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Abstract
Intermediate wheatgrass (IWG) is a perennial species and has 
edible and nutritious grain and desirable agronomic traits, includ-
ing large seed size, high grain yield, and biomass. It also has the 
potential to provide ecosystem services and an economic return to 
farmers. However, because of its allohexaploidy and self-incom-
patibility, developing molecular markers for genetic analysis and 
molecular breeding has been challenging. In the present study, us-
ing genotyping-by-sequencing (GBS) technology, 3436 genome-
wide markers discovered in a biparental population with 178 
genets, were mapped to 21 linkage groups (LG) corresponding to 
21 chromosomes of IWG. Genomic prediction models were de-
veloped using 3883 markers discovered in a breeding population 
containing 1126 representative genets from 58 half-sib families. 
High predictive ability was observed for seven agronomic traits 
using cross-validation, ranging from 0.46 for biomass to 0.67 for 
seed weight. Optimization results indicated that 8 to 10 genets 
from each half-sib family can form a good training population to 
predict the breeding value of their siblings, and 1600 genome-
wide markers are adequate to capture the genetic variation in the 
current breeding population for genomic selection. Thus, with the 
advances in sequencing-based marker technologies, it was practi-
cal to perform molecular genetic analysis and molecular breeding 
on a new and challenging species like IWG, and genomic selec-
tion could increase the efficiency of recurrent selection and accel-
erate the domestication and improvement of IWG.

Intermediate wheatgrass [Thinopyrum interme-
dium (Host) Barkworth & D.R. Dewey; 2n = 6x = 42] 

is a perennial grass and is genetically related to common 
wheat (Triticum aestivum L.), belonging to the Triticeae 
tribe of Pooideae (Mahelka et al., 2011). Producing large 
biomass, IWG is among the most productive cool-season 
forage species in the western United States (Harmoney, 
2015). As a perennial species, IWG provides substantial 
environmental services relative to annual grain crops, 
including reduced soil and water erosion, reduced soil 
nitrate leaching, increased carbon sequestration, and 
reduced input of seed, tillage, energy, and pesticides 
(Culman et al., 2013; Glover et al., 2010; Robertson et 
al., 2000). In comparison with annual wheat, IWG has 
a more extensive root system which can capture more 
applied fertilizer and reduce total nitrate leaching by 
86% or more (Culman et al., 2013). Compared with other 
perennial species, IWG also has desirable agronomic 
traits, including ease of threshing and harvesting, large 
seed size and grain yield, and edible and nutritious grain 
(DeHaan et al., 2014; Wagoner, 1990; Zhang et al., 2014). 
Thus, it is promising to domesticate and improve IWG as 
a perennial grain crop.
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The domestication of IWG was initiated by Rodale 
Research Center, Kutztown, PA, in 1983 (Fig. 1). Inter-
mediate wheatgrass was identified as the most promising 
perennial grain crop among nearly 100 species of perennial 
grasses. Seeds were produced with thousand-grain weight 
of 5.3 g on average, and the seeds can be mechanically 
harvested and threshed (Wagoner, 1990). The nutritional 
qualities of IWG are similar to wheat, but IWG has higher 
protein level and higher content of the sulfur containing 
amino acids, and whole flour of IWG grain performed well 
in baked products (Wagoner, 1990). After two cycles of 
selection performed at the Big Flats Plant Materials Cen-
ter (Corning, NY), USDA Natural Resources Conserva-
tion Service, for grain yield and seed quality, the selected 
best plants were passed to scientists at The Land Institute, 
Salina, KS (TLI, Fig. 1). Since 2003, scientists at TLI have 
been working on the domestication of IWG by selection for 
improved yield per head, increased seed size, free thresh-
ing, reduced height, and early maturity. After two cycles of 
selection, the grain yield was increased by about 77% and 
seed size by about 23%, when IWG were grown in solid-
seed plots (DeHaan et al., 2014). In 2011, the University of 
Minnesota (St. Paul, USA) and the University of Manitoba 
(Winnipeg, Canada), joined the domestication effort with 
the germplam from the third cycle of selection supplied by 
TLI (Fig. 1). The approach being used for domestication of 
IWG thus far is pedigree and phenotype-based recurrent 
selection (DeHaan et al., 2014).

Recent advances in sequencing based marker tech-
nologies are dramatically reducing the cost of genome-
wide marker discovery, and these marker technologies 
can be used with any species, even those like IWG 
without previous genomic resources (Davey et al., 2011). 
Genotyping-by-sequencing is one of the most powerful 
marker technologies, has a simple protocol, and is suitable 
to species without reference genomes (Elshire et al., 2011; 
Lu et al., 2013; Poland et al., 2012). With GBS, cost and 
marker number can be easily adjusted by using 96-plex, 
192-plex, and even 384-plex sequencing. Although GBS 
produces large amounts of missing data at these high 
multiplexing levels, imputation methods for ordered 
and unordered markers have been developed and tested 
(Rutkoski et al., 2013; Swarts et al., 2014). Genotyping-by-
sequencing markers have been successfully used to dis-
cover genome-wide markers for developing genetic maps, 
mapping major quantitative trait loci (QTL), association 
analysis, and genomic selection (e.g., Carlson et al., 2015; 
Gorjanc et al., 2015; Iquira et al., 2015; Poland and Rife, 
2012; Russell et al., 2014). Genome-wide markers, com-
bined with statistical tools to associate marker variation 
with phenotypic variation, have the potential to revolu-
tionize plant breeding and domestication.

Genomic selection, introduced by Meuwissen and 
colleagues (2001), is a marker and statistics based selec-
tion method that is being used to improve the effective-
ness of breeding programs in many animal and plant 
species (reviewed by Hayes et al., 2009; Jannink et al., 

Figure 1. The history of intermediate wheatgrass domestication for grain yield. Recurrent selection was performed to improve yield per 
head, seed size, threshability, semidwarf stature, and early maturity. At the University of Minnesota, the breeding germplasm were 
derived from 66 female genets in the third selection cycle of The Land Institute (TLI-C3). The genets from the same female genet were 
designated as a family. Except for eight families each containing <10 genets, 58 half-sib families with 1126 genets were included in the 
genomic selection experiment. The term genet refers to a genetically unique, individual plant in an intermediate wheatgrass population. 
See the Materials and Methods section for details.
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2010). Moderate or high cross-validation prediction 
accuracy was obtained for yield and some other quantita-
tive traits in natural populations or breeding populations 
of maize (Zea mays L.), rice (Oryza sativa L.), wheat, oat 
(Avena sativa L.), rye (Secale cereale L.), barley (Hordeum 
vulgare L.), and switchgrass (Panicum virgatum L.; Asoro 
et al., 2011; Lipka et al., 2014; Rutkoski et al., 2014; Sallam 
et al., 2015; Spindel et al., 2015; Wang et al., 2014; Zhao 
et al., 2012). These studies showed that genomic selection 
has the capacity to improve the efficiency of breeding 
programs by increasing selection accuracy and reducing 
breeding cycle time compared with phenotypic selection.

With high-density single nucleotide polymorphism 
(SNP) markers, all QTL are in linkage disequilibrium 
(LD) with at least one marker, and breeding values can 
be estimated as the sum of all marker effects by regress-
ing phenotypic values on all available markers. Thus, the 
predictive ability of genomic selection is affected by the 
marker density and the decay of LD between markers 
and QTL. Increasing the marker density will improve 
prediction accuracy by capturing more genetic variation 
and ensuring the conservation of marker-QTL associa-
tion (Asoro et al., 2011; de Roos et al., 2009; Heffner et 
al., 2011b; Zhao et al., 2012). Marker density required 
for genomic selection depends on the rate of LD decay. 
Maize has a fast rate of LD decay compared with barley 
or wheat, so a larger number of markers is needed for 
maize (Heffner et al., 2011a; Zhao et al., 2012). In con-
trast, for a biparental population in apple (Malus domes-
tica Borkh.), where 50% of adjacent markers had an LD 
> 0.2, the accuracy of genomic selection with only 2500 
markers was 0.7 (Kumar et al., 2012).

The rate of LD decay is determined by Ne × c, where 
Ne is the effective population size and c is the recombina-
tion rate in Morgans between two markers (Gaut and 
Long, 2003). Domesticated crop species generally have 
higher LD due to smaller Ne through domestication (e.g., 
barley and wheat, ~50; Lorenz et al., 2011; Thuillet et 
al., 2005). In contrast, some plants species with outbred 
reproductive habit have high Ne (e.g., ryegrass [Lolium 
perenne L.] and eucalyptus [Eucalyptus spp.]), and predic-
tion accuracy with genomic selection can be <0.1 (Lin et 
al., 2014). The relatively small Ne of wheat and barley is 
an advantage when applying genomic selection in breed-
ing programs. The smaller Ne and, in turn, lower rate of 
LD decay, allow for higher prediction accuracies than in 
outbred species at the same density of markers. Another 
factor affecting predictive ability is size and composition 
of the training population. The training population pro-
vides the phenotypic and genotypic information to esti-
mate the marker effects. In general, as the size of training 
population increases, the estimated accuracy of marker 
effects increases, and consequently, the predictive abil-
ity for selection candidates is improved (Lin et al., 2014). 
In addition, the relationship of the training population 
to validation individuals effectively determines the pre-
diction accuracy (Habier et al., 2007; Wurschum et al., 

2013). With a stronger relationship, a higher accuracy can 
be obtained.

The type of genomic selection models used is another 
factor affecting the accuracy of genomic selection predic-
tion accuracy. These models include ridge regression-
best linear unbiased prediction (RR-BLUP), Gaussian 
(GAUSS), Bayes A, Bayes B, Bayes Cp, the least absolute 
shrinkage and selection operator (LASSO), Bayesian ridge 
regression, Bayesian reproducing Kernel Hilbert Space 
(RKHS), Random Forest, and others (Desta and Ortiz, 
2014; Endelman, 2011; Perez and de los Campos, 2014). 
The prediction accuracy varies among models due to their 
different assumptions and treatments of marker effects. 
RR-BLUP assigns equal variance to all markers, whereas 
Bayesian models allow unequal variance among markers. 
The RKHS regression and GAUSS models can capture 
both the additive effects and nonadditive interactions 
among loci by adding a kernel function that includes 
interactions among marker covariates into the model 
(Endelman, 2011; Perez and de los Campos, 2014). Ran-
dom Forest takes advantages of all tree nodes to find the 
best prediction model and also capture the interactions 
between loci (Gonzalez-Recio and Forni, 2011). Results 
from various studies have shown that no single model 
uniformly outperforms the others across all traits. The 
performance of models may depend on how well their 
assumption and treatments of marker effects match the 
genetic architecture of traits and the population structure 
(e.g., Bao et al., 2014; Spindel et al., 2015). Many quantita-
tive traits controlled by small numbers of major QTL are 
better suited to Bayesian models than to linear regression, 
such as RR-BLUP (Desta and Ortiz, 2014).

IWG is an allohexaploid outcrossing species. The 
three subgenomes and heterozygosity make it chal-
lenging to develop molecular markers, perform genetic 
analysis and find marker associations for agronomic 
traits. Molecular breeding technologies have not been 
available in the domestication and improvement of 
IWG. Here, GBS was used to discover genome-wide 
SNP markers and the potential of genomic selection was 
explored to improve the breeding efficiency of IWG, 
particularly for seven agronomic traits. The objectives 
of the present study are: (i) to develop a genetic map of 
IWG using a biparental population genotyped with GBS; 
(ii) to characterize seven agronomic traits in the current 
IWG breeding program in Minnesota; (iii) to discover 
genome-wide SNP markers of the breeding population 
and estimate the rate of LD decay using markers com-
mon to both the biparental population and the breeding 
population; (iv) to develop genomic selection models 
using the breeding population, estimate the predictive 
ability using cross-validation, and optimize the marker 
density and the size and composition of the training 
population. Finally, a genomic selection-based breeding 
scheme was proposed to increase the efficiency of recur-
rent selection in IWG breeding programs.
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Materials and Methods
Terminology for IWG: Genet
The terms line and variety for inbred species are not 
proper to define the individual plant of IWG, an out-
crossing species. Genotype can refer to individual plants 
in a population of outcrossing species. But genotype is 
also widely used to define the DNA sequence character-
istics of individual plants, lines, or varieties. Both mean-
ings of genotype have to be used in the genetic analysis 
of IWG. To avoid confusion, we use the term genet to 
refer to a plant genotype, a genetically unique, individual 
plant in an IWG population. Genet is commonly used by 
ecologists to define an organism that grows from a fertil-
ized egg and, therefore, is genetically unique (Beeby and 
Brennan, 2008). Here, we would like to introduce genet 
to the field of agronomy and plant genetics, to refer to 
individual plants in an outcrossing species like IWG.

Plant Materials
An F1 population was derived from a cross between 
C3-2331 and C3-2595. Both parents are from the third 
recurrent selection cycle at TLI. The parents have a large 
difference in seed weight, with C3-2331 producing large 
seeds. This population consists of 178 genets and was 
used to develop a genetic map. The breeding population 
of UMN-C1 was composed of 2560 genets derived from 
66 female genets of the third recurrent selection cycle at 
TLI (Fig. 1). The genets from the same female parent were 
designated as a family. The UMN-C1 genets were planted 
on 0.9 m centers in St. Paul, MN, on 15 and 16 Sept. 2011. 
They were organized in five blocks (A, B, C, D, and E) 
in the selection nursery (Supplementary Fig. S1), and no 
genets were cloned. Each block had 10 genets on aver-
age (ranging from 4 to 26) from each of 66 families. Ten 
genets from each family were planted next to each other 
in the field. For the genomic selection experiment, 58 
families were included in the present study, and the other 
eight families were excluded because of the small number 
of genets (<10) in each family. Fifty-eight families from 
Blocks A and B composed the majority of the population 
for genomic selection. Several families from Blocks C 
and D were also included. Most genets in Blocks C and 
D and all genets in Block E were only used for breed-
ing but not included in the genomic selection study. In 
the genomic selection population, the number of genets 
in each family varied from 11 to 44 (Supplementary 
Fig. S1). The plants were grown during the 2012 and 
2013 field seasons. A total of 67 kg ha–1 N fertilizer was 
applied in April each year when plants resumed growth. 
Weeds were controlled by spraying Dual Magnum (a.i. 
S-metolachlor 82.4%, Syngenta, Basel, Switzerland) at the 
labeled rate in April, with a second treatment in June as 
needed. Weather data were obtained from the Minnesota 
Department of Natural Resources. In general, the 2012 
season had higher temperature but less precipitation, 
except for February, May, and July, than the 2013 growth 
season (Supplementary Fig. S2).

Agronomic Traits
The breeding population was evaluated for seven agro-
nomic traits during the 2012 and 2013 field seasons. 
These traits included heading score, plant height, head 
weight, grain yield, threshability, seed weight, and bio-
mass. Heading score, which is related to heading date, 
was recorded with a 1 to 6 score based on the average 
stage of multiple heads within a plant, when 20% of 
genets in the field have fully emerged seed heads: (1) no 
head emerging; (2) 20% emerged seed heads; (3) 40% 
emerged seed heads; (4) 60% emerged seed heads; (5) 
80% emerged seed heads; and (6) fully emerged seed 
heads. Plant height was measured in centimeters from 
the soil surface to the tip of tallest spike at physiological 
maturity. For head weight, five random seed heads per 
plant were harvested and their weight was recorded. For 
grain yield, all the seed heads per plant were harvest by 
hand and threshed using a laboratory thresher LD 350 
(Wintersteiger, Ried, Austria). The seeds were cleaned 
and their weight was recorded. Threshability was scored 
on a 1 to 4 scale based on the percentage of naked seeds 
by visual observation: (1) < 5% naked seeds; (2) 5–15% 
naked seeds; (3) 15–50% naked seeds; (4) >50% naked 
seeds. About 200 seeds from each plant were dehulled 
using a dehuller (Wintersteiger, Ried, Austria). Fifty 
naked seeds per plant were weighed to calculate seed 
weight. The biomass of individual plants was obtained by 
summing the dry weight of head and stem sections. All 
heads were harvested by hand for grain yield, and their 
dry weight was recorded. Three weeks after seed head 
harvest, the residue was cut from 5 cm to the soil surface 
and measured to record the fresh weight, and 10% of 
the genets were randomly selected to measure the dry 
weight and calculate the water content. For the randomly 
selected 141 genets, the correlation coefficient between 
dry weight and fresh weight was 0.97. By adjusting for 
average water content, the dry residue mass of all plants 
was obtained.

Phenotype Adjustment and Correlation Analysis
Correction for variability between 2012 and 2013 field 
seasons was done by calculating best linear unbiased 
estimates (BLUE) of each genet using the MIXED proce-
dure in SAS (v. 9.3.1; Sallam et al., 2015). All genets were 
used to estimate the year effects for all traits by treating 
years as fixed effects in the mixed model equation. Then 
for all traits, BLUE for each genet in each year was cal-
culated by correcting for the year effect estimated from 
the previous step. Variance components were estimated 
using restricted maximum likelihood (REML) in the 
MIXED procedure in SAS. Broad-sense heritability h2 on 
a genet mean was estimated for all traits using the equa-
tion h2 = sg

2/(sg
2 + se

2/n), where sg
2 is genetic variance, 

se
2 is the error variance that includes G ´ E and residu-

als, and n is the number of years. The adjusted pheno-
typic data (BLUE) were also used to calculate the genetic 
correlation matrix for each trait using the rcorr() func-
tion in the Hmisc package of R (R Core Team, 2014).
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GBS Libraries, Sequencing, and SNP Calling
Young leaf tissues were harvested from each genet from 
the field in St. Paul, MN. DNA was extracted using a Bio-
Sprint 96 DNA Plant Kit (Qiagen, the Netherlands). The 
concentration of DNA was determined using Picogreen 
(Promega, WI) and normalized. A total of 200 ng DNA 
from each sample was used to develop GBS libraries. GBS 
libraries were made following the protocol of Poland et al. 
(2012) using the two-enzyme method, with some modi-
fications described below and discussed further in the 
Results and Discussion sections. Two pairs of enzymes, 
PstI/MspI and PstI/ApeKI, were tested, and PstI/MspI 
performed better for IWG. The genomic DNA from each 
sample was digested with 18U of PstI and 12U of MspI in 
a reaction volume of 30 mL. After digestion, the genomic 
DNA of each sample was ligated with two barcode adap-
tors (in total 0.5 pmol) and one common adaptor (15 
pmol) designed by Poland et al. (2012). Every 48 samples 
from the F1 population and every 96 samples from the 
breeding population were pooled. Each of the two parents 
of the F1 population was considered as six samples to guar-
antee six times sequencing coverage for both parents. After 
cleanup and amplification, size selection was performed 
using LabChip GX (Caliper Life Sciences, MA). The adap-
tor dimers were discarded and only DNA fragments with 
size ranging from 150 to 250 bp were kept for sequencing. 
The sequencing was performed using Illumina HiSeq 2000 
at the University of Minnesota Genomics Center.

The Universal Network-Enabled Analysis Kit 
(UNEAK) pipeline (Lu et al., 2013) was used to discover 
SNP markers with a minimum call rate of 0.5 and mini-
mum minor allele frequency of 0.05. The SNP markers 
were filtered with a goodness-of-fit c2 test (p > 0.01) 
based on the hypothesis that in an allopolyploid (func-
tional diploid) species, the sequencing counts of the two 
alternate tags of a SNP were equal in all heterozygotes. 
Considering the low sequencing coverage of GBS, for a 
heterozygote, one of the alleles might not be captured, 
and consequently, the genotype may mistakenly be 
considered a homozygote. To decrease the rate of false 
homozygotes, the homozygotes with sequencing count of 
alleles less than five for the F1 population and four for the 
breeding population were considered as missing data.

Genetic Map Construction
Two parents had six times deeper sequencing coverage 
than their progeny. Their putative homozygous mark-
ers whose sequencing count was <10 were set to missing, 
and the markers with missing data for both parents were 
removed. According to a pseudo-testcross method, all the 
filtered markers were divided into three groups, nn ´ np, 
lm ´ ll, and hk ´ hk for JoinMap 4.1 (Grattapaglia and 
Sederoff, 1994; Van Ooijen, 2006, 2011b). The other types 
of markers were discarded. To decrease the effect of miss-
ing data on the order of markers, we first used the mark-
ers with <3% missing data to develop a genetic map. The 
minimum LOD (log of the odds) threshold for groups was 
determined by identifying the grouping tree branches with 

stable marker numbers over increasing consecutive LOD 
value. Groups with more than five markers were kept for 
mapping. Marker order and distances were determined 
using the Maximum Likelihood mapping algorithm for 
crossing pollinated populations in JoinMap 4.1. The mark-
ers with both distorted segregation and a distance of >15 
cM to the adjacent marker were removed. The process was 
repeated until the distance of the adjacent markers became 
<15 cM. Using these markers as fixed orders, markers 
with <10% missing data were mapped using the same 
procedure. Finally, markers with <20% missing data were 
integrated into the genetic map. The unit of genetic map 
was converted from “Haldane centiMorgans” to “Kosambi 
centiMorgans” (Van Ooijen, 2011a). The genetic map was 
displayed using MapChart2.2 (Voorrips, 2002).

Collinearity Analysis with Barley and A. tauschii
Barley genome sequences (cv. Morex) were downloaded 
from http://www.mmnt.net/db/0/0/ftp.mips.embnet.org/
plants/barley/public_data/sequences (verified 23 Nov. 2015) 
and were converted into a local BLAST database using 
the BLAST command line tool makeblastdb. The physical 
positions of barley contigs were obtained from ftp://ftp-
mips.helmholtz-muenchen.de/plants/barley/public_data/
anchoring/WGS_ANCHORED_280512_AC2.FA (verified 
23 Nov. 2015). The mapped marker sequences were used 
to align with the barley genome database using the blastall 
command. The threshold of e-value was set as 1 × 10–5 
and the markers matching unique locations of the barley 
genome were retained. For the markers matching multiple 
locations on barley chromosomes, only the location with 
the smallest e-value and whose e-value was 1 × 10–5 times 
smaller than those of the other locations was considered 
as the matched location. The same procedure was used to 
analyze the collinearity between IWG and Aegilops tauschii 
Coss. A total of 429,891 scaffold sequences (KD499222 to 
KD929112) of A. tauschii accession AL8/78 were down-
loaded from GenBank and the genetic locations of scaffolds 
were obtained from Supplementary Table 13 of Jia et al. 
(2013). The collinearity results were visualized with Circos 
v. 0.64 (Krzywinski et al., 2009). The Spearman’s rank cor-
relation test for the matched LG and chromosomes was 
performed using R package pspearman (Savicky, 2014).

LD decay of the IWG Population
The markers with <30% missing data from the breeding 
population were converted to the database format using 
the BLAST command line makeblastdb. The mapped 
markers from the F1 population were used to BLAST the 
database to identify the shared markers between the F1 
population and the breeding population. The threshold 
of e-value was set as 1 × 10–15, and only the markers with 
one nucleotide mismatch or less from both populations 
were kept for subsequent analysis. The shared mark-
ers were used to estimate the LD among markers in the 
breeding population using Haploview (Barrett et al., 
2005). The Hill and Weir formula was used to describe 
the LD decay of r2 (Hill and Weir, 1988).
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Genomic Selection
GBS markers were imputed with Random Forest in the 
R package MissForest, which was verified to be the best 
imputation method for the missing data of unordered 
markers in genomic selection (Rutkoski et al., 2013). To 
assess the capability of the markers to predict agronomic 
traits, nine genomic selection models were tested: RR-
BLUP, GAUSS, Bayes A, Bayes B, Bayes Cp, Bayesian 
LASSO, Bayesian ridge regression, Bayesian RKHS, and 
Random Forest. All statistical modeling was done in R (R 
Core Team, 2014). RR-BLUP and GAUSS models were cal-
culated using function kin.BLUP in the rrBLUP package 
(Endelman, 2011). Bayesian models and the RKHS model 
were calculated using the BGLR package (Perez and de los 
Campos, 2014). Random Forest was performed using the 
package randomForest (Gonzalez-Recio and Forni, 2011). 
Specifically, a total of 10,000 burn-ins and 50,000 itera-
tions of Markov-Chain Monte Carlo simulation were used 
in Bayesian models and RKHS model, and 500 trees and 
four branches were used for the Random Forest model. All 
other parameters in the models followed the guidelines and 
examples in the references and R packages instructions.

The performance of each model was assessed by 
means of a cross-validation scheme, repeated random 
subsampling validation (RRSV; Usai et al., 2009). In the 
breeding population, 80% of the genets were randomly 
selected and used as the training set to fit each prediction 
model, and the other 20% were used as a validation set 
to assess the correlation between the observed and pre-
dicted values. The sampling process without replacement 
was repeated 100 times. For each trait, Pearson’s correla-
tion coefficient is considered as the predictive ability, and 
the prediction accuracy is calculated by dividing predic-
tive ability by the square root of heritability.

Optimization of Size and Composition  
of the Training Set
The 58 families were divided into training and validation 
sets. Different numbers of families (i.e., 5, 10, 20, 30, 40, 
and 50) were randomly sampled and used as the training 
set, and the other families were used as the validation set. 
For each specific number of families, samples were drawn 
without replacement 100 times. The Studentized range sta-
tistic, Tukey’s Honest Significant Difference method (HSD, 
R Core Team, 2014) was used to test for significant differ-
ence in predictive ability from the six divisions of families.

All 58 families were included in both the training 
and the validation sets. The same number of genets from 
each family was randomly sampled as the training set 
and the other genets in the families were used as the 
validation set. A series of numbers of genets from each 
family in the training sets were tested, that is, 1, 2, 4, 
6, 8, and 10. For each number of genets, samples were 
drawn without replacement 100 times. Tukey’s HSD 
method was used to test the difference in predictive abil-
ity among six training sets.

Predictive Ability among Half-Siblings
The genomic selection population is mainly from Blocks 
A and B in the IWG field (Supplementary Fig. S1). In each 
block, there were 58 families and each family contains 10 
genets on average. Genets in one of the two blocks were 
used as the training set, and the other genets were con-
sidered as the validation set. The predictive ability was 
estimated among half-siblings.

Optimization of Marker Density
Seven subsets of markers, 40, 200, 400, 800, 1600, 2400, 
and 3200, were sampled from the 3883 markers with 
<30% missing data. One hundred samplings were per-
formed without replacement. The genets in Block A of 
the breeding population served as the training set, and 
the other genets were used as the validation set. The 
GAUSS model was used to obtain the predictive ability. 
Tukey’s HSD method was used to test the significant dif-
ference among seven marker subsets.

Results

Substantial Phenotypic Variation  
among IWG Genets
As a perennial species, IWG produced much larger grain 
yield and biomass in the second year (2013) than the first 
year (2012; Fig. 2a, Supplmentary Fig. S3). The popula-
tion mean of grain yield per plant (83.6 g) in 2013 almost 
doubled that of 2012 (43.9 g). The other five traits, seed 
weight, heading score, height, threshability, and head 
weight, were similar across years. For individual genets, 
each trait was significantly correlated across years; for 
example, seed weight, r = 0.74, and grain yield, r = 0.57 
(Fig. 2b; Supplementary Fig. S3).

Within the IWG breeding population, significant 
variation was observed for each of the seven traits. The 
difference between minimum and maximum values of 
each trait ranged from over threefold for height and over 
14-fold for head weight (Table 1). Heritability estimates 
were moderate for heading score, grain yield, biomass, 
head weight, height, and threshability (0.59 to 0.76) and 
high for seed weight (0.85; Table 1). The phenotypic data 
among 58 IWG families also showed extensive variability 
for all seven traits (Table 1; Supplementary Fig. S4). For 
example, the mean seed weight of some families was >9.0 
mg, whereas some families produced small seed with a 
mean of 7.5 mg (Supplementary Fig. S4). But in general, 
the genetic variation among half-sib families was smaller 
than that within family (Table 1).

The genetic correlations between the seven traits 
were generally low (Supplemental Table S1), but high cor-
relation was observed between grain yield and biomass (r 
= 0.75), and plant height was also significantly correlated 
with biomass and grain yield (r = 0.54 and 0.43, respec-
tively). Also, a correlation coefficient of r = 0.52 was 
observed between head weight and grain yield (p < 0.01). 
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We observed that heading score was independent of head 
weight, seed weight, and height (p > 0.39), and thresh-
ability had no significant correlation with grain yield and 
height (p value is 0.07 and 0.68, respectively).

Genotyping-by-Sequencing Performance in IWG
The GBS protocol described by Poland et al. (2012) 
was optimized for IWG. First, two pairs of restriction 
enzymes were tested, PstI/MspI and PstI/ApeKI. With 
a similar quantity of pass filtered reads, the library 
from PstI/MspI had a larger number of reads with good 

Figure 2. (a) Grain yield and (b) seed weight of the genomic selection population with 1126 genets from 58 half-sib families in 2012 
and 2013. The mean of grain yield in 2012 was 43.9 g, and 83.6 g in 2013. For seed weight, the mean in 2012 was 8.0 mg, and 8.3 
mg in 2013.

Table 1. Variation of seven agronomic traits in the breeding population of intermediate wheatgrass in two growth 
seasons, 2011–2012 and 2012–2013.

Trait Median Mean Range Vfamily
§ Vgenets/Family

§ Total VG
§ VE

§ Heritability (h2)

Biomass, g 689.20 685.20 187.32–1222.64 3266.44 11,992.00 15,090.00 13,745.00 0.69
Grain yield, g 84.49 84.59 22.62–191.37 140.52 385.89 521.46 499.89 0.68
Head weight, g 1.02 1.02 0.13–1.91 0.01 0.04 0.04 0.03 0.74
Seed weight, mg 8.21 8.32 3.26–13.25 0.40 1.13 1.56 0.54 0.85
Heading score† 4.47 4.34 1.47–6.47 0.19 0.35 0.56 0.77 0.59
Height, cm 138.84 137.67 55.81–179.32 54.76 123.57 176.84 110.26 0.76
Threshability‡ 2.19 2.10 1.19–4.19 0.15 0.43 0.58 0.39 0.75
†Heading score was recorded with score 1–6 (1 is latest, 6 is earliest) when approximately 20% plants have fully emerged seed heads. 
‡Threshability was scored as 1 (low) to 4 based (high) on the percentage of naked seeds by visual observation. 
§Vfamily, genetic variance among families; Vgenets/family, genetic variance within family; Total VG, total genetic variance among genets; VE, the variance of residue. The calculation of genetic variances was 
performed by using the mixed procedure in SAS (v. 9.3) by fitting years as fixed and genets or families as random effects.
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barcodes, fewer tags per sample, but more reads per tag 
(2.60 vs. 2.15) than the library from PstI/ApeKI (Supple-
mentary Fig. S5a). Thus, the enzymes PstI/MspI were used 
to develop GBS libraries in the present study. Second, two 
barcode adaptors were used for each genet. Due to the 
nucleotide composition and length differences among 
barcode adaptors, ligation, amplification, or sequencing 
biases might exist. When two barcodes were used as the 
identifiers of one genet, the variation of read number per 
sample in individual GBS libraries was greatly reduced 
(Supplementary Fig. S5b). Third, size selection was used 
to remove barcode adaptor dimers. To guarantee the 
adequate ligation between adaptor and genome DNA, 
we used excessive amounts of both barcodes and com-
mon adaptors (0.5 and 15 pmol for the reaction of 50 mL, 
respectively). We then trimmed off the adaptor dimers by 
performing size selection using LabChip GX.

In general, about 150 million reads were obtained 
from one GBS library, one lane of HiSeq 2000. More than 
95% of the reads contained good barcodes, except for one 
library of the breeding population (82.4%; Supplementary 
Fig. S6). The read number and tag number per sample were 
calculated, and small variations were observed among 

both IWG genets and GBS libraries (Supplementary Fig. 
S6). The four libraries of the F1 population, with 48-plex 
sequencing, had twice the read number per sample, com-
pared with 96-plex libraries (3,160,000 vs. 1,550,000 on 
average). But the sequence coverage (read number per 
tag) of 48-plex libraries was not twice as many as 96-plex 
libraries (3.7 vs. 2.7) because the 48-plex libraries had a 
much larger number of tags per sample than the 96-plex 
libraries (855,000 vs. 564,000; Supplementary Fig. S6).

Genotype Calling, Filtering, and Quality Control
After running the UNEAK pipeline, we obtained 158,308 
putative SNPs from the F1 population (Fig. 3). Putative 
homozygous markers whose sequencing count was less 
than five were set to missing, and markers with >20% 
missing data were filtered. This resulted in 17,563 mark-
ers. After running a goodness-of-fit c2 test (p > 0.05) for 
the two alleles in heterozygotes, we kept 7742 markers for 
genetic mapping (Fig. 3). The markers were converted to 
three classes of genotypes, lm ´ ll, nn ´ np, and hk ´ hk 
for JoinMap 4.1. The average sequence coverage for these 
markers was 12 reads per marker for individual genets.

Figure 3. Flow diagram of genotypic data analysis pipeline. c2 test was performed based on the hypothesis that, in diploid species, 
the sequencing counts of the two paired tags of a SNP were equal in all heterozygotes. The markers with p > 0.01 were kept for subse-
quent analysis.
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From the IWG population for genomic selection, 
278,470 markers were discovered after running the 
UNEAK pipeline (Fig. 3). The threshold of a goodness-
of-fit c2 test for the two alleles of heterozygotes was set 
with p = 1 × 10–5. The homozygotes with less than four 
sequencing counts or reads were considered as miss-
ing data. After running these two filters, we obtained 
8899 markers with <50% missing data and 3883 markers 
with <30% missing data for further genetic analysis and 
genomic selection (Fig. 3). The average sequence cover-
age for markers with <50% missing data is 5.2 reads per 
marker for individual genets, and 6.4 for markers with 
<30% missing data.

Genetic Map of IWG
Compared with some other marker platforms such as 
simple sequence repeat, diversity arrays technology, and 
SNP arrays, GBS produced markers with large amounts 
of missing data. These missing data might introduce 
errors to the order of markers in the genetic map. To 
decrease the effect of missing data, we first used the 
markers with <3% missing data to develop a genetic map. 
A total of 1119 markers were mapped into 21 LG, with 
the number of markers in each LG ranging from 10 to 
94. Using these markers as the fixed order, 2657 mark-
ers with <10% missing data were mapped into the 21 
LG. Finally, 3436 markers with <20% missing data were 
integrated into the genetic map. Except for LG4 with 12 
markers, the number of markers in individual LG ranged 
from 105 to 253 (Fig. 4). The length of LG varied between 

Figure 4. Genetic map of intermediate wheatgrass from an F1 full-sib population with 178 genets. In total, 3436 markers with <20% 
missing data were ordered in the genetic map. The 21 linkage groups showed good uniformity of marker distribution. The mean dis-
tance between adjacent SNPs was 1.22 cM (SD = 1.08). The number of markers in each linkage group was listed.
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125 cM for LG10 and 306 cM for LG15, for a total map 
length of 4095 cM, which was probably expanded 
because of missing data. The only exception was LG4 
which was 15 cM. The 21 LG showed good uniformity 
of marker distribution with the largest distance between 
adjacent markers being 15.2 cM, and only 10 intervals 
were larger than 8 cM. The mean distance between adja-
cent SNPs was 1.22 cM (SD = 1.08).

To determine the correspondence between LG 
and chromosomes, we performed collinearity analy-
sis between IWG LG and reference physical or genetic 
maps in barley and A. tauschii (Jia et al., 2013; Mayer et 

al., 2012). In total, 922 markers on the genetic map were 
uniquely matched to the barley genome. The Spearman’s 
rank correlation coefficients (r) were >0.75 (p < 0.01) 
except for LG4, which indicated that IWG LG showed 
high synteny and collinearity with barley as three home-
ologous IWG LG corresponded to one barley chromo-
some (Fig. 5). Because a physical map of A. tauschii is 
not available, the genetic map with 13,687 scaffolds was 
used to perform collinearity analysis between IWG and 
A. tauschii. A total of 794 markers were shared between 
IWG and A. tauschii genetic maps. The collinearity results 
with A. tauschii were consistent with those with barley 

Figure 5. The collinearity of linkage groups of intermediate wheatgrass with barley chromosomes. The linkage groups were designated 
as LG1 to LG21, with LG1–3 corresponding to 1H, LG4–6 to 2H, and so on. The Spearman rank correlation coefficients (r) were calcu-
lated using R package ‘pspearman’. ** Indicates significance at p < 0.01.
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in that three homeologous IWG LG matched with one A. 
tauschii chromosome (Supplementary Fig. S7). Thus, the 
21 LG were divided into seven subgroups. Each subgroup 
contained three LG, corresponding to one chromosome 
in barley or A. tauschii. Because the genetic donors of the 
subgenomes of IWG are still unknown, the LG could not 
be assigned to subgenomes. Thus, the LG were designated 
as LG1 to LG21, with LG1-3 corresponding to Triticeae 
homologous Group 1, LG4-6 to Group 2, and so forth.

Establishment and Optimization of Genomic 
Selection for IWG
Among 3883 markers (<30% missing data) from the 
breeding population, 1158 were shared with the markers in 
the genetic map. These shared markers were used to mea-
sure the LD of the breeding population. The LD decays 
such that, at 0.2, conventional r2 is equal to an average dis-
tance of 5 cM (r2 at 0.1 to 15 cM; Fig. 6). The relatively low 
rate of LD decay was consistent with small effective popu-
lation size and limited recombination events (Fig. 1).

Two important agronomic traits, grain yield and 
seed weight, were used to test the effects of nine genomic 
prediction models on predictive ability. For seed weight, 
Random Forest had significantly lower predictive ability 
(p < 0.01) and the other eight models performed similarly 
to each other with respect to predictive ability (p > 0.54; 
Supplementary Fig. S8a). For grain yield, the nonlinear 
model, GAUSS, which can capture both additive and 
nonadditive effects of markers, showed significantly 
higher predictive ability than the other models (p < 0.01; 
Supplementary Fig. S8b). RR-BLUP has significantly 
lower predictive ability than the Bayesian models (p < 
0.01). Subsequent comparisons of predictive ability were 
based on the GAUSS model.

GBS technology produced markers with high levels 
of missing data. To determine the amount and quality of 

markers used in subsequent analysis, we used all markers 
with <5, 10, 15, 30, and 50% missing data and the GAUSS 
model to estimate the predictive ability on grain yield and 
seed weight. The numbers of markers with <30 and 50% 
missing data (3883 and 8899, respectively) were much 
larger than the other groups of markers, and both groups 
of markers showed the largest predictive ability for both 
grain yield and seed weight (Supplementary Fig. S9). But 
there was no difference in predictive ability between the 
two groups. Thus, the markers with <30% missing data 
were used for subsequent evaluation of prediction models.

Using all 1126 genets in the breeding population and 
RRSV, moderate to high predictive ability was obtained 
for all seven agronomic traits. The highest predictive 
ability was observed for seed weight, average r = 0.67. 
Biomass and head weight had moderate predictive ability, 
r = 0.46 and 0.47, respectively. Grain yield, height, head-
ing score, and threshing also had high predictive ability, 
r = 0.52 to 0.62 (Fig. 7a).

Fifty-eight IWG families showed extensive variability 
for all seven traits (Supplementary Fig. S4). Family struc-
ture might exist, and in turn affect the predictive ability 
(Fig. 8a). When the number of families involved in the 
training set ranged from 5 to 30, larger number of fami-
lies resulted in higher predictive ability. However, if >30 
families were used as the training set, the ability to pre-
dict the breeding value of genets in the other families was 
not improved for either grain yield or seed weight, and 
the variation of the predictive ability increased. Moreover, 
the predictive ability was never higher than that of RRSV 
(Fig. 8a). All 58 families need to be sampled as the train-
ing set to achieve as high predictive ability as RRSV.

If all 58 families are included in the training set the 
number of genets from each family should be optimized. 
Because the smallest family only had 11 genets, the sam-
pling number of genets per family varied from 1 to 10. 
In general, the training sets with large number of genets 
per family had high predictive ability. For grain yield, 
the predictive ability reached a plateau at n = 8 genets per 
family (Fig. 8b). For seed weight, when 10 genets were 
sampled from each family, the predictive ability was 
similar with that of RRSV (p = 0.94). The training sets 
containing 8 to 10 genets from each IWG family are suf-
ficient to achieve high predictive ability.

The genomic selection population used in this study 
was primarily composted of genets arranged in two 
blocks (A and B) in the field that were generated from 
random sampling when planted (Supplementary Fig. 
S1). In each block, there were about 10 genets from each 
family. Using Block A or B as the training set and the 
others as the validation set, the predictive ability for the 
seven traits was calculated. The results were quite similar 
with those from RRSV, with the highest predictive abil-
ity, 0.66, for seed weight, and the lowest value, 0.42, for 
biomass and head weight (Fig. 7b). This also confirmed 
that 8 to 10 genets from each family form the optimized 
training population for genomic selection, and it is fea-
sible to use a subset of breeding materials as a training 

Figure 6. The rate of linkage disequilibrium (LD) decay of the 
genomic selection population of intermediate wheatgrass. The LD 
among markers in the population was estimated using Haploview 
(Barrett et al., 2005). The Hill and Weir formula (Hill and Weir, 
1988) was used to describe the LD decay of r2.
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population to develop a prediction model and then cal-
culate the breeding values of their siblings.

To determine the predictive ability for genets within 
a half-sib population, we used the five families (i.e., 
C3-3471, W104_4, W111_4, C3–2925, and C3-2331), each 
of which has more than 20 genets in Blocks B, C, and D. 
The models trained with genets in Block A were used to 
estimate the breeding value of genes in the five families. 
We obtained different predictive ability across families 
and traits (Supplementary Fig. S10). For example, for 
seed weight, the predictive ability ranged from 0.50 
to 0.69 within families, C3–3471, W111_4, C3–2925, 
and C3–2331, but the predictive ability was 0.14 within 
W104_4. For height, however, the predictive ability 
within all families was <0.22. These data indicated that 
although the genomic selection models trained with gen-
ets in Block A could be used to prediction the remaining 

of the genomic selection population (Fig. 7b), the models 
might not work well for every family when used to pre-
dict the breeding value of genets within a specific half-sib 
family (Supplementary Fig. S10).

To estimate the marker density for future applica-
tion of genomic selection in IWG breeding programs, we 
randomly sampled 40, 200, 400, 800, 1600, 2000, 2400, 
and 3200 markers from 3883 markers with <30% miss-
ing data, and genets in Block A were used as the training 
set and the other genets as the validation set (Fig. 8c). 
When the marker numbers were larger than 1600, the 
predictive ability reached a plateau for both grain yield 
and seed weight (p > 0.10).

Figure 7. Predictive ability of seven agronomic traits using the nonlinear GAUSS model. (a) The predictive ability from repeated random 
subsampling validation. Eighty percent of the genets were randomly selected and used as the training set and the others were used as 
the validation set to assess the predictive ability. The sampling process without replacement was repeated 100 times. (b) The predictive 
ability using genets in Block A or Block B (see Supplemental Fig. S1) as the training set and the other genets as the validation set. cor is 
the correlation between the genomic estimated breeding values (GEBV) and the PHENOadj (the observed phenotypic data, best linear 
unbiased estimate).
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Discussion

Efficiency of Genotyping-by-Sequencing in IWG
With the advent of next-generation sequencing, several 
marker technologies are now capable of discovering 
thousands of markers across almost any genome of inter-
est, even for species in which little or no genetic informa-
tion is available (Davey et al., 2011). As one of the most 
popular and powerful sequencing-based technologies for 
genotyping, GBS has been used to discover genome-wide 
markers in many species, including wheat, barley, potato, 
maize, and switchgrass (Glaubitz et al., 2014). In the pres-
ent study, we used GBS to discover thousands of SNP 
markers across the genome of IWG, which is an allo-
hexaploid and outbred species without reference genome. 
To perform GBS, appropriate enzymes must be chosen 
for the target species. We compared the sequencing 
results from two pairs of enzymes, PstI/MspI and PstI/
ApeKI. The methylation-sensitive ApeKI used in maize 
might not be appropriate for IWG because PstI/ApeKI 
produced fewer reads with good barcodes and had fewer 
number of reads per tag than PstI/MspI. The enzymes 
pair PstI/MspI were also successfully used in wheat, 
barley, oat, and pearl millet [Pennisetum glaucum (L.) R. 
Br.; Huang et al., 2014; Moumouni et al., 2015; Poland 
et al., 2012] to discover SNP markers across genomes. 
Thus, the PstI/MspI may generally be a good choice when 
performing GBS in cereal crops. Two barcode adapters 
for individual samples were tested in the present study. 
Compared with the protocol using one barcode adaptor, 
the two-barcode protocol produced sequencing data with 
less read count variation among samples (Fig. 7b), which 
suggested that the bias from nucleotide composition and 

length difference was decreased. Different from standard 
GBS protocols (Poland et al., 2012), size selection was 
included using LabChip GX and helped to remove the 
adaptor dimers, which affect the production of pass-filter 
reads. In the standard GBS protocol, to avoid sequenc-
ing the adaptor dimers (>0.5%), the amount of barcode 
adaptors has to be determined by performing adaptor 
titrations. And for each particular enzyme and species 
combination, the appropriate quantity of adapters has to 
be empirically determined (Elshire et al., 2011). The size 
selection can remove the adaptor dimers and the adap-
tor titrations can be omitted. Compared with standard 
GBS protocol (Poland et al., 2012), about five times larger 
amounts of barcode adaptors were used in the present 
study, and the efficiency of ligation between genome 
DNA and barcode adaptors was increased.

UNEAK is a powerful pipeline to discover GBS mark-
ers from polyploid species without a reference genome. 
A network filter was employed in UNEAK to remove 
false SNPs derived from repeats, paralogs, and tags with 
sequencing errors (Lu et al., 2013). Because of the low 
sequencing coverage of GBS and the polyploidy and het-
erozygosity of IWG, three more filters were required to 
filter out the false SNPs derived from the sampling errors 
during sequencing. First, some heterozygotes were mis-
called as homozygotes because the low sequencing cover-
age of GBS leads to high amounts of missing data. A cutoff 
should be set to convert the miscalled homozygotes to 
missing data. In the present study, for the mapping popu-
lation, false homozygotes can greatly affect the accuracy 
of marker order. We considered the homozygotes, the 
sequencing count number of whose alleles was less than 
five, as missing data. For the genomic selection population, 

Figure 8. Optimization of the composition of the training population and marker density for the application of genomic selection in 
intermediate wheatgrass. (a) The predictive ability of grain yield and seed weight using a different number of families as the training 
set. For each specific number of families, samples were drawn without replacement 100 times; RRSV, Repeated random subsampling 
validation with 80% of all genets as the training set and the others as the validation set, was used as the positive control. The nonlinear 
model GUASS was used to develop the prediction equation. (b) The predictive ability of grain yield and seed weight using a range of 
genets from each of 58 families as the training set. For each number of genets, samples were drawn without replacement 100 times; (c) 
The predictive ability using different numbers of markers, randomly sampled from 3883 markers with less 30% missing data. The genets 
in Block A were used as the training set and the other genets as the validation set. cor is the correlation between the genomic estimated 
breeding values (GEBV) and the PHENOadj (the observed phenotypic data, best linear unbiased estimate).
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we set the cutoff of the count number as four, due to the 
high multiplex (96-plex) sequencing and high error tol-
erance of genomic selection (Rutkoski et al., 2013). The 
second filter was based on the hypothesis that, in diploid 
species, the tag counts of two alleles of the heterozygous 
loci should be equal. Using this filter, we discarded 56% of 
17,563 SNPs with <20% missing data from the F1 popula-
tion. In switchgrass, after running this filter, the remain-
ing markers of the F1 full-sib population showed good 
Mendelian segregation (Lu et al., 2013). Thus, this is an 
important filter for SNP calling in outbred species. The 
third filter for the quality control of GBS markers is the 
amount of missing data. The threshold of the percentage 
of missing data depends on the study goals and the level 
of error tolerance of the study. For genetic mapping, we 
used markers with <20% missing data. Using the order 
of markers with <3% missing data first and progressively 
adding those with 10% missing data as the fixed order, 
we obtained a genetic map that showed high collinearity 
with barley and A. tauschii. The threshold of 20% missing 
data was also widely used in the genetic mapping in wheat, 
barley, apple, pearl millet, and cassava (Manihot esculenta 
Crantz; ICGMC, 2015; Gardner et al., 2014; Moumouni 
et al., 2015; Poland et al., 2012). For genomic selection, we 
used markers with <30% missing data. After the imputa-
tion with Random Forest, the prediction abilities from 
markers with 30 and 50% missing data were similar in the 
IWG population. Rutkoski et al. (2013) also reported that 
genomic selection prediction accuracy from markers with 
20 and 50% missing data were similar, and a large propor-
tion of missing data in dense marker sets was not a major 
concern for genomic selection.

Distorted Segregation of Markers in IWG
In the present study, we developed the first genetic map of 
IWG. The markers in 21 LG showed high collinearity with 
seven barley and A. tauschii chromosomes, which veri-
fied the high quality of the genetic map and indicated the 
close relationship between IWG subgenomes and barley 
and A. tauschii genomes. Low marker coverage for LG4 
was observed, which is homeologous to 2H in barley and 
2D in A. tauschii. To obtain more markers of this linkage 
group, we used all the filtered markers uniquely matched 
to chromosome 2H to develop the genetic map. Unfor-
tunately, no more markers were obtained for LG4. We 
observed that these markers showed significant segrega-
tion distortion, that all markers are heterozygous in both 
parents, and >90% of the progeny are heterozygous for all 
the markers (data not shown). Some loci on LG4 might 
be related to inbreeding depression of IWG or embryo 
lethality of homozygotes, and prevent recombination or 
recovery of homozygous alleles. The lack of recombination 
among the loci might be the main reason that we were not 
able to obtain more markers for LG4 using the markers 
matched to chromosome 2H. The effects of these mark-
ers of LG4 on agronomic traits will be studied when QTL 
mapping is performed in the near future. Five and four 

of 12 markers in LG4 were uniquely matched to 2H and 
2D chromosomes, respectively. Another linkage group, 
LG5 corresponding to 2H, also has many markers show-
ing segregation distortion. But the markers did not show 
as high a level of segregation distortion as markers on 
LG4. The other linkage group corresponding to 2H, LG6, 
has few markers showing distorted segregation. Thus, we 
propose that LG4 is an independent linkage group, rather 
than a part of LG5 or LG6. Segregation distortion was also 
widely observed in many crop species including barley, 
rice, maize, wheat, and pearl millet (Moumouni et al., 
2015; Pan et al., 2012; Peleg et al., 2008). Thus, we suggest 
keeping markers with distorted segregation for genetic 
mapping if three filters were applied after SNP calling: 
filtering false homozygotes, filtering heterozygotes with 
uneven count numbers of alleles, and filtering markers 
with a high percentage of missing data.

Optimization and Application of Genomic 
Selection in IWG Breeding Programs
In the present study, nine statistical models were tested. 
RR-BLUP and Bayesian models are linear models, but 
their assumptions about marker effects are different 
(Endelman, 2011; Perez and de los Campos, 2014). Both 
GAUSS and RKHS are nonlinear models, which can 
capture both additive and nonadditive effects. Random 
Forest is a machine-learning nonparametric model with 
the capacity to capture nonadditive sources of genetic 
variability, including dominance and epistasis (Desta and 
Ortiz, 2014). All these models, except for Random Forest, 
performed similarly in seed weight, but the nonlinear 
GAUSS model performed better than the other models in 
grain yield. A possible reason might be that all the genets 
in each family are half-siblings, and the epistatic interac-
tions are relatively stable among siblings. Moreover, the 
prediction algorithm of the GAUSS model might fit the 
family structure of the IWG population better than the 
other two nonlinear models, RKHS and Random Forest. 
The performance of different models should be tested 
when used to estimate the breeding values of genets 
across generations in IWG breeding programs.

In the present study, a low rate of LD decay in the 
breeding population was observed. This observation 
would not be expected for an outbred species, which usu-
ally has rapid LD decay because of effective recombina-
tion in each generation of outcrossing. However, the IWG 
population studies result from a recent and strong selec-
tion history along with small effective population size. 
The IWG breeding population was derived from an initial 
selection of only 14 genets from the Rodale Research 
Centre, PA, and eight new genets introduced by TLI, KS. 
In addition, five cycles of strong selection have been exe-
cuted (Fig. 1). Thus, the effective population size is small 
(~20), and the limited breeding cycles result in low recom-
bination rate of the breeding population. The small effec-
tive population size and strong selection of limited breed-
ing cycles are likely the main reasons for low rate of LD 
decay in the current breeding population. Similarly, when 
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applying genomic selection for outbred species, such as 
ryegrass, eucalyptus, and apple, artificially minimizing 
the effective population size was used to decrease the rate 
of LD decay and, in turn, improve the prediction accu-
racy (Kumar et al., 2012; Lin et al., 2014). The low rate of 
LD decay resulted in a small number of markers needed 
to capture the genome-wide variations. Our results also 
showed that 1600 markers were adequate to achieve high 
predictive ability. Thus, in future applications of genomic 
selection, GBS with 192-plex for HiSeq 2000 or 384-plex 
for HiSeq 2500 should be feasible to genotype thousands 
of IWG selection candidates.

The effect of the size and composition of the train-
ing population on predictive ability was also tested. If the 
genets in the training set and the validation set were from 
different families, the predictive ability was significantly 
lower than that of RRSV. This result confirmed that the 
genetic relationship between the training and validation 
sets affects predictive ability (Asoro et al., 2011; Cros et al., 
2015; Hickey et al., 2014; Wientjes et al., 2013; Windhau-
sen et al., 2012). Thus, the genets in the training set should 
be sampled from all families in an IWG breeding popula-
tion. Eight to 10 genets from each half-sib family would 
form a good training population to predict the breeding 
value of their siblings. These results were verified by the 
independent validation where a high predictive ability 
was obtained when we used the genomic selection models 
trained with genets in Block A to predict the remain-
ing genets of the genomic selection population (Fig. 7b). 
When using these models to predict the genets within 
individual families (i.e., C3-3471, W104_4, W111_4, 
C3–2925, and C3-2331), however, we obtained different 
predictive ability across families and traits (Supplemen-
tary Fig. S10). For the prediction of genets within a family, 
the predictive ability is mainly affected by the consistency 
of linkage phases within and across families (Lian et al., 
2014, 2015). To achieve high predictive ability within a 
family, the structure and composition of the training 
population, and the LD within a family and among fami-
lies should be investigated in a future study.

Cross validation demonstrated that moderate to 
high predictive ability (0.46 to 0.67) was obtained in the 
population of genets from the same generation. Moreover, 
the genomic selection model from subpopulations can 
be used to predict the breeding value of the other genets 
of the population. Thus, the genomic selection model 
trained with a subset of genets in a breeding population 
can be used to estimate the breeding value of the remain-
ing of the breeding population (Fig. 7). In practice, the 
use of genomic selection in IWG breeding programs or 
any other species also depends on the ratio of cost to 
benefit. Genotyping a very large breeding population 
may not be cost effective, although genotyping costs are 
decreasing very rapidly. In conventional recurrent selec-
tion, the best genets are selected from the best families 
based on phenotypic data, which is an effective breeding 
method for improving perennial grasses (Vogel, 2013). 

This selection principle can also be integrated into the 
genomic selection-based recurrent selection (Supplemen-
tary Fig. S11). Based on phenotypic data of the subset of 
genets from the breeding population, the best families 
(e.g., 25%) will be determined. The genets from these best 
families will be genotyped using GBS, and their breed-
ing value will be estimated using the genomic selection 
model. The best genets from these best families will be 
selected and used for crossing for the next recurrent 
selection cycle in the greenhouse during the winter (Sup-
plementary Fig. S11). We would not suggest to make selec-
tion within a specific family because of the variable pre-
dictive ability within a family. As an example of genomic 
selection based breeding scheme, an IWG breeding popu-
lation with 10,000 genets (i.e., 100 genets from each of 
100 original families) would all be evaluated under field 
conditions using only phenotypic selection. Here, only 
a subset of the breeding population (~1,000 genets, 10 
genets per family; Fig. 8b) needs to be planted and man-
aged in the field. And based on the phenotypic data of the 
subpopulation, we discard about 70% of families because 
of their poor performance. Only 30% of families (<3000 
genets, 100 genets from each of 30 families) are actually 
genotyped using GBS. Substantial resources required 
for planting, weeding, harvesting, threshing, phenotyp-
ing, and genotyping will be saved, and the capacity of a 
breeding group to screen breeding genets will be greatly 
increased. Compared with the current breeding program 
(Fig. 1), the genomic selection-based recurrent selection 
has large genetic variations (10,000 vs. 2,000 genets) and 
high selection intensity (1 vs. 4%) and, in turn, gives a 
very high expected gain (Supplementary Fig. S11).

In the present study, genomic selection worked well 
to predict the breeding value of half-siblings. The marker 
density and the size and composition of the training 
population were optimized. A breeding scheme based 
on genomic selection was proposed and is being used in 
our breeding program. We are now studying the applica-
tion of genomic selection between generations and across 
environments. After collecting the phenotypic data from 
the genets in the second recurrent selection cycle, we will 
use these genets as the validation population. The per-
formance of the genomic selection model trained with 
genotypes from the parent generation (first cycle) in the 
present study will be tested in predicting the breeding 
values of the progeny generation (second cycle).

Supplemental Information Available
Supplemental information is included with this article.
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genotyping-by-sequencing protocol for intermediate 
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genotyping-by-sequencing libraries or lanes. 
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