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Abstract 

Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the 

tremendous global energy crisis. Development of three generation of solar cells has promoted the 

best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar 

cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to 

develop cost-effective biophotovoltaics that combines natural photosynthetic systems into 

artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a 

model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing 

sensitizer to interface with semiconductive TiO2 and plasmonic nanoparticles in DSSCs. The goal 

of this research is to understand the fundamental photon capture, energy transfer and charge 

separation processes of photosynthetic pigment-protein complexes along with improving 

biophotovoltaic performance based on this model system through tailoring engineering of TiO2 

nanostructures, attaching of the complexes, and incorporating plasmonic enhancement. 

The first study reports a novel approach to linking the spectroscopic properties of 

nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). 

The aggregation allowed reorganization between individual trimers which dramatically increased 

the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by 

absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable 

stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being 

electrostatically immobilized on amine-functionalized TiO2 surface. 

The motivation of the second study is to get insights into the plasmonic effects on the nature 

of energy/charge transfer processes at the interface of photosynthetic protein complexes and 

artificial photovoltaic materials. Three types of core-shell (metal@TiO2) plasmonic nanoparticles 



  

(PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC 

platform built on a unique open three-dimensional (3D) photoanode consisting of TiO2 nanotrees. 

Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the 

LHCII/TiO2 interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and 

photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific 

artificial materials is a promising approach for high-performance biosolar cells. 

Furthermore, the final study reveals the mechanism of hot electron injection by employing 

a mesoporous core-shell (Au@TiO2) network as a bridge material on a micro-gap electrode to 

conduct electricity under illumination and comparing the photoconductance to the photovolatic 

properties of the same material as photoanodes in DSSCs. Based on the correlation of the 

enhancements in photoconductance and photovoltaics, the contribution of hot electrons was 

deconvoluted from the plasmonic near-field effects.  
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Abstract 

Solar energy as a sustainable resource is a promising alternative to fossil fuels to solve the 

tremendous global energy crisis. Development of three generation of solar cells has promoted the 

best sunlight to electricity conversion efficiency above 40%. However, the most efficient solar 

cells rely on expensive nonsustainable raw materials in device fabrication. There is a trend to 

develop cost-effective biophotovoltaics that combines natural photosynthetic systems into 

artificial energy conversion devices such as dye sensitized solar cells (DSSCs). In this research, a 

model system employs natural extract light-harvesting complex II (LHCII) as a light-absorbing 

sensitizer to interface with semiconductive TiO2 and plasmonic nanoparticles in DSSCs. The goal 

of this research is to understand the fundamental photon capture, energy transfer and charge 

separation processes of photosynthetic pigment-protein complexes along with improving 

biophotovoltaic performance based on this model system through tailoring engineering of TiO2 

nanostructures, attaching of the complexes, and incorporating plasmonic enhancement. 

The first study reports a novel approach to linking the spectroscopic properties of 

nanostructured LHCII with the photovoltaic performance of LHCII-sensitized solar cells (LSSCs). 

The aggregation allowed reorganization between individual trimers which dramatically increased 

the photocurrent, correlating well with the formation of charge-transfer (CT) states observed by 

absorption and fluorescence spectroscopy. The assembled solar cells demonstrated remarkable 

stability in both aqueous buffer and acetonitrile electrolytes over 30 days after LHCII being 

electrostatically immobilized on amine-functionalized TiO2 surface. 

The motivation of the second study is to get insights into the plasmonic effects on the nature 

of energy/charge transfer processes at the interface of photosynthetic protein complexes and 

artificial photovoltaic materials. Three types of core-shell (metal@TiO2) plasmonic nanoparticles 



  

(PNPs) were conjugated with LHCII trimers to form hybrid systems and incorporated into a DSSC 

platform built on a unique open three-dimensional (3D) photoanode consisting of TiO2 nanotrees. 

Enhanced photon harvesting capability, more efficient energy transfer and charge separation at the 

LHCII/TiO2 interface were confirmed in the LHCII-PNP hybrids, as revealed by spectroscopic and 

photovoltaic measurements, demonstrating that interfacing photosynthesis systems with specific 

artificial materials is a promising approach for high-performance biosolar cells. 

Furthermore, the final study reveals the mechanism of hot electron injection by employing 

a mesoporous core-shell (Au@TiO2) network as a bridge material on a micro-gap electrode to 

conduct electricity under illumination and comparing the photoconductance to the photovolatic 

properties of the same material as photoanodes in DSSCs. Based on the correlation of the 

enhancements in photoconductance and photovoltaics, the contribution of hot electrons was 

deconvoluted from the plasmonic near-field effects. 
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Preface 

The dissertation comprises of the following major sections:  

Chapter 1 – This chapter briefly introduces global energy crisis and solar energy as one of 

anticipative renewable resources which motivate the development of solar cells. Then it gives 

introduction of the working principle of the dye sensitized solar cell (DSSC), referring to the 

photosynthetic pigment-protein complexes as potential photosensitizer alternatives and the surface 

plasmonic effects on photovoltaic enhancement, followed by illustrations of measurements and 

terminologies related to photovoltaic characterization.  

Chapter 2 – This chapter describes the preparation of TiO2 as the photoanode material of DSSCs. 

The TiO2 is specifically prepared into three morphologies, i.e. planar thin film, vertically aligned 

nanotree array and Au@TiO2 core-shell network, for the applications in chapters 3 to 5, 

respectively, and the advantage of each morphology is discussed. 

Chapter 3 – An accepted paper, published in Physical Chemistry Chemical Physics. This study is 

about employing light-harvesting complex II (LHCII) as light antenna in the thin-film sensitized 

TiO2 solar cell (so-called LHCII sensitized solar cell, LSSC). The photovoltaic behavior of LHCII 

has been demonstrated, and the photocurrent improved by the charge transfer (CT) states due to 

the formation of LHCII aggregates are discussed correlated to the spectroscopy results. 

Chapter 4 – An accepted paper, published in Advanced Materials Interfaces. This chapter focuses 

on the interplay between LHCII and plasmonic nanoparticles (PNPs). Enhanced photon harvesting 

capability and more efficient charge separation at the LHCII/TiO2 interface have been 

demonstrated in the LHCII-PNP hybrids, leading to a more efficient LSSC built on three-

dimensional TiO2 nanotree photoanode with the core-shell metal@TiO2 PNPs incorporated. This 



xxi 

work provides new insights into the plasmonic effects on the nature of energy/charge transfer 

processes at the interface of photosynthetic protein complexes and artificial photovoltaic materials. 

Chapter 5 – A manuscript, submitted to Applied Physics Letter. In this work, the hot electron 

injection from metal NP to semiconductor are revealed based on the photoconductivity 

measurements performed on a micro-gap electrode with the synthesized core-shell Au@TiO2 

network and correlated with the photovoltaic characterizations of the corresponding DSSC. 

Finally, Chapter 6 concludes the main findings of this work and proposes the future 

prospects of biophotovoltaics. Appendix includes the supporting information for the discussed 

sections and some preliminary results for the prospective studies. 

 

 

 



1 

Chapter 1 - Introduction 

 1.1 Energy Crisis and Solar Energy 

An ever growing demand for energy crisis is one of the greatest challenges to economic 

growth and climate change of our era. Fossil fuels, namely coal, petroleum and natural gas, are 

finite resources but dominate the worldwide energy supplies for hundred years. The energy crisis 

can be traced back to 1970’s oil embargo; it has never ceased since.1 According to the US Energy 

Information Administration (EIA), until 2014, at least 80 percent of total U.S. energy consumption 

still relied on three fossil fuel sources (Figure 1.1A).2 At the same time, over combustion of fossil 

fuels causes an unbearable burden on environment; it is  the main “culprit” causing global 

warming. It was responsible for the majority of energy-related greenhouse gas emissions on a 

carbon dioxide equivalent basis in 2013 (Figure 1.1B).3 The total energy consumption keeps 

increasing, especially with the rising energy demand of developing countries such as China and 

India. The tremendous pollution and severe hazy weather associated with the use of fossil fuels 

have occurred in many areas of these countries. Discovering  sustainable and environment-friendly 

energy sources becomes obligatory. 

 

Figure 1.1 Energy consumption and greenhouse gas sources.

(A) Shares of energy consumption in United States (1777-2014). (Reprinted with permission 

from ref. 2. Copyright © 2015 EIA) (B) 2013 Energy chapter greenhouse gas sources: 

Emissions values are presented in units of million metric tons of carbon dioxide equivalent 



2 

(MMT CO2 Eq.). (Reprinted with permission from ref. 3. Copyright © 2015 U.S. 

Environmental Protection Agency) 

 

The prospect of using renewable energy, mainly based on wind, water and solar resources, 

to replace the traditional fuels for electricity generation has been projected, and the solar resource 

is highlighted for its abundant energy supply each year. Figure 1.2 displays the yearly energy 

supply potentials from the major renewable sources and the total reserves of the finite resources.4 

The solar resource beats all the other renewable and fossil-based energy resources combined, of 

which the annual energy potential was 1575 ~ 49387 exajoules (EJ, 1 EJ = 278 TWh) stated in 

2000 World Energy Assessment, several times larger than the total world energy consumption 

which was 559.8 EJ in 2012.5-6 Solar power is highly appealing for electricity generation because 

it is sustainable and free of by-product contamination. How to efficiently convert sun light into 

electricity is a hot topic of scientific research. 

 

Figure 1.2 Comparing finite and renewable planetary energy reserves (Terawatt-years). 

Total recoverable reserves are shown for the finite resources. Yearly potential is shown for 

the renewables. (Reprinted with permission from ref. 4. Copyright © 2013 Royal Society of 

Chemistry) 



3 

 1.2 Development of Solar Cells: Photovoltaic Generations 

The systems to harvest incident sun light and convert it into electrical energy are 

photovoltaic devices, so-called solar cells, in which the photocurrent is generated through charge 

separation and collection of free electron and hole under solar irradiation. The portfolio of solar 

cells consists of a number of established and emerging technologies, employs different 

semiconductive and photosensitive materials, and involves three generations of which the updated 

best research-cell efficiencies are plotted in Figure 1.3. 

 

Figure 1.3 Best efficiencies obtained for research photovoltaic cells since 1975.

(Reprinted with permission from National Renewable Energy Laboratory (NREL). 

Copyright © 2016 NREL) 

 

Solar cells based on  silicon, that come in wafer-like monocrystalline, polycrystalline and 

amorphous forms, are categorized as the first generation. They are usually doped with phosphorus 

and boron in a P-N junction to achieve high-efficient charge separation of electron-hole pairs. 
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These solar cells demonstrate a good performance with more than 20% of the power conversion 

efficiency (PCE) as well as high stability, which currently dominate the markets, accounting for 

around 80% of the global share. Multi-junction cells, also named tandem cells, cooperating with 

concentrated solar power systems, raise the best laboratory-reported PCE above 40% to date. The 

cost of the first-generation solar cells keep decreasing with the development of manufacturing 

techniques and the surge in production volumes of silicon wafers.7 However, they are rigid, and 

usually lose some efficiency under higher temperature or imperfect illumination angle, which 

restrain their applications. 

The second-generation solar cells, thin film solar cells, are composed of amorphous silicon, 

cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS), and have outstanding 

performance, as high as 20% PCE. They are made from layers of semiconductive materials with 

only a few micrometers thick that can make devices flexible and reduce the production cost. 

However, this technique is still limited by vacuum processes and high temperature treatments in 

manufacturing, and also restricted by resource scarcity.8 

The emerging solar cells employing organic dye,9-12 quantum dots,13-16 conductive 

polymers17-20 and perovskite materials21-24 with new photovoltaic mechanisms are assigned into 

the third-generation solar cells, which are currently under laboratory investigations. Among this 

generation, dye sensitized solar cells (DSSCs) have many advantages over traditional silicon-based 

counterparts, such as low cost, mechanical robustness, and ability to operate under imperfect 

irradiation conditions. More importantly, the hybrid structure of DSSCs separates the charge 

transport from charge separation which reduces the efficiency loss by electron recombination. The 

structure and working principle of DSSCs will be discussed in details in the following section. 

Recently, perovskite solar cells evolving from DSSCs became  competitive promising with an 
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unprecedented growth in PCE from 3.8% to more than 20% in less than 5 years. The perovskite 

thin film can also be used as top coating in tandem cells and improve the performance of the 

original solar cells with much lower extra cost.25-26 Overall, the third-generation solar cells are 

promising for commercialization because of their low-cost, readily available source materials and 

low energy expenditure in fabrication. However, the reproducibility and the long-term stability of 

these solar cells are still the major concerns. 

 1.3 Dye Sensitized Solar Cells 

The integral architecture of DSSCs was first proposed by Grätzel and O`Regan in 1991.9 

Since then improvement in device designs along with the surge in new materials for light absorbing 

sensitizers (i.e. dye molecules) and redox electrolytes have further improved their performance. 

Based on the NREL statistics in Figure 1.3, the highest lab-recorded efficiency of DSSCs to date 

is about 12%. Even though their efficiencies are still lower than the first- and second-generation 

cells, the fabrication of DSSCs is cost-effective by utilizing inexpensive and abundant wide-

bandgap semiconductive materials in the photoanodes, such as Titania (TiO2) and Zinc oxide 

(ZnO). However, these materials are inert to visible light, and thus need to be hybridized with 

electron transfer dye molecules that have large absorption coefficient in visible range. Some 

emerging solar cells have adopted a hybrid structure of DSSCs, such as quantum dots sensitized 

solar cells27-28 and perovskite sensitized solar cells29-30. Quantum dots, perovskite crystals or the 

photosynthetic pigment-protein complexes as discussed in this dissertation are employed as novel 

light-absorbing sensitizers to replace the organic dye, and their fundamental properties involving 

photon capture, energy transfer and charge separation processes can be addressed 

straightforwardly based on the platform of DSSC.   
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1.3.1 Structure and Operation Principle 

The traditional DSSC is constructed in a sandwich configuration (Figure 1.4).31 A wide 

bandgap semiconductor layer (typically a mesoporous film made of sintered TiO2 nanoparticles) 

is sensitized with a visible light absorbing organic dye and forms the core of the device which is 

deposited on a fluorine doped tin oxide (FTO) coated glass as photoanode. A platinized FTO 

coated glass is applied as cathode (i.e. counter electrode). An electrolyte usually containing 

iodine/triiodine (I /̄I3 )̄ redox species in organic solvent is filled in between the photoanode and 

the cathode, serving as mediators for hole transport and dye regeneration. 

 

Figure 1.4 Structure and operating mechanism of a DSSC.31 

(Image adapted from ref. 31. Copyright © 2012 Royal Society of Chemistry) 

 

DSSC is a mimic of natural photosynthesis to convert sunlight into electricity. The 

operation principle of DSSCs differs from the conventional P-N junction based solar cells. Briefly, 

the photosynthesis processes take place in the chloroplast where solar energy is absorbed by the 

pigments (such as chlorophylls (Chls)) in the photosystems (PSs) and converted into electrons in 

the reaction centers (RCs) to trigger a series of chemical reactions.32 In DSSCs, the dye molecules 
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similar to the Chls in green leaves are excited by absorbing visible light. In contrast to conventional 

P-N junction solar cells, the charge separation occurs at the sensitizer/TiO2 interface by injecting 

electrons from the excited dye molecules into the TiO2 layer to generate electrons in analogue to 

the function of RCs, and then followed by electron diffusion in the TiO2 network, finally flowing 

to the cathode through the external circuit as photocurrent. DSSCs utilizes separate media for 

charge generation (occurs within the dye) and charge transport (occurs in the TiO2 matrix), which 

greatly reduces the possibility of charge recombination.33 Concurrently, the oxidized dye is 

reduced to its ground state by the oxidation of I  ̄into I3 ,̄ then I3  ̄will be reduced at the cathode 

by accepting electrons from the electron flow from photoanode to complete the whole regeneration 

process. Overall, this system converts solar energy into electricity without any net consumption of 

chemicals, thus the DSSC can  continuous supply power. 

1.3.2 Photosynthetic Protein Complexes as Photosensitizers 

The capability of light harvesting is directly related to the performance of the solar cells, 

and an effective photosensitizer for DSSCs requires  the following fundamental features. AM1.5 

Global curve plotted in Figure 1.5 is defined as the standard solar spectrum for Sun simulation 

measurements, which shows that the strongest solar power occurs in visible range. In order to 

capture the most solar energy, an ideal photosensitizer should have broad absorption band with 

high absorptivity in the same wavelength range. Anchoring groups, such as carboxylate (–COOH), 

phosphonate (–H2PO3) or siloxy moiety (–O–SiR3), are preferable for photosensitizer molecules 

to increase the binding affinity towards oxide semiconductor surface.34-35 More importantly, the 

energy level of the excited state of the photosensitizer should be higher than the edge of the 

conduction band of the semiconductor to ensure an energetically favorable electron transfer.36 

Meanwhile, the redox potential of the photosensitizer should be high enough for the regeneration 
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by accepting electrons from the redox electrolyte.36 Finally, the photosensitizer should also have 

good chemical stability under solar irradiation, heat and electrical actions. 

 

Figure 1.5 The standard One-sun AM1.5G spectrum. 

The AM1.5 stands for 1.5 atmosphere thickness, corresponding to a solar zenith angle of 

z=48.2°; the G stands for global including both direct and diffuse radiation. The spectrum 

represents the standard irradiance of 100 mW/cm2 used for photovoltaic characterizations. 

(Replotted with permission from an online source: 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html) 

 

Polybipyridyl ruthenium (Ru) complex dyes are the most common photosensitizers used 

in DSSCs. Figure 1.6 illustrates the molecular structure of three classic Ru dyes, N3 (cis-

Bis(isothiocyanato) bis(2,2’-bipyridyl-4,4’-dicarboxylato ruthenium(II)), N719 (Di-

tetrabutylammonium cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(II)), 

and N749 also named black dye (4,4’,4”-tricarboxy-2,2’:6’,2’-terpyridine)tris(isocyanato)Ru(II)). 

They are eligible for effective electron transfer photosensitizers and have demonstrated good 

photovoltaic properties in the DSSCs with the PCE over 10%.37-39 Considering the limited reserve 

of Ru in nature, metal-free organic dyes with tailored molecular designs are exploited as substitutes 

of Ru dyes, which also show good performance in the DSSCs with various redox electrolyte 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
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systems.40 However, the raw chemicals to synthesize these organic dyes mostly come from 

petroleum cracking, and it actually deviates from the motivation of sustainability of solar cells. 

 

Figure 1.6 Molecular structure of classic Ru-dyes used in DSSCs. 

 

Along the same lines, the natural pigments extracted from plants such as chlorophyll, 

carotenoid, anthocyanin, flavonoid, cyanine, and tannin have been considered as promising 

“green” alternative to synthetic dye because they are abundant, low cost, biodegradable and 

sustainable.41-42 However, most DSSCs employing natural pigments are much less efficient 

comparing to the conventional DSSCs using synthesized dyes. In addition, the stability of these 

plant pigments during DSSC operation is still under debate. The plant pigments are very sensitive 

to light and heat, and their chemical structures easily mutate or degrade under moisture and 

atmosphere.43-44 To avoid degradation, these natural pigments are usually assembled into DSSCs 

under an inert gas atomosphere,42 which makes device fabrication more difficult. In addition, due 

to the relatively weak binding force, desorption of the pigments from metal oxide surface might 

be another reason that results in a decrease of perfomance in the corresponding DSSCs.45-46 
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Figure 1.7 Structural organization of light-harvesting complexes and reaction centers in 

photosystem II. 

Excitation energy migrates from the peripheral antenna complexes (i.e. LHCII) to the 

reaction centers through smaller bridge complexes (i.e. CP29). A potential trajectory of 

energy flow is shown in orange arrow above. (Reprinted with permission from Ref. 48. 

Copyright © 2012 Royal Society of Chemistry) 

Instead of using pure natural pigments,  studies  employing photosynthetic protein 

complexes as photosensitizers in DSSCs are quite encouraging. Photosynthetic protein complexes 

discovered in plants, bacteria and algae have been reported as essential units for light harvesting, 

energy transfer and electron transfer in photosynthesis to convert solar energy into life-sustaining 

chemicals.47 They are organized into delicate PSs that consist of light-harvesting complexes 

(LHCs) for photon capture and ultrafast energy transfer, as well as RCs where charge separation 

and photochemistry take place. Figure 1.7 illustrates the structural organization of LHCs and RCs, 

and the potential energy transfer pathway in photosystem II (PSII).48 Comparing with extracted 

pigments, the pigments in the photosynthetic protein complexes, such as chlorophylls and 

Carotinoids, are immobilized in the polypepetide network in specific positions and couple with 

each other. The coupling enables the energy transfer between pigments, which protects them from 

photodegradation.49-50 With these advantages, the potential of directly employing photosynthetic 
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protein complexes in artificial photovoltaic devices as light harvesting antanne was proposed, in 

attempt to use their extraordinarily efficient light absorption, energy transfer properties, and 

relatively good stability. Studies have been carried out to utilize the energy transfer processes by 

directly anchoring RCs51-52, LHI-RC core complexes53, or whole PSs (PSI or PSII)51, 54 on gold 

electrodes. In a different approach, natural pigments or extracted LHCs have been used as 

photosensitizers to interface with a ~10 µm-thick mesoporous TiO2 film or ZnO nanowires in 

fabricating DSSCs.45, 55-57 

Overall, the photosynthetic protein complexes based biosolar cells show improved device 

stability compared to those using pure natural pigments, whereas their conversion efficiency is still 

much lower than the solar cells based on specifically synthesized photosensitizers. In order to 

improve the performance of the biosolar cells, it is necessary to tap into the physical processes 

involving light absorption, energy transfer and charge separation in the photosynthetic protein 

complexes interfacing with the artificial photovoltaic materials.  

 1.3.3 Plasmon-Enhanced DSSCs 

 Nanoparticles (NPs) of noble metals such as gold (Au) and silver (Ag) have been widely 

applied to enhance photovoltaic and photocatalytic performance accredited to their outstanding 

light-harvesting and electromagnetic-field concentrating properties.58-61 Suface plasmonic 

resonance (SPR) effect accompanied with a strong localized field can be generated around the 

noble metal NPs when they are exposed to an incident light of which the wavelength is much larger 

than the size of the NPs (usually the NPs should be smaller than 200 nm). A relatively uniform 

electromagnetic field provided by the incident light gives rise to a collective oscillation of the free 

electrons in the noble metal NPs (Figure 1.8).62 SPR effect will happen at certain wavelength where 

the oscillation frequency of the free electons is resonant with the frequency of the electromagnetic 
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field of the incident light. The plasmonic absorptions of plasmonic nanoparticles (PNPs) strongly 

depend on the particle size, shape and composition, the coupling between particles and the 

surrounding dielectric environment. 62-65  

 

Figure 1.8 Surface plasmonic resonance in noble metal nanoparticles. 

Schematic of plasmon oscillation for a metal sphere, showing the displacement of the 

conduction electron charge cloud relative to the nuclei. Surface plasmonic resonance occurs 

when the collective oscillation of surface electrons is resonant with the incident light at a 

specific wavelength. (Image adapted from ref. 65. Copyright © 2003 American Chemical 

Society) 

 

The SPR effect dramatically affects the absorption and emission properties of the nearby 

dye molecules.66-68 Incorporation of PNPs in DSSCs has been proved to improve photocurrent 

generation and thereyby enhance the overall photovoltaic performance.69-71 The PNP is a light-

harvesting booster and concentrator with a strong  localized field, that facilitates the dye excitation 

and photocarrier generation.72 The thickness of photoanodes can be reduced without sacrifice of 

PCE by simply blending 0.1~1 wt% PNPs with primary photoanode materials, which allows to 

lower the manufaturing cost.73 Moreover, as shown in Figure 1.9, the plasmon-enhanced DSSC 

with thinner photoanode has higher electron collection efficiency ascribed to the shorter diffusion 

length, which avoids the potential energy loss caused by the electron recombination.73 
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Figure 1.9 Structures and electron collection of conventional and plasmon-enhanced DSSCs. 

Device structures of conventional DSSCs (a) and plasmon-enhanced DSSCs with thinner 

photoanode (b); Illustration of photogenerated electron collection in conventional DSSCs (c) 

and plasmon-enhanced DSSCs (d). (Image copied with permission from ref. 76. Copyright © 

2011 American Chemical Society) 

 

There have been many efforts to fabricate more efficient plasmon-enhanced DSSCs with 

various combinations of tailor-synthesized PNPs and photosensitizers. However, the plausible 

mechanisms of SPR effect on photovoltaic properties are waiting for solid verifications. It is 

essential to study the interplay between photosensitizers and PNPs through advanced spectroscopic 

techniques in conjunction with photovoltaic characterizations.  

 1.4 Characterizations and Terminologies of Photovoltaic Devices 

A number of systematic electrochemistry analysis methods and techniques have been 

developed to evaluate the performance of photovoltaic cells. In this section, the terminologies, 

relevant calculations and physical meanings of the characteristic parameters will be illustrated 

through the data measured from the conventional ruthenium-DSSCs fabricated in our lab. Also, 
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the theory associated with a technique and the relevant experimental setup will be addressed in 

each sub-section. 

 1.4.1 Setup for Photovoltaic Measurements 

To evaluate the photovoltaic performance of the as-prepared solar cells, a well aligned 

illumination system and two potentiostats for electrochemical characterizations were set up in our 

lab. All components were from Newport Corporation (Irvine, CA) unless otherwise stated. The 

illumination of full solar spectrum was provided by a Sun simulator using a 300 W Xenon Arc 

lamp with an AM1.5G filter, the power density of which was carefully calibrated to one-Sun (100 

mW/cm2) with a thermal power meter (Thorlabs，Newton, NJ) and a commercial silicon reference 

cell (PV Measurements, Boulder, CO). The illumination of monochromatic light was facilitated 

by a 75 W Xenon Arc Lamp with a motorized monochromator, and the power density at each 

wavelength was measured by a monochromatic power sensor. A CHI 440A potentiostat (CH 

Instruments, Austin, TX) was used for current vs. voltage bias measurements, and a PARSTAT 

2273 potentiostat (Princeton Applied Research, Oak Ridge, TN) was utilized for impedance 

measurements. Figure 1.10 displays the layout of the Sun simulator in the lab. 
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Figure 1.10 Layout of the Sun simulator. 

The major components are: (I) 300 W Xenon arc lamp for full solar spectrum illumination, 

(II) 75 W Xenon arc lamp for monochromatic illumination, (III) movable solar cell stabilizer 

on an aligned orbit, and (IV-A and B) CHI 440A and PARSTAT 2273 potentiostat for 

electrochemical measurements. 

 

 1.4.2 I-V Measurement 

Figure 1.11 is a typical current-voltage (I-V) curve obtained when a forward bias voltage 

(approx. -0.1 to 1 V depending on solar cells) is added between the photoanode and the counter 

electrode of the DSSC, allowing the photocurrent density to be measured under one-Sun 

illumination. The critical parameters of the solar cell indicating its photovoltaic performance, such 

as the short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF), power 

conversion efficiency (η%), shunt resistance (RSH), and series resistance (RS), can be extracted 

directly from this curve. 
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Figure 1.11 Typical I-V curve of the Ru-dye sensitized solar cell. The characteristic 

parameters are indicated on the graph. 

 

The JSC represents the maximum output current of the solar cell, attained when the bias 

voltage added on the cell is zero (i.e. the external load resistance is zero). The VOC is the maximum 

output voltage, which occurs when the current flow through the device is zero (i.e. the infinite 

resistance is loaded). The power is described as the product of current and voltage. The area of the 

yellow rectangle in the I-V curve indicates the maximum output power (Pmax) of the solar cell, 

corresponding to a certain point at which the product of the current density (JMP) and the voltage 

(VMP) achieves the Pmax. The theoretical power (Ptheo), represented as the cyan rectangle in this 

curve, equals to the product of JSC and VOC. The FF is defined as the ratio of Pmax to Ptheo, which 

is essentially the ratio of the area of the yellow rectangle to the area of the cyan rectangle, according 

to the following equation:  

𝐹𝐹 = 𝑃𝑚𝑎𝑥 ⁄ 𝑃𝑡ℎ𝑒𝑜 = (𝐽𝑀𝑃 × 𝑉𝑀𝑃) ⁄ (𝐽𝑆𝐶 × 𝑉𝑂𝐶)                                                        (1.1) 

The value of FF varies from 0 to 1, related to the “squareness” shape of the I-V curve, 

which is affected by the RSH and the RS of the solar cell. The value of RSH and RS can be calculated 
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from the reciprocal of the slope of the I-V curve around the JSC point and the VOC point, respectively. 

Low RSH will cause significant power losses by providing an alternate current path for photocurrent 

(i.e. current leakage) thereby decreasing the VOC. RS arises from the combined interfacial contact 

resistances, leading to a drop of the photocurrent. Thus an ideal solar cell should have an extremely 

large RSH and a very small RS. 

The PCE (ƞ%) is the ratio of the Pmax of the solar cell to the power of the incident radiation 

(Pin), which intuitively reflects the capability of the solar cell to convert the sunlight into electricity. 

It can be calculated using the following equation: 

ƞ% = (𝑃𝑚𝑎𝑥/𝑃𝑖𝑛) × 100% = (𝐹𝐹 × 𝐽𝑆𝐶 × 𝑉𝑂𝐶/𝑃𝑖𝑛) × 100%                                    (1.2) 

As mentioned above, Pin has been calibrated to one-Sun power (100 mW/cm2). Based on the 

equation, the PCE is also affected by the resistances of the device, related to the device fabrication 

and operation, involving the interface engineering of the applied photosensitizers with the charge 

collection materials associated with charge separation and transfer processes. 

 1.4.3 Incident-Photon-to-Current Efficiency (IPCE) 

Incident-photon-to-current efficiency (IPCE) is performed under the monochromatic 

illumination, which describes the percentage of photons at each wavelength that are actually 

converted into electrons (current), and can be calculated from the equation:  

IPCEλ=  (1240×JSC)×100%/(Pin×λ)                                                                             (1.3) 

Here, the Pin and JSC are the incident power and short circuit current at each wavelength, which 

needs to be measured individually and input into the equation to obtain the IPCE of this wavelength. 

The IPCE curve of a conventional Ru-DSSC was plotted in Figure 1.12. The major peak of the 

curve at ~523 nm ideally corresponds to the maximum absorption of the N719 ruthenium dye (Red 

curve), while the minor peak at ~350 nm is due to the excitation of the semiconductive TiO2 layer 
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convoluted with the glass substrate transmittance. Hence, the IPCE measurement is an effective 

method to distinguish the origin of the photocurrent generation. 

 

Figure 1.12 IPCE curve of Ru-dye sensitized solar cell (black curve). 

The major peak of IPCE is correlated to the characteristic absorption of photosensitizer 

(N719 dye in red curve). 

 

 1.4.4 Synchronous Response of Short Circuit Photocurrent (Illumination On/Off) 

Stability is another critical factor to evaluate the performance of solar cells, which can be 

investigated by synchronous response of the JSC. The measurement is performed using 

chronoamperometry to record the JSC versus time with illumination turned on and off for several 

cycles. The operation of the solar cell is stable, if the JSC in each cycle is steady and reproduces 

well with other cycles (black curve in Figure 1.13). If a JSC decay occurs under illumination (the 

red curve in Figure 1.13), the solar cell’s dye regeneration is decaying due to the diffusion limit of 

electrolyte. Usually, a highly viscous electrolyte, such as an ionic liquid, is more likely to have 

diffusion limited issue in DSSCs, which also depends on the porosity of the semiconductive layer.  
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Figure 1.13 Synchronous response of short circuit photocurrent of Ru-dye sensitized solar 

cell. 

The black curve is measured from the solar cell filled with traditional iodide electrolyte in 

acetonitrile (low viscosity), and red curve is measured from the solar cell using ionic liquid 

electrolyte (high viscosity). “On” and “Off” refer to one-Sun illuminated and dark 

conditions, respectively. 
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Chapter 2 - Preparations of Planar and 3D TiO2 Films as 

Photoanode Materials 

 2.1 Introduction  

Semiconductive TiO2 is the most common photoanode materials in DSSCs. A 10 µm 

nanostructured TiO2 film is usually prepared from deposition and sintering of spherical TiO2 NPs 

on conducting glass, providing large surface area for dye adsorption and interparticle contacts for 

electron transport. A variety of TiO2 structures, such as nanotubes, nanowires and networks, have 

been applied as alternatives of spherical NPs for more efficient electron transport pathway owing 

to their inherent well-aligned crystalline domains and the longer diffusion length of the electrons 

traveling in them.74-75 In addition, anatase TiO2 is better for DSSCs compared to the rutile forms 

due to higher dye loading as well as faster electron transport rate.76 The TiO2 crystallization can 

be affected by annealing process that yields the anatase phase if the annealing temperature is below 

550 ℃; it tends to form the thermodynamically stable rutile phase at higher temperatures.77 In this 

dissertation, three morphologies of anatase TiO2, i.e. planar thin film, vertically aligned nanotree 

array and 3D network (NW) structure, were synthesized with different approaches and utilized in 

the three projects discussed in Chapter 3, 4 and 5, respectively, according to the specific 

requirements of the device design. 

 2.2 Materials and Reagents 

The solvents for reactions were obtained from Fisher Scientific (Pittsburgh, PA) and were 

used as received. All the reagents and chemicals, unless otherwise specified, were purchased from 

Sigma-Aldrich (St. Louis, MO). 
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 2.3 Planar TiO2 Thin Film via TiCl4 Treatment 

FTO coated glass substrate (TEC8, Dyesol, Queanbeyan NSW, Australia) were covered 

with a thin TiO2 layer by treatment with 40 mM aqueous solution of titanium tetrachloride (TiCl4) 

at 75 °C for 20 minutes and sintered at 500 °C for 30 minutes, after rinsing with deionized water 

and ethanol. The obtained TiO2 film was too thin to be seen on the rough FTO glass. In order to 

inspect the morphology and thickness of the deposited TiO2 film, the same treatment procedure 

was applied on a flat polished silicon wafer. The SEM images in Figure 2.1 shows the 45° 

perspective view and  the cross-sectional view of the deposited TiO2 film, which is planar and 

covers the whole substrates but was not uniform; with the thickness varied from ~100 nm in the 

thinnest region to ~300 nm at nucleation sites.78 

 

Figure 2.1 SEM images of the TiO2 thin film deposited on the polished Si wafer via TiCl4 

treatment. 

(a) the 45° perspective view, and (b) the cross-sectional view. (Image copied from ref. 78. 

Copyright © 2014 American Chemical Society) 

 

The TiO2 thin film commonly functions as a barrier layer between FTO substrate and 

mesoporous TiO2 framework to suppress the recombination and electron backflow.79 In Chapter 

3, in order to diminish the photocurrent from TiO2, the thick mesoporous TiO2 layer was replaced 

with such thin TiO2 film in the solar cell. The TiO2 thin film covered FTO substrate (termed as 
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TiO2-FTO) was further functionalized with 3-aminopropyltriethoxysilane (APTES) to enhance 

sensitization of photosynthetic protein complexes (See Section 3.2 for experimental details).  

 2.4 Hydrothermal Growth of TiO2 Nanotree Array 

FTO coated glass substrate were first deposited with a thin TiO2 layer (150-300 nm) by 

treatment with 40 mM aqueous solution of TiCl4 at 75 °C for 20 min, and sintered at 500 °C for 

30 min after rinsing with deionized water and ethanol. The obtained TiO2-FTO was placed against 

the wall of Teflon-lined stainless steel autoclave with the conducting side facing down. 0.73 g of 

potassium titanium oxide oxalate dihydrate (K2(TiO)(C2O4)2·2H2O) was dissolved in 10 mL water 

followed by quickly adding 30 mL diethylene glycol under vigorous stirring. The mixture was 

transferred to the autoclave. The hydrothermal reactions were then carried out at 200 ℃ for 9 h. 

After reaction, the autoclave was cooled to room temperature. The TiO2 nanotrees grown on FTO 

were rinsed with water and ethanol several times, and then treated with 40 mM TiCl4 at 75 ℃ for 

30 min, followed by calcination at 500 ℃ for 30 min to achieve better crystallinity. 

 

Figure 2.2 The morphology of the as-synthesized TiO2 nanotrees observed by transmission 

and scanning electron microscopes (TEM and SEM). 

(A) TEM image of the TiO2 nanotree scraped off from the FTO substrate, (B) the cross-

sectional view of TiO2 nanotree array by SEM. 
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Figure 2.3 The crystalline structure of the TiO2 nanotrees investigated by X-ray diffraction 

(XRD) and Raman spectroscopy. 

(A) XRD pattern of the as-synthesized TiO2 nanotrees, and the standard XRD peak position 

of anatase TiO2 (JCPDS card No 71-1166) was indicated by the vertical red lines. (B) Raman 

spectrum of the TiO2 nanotrees on a FTO coated glass substrate. 

 

The TEM image (Figure 2.2A) and the cross-sectional SEM image (Figure 2.2B) illustrate 

the morphology of the synthesized TiO2 nanotree array, showing a hierarchical growth composed 

of 6 µm-long TiO2 trunk covered by short and thinner branches extending sideway. The XRD 

(Figure 2.3A) and Raman (Figure 2.3B) characterizations confirmed that the TiO2 nanotrees after 

calcination are highly crystalline anatase phase which is ideal for fabricating DSSCs. In Chapter 

4, the TiO2 nanotree array applied as a photoanode material was then sensitized with nanoscale 

photosynthetic protein complexes in conjunction with plasmonic nanoparticles. The advantages 

resulting from this special morphology were discussed therein.  

 2.5 Core-Shell Au@TiO2 Network 

Gold nanoparticles (Au NPs) were prepared by citrate reduction of chloroauric acid 

(HAuCl4) in aqueous phase.19 0.2 mL of HAuCl4 solution (50 mg/mL) was added into 100 mL of 

boiling water rapidly, followed by adding 3 mL of trisodium citrate solution (1 wt%). The mixture 

was kept boiling with stirring for 30 min to form Au seed. Then the temperature of the bath was 

decreased to 90 ℃ . 3 mL of 1 wt% trisodium citrate and 0.2 mL of 50 mg/mL HAuCl4 solution 
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were simultaineously added to the mixture again. This  procedure was repeated 3 times to attain 

ca. 20 nm  Au NPs.  

To synthesize Au@TiO2 network, core-shell Au@TiO2 NPs were first prepared following 

a published method45. Briefly, 10 mL of 0.02 mol/L L-Arginine aqueous solution (Aldrich) was 

added to the  as-prepared ~25 nm Au NPs (1.4 × 1014 particles/L) to replace the surface citrate 

ligands. 12 mL of cyclohexane was then added into the mixture to form a biphasic system. A glass-

like amorphous silane monolayer was then formed by adding 12 mL of (3-

mercaptopropyl)triethoxysilane (MPTS, 98%, TCI) into the cyclohexane layer and stirring gently 

for 6 hours. Further TiO2 growth on the Au NPs surface requires a dehydrated condition. Thus the 

MPTS capped gold cores were collected and redispersed into 20 mL dehydrated ethanol (absolute 

ethanol, 99.8%, Fisher) followed by centrifugation and washing with another 20 mL dehydrated 

ethanol. This procedure was repeated three times. 

To form a uniform thin TiO2 shell, this ethanolic solution of silanized Au NPs was added 

with 1 µL of titanium tetra-isoproxide (TTIP, 97%, Aldrich) as the precursor and mildly stirred 

under 25 ℃ and 50% humidity for 1.5 hrs. The network structure was obtained by adding more 

TTIP (6.4 µL in total) for 12 hrs reaction. Hydrolysis of excess TTIP thus crosslinked the core-

shell Au@TiO2 NPs to form a network. The sample was purified by rinsing three times with 

dehydrated ethannol and centrifugation to remove the residual TTIP. The weight percentage of Au 

NPs in the as-prepared Au@TiO2 network is about 7%. Bare TiO2 network was prepared as a 

control by similar TTIP hydrolysis but without adding silanized gold cores.  
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Figure 2.4 TEM images of (A) the TiO2 network, and (B) the core-shell Au@TiO2 network. 

 

 The network structure was confirmed by the TEM images shown in Figure 2.4. Compared 

to spherical TiO2 NPs, the network structure was expected to conduct charge better due to the 

interconnection of the framework consist of TiO2 nanowires. With the incorporation of Au NPs, 

the plasmonic effect on the photoconductivity and the photovoltaics were investigated in Chapter 

4 through the devices (i.e. microgap electrode and DSSC) employing the Au@TiO2 network. 
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Chapter 3 - Photovoltaic Properties of LHCII Aggregates on 

Sensitized Planar TiO2 Solar Cells† 

 3.1 Introduction 

Light harvesting complex II (LHCII) is the most abundant chlorophyll-protein complex in 

nature and the major antenna complex in PSII. The largest PSII supercomplex, C2S2M2, consists 

of a dimeric core complex (C2) containing RCs, 4 monomeric minor antenna complexes, 4 strongly 

attached LHCII trimers (S2 and M2), and 3 to 4 loosely attached LHCII trimers.80 Figure 1A shows 

the top and side views of the crystal structure81 of an isolated LHCII trimer and its physical 

dimensions. The LHCII trimer consists of three monomers each of which comprises a polypeptide 

of about 232 amino-acid residues, 8 Chl a and 6 Chl b molecules, 3-4 carotenoids and one 

phospholipid.81 LHCII not only has a primary role in light harvesting and transferring the 

excitation energy to the RC, but is also critical in photosynthesis regulation through 

photoprotective mechanisms called non-photochemical quenching (NPQ).80, 82-87 LHCII protein 

aggregation was proposed to be one of the mechanistic factors controlling the dissipation of excess 

photo-excited state energy of chlorophylls during NPQ (see e.g. reference88 as a review and 

references therein). 

Photovoltaic behavior of LHCII has been confirmed by the photocurrent enhancement 

observed in LHCII incorporated DSSCs, which demonstrated the feasibility of LHCII as a 

photosensitizer.45, 56 However, little is known about the effects of LHCII aggregation on the 

photovoltaic and sensitization characteristics. In contrast to isolated LHCII trimers, the Chl excited 

                                                 

† Reproduced in part by permission of Royal Society of Chemistry, Y.Yang, R. Jankowiak, C. Lin, K. Pawlak, M. 

Reus, A. R. Holzwarth, J. Li, Effect of the LHCII Pigment-Protein Complex Aggregation on Photovoltaic Properties 

of Sensitized TiO2 Solar Cells, Phys Chem Chem Phys, 2014, 16, 20856-20865. DOI: 10.1039/c4cp03112a. 
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states in the aggregates are strongly quenched by the formation of chlorophyll-chlorophyll charge 

transfer (CT) states whose presence in aggregated LHCII was independently studied recently via 

high-resolution hole-burning (HB) spectroscopy.89 If the Chl-Chl CT states in the LHCII can be 

coupled with the TiO2 surface, it would enhance electron injection into the TiO2 conduction band. 

In this study, we compare the effects of different sizes of LHCII aggregates to illustrate the 

contribution of aggregation induced CT states to the photovoltaic performance using a model 

nanoscale thin-film TiO2 DSSC (schematically shown in Figure 3.1B), and aim to reveal if there 

is any correlation between the surface coverage/sizes of aggregates and the photovoltaic 

performance. 

 

Figure 3.1 Structure of LHCII trimer and the scheme of LHCII sensitized solar cell. 

(A) Top and side view of the LHCII trimer consisting of Chl a and b (green); carotenoids 

(orange); and polypeptides (grey helices). (B) Schematic model of a LHCII sensitized solar 

cell assembled by attaching LHCII aggregates to a thin APTES-TiO2 compact layer on a 

FTO-coated glass. (Reprinted with permission from Y. Yang, R. Jankowiak, C. Lin, K. 

Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-

20865.) 

 



28 

 3.2 Experimental Section  

 3.2.1 Preparation of LHCII Aggregates 

The LHCII trimers were extracted from spinach thylakoids as described in the literature90 

and were dispersed in 5 mM tricine buffer (pH = 7.5) with detergent (0.1 M sucrose and 0.06% n-

dodecyl β-D-maltoside [β-DM]). Large aggregated LHCII complexes (called “large aggregates” 

throughout this paper) were formed upon removal of the detergent by several treatments with 

Biobeads SM-2 (Bio-Rad). For a comparison, smaller less quenched and more homogenous LHCII 

aggregates (called “small aggregates”) were prepared by partial disaggregation of large aggregates 

in the buffer with low concentration of detergent (0.008% β-DM) after sonication.  

The LHCII concentration shown in units of equivalent Chls, was measured according to 

the procedure described in reference.91 Chls (Chl a and Chl b) in LHCII complexes were extracted 

with buffered aqueous acetone (80% aqueous acetone containing 2.5 mM phosphate buffer with 

pH = 7.8) and centrifuged with 7800 rpm to remove the insoluble protein residue. All the 

operations were handled quickly under dim light and 4 °C to avoid breakdown of the Chls. By 

measuring the UV-Vis absorption of the supernatant, the Chl content was calculated using the 

absorbance at 646.6 nm and 663.6 nm based on the equation shown in Table III of the reference91 

i.e. Chls(𝑎 + 𝑏) = 17.6𝐴646.6 + 7.34𝐴663.6. Thus, the derived Chl contents of the small and large 

aggregate solutions were 16.2 µg Chl/mL and 17.1 µg Chl/mL, respectively.  

 3.2.2 Absorption and Emission Spectroscopic Measurements. 

Absorption spectra were recorded using a Beckman DU640 spectrophotometer at room 

temperature. Room-temperature fluorescence emission spectra of LHCII solutions were first 

measured with a 1-m McPherson monochromator (model 2601, slit width 100 μm) with 150/mm 

grating and a Princeton Instruments back-illuminated N2-cooled CCD camera. The excitation 
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source for the fluorescence experiments was a Coherent UV argon-ion laser operating at 496.5 nm. 

Further fluorescence emission spectra were collected by a home-build set up from LHCIIs 

deposited on TiO2/FTO photoanodes and LHCII solutions (for direct comparison). The excitation 

source was synchronously pumped dye laser (Spectra-Physics) equipped with cavity-dumper 

(Spectra-Physics) with the repetition rate of 4 MHz. The DCM (4-Dicyanomethylene-2-methyl-6-

4-dimethylaminostyryl-4H-pyran) was used as a dye to provide the excitation wavelength at 663 

nm. A micro-channel-plate photomultiplier (Hamamatsu) and a Jobin Yvon monochromator with 

2 nm slit were used as the detection system.   

 3.2.3 Treatment of Photoanodes 

The TiO2-FTO (as-prepared in Chapter 2.3) and clean FTO substrates (for control 

experiments) were soaked in 10 wt% APTES in redistilled toluene, refluxed for 4 hours, followed 

by baking at 120 °C overnight. The APTES modified substrates (i.e. APTES-TiO2-FTO and 

APTES-FTO) were used as the photoanodes for LHCII-sensitized solar cells. 

 3.2.4 Fluorescence Microscopic Characterization of LHCII Attachment  

APTES-FTO substrate masked with a TEM grid (1GC200, PELCO, Hole Width 90 µm; 

Bar Width 37 µm) was exposed to UV light (8 W UV lamp, 254 nm, Cole-Parmer) to create amino 

patterns. The amine groups under the exposed area were converted to –OH groups. After 

incubation in small-sized LHCII aggregate solution in dark at 4 °C for 12 hours followed by 

rinsing, fluorescence images were recorded with an Azioskop 2 FS Plus Microscope (Carl Zeiss) 

with a filter set of 480±20 nm excitation band and 515-565 nm emission band to examine the 

selective attachment of LHCII to amine-terminated surface. 
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 3.2.5 Atomic Force Microscopy (AFM) Measurements  

Clean Si wafers were soaked in the mixture of water, 30% ammonium hydroxide, 30% 

hydrogen peroxide (5:1:1 v/v ratio) at 75 °C for 15 min to make the wafers more hydrophilic, and 

then stored in an ultrapure water, dried by nitrogen blowing right before use. The pretreated Si 

wafer was dipped into LHCII solutions to immobilize some LHCII complexes and then rinsed with 

ultrapure water to remove the surfactant and other buffer residues. AFM was carried out in tapping 

mode on a BioScope (Digital Instruments, Santa Barbara, CA) with a scan speed at 1.5 Hz using 

silicon cantilevers with a resonance frequency between 65 and 80 kHz.  

 3.2.6 Assembly of LHCII or Chlorophyll Sensitized Solar Cells  

For LHCII-sensitized solar cells, an APTES-TiO2-FTO or APTES-FTO substrate was used 

as a photoanode and the Pt-coated FTO/glass as the counter electrode. A 1 × 1 cm window was 

cut precisely into a 60 µm thick hot melt spacer (Solaronix, SX 1170-60PF) and was sealed at 110 

°C for 5 min. The LHCII solutions were filled in the cell, which was stored in dark at 4 °C for 12 

hours and then washed by successively injections of tricine buffer, water and ethanol. The 

electrolyte (Iodolyte AN-50, Solaronix) containing 50 mM iodide/tri-iodide in acetonitrile was 

finally injected into the cell to complete the solar cell fabrication. To avoid LHCII degradation, 

the Iodolyte electrolyte was replaced with related tricine buffer after each photovoltaic 

measurement, and the solar cells were stored at 4 °C. A similar solar cell using physisorbed Chls 

from spinach (90.0%, Sigma-Aldrich) (at 8:6 Chl a to Chl b molar ratio similar to LHCII) as 

alternative sensitizers was fabricated and used as a control. About 120 µg Chl/mL in dry diethyl 

ether was used as the loading solution to sensitize TiO2-covered FTO anode. 
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 3.2.7 Solar Cell Tests 

A photovoltaic I-V curve of the solar cells was measured under the irradiation of 1 Sun 

power (100 mW/cm2) using a 300 W Xeon lamp with an AM1.5G filter. Three different bandpass 

interference filters (Edmund Optics, 50 nm FWHM, OD >4.0, Stock NO. 84782, 86952, and 

86954) were added to select light only in the wavelength range of 450±25 nm, 575±25 nm, and 

675 ± 25 nm, respectively, and photocurrent response curves were collected with 

chronoamperometry measurements using a potentiostat (CHI 440A Electrochemical Analyzer) 

while the shutter was turned on and off. 

 3.3 Results and Discussion 

 3.3.1 Formation of Charge Transfer States in LHCII Aggregates 

 

Figure 3.2 Absorption and emission properties of LHCII aggregates associated with the 

formation of CT states. 

(A) Absorption and fluorescence emission spectra (λex = 496.5 nm) of small- and large-size 

LHCII aggregates in tricine buffer with the concentration (in unit of total Chl content) of 

16.2 µg Chl/mL and 17.1 µg Chl/mL, respectively. The colored shades indicate the bandwidth 

of the three bandpass interference filters used in photovoltaic measurements. (B) Normalized 
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steady-state fluorescence emission spectra (λex = 663 nm) of small- and large-size LHCII 

aggregates in solutions and deposited on the APTES-TiO2-FTO photoanode surface. Note 

that the fluorescence of large aggregates on the TiO2 surface is extremely weak. Each 

spectrum was normalized to its highest peak intensity for better view of the detailed 

spectroscopic features. (C) Schematic illustration of the CT states formed in small and large 

aggregates. (Reprinted with permission from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. 

Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

The absorption and fluorescence emission spectra of the small- and large-size LHCII 

aggregates are shown in the top and bottom frames of Figure 3.2A, respectively. Free Chl pigments 

in diethyl ether were reported to show strong absorption peaks in the Soret region (at 430 nm for 

Chl a and 452 nm for Chl b) and in the Qy region (at 661 nm for Chl a and 645 nm for Chl b).45 

For the small-size LHCII aggregates in this study, these absorption peaks were red-shifted to 

436/469 nm and 673/651 nm, respectively, similar to those observed in isolated LHCII trimers.45 

However, the room-temperature (0,0)-band emission was red-shifted by about 2-3 nm to 682-683 

nm in contrast to isolated LHCII trimers with a maximum near 680 nm. The absorption of large-

size aggregates shows larger red-shifts to 438/473 nm and 679/653 nm and a characteristic red 

tailing, suggesting the formation of CT states. The fluorescence of large LHCII aggregates is 

significantly quenched, dropping the intensity by 10 times comparing to small aggregates.  

The raw spectra showed largely varied fluorescence intensity among LHCII samples with 

different degree of aggregation. For better view and comparison of their spectroscopic features, 

each spectrum was normalized to its highest peak intensity.  Fig. 3.2B compares the normalized 

fluorescence emission spectra of LHCII in various aggregation states in solutions and after being 

deposited on the TiO2/FTO photoanode as sensitizers. The fluorescence origin band shifts to about 

687 nm in the large aggregates in solution (as compared to LHCII trimers which are not quenched) 

and a very strong far-red emission band (from 690 to 750 nm) appears. The far-red emission has 

been shown to derive from Chl-Chl CT states87, 92, in agreement with the recent findings by 
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Magdaong et al.93  Formation of the CT states (characterized by a strong electron-phonon (el-ph) 

coupling) was revealed recently via resonant HB spectroscopy.89 In this case, resonant holes were 

burned in the low-energy absorption wing of aggregated LHCII complexes.89 Thus the extent of 

the red-shift observed in room temperature fluorescence spectra and in particular the relative 

intensity of the far-red (from 690 to 750 nm) emission peak to the shorter-wavelength emission 

peak of aggregated LHCII complexes reflects the size of the aggregates and the quenching 

efficiency. This suggests that the large-size LHCII aggregates form CT states at much higher yield 

than the small-size aggregates.  

Most interestingly, the CT state (far-red band) emission completely disappears when the 

aggregates are deposited as sensitizers on the surface of APTES-TiO2-FTO substrates (to be used 

as photoanodes in solar cells) (Fig. 2B). Only very weak fluorescence remains. For small LHCII 

aggregates, the differences between the fluorescence emission spectra on APTES-TiO2-FTO 

surface (curve b) and in solution (curve a) are much smaller. The shape of the fluorescence 

spectrum of small LHCII aggregates on TiO2 is more similar to that of LHCII trimers in solution 

(but with largely different intensity, data not shown), while the fluorescence spectrum of large 

aggregates on APTES-TiO2-FTO surface is more red-shifted and differs pronouncedly (on top of 

the large difference in intensity). 



34 

 

Figure 3.3 The display of LHCII aggregates on solid state substrate. 

AFM images and line profiles of (A) a clean silicon wafer and a silicon wafer deposited with 

(B) the small-size LHCII aggregates and (C) the large-size LHCII aggregates. Measurements 

were carried out in tapping mode under a nitrogen atmosphere. (Reprinted with permission 

from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. 

Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

The size of aggregates in the above two samples was further confirmed by measuring the 

morphology of LHCIIs deposited on a flat surface with AFM, as shown in Figure 3.3. Compared 

to the smooth surface of bare silicon wafer (Figure 3.3A), brighter dots are clearly observed on the 

silicon wafer treated with the solution of small-size aggregates (Figure 3.3B). Two kinds of dots 

can be observed. The smaller (ca. 6 ~ 10 nm) and relative blurred ones are considered as intact 

LHCII trimers, while the larger (ca. 22 ~ 50 nm) and brighter ones would be small aggregates 

consisting of two or three trimers. Since the average height from the line profile in Figure 3.3B is 

only ~ 4 nm, LHCII in this sample likely only formed two dimensional aggregates. In contrast, the 

AFM images of the large-size LHCII aggregates (formed by intentionally removing the detergent) 

revealed much larger islands with a diameter of 50 to 100 nm, as illustrated in Figure 3.3C. The 



35 

line profile in Figure 3.3C shows a large height of ~10 nm, indicating the likely formation of three 

dimensional aggregates. These AFM images are consistent with the spectroscopic characteristics 

revealing the structural difference between the small- and large-size aggregates. 

 3.3.2 Adsorption of LHCII Aggregates on APTES-TiO2 Surface  

The physisorption of LHCII on the TiO2 surface was found to be very weak and unstable, 

as indicated by the long incubation time (96 hours) required to reach saturated adsorption in 

literature.45 We also found that only small amount of LHCII was anchored to the thin TiO2 layer 

via physisorption, which significantly limited the photocurrent enhancement by LHCII sensitizers 

(see Appendix Figure A.1). It was recently reported that strong LHCII attachment can be obtained 

on a APTES functionalized FTO substrate via electrostatic interaction between the anionic 

residues on the stromal side with cationic –NH3
+  groups.56 This approach was adopted in this 

study. Figure 3.4A shows the fluorescence microscopic image of the small-size LHCII aggregates 

adsorbed on a patterned APTES-FTO substrate. The pattern correlates well with the shape of the 

optical mask (Figure 3.4B). The APTES-FTO surface was subjected to an UV exposure except in 

the cross-shaped area where the solid grid frame (ca. 37 µm in width) blocked the UV light. UV 

radiation is known to effectively cleave the amine group of APTES and to convert the surface back 

to normal –OH groups.56 The fluorescence contrast between the exposed and blocked areas clearly 

confirmed that the electrostatic interaction facilitated by the APTES-functionalized surface 

provides much stronger LHCII adsorption. Hence, in this work, all the photoanode substrates for 

DSSCs were treated with APTES before LHCII attachment. The strong surface adsorption is 

particularly important in controlling sub-monolayer LHCII coverage on the APTES-TiO2 surface. 

However, though selective attachment of LHCII complexes was believed to occur between the 

anionic LHCII polypeptide at the stromal side and the cationic APTES surface,56 it is likely that 
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both stromal and luminal surfaces may work since they both contain negative charges in the LHCII 

proteins. 

 

Figure 3.4 Attachment of LHCII aggregates on a patterned APTES-FTO substrate. 

(A) A fluorescence image of small-size LHCII aggregates attached on a patterned APTES-

FTO substrate. (B) An optical microscopy image of the corresponding mask in which the UV 

light was blocked by the solid grid frame (the dark area) and can only pass through the open 

squares (light areas). The scale bar is 50 µm. (Reprinted with permission from Y. Yang, R. 

Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. 

Phys., 2014, 16, 20856-20865.) 

 

In fabricating LHCII sensitized solar cells, a 1× 1 cm2 window was cut in a 60 µm thick 

hot melt spacer sandwiched between the sensitized photoanode and a Pt/FTO/glass cathode. The 

total volume in the solar cell sealed with this spacer is ca. 6.0 L. An isolated LHCII trimer has a 

cross-sectional area of 2618 to 3333 Å2, corresponding to a radius of ~3 nm.94 Assuming that all 

LHCIIs in solution are adsorbed onto the photoanode surface, it requires filling a LHCII solution 

with a concentration of 33.6 µg Chl/mL (in unit of equivalent Chl content) to form a hexagonal 

close-packed monolayer on 1 cm2 TiO2 surface, defined as 𝐶𝑚𝑜𝑛𝑜𝑙𝑎𝑦𝑒𝑟. In order to study the effect 

of the aggregation-dependent CT states on the photovoltaic properties, more diluted samples were 

used to control the LHCII adsorption less than a fully covered monolayer. The actual concentration 

of LHCII solutions (𝐶𝐿𝐻𝐶𝐼𝐼) used in the experiments were calculated from the optical absorbance 

of extracted chlorophylls (as described in the experimental section), giving 16.2 µg Chl/mL for 
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small-size aggregates and 17.1 µg Chl/mL for large-size aggregates, both lower than that required 

concentration for forming a close-packed monolayer, i.e. Cmonolayer = 33.6 µg Chl/mL. Thus, it only 

forms a sub-monolayer if we fill the LHCII solution into the solar cell only one time. As 

schematically illustrated in Figure 3.2C, at such sub-monolayer stage, the adsorbed small- and 

large-size aggregates are isolated and not in contact with neighboring aggregates. The ET between 

the neighboring trimers/aggregates should be minimal.  

To precisely determine the efficiency of LHCII adsorption onto the APTES-TiO2 

photoanode, we compared the extracted Chl concentration of the LHCII solution before and after 

incubation in solar cells (see Appendix A Figure A.2). The attachment efficiency (ƞ𝑎𝑡𝑡𝑎𝑐ℎ) was 

determined to be about 95%, which confirmed the strong electrostatic interaction between LHCII 

and APTES. As will be demonstrated later, such strong interaction also facilitates the high stability 

of the LHCII-sensitized solar cells. Thus the effective surface coverage (𝐸𝑆𝐶, see Table 1) of 

LHCII on the photoanode of each solar cell can be estimated based on the following equation: 

𝐸𝑆𝐶 =
𝐶𝐿𝐻𝐶𝐼𝐼

𝐶𝑚𝑜𝑛𝑜𝑙𝑎𝑦𝑒𝑟
× ƞ𝑎𝑡𝑡𝑎𝑐ℎ%                                  (3.1) 

A full monolayer coverage (i.e., 100% of ESC) was attained by repeating 5 times the procedure 

including filling a fresh LHCII aggregate solution to the solar cell cavity, incubating for 4 hours 

for LHCII adsorption, and then rinsing off weakly bonded LHCII top layers with blank tricine 

buffer.  

 3.3.3 Charge Transfer and Operation of LHCII Sensitized Solar Cells 

The emission spectra and AFM images discussed above clearly show that the two LHCII 

samples formed different extent of aggregates. We have shown recently that, in the case of large-

size aggregates (prepared in absence of detergent), more Chl-Chl CT states can be formed between 

the surface Chls as revealed by the very strong el-ph coupling.89 The most relevant pigments 
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involved in the formation of CT states are likely Chls 610, 611, and 612 (using nomenclature of 

Z. Liu et al.81) because they are close to the surface, have the lowest site-energies, and strongly 

contribute to the lowest energy exciton band.95 Thus electrons transfer from the CT states to the 

TiO2 layer facilitates generation of the observed photocurrent by aggregated LHCII. 

If our interpretation is correct, we expect that the deposition of highly quenched large 

LHCII aggregates as a sensitizer and the functioning of this sensitizer as electron donor from the 

Chl-Chl CT states into the TiO2 conduction band would concomitantly quench the far-red emission 

(from 690 to 750 nm) in the aggregates resulting from the Chl-Chl CT states. This is indeed the 

case as is seen in Figure 3.2B. The far-red CT emission band is absent from the LHCII aggregates 

when deposited on TiO2 and only a broad long-wave tail remains in the large aggregates.  

Figure 3.1B schematically depicts the structure of the LHCII sensitized solar cell. One 

notable difference from the previous reported LHCII solar cells45, 56 is that a very thin (150-300 

nm) compact TiO2 layer is used here to replace the 10 to 12 μm thick mesoporous TiO2 film formed 

by sintering ~20 nm diameter TiO2 nanoparticles. This is necessary for two reasons. First, it 

minimizes the photocurrent generated by UV photons absorbed by the TiO2 framework. As shown 

in Appendix Figure A.3, a solar cell fabricated with a bare 10-μm mesoporous TiO2 can generate 

by itself a strong photovoltaic effect with a JSC from ~0.14 to ~0.6 mA/cm2 under 1 sun 

illumination. This makes it difficult to extract the photocurrent generated explicitly by LHCII 

sensitizers. Second, the internal pores of the typical mesoporous TiO2 films are tortuous and poorly 

defined, with the size of only ~8 nm or less. As a result, it was reported that even the isolated 

LHCII trimers, which have a comparable size to the pore, only formed a layer at the outer surface 

of the mesoporous TiO2 film.45 Both of these factors may obscure the details of LHCII 
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contribution, particularly at the sub-monolayer coverage and in the I-V curve under the irradiation 

of the full solar spectrum.  

On the other hand, a thin compact TiO2 layer is required as a barrier to prevent electron 

backflow from the FTO anode to the electrolyte. Figure A.3B of Appendix A shows that the DSSC 

with LHCII directly attached to the APTES-FTO anode only gives very low values for both JSC 

and VOC. In a previous report78, we have demonstrated that a TiO2 film of 150 to 300 nm thickness 

formed by treatment of the FTO electrode with 40 mM TiCl4 solution for  20 minutes serves well 

as an effective barrier layer. This method was adopted in this study. In addition, to avoid protein 

denaturation by the volatile organic solvent (such as acetonitrile) that was used in typical Grätzel 

cells, we previously used an ionic liquid electrolyte. However, we found that, though clear 

photovoltaic effects were observed, the performance of the ionic liquid electrolyte is far inferior 

to the volatile electrolyte (see Figure A.4 in Appendix A). Hence the typical Iodolyte in 

acetonitrile, which was recently reported to be compatible with LHCII complexes45, was used in 

this study. 

 



40 

Figure 3.5 Electron transfer and energy level scheme of a photovoltaic device based on 

aggregated LHCII complexes.

(Reprinted with permission from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. 

Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

Figure 3.5 shows the electron transfer and energy level scheme of the prepared solar cell 

based on aggregated LHCII complexes as the sensitizer. Potentials are relative to the normal 

hydrogen electrode (NHE). The VOC (maximum voltage) corresponds to the difference between 

the redox potential of the Iodolyte mediator and the Fermi level of the FTO film. To be noted, the 

CT states in aggregated LHCII mixed with the excited state of chlorophylls have lower oxidation 

potential due to their more reddish absorption and red tail in UV spectra (see Fig. 3.2 and the 

related description). The CT states couple with the TiO2 conduction band more effectively and 

lead to a more efficient electron injection accompanied with fluorescence emission quench (as 

shown in Fig. 3.2B). 

 3.3.4 Photovoltaic Characterizations and Stability of LHCII Sensitized Solar Cells 

 

Figure 3.6 I-V curves of LHCII sensitized TiO2 solar cells. 
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(A) Solar cells made of a bare APTES-TiO2 photoanode (bare APTES-TiO2 #1, dot) and after 

being first sensitized with 45.8%-coverage small-size LHCII aggregates (small aggregate-1, 

dashed line) and then further sensitized with 100%-coverage small-size LHCII aggregates 

(small aggregate-2, solid). (B) Solar cells made of the 2nd bare APTES-TiO2 photoanode 

(bare APTES-TiO2 #2, dot) and this electrode after being sensitized with 48.3%-coverage 

large-size LHCII aggregates (large-size aggregate-1, dash), the 3rd bare APTES-TiO2 

photoanode (bare APTES-TiO2 #3, dash-dot-dot) and this electrode after being sensitized 

with high-coverage large-size LHCII aggregates (large-size aggregate-2, solid). All 

measurements were under 1 sun illumination with an AM1.5G filter. (Reprinted with 

permission from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and 

J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

Figure 3.6 shows I-V curves of the TiO2 solar cells sensitized with the two LHCII samples 

with different degrees of aggregation and at two different ESCs, one submonolayer and one full 

monolayer. These data confirmed that the photovoltaic effects were enhanced after the APTES-

TiO2 surface was sensitized with both small- and large-size LHCII aggregates. Both JSC and VOC 

consistently increased as the ESC of LHCII aggregates was raised. Modifying the surface of the 

TiO2 thin film with APTES suppressed the photocurrent generated by UV photon absorption in 

TiO2, with JSC dropping from ~8 A/cm2 (see Figure S1) to ~0.6 to 0.9 A/cm2, possibly due to 

electron trapping and recombination at the positively charged –NH3
+ group at the TiO2 surface. 

However, as it is shown later, the –NH3
+ group did not block the CT from LHCII to the photoanode 

since illumination the solar cell with the selected light band that can only be absorbed by LHCII 

was able to produce substantial photocurrent. APTES modification was necessary to enable the 

strong adsorption of LHCII on the TiO2 surface and thus made it possible to observe the differences 

between two LHCII aggregates. The values of VOC are comparable in all these solar cells, at about 

0.40 to 0.45 V.  
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Table 3.1 The characteristic values of the TiO2 solar cells sensitized with LHCII aggregates 

at different ESCs (in percentage). 

 ESC%* JSC (μA/cm2) VOC (V) ΔJSC% 

Bare APTES-TiO2 #1 0 0.575 0.427 N.A. 

Small aggregate-1 45.8 0.640 0.432 11.3 

Small aggregate-2 100 0.907 0.444 57.7 

Bare APTES-TiO2 #2 0 0.915 0.340 N.A. 

Large Aggregate-1 48.3 1.203 0.394 31.5 

Bare APTES-TiO2 #3 0 0.876 0.398 N.A. 

Large Aggregate-2 100 1.386 0.424 58.2 

 

Table 3.1 summarizes the characteristic values of the I-V measurements shown in Figure 

3.6. The percentage increase in JSC (i.e., JSC%) from the bare APTES-TiO2 cell was used to 

compare the results so that the difference caused by the variation in thickness and roughness of the 

TiO2 barrier layer can be normalized. By filling LHCII solution into the cell only once, the LHCII 

adsorption was defined by Eq. (1), giving an ESC of 45.8% for small-size aggregates (in the cell 

labeled as “small aggregate-1”) and 48.3% for large-size aggregates (in the cell labeled as “large 

aggregate-1”). Though the ESCs are similar, the JSC% value with the large-size aggregate is 

almost 3 times that of the small-size aggregate (31.5% vs. 11.3%). The larger enhancement is 

likely related to the higher extent of CT states formed in large-size aggregates and the resulted 

more efficient electron injection from CT states to the TiO2.  

Interestingly, at the full monolayer coverage (i.e., 100% ESC), the solar cells sensitized 

with both small- and large-size LHCII aggregates (i.e., “small aggregate-2” and “large aggregate-

2”) showed almost the same JSC% values (57.7% vs. 58.2%). Since the packing density of the 

LHCII trimer on the TiO2 surface is nearly the same, no matter if they are originally from small- 

or large-size aggregates, the CT states at this condition are about the same as well. It is noteworthy 
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that the power conversion efficiency is increased by ~58% from the bare APTES-TiO2 cell after 

being sensitized with a full monolayer of LHCII aggregates, which is higher than the 35% increase 

using LHCII trimers as a sensitizer on the 10 μm thick mesoporous TiO2 film
45. 

To identify the origin of the photocurrent generation, the synchronous response of JSC to 

the illumination of the full solar spectrum and in selected wavelength bands were recorded and 

illustrated in Figure 3.7. The current density is normalized to the photocurrent of the solar cell with 

bare APTES-TiO2 photoanodes in order to correct the variation of TiO2 photoanode (see Figure 

A.5 in Appendix A for normalization processing). All photocurrents were highly reproducible as 

the illumination was turned on and off for four cycles. Only a very slow drift was observed during 

the illumination on, indicating that LHCII complexes were stable under the experimental 

conditions and were effectively regenerated by iodide/tri-iodide redox electrolyte. Under 1 sun 

illumination with the full solar spectrum (Figure 3.7A), all curves showed higher photocurrent 

after LHCII sensitization, fully consistent with the I-V measurements in Figure 3.6. The cell “large 

aggregate-1” (ESC = 48.3%) gave significantly higher normalized current density than “small 

aggregate-1” (ESC = 45.8%), though both of them had similar level of LHCII coverage. The curves 

for the cells with the full LHCII monolayer coverage, i.e., “small aggregate-2” and “large 

aggregate-2”, are essentially overlapped with each other.  
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Figure 3.7 Synchronous photocurrent responses of the TiO2 solar cells sensitized with 

different ESC% of small- and large-sized LHCII aggregates. 

The measurements performed under 1 sun illumination with the full solar spectrum (A) and 

passing through bandpass interference filters at 450±25 nm (B); 675±25 nm (C); and 

575±25 nm (D). The photocurrents were normalized as described in the SI (see Figure S5). 

“On” and “Off” refer to illuminated and dark conditions, respectively. (Reprinted with 

permission from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and 

J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

In addition to the full solar spectrum, three bandpass interference filters were applied to 

limit the illumination to three narrow wavelength regions. The chosen illumination ranges are 

450±25 nm (Soret region of Chls), 675±25 nm (Qy region of Chls), and 575±25 nm (region with 

minimum absorbance), in accordance with the shaded areas in the LHCII absorption spectra shown 

in Figure 3.2. Figures 3.7B and 3.7C clearly demonstrated that the photocurrent response can be 

attributed to the absorbance of LHCII proteins. The correlation of the photocurrent magnitude and 
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the LHCII coverage, as well as the degree of aggregation, agreed well with that of the full solar 

spectrum. The illumination in the 575±25 nm region, which has minimum photon absorption by 

LHCII, however, did not generate any photocurrent (Figure 3.7D).  

 

Figure 3.8 The performance characteristics of LHCII-sensitized TiO2 solar cells measured 

over 30 days after assembly. 

All parameters were normalized to the value obtained with the cell immediately after it was 

assembled. (Reprinted with permission from Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. 

Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 

 

Proteins are normally unstable and tend to denature in organic solvents such as acetonitrile. 

However, we found that LHCIIs were extremely robust (regarding photocurrent generation) after 

they were attached to the APTES-TiO2 surface, which was critical for LHCII-sensitized solar cell 

to work well in acetonitrile based Iodolyte. That is, a possible denaturation (that cannot be fully 

excluded) did not affect the performance of our photovoltaic devices. Figure 3.8 illustrates the 

characteristic photovoltaic properties of the solar cell “Small aggregate-1” (i.e., 45.8% ESC of 

small-size LHCII aggregates) over 30 days after assembly. In fact, not only did the cell display an 

outstanding stability, but the overall cell performance improved with time as demonstrated by the 

increase in JSC, FF, and PCE (). Only VOC slightly decreased. In these experiments, the only effort 

to avoid cell degradation was to replace Iodolyte with tricine buffer after each photovoltaic 
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measurement and store them at 4º C before refilling Iodolyte for the next measurement. Continued 

reorganization of LHCII complexes could occur during this period, allowing more CT states 

formation or a better contact to the TiO2 surface, leading to an improved cell performance.  

To further understand the effects of LHCII reorganization, a TiO2 solar cell sensitized with 

isolated chlorophyll pigments was also prepared and tested by the same procedure as a control. 

Since Chl a and Chl b are the two major light-harvesting pigments in LHCII complex (with a molar 

ratio of 8 : 6), the bare TiO2 solar cell was thus sensitized in a dry diethyl ether solution with a 

total Chl concentration of 120 µg Chl/mL at 8:6 molar ratio of.Chl a and Chl b. As shown in Figure 

A.6 of the Appendix A, although Chls did enhance the photocurrent of the solar cell at the 

beginning, the current kept decreasing in the following 5 days (120 hours). The current response 

curves illustrated that the contribution of Chls to photocurrent almost became negligible after 72 

hrs. It should be noted that Chls attached onto the TiO2 layer only through weak physisorption 

tend to desorb over time and are easily oxidized in atmosphere. Compared with the LHCII-

sensitized solar cells discussed above, the stability of the Chl-sensitized solar cell was very poor, 

which illustrated the necessity of using photosynthetic protein complexes instead of Chl pigments 

alone. 

 3.4 Conclusions 

LHCII complexes with different degrees of aggregation were respectively applied onto a 

model thin film TiO2 solar cell. The results not only illustrated that LHCII can serve as a 

remarkably stable photosensitizer for DSSCs, but also revealed that the photovoltaic properties of 

this system, represented by the photocurrent enhancement, can be directly correlated to the 

aggregation induced CT states. The existence of the CT states must have improved the electron 

injection into TiO2, since the photocurrent generated by large-size LHCII aggregates was 
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significantly higher than the same amount of small-size LHCII aggregates. We emphasize that 

formation of CT states in aggregated LHCII complexes is consistent with the observed strong 

electron-phonon coupling and much weaker (red-shifted) fluorescence emission observed in 

aggregated LHCII complexes at low temperatures.89 More CT states formed by a possible LHCII 

reorganization or a better contact to the photoanode are likely responsible for the high stability and 

continuously increased performance of the solar cell after assembling. Our LHCII sensitized solar 

cell adopted a thin film design to reduce the background current from the traditional mesoporous 

TiO2 layer and amplify the contribution from sensitizing protein complexes. This design should 

be also applicable to other photosynthesis protein complexes, which provides a new platform to 

tap into the early biophysical processes of photosystems, i.e., the photon capture and energy/charge 

transfer. 
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Chapter 4 - Plasmonic Enhancement of Biosolar Cells 

Employing LHCII Incorporated with Core-Shell Metal@TiO2 

Nanoparticles‡ 

 4.1 Introduction 

While interfacing photosynthetic proteins with artificial DSSCs has provided inspiring 

insights into development of bio-solar cells, the overall PCE of such devices is still too low 

compared to the traditional DSSCs relying on using synthesized dye molecules (such as N719)36 

as light harvesting antennas. Strong efforts in current research have been placed on boosting light 

harvesting of photosynthetic proteins. For example, since adsorption of the photosynthetic proteins 

onto internal surface of the mesoporous TiO2 anode is hindered by its much larger size (4 – 6 nm) 

than dye molecules (< 1 nm), researchers strive to increase their loading capacity by engineering 

more open three-dimensional (3D) electrode architecture and improving protein binding to the 

electrode surface.57 Furthermore, studies have shown that SPR of gold or silver nanoparticles 

enormously alters the light absorption and fluorescence emission of photosynthetic proteins near 

the nanoparticle surface.96 Hybrid systems with PSI attached to PNPs displayed increased light 

absorption over the entire absorption band.97 Approximately 10- to 20-fold enhancements in 

fluorescence intensity were observed for LHCs placed on the film of silver or gold islands.98-100 A 

theoretical model for SPR-enhanced free electron production and photocurrent generation was 

proposed based on PSI-RCs bound to Au and Ag nanocrystals.101 The internal photosynthetic 

                                                 

‡ Reproduced in part by permission of the John Wiley and Sons, Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and 

J. Li, Plasmonic Enhancement of Biosolar Cells Employing Light Harvesting Complex II Incorporated with Core-

Shell Metal@TiO2 Nanoparticles, Adv Mater Interfaces, DOI: 10.1002/admi.201600371 
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efficiency of PSI-RC was strongly enhanced by the metal nanoparticles, which involved two 

competing effects, i.e. plasmon enhanced light absorption of Chl molecules and energy transfer 

from Chl to metal nanoparticles.101 The proposed mechanism provides useful insights into energy-

conversion devices involving the photosynthetic proteins, but is controversial with other studies. 

Here we employ LHCIIs alone (without RCs) electrostatically conjugated onto the TiO2-coated 

PNPs to maximize both light harvesting and energy transfer from LHCII to TiO2 by plasmonic 

effects of PNPs. 

PNPs have been widely employed in new emerging photovoltaic devices to enhance the 

performance, including DSSCs61, 71, 102 and Perovskite solar cells.103-104 Recently, Adhyaksa et al. 

reported a biosolar cell using natural extract graminoids coupled with silver nanoparticles to 

achieve larger photocurrents.105 However, the explanation of the interplays between PNPs and 

different light harvesting antennas varied in each specific cases. Compared to synthetic light 

harvesting molecules, photosynthetic complexes containing multiple pigments are much more 

complicated. Studies on model systems are necessary to uncover the mechinism of SPR effects on 

the photovoltaic properties of the bio-solar cells. In this work, three kinds of PNPs, including gold 

nanospheres (AuNSs), silver nanospheres (AgNSs) and silver nanoplates (AgNPs), were 

synthsized to achieve tailored SPR characteristics relative to the UV-Vis absorption spectrum of 

LHCII trimers. The PNPs were coated with a thin TiO2 barrier layer to form core-shell strucures, 

which were further assembled into LHCII-PNP hybrids in solutions for spectroscopic 

characterization. The PNPs were then incorporated in LHCII-sensitized solar cells (LSSCs) on a 

3D photoanode consisting of verically grown TiO2 nanotrees. The combined information helps to 

understand the energy transfer (ET), charge seperation and current collection processes of the 
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hybrid system. It has demonstrated that the electron injection from LHCII into TiO2 is substantially 

enhanced by the SPR of PNPs. 

 4.2 Experimental Details  

 4.2.1 Synthesis of Plasmonic Nanoparticles (PNPs): AgNS@TiO2, AuNS@TiO2 and 

AgNP@TiO2 

The core-shell PNPs used in this work are composed of different metal cores, i.e. silver 

nanosphere (AgNS), gold nanosphere (AuNS) and silver nanoplate (AgNP), and a thin TiO2 shell, 

termed as AgNS@TiO2, AuNS@TiO2 and AgNP@TiO2. 

AgNSs were synthesized by a reported method.73 First, 0.017 g of silver nitrate was 

dissolved into 25 mL of ethylene glycol solution containing 0.5 g of Polyvinylpyrrolidone (PVP-

40 with an average molecular weight of 40,000). Then the solution was slowly heated up to 120 

℃ and kept at that temperature for 1 h with constant stirring. After the reaction, the as-prepared 

AgNSs were washed with acetone (200 mL of acetone per 25 mL of reaction mixture) and 

subsequently centrifuged at 3000 rpm. The supernatant was removed, and the AgNSs were rinsed 

with ethanol, centrifuged at 3000 rpm, and redispersed in ethanol.  

AuNSs were prepared by citrate reduction of HAuCl4 in aqueous solution.19 0.2 mL of 

HAuCl4 solution (50 mg/mL) was added into 100 mL of boiling water rapidly, followed by adding 

3 mL of trisodium citrate solution (1 wt%). The mixture was kept boiling with stirring for 30 min 

to form Au seeds. Then the temperature of the bath was decreased to 90 ℃. 3 mL of 1 wt% sodium 

citrate and 0.2 mL of 50 mg/mL HAuCl4 solution were simultaineously added to the mixture again. 

This procedure was repeated 3 times to attain ~20 nm  AuNSs. The AuNSs were then purified by 

centrifugation, rinsing and redispersed in ethanol.  
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For AgNP synthesis, the total volume of the reaction solution was fixed at 25.00 mL.  In 

24.04 mL of pure water, an aqueous solution of silver nitrate (0.05 M, 50 µL), trisodium citrate 

(75 mM, 0.5 mL), PVP-40 (17.5 mM, 0.1 mL), and H2O2 (30 wt %, 60 μL) were combined and 

vigorously stirred at room temperature in air. Sodium borohydride (NaBH4, 100 mM, 250 µL) is 

rapidly injected into this mixture to get the nanoplates. A series of color change of the solution 

was observed similar as reported.106  

PNPs with the core-shell structure were synthesized by coating a thin TiO2 layer (2~5 nm) 

on the as-prepared AgNSs, AuNSs and AgNPs. About 12 µL of TTIP in 1 mL ethanol was added 

to the ethanolic solution of AgNS, AuNS and AgNP, respectively. The reaction sustained for 12 

hours at room temperature under steady stir. The particles were purified with ethanol washing and 

centrifugation for three times. In order to increase the interaction between LHCII and PNPs, the 

surface of AgNS@TiO2, AuNS@TiO2 and AgNP@TiO2 particles was further functionalized with 

amine groups by incubating the particles in 5 wt% APTES ethanolic solution for 30 min at 60℃ 

and then washed with ethanol and redispersed in water.  

 4.2.2 Preparation of LHCII Trimer Solution 

The LHCII trimers were extracted from spinach thylakoids as described in the literature90 

and were dispersed in 5 mM tricine buffer (pH = 7.5) with a detergent, i.e. 0.1 M sucrose and 

0.06% n-dodecyl β-D-maltoside (β-DM). The concentration of LHCII, in unit of equivalent Chl 

concentration, were derived from the absorbance measured with the same procedure described in 

our previous paper107 using buffered aqueous acetone (80% aqueous acetone containing 2.5 mM 

phosphate buffer with pH = 7.8) as chlorophyll extractant.  
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 4.2.3 Plasmon-Enhanced LHCII Sensitized Solar Cell  

The TiO2 nanotree array grown on FTO glass was used as the photoanode in this work, of 

which the fabrication was described in Section 2.4 of Chapter 3. To increase the adsorption of 

LHCII, the TiO2 nanotrees were first treated with 5 wt% APTES, and then incubated in LHCII 

trimer solution under dark for 24 h at room temperature. The solutions of APTES-treated PNPs 

(AgNS@TiO2, AuNP@TiO2 and AgNP@TiO2, respectively) with the metal content 

corresponding to ~1 wt% of the total mass of TiO2 in the photoanode were casted onto the LHCII 

sensitized TiO2 nanotrees. With the APTES treatment, PNPs tend to adsorb on top of LHCII 

trimers. The photoanode was then rinsed with water to remove weakly adsorbed LHCII trimers 

and PNPs, and finally dried with N2 flow. 

A 20 nm thick Pt film sputtered on the FTO glass by a high resolution ion beam coater 

(Model 681, Gatan Inc., Pleasanton, CA) was applied as the cathode. The photoanode and cathode 

were assembled with a 1 × 1 cm2 window cut in a 250 μm-thick silicone gasket (Solaronix, 

Switzerland). Iodide based ionic liquid electrolyte (Mosalyte TDE-250, Solaronix, Switzerland) 

was injected into the cell by a syringe through two holes drilled on the cathode. The assembled 

cell was masked to define an active area of 0.2 cm2.  

 4.2.4 Material Characterization 

The morphology of the core-shell PNPs was examined with high resolution transmission 

electron microscopy (HRTEM, JEM-2100 LaB6, JEOL USA, Peabody, MA). The TiO2 

photoanode was examined with a field-emission scanning electron microscopy (FESEM, 

Nano430, FEI, Hillsboro, OR) using a through-lens detector (TLD) for secondary electrons and a 

low-voltage high contrast detector (vCD) for backscattering electrons, which provide 

complementary information of the 3D structure. UV-Vis absorption spectra were recorded at room 
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temperature using a DU 640 spectrophotometer (Beckman, Fullerton, CA). The steady-state 

fluorescence was recorded by using a Horiba Jobin Yvon Nanolog spectrofluorimeter equipped 

with PMT (for UV-visible) and InGaAs (for near-IR) detectors. The fluorescence lifetimes were 

measured with the Time Correlated Single Photon Counting (TCSPC) option with nano-LED 

excitation sources on the Nanolog. All the solutions were purged prior to spectral measurements 

using argon gas. The atomic composition and PNP particle concentration were determined with an 

inductively coupled plasma-atomic emission spectrometer (ICP-AES, 720-ES, Varian, Walnut 

Creek, CA). The crystalline structure of the TiO2 nanotrees were determined by powder x-ray 

diffraction (D8, Bruker, Madison, WI) and Raman spectroscopy (DXR Raman microscope, 

Thermal Scientific, Waltham, MA). 

 4.2.5 Transient Absorption Measurements 

Femtosecond pump-probe experiments were performed using an Ultrafast Femtosecond 

Laser Source (Libra) by Coherent combining a diode-pumped, mode locked Ti:Sapphire laser 

(Vitesse) and diode-pumped intra cavity doubled Nd:YLF laser (Evolution) to produce a 

compressed laser output of 1.45 W. For optical detection, a Helios transient absorption 

spectrometer coupled with a second and third harmonics generator, both provided by Ultrafast 

Systems was used. The source for the pump and probe pulses were derived from the fundamental 

output of Libra (Compressed output 1.45 W, pulse width 100 fs) at a repetition rate of 1 kHz. 

About 95% of the fundamental output of the laser was introduced into a harmonic generator to 

produce the second and third harmonics of 400 and 267 nm besides the fundamental 800 nm for 

excitation. The rest of the output was used for generation of white light continuum. In the present 

study, the second harmonic output (400 nm) was used as excitation pump source. Kinetic profiles 

at appropriate wavelengths were assembled from the time-resolved spectral data. Data analysis 
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was carried out using Surface Xplorer software from Ultrafast Systems. All spectral measurements 

were performed at room temperature in Ar-saturated solutions. 

 4.2.6 Solar Cell Characterization 

Cell performance was evaluated with the characteristics of photocurrent-voltage (I-V) 

curve measured with a CHI 440A potentiostat (CH Instruments, Austin, TX) under one-sun (100 

mW/cm2) illumination using a solar simulator consisting of a 300 W Xe lamp and an AM 1.5G 

filter (Newport, Irvine, CA). Three different bandpass interference filters with 50 nm FWHM 

(Edmund Optics, Barrington, NJ) were employed to select specific wavelength range of 450±25 

nm, 575±25 nm, and 675±25 nm, respectively, and the dynamic responses of short-circuit current 

(JSC) were monitored with chronoamperometry measurements while the shutter was turned on and 

off. The incident photon-to-current efficiency (IPCE) at various wavelengths was collected with 

irradiation of a 75 W Xe lamp and a monochromator (74004, Oriel Instrument, Newport, Irvine, 

CA). 
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 4.3 Results and Discussion 

 4.3.1 Characterization of the Structure of Core-Shell PNPs.  

 

Figure 4.1 Dimensional morphology and color of three core-shell plasmonic nanoparticles. 

(A) TEM images of AgNS@TiO2 (I), AuNS@TiO2 (II) and AgNP@TiO2 (III), and the 

photograph of the corresponding particles dispersed in aqueous solution. (B) Schematic 

structure of the LHCII-PNP hybrid systems. (Reprinted with permission from Y. Yang, H. 

Gobeze, F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 

10.1002/admi.201600371) 

 

The transmission electron microscopy (TEM) images in Figure 4.1 exhibit the 

representative morphologies of the as-prepared PNPs. The average diameters of the spherical PNPs 

are 23.4±2.5 and 22.0±1.6 nm for AgNS@TiO2 and AuNS@TiO2, respectively. The TEM image 

of AgNP@TiO2 PNPs (left bottom panel) shows that some PNPs lie flat and some stand vertically 

on the TEM grid, confirming that they have a flat plate-like shape of 27.3±10 nm in diameter and 
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5.6±0.9 nm in thickness. The solutions of these PNPs exhibit orange (AgNS@TiO2), purple 

(AuNS@TiO2) and navy blue color (AgNP@TiO2), respectively. The PNP concentrations were 

determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and 

summarized in the Appendix B-Table B.1. The core-shell structure of the PNPs was demonstrated 

by high-resolution TEM images in Appendix B-Figure B.1. A thin TiO2 shell of about 2~3 nm can 

be observed on the surface of metallic cores. Soaking these PNPs in iodide solutions overnight did 

not show significant decrease in the SPR peak height, which further confirms that the TiO2 shell 

fully covers the metallic cores and is effective in protecting them from etching by electrolytes. 

Compared with the bare Ag nanoparticles used in Adhyaksa’s work,105 this core-shell structure has 

multiple functions. First, the hydrophilic nature of TiO2 shell makes the PNP surface 

biocompatible for protein attachment.108 Second, the semiconductive TiO2 shell serves as an 

energy barrier to prevent unwanted electron flow from the attached proteins to the metallic core.70 

Third, the TiO2 shell acts as a protective armor to ensure the stability of the metallic core in the 

corrosive iodide electrolytes in solar cells.45  

It is noteworthy that LHCII only weakly adsorbs to the native TiO2 surface, as we reported 

before.107 To overcome this issue, a positively charged amine group (-NH3
+) was introduced to the 

TiO2 surface of PNPs by functionalization with APTES. The affinity of LHCII to TiO2 surface is 

largely increased due to electrostatic interaction between the negatively charged carboxylate 

groups (-COO-) in LHCII and the -NH3
+ group on the surface. For direct quantitative comparison, 

the PNP solutions used in later spectroscopic studies were controlled to have similar TiO2 surface 

area so that the amount of attached LHCII is about the same. Figure 1B schematically depicted the 

structure and relative dimension of the LHCII-PNP hybrid system consisting of LHCII trimers 

adsorbed on the TiO2 shell of PNPs. To further ensure forming a close-packed monolayer of LHCII 
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trimers on the surface of APTES-functionalized core-shell PNPs, we intentionally added redundant 

LHCII trimers in the solution during LHCII-PNP hybrid formation. It is estimated that, in the final 

LHCII-PNP solutions, ~20% of LHCII are absorbed on the PNP surface while the other ~80% of 

LHCII remain freely dispersed in solution. 

 4.3.2 Optical Spectroscopic Properties of LHCII-PNP Hybrids.  

 

Figure 4.2 Absorption properties of the LHCII-PNP hybrids. 

(A) UV-Vis absorption spectra of free LHCII trimers and LHCII-PNP hybrids in aqueous 

solutions. ODtot stands for total optical density that is the sum of the OD of PNPs (ODPNP), 

free LHCII trimers (ODfree-LHCII) and LHCII adsorbed on PNP (ODads-LHCII). (B) Plasmonic 

absorption spectra of the bare core-shell PNPs in aqueous solutions (ODPNP), with the PNP 

concentrations same as those of the LHCII-PNP hybrids in (A). (C) The net absorption of 

LHCII-PNP hybrids after subtracting the contribution from free LHCII in solution, with 

ODads-LHCII + ODPNP = ODtot –  80%ODLHCII, where 80% accounts for the approximate 

portion of LHCII remaining freely dispersed in solution. (D) The enhanced absorption of 

LHCII adsorbed on PNP, with ODads-LHCII = ODtot – 80%ODLHCII –ODPNP. For comparison, 

the absorption of non-enhanced LHCII was calculated from 20%ODLHCII. (Reprinted with 
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permission from Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. 

Interfaces, DOI: 10.1002/admi.201600371) 

 

Figure 4.2A shows the UV-Vis absorption spectra of free LHCII trimer in comparison with 

three LHCII-PNP hybrid solutions. The absorption spectrum of LHCII trimer consists of the Soret 

band (at 436 nm for Chl a and 471 nm for Chl b) and Q band (at 673 nm for Chl a and 652 nm for 

Chl b) of the primary Chl pigments. Clearly, all LHCII-PNP curves shift upward, indicating that 

adding PNPs induces higher absorption than pure LHCII. In contrast, the absorption of the LHCII 

sample in visible wavelength range is unaffected by solid TiO2 NPs in the solution except larger 

scattering. After subtracting the scattering, the absorption spectrum is completely overlapped with 

that of the pure LHCII solution, as shown in Appendix B-Figure B.2.  

The absorption spectra of LHCII-PNP hybrids were considered as the convolution of the 

absorptions of LHCII adsorbed on PNPs (ODads-LHCII), free LHCII in solution (ODfree-LHCII), and 

the plasmonic absorption of PNPs (ODPNP). To de-convolute the contributions of each component, 

we first subtracted the absorption of free LHCII remaining in the solution of LHCII-PNPs (ODfree-

LHCII = ~80%ODLHCII) by calculating the differential optical density (OD) between the LHCII-PNP 

hybrids and pure LHCII solutions using ΔOD = ODtot – 80%ODLHCII. The extracted spectra of net 

LHCII-PNPs are shown in Figure 4.2C are attributed to the summation of ODads-LHCII and ODPNP. 

Though the general features of net LHCII-PNP spectra reflect the characteristics of both free 

LHCII and free PNPs, they seem not to be simply the summation of these two components. Further 

analyses were done by deducting the absorption of PNPs (ODPNP, as shown in Figure 4.2B). The 

results are shown in Figure 4.2D, which represent the enhanced absorption attributed to the LHCII 

adsorbed on the PNP surface. The non-enhanced absorption from the same amount of free LHCII 

in solution (20%ODLHCII) is plot in black line in Figure 4.2D as a reference. Interestingly, 

compared to free LHCII, the LHCII on AgNP@TiO2 shows higher absorption over the whole 
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spectral range, those on AgNS@TiO2 shows higher absorption in the short-wavelength range, 

while those on AuNS@TiO2 shows small peak absorption in the mid-wavelength range. The 

LHCII absorption apparently was modulated by the PNPs. 

The maximum absorption of AgNS@TiO2 overlaps with the Soret band of Chls in LHCII, 

while the AgNP@TiO2 has a broad absorption covering both Soret and Q bands. The maximum 

absorption of AuNS@TiO2 locates in the “dark region” between Soret and Q bands, where LHCII 

has the minimum absorption. Therefore, the increased absorption may be attributed to the 

enhanced photon harvesting induced by the SPR effects of the PNPs.101 The slightly decreased 

absorptions in the mid-wavelength range for the LHCII on AgNS@TiO2 and AgNS@TiO2 are 

insignificant considering the experimental error. Although the LHCII on AuNS@TiO2 exhibits 

negligible enhancement on its characteristic bands, the AuNS@TiO2 PNPs are useful to fill the 

spectral gap in the wavelength range between 520 – 640 nm to capture the photons that cannot be 

effectively utilized by LHCII. Overall, these spectral characteristics imply that the photon capture 

by LHCII-PNP hybrids can be effectively tuned by controlling the core materials and particle 

morphology.  



60 

 

Figure 4.3 Emission properties of three LHCII-PNP hybrids. 

(A) Steady-state fluorescence emission spectra of the aqueous solution of LHCII, TiO2 NP 

and three types of core-shell LHCII-PNP hybrids. The LHCII absorbance was set to 0.1 in 

all of the samples excited at 436 nm. (B)  Fluorescence decay curves after the samples were 

excited with a nanoLED operating at 494 nm wavelength. The instrument response function 

(IRF) (black stars) shows that the instrument has a much higher temporal resolution. 

(Reprinted with permission from Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, 

Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

Figure 4.3A shows the steady-state fluorescence emission spectra of LHCII, LHCII-TiO2 

NP and LHCII-PNP hybrids in aqueous solutions. Even though it was excited at 436 nm, all 

emission occurs at ~683 nm with similar peak shapes, implying that the spectroscopic properties 

of LHCII were not significantly affected after attaching onto the TiO2 surface. However, a 
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reduction of the fluorescence intensity was clearly observed after LHCII adsorbed onto TiO2 NPs, 

and it became more significant in LHCII-PNP hybrids. Excitation at other wavelengths including 

471, 542, and 673 nm all generates fluorescence with the origin band near 683 nm, with the similar 

trend of quenching by TiO2 NPs and various PNPs, as summarized in Appendix B-Figure B.3. The 

time-resolved emission of LHCII at 683 nm using time-correlated single photon counting (TCSPC) 

reveals faster emission decays in the presence of various core-shell PNPs (Figure 4.3B). The decay 

curves can be fitted with two or three exponential function to derive the mean weighted lifetime 

τAv (see Table 4.1), which are 3.3 ± 0.5 ns for the pure LHCII, 2.6 ± 0.4 ns for LHCII with solid 

TiO2 NPs, and smaller values from 1.2 ± 0.2 to 1.5 ± 0.2 ns for the core-shell PNPs. The two sets 

of fluorescence measurements in Figure 4.3 are in good agreement with each other, showing 

quenching of fluorescence intensity and reduced fluorescence lifetime of excited LHCII after they 

adsorbed onto TiO2 surface; the latter effects were clearly enhanced by plasmonic cores. 

Table 4.1 Mean weighted lifetime (τAv) of LHCII, LHCII-TiO2 NP and LHCII-PNP hybrids. 

Systems τAv (ns) 

LHCII 3.3±0.5 

LHCII-TiO2 2.6±0.4 

LHCII-AgNS@TiO2 1.2±0.2 

LHCII-AuNS@TiO2 1.4±0.2 

LHCII-AgNP@TiO2 1.5±0.2 
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Figure 4.4 Schematic diagram of the energy and electron pathways in LHCII-PNP hybrid 

system. 

The excitation of LHCII trimers is mostly due to strong absorption around the Soret band 

and Q band of the Chls (black upward arrows). These are followed by an ultrafast EET from 

Soret band to Q band (yellow arrow) and fluorescence emission (black downward arrow) to 

return to the ground level. After attaching LHCII to TiO2 NPs or the core-shell PNPs, it 

induces a charge transfer process, i.e. injection of excited electrons in Q band to the 

conduction band (CB) of TiO2 (green arrow), resulting in the reduced fluorescence intensity. 

In presence of the metallic core, the further excitation to LHCII may occur due to plasmon-

induced resonance energy transfer (PIRET) from PNPs to LHCII (blue arrows), resulting in 

larger electron injection from LHCII to TiO2. The charge carrier density in TiO2 may be 

increased due to the injection of hot electrons excited at the metal core of PNPs as they 

overcome the Schottky barrier (red arrows). (Reprinted with permission from Y. Yang, H. 

Gobeze, F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 

10.1002/admi.201600371) 

 

From the optical spectroscopic results in Figures 4.2 and 4.3, it is clear that PNPs provide 

additional photon capture to LHCII with the spectral overlap at different regions. However, the 

extra photon energy harvested by PNPs does not simply enhance the excitation (i.e. absorption) of 

LHCII and relaxed by radiative electron recombination that leads to higher fluorescence emission. 

Instead, the observed fluorescence emission decreases. Obviously there must be other mechanisms 

involved in LHCII-PNP hybrids which cause fluorescence quenching instead of enhancement. As 
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elaborated by Cushing et al109-110, when a plasmonic metal NP is coupled to semiconductor, charge 

generation in semiconductor can be enhanced via three mechanisms, including light trapping based 

on scattering, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET) 

based on near-field. These are also applicable to the LHCII-PNP hybrids, with the possible 

mechanisms illustrated by the schematic energy diagram and electron pathways in Figure 4.4. If 

only LHCII is present in solution, the excitation process pumps electrons from the ground state to 

the excited states of Soret band or Q band. The excitation of the Soret band is followed by internal 

conversion and ultrafast excitation energy transfer (EET) to the Q band with assistance of 

carotenoids contained in LHCII trimer, as was proposed and verified by a theoretical modeling.111 

Thus all fluorescence emission bands from LHCIIs were at 683 nm, corresponding to a radiative 

relaxation by returning the excited electrons from Q band to the ground state.  

When LHCII is adsorbed on the TiO2 surface, upon excitation a charge transfer process 

occurs, i.e. the excited electrons in Q band are injected to the conduction band (CB) of TiO2, 

resulting in the reduced fluorescence intensity. In presence of the metallic core, the incident photon 

energy captured by plasmonic absorption generates strong near-field oscillation which can reach 

up to ~10 nm decay length, affecting all LHCII adsorbed on the surface of the ~2-3 nm thick TiO2 

shell. The strong dipole-dipole coupling between the plasmon and LHCII induces a strong PIRET 

to enhance the excitation of LHCII at either Soret or Q bands. The strong near-field likely 

facilitates more efficient electron injection from LHCII to TiO2 and thus lowers the overall 

fluorescence intensity even though additional LHCII excitation is induced by PIRET. These 

processes are beneficial in enhancing the photocurrent generation in plasmonic LSSCs as will be 

discussed later. The plasmonic hot electrons excited at the metal core of PNPs may also be easier 

to overcome the Schottky barrier at the metal-TiO2 interface and raise the charge carrier density in 
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TiO2 shell. Here we mainly focus on the plasmonic effects on LHCII in wavelength larger than 

400 nm. Thus the PIRET from metal core to TiO2 at shorter wavelength is neglected. 

 4.3.3 Femtosecond Transient Absorption Study.  

In order to seek further evidence of charge injection from excited LHCII to TiO2 NPs, 

femtosecond transient absorption studies were performed. In these studies, the samples were 

excited using 400 nm, 100 fs laser pulses where chlorophyll pigments of LHCII have a large 

absorbance. In order to identify the electron injection product, namely the oxidized LHCII species, 

LHCII was chemically oxidized using nitrosonium tetrafluoroborate (NTFB) as an oxidizing agent 

in water. As shown in Appendix B-Figure B.4a, adding more oxidizing agent resulted in decrease 

in intensity of LHCII peaks and appearance of new shoulder peaks at the longer wavelength side 

of the 472 and 674 nm LHCII peaks. In order to isolate the changes, the differential spectra were 

generated with A = Abs(oxidized) - Abs(neutral), as shown in Figure B.4b. The negative peaks 

represent reduction in the amount of the neutral compound due to the oxidation process and the 

positive peaks represent absorbance due to the oxidized species. The appearance of the positive 

peaks during transient studies would serve as a proof of charge injection from excited LHCII to 

TiO2 NPs. 

Figure B.5a in the Appendix B shows femtosecond transient absorption spectra of LHCII 

in water at different delay times after excited with a short laser pulse. The spectra revealed 

instantaneous formation of a positive peak at 535 nm with negative peaks at 485 and ~680 nm 

(time constant ~1 ps). The positive peak has been attributed to the singlet-singlet transition of the 

chlorophyll pigment while the negative peaks are attributed to ground state bleaching. The 680 nm 

peak also has contributions from stimulated emission. The decay of the singlet excited peak and 

recovery of the ground state (represented by the decrease in the negative peak) appeared slightly 
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faster than that predicted from the lifetime values, perhaps due to some photobleaching by the 

intense laser light. Importantly, successful excitation of LHCII to populate the singlet excited state 

is witnessed. 

 

Figure 4.5 Femtosecond transient absorption spectra at the indicated delay time of LHCII 

and LHCII-PNP hybrids. 

(A) LHCII and LHCII-TiO2, (B) LHCII and LHCII-AgNS@TiO2, (C) LHCII and LHCII-

AuNS@TiO2, and (D) LHCII and LHCII-AgNP@TiO2 in Ar-saturated water. All LHCII 

spectra are shown in navy blue. (Reprinted with permission from Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

Figure 4.5 shows the transient absorption spectra of LHCII adsorbed on TiO2 NPs and 

PNPs in water at the specified delay times. The spectrum of pristine LHCII solution is also shown 

at the same delay time for reference (see Figures B.5a-d in Appendix B for more spectra at a series 

of delay times of LHCII adsorbed on different core-shell PNPs). Two important observations were 

made. First, the decay of the 535 nm peak and the recovery of the negative peak at 680 nm of 

LHCII adsorbed on solid TiO2 NPs and core-shell PNPs was faster than that observed for pristine 
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LHCII, suggesting involvement of excited LHCII in additional photochemical events. The time 

profiles of these peaks in comparison with pristine LHCII are shown in Appendix B-Figure B.6. 

In general, in accordance with the lifetime data, the metal NPs in TiO2 accelerated the 

decay/recovery processes. Second, in the 500 nm range, positive absorbance appeared as a 

shoulder to the singlet-singlet peak of LHCII corresponding to the formation of LHCII•+. Other 

expected peaks of LHCII•+ around 660 and 680 nm were masked by the strong negative peak of 

excited LHCII. These results conclusively prove that there is charge injection from the excited 

LHCII into the conduction band of TiO2 and that the metal NPs inside TiO2 facilitate this 

photochemical event. 

 4.3.4 Design of Plasmon-Enhanced LHCII Sensitized Solar Cells 

 

Figure 4.6 SEM images of the hydrothermally grown TiO2 nanotrees on a FTO coated glass. 

(A) The top view (by measuring secondary electrons with a TLD detector), (B) the top view 

(by measuring backscattering electrons with a vCD detector), and (C) the cross-sectional 

view (by the TLD detector). The bright spots in (B) are well-dispersed PNPs on the TiO2 

nanotrees. All scale bars are 2 µm. (Reprinted with permission from Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

To further validate the importance of the SPR properties of the core-shell PNPs and 

utilizing them to enhance the LSSCs, we incorporated them into the photoanode (at ~1 wt% 

loading relative to the total TiO2 total mass). In traditional DSSCs, a 20 m thick film consisting 

of sintered TiO2 nanoparticle with about 20 nm pore size is usually used as the photoanode material 
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for dye sensitization. Here, the LHCII trimer and the PNPs are both nanoparticles, much larger 

than organic dye molecules. To facilitate their penetrating through tortuous pores to access the 

internal surface of the whole TiO2 film, we adopt a vertically-oriented TiO2 nanotree array with 

much larger pore size as the photoanode. Such 3D hierarchical TiO2 structures were directly grown 

on FTO coated glass substrates by an one-step hydrothermal reaction following a previous 

report.112 The structure is illustrated by SEM images in Figure 4.6. The high-resolution secondary 

electron images in Figure 4.6A and C display the top and cross-sectional views of the synthesized 

TiO2 nanotree array, showing a hierarchical structure composed of 6 µm-long TiO2 trunk covered 

by short and thinner side branches. Large pores of several hundreds of nanometers between the 

neighboring TiO2 nanotrees are preserved, leaving sufficient openings for electrolytes filling. Such 

structure has been used to improve the charge transfer while maintaining a high specific surface 

area, leading to enhanced charge collection efficiency in DSSCs sensitized with conventional 

ruthenium dye (N719).113-114 The backscattering electron image in Figure 4.6B provides higher 

contrast, showing well-dispersed AuNS@TiO2 PNPs as bright dots anchored on the TiO2 branches. 

XRD and Raman characterizations in Appendix B-Figure B.7 confirmed that the TiO2 nanotrees 

are highly crystalline anatase phase, which is ideal for DSSCs. 

Figure 4.7 schematically depicts the structure and mechanism of the designed plasmonic 

LSSC with the PNPs drop-casted on the LHCII-sensitized TiO2 nanotrees. The operation of LSSC 

includes three critical steps that may benefit from the unique properties of LHCII-PNP hybrids 

discussed earlier: (1) the enhanced photon capture, (2) fast energy transfer to excite Q band of 

LHCII trimers, and (3) more efficient charge separation at the LHCII/TiO2 interface by plasmon 

promoted electron injection from LHCII into TiO2. The other three steps follow the same 

mechanisms as traditional DSSCs, including (4) the injected electrons diffuse through the TiO2 
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nanotrees to the current collector (FTO coated glass) and the external circuit to generate 

photocurrent, (5) regeneration of the oxidized LHCII trimers by filling electrons donated from 

iodide mediators in the electrolyte, and (6) transport of the oxidized iodide (i.e. triiodide) as the 

hole carrier to the cathode (Pt coated glass) and reducing it back to iodide to complete the circle. 

 

Figure 4.7 The structure of the plasmon-enhanced LHCII-sensitized solar cell and the 

appearance of the sensitized photoanode. 

(A) The scheme of the solar cell. The enlarged portion (red square) shows the binding of 

different PNPs on LHCII-sensitized TiO2 nanotrees and the electron injection from LHCII 

to TiO2 (red arrow). (B) The digital photographs of the LHCII-sensitized region of an 

APTES-treated TiO2 nanotree array (left) and a bare TiO2 nanotree array (right). 

(Reprinted with permission from Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, 

Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

As mentioned above, the adsorption of LHCII trimers on TiO2 surface can be improved by 

APTES functionalization. It can be easily verified from the color of the LHCII sensitized film. A 

uniform greenish film was attained on APTES-treated TiO2 nanotree array (see left frame of Figure 

4.7B). In contrast, only a non-uniform dim green color was observed on the TiO2 nanotree array 

without APTES functionalization (see right frame of Figure 4.7B). The amount of adsorbed LHCII 

was extracted into solutions and quantitatively assessed by the UV-Vis absorbance and illustrated 

in Appendix B-Figure B.8. The amount of LHCII trimers adsorbed on APTES-treated TiO2 

nanotrees was increased by 2.5 folds compared to that on bare TiO2 nanotrees. Based on the 
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calculations, it requires LHCII trimers containing 0.2 µg Chls to form a hexagonal close-packed 

monolayer on a flat 1×1 cm2 surface.107 Here the adsorbed LHCII trimers were measured to be 

equivalent to 6.6 µg Chl, 33 times higher than that on the flat TiO2 surface. Clearly, LHCII trimers 

were able to penetrate into the TiO2 nanotree array and adsorb on a large surface area. 

 4.3.5 Photovoltaic Characterizations 

 

Figure 4.8 Photovoltaic performance of the plasmon-enhanced LSSCs. 

(A) current-voltage (I-V) curves, (B) incident photon-to-current efficiency (IPCE) curves 

(inset: the enlargement from 550 to 750 nm), (C) the percentage change of IPCE (ΔIPCE%) 

of PNP-incorporated LSSCs relative to the normal LSSC. Synchronous response of the 

short-circuit photocurrent under illumination through bandpass interference filters for 

selecting wavelength at (D) 450±25 nm, (E) 575±25 nm, and (F) 675±25 nm. The illumination 

is altered between “On” and “Off” in about every 10 s using a shutter. The figure legends 

for all figures are the same as frame A. (Reprinted with permission from Y. Yang, H. Gobeze, 

F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

The performance of the fabricated LSSC was characterized with I-V measurements in 

Figure 4.8A. Comparing to the bare TiO2 device, both short circuit current (Jsc) and open circuit 

voltage (Voc) increased by LHCII sensitization. Further photocurrent enhancement was realized by 
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incorporating PNPs in the LSSCs. The results from triplicated experiments showed that Jsc of the 

LSSCs with AgNS@TiO2, AuNS@TiO2 and AgNP@TiO2 achieved 201±3, 173±9 and 208±11 

µA/cm2, respectively, representing an average increase of 49%, 28% and 54% comparing to the 

control (LSSCs without PNPs, giving Jsc = 135±12 µA/cm2). Interestingly, the enhancement factor 

of AuNS@TiO2 PNP is clearly lower than those of the other two PNPs (AgNS@TiO2 and 

AgNP@TiO2) which are comparable to one other. 

The IPCE measurements were also performed and plotted in Figure 4.8B. All LSSCs 

showed substantially enhanced IPCE over the whole spectrum. Due to the strong photon 

absorption and large photocurrent generated by LHCII trimers and TiO2 at the wavelength below 

550 nm, the SPR effects of the small amount of PNPs were obscured in this range. However, at 

the wavelength from 550 to 750 nm where the IPCE from bare TiO2 was negligible, the PNP-

incorporated LSSCs showed clearly higher IPCE than those with LHCII sensitizer alone. In this 

range, an IPCE peak centered at ~665 nm was observed, matching well with the Q band absorption 

of LHCII trimers. The values of the characteristic parameters (including standard deviation) from 

I-V and IPCE measurements were summarized in Appendix B-Table B.2.  

To further understand the effects of PNPs, the percentage change of the IPCE (ΔIPCE%) 

was calculated based on the equation:  

ΔIPCE% = [IPCE(LHCII-PNPs)−IPCE(LHCII)]× 100% / IPCE(LHCII)                  (4.1) 

Interestingly, the ΔIPCE% spectra in Figure 4.8C shows that the maximum ΔIPCE% of all 

three PNPs-incorporated LSSCs locate at the Q band range, with the fine features very similar to 

the Qx and Qy absorption bands of LHCII trimers. This evidence confirms that the photocurrent 

enhancement is ascribed to the coupling between the PNPs and LHCII trimers.  
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It is clear that the photocurrent under 1 sun full spectrum was significantly enhanced by all 

PNPs. However, the IPCE curves (Figures 4.8B and C) do not directly reflect the shapes of the 

UV-vis absorption spectra (Figures 4.2A) except in the long wavelength range corresponding to Q 

band. One of the possible reasons is that the intensity of the monochromatized light was too low 

(only 0.20 - 0.78 mW/cm2) in the setup for IPCE measurements and thus only generated very weak 

electric field by the plasmon which can be easily masked by the photocurrent from TiO2. To 

overcome this issue, broader bandpass filters (with 50 nm band width) were used to select specific 

wavelength regions under 1 sun illumination, allowing much higher light irradiance (at the level 

of ~18 mW/cm2) at the solar cells. Indeed, much higher enhancements in JSC were observed. 

Figures 4.8D to F show the synchronous responses of JSC to the illumination in selected 

wavelengths. Three bandpass interference filters were applied to chop the illumination into three 

specific ranges, 450±25 nm (Soret band of Chls), 675±25 nm (Q band of Chls), and 575±25 nm 

(region of minimum absorption). All photocurrents were highly reproducible as the illumination 

was turned on and off for four cycles, indicating that LHCII complexes were stable under the 

experimental conditions. The photocurrent of the LSSCs increases after incorporating all three 

types of PNPs, which is in contrast to the quenching of fluorescence emission by PNPs in the 

LHCII-PNP hybrids shown in Figures 4.3. These results collectively confirm that PNPs are able 

to enhance the charge transfer from the adsorbed LHCII to TiO2 as illustrated in Figure 4.4. 

Considering that the absorption by LHCII is stronger around Soret band, substantial energy must 

be effectively transferred from Soret band to Q band to induce charge transfer and generate the 

photocurrent in LSSCs. This provides supplementary information to the previous spectroscopic 

studies regarding the energy transfer and charge separation in this hybrid system. 
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In summary, the optical spectroscopy results demonstrate that the SPR of the PNPs 

provides additional photon capture in the LHCII-PNP hybrid system (refer to the discussion of 

Figure 4.2). The captured energy in the form of plasmon may be utilized in the LSSCs to generate 

enhanced photocurrent by two mechanisms, i.e. (1) inducing additional LHCII excitation due to 

PIRET and (2) generating hot electron injection from metal core to TiO2, similar to the models 

proposed by Cushing et al109-110 The enhanced charge separation is reflected in the higher 

photocurrent of LSSCs in I-V and IPCE measurements. The AgNS@TiO2 PNP is expected to 

present higher photocurrent enhancement than AuNS@TiO2 PNP due to the larger spectral overlap 

with LHCII Soret band (around ~400 to 500 nm). However, it is interesting to note that the 

AgNP@TiO2 PNP presents enhanced photocurrents comparable to AgNS@TiO2 PNP and clearly 

higher than AuNS@TiO2 PNP under the full solar spectral illumination and three selected 

wavelength bands, including 575±25 nm band that is overlapped with the SPR peak of 

AuNS@TiO2 PNP. Particularly, the peak absorbance of AgNP@TiO2 PNP in Figure 4.2B is 5.4 

and 8.0 fold lower than spherical AgNP@TiO2 and AuNP@TiO2 PNPs, respectively.  

By correlating the results from optical and photovoltaic studies, it is likely that following 

four factors collectively account for the relatively high plasmon effects of AgNP@TiO2 PNP in 

LSSCs: (1) The absorption spectra in Figure 4.2B were collected from the PNP solution with the 

same particle surface area while the LSSCs used PNPs with the same mass, a factor of ~1.54 needs 

to be applied to the AgNP@TiO2 curve to compare it with AgNS@TiO2 PNPs. (2) The spectral 

overlap of AgNP@TiO2 with LHCII is at the region of Q bands (~640 – 690 nm) which is directly 

involved in electron transfer from LHCII to TiO2 and could be more effective. (3) The 

AgNP@TiO2 PNPs likely rest flat on top of the LHCIIs sensitized on the TiO2 photoanode due to 

their plate-like geometry. This can produce much larger contact area with the LHCII in the LSSC 
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than spherical PNPs (as illustrated in Figure 4.7) and thus can generate larger plasmonic effects by 

each PNP. (4) The photocurrent reflects the efficiency to convert incident photons (instead of 

irradiance) into free electrons. As shown in Appendix B-Figure B.9, after converting the AM1.5G 

standard solar spectrum from W/(m2nm into number of photons/(sm2nm), the incident photons 

at longer wavelength is significantly higher. Thus AgNP@TiO2 PNP, whose SPR is at longer 

wavelength, may generate more effective plasmon than the other two PNPs though its overall 

absorbance is lower. 

In addition, we speculate that the “hot electrons” in the plasmon-excited metal core may 

be also involved in the photovoltaic process as shown in Figure 4.4. Based on literature reports,115-

117 the hot electrons from the metal core are able to cross over the Schottky Barrier at the 

metal/TiO2 interface (~0.9 eV for Au/TiO2,
118 and ~0.2 eV for Ag/TiO2

119) under visible 

irradiation. In another study, we have confirmed that the photoconductivity of TiO2 can be 

improved by the increased charge carrier density induced by the hot electron injection. This would 

lead to more efficient charge collection and faster electron transport in TiO2. 

 4.4 Conclusions 

Three types of TiO2-coated PNPs with distinct surface plasmon resonace characteristics 

have been prepared. Incorporating these PNPs to form LHCII-PNP hybrids clearly provided 

additional plasmonic photon capture which is in good correlation with their SPR characteristics. 

However the fluorescence emission of LHCII was quenched in the LHCII-PNP hybrids, indicating 

the enhanced charge transfer from Q band of LHCII to CB of TiO2. Femtosecond transient 

absorption studies unequivocally proved occurrence of the electron injection process. This is also 

supported by the observation of enhanced photocurrent in LHCII-sensitized solar cells after 

incorporating a small amount of PNPs. Despite the distinct SPR characteristics, all three types of 
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PNPs showed substantial enhancement in the photocurrent under the full solar spectral 

illumination and in IPCE, which are complementary with the emission quenching revealed by 

steady-state fluorescence measurements and faster decay observed with time-resolved 

fluorescence spectroscopy. Hot electrons from the metal cores of the PNPs might transfer to TiO2 

and improve charge collection efficiency of the devices. This strategy provides a new platform to 

reveal the nature of energy/charge transfer processes at the interface of natural photosynthetic 

protein complexes (such as LHCs, RCs, PSs, etc.) and artificial photovoltaic materials, which may 

lead to high-efficient bio-energy conversion devices. 
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Chapter 5 - Correlation of the Plasmon-Enhanced 

Photoconductance and Photovoltaic Properties of Core-Shell 

Au@TiO2 Network 

 5.1 Introduction 

Recent studies proposed that the metal/TiO2 interface in the TiO2-encapsulated metal NPs, 

i.e. metal@TiO2, form an interfacial energy barrier (so-called Schottky barrier) to prevent electron 

flow across, but hot electrons from plasmon-excited metal cores could easily overcome this energy 

barrier and be injected into the TiO2 conduction band (CB), resulting in a new mechanism for 

plasmon enhancement to DSSCs.120 In general, the injected hot electrons are considered to be 

either being converted into photocurrent or functioning as charge carriers in the semiconductor 

matrix.121 The photocurrent generated by direct hot electron transfer across the Schottky barrier 

has been collected and utilized for photodetection and photovoltaics based on well-designed 

devices with a complete circuit allowing refilling electrons back to the metal.122-125 However, for 

the metal@TiO2 NPs embedded in the mesoporous TiO2 film in DSSCs, the sustainability of the 

photocurrent generation from hot electron injection is under debate considering that the metal core 

is unaccessible to the electron donors or the external circuit, which are needed for charge 

regeneration. On the other hand, the initially injected hot electrons may be converted into steady-

state charge carriers and sufficiently raise the conductivity of the mesoporous TiO2 frame, as has 

been indirectly demonstrated by enhanced photoconductivity in metal coupled semiconductors.126-

127 In addition, a recent study by Cushing et al. reported that metal@TiO2 and metal@SiO2@TiO2 

NPs can also enhance DSSCs by exciting surrounding TiO2 matrix and dye molecules with near-

field based plasmon-induced resonance energy transfer (PIRET) beside hot electron injection.109 
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In Chapter 4, we have also confirmed such effects in DSSCs senstized with natural light havesting 

complex II.128 In most DSSC operations, these three effects are mixed. It is necessary to design 

some model systems to elucidate the contributions of these distinct effects in order to understand 

the complex mechanisms of plasmon-enhanced DSSCs. 

Here, we propose a strategy to sort out the contributions of hot electron injection by 

comparing the characteristics of two model devices, i.e. micro-gap electrodes and DSSCs. A core-

shell material consisting of isolated Au NPs embedded at the nodes of a nanostructured TiO2 

network, i.e. Au@TiO2 network, was used as the bridging material in the micro-gap between two 

Au electrodes and as the mesoporous film on a DSSC anode, respectively. This study allows 

isolating the plasmonic effects on electron transport across the network structure129 and link it with 

the enhanced photocurrents in DSSCs. These two devices present distinct wavelength 

dependences, revealing their different dominant plasmonic mechanisms. The correlation of the 

plasmonic enhanced photoconductance and photovoltaic properties unambiguously reveals the 

major role of hot electrons in the enhanced DSSCs 

 5.2 Experimental Section 

 5.2.1 Synthesis of Au@TiO2 Network 

The procedures to prepare the Au@TiO2 network and the bare TiO2 network as control 

were descibed in Chapter 2.5. 

 5.2.2 Materials Characterization 

The morphology of the as-prepared Au@TiO2 network was imaged with a transmission 

electron microscopy (TEM) with tungsten filament under 100 kV accelerating voltage (CM-100, 

FEI, OR). Scanning electron microscopy (SEM) images were taken with a field-emission system 

(Nano430, FEI, OR). Raman spectra were measured with a DXR Raman microscopy (Thermo 



77 

Electron, WI) using 50× objective, and 532 nm laser with 5 mW laser power. Absorption spectra 

were recorded using a Beckman DU640 UV-Vis system. 

 5.2.3 Photoconductance Measurements with A Micro-Gap Electrode 

The micro-gap electronde was prepared with a lift-off lithography process by ion beam 

sputtering  a 2 nm Cr adhesion layer and 100 nm thick gold film on patterned SiO2/Si wafer. The 

as-prepared Au@TiO2 network was drop-casted on a 2 µm wide gap between the two Au 

electrodes to bridge the circuit, and then annealed at 350 ℃  in the air for one hour. 

Photoconductance tests were carried our by measuring current versus bias voltage (I-V) curves 

with a CHI 440A potentiostat (CH Instruments, Austin, TX) under one-sun (100 mW/cm2) 

irradiation using 300 W Xe lamp solar simulator with an AM 1.5G filter (Newport, Irvine, CA). 

The wavelength-dependent photocurrent was measured under 0.2 V bias and illumination of light 

at various wavelength selected with a monochromator coupled with a 75 W Xe lamp (74004, Oriel 

Instrument, Newport, Irvine, CA).  

 5.2.4 Photovoltaic Measurements of DSSCs Consisting of Au@TiO2 Network  

The Au@TiO2 network paste was prepared by adding Au@TiO2 ethanolic dispersion to α-

terpineol with 10 wt% of ethyl cellulose. The mixture was homogenized in an ultrasonic bath for 

~0.5 hour. A viscous paste was obtained by evaporation of extra solvent in a vacuum oven. For 

anode preparation, a fluorine-doped tin oxide (FTO) glass (TEC8, Dyesol, Queanbeyan NSW, 

Australia) was pretreated with 40 mM aqueous solution of TiCl4 at 75 °C for 20 minutes and baked 

at 500 °C for 30 minutes to generate a thin TiO2 barrier layer. Au@TiO2 network film (~3 µm 

thick) coated on this substrate was conducted by conventional doctor blade method. The film was 

relaxed at 60 ℃ for 2 hours and then annealed at 500 °C in the air for 30 minutes, followed by 

sensitization with di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-
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dicarboxylato)ruthenium(II) (N719, Dyesol, Queanbeyan, Australia)  after cooling below 80℃. A 

20 nm thick Pt film sputtered on FTO glass by a high resolution ion beam coater (model no. 681, 

Gatan Inc., Pleasanton, CA) was applied as the cathode. The anode and cathode were assembled 

with a 60 μm-thick heat treated Surlyn gasket (Solaronix, Aubonne, Switzerland). Then the 

iodolyte AN-50 electrolyte (Solaronix, Aubonne, Switzerland) filled the cell by a syringe through 

two holes punched on cathode. The assembled cell has an active area of 1 cm2. The cell 

performance was evaluated with the characteristics of photocurrent−voltage (I−V) curve, the 

impedance measurement, and the incident photon-to-current efficiency (IPCE) tested under the 

short circuit condition with the same equipment setup for the photoconductivity measurement on 

micro-gap electrodes.  

 5.3 Results and Discussion 

 5.3.1 Structure and Absorption of the Core-Shell Au@TiO2 Network 

 

Figure 5.1 Structure and plasmonic absorption of the Au@TiO2 network. 

TEM images of (A) bare gold nanoparticles, (B) Au@TiO2 core-shell nanoparticles (C) 

Au@TiO2 network. (D) SEM image of Au@TiO2 network deposited on micro-gap electrode 

after annealing. Inset: the photograph of micro-gap electrode with Au@TiO2 network 

material drop casted in the region of red box to cover the micro-gap. Scale bars are 20 nm 
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in TEM images (A) and (B), 40 nm in (C), and 500 nm for SEM image (D). (E) Absorption 

spectra of Au@TiO2 NPs in solution and 50 mM N719 in acetonitrile. (F) Absorption spectra 

of a thin film of Au@TiO2 NPs on FTO glass subjected to annealing and I-/I3
- electrolyte 

treatment. 

Synthesis of Au@TiO2 network was defined into two steps. In the first step, a TiO2 layer 

of ~8 nm was deposited on the surface of 20 nm Au NPs (Figure 5.1B). The growth of TiO2 shell 

is a heterogeneous nucleation process that competes with formation of isolated TiO2 NPs via 

homogeneous nucleation. This nucleation mechanism highly depends on the concentration of TiO2 

oligomers in solution.130 In order to attain a uniform TiO2 shell, an anhydrous condition with 

controlled relative humidity during reaction as well as comparatively low concentration of TTIP 

precursor are required to slow down the hydrolysis rate of TTIP and limit the amount of free TiO2 

oligomers in solution, restraining the unwanted homogeneous nucleation at this step. In the second 

step, the homogeneous reaction among TiO2 oligomers was dominated by adding more precursors, 

and the core-shell Au@TiO2 NPs formed by the first step were crosslinked into the amorphous 

TiO2 network as shown in Figure 5.1C. The SEM image in Figure 5.1D confirmed that the network 

structure retained in the sample after drop-casting and annealing on the micro-gap electrode 

(illustrated in the inset of Figure 5.1D). The SPR peak wavelength is ~534 nm, slightly lower than 

the 539 nm peak wavelength of N710 absorption band, but the plasmonic band of Au@TiO2 NPs 

overlaps with the whole absorption peak of N719 dye (Figure 5.1E), which is ideal for near-field 

plasmonic enhancement. The SPR peak doesn’t show any obvious shift after growing into the 

Au@TiO2 network (data not shown). In order to confirm that the TiO2 shell fully covers the Au 

NPs, the Au@TiO2 network was coated on a transparent FTO glass and annealed at 350 ℃ in the 

air for one hour. The prepared sample was then immersed in iodide/triiodide (I-/I3
-) electrolyte 

overnight. The absorption spectra after annealing and electrolyte treatment display negligible 

difference comparing with the initial spectrum (see Figure 5.1F), demonstrating that the intact 
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TiO2 shell on the Au NPs is able to protect Au NPs from heat damage and iodide corrosion during 

the device fabrication and testing. 

 5.3.2 Photoconductance Study on the Micro-Gap Electrode 

 

Figure 5.2 The effect of thermal annealing on the photoconductance of the Au@TiO2 

network. 

(A) Raman spectra of Au@TiO2 network on the micro-gap electrode without annealing and 

after annealing at 350 ℃ and 500 ℃, respectively. (B) I-V curves of the un-annealed and 350 

℃ annealed Au@TiO2 network on the micro-gap electrodes under dark condition (open 

symbols) and under illumination (solid symbols). 

The crystallization of the TiO2 network under different temperature was characterized with 

Raman spectroscopy (Figure 5.2A). No clear peak is shown in the Raman spectrum of the initial 

sample before the thermal treatment, indicating the formation of an amorphous TiO2. After 
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annealing at 350 ℃, the characteristic bands of anatase phase at ~143, 197, 396, 516, 639 cm-1 

appeared. The peak intensity increased and the peak width narrowed down after subjecting to 500 

℃ annealing, demonstrating conversion into a higher degree of crystallinity. Previous studies 

reported that phase transition from anatase to rutile will occur if annealing at the temperature above 

550 ℃.131 However, rutile TiO2 usually displays less photoactivity and slower charge transport 

rate than anatase TiO2 due to the higher optical transition energy and worse interparticle 

connectivity.76, 132-133 Thus it needs to be avoided. Note the micro-gap electrode shows unreliable 

readings after baking above 400 ℃ in the air, likely due to delamination of TiO2 or Au films. 

Hence, in this study, the samples casted on the micro-gap electrode were annealed at 350 ℃ to 

attain single anatase phase and perform reliable photoconductivity measurements.  

To investigate the photoconductance, the I-V curves of the Au@TiO2 network casted on 

the micro-gap electrode were recorded under dark and illuminated conditions. The annealed 

Au@TiO2 network exhibited bigger increase in photoconductance as represented by the larger 

slope in the I-V curve under illumination in Figure 5.2B, which can be ascribed to the improved 

anatase crystallinity of TiO2. In contrast, slightly smaller current was measured with the annealed 

sample under the dark condition. This could be due to the possibility of lower density of oxygen 

vacancies in TiO2 (as electron donors) after the thermal treatment.134-135 
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Figure 5.3 I-V curves and current responses measured on the Au@TiO2 network compared 

to the bare TiO2 network and the sample with N719 sensitization. 

(A) I-V curves measured with the micro-gap electrodes deposited with a bare TiO2 network 

(black solid square), bare Au@TiO2 network (blue solid down triangle), and Au@TiO2 

network sensitized with N719 (red solid up triangle) under 1 sun illumination. Inset is the I-

V curves of the corresponding samples under the dark condition. (B) Current responses at 

0.2 V bias as the one-sun illumination is switched on and off, respectively. All samples were 

annealed at 350 ℃ before dye sensitization and measurements. 

As illustrated in Figure 5.3A, under 1 sun illumination, the slope of the I-V curve measured 

with the Au@TiO2 network is much larger than that of the bare TiO2 network, which is further 

raised after N719 dye sensitization. Figure 5.3B shows synchronous responses of the photocurrent 

at 0.2 V bias to one sun illumination. All photocurrents were highly reproducible as the 
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illumination was turned on and off for four cycles. The response is very fast, beyond the temporal 

resolution of the instrument (~40 ms) that is mainly defined by the shutter speed, and the 

magnitudes correlate well with the trend of the I-V curves in Figure 5.3A. These results concluded 

that the photoconductivity of Au@TiO2 network was enhanced (by 6.7 folds) due to the 

incorporation of Au NPs, and it was further improved with dye sensitization (by additional 5.5 

folds).  

Both Au NPs and N719 dye help to harvest the solar photons in the visible range while the 

TiO2 alone only absorbs UV light. The strong plasmonic excitation of Au NPs would generate 

significant amount of hot electrons which can overcome the ~0.9 eV Schottky barrier to transfer 

from Au NPs into TiO2 shell. The injected hot electrons act as charge carriers and thus increase 

the photoconductivity of the TiO2 network. With additional N719 dye sensitization, because the 

energy level of the lowest un-occupied molecular orbital (LUMO) of N719 (-3.85 eV) locates 0.55 

eV higher than the edge of the conduction band (CB) of TiO2 (-4.4 eV), the excited electrons can 

easily transfer from the dye to the TiO2 network. This process could be enhanced by the energy 

transfer from plasmonic Au NPs to N719 dye passing through the thin TiO2 shell, i.e. the near-

field associated PIRET, since the plasmonic band of the incorporated Au NPs matches well with 

the absorption band of N719 (as shown in Figure 5.1E). This would further raise the charge carrier 

density in the TiO2 network and thus make it even more conductive. Notably, the lack of spectral 

overlap of the Au NPs with the TiO2 disables the PIRET between Au NPs and TiO2 shell. 

Therefore, the enhanced photoconductivity of the non-sensitized Au@TiO2 network must be 

dominated by hot electron injection. More convincing evidence will be discussed in later sections. 

The currents at the similar voltage bias under dark conditions from the corresponding 

samples (shown in the inset of Figure 5.3A) were about 20 times smaller than those obtained under 
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1 sun illumination, indicating a poor intrinsic conductivity of the TiO2 network. It is noted that the 

Au@TiO2 network shows slightly smaller dark current than the pure TiO2 network. This may be 

due to the larger electron scattering by Au NPs and blocking of the carrier pathway by redistributed 

electron density at the Au/TiO2 interface during Schottky barrier formation.136 However, higher 

current in the dark condition was measured after dye sensitization, in contrast to the previous 

studies on single TiO2-coated carbon nanofibers.135 Since the measurements were carried out in 

atmosphere, oxygen molecules as electron scavengers may “quench” the conduction electrons.137 

Dye molecules adsorbed on TiO2 might suppress this carrier “quenching” via blocking the oxygen 

adsorption and thereby improve the intrinsic conductivity of the TiO2 network.  
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 5.3.3 Photovoltaic Properties of Corresponding DSSCs 

 

Figure 5.4 I-V and AC impedance measurements of the DSSCs consisting of pure TiO2 

network and Au@TiO2 network, respectively. 

(A) I-V curves and (B) AC impedance spectra of the DSSCs based on pure TiO2 network 

(black curves) and Au@TiO2 network (red curves), respectively. The impedance data are 

fitted with the equivalent circuit shown in the inset of panel B. All data were collected under 

one Sun irradiation.   

The above discussed Au@TiO2 network was prepared into a ~3 m thick film on FTO-

coated glass and used as an anode material in the DSSC for the purpose of correlating the enhanced 

photoconductivity with its photovoltaic performance. A pure TiO2 network without Au NPs was 

used as the control. The I-V curves and AC impedance spectra measured from these two types of 

DSSCs are plotted in Figures 5.4A and 5.4B. Obviously, much larger photocurrents were generated 
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in the DSSC based on the Au@TiO2 network, which is mainly attributed to the aforementioned 

plasmonic near-field stimulated dye excitation, i.e. PIRET. The short-circuit current (JSC) was 

increased to 6.54 mA/cm2 with Au@TiO2 network comparing to 4.64 mA/cm2 with the pure TiO2 

network. The open circuit voltage (VOC) was nearly the same for both DSSCs, implying that the 

core-shell structure was effective in suppressing the electron-hole recombination in the Au NPs. 

However, another effect that was neglected in most literature is also significant. The series 

resistance calculated from the inverse of the slope of the I-V curve around Voc was found to be 

reduced from 15 Ohm to 11 Ohm with the presence of Au NPs. In addition, the AC impedance 

spectra under illumination exhibited much smaller charge transfer resistance after incorporating 

Au NPs, giving a RCT,2 value of 38 Ohm vs. 79 Ohm, as reflected by the smaller semicircle at the 

low frequency range in the DSSC made of the Au@TiO2 network. These data correlate well with 

the higher photoconductivity shown in Figure 5.3, which conclusively prove that higher charge 

carrier density and thus higher conductance is generated in the Au@TiO2 network. 
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 5.3.4 Possible Mechanisms of the Photoconductance and Photovoltaic Enhancements 

 

Figure 5.5 Wavelength dependence of photoconductance and IPCE studies and the 

schematics of the possible enhancement mechanisms.

(A) The wavelength dependent photoconductance measured under 0.2 V bias on the micro-

gap electrode after normalized to the number of incident photons. (B) The incident photon-

to-current efficiency (IPCE%) of the DSSCs based on the pure TiO2 network and Au@TiO2 

network, respectively. (C, D) The schematic of the potential mechanisms of the plasmonic 

effects in the Au@TiO2 network on the micro-gap electrode and in the DSSC, respectively. 

In order to probe the origins of the enhanced charge carrier density in the Au@TiO2 

network, wavelength dependence of the photoconductance under 0.2 V bias voltage on the micro-

gap electrode was compared with the IPCE measurement of corresponding DSSCs under short 

circuit. The IPCE was calculated with the equation:  

IPCE% = 100%×(1240×JSC)/(λ×Pin)                                 (5.1) 

where JSC is the short circuit current and Pin is the powder of incident photons at each wavelength. 

For direct comparison, the photoconductance was normalized to the number of incident photons 
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of different wavelength using same equation of IPCE%, but replacing JSC with the current 

measured under 0.2 V bias voltage. Here the contribution of dark current is ignored, since it is 

more than 100 times smaller than the current under illumination. The trend of the normalized 

photoconductance at all wavelengths in Figure 5.5A correlates well with the illuminated I-V curves 

in Figure 5.3A, implying the large enhancement to the photoconductance by Au NPs embedded in 

the TiO2 network. Interestingly, the enhancement appeared in a much broader range than the Au 

NP’s SPR band, covering the full visible range from 400 to 800 nm (with the cutoff below 400 nm 

defined by light absorption by the glass substrate). The enhanced current (by a factor of ~6) is 

almost constant over this wavelength range except a small dip around 600 nm. The photocurrent 

is further increased by another factor of ~10 after N719 dye sensitization, indicating the strong 

coupling between N719 dye and the plasmonic Au NPs. It is noted that the wavelength-dependent 

photoconductance in Figure 5.5A (illuminated from above) shows a dip at ~375 nm in the curves 

with Au NPs due to the convolution of the sharp decline of the plasmonic absorption of Au NPs 

and quick increase of TiO2 absorption when the wavelength goes below 400 nm. 

In contrast, the IPCE curve of the DSSC made of the pure TiO2 network shows a well-

defined single peak in the visible range, whose peak wavelength and shape reflect the absorption 

spectrum of N719 dye. The IPCE value below 400 nm wavelength approximately monotonically 

decreases with the wavelength since the illumination is applied from the back side and the photons 

at shorter wavelength is absorbed by the glass substrate and FTO coating, as we demonstrated in 

an earlier study.78 After incorporating Au NPs, the shape of the IPCE peak remains the same but 

the peak IPCE value is increased by ~41%. Notably, the long flat tails at longer wavelengths (600 

– 800 nm) in Figure 5.5A do not show in the IPCE curves of the corresponding DSSCs (Figure 
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5.5B), but they are of great interests toward utilization of lower energy photons. These two types 

of devices are clearly based on different mechanisms. 

The potential mechanisms of the plasmonic enhancement in photoconductance and the 

photovoltaics are schematically depicted in Figures 5.5C and 5.5D. As discussed previously, a 

Schottky barrier formed at Au/TiO2 interface would hinder the interfacial electron transfer in dark 

conditions. The barrier height is determined by the band structure of TiO2 and the work function 

of gold, which is only ~0.9 eV (i.e. ~1378 nm in photon wavelength). As a result, not only the 

photons in the plasmonic band of the Au NPs but also those in the near-infrared range are energetic 

enough to generate hot electrons in the Au NPs that can be injected into the TiO2 network. Thus 

the charge carrier density in the semiconductive TiO2 network is increased. In other words, the 

injected hot electrons act as mobile charge carriers and able to deliver larger currents under the 

same bias voltage. This mechanism nicely explains the I-V characteristics of the micro-gap 

experiments and the equally effective photoconductance enhancement by photons in longer 

wavelength region. The charge carrier density likely reaches the saturation level even with the 

weak light absorbance of Au NPs at ~800 nm wavelength, thus forming a flat plateau. 

The photovoltaic behavior of the DSSCs, however, is dominated by the charge separation 

at the dye/TiO2 interface. The steady-state photocurrent requires electrons being continuously 

injected from the dye molecules into TiO2 and the oxidized dye being quickly regenerated by 

reduction with I−/I3
− electrolyte. In the DSSC made of the Au@TiO2 network, considering that the 

Au NPs embedded within the TiO2 shell are not accessible by the regenerating agents, the 

plasmonic generated hot electrons from Au NPs to TiO2 cannot be the source of continuous steady-

state photocurrent. However, they are sufficient to raise the charge carrier density in TiO2 and 

reduce the series resistance and charge transfer resistance in the corresponding DSSCs. This effect 
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amplifies the characteristic features of the DSSC’s IPCE curves which are determined by the 

charge separation initiated by photon absorption spectrum of the dye molecules. The correlation 

of the photovoltaic and photoconductance measurements clearly reveals the two distinct effects of 

plasmonic NPs which are entangled in normal plasmonic DSSCs. 

 5.4 Conclusion 

The core-shell Au@TiO2 network deposited on the micro-gap electrode and photoanode of 

DSSCs exhibits enhancements in photoconductance and photovoltaic performance compared to 

the TiO2 network without incorporating Au NPs. Ramen spectra confirmed that the TiO2 network 

was crystalized into single anatase phase after thermal annealing and achieved higher 

photoconductivity due to faster electron transport in the crystalline phase than the amorphous TiO2. 

Based on the correlation of the photoconductivity to the photovoltaic performance of the enhanced 

DSSC fabricated by the same Au@TiO2 network, a plausible explanation was proposed to 

discriminate the contribution of the hot electron injection from the SPR enhancement. Hot 

electrons excited from the Au NPs are converted into major charge carriers in the TiO2 network. 

The interfacial electron transfer across the Au/TiO2 Schottky barrier (~0.9 eV) can be easily 

realized under illumination over the whole visible range allowing extending the enhancement 

effect to the light in the near-infrared region where the photon energies is distinctly below the 

semiconductor band gap, Au SPR, and dye absorption band. The study might inspire future 

optoelectronic devices with smart designs to make better use of hot electrons and the associated 

interfacial electron transfer for outstanding performance. 
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Chapter 6 - Conclusion and Future Outlooks 

The goal of this dissertation was to tap into the fundamental energy/charge transfer 

properties of photosynthetic pigment-protein complexes, and develop plasmon-enhanced bio-

energy conversion system through a proper approach to interface them with PNPs in artificial 

photovoltaic devices. This goal has been achieved through the combined work presented in 

Chapter 3, 4 and 5 using a model system based on natural extract LHCII as light antenna in DSSCs. 

As part of this effort, Chapter 3 preliminarily verified the photovoltaic properties of LHCII 

in a thin layer sensitized TiO2 solar cell. Photocurrent generation was enabled by the electron 

injection from excited LHCII to TiO2 conduction band. The aggregation allowed reorganization 

between individual trimers, which dramatically increased the photocurrent, correlating well with 

the formation of Chl-Chl coupled charge-transfer states that are effectively coupled with the TiO2 

surface and thus facilitate the electron injection. The assembled LHCII sensitized solar cells 

demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 

days. 

In Chapter 4, LHCII trimers were conjugated with three types of metal@TiO2 core-shell 

PNPs to form LHCII-PNP hybrids. Enhanced photon harvesting capability and more efficient 

charge separation at the LHCII/TiO2 interface were demonstrated in the hybrids, as revealed by 

PIRET process, quenching of the steady-state fluorescence emission, and reduction of the transient 

fluorescence lifetime. Femtosecond transient absorption technique provides further conclusive 

proof for charge injection from excited LHCII into the conduction band of TiO2 shell of the PNPs. 

The plasmonic effect was also demonstrated by the enhanced photocurrent after incorporating the 

PNPs in the LHCII sensitized solar cells built on an open-structured three-dimensional 
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photoanode, i.e. vertically aligned TiO2 nanotree arrays, and was consistently supported by the 

spectroscopic results. 

Chapter 5 focuses on different plasmonic effects on the energy transfer and the charge 

separation in the synthesized Au@TiO2 network. The enhancements in photoconductance and 

photovoltaic performance were achieved by the Au@TiO2 network applied on the micro-gap 

electrode or the photoanode of DSSC, which can be ascribed to two aspects: 1) the promoted dye 

excitation by the near-field induced PIRET from Au NPs to dye molecules, 2) the increase of 

charge carrier density in the semiconductive TiO2 network due to the hot electron injection across 

the Schottky barrier at Au/TiO2 interface. The engagement of hot electrons excited from metal 

NPs allows extending the enhancement effect towards the near infrared region.  

So far, poor stability and low conversion efficiency prevent the biophotovoltaic devices 

from scaled-up manufacturing and competing with conventional systems. Future prospects include 

novel biosolar cells based on more efficient and robust photosynthetic protein complexes and 

development of biocompatible noncorrosive electrolytes. In addition, as mentioned before, 

perovskite materials have attracted a lot of attentions due to their superior performance in 

photovoltaics. Another future plan is to fabricate perovskite solar cells based on the 3D TiO2 

nanotree photoanode. The preliminary data and prospective scenario are depicted below. 
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 6.1 Water Soluble Chlorophyll-Binding Protein (WSCP) in DSSC 

 

Figure 6.1 Overall structure of the tetrameric LvWSCP. 

(A) The four monomers are shown in green, blue, purple and gray. The four Chls are shown 

in orange. (B) The geometry of two pairs of Chl dimers (i.e. Chl 1/2 and Chl 3/4). (Reprinted 

with permission from ref. 121 Copyright © 2016 The American Society of Photobiology) 

 

 

Figure 6.2 Absorption spectra of WSCP and LHCII in aqueous solution. 

(from Y. Yang et al. unpublished work). 

 

Figure 6.1 shows the molecular structure of water soluble chlorophyll-binding protein from 

Lepidium virginicum (LvWSCP) based on the 2 Å resolution crystal structure.138 Compared to 
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LHCII, WSCP has simpler structure that only provides high affinity for Chl pigments. Each 

complex binds four Chls (i.e. two pairs of Chls dimers) in the hydrophobic cavity of its tetramer 

with hydrophilic ligands on the periphery that make it soluble in aqueous environment.139 The 

absorption spectrum of WSCP in Figure 6.2 displays the characteristic Sorret and Q band 

absorptions of Chl a and Chl b similar to that of LHCII trimer. Since Chls are well protected and 

stabilized in the protein matrix, WSCP should be robust and appropriate for applications in bio-

photovoltaic devices. 

 

Figure 6.3 (A) IV curves and IPCE (B) IPCE spectra of the DSSCs based on WSCP, LHCII 

and the bare TiO2. 

(from Y. Yang et al. unpublished work) 

 

WSCP (provided by our collaborator Dr. Ryszard Jankowiak) was applied to sensitize the 

TiO2 nanotree anode as-prepared in Chapter 4, and assembled into the DSSC filled with iodolyte 

ionic liquid electrolyte (ADE-250, Solaronix, Switzerland). Based on the OD readings from Figure 

6.2, the stocks concentration of WSCP in aqueous solution is much lower than the LHCII trimer 

stocks solution that used for TiO2 sensitization in Chapter 4. However, both IV and IPCE tests in 

Figure 6.3 confirmed that the WSCP tetramers as light-harvesting antenna performed much better 

than the LHCII trimers in photocurrent generation of the corresponding sensitized solar cells.  
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 6.2 Non-aqueous and Aqueous Cobalt(II/III) Complex Electrolyte 

Even though iodide/triiodide (I /̄I3 )̄ was the most common choice of redox mediator to 

construct highly efficient DSSCs, some drawbacks of this redox couple, such as corrosiveness to 

most metallic electrodes/nanoparticles and a significant energy loss arising from the large driving 

force required for dye regeneration, trigger the motivation of exploitation of new redox 

mediators.140 CoII/III complexes have emerged as leading candidates to replace the I /̄I3  ̄ redox 

shuttle because of its compatibility with most metals, negligible visible light absorption, and 

tunable redox potential via tailored ligand designs to achieve efficient dye regeneration as well as 

maximum VOC.141 Cobalt(II/III) tris(2,2’-bipyridine) ([Co(bpy)3]
2+/3+) based redox electrolyte has 

demonstrated outstanding performance in corporation with a synthesized porphyrin dye, which 

achieved a record efficiency of 12.8% and VOC of 965 mV.142 This type of electrolytes is expected 

to coordinate well with most photosynthetic pigment-protein complexes which contain the nature 

porphyrin dye, chlorophyll, as major pigment to harvest sunlight for photosynthesis reactions. 

Depending on the ligands, the [Co(bpy)3]
2+/3+ redox couple can be applied in both non-aqueous 

(i.e. [Co(bpy)3]
2+/3+ (TFSI)2/3) and aqueous (i.e. [Co(bpy)3]

2+/3+ (NO3)2/3) electrolytes as the 

structure shown in Figure 6.4. 

 

Figure 6.4 The molecule structures of non-aqueous and aqueous Tris(2,2'-

bipyridine)cobalt(II/III) redox complexes. 
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 6.2.1 Synthesis of [Co(bpy)3]2+/3+ (TFSI)2/3 and [Co(bpy)3]2+/3+ (NO3)2/3 

The [Co(bpy)3]
2+/3+ TFSI for non-aqueous electrolyte was synthesized with the modified 

literature method.143 Briefly, one equivalent of CoCl2·6H2O was dissolved in a minimum amount 

of methanol and added dropwise with 3.3 equivalents of 2,2’-bipyridine in methanol under stirring 

and 60℃ heating, followed by a reflux for 2 hrs. Then to the filtrate solution an excess of lithium 

bis(trifluoromethane-sulfonyl)imide (LiTFSI) was added, and the solution was again refluxed for 

30 minutes and then cooling naturally to attain a crystalline brown yellow product. The product 

was filtered, washed several times with little amounts of diethyl ether-methanol mixed solution 

(1:1) and dried under vacuum at 60℃ overnight. The Co3+ complex was prepared by oxidization 

of the Co2+ complex, with 1.05 molar equivalent of methanolic bromine (NOBF4) added to 

acetonitrile solution of the as-prepared Co2+ complex. The solvent was removed by rotary 

evaporation. The solid was dissolved in acetonitrile again and added with 10 folds excess of 

LiTFSI to precipitate the product which was then filtered, washed with diethyl ether and water and 

dried under vacuum overnight.  

The water soluble [Co(bpy)3]
2+/3+ (NO3)2/3 was synthesized by the following method as 

reported before.144 One equivalent of Co(NO3)2·6H2O was dissolved in a minimum amount of 

deionized water and 3.3 equivalents of 2,2’-bipyridine dissolved in methanol were added dropwise. 

The solution was stirred at room temperature for 1 h and evaporated to remove the solvents. The 

product was rinsed with methanol and diethyl ether, and dried under vacuum for 24 h. Oxidation 

of the Co(II) complex was performed by adding a slight excess of AgNO3 to an acetonitrile solution 

of the complex. After stirring at room temperature for 2 hours, the Ag particles were filtered and 

the solvent was removed by rotary evaporation. The product was washed with methanol and dried 

under vacuum overnight.  
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 6.2.2 Performance of Non-Aqueous and Aqueous [Co(bpy)3]2+/3+ Electrolyte. 

The non-aqueous electrolyte compositions were as follows: 0.20 M [Co(bpy)3](TFSI)2, 

0.070 M [Co(bpy)3](TFSI)3, 1.0 M tert-butylpyridine (tBP), 0.05 M LiTFSI in acetonitrile. 

The aqueous electrolyte is composed of 0.20 M [Co(bpy)3](NO3)2, 0.040 M 

[Co(bpy)3](NO3)3, 0.70 M N-Methylbenzimidazole (NMBI). The mixture was heated to 60 ℃ for 

2 min to completely dissolve. 

 

Figure 6.5 Cyclic voltammetry (CV) of the electrolytes and LHCII. 

(A) CV of commercial I /̄I3  ̄electrolyte (AN 50) diluted in acetonitrile (ACN) (black wave), 

non-aqueous [Co(bpy)3]2+/3+ TFSI electrolyte, and aqueous [Co(bpy)3]2+/3+ NO3 electrolyte. 

The measurements were performed with use of Pt-sputtered FTO as working electrode, Pt 

foil as counter electrode, and Ag/AgCl as reference at a scan rate of 100 mV/s. (B) CV of 

LHCII in tricine buffer, measured with glassy carbon electrode as working electrode. The 

plots are relative to the normal hydrogen electrode (NHE). (from Y. Yang et al. unpublished 

work) 
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Figure 6.6 Energy level diagram of DSSC components. 

The redox potentials of the electrolytes and the oxidation potential of the Chl pigment are 

based on the peak potentials of the CV (plotted in Figure 6.5). (from Y. Yang et al. 

unpublished work) 

 

Figure 6.5A illustrates the electrochemical properties of the [Co(bpy)3]
2+/3+ complexes 

investigated by cyclic voltammetry (CV). A quasi-reversible redox reaction is observed at half-

wave redox potentials of E0 = +0.526 V and +0.374 V vs. NHE for [Co(bpy)3]
2+/3+ TFSI and 

[Co(bpy)3]
2+/3+ NO3, respectively. Compared with the two electron redox reaction of I /̄I3  ̄

electrolyte (black wave), [Co(bpy)3]
2+/3+ complexes perform one electron redox reaction with 

narrower peak separation, indicating a faster reaction kinetics. The oxidation potential (referred to 

HOMO level) of Chl pigment was determined at +0.970 V vs. NHE by the CV of LHCII (Figure 

6.5B). Figure 6.6 compares the redox potentials (vs. NHE) derived for I /̄I3 ,̄ two [Co(bpy)3]
2+/3+ 

complexes, and the HOMO LUMO levels of sensitizers N719, MK2 and Chl. The oxidation 

potentials of the two cobalt complexes locate higher than HOMO levels of all three sensitizers, 

indicating the suitability of the redox couples for dye regeneration. The DSSC using 

[Co(bpy)3]
2+/3+ TFSI might give larger VOC resulting from 172 mV higher in redox potential than 

I /̄I3  ̄(E1/2 = +0.354 V vs. NHE). 
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 6.3 Pervoskite Solar Cells 

The mixed halide perovskite CH3NH3PbI3-xClx was synthesized according to the reported 

method.24 Briefly,  PbCl2 and CH3NH3I was mixed with a molar ratio 1:3 and dissolved in DMF 

with the concentration of 0.73 M and 2.2 M, respectively. The mixture solution was stirred at 60 

℃ temperature overnight, and spin-coated on the pre-heated FTO coated glass at 2000 rpm for 30 

second. The sample coated substrate was then annealed on a hot plate at 95 ℃ for 1.5 hours. 

 

Figure 6.7 Morphology of the spin-coated perovskite film on FTO glass. 

(A-C) SEM images of the top and the cross-sectional views. Panel B shows the voids in the 

film under higher magnification. (from Y. Yang et al. unpublished work) 

Figure 6.7 shows SEM images of the top and the cross-sectional views of the perovskite 

layer deposited on FTO glass. The layer is about 300~500 nm thick, but not uniform with many 

voids exposing the uncovered FTO. For planar thin-film architecture, incomplete coverage of 

perovskite would lower the performance of the solar cells through current leaking from small shunt 

resistance paths and loss in light absorption.145 
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Figure 6.8 Schematic of the perovskite solar cell based on the 3D TiO2 nanotree photoanode. 

Based on previous studies, the pin-hole free perovskite “capping layer” can be prepared by 

drop-casting on the mesoporous Al2O3 or TiO2 support film.146-147 The support films were also 

confirmed to increase the VOC and alleviate the hysteresis in I-V measurements.146, 148 Hence, we 

consider to adopt the 3D TiO2 nanotree array in future perovskite solar cell study. The schematic 

scenario is illustrated in Figure 6.8. 
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Appendix A - Supplementary Information of Chapter 3 

 

Figure A.1 I-V curves of the solar cells sensitized at different concentrations of LHCII 

aggregates through physisorption on the anodes with a bare TiO2 thin layer (100~300 nm) 

without APTES modification. 

Increasing the concentration of the LHCII aggregate solution by ~8 folds (shown with 

increased optical density) did not have much effect on the photocurrent of the solar cell, 

indicating that the physisorption of LHCII on bare TiO2 was quite weak. (Reprinted with 

permission from supplementary information Y. Yang, R. Jankowiak, C. Lin, K. Pawlak, M. 

Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 20856-20865.) 
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Figure A.2 UV-Vis absorption of the chlorophylls pigment extracted from LHCII aggregates 

in the solution before (solid line) and after (dashed line) being injected into the solar cell. 

Pigment extraction and chlorophyll content calculation follows the method described in the 

experimental section of main text. Before injecting into the solar cell, the concentration of 

LHCII solution was 0.296 µg Chl/mL, which was reduced to 0.016 µg Chl/mL after 

incubating in the cell over 12 hrs. The lost LHCII was assumed to be adsorbed in the solar 

cell. The attachment efficiency (ƞ𝒂𝒕𝒕𝒂𝒄𝒉) can be calculated to be about 95% by ƞ𝒂𝒕𝒕𝒂𝒄𝒉 = 𝟏 −
𝑪𝒂𝒇𝒕𝒆𝒓/𝑪𝒃𝒆𝒇𝒐𝒓𝒆. (Reprinted with permission from supplementary information Y. Yang, R. 

Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. 

Phys., 2014, 16, 20856-20865.) 
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Figure A.3 (A) I-V curve of a solar cell based on a bare sintered TiO2 nanoparticle film (~10 

µm in thickness). (B) I-V curves of the solar cells built on bare APTES-FTO without the TiO2 

barrier layer, before and after sensitized with the small LHCII aggregates.

(Reprinted with permission from supplementary information Y. Yang, R. Jankowiak, C. 

Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 

20856-20865.) 
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Figure A.4 (A) I-V curves and (B) photocurrent response plots of bare and small LHCII 

aggregate sensitized TiO2 solar cells with an ionic liquid electrolyte (Mosalyte ADE-250, 

Solaronix). 

(Reprinted with permission from supplementary information Y. Yang, R. Jankowiak, C. 

Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 

20856-20865.) 

 

 

 

 

 

 

 

 

 

 



117 

 

Figure A.5 Raw data of photocurrent response curves of an APTES-TiO2 solar cell before 

and after being sensitized with small-size LHCII aggregates under one-Sun illumination. 

(Reprinted with permission from supplementary information Y. Yang, R. Jankowiak, C. 

Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. Phys., 2014, 16, 

20856-20865.) 

 

Normalization for all photocurrent response curves in Figure 3.7 in Chapter 3 is based on the 

equation below: 

𝐽𝑁 =
𝐽𝐿𝑆𝑆𝐶 − 𝐽𝑇𝑖𝑂2

(𝐽𝑜𝑛_𝑇𝑖𝑂2
)𝑎𝑣𝑔.

 

𝐽𝑁 — Normalized current density of LSSC 

𝐽𝐿𝑆𝑆𝐶  — Raw current density of LHCII-sensitized solar cell (LSSC) (red line in Fig. A.5) 

𝐽𝑇𝑖𝑂2
 — Raw current density of bare APTES-TiO2 solar cell (black line in Fig. A.5) 

(𝐽𝑜𝑛_𝑇𝑖𝑂2
)𝑎𝑣𝑔.— Average of photocurrent density obtained from bare APTES-TiO2 solar cell under 

illumination (blue dash circle regions shown in Fig. A.5)  
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Figure A.6 Stability of Chlorophyll Sensitized Solar Cell. 

(A) The time dependence of the I-V curves of a Chls sensitized TiO2 solar cell after cell 

assembling (molar ratio of Chl a : Chl b = 8:6). (B) The changes of Jsc and Voc obtained from 

the I-V curves in (A). The value of Jsc dropped particularly fast. (C) Photocurrent responses 

of Chl a sensitized solar cell under the illumination with the interference bandpass filter at a 

wavelength of 67525 nm (covering the Qy region), measured during 5 days (120 hrs) after 

cell assembly. (Reprinted with permission from supplementary information Y. Yang, R. 

Jankowiak, C. Lin, K. Pawlak, M. Reus, A. R. Holzwarthb and J. Li, Phys. Chem. Chem. 

Phys., 2014, 16, 20856-20865.) 
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Appendix B - Supplementary Information of Chapter 4 

 

Figure B.1 HRTEM of the core-shell plasmonic nanoparticles (PNPs): AgNS@TiO2, 

AuNS@TiO2 and AgNP@TiO2 (side view of the nanoplate). 

The scale bars are 10 nm. The TiO2 shells were 2~3 nm as highlighted with red dash lines. 

(Reprinted with permission from supplementary information Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

 

 

Table B.1 Parameters of the plasmonic nanoparticles (based on TEM images and ICP-AES 

results). 

Nanoparticles 
Dimension 

(nm) 

Metal Mass 

Concentration 

(g/mL) 

Particle 

Concentration 

(NPs/mL) 

Particle 

Surface area 

(cm2/mL) 

AgNS@TiO2 ∅23.4±2.5 3.9×10-5 4×1011 3.6 

AuNS@TiO2 ∅22.0±1.6 3.0×10-5 1.2×1011 3.9 

AgNP@TiO2 
∅27.3±10 

H5.6±0.9 
2.5×10-5 1.3×1012 3.5 
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Figure B.2 The optical absorption spectra of LHCII trimers dispersed in solution (black) and 

the same amount of LHCII trimers attached to APTES-treated TiO2 NPs suspended in 

aqueous solution (Cyan). 

The cyan curve was subjected to the background correction (to subtract the absorption by 

TiO2 NPs) to remove the strong scattering from TiO2 particles. (Reprinted with permission 

from supplementary information Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, 

Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 
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Figure B.3 Peak intensity of the fluorescence emissions of LHCII and LHCII-PNP hybrids 

excited at four different wavelengths. All emission peaks were at 683 nm. 

(Reprinted with permission from supplementary information Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 
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Figure B.4 Absorption spectra of the chemically oxidized LHCII. 

(a) Spectral changes observed during increased addition of nitrosonium tetrafluoroborate 

(NTFB) to an aqueous solution of LHCII. The black curve is the absorption spectrum of 

neutral LHCII. The colored curves are the absorption spectra of oxidized LHCII, showing 

larger decrease of Chl Soret band absorption as more NTFB was added (following the 

direction of the red arrow). (b) Differential spectra (A = Abs(oxidized) - Abs(neutral)) 

generated to visualize the spectral features of the oxidized LHCII species (positive peaks). 

(Reprinted with permission from supplementary information Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 
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Figure B.5 Femtosecond transient absorption spectra at the indicated delay time. 

(A) LHCII, (B) LHCII-AgNS@TiO2, (C) LHCII-AuNS@TiO2, and (D) LHCII-AgNP@TiO2 

in Ar-saturated water. (Reprinted with permission from supplementary information Y. 

Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 

10.1002/admi.201600371) 
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Figure B.6 Time profiles of the peak absorption at 680 nm (top panels) and 535 nm (bottom 

panels). 

Notation: (a and b) LHCII and LHCII-TiO2, (c and d) LHCII and LHCII-AgNS@TiO2, (e 

and f) LHCII and LHCII-AuNS@TiO2, and (g and h) LHCII and LHCII-AgNP@TiO2 in 

Ar-saturated water. The LHCII time profiles are shown in navy blue. (Reprinted with 

permission from supplementary information Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak 

and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 
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Figure B.7 UV-Vis absorption of the chlorophylls pigment extracted from the LHCII trimers 

adsorbed on TiO2 nanotree photoanodes with and without APTES functionalization. 

The pigment extraction followed the method described in our previous paper.107 The 

adsorbed LHCII trimers in units of equivalent Chls was calculated using the absorbance at 

646.6 nm and 663.6 nm based on the equation: Chls(𝒂 + 𝒃) = 𝟏𝟕. 𝟔𝑨𝟔𝟒𝟔.𝟔 + 𝟕. 𝟑𝟒𝑨𝟔𝟔𝟑.𝟔.91 

(Reprinted with permission from supplementary information Y. Yang, H. Gobeze, F. 

D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, DOI: 10.1002/admi.201600371) 

 

 

  



126 

Table B.2 The characteristic values of the LHCII-sensitized solar cells with and without 

PNPs incorporated. 

Solar cells 
Jsc 

(µA/cm2) 
Voc (V) FF ƞ% 

IPCE@665 

nm 

TiO2 nanotrees 102±19 0.404±0.027 0.612±0.042 0.026±0.008 0±0.000 

LHCII 135±12 0.443±0.018 0.622±0.067 0.037±0.005 0.023±0.002 

LHCII-

AgNS@TiO2 
201±3 0.459±0.039 0.629±0.067 0.058±0.010 0.048±0.002 

LHCII- AuNS@ 

TiO2 
173±9 0.450±0.018 0.581±0.058 0.045±0.004 0.035±0.003 

LHCII-

AgNP@TiO2 
208±11 0.435±0.010 0.587±0.040 0.053±0.004 0.044±0.004 
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Figure B.8 The standard solar spectra. 

(A) The standard solar spectra (from 

http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html). The 1 sun 

AM1.5G standard is represented by the red curve. (B) The presentation of the AM1.5G 

spectrum in intensity with the unit of W/(m2nm) (blue line) and number of photons with the 

unit of s−1m−2nm−1 (black line). (Reprinted with permission from supplementary 

information Y. Yang, H. Gobeze, F. D’Souza, R. Jankowiak and J. Li, Adv. Mater. Interfaces, 

DOI: 10.1002/admi.201600371) 
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