (1 mmol·kg
-1

·day
-1

) dose of BR and 

found no difference in Q̇ or microvascular partial pressure of O2 (PmvO2) with the low dose. 

Importantly, the high dose yielded similar findings to the original study with an increased Q̇, 

while further providing evidence of increased PmvO2. Recently the effect on Q̇ was investigated 

in human subjects (19, 62), but no change in brachial artery blood flow (Q̇BA) was found in 

healthy, young men and women during moderate intensity single handed handgrip exercise, 

consistent with the findings of low dose BR in rats. 

 O2 cost during exercise 

 It has been demonstrated that BR supplementation will reduce V̇O2 in a manner not 

unlike that shown by Larsen et al., (72). Bailey and colleagues (7) were the first to show this. 

These authors showed that BR supplementation reduced the V̇O2 during moderate intensity 

exercise, but this reduction was not apparent when exercise was performed in the severe domain. 

Subsequent studies utilizing BR supplementation have yielded mixed results across a variety of 

exercise modalities, with some showing modest reductions in V̇O2 (4, 70, 100, 105), and others 

no change (13, 21, 59, 60) after supplementation. Initial evidence appeared to suggest that BR 

had the greatest effect during moderate intensity exercise and/or in untrained subjects (4, 7, 105), 
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but again this finding has not been universally observed (69, 70, 102). NIRS-derived variables 

have been measured concurrently with V̇O2 in two studies to date (7, 13). Deoxy-[Hb + Mb], 

which represents the microvascular matching of V̇O2 to Q̇, paralleled the change in V̇O2 when it 

occurred (7, 13). 

 The findings covered in this review highlight the value of BR supplementation as 

both an ergogenic and therapeutic aid. However, the studies performed over the last decade have 

shown variance in outcomes, which highlights the need for a greater understanding of the 

underlying physiological effects of BR. This supplement can be prescribed with greater efficacy 

once the specific physiological, environmental, and exercise conditions that provoke the greatest 

effect of the supplement are better understood. 
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Chapter 3 - Methods 

 Subjects 

Seven healthy, recreationally active men volunteered for this investigation (mean ± SD: 

age: 25 ± 3 yrs; height: 179 ± 4 cm; body mass: 82 ± 9 kg). All experimental procedures in the 

present study were approved by the Institutional Review Board at Kansas State University and 

conformed to the standards set forth by the Declaration of Helsinki. Prior to participation in the 

study, all subjects were informed of the protocol, any possible health risks, as well as the 

probable benefits of the study. All subjects provided written informed consent to participate and 

completed a medical health history questionnaire to ensure absence of any known cardiovascular 

or metabolic diseases which would preclude them from the study.  

 Experimental Protocol 

 All testing sessions were performed on a custom-built, two-handed handgrip ergometer 

previously described by Broxterman et al. (15). Briefly, the subjects were seated in an upright 

position at arm’s length from the ergometer with the hands at heart level and directly in front of 

their torso. All sessions were performed utilizing a 50% duty-cycle (1.5 s contraction, 1.5 s 

relaxation) that was maintained via audio cues. All subjects were familiarized with the exercise, 

audio cues, and duty-cycle prior to the first testing session. During the first visit, subjects 

performed an incremental test for the determination of peak power (Ppeak) starting at 1 Watt (W) 

and increasing at 0.5 W·min
-1

. The test was performed until volitional exhaustion or after three 

consecutive contraction cycles in which the subject was unable to maintain the correct tempo or 

complete full contractions. Ppeak was recorded as the highest power obtained in which the 

subjects completed at least 30 s of the stage.  
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The four subsequent visits were randomly assigned to 40 or 85 %Ppeak and performed for 

10 min or until exhaustion, respectively. All testing sessions were separated by at least 48 h and 

subjects were asked to abstain from vigorous activity, food, and caffeine prior to testing for 12, 

3, and 2 h, respectively. Upon arrival to the laboratory, the subjects sat quietly for 10 min, after 

which resting blood pressure measurements and subsequent plasma samples were obtained.  All 

exercise tests were performed at approximately the same time of day (± 1.5 h for each subject) 

between 1100 and 1500 hours. 

 Supplementation 

 The four exercise testing sessions were randomly assigned to either BR or placebo (PL) 

supplementation conditions, creating a randomized, double-blind, crossover study design. In 

each condition, the subjects consumed BR concentrate (2 x 70 ml providing ~13 mmol NO3
-
) or 

nitrate-depleted beetroot juice concentrate PL (2 x 70 ml providing ~0.006 mmol NO3
-
; both 

from Beet it, James White Drinks, Ipswich, UK). Subjects consumed the shots ~2.5 h before 

testing began to allow for maximal expression of plasma NO3
- 
concentrations ([NO3

-
]) (101). 

During the study, subjects were asked to abstain from using mouthwash (44) and toothpaste or 

chewing gum that contained triclosan, as these products serve to reduce the oral bacteria needed 

to facilitate the conversion of NO3
-
 to NO2

-
. Each exercise testing session was separated from the 

others by at least 48 h to allow plasma [NO3
-
] adequate time to return to pre-supplementation 

concentrations (105). Subjects were asked to maintain their normal diet with the exception of 

limiting foods high in NO3
-
, such as spinach and arugula (74). No subjects reported taking any 

multivitamins or anti-oxidant supplements. 
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 Measurements 

 Venous blood samples (5-6 ml) were separated into 1.5 ml Eppendorf tubes containing 5 

μl heparin (concentration 1000U/ml) and centrifuged at 3250 rpm at 4 °C for 5 min. Plasma 

samples were removed into separate tubes, flash frozen in liquid nitrogen, and stored at -80 °C 

until later analysis.  

 The measurements of plasma NO3
-
 and NO2

-
 were performed within 30 min of thawing 

via chemiluminescence with a NO analyzer (NOA 280i, Sievers Instruments, Boulder, CO, 

USA). In order to obtain plasma NO2
-
 levels and to avoid potential reduction of NO3

-
, potassium 

iodide in acetic acid was used as a reductant. This reductant has the ability to reduce NO2
-
 to NO 

but is incapable of reducing higher oxides of nitrogen (i.e., NO3
-
), thus increasing the specificity 

for NO2
-
. Plasma NO3

-
 concentrations were obtained using the same apparatus with the stronger 

reductant vanadium chloride in hydrochloric acid at a temperature of 95 °C. This stronger 

reductant reduces the sum of all nitrogen oxides with an oxidation state of +2 or higher, which is 

predominately NO3
-
 (μM), but also includes both NO2

-
 (nM) and nitrosothiols (nM). 

Blood pressure was measured in the left ankle using an automated patient monitor (S/5 

Light Monitor type F-LM1-03, Datex-Ohmeda General Electric, Findland) which makes use of 

the oscillometric technique. To increase accuracy, the machine utilizes a 3-lead ECG to monitor 

heart rate (HR). During the measurement, subjects were asked remain still and allow their leg to 

relax. A correction factor (pressure = measured pressure – (distance between the heart and ankle 

in meters x 76 mm Hg) was used to adjust for the increased hydrostatic pressure present between 

the ankle and heart (42). Pilot work performed in our lab validated the correction factor with 

measurements taken from the ankle and arm at heart level while the subjects sat at the ergometer. 

The raw blood velocity profiles were measured in the right brachial artery using Doppler 

ultrasound (Vivid 3, GE Medical Systems, Milwaukee, WI, USA) operating in pulse wave mode 
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at a Doppler frequency of 4.0 MHz with a phased linear array transducer probe operating at an 

imaging frequency of 6.7 MHz, and were stored for post-hoc analysis. For all testing sessions the 

Doppler gate was set to the full width of the brachial artery to ensure complete insonation and all 

Doppler velocity measurements were corrected for the angle of insonation, which was adjusted 

to be less than 60°. Measurements were made at least 3 cm above the antecubital fossa to avoid 

bifurcation of the brachial artery. Brachial artery diameters were measured in the transverse axis 

using two-dimensional sonography. 

 Muscle and microvascular oxygenation status were measured noninvasively using a 

frequency-domain multi-distance near infrared spectroscopy (NIRS) system (OxiplexTS, ISS, 

Champaign, IL, USA) positioned over the belly of the left flexor digitorum superficialis (FDS). 

Details of this technique have been described previously (15, 17). Briefly, this device consists of 

one detector fiber bundle and eight light-emitting diodes (LED) operating at wavelengths of 690 

and 830 nm (four LEDs per wavelength). The LED-detector fiber bundle separation distances are 

2.0, 2.5, 3.0, and 3.5 cm. This NIRS device measures and incorporates the reduced scattering 

coefficient (μs’), measured dynamically, to provide absolute concentrations (μM) for deoxy-[Hb 

+ Mb] and total-[Hb + Mb]. The NIRS probe was calibrated prior to each test according to the 

manufacturer’s specifications. The belly of the FDS of the left arm was identified using palpation 

and EMG. The NIRS probe was secured along the belly of the FDS and was wrapped with an 

elastic bandage to prevent shifting of the probe. The placement of the NIRS probe was marked 

with permanent ink for reproducible positioning throughout the study. The NIRS data were 

collected at 50 Hz and stored for post-hoc analysis.  

The V̇O2 (ml O2·min
-1

) of the FDS was estimated for each minute of exercise using the 

technique described previously (15), which integrates deoxy-[Hb + Mb] and Q̇BA. It was 
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assumed that the deoxy-[Hb + Mb] signal reflects exclusively deoxy-[Hb] [we acknowledge that 

the signal contains deoxy-[Mb] as well (28)] and that the entire signal arises only from the 

muscle (i.e., not from any interposing adipose or skin tissue).  With these assumptions the deoxy-

[Hb] may be converted into an estimated V̇O2.  The deoxy-[Hb] values are in units of μmole 

heme/l tissue, where the tissue is assumed to be muscle.  These deoxy-[Hb] units can be 

converted into μmole heme/l blood using the conversion 1.36% capillary blood volume/muscle 

volume [derived from 400 cap/mm
2
, 28.3 μm

2
 CSA, and a coefficient of 1.2 correcting for 

tortuosity and branching of the capillaries (85)].  These units can then be converted into mole 

O2/l blood assuming 1 mole O2/mole heme and further to l O2/l blood using the conversion 22.4 l 

O2/mole O2.  V̇O2 values in l O2/min may then be obtained by multiplying this value by the 

measured Q̇BA values. 

 Data analysis 

Mean blood velocity (V̇mean; cm·s
-1

) was defined as the time-averaged mean velocity over 

each 3 s contraction cycle. Q̇BA (ml·min
-1

) was calculated using the product of V̇mean and vessel 

cross-sectional area (CSA = πr
2
). CSA (cm

2
) was calculated each minute of exercise using 

brachial artery diameters measured at the beginning of each minute. The Q̇BA data were analyzed 

using three consecutive contraction cycles (i.e., 9 s) for rest and at the end of each minute of 

exercise. The NIRS data were analyzed using 1 s mean values that were converted to 30 s mean 

bins for resting values and 9 s time-binned mean values at the end of each minute of exercise and 

at exhaustion. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured 

at least three times at rest and once every 2 min during exercise and were then used to calculate 

MAP. Vascular conductance (VC) (ml·min
-1

·(100 mmHg)
-1

) was calculated using the quotient of 

Q̇BA/MAP, multiplied by 100.  
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Kinetics analyses were conducted for the Q̇BA and V̇O2 data during 85% Ppeak using 6 s 

time-binned mean values over the initial 120 s of exercise and 9 s time-binned mean values at 

180 and 240 s with a mono-exponential model:  

y(t) = y(b) + A(1 – e 
–(t – TD)/τ

) 

where y(t) is the Q̇BA or V̇O2 at any point in time, y(b) is the appropriate baseline before the onset 

of exercise, A is the peak amplitude of the response, TD is the time delay proceeding the increase 

in, and τ is the time constant. 

 Statistical analysis 

 All curve fitting and statistical analyses were performed using a commercially 

available software package (SigmaPlot, Systat Software, San Jose, CA, USA). Differences in 

resting values, kinetic parameters, and Tlim were analyzed using Student’s paired t-tests. 

Differences within condition (i.e., 40% BR and 85% BR) at rest were compared and if no 

differences were found, these values were averaged to represent the mean resting value for that 

condition. All exercising values were analyzed using two-way ANOVAs with repeated measures 

(condition x time) using Tukey’s post hoc tests when main effects were detected. Differences 

were considered significant when p ≤ 0.05. Data are presented as mean ± standard deviation 

unless otherwise noted. 
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Chapter 4 - Results 

 Plasma [NO3
-
] & [NO2

-
] and resting blood pressure 

 Plasma [NO3
-
] was elevated 26-fold over PL after acute BR supplementation (795 ± 76 vs 

29 ± 5 μM, p < 0.001). All subjects demonstrated an elevated plasma [NO2
-
] after acute BR 

supplementation (469 ± 139 vs 69 ± 17 nM, p < 0.001, Fig. 1), resulting in a 5.8-fold increase 

over PL. Resting blood pressure values are presented in Table 1. SBP, DBP, and MAP were 

significantly reduced after acute BR supplementation by 8.4%, 7.7%, and 8.7%, respectively.  

 40 %Ppeak exercise  

 The mean power for 40 %Ppeak was 2.3 ± 0.3 W. All subjects were able to sustain 10 min 

of exercise at 40 %Ppeak in both conditions. Q̇BA increased rapidly from exercise onset in both 

conditions before approaching a steady-state of approximately 285 ml·min
-1

 by 240 s. Q̇BA was 

not significantly different after BR supplementation at rest or at any time during exercise 

compared to PL (Fig. 2). There was no main effect for BR on MAP during exercise compared to 

PL (p = 0.102, Fig. 3), although MAP was lowered by 4.6 mmHg on average throughout 

exercise. There was no effect of BR on VC (p = 0.323, Fig. 3). 

 Deoxy-[Hb + Mb] increased following exercise onset in both conditions, with PL 

showing an overshoot that quickly transitioned to a lower steady-state by 120 s (Fig. 4). The 

overshoot with BR was significantly greater and extended through 120 s (47.4 ± 13.8 vs 42.1 ± 

12.0 μM, p = 0.014) and 180 s (46.3 ± 14.1 vs 42.2 ± 13.5 μM, p = 0.049). However, end 

exercise deoxy-[Hb + Mb] was not different between BR and PL (43.3 ± 9.6 vs 42.4 ± 15.1 μM, 

p = 0.649). Total-[Hb + Mb] was not significantly different after BR supplementation. The 

estimated V̇O2 was not significantly different between BR and PL at any min during exercise or 

at the end of exercise (21.8 ± 12.2 vs 22.4 ± 14.2 ml O2·min
-1

, Fig. 6). 
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 85 %Ppeak exercise 

 The mean power for 85 %Ppeak was 4.8 ± 0.5 W. BR had no significant effect on Tlim 

compared to PL (342 ± 83 vs 382 ± 138 s, p = 0.382, Fig. 5). Q̇BA was not significantly different 

at rest or any time during exercise after BR supplementation. Q̇BA increased at exercise onset and 

attained end exercise values that were not significantly different between BR and PL (369 ± 155 

vs 391 ± 135 ml·min
-1

, p = 0.341, Fig. 2). 

 Deoxy-[Hb + Mb] increased at exercise onset in both conditions, with BR significantly 

elevated over PL for all common time points preceding end exercise (60 – 240 s, p < 0.05). At 

end exercise, BR and PL were not statistically different (54.4 ± 19.7 vs 49.1 ± 14.5 μM, p = 0.07, 

Fig. 4). Total-[Hb + Mb] was not significantly different after BR supplementation, both 

conditions showing a progressive increase toward the end exercise values.  There was no 

difference for estimated end-exercise V̇O2 after BR supplementation (31.0 ± 10.4 vs 30.7 ± 10.9 

ml O2·min
-1

, Fig. 6). 

 Kinetics analyses 

 The results of the kinetics analyses are presented in Table 2. Kinetics analysis of 

V̇O2 was conducted with 5 subjects, as two of the subjects exhibited a response to the onset of 

exercise (in opposite supplementations) which was atypical and determined to be an outlier (≥ 4 

SDs from the mean). BR had no significant effect on Amp, τ, or TD for Q̇BA or V̇O2 following 

exercise onset. Although no significant differences were detected for the Amp (p = 0.06) or τ (p 

= 0.196) of the V̇O2 response, large effect sizes of 1.14 and 0.7, respectively, were found. 
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Figure 1. Resting nitrite concentrations 

Plasma nitrite concentration ([NO2
-
]) for each individual subject (solid lines) and group mean 

(dashed line). Error bars represent SE. *, significantly different from placebo (p < 0.001). 
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Figure 2. Brachial artery blood flow during exercise 

Top: Mean brachial artery blood flow (Q̇BA) at the end of each minute of 40 %Ppeak exercise. 

Below: Mean Q̇BA at the end of each minute of 85 %Ppeak exercise and the limit of exercise 

tolerance (Tlim). In both graphs, filled circles represent placebo and open circles represent 

beetroot supplementation. Error bars represent SE. 
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Figure 3. Mean blood pressure and vascular conductance responses to 40 %Ppeak exercise 

Top: Mean arterial pressure (MAP) taken every 120 s during exercise. Below: Vascular 

conductance (VC) calculated as the product of brachial artery blood flow and MAP every 120 s 

during exercise. In both graphs, filled circles represent placebo and open circles represent 

beetroot supplementation. Error bars represent SE. *, significantly different from placebo (p < 

0.05). The data point for 600 s represents the mean value in the absence of one different 

individual in each condition (i.e., a mismatched n = 6).  



28 

 
Figure 4. NIRS-derived muscle and microvascular oxygenation responses during exercise 

A: 40 %Ppeak exercise Top: Mean deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb + Mb]) 

at the end of each minute of exercise. Below: Mean total-[hemoglobin + myoglobin] (total-[Hb + 

Mb]) at the end of each minute of exercise. B: 85 %Ppeak exercise Top: Mean deoxy-[Hb + Mb] 

at the end of each minute of exercise and at the limit of exercise tolerance (Tlim). Below: Mean 

total-[Hb + Mb] at the end of each minute of exercise and at Tlim. In all graphs, filled circles 

represent placebo and open circles represent beetroot supplementation. Error bars represent SE. 

*, significantly different from placebo (p < 0.05). 



29 

 
Figure 5. Effect of supplementation on tolerance to exercise 

Individual (solid lines) and mean (dashed line) tolerance to exercise (Tlim) responses under both 

supplementations during 85 %Ppeak exercise. Error bars represent SE. 
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Figure 6. Estimated V̇O2 during exercise 

Top: Mean estimated V̇O2 at the end of each minute of 40 %Ppeak exercise. Below: Mean 

estimated V̇O2 at the end of each minute of 85 %Ppeak exercise and at the limit of exercise 

tolerance (Tlim). Error bars represent SE. 
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Table 1. Resting blood pressure 

  Placebo Beetroot 

SBP (mmHg) 133 ± 7 122 ± 8 ǂ 

DBP (mmHg)   64 ± 8    59 ± 7 * 

MAP (mmHg)   87 ± 7   79 ± 6 ǂ 

SBP, DBP, and MAP denote systolic blood pressure, diastolic blood pressure, and mean arterial pressure, 

respectively. Values are expressed as mean ± SD   

ǂ, significantly different from placebo (p < 0.01)  *, significantly different from placebo (p < 0.05) 
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Table 2. Kinetics parameters 

Q̇BA  Placebo Beetroot 

Amp (ml·min
-1

)   258 ± 53 278 ± 81 

τ (s)    46 ± 43    43 ± 26 

TD (s)    4 ± 5   3 ± 4 

V̇O2   

Amp (ml O2·min
-1

)   21 ± 9   29 ± 14 

τ (s)     38 ± 14 31 ± 8 

TD (s)     1 ± 2   4 ± 4 

Amp, τ, and TD denote the primary amplitude, time constant, and time delay, respectively. Values are 

expressed as mean ± SD   
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Chapter 5 - Discussion 

The present study investigated the effects of acute BR supplementation on conduit artery 

Q̇ concurrently with muscle and microvascular oxygenation characteristics during moderate and 

severe intensity handgrip exercise. The acute dosage utilized (~13 mmol NO3
-
), elevated plasma 

[NO2
-
] more than 5-fold higher than that seen with placebo and resulted in significant reductions 

in blood pressure at rest. In agreement with our first hypothesis, and previous findings (19, 62), 

BR had no significant effect on Q̇BA at rest or any time point during moderate or severe intensity 

handgrip exercise compared to PL. The primary novel finding of the present study, in contrast to 

our second hypothesis, was that the V̇O2 was not significantly different after BR during moderate 

or severe intensity handgrip exercise. Additionally, BR had no significant effect on Tlim when 

exercise was performed in the severe intensity domain.  

 Protocol advantages 

 Handgrip exercise provides several advantages over commonly used whole body exercise 

modes (i.e., cycling and running) considering the measurements that can be made. The similar 

fiber type composition of the FDS and vastus lateralis (VL) (40, 55, 94) allows translation of 

metabolic findings between the two. With whole body exercise, measurement of Q̇ (via 

ultrasound) through the conduit (femoral) artery is obstructed due to the dynamic movement of 

the legs and requires the use of invasive techniques such as thermodilution. Conversely, Q̇ can be 

noninvasively and accurately measured from rest to maximal effort during handgrip exercise. 

Similarly, the use of NIRS to measure the oxygenation of the VL and other leg muscles is 

complicated by the presence of a sizable layer of adipose tissue (38) which thus limits 

penetration of the light into only the superficial portions of the muscles. To further complicate 

the interpretation of these signals in the thigh musculature, a distinct spatial heterogeneity of 
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deoxy-[Hb + Mb] has been observed during cycling exercise (67). Handgrip exercise allows for 

the use of NIRS on the active muscle with a reduced relative contamination of the adiposity to 

the overall signal and for the interrogation of the entire active muscle, both of which enable a 

more comprehensive description of the underlying physiology. 

 Effect on plasma [NO2
-
] and blood pressure 

 An acute dose of BR resulted in a 581% increase in plasma [NO2
-
] 2.5 hours after 

consumption, supporting the accumulating evidence that both acute and chronic BR 

supplementation can significantly increase the plasma concentrations of NO3
-
 and NO2

-
 in both 

healthy and patient populations (61, 100, 101, 105, 106) and animal preparations (36, 37). Often, 

although not ubiquitously, the increase in plasma [NO2
-
] is accompanied by a significant 

reduction in SBP, DBP, and/or MAP (for review see (51)). The present study showed an 8% 

decrease in all three variables at rest and a non-significant decrease in MAP during exercise, 

reminiscent of the significant reduction measured in exercising rats (37). Although the effects 

during exercise may have been underpowered in the present study, the effect of BR 

supplementation on blood pressure regulation suggests that BR may be valuable to acutely and 

chronically (at least 15 days (100)) control moderate hypertension. 

 Effect on control of blood flow 

 The discovery of NO and its critical importance as a signaling molecule in the 

cardiovascular system, coupled with the demonstration that dietary NO3
- 
is reduced to NO2

- 
and 

then NO (75), inspired the hypothesis that BR would increase Q̇, particularly in hypoxic and 

acidic tissues such as contracting muscle. Before this was directly tested, Cosby and colleagues 

(26) performed a seminal study that investigated the effect of a direct injection of inorganic NO2
- 

into the forearm vasculature of man, and found the injection increased Q̇BA during both rest and 
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exercise. Later studies investigated the effect of BR on exercise performance and muscle 

oxygenation utilizing NIRS and found deoxy-[Hb + Mb] to be reduced, which was attributed to 

increased blood volume associated with vasodilation (7, 61). Subsequently, Ferguson and 

colleagues (36, 37) discovered that BR supplementation increased hindlimb Q̇, and presumably 

microvascular red blood cell content (63), in a fiber type specific manner in rats. 

 To date, the previous studies (19, 62) and the present investigation that directly measured 

Q̇ in humans, have be unable to replicate the findings of Ferguson et al. (36, 37) or Cosby et al. 

(26) after BR supplementation. It must be noted that the dose of BR given to the rats was much 

greater than that typically administered to humans and was dispersed chronically over 5 days. 

Further, the largest effect was seen in muscles composed of a high percentage of type IIb and IIx 

fibers. The dose administered was designed to account for the 7-fold higher resting V̇O2 that rats 

exhibit compared to humans (80). To match this dosing, the subjects in the present study would 

need to consume approximately 13 servings (~85 mmol NO3
-
) of the supplement utilized. This 

may be excessive because the plasma [NO3
-
] in the present investigation exceeded that of the 

high dose rats by 500% (36). The plasma [NO2
-
] was 22% lower than that in the high dose rats, 

suggesting possible differences in the conversion process between humans and rats, differences 

in the site of intravascular storage of NO2
-
 (30), or an effect emerging as a consequence of the 

chronic supplementation. Although human plasma [NO2
-
] appears steady over 5 days of 

supplementation (100), there is evidence for intracellular changes to protein expression and 

mitochondria with long-term NO2
-
 exposure (16, 23). How these alterations might function to 

increase Q̇ during exercise is currently unclear. 

 Although data are sparse, the fiber type composition of the human forearm flexor muscles 

is closely matched to the composition of the VL with a distribution of 50-60% type II fibers (40, 
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55, 94). This distribution is quite disparate from the hindlimb of the rat, which is composed of 

>90% mixed type II fibers (3). Nevertheless, a recent study found that BR increased peak cardiac 

output and V̇O2 in CHF patients during a supine maximal incremental exercise test (106). 

However, that study was not designed to resolve the spatial distribution of the ~10% increase in 

cardiac output. If BR does favorably affect VC and Q̇ to type II fibers, as suggested by Ferguson 

and colleagues (37), the increased proportion of type II fibers with ageing, CHF, and other 

diseases (43, 93) supports the notion that BR supplementation may be more effective in these 

populations. The absence of an effect during severe intensity exercise in the present study, when 

type II fibers are thought to be recruited more heavily, suggests a more complex relationship 

between plasma NO2
-
 and vascular control than presently appreciated. However, any differences 

in control of the circulation between upper and lower limbs may exacerbate the complexity of 

this relationship. 

 Effect on tissue oxygenation and estimated V̇O2  

 Larsen et al. (72) were the first to show that a dietary NO3
-
 supplement could reduce the 

V̇O2 associated with a given work rate. Subsequent studies utilizing BR supplementation have 

yielded mixed results across a variety of exercise modalities, with some showing modest 

reductions in V̇O2 (4, 7, 70, 100, 105), and others no change (13, 21, 59, 60) after 

supplementation. Initial evidence appeared to suggest that BR had the greatest effect during 

moderate intensity exercise and/or in untrained subjects (4, 7, 105), but again this finding has not 

been universally observed (69, 70, 102). NIRS-derived variables have been measured 

concurrently with V̇O2 in two studies to date (7, 13). Deoxy-[Hb + Mb], which represents the 

microvascular matching of V̇O2 to Q̇, paralleled the change in V̇O2 when it occurred (7, 13).  
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 Given the above, it was surprising that, in the present investigation, deoxy-[Hb + Mb] 

was elevated significantly after BR supplementation at min 2 and 3 during moderate exercise and 

throughout severe intensity exercise. Moreover, the total-[Hb + Mb] during both exercise bouts 

was not significantly impacted by BR supplementation. Changes in total-[Hb + Mb] from rest to 

exercise are thought to reflect the change in microvascular hematocrit (28), in that any change 

from rest to exercise would represent a net change in Hb concentration associated with red cells 

rather than a change in concentration of Mb, which presumably is fixed. To the best of our 

knowledge, the current study is the first to observe an increased deoxy-[Hb + Mb] after BR 

supplementation. When the increased deoxy-[Hb + Mb] is considered in relation to the 

unchanged total-[Hb + Mb] (and Q̇BA), it would suggest an increased fractional O2 extraction for 

the same work being performed. However, there was no difference between the estimated V̇O2 

after BR supplementation in the present study during exercise. It has been shown that duty-

cycles ≥ 50% mechanically constrain Q̇BA and V̇O2 during handgrip exercise (15, 99). This duty-

cycle imposed mechanical limitation may mask any effect of BR supplementation. 

 Effect on kinetics parameters 

 No differences in the absolute amplitude of Q̇BA or V̇O2 were found in the present study, 

but kinetics analyses revealed large effect sizes for the V̇O2 amplitude and time constant after BR 

supplementation. The primary amplitude of V̇O2 over the first 240 s of exercise at 85% Ppeak 

approached a significant increase, before reaching similar end exercise values. These findings are 

in agreement with the speeding of pulmonary V̇O2 kinetics shown during whole body exercise (6, 

13, 59) and the equivalent PmvO2 response discovered in rats (36). The ability to dissociate the 

effects of BR by implementing slow pedal cadence (and presumably high duty-cycle) reported 
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by Bailey and colleagues (6) may provide insight to the inconsistent findings of the efficacy of 

BR, in this regard.  

 Limitations 

 An acute bolus of BR was utilized herein, which showed similar effects on blood 

pressure regulation as seen with chronic supplementations. Chronic supplementation of BR 

augments Q̇ in rats (36, 37); however, in agreement with previous studies in young adults (19, 

62), an acute dose in humans has not yielded the same outcome. As such, future research might 

usefully employ chronic supplementation to determine if multiple days are required to observe 

this Q̇ augmentation, possibly via protein modification (16). Similarly, exercise activating a 

larger muscle mass that still allows accurate measurement of Q̇ (i.e., knee extension) would help 

to determine if the effect of BR is related in some fashion to the size of muscle mass recruited. It 

is feasible that handgrip exercise does not recruit a large enough group of muscles with a 

subsequently large enough bed of vasculature to impact upstream conduit Q̇ measurements. 

Finally, it remains to be determined if the upper and lower body control Q̇ and V̇O2 differently 

during exercise, and if differences that may exist are associated with dissimilar sensitivity to BR. 

We acknowledge that the method used to estimate V̇O2 herein utilizes several assumptions (15). 

We contend that these assumptions, held constant throughout, should not obscure an impact of 

BR on V̇O2. 

 Conclusions 

 The present study reaffirmed previous findings that an acute dose of BR is 

sufficient to lower SBP, DBP, and MAP in young adults, suggestive of its value as a method to 

control moderate hypertension and improve vascular health. However, the beneficial effects 

associated with BR supplementation during large muscle mass exercise were not seen when the 
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exercise was performed in small muscle mass handgrip exercise utilizing a 50% duty-cycle. 

These findings emphasize the limitations to the efficacy and utility of BR supplementation as it 

may have reduced effect during small muscle mass exercises. Similarly, the duty-cycle of a given 

exercise may largely attenuate any potential benefit imparted by BR supplementation as shown 

in the present study and the recent work by Bailey et al., (6). These factors, combined with the 

complex relationship between plasma NO2
-
 and vascular control, may provide insight into the 

varying exercise performance outcomes of BR supplementation. 
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