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1 Background

1.1 Introduction

In the early 60's, Fred Sommers introduced a logic for "sense

relations". This sense-logic has as its domain

meaningful /nonsensical sentences. Sense-logic is to be dis-

tinguished from conventional logic which has a domain of true/false

sentences (propositions). Sommers' work has been applied in

category theory, but has not yet received attention in computer

science fields. The purpose of this paper is to (1) give a brief

exposition of Sommers' sense-logic, (2) show the relationship it

has to computer science work done on natural language processing

(especially attribute grammars and John Sowa's conceptual graphs),

and (3) briefly describe an implementation of some of Sommers'

ideas.

Chapter 1 provides the background information which is neces-

sary for those unfamiliar with the concepts utilized in the exposi-

tion of Sommers' Sense-Logic. If the reader is already acquainted

with this background material, then the reader may wish to skip

Chapter 1 and go directly to Chapter 2. Chapter 2 includes an

explication of the central points of Sommers' Sense-Logic (as well

as the key terms and notation). Chapter 3 shows how Sommers'

Sense-Logic can be utilized in natural language processing, and

therefore contains the main thesis of this paper. Chapter H covers
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some theoretical issues related to Sommers' Sense-Logic as well as

an implementation of the basic concepts of Sense-Logic. Chapter 5

summarizes the paper.
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1.2 Relation of Sense-logic to Truth- logic

Sommers' sense-logic was presented in a series of articles

(most notably "The Ordinary Language Tree" [Sommers, 195 93. "Types

and Ontology" [Sommers, 19631. and "Predicability " [Sommers, 1965])

during the years 1959 through 1965. The purpose of these articles

was to show that much of natural language which was thought not to

be governed by formal rules in fact was so governed. Sommers'

sense-logic can be used to help determine the sense values of sen-

tences (i.e., whether they are meaningful or nonsensical).

Sommers' sense-logic is analogous to ordinary truth-valued

logic in that it offers a formal structure (viz. , a set of rules)

which can be used to derive "new" information (in the form of pre-

viously unrecognized implications) from a given body of informa-

tion. It should be noted that, just as in truth-valued logic, it

is necessary to supply some information (i.e., assumptions) before

the rules of the logic can be utilized. Further, the results from

the application of the rules are only as veracious as the informa-

tion that was supplied. In other words, one cannot get "something

for nothing", and the "garbage in, garbage out" law applies.
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1.3. Jhe Concept s£ "Nonsense"

and Different L ev el s of Nonsense

Nonsense is something that does not make sense. Our discus-

sion is, of course, restricted to nonsense that occurs in the use

(misuse) of language. Since the primary function of language is to

convey meaning, linguistic nonsense is often called "meaningless".

There are five levels of linguistic meaninglessness (these are

adapted from Sommers and Sow a), and they are:

(1) Gibberish:

Example: Opnjge drfnaqt zbwix

(2) Grammatical:

Example: A am I number prime.

(3) Categoreal

:

Example: I am a prime number.

(H) Logical:

Example: I am prime minister and so is Joe.

(5) Empirical /Pragmatic

Example: I am prime minister.

These levels of meaninglessness are ranked in order of priority.

There are rules for each level, and the rules for a given level are

only applicable if the rules at all lower levels have been satis-

fied. Sense-logic deals with the type of nonsense at level (3),

examples of which are commonly called "category mistakes".
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J..J1 The Denial / Negation Distinction

and the Law of Excluded Middle

Since some of Sommers' definitions require an understanding of

the denial/ negation distinction and its use in resolving some

apparent problems with the Law of Excluded Middle, we will need to

briefly cover these issues. The Law of Excluded Middle states that

for any proposition, P, either it or its negation must be true

(i.e., P V "Pis a tautology). However, it at least appears that

some propositions violate the Law of Excluded Middle, since it

seems that they and their negation are both false. If this is in

fact the case it would have dire consequences for the foundations

of logic, since the Law of Excluded Middle would have to be

rejected or some reason found for classifying those propositions

which violate it as special in some way. Consider the following

examples that are typical of those supposed to violate the Law:

(a) The square root of 3 is red.

(b) The square root of 3 isn't red.

(c) 'Abbey Road' (an album by the Beatles) is happy.

(d) 'Abbey Road' (an album by the Beatles) is unhappy.

(e) George likes asparagus.

( f ) George doesn't like asparagus.

(g) Socrates was in awe of Wilt Chamberlain.

(h) Socrates was not particulary impressed with Wilt
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Chamberl ain.

At first glance it appears that either (a) or (b) above must

be true according to the Law of Excluded Middle, and likewise for

the pairs (c) - (d), (e) - ( f ) , and (g) - ( h) . However, the Law

only applies to a proposition and its NEGATION, and we shall see

that, in one way or another, each of the above pairs fails to meet

this qualification. The first two pairs, (a) - (b) and (c) - (d),

fail since none of the sentences involved is meaningful, and thus

the question of truth or falsehood cannot even be asked. I

included both of these pairs as examples because the second pair

also has the problem of appearing to have another option, since

being happy or being unhappy are often not viewed as exhausting the

possible states (i.e., someone might be tempted to think that

perhaps 'Abbey Road' is neither happy or unhappy, but rather in an

emotional state "between" the two). This is obviously not possi-

ble, since 'Abbey Road' is not the kind of entity that can have an

emotional state at all. We can, however, find a third option for

the pair (e) -(f), since it is possible that George has no prefer-

ence for asparagus one way or the other. Thus, while (e) and (f)

are both propositions, ( f ) is not the negation of (e), and so they

may both be false without contradicting the Law of Excluded Middle.

The last pair of sentences, (g) - ( h) , are also both propositions,

and although they may suffer the same def.ect as the pair (e) - ( f )

,
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they are included to illustrate the concept of a presupposition.

Both (g) and (h) presuppose that Socrates knew of Wilt Chamberlain

(which is highly unlikely), and so even if they were exhaustive

alternatives for Socrates opinion of Wilt, they could still both be

false without contradicting the Law of Excluded Middle. Although

this may be intuitively clear, here is a somewhat more formal

definition of presupposition: "S presupposes T n =df= "Neither S

nor its denial are true unless T is true". Since this definition

refers to the denial of a statement, we need to know what the

denial of a statement is. Actually, we have already been using

this idea in explaining the pair (e) - ( f ) . Let us consider the

following three sentences:

(1) Ralph is happy.

(2) Ralph is unhappy.

(3) It is not the case that Ralph is happy.

The first of these sentences affirms the predicate, 'happy',

of Ralph, (i.e., it claims that the predicate, 'happy', applies to

Ralph). The second sentence denies this by claiming that a predi-

cate, 'unhappy', applies to Ralph. The second sentence constitutes

a denial of the first in that the predicate of (2) is a negative

version of the predicate of (1), while the subject is the same in

both. For a given claim, C, whose subject is S and whose predicate

is P, the denial of C, denoted by C , has the same subject, S, but
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has -P (read 'not P» ) or some semantically equivalent version of -P

as its predicate. The notion of denial (as well as affirmation)

really only directly applies to predicates, but it is derivatively

applied to whole statements. On the other hand, negation (and

assertion) apply to whole statements, and (3), not (2), is the

negation of (1) above. Since (2) is not the negation of (1), they

can both be false without contradicting the Law of Excluded Middle.

However, either (1) or (3) must be true according to the Law. One

other crucial difference between (2) and (3) is that (2) is false

if Ralph does not exist, but (3) is made trivially true. The rea-

son for this is that (2) claims two things: first, that there is a

Ralph and second, that he is unhappy, while (3) merely states that

the claims that there is a Ralph and that he is happy are not both

true.
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Z Sommers' Sense-Logic

2.1 Definition of Kev Terms and Notation

2.1.1 "Expression", U and N Relations

Having covered the denial /negation distinction, we can now

proceed to examine the symbols and definitions Sommers uses in

presenting his sense-logic. In truth-valued logic, a set of sym-

bols has been introduced to aid in performing the calculations, and

Sommers introduces a set of symbols for the same purpose. In addi-

tion to this set of symbols, Sommers presents a diagrammatical

notation to illustrate his sense relational concepts. In explain-

ing these concepts, it will prove useful to examine their

corresponding diagrams. The form of diagrammatical notation that

Sommers uses to illustrate his concepts is the tree notation. I

assume the reader is familiar with the tree structure, and so I

will merely demonstrate how it is used for the particular concepts

as they are introduced.

Sommers' sense-logic involves the sense- rel ations of expres-

sions, and so Sommers stipulates what he means by an expression:

"'an expression' will be a word or phrase which can occur as the

subject or the predicate of a well- formed subject- predicate sen-

tence" [Sommers, 195 9]. With this definition of "expression", Som-

mers then presents two sense relations that may obtain between any

two expressions. The first of these is the U- relation:



- 10 -

0(X,Y) =df= X and Y (two expressions) can be used together

meaningfully in a subject- predicate sentence.

The second relation is the N- relation:

N(X,Y) =df= " U(X,Y) (i.e., X and Y cannot be used together

meaningfully in a subject- predicate sentence, and doing so

results in a "nonsense" sentence).

Examples of U-related expression- pairs are (man, tall),

(argument, interesting) , and (Kareem Abdul-Jabbar, short) . Note that

the U-relation does not imply that sentences involving the

expression- pairs are true. The sentence "Kareem Abdul-Jabbar is

short" is meaningful, but false. Examples of N-related

expression- pairs are (computer program, bald) , (chair, false) , and

(angry, logic). The U and N relations are not dependent on the log-

ical form of the sentence involving the expression- pairs. It does

not matter whether the sentence is universal or existential,

includes negatives, conjunctions, disjunctions, conditionals, etc.,

the express! on- pair involved will be in all possible permutations

or it will be N in all possible permutations. We can see that the

relation is symmetric ( (X)(Y)(U(X, Y) — > U(Y,X))), reflexive

((X)U(X,X)), but not transitive.

There are four general tree structures to represent the possi-

ble sense relation between two terms T1 and T2. These four possi-

ble structures are given in Figure 1.
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T2 ) r T1

(d)

T1 T2

Figure 1: The Four General

Tree Structures
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The first three of these (a, b, and c) all represent two terms that

are U related, while (d) represents the general form of two terms

that are N related. The circles represent nodes in the tree, and

the dots are used to indicate that there may be many nodes between

the nodes in the diagrams. An informal statement of the U relation

with regard to its representation in the tree structure is this:

two terms are U related if and only if (1) one of the terms is

"higher" than the other (forms (a) and (b) above) or (2) the terms

are at "the same node ((c) above). We shall examine each of the

four general forms in detail as well as specific examples of each.

Let us look at (a) first. The first thing to note about (a) is

that T1 is higher in the tree than T2 , and that there is a path

from T1 to T2 such" that one need only go down to arrive at T2 from

T1 (i.e., at no node is it necessary to go up; all steps are in a

downward direction). In Figure 2, the trees all have the same gen-

eral structure as (a), (a. 1) is the simplest, since it only con-

tains the two U related terms with no nodes in between them in the

tree structure, (a. 2) is slightly more complicated, and it illus-

trates that two terms that are U related need not be contiguous in

the tree diagram representing their relation to each other. It

also shows that the lower term does not have to be to the left of

the higher term. In fact, for our purposes, there is no significant

difference between the left and right children for the parent node.
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Figure 2: Three Examples with

T2 'Lower' than T1
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For example, TH and T2 are both U related to T3 (as well as T1 ) in

(a. 2). (a. 3) is presented to show that the U relation is not tran-

sitive. In (a. 3), all the terms are D related to T1 and T3 , but T2

and M are N related to T5 and T6 . If the U relation was transi-

tive, then, since U(T2,T1) and U(T1,T6), it would follow that

U(T2,T6), which is not the case. A specific example will amplify

this point. Let A = 'interesting', B = 'argument', C = 'color'. It

obviously does not follow that U(B,C) simply because U(B,A) and

0(A,C). Moreover, since expressions like 'interesting' and 'is

talked about' are U related to every expression (try to think of an

expression for which it does not make sense to say that it is

interesting), if the D relation was transitive, then every expres-

sion would be U related to every other expression.
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2.1.2 "Predicable of", "Spanned by" Relations

Seeing the need for a transitive sense relation, Sommers con-

structed the "predicable of" relation. This relation requires a

preliminary definition of the "spanned by" relation. "A predicate

will be said to span a thing if it is predicated of it truly or

falsely but not absurdly" [Sommers, 1963]. The spanned by relation

is sometimes indicated by the use of the absolute value symbols.

Thus, jF|x =df= Fx V F'x (where F« indicates the denial of F). The

"spanned by" relation holds between a term and a thing, but what is

desired is a relation that holds between terms. Thus, Sommers

defines the "predicable of" relation in terms of the spanning rela-

tion:

F <— G ("F is predicable of G")

= df= (x)(!G!x —> |Fix).

F is predicable of G if and only if F spans whatever G spans.

Note: I will use P for the predicable-of relation, and thus P(F,

G) will mean "F is predicable of G". The "predicable of" relation

is transitive and reflexive, but neither symmetric nor asymmetric.

The U relation cited earlier can be defined in terms of the predi-

cability relation:

D(F,G) =df= P(F, G) V P(G, F).

Hence, two terms, F and G, can be conjoined in a significant sen-

tence if and only if F is predicable of G or G is predicable of F.



- 16 -

Let us now examine the predi cable of relation in terms of the tree

structure. In (a), P(T1,T2) (T1 is predicable of T2), but"

P(T2,T1) (it is not the case that T2 is predicable of T1 ) , while in

(b), P(T2,T1) and ~ P(T1,T2), and in (c), both P(T1 ,T2) and

P(T2,T1) (T1 and T2 are co- predi cable). Finally, in (d), "

P(T1,T2) and " P(T2,T1) (neither term is predicable of the other).

Thus the tree structure provides an easy method of identifying the

P relations of terms: we simply look to see whether a term is

"higher" than (in the previously mentioned sense of "higher") or at

the same node as another term. The tree structure also illustrates

the transitivity of the P relation. For example, in (a. 2), T1 is

higher than T3 , which is itself higher than T2 , and so we can see

that T1 is higher than T2 in the diagram, and so T1 must be predi-

cable of T2.
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2.1.3 Definition of "Category", "Type"

The spanning relation mentioned earlier can be used to define

both the category and type concepts. A category is defined as a

set of individuals which a given term spans, and so a category is

relative to a given term. If we put this concept in terms of

expressions rather than individuals, it turns out that, for a given

expression, its category is the set of expressions to which it is U

related. In Figure 3t the. category of T2 has been encircled.

Figure 3: Example of a Category
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The "is the same type as" relation is defined as follows:

a is the same type as b =df= (F)(|F|a <—> |Fjb).

The members of a type are spanned by all the same predicates. In

the tree structure, a type corresponds to a single node. For exam-

ple, in Figure H, TH and T5 are members of the same type.

Figure 4: Example of a Type
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g.g Jwg £§£ Criteria :

Type Difference and Individuality

Besides these definitions, two criteria are of central impor-

tance. The first is Sommers* criterion for type difference:

"Two things are of different types if and only if there are

two predicates P and Q such that it makes sense to predicate P

of the first thing but not of the second, and it makes sense

to predicate Q of the second thing but not of the first" [Som-

mers, 1965].

In Figure 5, we can see that T2 and T3 are of different types,

since P may be meaningfully predicated of T2 but not of T3 , and Q

may be meaningfully predicated of T3 but not of T2

.

Figure 5: Example of Type Difference
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The second is a criterion for individuality:

"An entity x is an individual if and only if every pair of

predicates P and Q that is true of x is such that either P is

predicable of Q or Q is predicable of P n [Sommers, 1965].

This gives us the three possible tree structures illustrated in

Fi gur e 6 .

(1)

P,Q

(2) (3)

Q

Q

Figure 6: The Three Possible Tree

Structures for an

Individual, X
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What cannot be the case, if x is an individual, is a tree of either

of the forms shown in Figure 7, where P and Q are N related.

"Entities that do not satisfy this criterion are 'category

composites', and it is category composites, not individuals,

that can give the misleading impression that there are innu-

merable counterexamples that undermine the plausibility of

[Greenberg, 1972] Sommers' rules.

(D (2)

Q 1 ( P ) ( Q

Figure 7: Two Impossible Tree Structures

for an Individual, X
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Scunners provides the following excellent example of a category com-

posite:

"Suppose someone defines a red earache to be what a man has

when he has a red ear and a pain in that ear. By this defini-

tion, a red earache is an entity. But clearly, the entity so

defined is not an individual. Moreover the statement 'Some

aches are red* is still a category mistake, since there is no

individual that instantiates the statement, nor could there be

any such individual. It is nevertheless true that the (artif-

icially composite) entity we have defined is literally red and

literally an ache. For it is a pain cum red ear. But nothing

about the category status of pains and ears has changed merely

because we have a new , entity ,
.
n [Sommers, 1965]
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2.3 jsts Rule?:

The Tree Rule and the Rule for Enforcing Ambiguity

Given this formal symbolism and the corresponding definitions

of the terms presented, Sommers offers two rules governing sense

relations. The first rule, known as the "Tree Rule", governs the

relations of four terms:

- (U(A,B) & U(B,C) & U(A,D) & N(A,C) & N(B,D)).

To put this rule in english, it is not the case that there are four

terms A, B, C, and D such that A and B are U related, B and C are (J

related, A and D are U related, A and C are N related, and yet E

and D are N related. The proof for this rule is rather straight-

forward:

(U(A,B) & U(B,C) & N(A,C)) =>

(P(B,A) & P(B,C) & -P(A,B) & -P(C,B))

(0(A,B) & 0(A,D) & N(B,D)) =>

(P(A,B) & P(A,D) & -P(B,A) & -P(D,A))

Thus:

- (U(A,B) & U(B,C) & U(A,D) & N(A,C) & N(B,D))

We can also demonstrate the validity of the tree rule by means of

the tree diagrams. The first premise of the proof given above

corresponds to the tree in Figure 8. The second premise of the

proof is represented by the tree in Figure 9. The basic incon-
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sistency here is that in the first tree B is higher than A, whereas

in the second tree A is higher than B, and these cannot both be the

case.

Figure 8: Tree Structure for Premise 1

Figure 9: Tree Structure for Premise 2
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The second rule, known as the "Rule for Enforcing Ambiguity",

governs the relations of predicates and individuals:

-(3F)(3G)(3x)(3y)(3z)

(!F|x & |F jy & -!F|z & !G!z & |Q |y & -|Gjx).

As Scanners claims:

"If a, b, and c are any three things and P and Q are

predicates such that it makes sense to predicate P of a and of

b but not of c, and it makes sense to predicate Q of b and of

c but not a, then P must be equivocal over a and b or Q must

be equivocal over b and c. Conversely if P and Q are univocal

predicates, then there can be no three things a, b, and c,

such that P applies to a and to b but not to c while Q applies

to b and to c but not to a" [Sommers, 1965].

What the Rule for Enforcing Ambiguity rules out is any tree of the

form shown in Figure 10, if P and Q are univocal predicates, and a,

b, and c are true individuals.

Figure 10: An Impossible Tree Structure
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1. JhS Relationship g£ Sommers' Work is Computer Science

3.J Introduction

In this section I shall show how Sommers* sense-logic rules

may be used to help solve problems in the area of semantic-directed

parsing. In order to do this, I must first define semantic-

directed parsing and clarify its uses so that I can indicate the

role Sommers 1 rules might play in this area. I shall also need to

examine the tools currently used for semantic-directed parsing:

attribute grammars and Sowa's conceptual graphs. Attribute gram-

mars provide us with a notation for adding semantic constraints to

a grammar, but they do not offer any semantic model, whereas Sowa's

conceptual graphs give us an example of a semantic model, but do

not explicitly deal with the syntactic elements of parsing. To

facilitate the discussion of these areas, I shall present a number

of sentences which will be used as a sort of running example

throughout our examination of the topics listed above. The sen-

tences are given below:

(1) a cat is an animal.

(2) the man is angry.

(3) the desk is angry.

(l|) tigers last an hour.
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I shall refer to these sentences at numerous points in this chapter

and use them to illustrate the concepts and techniques of Sow a'

s

conceptual graphs, attribute grammars, and Sommers' sense- logic

rules, as well as the way in which these three areas can be

integrated. However, before we can adequately deal with these

issues we must spend a little time covering some background

material on parsing in general.
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2..2 Parsing

To parse a sentence is to delineate the syntactical relation-

ship of each part of the sentence. Parsing is done via a grammar

which defines the syntax of the language containing the sentence.

There are different levels of sophistication of parsers. Some

parsers rely entirely on syntactic information such as the grammat-

ical categories of noun, verb, etc. in order to determine the

correctness of the sentence under consideration. More complex

parsers include semantic information that is used to either guide

the parser or at least to reject otherwise syntactically correct

sentences as incorrect. A purely syntax-directed parser cannot

determine whether a given sentence makes sense or not, merely

whether it is grammatically correct. There are, of course, degrees

to which semantic information is used, from the fairly straightfor-

ward application of data type information utilized in Pascal com-

pilers to the more complex use of the meanings of words in various

attempts at natural language processing. A semantic-directed

parser uses the meanings of the words already encountered in a sen-

tence to determine the appropriate syntactic structure to attempt

to apply to the remainder of the sentence.

Let us look at an example grammar for the sentences listed in

the introduction of this chapter. The grammar is adapted from one

presented in Sowa's book, Conceptual Structures : Information
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Pr ooe ssi ng in Mind and Machine and although it will only handle a

subset of English, it will suit our purpose. The grammar is listed

in Figure 11

.

sentence —

>

noun_ phrase

noun_phrase2

verb_ phrase

noun_phrase verb_phrase period
— > determiner noun_phrase2
— > noun_phrase2
— > adjective noun_phrase2
— > noun
— > tranverb noun_phrase
--> intranverb
—> linkverb adjective
— > tobeverb ingtranverb noun_phrase
— > tobeverb i ngi ntr anv er

b

—> tobeverb no un_ phrase
determiner — > 'the' | 'a'

tobeverb —> 'is' | 'are*

linkverb —> 'is' j 'are'

ingtranverb
tranverb —

>

'an*

'was 1 'were*

—> 'eating'

'lasts'
i

'last' | 'eats' | 'eat'

i 'runs' j 'run'
i

'thinks'
•think' ! 'takes' | 'take'

ingintranverb —> 'eating' | 'running'
intranverb - 'thinks'

noun — > 'ca
i

i

i

t

i

i

i

adjective —

period —> •

-> 'runs' ! 'run' '

! 'think' | 'dies' | 'die'

t'
i 'cats' ! 'dog' | 'dogs' | 'ti

tigers' | 'lion' j 'lions' | 'anin

animals' | 'man' | 'men 1
| 'woman'

women' |

desks* |

1 f1 ow er

'

* f1 ow er s I ! I,

'chair' ! 'chairs'
cars' 'robot* 'robots'

'games'hours' ! 'game'

speeches'

> 'angry' | 'tall' | 'hopeful'

•desk'

'car'

' hour

•

'speech'

'hungry 'weak' | 'dead'

'red'

'long'

Figure 11: Sample Context Free Grammar

This grammar may be viewed as having two parts: the phrase struc-

ture grammar and the word grammar. The phrase structure grammar
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consists of the rules specifying the relative positions the various

syntactic categories (e.g., noun_phrase, verb_phrase) may have in a

sentence. The word grammar specifies the words that fall under a

given category (e.g., 'cat' is a noun). I shall only examine the

phrase structure grammar rules, since the word grammar rules are

self-explanatory. The first rule of the grammar states that a sen-

tence consists of a noun phrase followed by a verb phrase followed

by a period, and so in order to successfully parse a given sen-

tence, we must satisfy the conditions of the subgoals noun_phrase,

verb_phrase, and period. The rule for noun_phrase states that a

noun phrase consists of a determiner followed by a noun_phrase2 or

just a noun_phrase2 (effectively making the determiner optional).

Subsequently, a noun_phrase2 consists of either an adjective fol-

lowed by another noun_phrase2 or just a noun (this allows there to

be any number of adjectives preceding the noun in the noun phrase).

The rule for the verb_phrase is more complicated, since it has more

options. The first option says that a verb_phrase may consist of a

tranverb (transitive verb) followed by a noun_phrase. The second

option allows a verb_phrase to consist of an intranverb (intransi-

tive verb) alone. The third option provides for the case of a

linkverb (linking verb) followed by an adjective. The fourth

option states that a verb_ phrase may consist of a tobeverb (a form

of the verb followed by a noun_phrase. The fifth option allows a

verb_phrase to consist of a tobeverb followed by an ingintranverb
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(an intransitive verb ending in 'ing'). The sixth, and final,

option provides for the case of a tobeverb followed by a

noun_phrase. These are all of the phrase structure grammar rules,

and the remaining word grammar rules simply specify the categories

that the words in the vocabulary belong in.

In order to better understand how the grammar works, let us

parse an example sentence with the grammar. To parse sentence (1),

"a cat is an animal", we would start with the 'start' (or 'goal')

symbol, 'sentence'. Since every sentence in this grammar must have

a noun_phrase first, then we must meet the conditions of the rule

for a noun_phrase. The first option of the noun_phrase requires a

determiner (either 'the', 'a', or 'an'), and since our example sen-

tence begins with 'a', it matches 'a' as a determiner and meets the

first requirement of the noun_phrase. The determiner must be fol-

lowed by a noun_phrase2, and one of the options for noun_phrase2 is

just a noun, which is matched by the word 'cat'. Thus, the

noun_phrase has been successfully parsed, and we continue to the

verb_phrase. The last option of the verb_phrase is a tobeverb (a

form of the verb 'to be') followed by a noun_phrase. The tobeverb

is matched by the word, 'is', and the noun_phrase is matched by the

words 'an' and 'animal' much like the words 'a* and 'cat' matched

the initial noun_phrase. Lastly, the period is matched by '.', and

since this is the end of our sample sentence, we have successfully
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parsed it. A parse tree for sentence (1) is given in Figure 12.

Sentence

Noun-Phrase Verb-Phrase Period

Determiner Noun-Phrase ToBeVerb Noun-Phrase '"

Noun 'is' Determiner Noun-Phrase

•cat' 'an' Noun

Figure 12: Parse Tree for Sentence 1
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As mentioned previously, two of the tools currently used in

semantic-directed parsing are attribute grammars and Sow a' s concep-

tual graphs. A brief examination of each is necessary in order to

indicate the role Sommers* sense-logic rules could have in

semantic-directed parsing.
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2.2 Relation of Sommers ' Work ifi

Sowa's Concept ual Graphs

3.2.1 Sowa's Conceptual Graphs

The second tool used in semantic-directed parsing mentioned

above is John Sowa's conceptual graphs. Sowa's graphs are used to

represent semantic information in much the same way as the predi-

cate logic notation. The primary difference is the graphical

representation allowed via the 'display form' of the graphs, which

uses boxes, circles, and arrows to illustrate concepts and their

relations. For example, conceptual graphs for each of the sample

sentences given earlier are presented in Figure 13.

(1) a cat is an animal.

Cat >—(^>-> Animal

(2) the man is angry.

Man:# >-(3™)

—

y Angry
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(3) the desk is angry.

Desk: #

>-C5iD—

^

Angry

(4) tigers last an hour.

Tiger: {*} >-(^) > Time-Period: = 1 Hr

Figure 13: Sample Conceptual Graphs

It should be possible to utilize Sommers* sense-logic rules to

supplement Sowa's conceptual graphs. In section 3.H of his book,

Conceptual Structure?; Information Processing jjj Mind and Machine ,

Sowa defines 'canonical 1 graphs as » the meaningful graphs that

represent real or possible situations in the external world 1 [Sowa,

19$)]. These are, then, the graphs which 'make sense', and that is
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just another way of saying that their concepts (expressions) are

category-correct. Sowa claims that we have developed, through

experience, a host of canonical graphs, and this does indeed seem

to be the case. However, these graphs need to be checked for type

consistency. Specifically, a single graph may be category-correct

within itself, but it may contain expressions which are used in

inconsistent ways in other graphs. Thus, the set of graphs needs

to be checked for type consistency. Further, we do not need to

depend entirely on experience, since we can now check to determine

which graphs are canonical by using Sommers' sense-logic rules.

Given the type information for the expressions in the graphs, we

can assertain whether any category mistakes have been made.
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1'1'Z J Comparison of Sommers 1 and

Sowa * s Type Hierarchies

In this section I shall compare the type hierarchy developed

through Sommers* sense-logic rules to the one Sowa presents in con-

nection with his conceptual graphs. To facilitate this comparison,

I will present a set of concepts and illustrate how both Sowa and

Sommers would represent them in their respective type hierarchies.

The set of concepts is listed below:

agent, event, entity, attribute, animate, angel, machine,

animal, robot, vertebrate, mammal, carnivore, herbivore,

omnivore, wild-animal, feline, canine, dog, cat, tiger,

jaguar, lion, red, physical- object, plant, angry, man,

interesting

The relations between these concepts is represented in a type lat-

tice such as Sowa might use in Figure 14. The relations between

the same set of concepts is represented in a tree structure such as

Sommers might use in Figure 15.

We can see from this relatively small set of concepts the

differences between the two approaches. I have selected terms pri-

marily from Sowa's list of type labels given in Appendix B of his

book, Conceptual Structures: Information Processing in Mind and

Machine, so that there would be less dispute over the form of the
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Figure 14: Example Type Hierarchy (Sowa)
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Universal (interesting

Physical (Entity, Red) Temporal^ Event

^Agent /^Feline, Canine/N^ Non-Agent
Cat, Dog, Tiger,

Jaguar, Lion

Figure 15: Example Type Hierarchy

(Sommers)
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lattice. In fact, for most of the concepts, Sowa explicitly states

their relation to at least one other concept, and although he does

not collect all of the concepts into a single lattice as I have

done, it is relatively straightforward to do so, given his claims

about them. He could quibble about the placement of such terms as

'plant', 'agent', 'angry', 'omnivore 1
, 'herbivore', 'canine', and

'man', but I believe their positions in the lattice are faithful to

Sowa's general approach. The concepts 'vertebrate', 'carnivore',

'cat, 'dog', 'feline', 'wild-animal', 'jaguar', 'lion', and 'tiger'

are all taken from pages 81 and 82 of Sowa's text, and their place-

ments in the lattice seem dictated from what Sowa says regarding

them on those pages. Given these two diagrams, we can see that

Sowa's approach requires a distinct node for each concept, whereas

Sommers' method requires that all concepts that are in the same

type (using Sommers definition of 'type') be located at the same

node. There is obviously, then, a difference in the information

represented in the two diagrams. In Sowa's diagram, the nodes

represent classes of entities (actions, attributes, etc.) that

share a set of characteristics. These characteristics must include

such factual information (i.e., knowledge about the world) as that

tigers have stripes and lions do not, or at least some information

along these lines, since we could not justify placing them at dif-

ferent nodes unless there was some difference. This information

cannot be limited to the analytic information supplied from the
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meaning of the term, since it is not true by definition that tigers

are wild animals, and in fact, it is not even universally true. To

contrast this with Sommers' approach, Sommers 1 diagram only

represents the information contained in the senses of the concepts,

and so no information about the real world is represented, but only

the analytical truths based on the definitions of the terms. More-

over, Sommers 1 diagram does not even represent all of the informa-

tion that can be derived from the definitions of the terms, since

it only indicates the senses of the concepts and not their meanings

(recall that 'short 1 and 'tall' have the same sense but not the

same meaning). Thus, there is a crucial distinction between the

type information represented in Sommers' diagram and the knowledge

of the real world represented in Sowa's diagram.
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2.1 Relation of Soffifflerg
1 Work i£

Attribute Grammars

3.JM Attribute Grammars

Typically, an attribute grammar is developed as an extension

of an existing grammar. The existing grammar defines the syntax,

and thus the grammatical categories of the language in question.

An attribute grammar includes the original grammar as well as a set

of attributes describing the grammatical entities in the language.

Thus, we might include the attribute 'noun' for that part of a sen-

tence which was parsed and found to be in that syntactic category.

This attribute could then be used later to aid in parsing the

remainder of the sentence. It is in this fashion that attribute

grammars allow us to include some semantic and contextual informa-

tion in the parsing of sentences. For a discussion of attribute

grammars, the reader may wish to read Compiler Design Theory by

Lewis, Rosenkrantz, and Stearns [Lewis, 1976]. For a specific exam-

ple of an attribute grammar, I have included the following C-Prolog

program (see Figures 16 and 17) which implements an attribute gram-

mar for the context-free grammar introduced earlier. The attri-

butes are now attached to the non- terminals and passed up the parse

tree. For example, in the production for 'sentence', the type of

the noun_phrase is derived from the productions related to

»noun_phrase' and passed up via the attribute, Typel.
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sentence(sentence(N, V, P) ) --

>

noun_phrase(N, Num, Typel )

,

verb_phrase(V,Num, Type2)

,

period(P).

noun_phrase(np(det(D,Num) , N) , Num, Type) —

>

determiner (det(D, Num) )

,

noun_phrase2(N, Num, Type).

noun_phrase(N, Num, Type) —

>

noun_phrase2(N, Num, Type).

noun_phrase2(np2(adj(A, Typel ) ,N) , Num, Type) —

>

adjective(adj(A, Typel ).)

,

noun_phrase2( N, Num, Type).

noun_phrase2(N, Num, Type) —

>

noun(N, Num, Type).

verb_phrase(vp(V, N) , Num, Typel ) —

>

tranverb(V, Num, Typel ,Type2)

,

noun_phrase(N,Num1 ,Type3).

verb_ phrase (V, Num, Type) —

>

i ntr anv er b( V, Num , Ty pe )

.

verb_phrase(vp(V,adj(A, Type) ) ,Num, Type) —

>

linkverb(V, Num, Typel ,Type2)

,

adjective(adj(A, Type)).

verb_phrase(vp(V1 , V2 ,N) ,Num, Type3) —

>

tobeverb(V1 , Num, Typel ,Type2)

,

ingtranverb(V2,Num,Type3,TypeH)

,

noun_phrase(N, Num1 , Type5)

.

verb_phrase(vp(V1 ,V2) , Num, Type) —

>

tobeverb(V1 , Num, Typel, Type2),
ingintranverb( V2 , Num, Type).

verbD_phrase(vp(V,N) , Num, Type) -->
tobeverb( V.Num, Typel ,Type2)

,

no un_ phrase (N, Num, Type )

.

peri od( peri od(.)) —> [1)6].

Figure 16: Attribute grammar - Phrase Structure
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determiner(det(the,_) ) —> [the],

determiner (det(a, singular)) — > [a],

determiner(det(an, singular)) — > [an],

tobeverb(verb(is, singular, universal, universal)

,

singular, universal, universal) — > [is].

tobeverb( verb (are, plural, universal, universal)

,

plural, universal, universal) — > [are].

tobeverb( verb(was, singul ar, universal, universal)

,

si ngul ar, universal, universal) —> [was],
tobeverb( verb (were, plural, universal, universal)

,

plural, universal, universal) —> [were],

linkverb(verb(is, singular, universal, universal)

,

singular, universal, universal) —> [is],

linkverb( verb (are, plural, universal, universal)

,

plural, universal, universal) — > [are],

ingtranverb(verb(eating, Num, living, physical)

,

Num, living, physical) — > [eating],

tranverb(verb( lasts, singular, temporal, temporal)

,

singular, temporal, temporal) --> [lasts],

tranverb( verb(last, plural, temporal, temporal)

,

plural, temporal, temporal) --> [last].
tranverb( verb(eats, singular, living, physical)

,

singular, living, physical) —> [eats],
tranverb(verb(eat, plural, living, physical) f

plural, living, physical) — > [eat],

tranverb( verb(eats, singular, machine, physical)

,

tranverb( verb(eats, singular, machine, physical)

,

singular, machine, physical) —> [eats].
tranverb(verb(eat, plural, machine, physical)

,

plural, machine, physical) —> [eat].
tranverb( verb(runs, singular, sentient, temporal)

,

singular, sentient, temporal) — > [runs],
tranverb(verb(run, plural, sentient, temporal)

,

plural, sentient, temporal) — > [run],
tranverb(verb(thinks, singular, agent, universal)

,

singular, agent, universal) —> [thinks],
tranverb(verb(think, plural, agent, universal)

,

plural, agent, universal) — > [think],
tranverb( verb (takes, singular, sentient, physical)

,

singular, sentient, physical) —> [takes],
tranverb( verb (take, plural, sentient, physical)

,

plural, sentient, physical) —> [take].
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ingintranverb( ver treating, Num, sentient)

,

Num, sentient) —> [eating].
ingintranverb( verb(running, Num, sentient)

,

Num, sentient) — > [running],

intranverb(verb(runs, singular, sentient)

,

si ngul ar, sentient ) —> [runs],
intranverb(verb(run, plural, sentient)

,

plural, sentient) — > [run],
intranverb( verb (thinks, singular, agent)

,

singular, agent) -- > [thinks].
intranverb(verb(think, plural, agent),

plural, agent) --> [think],
intranverb(verb(dies, singular, living)

,

singular, living) —> [dies],
intranverb( verb(die, plural, living)

,

plural, living) —> [die],
intranverb( verb(dies, singular, machine)

,

singular, machine) — > [dies],
intranverb( verb(die, plural, machine)

,

plural, machine) — > [die],

noun (noun (cat, singular, nona ge nt ), si ngul ar, nonage nt)
--> [cat],

noun(noun(cats, plural, nonage nt)
,
plural, nonage nt)

—> [cats],
noun (noun (dog, singular, nonage nt) , singular, nonage nt)

—> [dog],
noun(noun(dogs, plural, nonage nt)

, plural, nonage nt)
—> [dogs],

noun (noun (tiger, singular, nona gent) , singular, nonage nt)
—> [tiger],

noun (noun (tigers, plural, nonage nt) ,
plural, nonage nt)

—> [tigers],
noun(noun(lion, singular, nonage nt) , singular, nonage nt)

— > [lion],
noun(noun ( lions, pi ur al , nonage nt ) , pi ur al , nonage nt

)

— > [lions],
noun(noun(animal, singular, sentient) .singular, sentient)

—> [animal],
noun(noun(animals, plural, sentient) .plural, sentient)

— > [animals],
noun (noun (man, singular, agent ), singular, agent)

— > [man],
noun (noun (men, plural, agent)

, plural, agent)
—> [men].
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noun (noun (flower, singular, nonsentient) , singular, nonsentient)
« > [flower],

noun ( noun ( f1 ow er s, pi ur al , nonse nti ent ) , pi ur al , nonse nti ent

)

— > [flowers],
noun (noun (desk, singular, nonmachine) , singular, nonmachine)

—> [desk],

noun (noun (desks, plural, nonmachine) ,
plural, nonmachine)

— > [desks],
noun (noun (chair, singular, nonmachine) .singular, nonmachine)

—> [chair],
noun (noun (chairs, plural, nonmachine) ,

plural, nonmachine)
—> [chairs],

noun (noun (car, singular, machine) .singular, machine)
—> [car],

noun (noun (cars, plural, machine) ,
plural, machine)

—> [cars],

noun (noun (robot, singular, machine) , singular, machine)
— > [robot],

noun(noun( robots, plural, machine) ,
plural, machine)

—> [robots],
noun (noun (hour, singular, temporal) , singular, temporal)

— > [hour],

noun (noun (hours, plural, temporal)
, plural, temporal)

—> [hours],

noun (noun (game, singular, temporal) , singular, temporal)
--> [game],

noun(noun( games, plural, temporal)
,
plural, temporal)

— > [games],
noun(noun(speech, singular, temporal) .singular, temporal)

—> [speech],
noun (noun (speeches, plural, temporal)

,
plural, temporal)

—> [speeches],

adjective(adj(angry, agent)) —> [angry],
adj ective( adj (tall, physical) ) —> [tall],
adjective(adj( hopeful, agent)) —-> [hopeful],
adjective(adj( red, physical) ) —> [red],

adjective(adj( hungry, sentient)) —> [hungry],
adj ective( adj ( weak, sentient)) —> [weak],
adjective(adj(dead, living)) —> [dead],
adj ective(adj( dead, machine)) —> [dead],
adjective(adj( long, temporal)) — > [long],
adj ective(adj( long, physical)) —> [long].

Figure 17: Attribute grammar - Vocabulary
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The program presented in Figures 16 and 17 utilizes a Definite

Clause Grammar (DCG), and since the use of a DCG in C-Prolog is not

well-documented, I shall briefly go over the notation and the basic

concepts involved. The first thing to note regarding the notation

is the use of '-->'. In C-Prolog, *— >' is a system operator

specifically designed for use in DCGs. It has essentially the same

meaning in C-Prolog as it has in a DCG in general. For example, in

Figure 16 we have:

sentence ( sentence (N, V, P) ) -->

noun_phrase(N, Num, Typel )

,

verb_phrase( V, Num, Type2)

,

period(P).

and the »— >' in this rule means that a sentence consists of a noun

phrase followed by a verb phrase followed by a period. The Head of

the rule (the part on the left-hand side of the '— >») must be a

non- terminal in the grammar, and the Body (the part on the right-

hand side) is a sequence of terminals and/or non- terminals. One of

the hidden apsects of the DCG in C-Prolog are the extra parameters

that are not listed in the parameter list of the Head, but are

listed in the initial call to the rule. For example, there is only

one parameter shown in the rule for sentence (i.e., the functor,

• sentence(N, V, P) •) , but when the rule for sentence is called, we

must pass both the list of words (tokens) and the list that will be
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left after the sentence has been parsed and the appropriate tokens

have been consumed (removed from the list). In the case of parsing

a single sentence, the remainder should be the empty list ('[]'),

and so a call to sentence might look like: ' sentence (S, Wordlist,

[])'. The last aspect of the use of DCGs in OProlog that I shall

discuss is the consumption of tokens, which is done by a fact such

as:

determiner(det(a, singular)) --> [a].

The brackets ('[', •]') are system operators in C-Prolog, and they

indicate that the token between them is to be removed from the

input list and that the remaining list (minus the token) is to be

returned. So, when a call to determiner is made, if the first

token on the input list matches the token in the brackets, then the

call succeeds and the token is consumed. For a more complete

account of the use of a DCG in C- Prolog, the reader is instructed

to examine "Use of Definite Clause Grammars", a Master's Report by

Weilin Chen [Chen, 1 987] and The Art of Prolog : Advanced Program-

ming Techniaues by Leon Sterling and Ehud Shapiro [Sterling, 1986],
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Figure 18 illustrates the results of parsing sentences (1) and

(2), using the attribute grammar presented in Figures 16 and 17.

a cat is an animal.

sentence

(

np(det(a, singular)

,

noun(cat, singular, nonagent))

,

vp(verb(is, singular, universal, universal)

,

np(det(an, singular)

,

noun (animal, singular, sentient)) )

,

period(.))

the man is angry.

sentence

(

np(det(the, singular)

,

noun ( man, si ngul ar , age nt ) )

,

vp(verb(is, si ngul ar, universal, universal)

,

adj( angry, agent)),
period(.))

Figure 18: Functor results of parsing sentences

(1) and (2) (with attached attributes)

Figure 18 and Figures 19 and 20 are equivalent ways of representing

the parsed sentences. Note that the key difference in Figure 19

from the parse tree presented earlier (Figure 12) is the inclusion

of the attributes pertaining to the number (singular or plural) and

type (e.g., nonagent, universal, agent). It should also be noted

that the Functor results and the parse trees are merely two

equivalent ways of representing the same information.
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Noun-Phrase

[Singular, nonagent]

Determiner Noun-Phrase

[Sing ular] [Singular,

nonagent]

'a'

Noun

[Singular,

nonagent]

'cat'

Sentence

Verb-Phrase Period

[Singular, sentient]

ToBeVerb

[Singular,

universal]

Noun-Phrase

[Singular,

sentient]

'is' Determiner Noun-Phrase

[Sing ular] [Singular,

sentient]

'an'

Noun

[Singular,

sentient]

'animal'

Figure 19: Parse Tree for Sentence 1

(with attached attributes)
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Sentence

Noun-Phrase

[Singular, agent]

Verb-Phrase Period

[Singular, agent]

Determiner Noun-Phrase

[Singular] [Singular,

agent]

LinkingVerb

[Singular,

universal]

'the'

Noun

[Singular,

agent]

'is'

'man'

Adjective

[Agent]

'angry'

Figure 20: Parse Tree for Sentence 2

(with attached attributes)
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l.J.£ Ihe Use of Sommers ' Sense-Logic Rules

in Attribute Grammars

With this background information, it should now be possible to

show how Sommers' sense-logic rules could be used to aid in the

solution of problems in semantic-directed parsing. We have seen

that the type of an expression is a partial specification of its

meaning in that it tells us what other expressions that make sense

with that expression. We are thus able to include type constraints

as (at least one of) the semantic constraints utilized in an attri-

bute grammar. The type of an expression is associated with it as

an attribute and checked for correctness. It is necessary to have

a dictionary of terms and their type information which are looked

up when parsing a sentence. If one attempt at a parse leads to a

type conflict with two of the expressions in the sentence, then a

different approach is attempted until a successful parse for the

sentence is found, or all approaches have failed.

For a specific example of an attribute grammar with type

checking, I have included a C-Prolog program (see Figures 21 and

22) which implements an attribute grammar with type checking for

the context-free grammar introduced earlier. The types of the

non_terminals are now checked for consistency. For example, in the

production for 'sentence 1
, the type of the noun_phrase which is

derived from the productions related to ' noun_phrase' and passed up
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sentence(sentence(N, V, P)) —->

noun_phrase(N, Num, Typel )

,

verb_phrase(V,Num, Type2)

,

period(P),
{r el (Typel

f
Type2)}.

noun_phrase(np(det(D,Num) ,N) ,Nuni, Type) —

>

determiner(det(D, Num) )

,

noun_phrase2(N, Num, Type).

noun_Phrase(N, Num, Type) —

>

noun_phrase2(N, Num, Type).

noun_phrase2(np2(adj(A, Typel ) ,N) , Num, Type) —

>

adjective(adj( A, Typel ))

,

noun_phrase2(N, Num, Type),

{rel(Type, Typel)}.
noun_phrase2( N, Num, Type) —

>

noun(N, Num, Type).

verb_phrase(vp(V,N) , Num, Typel ) —

>

tranverb(V, Num, Typel ,Type2)

,

noun_phrase(N, Num1 ,Type3)
,

{rel(Type3,Type2)}.
verb_phrase(V, Num, Type) -->

intranverb(V, Num, Type).
verb_phrase(vp( V, adj(A, Type)) ,Num, Type) —

>

linkverb(V, Num, Typel ,Type2),
adjective(adj(A, Type))

,

{rel(Type,Type2)}.
verb_phrase(vp(V1 ,V2,N) ,Num,Type3) —

>

tobeverb(V1 , Num, Typel ,Type2)

,

ingtr anv erb(V2, Num, Type3, Typel})

,

noun_pbrase(N,Num1 ,Type5)

,

{rel(Type5, Typel})}.

verb_phrase(vp(V1 ,V2) , Num, Type) —

>

tobeverb(V1 , Num, Typel ,Type2)

,

ingintranverb(V2,Num, Type).
verb_phrase(vp(V,N) , Num, Type) —

>

tobeverb(V, Num, Typel ,Type2)

,

noun_pnrase(N, Num, Type).

period(period(.)) —> [46].

Figure 21: Attribute grammar - Phrase Structure
(with type checking)
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% Type Hierarchy

% The rel predicate checks the relation between two types.

% The rel predicate succeeds if the 2nd parameter is

% predicable of the 1st parameter.

rel(T,T).
rel(T, universal)

.

rel( living, physical)

.

rel (nonliving, physical)

.

rel (sentient, physical)

.

rel(nonsentient, physical)

.

rel (machine, physical)

.

rel(nonmachine, physical)

.

rel (agent, physical)

.

rel ( nonage nt, physical)

.

rel( machine, nonliving)

.

rel(nonmachine, nonl iving)

.

rel(sentient, living)

.

rel(nonsentient, living)

.

rel(agent, living)

.

rel(nonagent, living)

.

rel (agent, sentient).
r el ( nonage nt, sentient).

Figure 22: Prolog Implementation of the

Type Hierarchy

via the attribute, Typel , is checked for consistency with the type

of the verb_phrase (which is passed up via the attribute, Type2).

In this case, the consistency check amounts to determining whether

something of Type2 is predicable of something of Typel (i.e.,

whether things of Type2 are at the same node or 'higher than 1

things of Typel). If this is not the case, then all other possible

approaches are attempted, and if none succeed, then the parse is

not successful. What has been added to the previous attribute

grammar is a check for nonsensical sentences. Without type check-

ing, a nonsensical, but grammatically correct sentence, would
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succeed, and now it will not.

The Prolog Implementation of the Type Hierarchy given in Fig-

ure 22 requires a little explanation. The set of Prolog facts in

Figure 22 comprise one way of representing part of the information

contained in the type hierarchy presented previously in Figure 15.

The part that these Prolog facts represent is the relation between

the type labels that were attached to the nodes of the tree in Fig-

ure 15. The rest of the information (i.e., that a given word

belongs at a particular node) is contained in the vocabulary sec-

tion of the program, where, for example, the word 'cat' is indi-

cated as having type 'nonagent'. The type label, 'nonagent' is

shown (in Figure 22) as being 'lower' (in terms of the tree struc-

ture) than the type labels: 'universal', 'physical', 'living', and

'sentient'. This means that things of these types are all predica-

ble of things of type 'nonagent'.

It should prove instructive to examine an attempt to parse a

sentence containing a type conflict. Sentence (3), 'the desk is

angry' will serve as an example of such a sentence, since desks are

not the type of thing that can meaningfully be said to be angry.

We would begin by parsing the noun phrase 'the desk', and this

would give us 'nonmachine' as the type of the noun phrase (Typel)

and 'singular' as the number of the noun phrase. Then we would

parse the verb phrase 'is angry' and we would get 'agent' as the
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type of the verb phrase (Type2) and 'singular* as the number of the

verb phrase. We would even be successful in parsing the period, and

if we had no type checking, the sentence as a whole would parse

successfully. However, when we performed the semantic action

included within the brackets (i.e., rel(Type1 ,Type2) ) , we would

fail, since things of type 'agent' (Type2) are not predi cable of

things of type 'nonmachine' (Typel). This is indicated by the

absence of ' rel( nonmachine, agent) ' in the list of facts in the type

hierarchy. So we can see how the type checking works, and that it

adds a new aspect to our grammar.

Since both attribute grammars and Sowa's conceptual graphs can

be used in semantic-directed parsing, and since Sommers' sense-

logic rules can aid in the use of both of them, it seems resonable

to attempt to combine all three elements into one unified approach

to semantic-directed parsing. Attribute grammars would supply the

syntax and the notation for including semantic constraints, and

Sommers' rules would offer us the ability to include type checking

as one of the semantic constraints. After a sentence was parsed,

it could be represented in a conceptual graph which would be known

to be canonical, since the expressions in the sentence were previ-

ously checked for type correctness.
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3..5. Summary of the Role of Sense-Logic Rules

_in Natural Language Processing

Beyond their application to semantic-directed parsing, Som-

mers' sense-logic rules may prove quite beneficial in the analysis

of natural language. Sommers provides cogent arguments to support

his claims, and I see no way to rebut them. One of the more signi-

ficant aspects of his theory is its potential application to

natural language processing. Since Sommers gives a formal symbol-

ism, there should be little difficulty in implementing his ideas in

some computer application. Sommers' analysis of the order of

priority of the rules governing natural language gives an indica-

tion of the significance and the place in an approach to natural

language processing that his sense rules should have. There are

five levels of rules, corresponding to the five levels of meaning-

lessness listed earlier, and they are ranked according to their

priority. The ranking is important, since a rule can neither be

satisfied or fail to be satisfied at a given level unless the rules

at all previous levels have been satisfied. The five levels are:

(1) Word-Construction (Lexicographic) Rules, (2) Grammatical Rules,

(3) Type (or Sense) Rules, (H) Consistency Rules (Logic), and (5)

Rules governing pragmatical appropriateness (e.g., empirical

truth). Given the fact that computer scientists tend to be more

familiar with these five levels as they are applied to artificial
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languages (i.e., programming languages), I have provided a com-

parison between the parts of a compiler with these five levels:

Programming Language Natural Language

(1) Lexical (1) Word-Construction Rules

(2) Context-Free Grammar (2) Grammatical Rules

(3) Type- Checking (3) Type (or Sense) Rules

(1)) Assertion- Checking (H) Consistency Rules (Logic)

(5) Execution (5) Empirical truth

The rules at levels (1), (2), and (H) have received a great deal

of attention in attempts at natural language processing, and some

work has been done even on implementing rules for level (5) f
but

very little attention has been paid to level (3). There are com-

puter applications that can enforce grammatical rules, and there is

an abundant supply of logic applications, but the gap between these

formal systems and anything approximating the meanings of terms is

quite wide. Many computer scientists, as well as those in other

fields, believe that it is impossible to formalize the meanings of

terms. They contend that meaning is too imprecise and too abstract

to submit to formal rules. They are quick to point out that there

is a big difference between the mere manipulation of symbols

according to grammatical and logical rules and a true understanding

of a natural language. I contend that the introduction of Sommers'

sense-rules is the first step in bridging the gap and making up the
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difference. With these rules it should be possible to construct

computer applications that can determine the sense of a term if not

its meaning (the meaning of a term is more specific than its sense,

since, for example, "short" and "tall" have the same sense but dif-

ferent meanings). I am currently unaware of any computer applica-

tions other than my own that are explicitly utilizing Sommers 1

rules, but further research in that area needs to be undertaken.
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1. Issues Involved in Generating & Type Hierarchy

M..1 Son)? Theoretical Issue? Involving Sommers' Sense-Logic

For n terms, there are n squared unique pairs of terms. Let

{t1 , ..., tm} represent the set of terms. There are n pairs of

terms whose values (i.e., U, N, P) can be determined without any

information about the relations between the terms. These n pairs

are those in which the 1st term and the 2nd term in the pair are

the same (i.e., all pairs (ti, ti)). There are n pairs since there

are n terms. The value for all these pairs is P(ti, ti), which is

to say that all terms are predi cable of themselves. Thus there are

n squared minus n pairs of terms whose values are initially

unknown. For any two terms, the possible combinations of values

are given below

:

(1) P(ti, tj) & P(tj, ti) =df= the two terms are

co- predi cable, which means that they occupy the

same node in the tree

(2) P(ti, tj) & " P(tj, ti) =df= ti is predicable of

tj, but tj is not predicable of ti, which means

that ti occupies a higher node in the tree than

tj
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(3) " P(ti
f

tj) & P(tj, ti) =df= ti is not

predi cable of tj, but tj is predi cable of ti,

which means that ti occupies a lower node in the

tree than tj

(1») N(ti, tj) & N(tj, ti) =df= the two terms are not

meaningfully related, which means that they are

on different branches of the tree

An important question is whether the given information w. r. t.

the sense relations of the n terms is sufficient to completely

determine the sense relations for all of the n squared minus n

pairs of terms. We need a general procedure that will determine,

for any set of n terms and any given information w. r. t. the sense

relations of the n terms, whether the given information is suffi-

cient to completely determine the sense relations for all n squared

minus n terms. I believe the only way to determine this for all

possible cases is through the use of an algorithm that derives all

the information possible from the given information and then checks

this derived information for completeness. I have constructed such

an algorithm and implemented it in the version of C - Prolog avail-

able on the Vax at Kansas State University. The algorithm is given

below

:
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Assert all the given information

(i.e., add it to the dynamic database)

Repeat

more <— false

{derive all the information possible from the current

amount of information. If 'new' (previously unknown)

information is derived, then set more to true and

assert any new information}

Until not (more)

Check the final set of information for completeness

As can be seen, the algorithm is not very complex at the gen-

eral level. One important part of the algorithm is that after

every single derivation of information, the information derived is

checked to see whether is it new. For the implementation in Pro-

log, the commented part of the algorithm consists of two sets of

clauses which derive information first from isolated pairs of

terms, and then from combinations of three terms. I do not wish to

give a detailed account of the implementation at this point, but

rather just to give the reader an idea of how one of the major

theoretical issues was dealt with. More will be said about the

implementation later.
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1.2 leu Calculations

Involving the Sense Relations of Expressions

The rules Sommers discovered supply the means for performing

various calculations involving the sense relations of expressions.

The following is a list of some of the calculations that can be

performed using Sommers' rules and criteria:

(1) Construct a tree representing the sense

"locations" of terms (i.e., the sense relations

they have to one another).

(2) Determine whether a term is used univocally.

(3) Determine whether the sense relations (e.g., and

N) given for a set of terms are consistent

(Can they be placed on a tree?).

(i\) Evaluate "doubtful" sentences (i.e., determine

whether a sentence whose sense-value was

previously unknown is U or N in sense-value).

(5) Name new concepts. "We have empty locations on

the tree for which we have no words... The

construction of a tree opens up the possibility

of numbering locations and giving names to these

concepts. "
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(6) Determine whether terms are of the same category

(the tree will show this).

(7) Determine whether terms are of the same type

(the tree will show this).

( 8) Determine whether a term is a member of the set

of terms constituting a single language

(the tree will show this).

(9) Determine whether a set of terms "belong to" the

same language (the tree will show this).

(10) Determine whether a term is predicable of another

(the tree will show this).
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i.3 lii Implementation of Sommers' Sense Lagls Rules

The implementation I developed is wriProlog, since it

seems to be the programming language best suited for the expression

of Sommers 1 sense logic rules. Essentially, I decided to write a

program to construct a tree representing the sense locations of

terms (see #1 above in the list of ten calculations involving the

sense relations of expressions). In order to do this, the program

must be given (1) a list of terms and (2) a set of known relations

involving those terms. The program is set up to read these from

separate files (the files were kept separate to make it easier to

assert the known relations and thereby add them to the program's

database). After the known relations are read in, the program

derives all of the information it can from those relations using

Sommers 1 sense logic rules. For example, if one term is predi cable

of another term, the program will assert (i.e., add to the data-

base) that the two terms are U-related and that they are not N-

related. After all such implicit information is added to the data-

base, the program attempts to construct a tree illustrating the

sense relations of the terms. If not enough initial information is

given, the program will be unable to construct a tree for the terms

and will indicate this. The particulars of running the program are

explained in the user's manual. The program I have implemented is

merely a prototype for an eventual system that would perform all of
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the ten calculations listed above.
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5 . Summary

I have attempted to give the briefest account of Sommers* type

theory sufficient to convey its importance. I provided an analogy

with ordinary truth- valued logic to explain its status, and I sum-

marized the central terms and their definitions. Further, the

relevant criteria and rules were detailed as well as a list of some

of the calculations that could be performed with them. Finally, I

outlined the relevance of Sommers 1 work to computer science, espe-

cially to work done in natural language processing and briefly

described an implementation of some of Sommers 1 ideas.
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ABSTRACT

In the early 60's, Fred Sommers introduced a logic for "sense

relations". This sense-logic has as its domain

meaningful /nonsensical sentences. Sense-logic is to be dis-

tinguished from conventional logic which has a domain of true/false

sentences (propositions). Sommers 1 work has been applied in

category theory, but has not yet received attention in computer

science fields. The purpose of this paper is to (1) give a brief

exposition of Sommers' sense- logic, (2) show the relationship it

has to computer science work done on natural language processing

(especially attribute grammars and John Sowa's conceptual graphs),

and (3) briefly describe an implementation of some of Sommers'

ideas.


