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Abstract. This paper applies the Q-space analysis method to the scattering phase function of 
small irregular particles. Q-space analysis involves plotting the scattered intensity versus the 
magnitude of the scattering wave vector q = (4π/λ) sin(θ/2) on a double log plot. Four types of 
irregularly shaped particles were studied: strongly damaged spheres, rough surface spheres, 
pocked spheres, and agglomerated debris particles. The angular scattering phase function was 
calculated using the discrete dipole approximation (DDA). The Q-space analysis uncovered 
power law descriptions of the scattering as it has previously for aggregates, spheres and dusts, 
although in some situations the description is marginal. It also showed that the forward scattering 
lobe has Rayleigh functionalities on size and refractive index. These results imply that Q-space 
analysis can yield a comprehensive description of scattering in terms of power laws with 
quantifiable exponents for a wide variety of particle shapes. However, a theoretical explanation 
of the power laws and the values of the numerical exponents is lacking. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction. 
 The description of light scattering by particles evolves from the simple Rayleigh limit 
which applies to particles much smaller than the wavelength of light, to spherical particles of 
arbitrary size and refractive index describable by the classical Mie equations, to a vast variety of 
complex, irregular geometries such as aggregates, spheroids, and innumerable random shapes  
that appear in soot, mineral dusts, volcanic ash, snow and ice crystals, and biological micro-
organisms. The foremost agenda in the light scattering literature for the past few decades has 
been how to describe and calculate scattering and absorption by irregularly shaped particles. 
Significant computational advances have been made, and very useful experimental programs 
have allowed for comparison with computation. However, a simple description encompassing all 
shapes has yet to be obtained. In this paper we continue our investigation of the facility of the Q-
space analysis [1-4] to provide a comprehensive and quantitative description of the scattering 
phase function for all shapes. Q-space analysis is applied to discrete dipole approximation 
(DDA) scattering calculation results of Zubko and coworkers [5- 7] for four different particle 
morphologies: strongly damaged spheres, rough surface spheres, pocked spheres, and 
agglomerated debris particles. A coherent description of scattering involving power laws 
emerges which indicates a potential unification of these irregular particles with spheres, 
spheroids, dusts and aggregates. 
2. Q-space Analysis. 
 Q-space analysis involves plotting the scattered intensity as a function of the magnitude 
of the scattering wave vector  
 
    q = 2ksin(θ/2)      (1) 
 
on double-log plots [1]. Here k = 2π/λ where λ is the wavelength and θ is the scattering angle. 
The units of q are inverse length. Plotting in this manner yields a significant difference from plots 
of the same intensity data against linear θ.  

With Q-space analysis, aggregates show power laws in the scattered intensity at large q 
with negative slopes equal to the aggregate fractal dimension [8]. As q decreases, the power law 
transforms through a curving Guinier [9] regime near qRg ≈ 1, where Rg is the cluster radius of 
gyration, which is dominated by simple diffraction.  As q approaches zero, the Guinier regime 
gives way to a q-independent Rayleigh regime.  

When the Q-space analysis is applied to the scattered intensity from spheres of arbitrary 
size and refractive index, the Mie solution [10], power laws again appear in the envelops of the 
plots (ignoring the “ripples” and the enhanced backscattering) and a simple description results 
[1-4]. One finds a quasi-universality of plots for spheres of wide ranging size and refractive 
index if the so-called phase shift parameters are equal. The phase shift parameter is [11] 

 
ρ = 2kR|m – 1|     (2) 

 
where m is the refractive index and R is the sphere radius. As for aggregates, at small q the 
scattered intensity in the forward lobe Rayleigh regime is constant as q approaches 0 and a 
Guinier regime occurs near qR ≈ 1. For qR >1 the scattered intensity falls off with a rough power 
law as (qR)-2 until this functionality crosses over at qR ≈ ρ.  For qR > ρ the scattered intensity 
falls off as (qR)-4. If ρ < 1, there is no -2 power law and the Guinier regime crosses over directly 
to the -4 power law with increasing q.  Recently the Q-space analysis was applied [12] to 



experimental data for dusts [13, 14]. These dusts are solid particles that lack spherical symmetry. 
Some have smaller dusts on their surface. Once again Q-space analysis yielded power laws and 
all four types of dusts studied showed the same power law exponent.  In summary, so far the 
tally has aggregates, arbitrary spheres as described by Mie scattering and non-spherical irregular 
dusts all show power laws with quantifiable exponents under Q-space analysis. These results 
compel us to apply the Q-space analysis to yet other shapes and refractive indices to build an 
extensive empirical base that could both yield a comprehensive description of light scattering by 
all shapes and lead to an explanation of the power laws. Below we show that Q-space analysis 
also yields quantifiable power laws when applied to calculated scattering results for irregularly 
shaped particles. 
3. Application of Q-space Analysis to Irregular Spheres. 

Zubko and coworkers [5-7] used DDA [e.g., 15] to calculate the scattering for four 
different types of irregular spheres: strongly damaged spheres, rough surface spheres, pocked 
spheres, and agglomerated debris particles. For each type three refractive indices were used: m = 
1.313, 1.5 + 0.1i and 1.6 + 0.0005i. The size parameter x = kR, where R is the radius of the 
circumscribing sphere of the particle, ranged from 2 to 14 with steps of 2. For a wavelength of 
0.633 μm, these values correspond to radii of R = 0.2 to 1.4 μm. It is important to stress that the 
light scattering response of irregularly shaped particles for each set of x and m was averaged 
over sample particles and their orientations. We considered a minimum of 500 sample particles. 
Each sample particle was computed for only one random orientation of the incident 
electromagnetic wave, but was azimuthally averaged over 100 scattering planes, evenly 
distributed around the propagation direction of the incident light. We continued the averaging 
over additional sample particles until fluctuations of the standard deviation of the degree of 
linear polarization over the entire range of the scattering angle  was less than 1%; whereas, the 
actual number of sample particles considered for each set of parameters often exceeded 500. 
Thus, the data used in the present investigation were quite statistically reliable. More detail on 
the DDA calculation, the particle shapes and the averaging over scattering planes and control of 
the averaging quality can be found in work of Zubko et al. [5- 7].  
3.1 Strongly damaged spheres.  

To start the analysis the real space structure of some of the particles was created by 
replacing the dipoles that make up the particle for the DDA calculation with points on a lattice. 
Then the structure factor of the particle was calculated as the square of the Fourier transform of 
this real space structure [8]. Figure 1a shows the structure factor for three of the strongly 
damaged spheres plotted versus qRg, where Rg is the radius of gyration of the particle. This 
represents the scattering in the m → 1.00, ρ → 0 limit, i.e. the Rayleigh-Debye-Gans limit. A 
prominent power law is seen with an exponent of -4 (the upswing at large qRg is an artifact due 
to the finite separation of the dipoles). This is the Porod value for a sphere [8, 9, 16] and in that 
respect is consistent with the sphere morphology, albeit perturbed. It is well known that 
scattering from a homogeneous sphere in the m → 1.00 (ρ → 0) limit is described by the 
Rayleigh-Debye-Gans (RDG) [11] formula with a q-4 envelop at large q. Q-space analysis of Mie 
scattering by spheres [1, 2], reviewed above, showed that spherical particle scattering evolved 
from this RDG limit with a power law exponent of -4 to exponent -2 and -4 regimes with 
increasing m. The Q-space plots for strongly damaged spheres are shown in Fig. 1, parts b, c and 
d. Rather than the variable q the dimensionless variable qR = 2x sin(θ/2) is used (note that the 
maximum value of qR is 2kR = 2x). Moreover, the scattered intensities are shifted by 
multiplicative factors to avoid overlapping of the plots. For each refractive index the following 



features are seen: 
1. A q-independent Rayleigh regime appears when qR < 1. 
2. A Guinier regime near qR ≈ 1. 
3. A prominent “hump” in the range 1 ≤ qR ≤ 3.5. 
4. A minimum near qR ≈ 3.5. 
5. A power law regime when qR > 3.5 with exponents that tend to decrease with increasing 

refractive index and size parameter. The power law is the envelop of a series of 
interference ripples and for the two smallest refractive indices appears to include the 
hump down to qR ≈ 1. 

6. Enhanced back scattering at the large qR end where qR is equal to twice the size 
parameter, 2x. 

These features including the power laws are similar to the numerous others observed for 
aggregates, spheres and dusts via Q-space analysis as described above. 

 

Figure 1. Q-space analysis of the scattering by strongly damaged spheres. Part a shows the 
m → 1.00, Rayleigh-Debye-Gans limit, the structure factor. Parts b, c and d are with 
refractive indices, m, as marked for a range of size parameters, x. Thin straight lines 
represent power laws with q as described in the legend. Plots are intensity shifted to avoid 
overlap. 



We conclude that while the -4 regime remains at m = 1.00, i.e. the structure factor, for 
strongly damaged spheres, the m > 1 exponents of Fig. 1 b, c and d are significantly different 
than for homogeneous spheres and only one power law is seen, not two. Note also the small dip 
near qRg ≈ 3 in the structure factor similar to that seen in the scattering results. This dip, and 
similar ones to be seen below, might be due to a structural artifact in the particle creation 
method. 
3.2 Rough surface spheres. The Q-space plots for rough surface spheres are shown in Fig.2. 
Similar to the strongly damaged spheres case above, Fig. 2 shows all six characteristics 
delineated above including Rayleigh, Guinier and power law regimes. However, for these 
particles the power law description is not very good, and the ripple structure dominates, but it is 
still more descriptive than plotting versus linear scattering angle which yields non-descript 
curves. The structure factor in Fig. 2a again shows the Porod q-4 behavior and the idiosyncratic 
dip at qRg ≈ 3.  

  
 

Figure 2. Q-space analysis of the scattering by rough surface spheres. Part a shows the m 
→ 1.00, Rayleigh-Debye-Gans limit, the structure factor. Parts b, c and d are with 
refractive indices, m, as marked for a range of size parameters, x. Thin straight lines 
represent power laws with q as described in the legend. Plots are intensity shifted to avoid 
overlap. 



Figure 3. Q-space analysis of the scattering by pocked spheres. Part a shows 
the m → 1.00, Rayleigh-Debye-Gans limit, the structure factor. Parts b, c and 
d are with refractive indices, m, as marked for a range of size parameters, x. 
Thin straight lines represent power laws with q as described in the legend. 
Plots are intensity shifted to avoid overlap. 

 
3.3 Pocked spheres. The Q-space plots for pocked spheres are shown in Fig. 3. Similar to the 
strongly damaged spheres case above, Fig. 3 shows all six features including Rayleigh, Guinier 
and definite power law regimes. The ripple structure is weak. Figure 3d shows the square of the 
Fourier transform of the real space structure for three of the pocked spheres. Once again in the 

Rayleigh-Debye-Gans limit, the structure factor shows the Porod exponent of -4. 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 



Figure 4. Q-space analysis of the scattering by agglomerated debris particles. Part a 
shows the m → 1.00, Rayleigh-Debye-Gans limit, the structure factor. Parts b, c and 
d are with refractive indices, m, as marked for a range of size parameters, x. Thin 
straight lines represent power laws with q as described in the legend. Plots are 
intensity shifted to avoid overlap. 

 
 
 
3.4 Agglomerate debris. The Q-space plots for agglomerate debris are shown in Fig. 4. Similar to 
the strongly damaged and pocked sphere cases above, Fig. 4 again shows all six features 
described above including Rayleigh, Guinier and definite power law regimes. Figure 4a shows 
the square of the Fourier transform of the real space structure for three of the agglomerated 
debris particles. Once again in the Rayleigh-Debye-Gans limit, the Porod exponent of -4 is 
found. 

 
 
 
 
 
 

 
 

3.5 Summary of power law exponents. The figures above show the same Porod exponent of -4 for 
all the m → 1.00, Rayleigh-Debye-Gans limit, the structure factors. Most generally, this limit 
applies when the phase shift parameter ρ < 1, and by Eq. 2, ρ is a function of both the size 
parameter and the refractive index. The figures above also show different exponents with non-



unity refractive indices for particles with larger size parameters. This leads to the question: how 
do the exponents evolve away from the RDG limit with increasing phase shift parameter ρ? To 
answer this question the exponents are plotted in Fig. 5 as a function of ρ. We remark that the 
power law exponents are based on our visual estimates of lines that best fit our estimate of the 
power law regimes in the plots. Thus they should be considered as semi-quantitative. With this 
caveat, Fig. 5 shows a general trend of exponents decreasing with increasing ρ. Similar plots 
versus refractive index or size parameter show a similar trend, but the data are more spread out. 
This implies that ρ yields the most universal description of the decreasing exponents. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
3.6 Forward scattering. To set the context for a study of the forward scattering properties of 
these irregularly shaped particles, recall the Rayleigh scattering cross section for polarized light 
[11] 
 

Csca = (8π/3)k4R6F(m)     (3) 
 

where 
 
    F(m) = |(m2 – 1)/(m2 + 2)|2    (4) 
 
 

Figure 5. Power law exponents for the various sphere types as a 
function of phase shift parameter ρ. 



Figure 6. Forward scattering intensity divided by the sixth power of the particle radius as 
a function of particle radius for all four particle types and all three refractive indices. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 plots the forward scattering intensity normalized by the sixth power of the 
particle radius, I(0)/R6, as a function of R for all the particles. For R ≤ 0.4μm the figure shows 
that the forward scattering has a sixth power functionality with the radius, R6, for m = 1.313 and 
the trend for the other two refractive indices is consistent with this conclusion. Furthermore for 
small sizes there is a strong refractive index dependence. For R > 0.4μm the size dependence 
crosses over to R4 and the refractive index dependence weakens. The value of the phase shift 
parameter at this crossover near R = 0.4μm is in the range of ρ ≈ 2.4 to 4.8, depending on the 
refractive index.  

Figure 7 shows I(0) versus the Lorentz term, Eq. (4), for R = 0.2μm, the smallest particle 
size of all four particle types. The functionality is linear with some deviations. 



Figure 7. Forward scattered intensity versus F(m) = |(m2 – 1)/(m2 + 2)|2 for 
all for particle types (AD, agglomerated debris; PS, pocked spheres; RSS, 
rough surface spheres; SDS, strongly damaged spheres) and a radius of R = 
0.2μm. Lines are best fits to the data points including the origin. 

 These size and refractive index functionalities are the same as those for spherical particle 
Rayleigh scattering, Eqs. (3) and (4). This and the lack of q, hence θ, dependence in the forward 
lobe, imply that the forward scattering lobe of these irregularly shaped particles obeys Rayleigh 
scattering for sizes R < 0.4μm. All this behavior occurs for Mie scattering by spheres as well [2]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
4. Discussion 
 The Q-space analysis has uncovered power law functionalities when qR > 3.5 with 
quantifiable exponents for the scattering phase function for four different irregularly shaped 
particles. It also emphasizes the fact that scattering from all particles has an angle independent 
forward scattering lobe when qR < 1 and a Guinier crossover near qR ≈ 1. These properties are 
characteristics of spheres, spheroids, fractal aggregates and dusts as well. 
 All the particles studied here were perturbations of solid spheres. The phase shift 
parameters for all the particles were in the range 1.2 ≤ ρ ≤ 16.8, hence ρ > 1. Previous studies of 
Mie scattering by spheres [1,2,4] show that the exponents of the power laws evolve from the 



Porod value of -4 at the ρ → 0 limit, to two power laws with increasing qR of -2 and -4 separated 
by the ρ-crossover at ca. qR ≈ 1.2ρ. For the irregular spheres studied here the ρ → 0 limit is also 
described by a single power law with the same Porod exponent -4. However, once ρ > 1, two 
power laws were never seen, although the cross over is only distinctive in normal spheres when ρ 
> 10, a condition that only marginally applies to some of the irregular spheres here . Instead the 
power law exponents decreased with increasing ρ. Thus the randomization of the sphere’s 
structure to create these irregular particles seems to have eliminated the ρ-crossover and led to 
exponents usually different than those found for spheres when ρ > 1. 

A general treatment of the Porod exponent shows that it is equal to the negative of 2Dm – 
Ds where Dm is the mass fractal dimension and Ds is the surface fractal dimension of the particle 
[17]. For a sphere Dm = 3, Ds = 2 so 2Dm – Ds = 4. For the irregularly shaped particles in this 
study, the RDG limit (ρ → 0) found a Porod exponent of -4. Thus we conclude that the mass and 
surface fractal dimensions of these perturbed spheres remain equal to 3 and 2, respectively, 
despite the structural randomization process. 
 The forward scattering lobe obeys, or is trending to obey, Rayleigh scattering in both the 
refractive index and particle volume dependence. This result has been found to be true for 
spheres [2] and fractal aggregates [8] as well. When ρ ≥ 4, the functionality on the refractive 
index is severely diminished, and the size dependence falls from R6 to R4. This same behavior 
occurs for spheres.  
 
5. Conclusion 

This paper applied the Q-space analysis method to the calculated scattering phase 
function of four irregularly shaped particles. This analysis showed that the scattering can be 
described by a series of universal features as a function of the dimensionless qR: At  small q the 
scattered intensity in the forward lobe obeys the Rayleigh scattering functionalities on refractive 
index and particle volume and is constant (angle independent) as q approaches 0. This is 
followed by a Guinier regime near qR ≈ 1. For qR > 3.5 the scattered intensity falls off with a 
power law with quantifiable negative exponents with absolute values less than 4; although the 
power law description is marginal for the rough surface spheres. When m → 1.00 the Porod 
exponent of -4 occurs for all the particles. The power law exponents decrease with increasing 
phase shift parameter, ρ. Many of these universal features have been observed for aggregates, 
spheres, spheroids and dusts. Thus Q-space analysis can yield a simple, comprehensive and 
quantitative description of the scattered intensity for a wide variety of shapes and should be used 
in the analysis of scattering phase functions. 
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