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Abstract

Mobile apps provide various critical services, such as banking, communication, and

healthcare. To this end, they have access to our personal information and have the ability

to perform actions on our behalf. Hence, securing mobile apps is crucial to ensuring the

privacy and safety of its users.

Recent research efforts have focused on developing solutions to help secure mobile ecosys-

tems (i.e., app platforms, apps, and app stores), specifically in the context of detecting vul-

nerabilities in Android apps. Despite this attention, known vulnerabilities are often found

in mobile apps, which can be exploited by malicious apps to cause harm to the user. Fur-

ther, fixing vulnerabilities after developing an app has downsides in terms of time, resources,

user inconvenience, and information loss. Consequently, there is scope to explore alternative

approaches that will help developers construct secure mobile apps.

Since Android and the apps that run on it are most readily available and widely used,

this dissertation investigates mobile app security and solutions to secure mobile apps in the

context of Android apps in two ways: (1) systematically catalog vulnerabilities known to

occur in Android apps in a benchmark suite with desirable characteristics called Ghera.

Ghera facilitates the continuous and rigorous evaluation of Android app security analysis

tools and techniques, and (2) extend existing mobile app design artifacts such as storyboards

to enable a mobile app development methodology called SeMA. SeMA considers security as

a first-class citizen of an app’s design and shows that many known vulnerabilities can be

detected and eliminated while constructing an app’s storyboard. A realization of SeMA using

Android Studio tooling can prevent 49 of the 60 vulnerabilities known to occur in Android

apps. A usability study with ten real-world developers using the methodology shows that

the methodology is likely to help reduce development time and uncover vulnerabilities in an

app’s design.
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to Dr. Christer B. Aakeröy for providing me with an opportunity to work on a tangential

line of research with his students. His encouragement and support through these years have

helped me overcome numerous obstacles.

I would especially like to thank my partner, Dr. Nandini Sarkar, for supporting me in

every way possible and providing me with numerous opportunities to collaborate with her

on exciting research projects. We have grown together on this journey.

xix



My parents have been a pillar of strength. Without their support and encouragement,

this journey would not have been possible. I will be forever indebted to them for providing

me with an environment to pursue my dreams.

My closest friends, Dr. Satyasikha Chakraborty and Vishal Kamath have profoundly

impacted life. Without their unique perspectives, life would have been dull and boring.

Finally, I wish to thank my late uncle Dr. Bireswar Bose for providing me with the means

to pursue higher education.

xx



Dedication

To my parents and late grandmothers – Debjani, Subrato, Leela, and Minati !

For their love and belief in me ...

xxi



Preface

Research carried out at Kansas State University for this dissertation has led to the

following publications:

• Mitra, J., Ranganath, V. 2017. Ghera: A Repository of Android App Vulnerability

Benchmarks. In Proceedings of the 13th International Conference on Predictive Models

and Data Analytics in Software Engineering (PROMISE). Association for Computing

Machinery. DOI:https://doi.org/10.1145/3127005.3127010.

• Ranganath, V., Mitra, J. Are free Android app security analysis tools effective in

detecting known vulnerabilities?. Empir Software Eng 25, 178–219 (2020).

DOI:https://doi.org/10.1007/s10664-019-09749-y.

• Mitra, J., Ranganath, V. and Narkar, A. ”BenchPress: Analyzing Android App Vul-

nerability Benchmark Suites,” 2019 34th IEEE/ACM International Conference on Au-

tomated Software Engineering Workshop (ASEW), San Diego, CA, USA, 2019, pp.

13-18, DOI: 10.1109/ASEW.2019.00020.

• Mitra, J., Ranganath, V. ”SeMA: A Design Methodology for Building Secure An-

droid Apps,” 2019 34th IEEE/ACM International Conference on Automated Soft-

ware Engineering Workshop (ASEW), San Diego, CA, USA, 2019, pp. 19-22, doi:

10.1109/ASEW.2019.00021.

xxii



Chapter 1

Introduction

1.1 Motivation

Since the release of Android in 2008, it has exploded on the smartphone market. Today,

Android runs on more than 85% of the worlds’ smartphones [1]. The official app store for

Android apps has 2.9 million apps [2]. These apps have become an integral part of our lives.

We use them to perform critical tasks such as banking, communication, and entertainment.

Consequently, apps need access to our personal information.

Given the ubiquity of the Android ecosystem (device + platform + apps), it is crucial

to ensure that the ecosystem is safe and secure. The Open Handset Alliance (OHA), a

consortium of 84 companies including Google and Samsung, is primarily responsible for

developing and maintaining the Android platform [3]. The consortium is well equipped

to manage platform and device security, as can be seen from the decreasing number of

vulnerabilities in Android (see Figure 1.1), given its access to a large pool of resources.

However, the responsibility to secure apps is shared by app stores and app developers.

While app stores focus on keeping malicious apps out of the ecosystem, they still enter the

ecosystem due to a variety of reasons such as installation from untrusted sources, inability to

detect malicious behavior in apps, and access to malicious websites. Hence, there is a need

for app developers to secure their apps such that malicious apps cannot exploit their apps to
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Figure 1.1: Year-wise distribution of vulnerabilities discovered in Android

cause harm to users.

There are approximately 724K Android app developers who contribute apps to Google

Play as of January 2017 [4]. Such a large number of app developers indicate that the

entry barriers to developing an Android app are low, and the incentives are high. Further,

Android apps are often made by junior developers who lack awareness about security-related

issues or small teams who often work in time- and resource-constrained environments [5, 6].

When developing apps, developers have to deal with numerous aspects, such as requirements

elicitation, design, implementation, testing, and security. Due to the nature of app developers

and app development teams, security-related aspects do not receive enough attention.

Consequently, apps are often found to be vulnerable. In 2018, an industrial study of 17

fully functional Android apps discovered that all the apps had vulnerabilities [7]. 43% of

the vulnerabilities were classified as high risk, and 60% of them were on the client-side (see

Figure 1.2). In 2019, a vulnerability in Google’s camera app allowed a malicious app without

required permissions to gain full control of the camera app and access the photos and videos

stored by the camera app [8]. A recent study showed that approximately 11% of 2,000 An-

droid apps collected from a couple of app stores, including Google Play, are vulnerable to

Man-In-The-Middle (MITM) and phishing attacks [9]. Further, I helped discover a vulnera-

bility in numerous real-world apps (e.g., the GMail app on Android) that allowed a malicious

app to exploit the vulnerability and carry out phishing and denial-of-service attacks on those
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Figure 1.2: Vulnerabilities found in Android and iOS apps in 2019

apps [10]. The presence of high-risk vulnerabilities in Android apps suggests that app de-

velopers need help to ensure the security of their apps. Hence, in recent years, researchers

have focused on developing tools and techniques to help developers identify vulnerabilities

in their apps. These efforts are based on two approaches.

The first approach is to detect vulnerabilities in Android apps statically (i.e., without

executing the app). For example, tools like CHEX [11], ComDroid [12], and Iccta [13] were

amongst the first efforts to statically analyze Android apps to detect communication-related

(ICC) vulnerabilities. Other work by Sadeghi proposed COVERT to statically analyze mul-

tiple apps to identify vulnerabilities that enable collusion attacks [14]. Another line of work

related to this approach is to analyze the permissions used by an app and detect vulnerabili-

ties related to permission over-use [15–17]. A more recent effort in this space is to use static

taint analysis to track data flows that result in leaking sensitive information [18]. Tools

such as FlowDroid [19] and AmanDroid [20] are the most well-known efforts that use this

technique.

The second approach is to detect vulnerabilities dynamically (i.e., monitor an app during

execution) [21]. Tools such as TaintDroid [22], DroidScope [23], and AppsPlayGround [24]

were one of the earliest efforts in this space. They use dynamic taint analysis to monitor

an app at runtime to detect data flows that lead to sensitive data leak. Most current

work in securing Android apps have used static analysis techniques as opposed to dynamic

analysis methods. One reason for this lopsided distribution is that performing dynamic
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analysis in Android is quite challenging due to Android’s managed resources, binder-based

inter-component communication, event triggers, and the fast-evolving Android runtime. On

the other hand, static analysis of Android apps is comparatively more straightforward since

Android apps are distributed as a Dalvik executable (DEX), which is similar to Java bytecode

and static analysis of Java bytecode is a well-explored area of research [25].

While existing approaches to secure Android apps detect implementation bugs that cause

vulnerabilities in an app, they do not help avoid or prevent flaws in an app’s design that

lead to security vulnerabilities in an app’s implementation. As a result, many vulnerabilities

are either not detected or detected after implementing an app. For example, an app storing

data in the device in which it is installed is a data leak vulnerability depending on where the

data is stored in the device and/or the nature of the stored data (e.g., personal identifiable

information). Existing tools and techniques focused on detecting bugs in implementation

are unable to detect such vulnerabilities with precision since they often lack contextual

information about the app’s requirements. Consequently, recent efforts have advocated for

secure by design approaches to software development to help build secure software from

the ground up [26]. Secure by design is a relatively recent development approach which

advocates baking in security desiderata into an app’s design. The design is then used as a

basis for further development. In early 2014, the IEEE Computer Society Center for Secure

Design emphasized the need to shift the focus in security from finding implementation bugs

to identifying common software design flaws [27]. To this end, they outlined a list of the top

security design flaws to help developers and designers learn from previous mistakes and avoid

them during development. In spite of the growing call to integrate secure by design approach

within the software development process, the existing mobile app development methodology

does not enable it.

Secure by design has gained even more traction in light of recent legislation to protect

personal information such as the General Data Protection Regulation (GDPR) [28] laws

passed by the European Union in 2018. GDPR requires software, including mobile apps, to

explicitly acquire user consent before collecting personal information. Further, it requires

apps to provide users control of their data even after giving consent (e.g., right to forget).

4



Hence, app developers have been forced to review how they collect and manage their users’

data. However, the prevalent app development approach does not encourage app developers

to proactively create apps that are GDPR compliant since developers are not required to

consider security properties (e.g., privacy) while designing an app [28, 29]. Consequently,

app development teams with access to fewer resources struggle to comply with rules and

regulations aimed at preserving user privacy [30].

In this context, the goal of this dissertation is two fold – (1) Explore and understand the

vulnerabilities that occur in Android apps and (2) develop an app development methodology

that bakes security into an app’s design. However, before developing such a methodology this

dissertation establishes its need by showing that the current prevalent approach to Android

app development is not effective in securing Android apps.

1.2 Contributions

This dissertation focuses on developing a solution to construct secure mobile apps and stan-

dards to evaluate such solutions. Specifically, this dissertation makes the following contri-

butions in the context of Android app security:

• Systematize known Android app vulnerabilities. Current research efforts related to An-

droid app vulnerabilities have focused on identifying and detecting specific vulnerabil-

ities that occur in Android apps. However, there has been no effort to systematically

and comprehensively identify known Android app vulnerabilities. As a solution, 60

vulnerabilities known to plague Android apps were collected and cataloged in an infor-

mative and comprehensive repository, called Ghera, to enable rigorous and reproducible

evaluation of vulnerability detection tools and techniques.

Ghera is publicly available at

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/

src/master/. Ghera has helped discover vulnerabilities in Android [10, 31]. The vul-

nerabilities in Ghera have been used to develop tools that can be used to identify

5

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/master/
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/master/


vulnerabilities in real-world apps [32, 33]. Ghera has influenced the development of

other benchmark repositories related to Android app vulnerabilities [34, 35] and other

aspects such as data loss bugs [36].

In general, Ghera can be used by app developers and security researchers to under-

stand the vulnerabilities that occur in Android apps, and as standards/benchmarks to

evaluate solutions designed to help secure Android apps.

• Characterize and assess Android app vulnerability benchmarks. In recent years, var-

ious benchmark suites have been developed to evaluate the effectiveness of Android

security analysis tools. The choice of such benchmark suites used in tool evaluations is

often based on the availability and popularity of suites due to the lack of information

about their characteristics and relevance. Hence, to facilitate the choice of appropri-

ate benchmark suites for tool evaluation, characteristics were developed to assess the

various aspects of Android app vulnerability benchmarks.

One such aspect is representativeness of benchmarks in terms of vulnerabilities found in

real-world apps. Evaluations based on representative benchmarks help determine the

usefulness and relevance of the tools and techniques being measured. This dissertation

introduces a notion of representativeness based on API usage and uses it to evaluate

the representativenss of benchmark suites.

The software artefacts used to assess the benchmark suites and required to reproduce

the results of evaluating the bencmarks are publicly available at https://bitbucket.

org/secure-it-i/workspace/projects/BENCHPRESS.

• Develop an evaluation methodology for continuous and rigorous assessment of Android

app security solutions. Numerous tools have been developed to detect specific vulner-

abilities in Android apps. However, there is no effort to comprehensively evaluate the

effectiveness of these solutions to detect known Android app vulnerabilities. Therefore,

this dissertation considers 64 Android app security solutions and empirically evaluates

the effectiveness of 14 Android app vulnerability detection tools in detecting the vulner-
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abilities captured in the Ghera benchmark suite.

Detailed information about the considered tools along with the raw outputs pro-

duced by the evaluated tools are publicly available in a repository to facilitate repro-

ducibility (https://bitbucket.org/secure-it-i/evaluate-representativeness/

src/master/).

• Develop a design methodology to help construct secure mobile apps. The current preva-

lent approach to mobile app security is identifying and fixing vulnerabilities after

apps have been developed. This approach has downsides in terms of time, resources,

user inconvenience, and information loss. As an alternative, this dissertation pro-

poses SeMA – a design-based mobile app development methodology aimed at prevent-

ing the creation of vulnerabilities in mobile apps. SeMA enables app designers and

developers to iteratively reason about an app’s security by using its storyboard, an

existing and prevalent design artifact, and generate an extensible app implementa-

tion from the storyboard. SeMA has been realized in Android Studio, the official

IDE for Android app development, and is available in a publicly accessible repository

(https://bitbucket.org/secure-it-i/sema/src/master/).

While the current realization of SeMA can be used to develop Android apps, SeMA

applies to software development in general since its principles are based on Model-

Driven Development (MDD), a well-established software development methodology

[37]. Hence, the concepts in SeMA can be extrapolated to enable the specification of

domain-specific software behavior and verification of security properties using design

artifacts specific to the domain.

• Develop a formal specification of mobile app storyboards. Mobile app storyboarding is

a common design technique used to design an app’s user observed behavior. SeMA

extends a traditional storyboard’s capabilities to facilitate the specification of an app’s

behavior (not specific to user observed) and reasoning about security properties at the

storyboard phase of app development. This dissertation develops a formalization of
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the storyboard language in SeMA and the underlying security analysis. The formaliza-

tion is accompanied by proofs that establish the safety and progress properties of the

language’s semantics, and the correctness of the analysis. Interested users of SeMA

can use the formalization to understand the behavior of an app specified using the

capabilities in SeMA. Further, the formalization can serve as a foundation to realize

SeMA, different from the current realization, in Android or other platforms (e.g., iOS).

1.3 Organization

The dissertation is organized as follows. Chapter 2 describes a repository of Android app

vulnerability benchmarks along with the design choices that went into developing the bench-

marks. This chapter also defines the characteristics of vulnerability benchmarks in general

and the reasons for them. Chapter 3 describes the notion of representativeness, a character-

istic of vulnerability benchmarks, and explains why it is necessary for effective evaluations

based on the benchmarks. It further uses this notion to measure the representativeness of

four benchmark suites widely used to evaluate Android app security tools and techniques.

Chapter 4 explores the existing solutions and approaches in the space of vulnerability detec-

tion in Android apps by empirically evaluating the effectiveness of 14 state-of-the-art tools

in detecting the vulnerabilities in Ghera. Based on the results, this chapter argues for an

alternative approach to securing Android apps. Chapter 5 describes a design methodology,

called SeMA, to help develop secure mobile apps, with emphasis on Android apps. Further-

more, this chapter also presents the results of a feasibility and usability study conducted to

evaluate SeMA. The final chapter summarizes the dissertation along with future directions

of research.
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Chapter 2

Ghera: A Repository of Android App

Vulnerability Benchmarks

2.1 Motivation

The current approach to secure Android apps is to develop tools that can be used to detect

vulnerabilities that can be exploited to carry out malicious actions such as data theft [11,

12, 20, 22]. However, this approach is useful only if developers trust the verdicts of the tools.

One way to ensure the effectiveness of such tools is to evaluate them against a common

baseline in a rigorous and reproducible manner. Rigorous means that the verdict of a tool

and the reasons for the verdict can be verified. Reproducible, in this context, means that

the results of a tool evaluation can be verified by repeating the same evaluation.

A common baseline enables fair and comparable evaluation. A fair evaluation means

that the evaluation is not biased towards a particular tool or technique. A comparable

evaluation means that the results can be compared across tools and techniques since the

common baseline controls the variation across the subjects of the evaluation.

Another approach to securing Android apps is to build awareness among developers

about Android app vulnerabilities. Extensive documentation and guidelines about Android

app security best practices by Google [38] and other organizations such as OWASP enable
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developer awareness [39, 40]. Despite the availability of such resources, vulnerabilities still

occur in Android apps [7], which suggests that developers are still unaware of how to develop

secure apps and the benefits of developing secure apps. One solution to improve developer

awareness is to create and maintain a repository of apps with known vulnerabilities. Such a

catalog will help illustrate to a developer the different ways in which vulnerabilities manifest

in an app. This observation is supported by numerous studies that have identified that

developers are not provided with adequate support to develop secure applications [6, 41].

Moreover, existing research efforts have focused on developing tools and techniques to

uncover vulnerabilities in Android apps. However, there is no single benchmark repository

that systematically catalogs known Android app vulnerabilities in a tool and technique

agnostic way.

Motivated by the observations about the current state, I have developed an open Android

app vulnerability benchmark suite called Ghera. Currently, Ghera has 60 benchmarks. While

creating Ghera, I found little guidance for creating benchmarks. Hence, in addition to

creating Ghera, I identified desirable characteristics of vulnerability benchmarks. These

characteristics apply to benchmarks in the context of Android app vulnerabilities but also

apply to benchmarks in general.

2.2 What is Ghera?

Ghera is an open repository of Android app vulnerability benchmarks, where each bench-

mark contains a unique vulnerability. Ghera was developed because of a need to capture

vulnerabilities that occur in Android apps in a tool/technique agnostic, easy-to-use, well

documented, and comprehensive manner.

2.2.1 Design Choices

The benchmarks in Ghera are divided into categories based on the features used in the bench-

marks. This categorization is useful for managing the repository. The features/capabilities
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used in the benchmarks were selected from the features commonly used by Android apps

and discussed in Android security related resources. Almost every Android app uses one of

the following:

• Perform cryptography related operations.

• Communicate with components in apps installed on the device.

• Use networking services (e.g., sockets).

• Use third-party libraries.

• Store data on and retrieve data from the device.

• Interact with the Android platform.

• Use web services.

Based on these capabilities, the benchmarks in Ghera belong to 8 categories – Crypto,

Inter-Component Communication (ICC), Networking, NonAPI, Permission, Storage, Sys-

tem, and Web. In each category, I studied the relevant APIs. To identify the APIs pertinent

to a potential vulnerability, I explored research efforts related to Android security, stack over-

flow discussions, Android source code (AOSP), and publicly disclosed vulnerability reports

available at the Common Vulnerability Exposure (CVE) [42] and National Vulnerability

Database (NVD) [43]. Discovering the relevant APIs from these sources is challenging due

to the lack of detailed information about reproducing and exploiting the vulnerabilities re-

lated to the APIs. For example, Figure 2.1 shows a sample vulnerability report in CVE. The

report provides a one line description of a complex vulnerability in an Android app with

additional references. The description is not enough to understand the cause of the vulnera-

bility, its manifestation in the app, or its exploitability. Further, the references provided do

not add to the already provided information.

When I uncovered a vulnerability related to an API, I created a benign app with the API

to capture the vulnerability because of the API. Further, I created a malicious app to exploit
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Figure 2.1: An Android App Vulnerability Report from CVE

the vulnerability and a secure app without the vulnerability. All three apps are known as a

benchmark. I verified the presence of the vulnerability in the benign app by executing the

malicious app with the benign app across Android versions 4.4 - 8.1. Similarly, I verified the

absence of the vulnerability in the secure app by executing the malicious app in the secure

app across Android versions 4.4 - 8.1 1. To enable easy reproducibility, I created a test app

to automatically verify the presence and absence of a vulnerability in the benchmark.

The name of each benchmark is of the form P Q, where P is the feature that causes the

vulnerability and Q is the feature that exploits the vulnerability. Based on the features used

in the benchmark, the benchmark is assigned one of the eight categories mentioned before.

2.2.2 Structure and Content

The repository contains top-level folders corresponding to various categories of vulnerabil-

ities: Crypto, ICC, Networking, NonAPI, Permission, Storage, System, and Web. These

1At the time of development Android 8.1 was the most recent version. Today, Android 6.0 - Android 10.0
are supported.
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top-level folders are known as category folders. Each category folder contains subfolders cor-

responding to different benchmarks. These subfolders are called benchmark folders. Each

category folder also contains a README file that briefly describes each benchmark in the

category.

There is one-to-one correspondence between benchmark folders and benchmarks. Each

benchmark folder is named as P Q, where P is the specific feature that causes a vulnerability

of interest and Q is the exploit enabled by the vulnerability. Each benchmark folder contains

4 app folders:

• Benign folder contains the source code of an app that uses feature P to exhibit a

vulnerability,

• Malicious folder contains the source code of an app that exploits the vulnerability

exhibited by the app in the Benign folder,

• Secure folder contains the source code of an app that uses feature P′ to prevent the

vulnerability in the Benign app, and

• Testing folder contains the source code of a test app that can be used to automatically

verify the presence of the vulnerability in Benign and the absence of the vulnerability

in Secure.

In addition to source code, each app folder has a pre-built apk distribution2 that can run

on Android versions 5.1 - 8.1.

A README file in each benchmark folder summarizes the benchmark, describes the

contained vulnerability and the corresponding exploit, provides instructions to build the

Benign, Malicious, and Secure apps (refer to Section 2.2.3), and lists the versions of Android

on which the benchmark has been tested.

In case of Web category and some benchmarks in the Networking category, benchmark

folders do not contain a Malicious folder in them because the captured vulnerabilities can be

2Android apps are packaged and distributed as apk files.
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Figure 2.2: A distribution of the benchmarks in Ghera

exploited by Man-in-the-Middle (MitM) attacks. This requires a web server that the Benign

apps can connect to. Consequently, code and instructions to set up local web server are

provided in a top-level folder named Misc/LocalServer. README file of each Benign app

contain instructions to configure the app to talk to the local web server. As for the MitM

attack in this set up, the users are free to choose how to mount such an attack. Benchmarks

in the NonAPI category rely on third party libraries. Hence, these benchmarks contain an

additional folder called Library that contains the third-party library.

Currently, the repository contains 60 benchmarks. A distribution of the benchmarks

is shown in Figure 2.2. The ICC category followed by the Web category have the highest

number of benchmarks and the Permission and NonAPI categories have the least number of

benchmarks.

14



2.2.3 Workflow

A typical workflow for using a Ghera benchmark inolves the following steps:

1. Start an emulator or device.

2. Build and install Benign, Malicious, and Secure apps.

3. In the emulator or device, launch the Benign and Malicious app, as per the instructions

provided.

4. If the Malicious app successfully exploits the Benign app, then a message will be

displayed.

5. In the emulator or device, launch the Secure and Malicious app, as per the instructions

provided.

6. If the Malicious app fails to exploit the Secure app, then a message will be displayed.

A user can perform the above steps manually or use the automated test provided with

the benchmark to reproduce the contained vulnerability automatically.

An example of commands needed to use a benchmark is available at:

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/master/

ICC/DynamicRegBroadcastReceiver-UnrestrictedAccess-Lean/.

2.3 Desirable Characteristics of Vulnerability Bench-

marks

2.3.1 Context

When looking for benchmarks to evaluate tools aimed at securing Android apps, I could

not find any common baseline which could be used to evaluate the tools in a rigorous and

reproducible manner. Most existing tool evaluations used real-world apps from app markets
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such as Google Play, which lacked authentic information about the presence of vulnerabil-

ities. Some tool evaluations were based on small examples with vulnerabilities that were

constructed by the tool developers. However, all the examples were geared towards a par-

ticular technique and did not explicitly capture known vulnerabilities. Hence, I started

collecting and cataloging Android app vulnerabilities in an informative and open reposi-

tory of benchmarks to enable fair evaluation of tools and techniques related to Android app

security.

While developing the benchmarks, I searched for best practices and guidelines to create

benchmarks. To my surprise, while there were numerous benchmarks, there was hardly

any information about the characteristics or traits of useful benchmarks. Therefore, after

collecting and cataloging 25 vulnerabilities in benchmarks, I did a retrospection and identified

the characteristics of the benchmarks that I had created along with the reasons for those

characteristics.

2.3.2 Vulnerability Benchmark Characteristics

This section describes the characteristics of vulnerability benchmarks that I identified along

with how they were influenced by related work in the space of detecting Android app vul-

nerabilities.

Tool and Technique Agnostic. The benchmark is agnostic to tools and techniques and

how they detect vulnerabilities. This characteristic enables the use of benchmarks for fair

evaluation and comparison of tools and techniques.

Existing benchmarks capturing Android app vulnerabilities are not tool and technique

agnostic. For instance, DroidBench [19], one of the first benchmark suites created in the

context of efforts focused on detecting vulnerabilities in Android apps, is tailored to evaluate

the effectiveness of taint analysis tools to detect information leaks in Android apps. So,

the benchmarks are geared towards testing the influence of various program structures and

various aspects of static analysis (e.g., field sensitivity, trade-offs in access-path lengths) on

the effectiveness of taint analysis to detect information leaks (vulnerabilities). Further, it is
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unclear if program structures considered in the benchmarks reflect program structures that

enable vulnerabilities in real world apps or program structures that push the limits of static

analysis techniques.

In contrast, repositories such as AndroZoo [44] and PlayDrone [45] provide real-world

Android apps available in various app stores. Further, the selection of apps is indepen-

dent of their intended use by any specific tool or technique. Hence, any vulnerable apps

(benchmarks) in these repositories are tool and technique agnostic.

Authentic. The benchmark provides verifiable evidence of capturing a vulnerability. Au-

thentic benchmarks can be used as ground truths when evaluating the accuracy of tools and

techniques.

To appreciate this characteristic, consider the evaluation of the tool MalloDroid [46], a

tool to detect potential Man-In-The-Middle (MITM) vulnerabilities due to improper man-

agement of SSL/TLS connections (e.g., ignore SSL certificate errors). A sample of 13,500

apps was collected and analyzed using the tool to evaluate the accuracy of MalloDroid. Mal-

loDroid reported 8% of the apps as potentially vulnerable to MITM attacks. However, the

presence of a potential vulnerability does not imply that the vulnerability can be exploited.

Hence, to verify MalloDroid’s accuracy, 266 apps were selected from Google Play based on

categories that would be most affected by the vulnerability (e.g., finance apps). Of the 266

apps, 100 apps were manually audited, and 41 of the 100 were found to have exploitable

MITM vulnerabilities. This evaluation would have been simpler, easier, and more effective

if authentic vulnerability benchmarks had been used.

Further, authentic benchmarks enable a fair comparison between tools. For example,

consider the case when the developers of EdgeMiner [47] compared their tool’s accuracy

with FlowDroid [19]. They identified that EdgeMiner flagged 9 apps with vulnerabilities

that were not flagged by FlowDroid. Hence, they verified this outcome by using another

tool called TaintDroid. Of the 9 apps, TaintDroid flagged 4 apps. Therefore, EdgeMiner

was deemed as more accurate than FlowDroid in these 4 cases. This comparison would have

been simpler and more extensive if the authentic benchmarks had been used.
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Existing Android app vulnerability benchmarks do not provide evidence of authenticity.

For example, I discovered that 35 benchmarks in DroidBench and UBCBench [48] crash

when executed on the version of Android that the benchmarks claim to target. Hence, this

raises a question about the validity and authenticity of these benchmarks.

Finally, Android app repositories such as AndroZoo collect metadata and source code of

real-world Android apps. While these apps can be analyzed for vulnerabilities, they do not

capture vulnerabilities explicitly.

Feature Specific. If the benchmark uses only features F of a framework to create a vul-

nerability, then the benchmark does not contain other features of the framework that can be

used to create that vulnerability. This characteristic helps evaluate if tools and techniques

can detect vulnerabilities that stem only due to specific reasons (features). In other words,

it helps assess if and how the cause of a vulnerability affects the ability of tools and tech-

niques to detect the vulnerability. Often, this could translate into being able to verify the

explanations provided by a tool when it detects the vulnerability.

As discussed above, EdgeMiner detected 4 more vulnerable apps than FlowDroid. How-

ever, there was no explanation for the better performance of EdgeMiner in terms of features

(causes) that EdgeMiner handled better than FlowDroid. Such explanations could have been

easily uncovered with feature specific benchmarks. Often, real-world apps serving as bench-

marks (as in the case of AndroZoo and PlayDrone) lack this characteristic as the causes of

app vulnerabilities in them are most likely unknown to the public. In contrast, benchmarks

in repositories such as DroidBench exhibit this characteristic as they are feature specific by

construction.

Contextual. A benchmark that captures a vulnerability in a context is different from a

benchmark that captures the same vulnerability in a different context. Contextual bench-

marks help evaluate the effectiveness of tools in various contexts (e.g., scale, accuracy).

Consider the size of a benchmark as an example to understand this characteristic. Lean

benchmarks, that is, apps that use minimal features to capture a vulnerability are smaller in
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size than fat benchmarks, that is, apps that use a variety of features not specifically related

to the vulnerability in the app. Lean benchmarks enable fast, easy, and effective evaluations

of a tool’s accuracy in detecting vulnerabilities. On the other hand, fat benchmarks can be

used to evaluate the effectiveness of a tool in the context of detecting vulnerabilities at scale.

Current tool evaluation approaches use both lean and fat benchmarks. However, some

tool evaluations use only fat benchmarks. As for repositories, benchmark repositories such

as DroidBench and CRYPTOAPI-BENCH [34] capture vulnerabilities in lean benchmarks.

In contrast, real-world app repositories such as AndroZoo and PlayDrone contain only fat

benchmarks.

Representative. The benchmark captures a manifestation of a vulnerability that is similar

to a manifestation of the vulnerability in real-world apps. This characteristic is useful to

triage tools as per the requirements of the tool user. For example, a tool that detects

vulnerabilities that are highly likely to occur in real-world apps in general might be preferred

over a tool that detects vulnerabilities that are less likely to occur in real-world apps.

Previous tool evaluations have not considered the aspect of representativeness because

these evaluations are based on benchmarks that do not provide evidence of or information

about being representative. For example, a large number of tools use benchmark repositories

such as DroidBench, ICCBench [20], and UBCBench in their evaluations. None of the

repositories provide information about the representativeness of the vulnerabilities in their

benchmarks. On the other hand, repositories of real-world apps such as AndroZoo are

representative by design. However, such repositories do not explicitly capture vulnerable

apps.

Ready-to-Use. The benchmark is composed of artifacts that can be used as is to repro-

duce the vulnerability. This characteristic precludes the influence of external factors (e.g.,

interpretation of instructions, developer skill) in realizing a benchmark. Hence, it enables

fair evaluation and comparison of tools and techniques. DroidBench, AndroZoo, and Play-

Drone repositories provide benchmarks as ready-to-use APKs (Android app bundles). In
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comparison, SEI [40] and OWASP [39] provides a set of guidelines for development of secure

Android apps. The descriptions of many guidelines are accompanied by illustrative good and

bad code snippets. While the code snippets are certainly helpful, they are not ready-to-use

in the above sense. This is also true of many security related code snippets available as part

of Android documentation.

Easy-to-Use. The benchmark is easy to set up and reproduce the vulnerability. Bench-

marks with this characteristic help expedite evaluations. Consequently, this characteristic

can help usher wider adoption of the benchmarks. This characteristic is desirable of bench-

marks that require some assembling, e.g., build binaries from source, extensive set up after

installation. As with ready-to-use characteristic, DroidBench, ICCBench, UBCBEnch, An-

droZoo, and PlayDrone cater binary benchmarks that are easy to install and conduct evalu-

ations. The source form of benchmarks provided by DroidBench also have this characteristic

as they contain Eclipse project files required to build them.

Version Specific. The benchmark contains information about versions of the framework

in which the captured vulnerability can be reproduced. This characteristic helps choose

benchmarks when evaluating the effectiveness of tools in detecting vulnerabilities that are

valid in a particular version of the framework.

To appreciate this characteristic, consider the vulnerability that allowed apps to write

files to an app’s shared storage space without any permission. This vulnerability was valid

on Android 5.1 - 7.1 after which it was invalidated by enforcing a permission at the platform

level, that is, apps needed permission to write files to another app’s shared storage. If a

benchmark capturing this vulnerability is not version specific and is used to evaluate a tool,

then the evaluation could lead to two undesirable situations. First, the evaluation might

flag the tool verdict as inaccurate if the tool correctly fails to detect the vulnerability in a

version of the framework in which the vulnerability is invalid. Second, the evaluation might

incorrectly flag a tool’s verdict as correct even if the tool detects a vulnerability that is

invalid in a version of the framework in which the tool is being evaluated.
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Existing benchmark and real-world app repositories such as DroidBench, ICCBench,

UBCBench, and CRYPTOAPI-BENCH are not version specific. For example, DroidBench

has benchmarks which capture vulnerabilities related to reading and writing log files. Prior

to Android 4.4, log files of all apps were globally accessible (i.e., an app could read/write any

app’s log files). However, this vulnerability is not valid after Android 4.4 because an app’s

log files now have restricted access. However, since DroidBench benchmarks do not have

information about framework versions in which a vulnerability is valid, they could enable

the undesirable situations delineated above. Further, real-world app repositories such as

AndroZoo and PlayDrone do not cpature vulnerabilities explicitly. Hence, they do not have

version specific information about a vulnerability.

Well Documented. The benchmark is accompanied by relevant documentation. Such

documentation should contain description of the contained vulnerability and the features

used to create the vulnerability. It should also mention the target (compatible) versions of the

framework/platform and provide instructions to both surface the vulnerability and exploit

the vulnerability. When possible, the source code of the benchmark should be included as

part of the documentation. This characteristic obviously helps expedite evaluations that use

the benchmarks and contributes to ease of use of benchmarks. With source code, it can help

developers understand the vulnerability.

The benchmarks provided by DroidBench, ICCBench, and UBCBench are in some ways

well documented as they contain source code along with binaries and there is brief documen-

tation on the web site and in the source code about captured vulnerabilities. Benchmarks

provided by CRYPTOAPI-BENCH contain source code and binaries however they do con-

tain documentation about the vulnerabilities captured or the features used to capture the

vulnerabilities. On the other hand, repositories such as AndroZoo and PlayDrone contain

binaries but no source code. These repositories also contain meta-data of an app (e.g., app

version, app size, and app name) but no information about vulnerabilities.
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Dual. The benchmark contains both the vulnerability and a corresponding exploit (dual).

This characteristic simplifies evaluations that depend on exercising the vulnerability, e.g.,

dynamic analysis. It allows benchmarks to be used to demonstrate vulnerabilities and even

evaluate exploits. Benchmarks with this characteristic can help developers understand the

vulnerability; specifically, when the source code is available. Also, duality helps verify the

authenticity of benchmarks.

Existing vulnerability benchmarks do not have this characteristic.

2.3.3 Vulnerability Benchmark Repository Characteristics

Benchmark repositories are a collection of benchmarks. Similar to benchmarks, they also

have desirable characteristics. I describe the characteristics that I have identified.

Open. The benchmark repository should be open to the community both in terms of con-

sumption and contribution. The benchmarks should be available with minimal restrictions

(e.g., permissive licence) and preferably at no or very low cost to the community. The repos-

itory should have a well-defined yet accessible process for the community to contribute new

benchmarks. This characteristic helps with reproducibility of results and community wide

consolidation of benchmarks. The latter effect reduces duplication efforts in the community.

In this regard, benchmark repositories like DroidBench, ICCBench, UCBBench, and

CRYPTOPI-BENCH are more open than real-world repositories like AndroZoo and Play-

Drone. Benchmark repositories are hosted publicly on the web (e.g., GitHub) and it welcomes

contributions. PlayDrone is hosted as multiple public archives on Internet Archive with no

explicit guidance for contributions. AndroZoo is hosted as a web service that can be accessed

only by approved users. This is most likely to manage and track access to a large corpus

of data in AndroZoo. Like PlayDrone, there is no explicit guidance for contributions. This

may be due to how AndroZoo is populated – with real world apps collected from different

app stores.
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Comprehensive. The benchmark repository should have benchmarks that account for

(almost) all known vulnerabilities of the target framework/platform. This characteristic

simplifies evaluations as they can rely on a single repository (or very few repositories) to

consider all vulnerabilities. Further, evaluations can be more thorough as they can consider

most of the known vulnerabilities.

Existing repositories are not comprehensive. Each repository captures specific classes

of vulnerabilities. For example, DroidBench, ICCBench, and UBCBench do a good job

of covering information leak vulnerabilities due inter-component communication. On the

other hand, CRYPTOAPI-BENCH captures only vulnerabilities due to the misuse of Cryp-

tographic APIs. The lack of this characteristic makes evaluation harder since it involves

using various benchmark repositories as opposed to using a comprehensive repository. For

example, consider the evaluation by Reaves et al. [49], where they used DroidBench along

with 6 mobile money apps and 10 most widely used financial apps in Google Play to evaluate

Android security analysis tools. While DroidBench and 6 mobile money apps had certain

known vulnerabilities, they did not cover all kinds of vulnerabilities. With a comprehensive

repository, this evaluation could have been simpler and more thorough.

2.3.4 Characteristics of Ghera

While the desirable characteristics of vulnerability benchmarks, were identified in retrospect,

they influenced the development of Ghera. Hence, in this section I will describe the charac-

teristics that Ghera has and the reasons for those characteristics.

The vulnerabilities contained in the Ghera benchmarks were uncovered from sources

related to Android app security (e.g., vulnerability reports). Further, each benchmark was

verified by executing the Malicious app that exploits the Benign app and fails to exploit the

Secure app. This process did not involve the use of any vulnerability (or exploit) detection

tool. Hence, the benchmarks in Ghera are tool and technique agnostic.

Each vulnerability captured in Ghera benchmarks can be re-produced and verified auto-

matically and manually as outlined in Section 2.2.3. Hence the benchmarks are authentic.
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While making the benchmarks in Ghera, I used only the features required to cause the

vulnerability captured in the benchmark. Hence, the Ghera benchmarks are feature specific

by construction.

The benchmarks in Ghera focus on being minimal. Hence, they use very few features

apart from the ones required to cause the vulnerability and run the app. Consequently, the

benchmarks capture the vulnerability in a specific context (i.e., small-sized apps). Therefore,

the Ghera benchmarks are contextual.

Every Ghera benchmarks come with instructions to build, install, and execute its Benign,

Malicious, and Secure apps to exercise captured vulnerabilities. The manual and automated

workflow to execute the benchmarks is completely verified. Hence, the work flow associ-

ated with each benchmark as illustrated in Section 2.2.3 is short, completely automated,

customize-able, simple, and easy. Hence, the benchmarks are both ready-to-use and easy-to-

use.

Each benchmark in Ghera has been tested across Android versions 5.1 - 8.1. The tests

are completely automated and can be executed to reproduce the vulnerabilities across the

different versions of Android supported in Ghera. Hence, the benchmarks are version specific.

Each benchmark is accompanied by documentation that describes the vulnerability and

the associated exploit along with instructions to reproduce and exploit the vulnerability.

In addition, each benchmark is available in source form. Hence, the benchmarks are well

documented.

Each benchmark in Ghera has a Benign app that contains a unique vulnerability and

a Malicious app that exploits the vulnerability in the Benign app. Hence, the benchmarks

have the dual characteristic.

Ghera is hosted as a public repository that accepts contribution from the community.

Hence, it is an open repository.

While Ghera does have benchmarks covering eight different areas (capabilities) of Android

framework, there are many more areas of the Android framework that may be associated

with known vulnerabilities and are not covered by Ghera benchmarks. Hence, Ghera is not

yet a comprehensive repository.
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Every benchmark in Ghera captures a particular manifestation of a vulnerability. There

is no evidence to suggest that the manifestation of the vulnerabilities in Ghera benchmarks is

similar to their manifestation in real-world apps. Hence, there is no direct evidence for Ghera

being representative. However, representative benchmarks are useful for interpreting the re-

sults of an evaluation because they help assess effectiveness of the subject being evaluated in

the real-world. Consequently, I have measured the representativeness of the Ghera bench-

marks along with other benchmarks (e.g., DroidBench). I will discuss representativeness in

detail in Chapter 3.

2.4 Limitations and Threats to Validity

Currently, Ghera has only lean benchmarks. Hence, Ghera cannot be used to evaluate the

scalability of vulnerability detection tools because that would require fat benchmarks.

While Ghera currently captures 60 benchmarks across eight categories – Crypto, ICC,

Networking, NonAPI, Permission, Storage, System, and Web, it does not yet contain vul-

nerabilities from other categories such as Bluetooth and Camera. Vulnerability reports and

recently discovered vulnerabilities suggest that there might be application level vulnerabili-

ties in those categories, which need to be explored further. This limitation can be addressed

by identifying and analyzing the security-related APIs used by real-world apps but not used

in the benchmarks.

Finally, the claims about the Ghera bencmarks being feature specific and contextual

stems from my experience in building the Ghera benchmarks. I have tried my best to ensure

that the benchmarks are minimal and use features only required to produce a particular

vulnerability. However, since Ghera is open, this threat can be addressed by verifying certain

metrics such as lines of code in the benchmarks or size of the apk distributions.
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2.5 Conclusion

In this chapter, I have introduced an open repository of vulnerability benchmarks called

Ghera. Ghera systematically catalogs 60 unique vulnerabilities discovered and collected from

various sources related to Android app security. In addition to creating benchmarks, I have

described the desirable characteristics of vulnerability benchmarks that were identified while

developing Ghera. Further, I have argued why these characteristics are necessary. Some of

the identified characteristics are harder to achieve than others. For example, creating an

open benchmark repository is easier than creating a comprehensive benchmark repository.

In a similar vein, creating a tool and technique agnostic benchmark is easier than achieving

authenticity. However, given their relevance, benchmark developers should strive to attain

these characteristics. Finally, the characteristics described in this chapter were uncovered in

the context of Android app vulnerability benchmarks. However, they can be applied while

creating benchmarks in general. For example, in the context of performance, benchmarks

with the tool and technique agnostic characteristic can be used to evaluate and compare a

variety of approaches irrespective of how they achieve performance.

Ghera is publicly available at https://bitbucket.org/secure-it-i/android-app\

-vulnerability-benchmarks/src/master/.

Section A catalogs the vulnerabilities captured in Ghera.
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Chapter 3

Analyzing Android App Vulnerability

Benchmark Suites

In recent years, there has been a concerted effort to develop tools and techniques to help

secure Android apps. One of the strategies used to evaluate such tools is to use benchmarks

that contain Android app vulnerabilities [19, 20, 49]. However, the choice of benchmarks is

often influenced by the popularity and availability of benchmark suites as opposed to their

characteristics and relevance. One reason for this choice is the lack of information about the

traits and suitability of benchmark suites related to Android app security. Hence, in this

chapter, I delve deeply into one aspect of vulnerability benchmarks (i.e., representativeness).

I define representativeness based on a metric called API usage and use the metric to measure

the representativeness of four Android-specific benchmark suites – DroidBench [19], Ghera

[50], ICC-Bench [20], and UBCBench [48]. Additionally, I verify the authenticity of the

benchmarks. Finally, I explore the commonalities and differences between the benchmark

suites in terms of API usage.

The findings presented in this chapter will help Android security analysis tool developers

select a benchmark suite relevant to their evaluation, and benchmark developers identify

gaps in their benchmark suites.
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3.1 Motivation

Current Android security analysis tool evaluations use benchmarks and real-world apps for

assessing their effectiveness. The effectiveness of static taint analysis tools like AmanDroid,

FlowDroid, HornDroid [51], and IccTA [13] has been evaluated by applying them to bench-

marks from DroidBench, ICC-Bench, and UBCBench benchmark suites and comparing tool

verdicts with benchmark labels that indicate the presence/absence of specific vulnerability

or malicious behavior.

Such tool evaluations have used benchmarks without considering their representativeness

and authenticity. This lack of information about representativeness and authenticity has

limited the results from tool evaluations in terms of the effectiveness of tools and techniques

to detect vulnerabilities and their general applicability.

Recently Pauck et al. [52] developed a semi-automated technique called ReproDroid to

verify the authenticity of Android app vulnerability benchmarks. They discovered that not

all claims about the presence/absence of vulnerabilities in DIALDroid, DroidBench, and

ICC-Bench were valid. Apart from ReproDroid and Ghera (described in Chapter 2), there

has been no effort to establish the authenticity of Android app vulnerability benchmarks.

It is common in other communities to study and characterize benchmarks. In the program

analysis community, Blackburn et al. [53] developed and used metrics based on static and

dynamic properties of programs to characterize and compare the DaCapo benchmarks with

SPEC Java benchmarks. Isen et al. [54] measured several properties of embedded Java

benchmarks and how well they represent real-world mobile apps. In the systems community,

Pallister et al. [55] characterized benchmarks based on the energy consumption properties of

embedded platforms. In the database community, such assessments have been around since

the 1990s [56]. However, such scrutiny of benchmark suites has not occurred in the Android

security community.

Motivated by the above observations, I decided to evaluate Android app vulnerability

benchmarks. Specifically, I intend to answer the following research questions in this chapter:

1. RQ1 Do Android app vulnerability benchmarks contain manifestations of vulnerabilities
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similar to real-world apps? The answer to this question will help empirically measure

the representativeness of the benchmarks.

2. RQ2 How do the considered benchmark suites differ from each other? The purpose

of this question is to identify the common and unique features between benchmark

suite pairs. The answer to this question can help tool developers choose appropriate

benchmark suites to test/evaluate their tools.

3.2 Concepts and Subjects

This section defines the notion of representativeness in terms of API usage along with de-

scriptions of the benchmarks and real-world apps used in the analysis.

3.2.1 Measuring Representativeness

A vulnerability can manifest or occur in different ways in apps due to various aspects such as

producers and consumers of data, nature of data, APIs involved in handling and processing

data, control/data flow paths connecting various code fragments involved in the vulnera-

bility, and platform features involved in the vulnerability. As a simple example, consider

a vulnerability that leads to information leak: sensitive data is written into an insecure

location. This vulnerability can manifest in multiple ways. Specifically, at the least, each

combination of different ways of writing data into a location (e.g., using different I/O APIs)

and different insecure locations (e.g., insecure file, untrusted socket) can lead to a unique

manifestation of the vulnerability.

Representative vulnerability benchmarks should have two aspects. First, they should cap-

ture vulnerabilities that occur in the real world. Second, the manifestation of vulnerabilities

in representative benchmarks should be similar (if not identical) to that in real-world apps.

Based on these aspects, there is no evidence to suggest that the vulnerability benchmarks

considered here are representative. Hence, it is necessary to measure their representativeness.

One way to measure representativeness is to identify the manifestations of vulnerabilities
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captured in the benchmarks in real-world apps. However, this is hard since there is no

definitive source of vulnerable apps. One such source is publicly available vulnerability

reports (e.g., CVE [42], NVD [43], and HackerOne [57]) related to Android apps. However,

these vulnerability reports have very little information about the validity, exploit-ability,

and manifestation of the vulnerabilities, as discussed in Chapter 2. Further, a manual

analysis of the reported apps is difficult since the reports do not make the vulnerable app

versions available. While they document the version name of the vulnerable app, it is almost

impossible to obtain the app for that version name since app markets such as Google Play

only have the most recent version of the app. An alternative way to get the appropriate

version is to download it from real-world app repositories such as AndroZoo. While such

repositories may contain an app’s version code, it is not the same as version name, which is

required to download the correct version of the app.

Since the process of obtaining vulnerable apps is laborious, I decided to use usage in-

formation about Android APIs involved in manifestations of vulnerabilities as a proxy to

measure the representativeness of benchmarks. The rationale for this decision is the like-

lihood of a vulnerability occurring in real-world apps is directly proportional to the number

of real-world apps using the Android APIs involved in the vulnerability. So, as a weak yet

general measure of representativeness, I identified the Android APIs used in the benchmarks

and measured how often these APIs were used in real-world apps.

3.2.2 Considered Benchmarks

Here is a brief description of the benchmark suites that I considered in this study:

1. DroidBench contains 211 benchmarks. Each benchmark is an Android app that cap-

tures zero or more information leak vulnerabilities. The vulnerabilities captured in

DroidBench primarily stem from the Inter-Component Communication (ICC) feature

of Android and the general features of Java (e.g., dynamic dispatch).

2. Ghera contains 60 benchmarks. Each benchmark captures a known and unique Android
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app vulnerability. Each benchmark is composed of 3 apps – Benign, Malicious, and

Secure. Ghera is described in Chapter 2.

3. ICC-Bench contains 24 benchmarks. Each benchmark is an Android app that cap-

tures zero or more information leak vulnerabilities. IccBench focuses on capturing

vulnerabilities that stem from communication between apps via ICC.

4. UBCBench contains 16 benchmarks. Each benchmark is an Android app that captures

at most one information leak vulnerability. UBCBench captures information flow vul-

nerabilities primarily stemming from ICC and SharedPreferences 1 features of Android

and general Java features (e.g., Threads).

3.2.3 Real-world Apps

I collected 700K apps from AndroZoo in March 2019. From this set of 700K apps, I curated

a set of 473K apps that target API levels 19 through 27. An API level uniquely identifies

the framework API revision offered by a version of the Android platform. In an Android

app, the minimum API level is the least framework API version required by the app, and

target API level is the framework API version targeted by the app. For this evaluation, I

initially picked target API level 19 thru 27 because most benchmarks targeted these API

levels. However, I later discovered that Android currently does not support API levels 19

thru 22. Therefore, to make the evaluation current, from the set of 473K apps, only apps

that target API levels 23 thru 27 were retained.2 Hence, I ended up with a sample of 226K

real-world Android apps. Table 3.1 provides the distribution of this sample across considered

target API Levels.

1A SharedPreference is a file that stores key-value pairs and can be private to an app or shared
2At the time of the evaluation, API level 27 was the latest. Since then, Android has released two more

versions – API levels 28 and 29.
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Target API level # Real World Apps
23 146K
24 18K
25 16K
26 29K
27 17K

Total 226K

Table 3.1: Distribution of target API levels in the sample of real world apps

3.3 Experiment

3.3.1 Preparing the benchmarks

By design, each Android app is bundled as a self-contained APK file that contains all code

and resources necessary to execute the app but are not provided by the underlying Android

framework. However, as a result of the build process of Android apps, the APKs may contain

unnecessary code and resources. So, ProGuard tool can be used as part of the Android app

build process to remove unnecessary artifacts from APKs [58].

All the benchmark suites considered in this evaluation provide pre-built APKs and source

files for each of their benchmarks. Except for Ghera, the pre-built APKs that come with each

benchmark suite contain unnecessary code and resources. Further, the benchmarks do not

have the same minimum and target API levels. Specifically, DroidBench benchmarks have

minimum API level 8 and target API level 14 thru 24, Ghera benchmarks have minimum

API level 22 and target API level 27, ICC-Bench benchmarks have minimum and target API

level 25, and UBCBench benchmarks have minimum and target API level 19.

Since my objective is to measure the representativeness of benchmark suites and compare

them based on API usage, I needed to control for the effects of unnecessary APIs and API

level on the findings of the evaluation. Therefore, I rebuilt every benchmark from its source

with minimum API level set to 23, target API level set to 27, using appcompat support

library version 27.1.1, and using Proguard to remove unnecessary APIs. I chose API levels

23 thru 27 because they were currently supported by Android at the time of this evaluation.

After rebuilding the benchmarks, I ensured the benchmarks were indeed supported by
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Benchmark # Total # Total # Apps built # Apps
Suite benchmarks apps successfully crashed
DroidBench 211 211 201 32
Ghera 60 180 180 0
IccBench 24 24 24 0
UBCBench 16 16 16 3

Table 3.2: Total No. of benchmarks in each benchmark suite along with the No. of bench-
marks that built successfully with minimum API level 23 and target API level 27 and crashed
on an emulator running Android 23 and 27.

API levels 23 thru 27 by executing each benchmark on an emulator running Android 23

and 27. As part of the execution, I interacted with the app until no further interaction was

possible. Often, this meant interacting with various widgets on a screen and navigating to

various screens in an app. If the benchmark or app crashed, then I recorded the crash.

The process of re-building and testing the apps was semi-automated. Building the apps,

starting an emulator for the appropriate API level, and installing the app in an emulator

with the corresponding API level was automatic. Interaction with the app was manual.

Table 3.2 lists the total number of benchmarks in each suite, the total number of apps in

each suite, the number of apps that were built successfully, and the number of apps that

crashed during execution. In this evaluation, I considered all benchmarks that could be built

successfully including the ones that crashed because the reasons for a crash were unclear. A

crash could have occurred due to a vulnerability intentionally captured in the benchmark or

other reasons such as change of API levels.

Observations From Table 3.2, we see that, most benchmarks/apps not only build but also

execute on the currently supported versions of Android even when they were not designed to

run on those versions – out of 311 benchmarks across all benchmark suites, only 35 crashed

during execution and only 10 could not be built successfully. So, while most benchmarks

were not explicitly designed to run on recent versions of Android, they are well supported by

recent versions of Android.

The 10 benchmarks (from DroidBench) that failed to build imply some benchmarks are

not supported by recent versions of Android.
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For the 35 benchmarks (32 from DroidBench and 3 from UBCBench) that crashed when

executed on emulators running Android 23 and 27, I re-executed pre-built counterparts of

these benchmarks on an emulator running the version of Android originally targeted by the

benchmarks. For example, for a benchmark that was designed to target API level 14, I exe-

cuted the benchmark on an emulator with API level 14. Interestingly, all of the benchmarks

crashed during re-execution. This observation raises a question about the authenticity of the

benchmarks.

None of the benchmarks in Ghera and ICC-Bench crashed. If not crashing is considered

an indicator of authenticity, then the observation suggests that the benchmarks in Ghera and

ICC-Bench are more authentic than the benchmarks in DroidBench and UBCBench. This

result complements Ghera since Ghera is known to be authentic, as described in Chapter 2.

However, there is no similar evidence to support that ICC-Bench is more authentic than the

others.

3.3.2 API-based App Profiling

Android apps access various capabilities of the Android platform via features of XML-based

manifest files and Android programming APIs. The published Android programming APIs

and the XML elements and attributes (features) of manifest files are collectively referred to

as APIs here. I use the term API to mean either a function, a method, a field, or an XML

feature.

For each Android app, I collected the APIs used by the app or defined in the app. Of

the collected APIs, I retained the considered APIs as follows:

1. The manifest file of an app captures the meta-data of an app in XML form. From the

various elements and attributes that can be present in the manifest, I identified the

value of 7 attributes and the presence of 26 attributes based on my knowledge of the

benchmarks.

2. From an app’s source code, I considered all published (i.e., public and protected)

methods along with all methods that were used but defined in the app. The former
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accounted for callback APIs provided by the app, and the latter accounted for external

APIs used by the app. From these APIs, obfuscated APIs with single character names

were discarded. To make apps comparable in the presence of definitions and uses

of overridden Java methods (APIs), if a method was overridden, then I considered

the fully qualified name (FQN) of the overridden method in place of the FQN of

the overriding method using Class Hierarchy Analysis. Since I wanted to measure

representativeness in terms of Android APIs, I discarded APIs whose FQN did not

have any of these prefixes: java, org, android, and com.android. For each app, I

recorded the remaining APIs.

3. Numerous APIs are commonly used in almost all Android apps and are related to

aspects (e.g., UI rendering) that are not the focus of vulnerability benchmarks related

to Android apps. I ignored such APIs while determining the APIs used in an app to

ensure that these APIs do not inflate representativeness. For this purpose, I created

a baseline app with minimum and target API levels set to 23 and 27, respectively.

This app did not exhibit any interesting functionality but contained graphical widgets

commonly used by Android apps. Out of the 1847 APIs used in this baseline app, I

manually identified 1586 APIs as commonly used in Android apps; almost all of them

were basic Java APIs or related to UI rendering and XML processing. For each app, I

removed these APIs from its list of APIs recorded in above steps 1 and 2 and considered

the remaining APIs.

The above steps were used to create a relevant API profile for the set of real-world apps

and each benchmark suite.

Further, for each benchmark suite, I did additional filtering on the considered list of APIs

obtained after removing the 1585 APIs from the baseline app. Even in the considered set, I

identified APIs orthogonal to the focus of these benchmarks (e.g., android.graphics). So, I

ignored these APIs to create a set of filtered APIs. This additional step did not change the

API sets drastically, as can be seen from the 2nd and 3rd columns in Table 3.3.
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Suite Number of APIs

Total Considered Filtered Relevant Security
DroidBench 2188 837 798 769 744
Ghera 1906 565 518 504 494
IccBench 185 102 70 70 70
UBCBench 751 127 99 98 96

Table 3.3: Number of APIs used by the benchmark suites

3.3.3 Using Android app developer discussions in Stack Overflow

to identify relevant and security-related APIs

The filtered set of APIs identified while creating the API profile is based on my notion of

relevance and knowledge of the benchmarks. Since my subjectivity and bias could influence

the findings of the evaluation, I used developer discussions on Stack Overflow (SoF) to

recognize APIs that developers deem relevant to Android app development and related to

security. The relevant and security-related APIs are listed in columns 5 and 6 in Table 3.3.

For this purpose, I used a snapshot of Stack Overflow posts from March 2019.

Identify Android related posts I considered all posts from the Stack Overflow snapshot

with the Android tag, which resulted in 1.2 million posts. While collecting posts with the

Android tag, I hypothesized that I was missing Android-related posts without the Android

tag. To avoid missing such posts, I collected all tags (including synonyms) from Android

Stack Exchange, a forum for discussing issues related to Android. This exercise resulted in

1347 tags, from which I removed 433 tags since they had been considered previously. From

the remaining 914 tags, I ignored tags related to company names since they were not related

to Android app development. Finally, of the remaining 445 tags, I discovered that only five

tags3 had posts associated with them on SoF. I found that these tags are not related to

Android app development hence ignored them. This discovery ensured that there were no

posts on SoF associated with Android app development that did not have the Android tag.

3These tags were instapaper, pebble, sdhc, task-management, and xfat
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Identify Android security-related posts There is no readily available information in

Stack Overflow data to identify security-related posts. So, I used the data from Security

Stack Exchange, a forum for discussing software security issues, to identify security-related

posts on SoF. I gathered all tags from Security Stack Exchange as the set of security-related

tags. Further, I added the security tag to this set. From the SoF posts that had Android

tag, I identified posts with at least one security-related tag. This identification resulted in a

set of 460K posts related to Android security.

Filter posts based on API levels Since API level 23 was released in 2015, I considered

only posts that had some activity, that is, created, answered, edited, commented on, voted

on, or marked as favorite or accepted on or after 2015. An API that did not garner interest

after 2015 is likely deprecated in API levels 23 thru 27 or well understood by developers.

In either case, such APIs as irrelevant to the evaluation. This filtering resulted in 831K

Android-related posts and 318K Android security-related posts.

Identify relevant and security-related APIs If the class name and the method/field

name of an API co-occurred in a post, then I deemed the post as discussing the API. Based

on this notion, if a filtered API was discussed in an Android-related post, then the API was

considered a relevant API (i.e., relevant to Android app development). Similarly, if a filtered

API was discussed in an Android security related post, then I deemed it as a security-related

API.

3.3.4 Calculating Representativeness

For each relevant API used in a benchmark suite, I calculated the percentage of real-world

apps using the API. If a large number of real-world apps use a large number of APIs used

in a benchmark suite, then it is highly likely that real-world apps will have manifestations

of vulnerabilities similar to the ones captured in the benchmarks.

In addition to relavant APIs, I also calculated representativeness of a benchmark suite

in terms of security-related APIs used by benchmarks in the suite.
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3.4 RQ1:Representativeness

In this section, I will use API usage to determine if benchmarks in DroidBench, Ghera, ICC-

Bench, and UBCBench capture manifestations of vulnerabilities similar to the ones found in

real-world apps.

For each benchmark suite, the corresponding graph in Figure 3.1 shows the percentage

of real-world apps using a relevant API that is used by the suite along with the percentage

of Stack Overflow posts discussing the same API.

Tables 3.4 and 3.5 list the five-number summary of the percentage of posts discussing

relevant and security-related APIs, respectively.

DroidBench Of the 798 filtered APIs used by DroidBench, only 29 are not discussed by

any Android related Stack Overflow post. The remaining 769 APIs are discussed in at least

1 post. As seen in Table 3.4, more than half the 769 relevant APIs used by DroidBench are

discussed by at least 385 posts. Therefore, APIs used by DroidBench are relevant as deemed

by Android app developer discussion in SoF posts.

The graph for DroidBench in Figure 3.1 shows that all relevant APIs are used by real-

world apps and 562 (73%) relevant APIs are used by more than 60% of real-world apps.

Therefore, DroidBench is representative of real-world apps in terms of API usage.

Ghera Of the 518 filtered APIs used by Ghera, only 14 are not discussed in any Android

related Stack Overflow post. The remaining 504 (relevant) APIs are discussed in at least

one Stack Overflow post. As seen in Table 3.4, more than half the 504 relevant APIs are

discussed by at least 845 posts. Therefore, APIs used by Ghera are considered relevant by

Android app developers.

The graph for Ghera in Figure 3.1 shows that all relevant APIs are used by real-world

apps and 340 (67%) relevant APIs are used by more than 60% of real-world apps. Therefore,

Ghera is representative of real-world apps in terms of API usage.
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ICC-Bench All of the 70 filtered APIs used by ICC-Bench are discussed by at least one

Android related Stack Overflow post. As seen in Table 3.4, more than half of the 70 relevant

APIs used by ICC-Bench are discussed by at least 2446 posts. Therefore, APIs used by

ICC-Bench are highly relevant to Android app development as deemed by related discussions

in StackOverflow.

The graph for IccBench in Figure 3.1 shows that all relevant APIs are used by real-world

apps and 55 (78%) relevant APIs are used by more than 60% of real-world apps. Therefore,

ICC-Bench is representative of real-world apps in terms of API usage.

UBCBench All of the 99 filtered APIs, except 1, used by UBCBench are discussed by at

least one Android related Stack Overflow post. As seen in Table 3.4, more than half the 98

relevant APIs used by UBCBench are discussed by at least 1406. Therefore, APIs used by

UBCBench are being discussed by Android app developers.

The graph for UBCBench in Figure 3.1 shows that all relevant APIs are used by real-

world apps and 79 (81%) relevant APIs are used by more than 60% of real-world apps.

Therefore, UBCBench is representative of real-world apps in terms of API usage.

In summary, DroidBench, Ghera, ICC-Bench, and UBCBench all use APIs that are used

by a large number of real-world apps. Hence, they are all representative in terms of API

usage.

3.4.1 Discussion

Comparatively, DroidBench (769) and Ghera (504) use more than five times the number of

relevant APIs used by UBCBench (98) and IccBench (70). In terms of the percentage of

relevant APIs used by more than 60% of the real-world apps, DroidBench (562) and Ghera

(340) use more than four times the number of relevant APIs used by UBCBench (79) and

IccBench (55). So, in terms of coverage of APIs used by real-world apps, DroidBench and

Ghera fare better than UBCBench and IccBench.

In Figure 3.1, most of the spikes in the line corresponding to Android related Stack

Overflow posts are associated with relevant APIs that are used by more than 60% of the
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real-world apps. Hence, the benchmarks are not only representative but also relevant since

they are using APIs that are not only used by a large number of real-world apps but are also

being discussed widely by Android app developers.
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Figure 3.1: Percentage of real-world apps that use a relevant API and the percentage of
Stack Overflow posts that discuss a relevant API in a benchmark suite.

3.4.2 What about Security-related APIs?

As shown in Table 3.3, the number of security-related APIs as deemed by Stack Overflow

data is similar to the number of relevant APIs. For example, in ICC-Bench, the number of

security-related APIs is identical to the number of relevant APIs. Moreover, as seen in Table

3.4, the distribution of posts discussing security-related APIs is similar to that of relevant
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Repo % (No.) of relevant posts discussing APIs

Min Q1 Median Q3 Max

DroidBench 0.0001 (1) 0.0068 (57) 0.04 (385) 0.29 (2423) 29.0 (240K)
Ghera 0.0001 (1) 0.0156 (130) 0.10 (845) 0.44 (3668) 29.0 (240K)
ICC-Bench 0.0007 (6) 0.0588 (489) 0.29 (2446) 1.71 (14242) 15.3 (127K)
UBCBench 0.0001 (1) 0.0348 (289) 0.17 (1406) 0.95 (7880) 15.3 (127K)

Table 3.4: Five-Number summary of 831K relevant posts discussing APIs in a benchmark
suite

Repo % (No.) of security-related posts discussing APIs

Min Q1 Median Q3 Max

DroidBench 0.0003 (1) 0.007 (22) 0.05 (168) 0.31 (997) 35.0 (111K)
Ghera 0.0003 (1) 0.020 (65) 0.11 (359) 0.49 (1559) 35.0 (111K)
ICC-Bench 0.0009 (3) 0.056 (179) 0.273 (869) 1.55 (4940) 14.3 (45K)
UBCBench 0.0006 (2) 0.033 (106) 0.20 (640) 1.08 (3458) 14.3 (45K)

Table 3.5: Five-Number summary of 318K security-related posts discussing APIs in a bench-
mark suite

APIs as can be seen from the five-number summary. Consequently, the observations for

relevant APIs carries over to security-related APIs.

Caveat The numbers in Table 3.4 suggest that almost all the relevant APIs used by a

benchmark suite are related to security. These numbers are based on the approach of identi-

fying relevant and security-related APIs using Stack Overflow data, as explained in Section

3.3.3. While this approach considers the occurrence of APIs in posts to recognize an API

as relevant or security-related, it does not consider the context in which the API occurs in

posts, that is, an API can occur in a post as part of a code snippet that is being discussed

but yet not be discussed in the post. Hence, the approach can conservatively identify APIs

that are irrelevant or not related to security as relevant or security-related. Therefore, the

number of relevant APIs and security-related APIs used by a benchmark suite is likely lower

than the numbers reported here. This observation is supported by an earlier examination on

Ghera, where I had manually identified security-related APIs used by Ghera based on my

knowledge of the Ghera benchmarks. According to that study, 601 APIs had been deemed
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relevant to Android app development, and 117 of them were considered security-related.

Interestingly, all the 117 security-related APIs are included in the set of SoF-based security-

related APIs for Ghera. Further, the 117 manually curated security-related APIs are used by

more than 65% real-world apps in this sample. This number strongly suggests that at least

for Ghera, the conservative estimate of relevant and security-related APIs does not affect its

representativeness.

3.5 RQ2: Comparison

This section examines the differences between the considered benchmark suites in terms

of API usage by comparing them in a pair-wise fashion. Further, based on the identified

differences, I will provide benchmark selection recommendations for tool evaluations.

For each pairwise comparison, Table 3.6 shows the number of filtered APIs common and

unique to the compared benchmarks.

Benchmark Suite Common APIs unique APIs unique
Pair (X/Y) APIs to X to Y
DroidBench/Ghera 344 454 174
DroidBench/ICC-Bench 67 731 3
DroidBench/UBCBench 89 709 10
Ghera/ICC-Bench 42 476 28
Ghera/UBCBench 85 433 14
ICC-Bench/UBCBench 16 54 83

Table 3.6: Filtered APIs based pairwise comparison of benchmark suites

3.5.1 DroidBench vs Ghera

Observation 1 DroidBench uses 1.5 times the number of APIs used by Ghera but it

contains almost 3 times the number of benchmarks in Ghera; see Table 3.3. Therefore, the

difference in API usage between DroidBench and Ghera is not comparable to the difference

in the number of benchmarks in them. This is most likely because DroidBench focuses on

heavily ICC (depth) whereas Ghera focuses on ICC and other Android features (breadth).
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Consequently, the benchmarks in DroidBench use more common APIs compared to the

benchmarks in Ghera.

Observtion 2 DroidBench uses 454 APIs not used by Ghera; see Table 3.6. 438 of these

APIs were identified as relevant using Stack Overflow data. Moreover, 299 (68%) relevant

APIs are used by at least 60% real-world apps. Of the 438 relevant APIs, approximately

100 are not specific to Android but related to Java. Of the remaining APIs, close to 50%

are related to ICC. Since a large number of APIs unique to DroidBench are related to ICC,

evaluations of Android app vulnerability detection tools, especially the ones that focus on

ICC, should consider DroidBench.

Moreover, 344 APIs are common to DroidBench and Ghera. Of these, 331 APIs are

relevant and 280 (85%) APIs are used by at least 60% of real-world apps. 200 of the 344

APIs are related to ICC. This is not surprising as DroidBench focuses on ICC. Therefore,

tools focusing on detecting vulnerabilities stemming from ICC can use either DroidBench or

Ghera for evaluation. However, since only 65 of the 174 APIs unique to Ghera are related

to ICC, such tools should prefer DroidBench over Ghera.

Observation 3 From Table 3.6, we see Ghera uses 174 APIs that are not used by Droid-

Bench. 173 of these APIs were identified as relevant using Stack Overflow data. Of these

relevant APIs, 69 (40%) APIs are used by at least 60% real-world apps. Further, 93 (54%)

of the 173 relevant APIs are related to Android features such as web, crypto, storage, and

networking features. Since Ghera benchmarks capture vulnerabilities stemming from the use

of APIs not related to ICC, evaluations of tools that detect vulnerabilities not related to ICC

should consider Ghera.

Observation 4 All benchmarks in Ghera capture vulnerabilities that can be reproduced

and exploited on API Levels 23 thru 27. However, DroidBench benchmarks were designed

to run on older API Levels. While I was able to build the benchmarks and install them on

emulators running API Levels 23 thru 27, there is no evidence to suggest that the captured
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vulnerabilities can be reproduced and exploited on API levels 23 thru 27. Therefore, eval-

uations based on DroidBench should be aware of this limitation. A prudent tool evaluation

strategy is to equally consider both DroidBench and Ghera.

3.5.2 DroidBench vs ICC-Bench

Observation 5 ICC-Bench uses only 3 APIs that are not used by DroidBench. Since

DroidBench uses almost all the APIs used by IccBench, DroidBench should be preferred over

ICC-Bench.

Observtion 6 ICC-Bench benchmarks were designed to run on API level 25 whereas

DroidBench benchmarks were designed to run on API levels 22 and less. Consequently, two

of the three APIs related to runtime checking of permissions are used by ICC-Bench but not

by DroidBench as these APIs were introduced in the API level 23. Therefore, if more current

aspects of Android need to be considered, then IccBench should be used in conjunction with

Ghera.

3.5.3 DroidBench vs UBCBench

Observation 7 As per Table 3.6, UBCBench and DroidBench share 89 APIs. Since only

10 APIs are unique to UBCBench and DroidBench uses almost all the APIs in UBCBench,

DroidBench should be preferred over UBCBench.

Observation 8 9 of the 10 APIs unique to UBCBench are related to general Java features

and one API is related to SharedPreferences, a storage related feature in Android apps. This

API is used by 90% of the real-world apps and discussed by close to 1000 Android security

related Stack Overflow posts which makes this API highly relevant. So, UBCBench should

be considered in conjunction with DroidBench for tools that target vulnerabilities stemming

from the use of SharedPreferences.
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3.5.4 Ghera vs ICC-Bench

Observation 9 Ghera covers most of the ICC related APIs used by ICC-Bench as seen

by the fact that Ghera uses 42 of the 70 APIs used by ICC-Bench. Further, Ghera uses 476

APIs not used by ICC-Bench. Since Ghera uses more than 50% of the APIs in ICC-Bench

and is not limited to ICC, Ghera should be preferred over ICC-Bench.

Observation 10 ICC-Bench uses 28 APIs not used by Ghera. All 28 are relevant and 25

of these APIs are used by more than 60% of real-world apps. Moreover, 23 of these APIs are

related to ICC which is to be expected since ICC-Bench focuses on ICC. Since ICC-Bench

uses a non-trivial number of ICC-related relevant APIs not used by Ghera, ICC-Bench should

be considered in conjunction with Ghera, especially if the the tool being evaluated is ICC

focussed.

3.5.5 Ghera vs UBCBench

Observation 11 As per Table 3.6, UBCBench and Ghera share 85 APIs and UBCBench

has only 14 unique APIs. Since Ghera uses almost all the APIs used by UBCBench, Ghera

should be preferred over UBCBench. .

Observation 12 6 of the 14 APIs unique to UBCBench are related to SharedPreferences

and ICC while the remaining 8 are related to general Java features. Since all 14 APIs

are used by more than 2000 real-world apps and 10 of the 14 APIs are used by 60% of the

real-world apps or more, UBCBench should be considered in conjunction with Ghera when

evaluating tools that target vulnerabilities stemming from the use of SharedPreferences.

Observation 13 Similar to DroidBench, the benchmarks in UBCBench were designed to

run on API Level 19. Therefore, the authenticity of these benchmarks on API levels 23

thru 27 is unknown. Consequently, since DroidBench uses almost all of the APIs used by

UBCBench, the combination of Ghera and DroidBench should be preferred over the combi-

nation of Ghera and UBCBench.
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3.6 Threats to Validity

API usage used as a metric to measure representativeness of the considered benchmarks is a

weak measure of manifestation of a vulnerability. It helps establish a correlation between the

manifestation of the vulnerabilities in the benchmarks and the real-world apps. However,

it does not prove that the vulnerability captured in a benchmark definitively exists in a

large number of real-world apps. A stronger relationship can be established by using more

complex and hard to measure aspects such as API usage context, security requirements of

data, and data/control flow path between API uses. The influence of these aspects can be

verified by using them to measure representativeness.

While a large sample of real-world apps has been used in this evaluation, there is a skew

in the distribution of the apps across API levels (i.e., recent API levels tend to have lesser

apps). Hence, API level might affect the results and observations. However, this is unlikely

since APIs have not drastically changed since API level 23.

The baseline app from which the APIs to be ignored for representativeness calculation

was determined can introduce bias based on how the baseline app was created. The effect

of this bias can be measured and mitigated by using a different baseline app.

I used Stack Overflow discussions to identify relevant and security-related APIs used by

a benchmark suite. Specifically, I used the occurrence of APIs in posts to associate posts to

APIs. Since an occurrence of an API does not always imply the discussion of the API, the

reported numbers of posts discussing an API may be inflated. This issue can be mitigated

by using richer search techniques to associate posts to APIs to mitigate this issue. Similarly,

the identification of tags associated with posts, to identify Android security-related posts,

can be inaccurate due to incorrect tagging of posts. This threat can be addressed by using

information retrieval techniques to identify incorrect tagging.
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3.7 Evaluation Artifacts

I used the version/bundle of DroidBench and IccBench benchmarks available under Droid-

Bench (extended) (MD5Sum 9a165494eec309ff49f1b72895308a13) and ICC-Bench 2.0 (MD5Sum:

d479d07c94a9415868b420c1f289a0b2) sections at https://github.com/FoelliX/ReproDroid.

The version of UBCBench I used is available at https://github.com/LinaQiu/UBCBench.

The version of Ghera used is available at

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src/Jan2019/.

The raw and processed along with scripts used in this study are available at https:

//bitbucket.org/account/user/secure-it-i/projects/BENCHPRESS.

3.8 Related Work

While there has been considerable interest in developing solutions for detecting vulnerabilities

in Android apps, very few efforts are focused on developing and measuring benchmarks used

to evaluate the effectiveness of the solutions. Only recently, Pauck et al. [52] developed a

framework for verifying the authenticity of benchmarks in DroidBench and IccBench and

refining them. In a similar vein, Qiu et al. [48] discovered that a few benchmarks in

DroidBench and IccBench captured multiple aspects, which made their evaluation of the

effectiveness of static taint analysis tools difficult. Therefore, they developed UBCBench and

used it in conjunction with DroidBench and IccBench in their evaluation. In contrast, this

effort focuses on measuring the representativeness of benchmark suites along with comparing

them and identifying gaps in them.

Other efforts have used API usage to categorize vulnerabilities affecting Android apps.

For example, Gorla et al. [59] used an app’s description from app markets to infer its

advertised behavior and the APIs used by the app to determine any anomalies. Similarly,

Sadeghi et al. [60] measured the likelihood of a vulnerability pattern occurring in an Android

app based on the app’s source code patterns and API usage patterns. Distinct from such

evaluations, the goal of our effort is to study benchmark suites and not Android apps or
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solutions related to Android app security.

Stack Overflow has been used in the past as a source for understanding security issues

in Android apps. Stevens et al. [61] used Stack Overflow to study the relationship between

the popularity of a permission and the number of times a permission is overused in an app.

Similarly, Vasquez et al. [62] used Stack Overflow posts related to mobile development to

understand the issues discussed by mobile app developers. In a similar vein, this effort also

used Stack Overflow to identify security-related APIs. However, Stack Overflow data was

used as an enabler and was not the focus of the evaluation.

3.9 Conclusion

In this chapter, I examined how well do existing Android app vulnerability benchmark

suites represent real world apps in terms of the manifestation of vulnerabilities. I considered

DroidBench, Ghera, ICC-Bench, and UBCBench benchmark suites and used API usage as

a metric to measure representativeness.

I discovered that these benchmark suites are representative of real-world apps. Based

on considered metrics, DroidBench was the most representative benchmark suite followed

by Ghera, UBCBench, and ICC-Bench. Finally, in the context of tool evaluations, the

results suggest that DroidBench and Ghera should be considered equally but ICC-Bench and

UBCBench could be used to complement/strengthen the evaluations that use DroidBench

and Ghera.

48



Chapter 4

Analyzing Android App Vulnerability

Detection Tools

The security of mobile apps is crucial to the safety of its users, considering the vast amount of

personal information these apps have access to and the critical tasks they perform. Hence,

there is a growing need to ensure that apps are hardened against attacks from malicious

apps. To address this need, in the last decade, researchers have developed a plethora of tools

and techniques to enable app developers to detect vulnerabilities in Android apps [18, 21].

These solutions are based on:

Static Analysis is a technique where an app’s compiled or source code is translated to an

intermediate representation (IR) conducive for analysis. The IR is further analyzed using

techniques such as control-flow, data-flow, and points-to analysis to detect vulnerabilities.

Dynamic Analysis is a technique to monitor an app’s execution in a controlled environ-

ment and collect execution traces. These traces are analyzed further to identify vulnerabili-

ties.

Despite the focus on developing tools and techniques to secure Android apps, there has

been no comprehensive effort to evaluate them. The lack of such evaluations creates a gap

between research and practice. The fact that many known vulnerabilities still occur in real-
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world apps [7, 8, 10] suggests that either existing tools and techniques are not effective in

detecting such vulnerabilities, or they are not being used by developers to secure/harden

their apps. Hence, to understand the state-of-the-art in Android app security analysis, in

this chapter, I review 64 tools and evaluate the effectiveness of 14 vulnerability detection

tools in detecting known Android app vulnerabilities. The results and observations from

this evaluation can be used by tool developers to identify gaps in their tools, app developers

to select the appropriate tools to secure their apps, and to guide future research related to

Android app security.

4.1 Motivation

Android apps are often developed by small teams with limited resources [5, 6]. Hence, they

cannot focus on all aspects of app development equally. Therefore, there is a need to develop

automatic techniques to help detect and fix vulnerabilities in apps. Further, Android app

developers are still unaware about security issues and how they transpire in Android apps

[6]. Hence, solutions related to securing Android apps need to be usable off-the-shelf with

no or minimal configuration.

In this context, numerous tools and techniques have been proposed to help app devel-

opers secure their apps. Consequently, in recent years, efforts have been made to assess

the effectiveness of the proposed solutions [18, 49, 52, 63]. However, these evaluations are

subject to the one or more of the following limitations:

1. Study tools in the reported literature without executing or using them

2. Exercise a small number of tools

3. Consider only academic tools

4. Consider tools that use a specific underlying techniques (e.g., static taint analysis)

5. Use technique specific benchmarks
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6. Use benchmarks whose representativeness has not been established

7. Use random real-world apps that have no evidence of presence/absence of vulnerabili-

ties.

Individual tool evaluations also suffer from the aforementioned limitations. Additionally,

individual tool evaluations are focused on proving the effectiveness of their tools in detecting

specific vulnerabilities [19, 20, 46]. While such evaluations are necessary from the perspective

of the tools, it does not help understand the effectiveness of existing tools in detecting

previously known vulnerabilities. Hence, the results from these evaluations does not help

app developers choose the tools appropriate to secure their apps.

Considering the limitations of existing evaluation approaches, there is a need to system-

atically evaluate the effectiveness of Android app vulnerability detection tools in detecting

known vulnerabilities. Hence, I experimented to evaluate the effectiveness of vulnerability

detection tools for Android apps. In this chapter, I present the details and results of the

experiment.

4.2 Evaluation Strategy

The first step was to collect the tools. I collected the tools from a variety of sources such as

research papers [18, 21, 63], repositories [64], and blog posts [65] that collated information

about Android security analysis solutions. From these sources, I considered 64 solutions and

classified them as follows:

1. Tools vs Frameworks: Tools detect a fixed set of security issues. While they can be

applied immediately, they are limited to detecting a fixed set of issues. On the other

hand, frameworks facilitate the creation of tools that can detect specific security issues.

While they are not immediately applicable to detect vulnerabilities and involve effort

to create tools, they enable detection of a relatively open set of issues.

2. Free vs Commercial: Solutions are available either freely or for a fee.
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3. Maintained vs Unmaintained: Solutions are either actively maintained or unmaintained

(i.e., few years of development dormancy). Typically, unmaintained solutions do not

support currently supported versions of Android. This is also true of a few maintained

solutions.

4. Vulnerability Detection vs Malicious Behavior Detection: Solutions either detect vul-

nerabilities in an app or flag signs of malicious behavior in an app. The former is

typically used by app developers while the latter is used by app stores and end users.

5. Static Analysis vs Dynamic Analysis: Solutions that rely on static analysis analyze

either source code or Dex bytecode of an app and provide verdicts about possible

security issues in the app. Since static analysis abstracts the execution environment,

program semantics, and interactions with users and other apps, solutions reliant on

static analysis can detect issues that occur in a variety of settings. However, since static

analysis may incorrectly consider invalid settings due to too permissive abstractions,

they are prone to high false positive rate.

In contrast, solutions that rely on dynamic analysis execute apps and check for security

issues at runtime. Consequently, they have a very low false positive rate. However,

they are often prone to a high false negative rate because they may fail to explore

specific settings required to trigger security issues in an app.

6. Local vs Remote: Solutions are available as executables or as sources from which ex-

ecutables can be built. These solutions are installed and executed locally by app

developers.

Solutions are also available remotely as web services (or via web portals) maintained by

solution developers. App developers use these services by submitting the APKs of their

apps for analysis and later accessing the analysis reports. Unlike local solutions, app

developers are not privy to what happens to their apps when using remote solutions.
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4.2.1 Benchmark Selection

Past efforts focused on the creation of benchmarks have considered certain criteria to en-

sure/justify the benchmarks are useful. For instance, database related benchmarks have

considered relevance, scalability, portability, ease of use, ease of interpretation, functional

coverage, and selectivity coverage [56]; web services related benchmarks have considered cri-

teria such as repeatability, portability, representativeness, non-intrusiveness, and simplicity

[66].

In a similar spirit, for evaluations of security analysis tools to be useful to tool users, tool

developers, and researchers, evaluations should be based on vulnerabilities (consequently,

benchmarks) that are valid (i.e., will result in a weakness in an app), general (i.e., do not

depend on uncommon constraints such as rooted device or admin access), exploitable (i.e.,

can be used to inflict harm), and current (i.e., occur in existing apps and can occur in new

apps).

The vulnerabilities captured in Ghera benchmarks have been previously reported in the

literature or documented in Android documentation; hence, they are valid. These vulnera-

bilities can be verified by executing the benign and malicious apps in Ghera benchmarks on

vanilla Android devices and emulators; hence, they are general and exploitable. These vul-

nerabilities are current as they are based on Android API levels that are currently supported

by Android.

Due to these characteristics and the salient characteristics of Ghera — tool and technique

agnostic, authentic, feature specific, contextual (lean), version specific, duality, and repre-

sentative — described in Chapter 2 and Chapter 3, Ghera is well-suited for this evaluation.

At the time of this evaluation Ghera had 42 benchmarks and each benchmark contained

apps with minimum API level 19 and target API level 25. Since then, Ghera has grown to 60

benchmarks and each benchmark contains apps with minimum API level 23 and target API

level 27. The API level mismatch should not be a problem since API level 27 was released

in 2019 and most vulnerability detection tools were designed for API levels 25 and less.
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4.2.2 Tool Selection

To select tools for this evaluation, I first screened the considered 64 solutions by reading their

documentation and any available resources. I rejected 5 solutions because they were not well

documented (e.g., no documentation, lack of instructions to build and use tools). This was

necessary to eliminate human bias resulting from the effort involved in discovering how to

build and use a solution (e.g., DroidLegacy [67], BlueSeal [68]). I rejected AppGuard [69]

because its documentation was not in English. I rejected 6 solutions such as Aquifer [70],

Aurasium [71], and FlaskDroid [72] intended to enforce security policy. Such solutions enforce

security policies at the platform level. Hence, they are not geared to detect vulnerabilities

in apps that run on vanilla Android. Since the focus of this study was to evaluate the

effectiveness of tools in detecting vulnerabilities known to occur in apps running on vanilla

Android, I rejected such solutions.

Of the remaining 52 solutions, I selected solutions based on the first four classifications

mentioned previously.

In terms of tools vs frameworks, I focused on solutions that could readily detect vul-

nerabilities with minimal adaptation (i.e., use it off-the-shelf) instead of having to build

an extension to detect a specific vulnerability. The rationale was to eliminate human bias

and errors involved in identifying, creating, and using the appropriate adaptations. Further,

I wanted to mimic a simple developer workflow : procure/build the tool based on APIs it

tackles and the APIs used in an app, follow its documentation, and apply it to the app.

Consequently, I rejected 16 tools that only enabled security analysis (e.g., Drozer [73], Con-

Droid [74]). When a framework provided pre-packaged extensions to detect vulnerabilities,

I selected such frameworks and treated each such extension as a distinct tool. For exam-

ple, I selected Amandroid [20] framework as it comes with seven pre-packaged vulnerability

detection extensions (i.e., data leakage, intent injection, comm leakage, password tracking,

OAuth tracking, SSL misuse, and crypto misuse) that can be used as off-the-shelf tools.

In terms of free vs commercial, I rejected AppRay [75] as it was a commercial solu-

tion. While AppCritique [76] was a commercial solution, a feature-limited version of it was
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available for free. So, I decided to evaluate the free version and did not reject AppCritique.

In terms of maintained vs unmaintained, I focused on selecting only maintained tools.

So, I rejected AndroWarn [77] and ScanDroid [78] tools as they were not updated after 2013.

In a similar vein, since I was focused on currently supported Android API levels, I rejected

TaintDroid [22] as it supported only API levels 18 or below.

In terms of vulnerability detection and malicious behavior detection, I selected only

vulnerability detection tools and rejected 6 malicious behavior detection tools.

Next, I focused on tools that could be applied as is without extensive configuration (or

inputs). The rationale was to eliminate human bias and errors involved in identifying and

using appropriate configurations. So, I rejected tools that required additional inputs to

detect vulnerabilities. Specifically, I rejected Sparta [79] as it required analyzed apps to be

annotated with security types.

Next, I focused on the applicability of tools to Ghera benchmarks. I considered only

tools that claimed to detect vulnerabilities stemming from APIs covered by at least one

category in Ghera benchmarks. For such tools, based on my knowledge of Ghera benchmarks

and shallow exploration of the tools, I assessed if the tools were indeed applicable to the

benchmarks in the covered categories. The shallow exploration included checking if the APIs

used in Ghera benchmarks were mentioned in any lists of APIs bundled with tools (e.g., the

list of information source and sink APIs bundled with HornDroid and FlowDroid). In this

regard, I rejected 2 tools (and 1 extension): a) PScout [16] focused on vulnerabilities related

to over/under use of permissions and the only permission related benchmark in Ghera was

not related to over/under use of permissions and b) LetterBomb and Amandroid’s OAuth

tracking extension (Amandroid5) as they were not applicable to any Ghera benchmark.1

Of the remaining 23 tools, for tools that could be executed locally, I downloaded the

latest official release of the tools (e.g., Amandroid).

If an official release was not available, then I downloaded the most recent version of the

tool (executable or source code) from the master branch of its repository (e.g., AndroBugs

1While Ghera did not have benchmarks that were applicable to some of the rejected tools at the time of
this evaluation, it currently has such benchmarks that can be used in subsequent iterations of this evaluation.
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[80]). I then followed the tool’s documentation to build and set up the tool. If I encountered

issues during this phase, then I tried to fix them; specifically, when issues were caused by

dependency on older versions of other tools (e.g., HornDroid failed against real-world apps

as it was using an older version of apktool, a decompiler for Android apps), incorrect

documentation (e.g., documented path to the DIALDroid[81] executable was incorrect), and

incomplete documentation (e.g., IccTA’s documentation did not mention the versions of

required dependencies). The fixes were limited to being able to execute the tools and not to

affect the behavior of the tool. I stopped trying to fix an issue and rejected a tool if I could

not figure out a fix by interpreting the error messages and by exploring existing publicly

available bug reports. This resulted in rejecting DidFail [82].

Of the remaining tools, I tested 18 local tools using the benign apps from randomly

selected Ghera benchmarks A.2.1, A.2.2, A.8.1, and A.8.9 and randomly selected apps Offer

Up, Instagram, Microsoft Outlook, and My Fitness Pal’s Calorie Counter from Google Play

store. Each tool was executed with each of the above apps as input on a 16 core Linux

machine with 64GB RAM and with 15 minute time out period. If a tool failed to execute

successfully on all of these apps, then I rejected the tool. Specifically, I rejected IccTA and

SMV Hunter [83] because they failed to process the test apps by throwing exceptions. I

rejected CuckooDroid [84] and DroidSafe [85] because they ran out of time or memory while

processing the test apps.

For 9 tools that were available only remotely, I tested them by submitting the above test

apps for analysis. If a tool’s web service was unavailable, failed to process all of the test

apps, or did not provide feedback within 30–60 minutes, then I rejected it. Consequently, I

rejected 4 remote tools (e.g., TraceDroid [86]).

Table 4.1 lists the fourteen tools selected for evaluation along with their canonical refer-

ence. For each tool, the table reports the version (or the commit id) selected for evaluation,

dates of its initial publication and latest update, whether it uses static analysis (S) or dy-

namic analysis (D) or both (SD), whether it runs locally (L) or remotely (R), and the time

spent to set up tools on a Linux machine.
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Tool Commit Id / Updated S/D L/R A/N H/E Set Up
Version [Published] Time (sec)

Amandroid [20] 3.1.2 2017 [2014] S L A E 3600
AndroBugs [80] 7fd3a2c 2015 [2015] S L N H 600
AppCritique [76] ? ? [?] ? R N ?
COVERT [14] 2.3 2015 [2015] S L A E 2700
DevKnox [87] 2.4.0 2017 [2016] S L N H 600
DIALDroid[81] 25daa37 2018 [2016] S L A E 3600
FixDroid [88] 1.2.1 2017 [2017] S L A H 600
FlowDroid [19] 2.5.1 2018 [2013] S L A E 9000
HornDroid [51] aa92e46 2018 [2017] S L A E 600
JAADAS [89] 0.1 2017 [2017] S L N H/E 900
MalloDroid [46] 78f4e52 2013 [2012] S L A H 600
Marvin-SA2[90] 6498add 2016 [2016] S L N H 600
MobSF [91] b0efdc5 2018 [2015] SD L N H 1200
QARK [92] 1dd2fea 2017 [2015] S L N H 600

Table 4.1: Evaluated vulnerability detection tools. “?” denotes unknown information. S
and D denote use of static analysis and dynamic analysis, respectively. L and R denote
the tool runs locally and remotely, respectively. A and N denote academic tool and non-
academic tool, respectively. H and E denote the tool uses shallow analysis and deep analysis,
respectively. Empty cell denotes non-applicable cases.

4.3 Experiment

Every selected vulnerability detection tool (including pre-packaged extensions treated as

tools) was applied in its default configuration to the benign app and the secure app separately

of every applicable Ghera benchmark (given in column 9 in Table 4.4). The influence of API

level on the performance of tools was controlled by using APKs that were built with minimum

API level of 19 and target API level of 25 (i.e., these APKs can be installed and executed

with every API level from 19 thru 25).

The tools were executed on a 16 core Linux machine with 64GB RAM and with 15

minutes time out. For each execution, I recorded the execution time and any output reports,

error traces, and stack traces. I then examined the output to determine the verdict and its

veracity pertaining to the vulnerability.
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4.3.1 Ensuring Fairness

Consider only supported versions of Android: FixDroid was not evaluated on secure

apps in Ghera because Android Studio version 3.0.1 was required to build the secure apps in

Ghera and FixDroid was available as a plugin only to Android Studio version 2.3.3. Further,

since benchmarks A.1.3, A.2.13, A.2.14, and A.6.4 were added after Ghera was migrated

to Android Studio version 3.0.1, FixDroid was not evaluated on these benchmarks; hence,

FixDroid was evaluated on only 38 Ghera benchmarks.

Provide inputs as required by tools: COVERT and DIALDroiddetect vulnerabilities

stemming from inter-app communications (e.g., collusion, compositional vulnerabilities). So,

each of these tools was applied in its default configuration to 33 Ghera benchmarks that

included malicious apps. For each benchmark, the malicious app was also provided as input

together with the benign app and the secure app.

Consider multiple operational modes: JAADAS operates in two modes: fast mode in

which only intra-procedural analysis is performed and full mode in which both intra- and

inter-procedural analyses are performed. Since the modes can be selected easily, JAADAS

was evaluated in both modes.

QARK can analyze the source code and the APK of an app. It decompiles the DEX

bytecodes in an APK into source form. Since the structure of reverse engineered source

code may differ from the original source code, which could affect the accuracy of QARK’s

verdicts, both APKs and source code were used to evaluate QARK.

Consider only supported API levels: Since the inception and evolution of tools are

independent of the evolution of Android API levels, a tool may not support an API level

(e.g., the API level is released after the tool was last developed/updated) and, hence, it may

fail to detect vulnerabilities stemming from APIs introduced in such unsupported API levels.

To control for this effect, I identified the API levels supported by tools.

Of the 14 tools, only 3 tools provide some information about the supported API levels
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Cumulative # of Considered Vulnerabilities

Year Crypto ICC Net Perm Store Sys Web Total # Tools API Levels

2011 0 7 0 0 2 0 0 9 0
2012 0 7 0 0 2 0 4 13 0
2013 4 7 0 0 2 0 7 20 1 19
2014 4 11 0 1 6 4 8 34 1 21
2015 4 14 1 1 6 4 9 39 3 22, 23
2016 4 14 0 1 6 4 9 39 4 24, 25
2017 4 14 2 1 6 4 9 40 9
2018 0 16 2 1 6 4 9 42 133

Table 4.2: Cumulative number of considered vulnerabilities discovered until a specific year
(inclusive). Tools column is cumulative number of evaluated tools published until a specific
year (inclusive). API Levels column lists the API levels released in a specific year.

(Android platform versions). Specifically, JAADAS documentation states that JAADAS

will work for all Android platforms (as long as the platform version is provided as input).

Amandroid was successfully used to process ICC-Bench benchmarks that target API level 25

[20]; hence, I inferred that Amandroid supports API level 25 and below. The DIALDroidtool

repository contains versions of Android platform corresponding to API levels 3 thru 25 that

are to be provided as input to the tool; hence, I inferred DIALDroidsupports API levels 19

thru 25.

In the absence of such information, I conservatively assumed the tools supported API

levels 19 thru 25 and this assumption is fair because 1) API level 19 and 25 were released

in October 2013 and December 2016, respectively, (see API Levels column in Table 4.2), 2)

all tools were last updated in 2013 or later (see Updated column in Table 4.1), and 3) every

Ghera benchmark APK used in the evaluation were built to run on every API level 19 thru

25.

Consider only applicable categories of vulnerabilities: While each tool could be

evaluated against all of 42 considered known vulnerabilities, such an evaluation would be

unfair as all tools are not geared to detect all kinds of vulnerabilities (e.g., cryptography

related vulnerability vs storage related vulnerability). Further, during app development,

tools are often selected based on their capabilities pertaining to platform features/APIs
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API (Vulnerability) Categories

Tool Crypto ICC Net Perm Store Sys Web

Amandroid 3 3 3 3 3

AndroBugs * 3 3 3 3 3 3 3

AppCritique * 3 3 3 3 3 3 3

COVERT 3 3 3 3 3 3 3

DevKnox * 3 3 3 3 3 3 3

DIALDroid 3 3 3 3 3 3 3

FixDroid 3 3 3 3 3 3 3

FlowDroid 3 3 3

HornDroid 3 3 3 3 3

JAADAS * 3 3 3 3 3 3 3

MalloDroid 3

Marvin-SA * 3 3 3 3 3 3 3

MobSF * 3 3 3 3 3 3 3

QARK * 3 3 3 3 3 3 3

Table 4.3: Applicability of vulnerability detection tools to various benchmark categories in
Ghera. “3” denotes the tool is applicable to the vulnerability category in Ghera. Empty cell
denotes non-applicable cases. “*” identifies non-academic tools.

being used in the app.

To control for this effect, for each tool, I identified the categories of vulnerabilities that it

was applicable to and evaluated it against only the vulnerabilities from these categories. Even

within categories, I ignored vulnerabilities if a tool was definitively inapplicable to them. For

example, MalloDroid tool was evaluated only against SSL/TLS related vulnerabilities from

Web category as the tool focuses on detecting SSL/TLS related vulnerabilities; see entry in

Web column for MalloDroid in Table 4.4. For each tool, Table 4.3 reports the applicable

Ghera benchmark categories.

Consider the existence of vulnerabilities: Expecting a tool to detect vulnerabilities

that did not exist when the tool was developed/updated would be unfair. In terms of the

purpose of this evaluation, this is not a concern as the evaluation is less focused on individual

tools and more focused on assessing the effectiveness of the existing set of vulnerability

detection tools against considered known vulnerabilities. In terms of the execution of this

evaluation, this is not a concern as almost all of the considered vulnerabilities (39 out of 42)
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were discovered before 2016 (see Total column in Table 4.2) and almost all of the evaluated

tools (at least 10 out of 14) were updated in or after 2016 (see # Tools column in Table 4.2).

4.4 Observation and Open Questions

In this section, I make interesting observations about the current state of tools. Further, I

raise open questions based on the data from the experiment, to help guide future research.

4.4.1 Tools Selection

Open Questions 1 & 2 Of the considered 64 solutions, 17 tools (including Amandroid)

were intended to enable security analysis of Android apps. This is a bit over 25% of security

analysis tools considered in this evaluation. Further, I have found these tools be useful

in my research workflow (e.g., Drozer, MobSF). Hence, studying these tools may be useful.

Specifically, exploring two mutually related questions: 1) how expressive, effective, and easy-

to-use are tools that enable security analysis? and 2) are Android app developers and security

analysts willing to invest effort in such tools? may help both tool users and tool developers.

Observation 1 I rejected 39% of tools (9 out of 23) considered in deep selection. Even

considering the number of instances where the evaluated tools failed to process certain bench-

marks (see numbers in square brackets in Table 4.4), such a low rejection rate is rather im-

pressive. This suggests tool developers are putting in effort to release robust security analysis

tools. This number can be further improved by distributing executables (where applicable),

providing complete and accurate build instructions (e.g., versions of required dependencies)

for local tools, providing complete and accurate information about execution environment

(e.g., versions of target Android platforms), and publishing estimated turn around times for

remote tools.

Observation 2 If the sample of tools included in this evaluation is representative of the

population of Android app security analysis tools, then almost every vulnerability detec-
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tion tool for Android apps relies on static analysis (i.e., 13 out of 14); see S/D column in

Table 4.1.

Observation 3 Every vulnerability detection tool publicly discloses the category of vul-

nerabilities it tries to detect. Also, almost all vulnerability detection tools are available as

locally executable tools (i.e., 13 out of 14; see L/R column in Table 4.1). So, vulnerability

detection tools are open with regards to their vulnerability detection capabilities. The likely

reason is to inform app developers how the security of apps improves by using a vulnerability

detection tool and encourage the use of appropriate vulnerability detection tools.

Observation 4 Ignoring tools with unknown update dates (“?” in column 3 of Table 4.1)

and considering the evaluation was conducted between June 2017 and May 2018, 9 out of 13

tools are less than 1.5 years old (2017 or later) and 12 out of 13 are less than or about 3 years

old (2015 or later). Hence, the selected tools can be considered as current. Consequently, the

resulting observations are highly likely to be representative of the current state of the freely

available Android app security analysis tools.

4.4.2 Vulnerability Detection Tools

Table 4.4 summarizes the results from executing tools to evaluate their effectiveness in de-

tecting different categories of vulnerabilities. In the table, the number of vulnerabilities

(benchmarks) that existed when a tool was last developed/updated before this evaluation

and the number of vulnerabilities that a tool was applied to in this evaluation is given by

Existed and Applied columns, respectively.

Every Ghera benchmark is associated with exactly one unique vulnerability v, and its be-

nign app exhibits v while its secure app does not exhibit v. So, for a tool, for each applicable

benchmark, I classified the tool’s verdict for the benign app as either true positive (i.e., v was

detected in the benign app) or false negative (i.e., v was not detected in the benign app). I

classified the tool’s verdict for the secure app as either true negative (i.e., v was not detected

in a secure app) or false positive (i.e., v was detected in a secure app). Columns TP, FN,
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and TN in Table 4.4 report true positives, false negatives, and true negatives, respectively.

False positives are not reported in the table as none of the tools except DevKnox (observe

the D for DevKnox under System benchmarks in Table 4.4) and data leakage extension of

Amandroid (observe the {1} for Amandroid1 under Storage benchmarks in Table 4.4) pro-

vided false positive verdicts. Reported verdicts do not include cases in which a tool failed

to process apps.

Observation 5 Most of the tools (10 out of 14) were applicable to every Ghera benchmark ;

see # Applicable Benchmarks column in Table 4.4. With the exception of MalloDroid, the

rest of the tools were applicable to 24 or more Ghera benchmarks. This observation is also

true of Amandroid if the results of its pre-packaged extensions are considered together.

Observation 6 Based on the classification of the verdicts, 4 out of 14 tools detected

none of the vulnerabilities captured in Ghera (“0” in TP column in Table 4.4) considering

all extensions of Amandroid as one tool. Even in case of tools that detected some of the

vulnerabilities captured in Ghera, none of the tools individually detected more than 15 out

of the 42 vulnerabilities; see the numbers in TP column and the number of N’s under various

categories in Table 4.4. This suggests, in isolation, current tools are very limited in their

ability to detect known vulnerabilities captured in Ghera.

Observation 7 For 11 out of 14 tools,4 the number of false negatives was greater than

70% of the number of true negatives; see FN and TN columns in Table 4.4.5 This proximity

between the number of false negatives and the number of true negatives suggests two possi-

bilities: most tools prefer to report only valid vulnerabilities (i.e., be conservative) and most

tools can only detect specific manifestations of vulnerabilities. Both these possibilities limit

the effectiveness of tools in assisting developers to build secure apps.

4AndroBugs, Marvin-SA, and MobSF were the exceptions.
5I considered all variations of a tool as one tool (e.g., JAADAS). FixDroid was not counted as it was not

evaluated on secure apps in Ghera.
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Observation 8 Tools make claims about their ability to detect specific vulnerabilities or

class of vulnerabilities. So, I examined such claims. For example, while both COVERT and

DIALDroidclaimed to detect vulnerabilities related to communicating apps, neither detected

such vulnerabilities in any of the 33 Ghera benchmarks that contained a benign app and

a malicious app. Also, while MalloDroid focuses solely on SSL/TLS related vulnerabilities,

it did not detect any of the SSL vulnerabilities present in Ghera benchmarks. I observed

similar failures with FixDroid. (See numbers in # Applicable Benchmarks and TP columns

for COVERT, DIALDroid, FixDroid, and MalloDroid in Table 4.4.) This suggests there is

a gap between the claimed capabilities and the observed capabilities of tools that could lead to

vulnerabilities in apps.

Observation 9 Different tools use different kinds of analysis under the hood to perform

security analysis. Tools such as QARK, Marvin-SA, and AndroBugs rely on shallow analysis

(e.g., searching for code smells/patterns) while tools such as Amandroid, FlowDroid, and

HornDroid rely on deep analysis (e.g., data flow analysis); see H/E column in Table 4.1. By

considering this aspect with the verdicts provided by the tools (see TP and FN columns in

Table 4.4), I observe tools that rely on deep analysis report fewer true positives and more

false negatives than tools that rely on shallow analysis.

Interestingly, among the evaluated tools, most academic tools relied on deep analysis

while most non-academic tools relied on shallow analysis; see H/E columns in Table 4.1 and

tools marked with * in Table 4.4.

Open Questions 3 & 4 A possible reason for the poor performance of deep analysis

tools could be they often depend on extra information about the analyzed app (e.g., a

custom list of sources and sinks to be used in data flow analysis) and I did not provide such

extra information in this evaluation. However, JAADAS was equally effective in both fast

(intra-procedural analysis) and full (intra- and inter-procedural analyses) modes, that is,

true positives, false negatives, and true negatives remained unchanged across modes. Also,

FixDroid was more effective than other deep analysis tools even while operating within
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Year Crypto ICC Net Store Web Total

2011 - 2 - - - 2
2012 - - - - - -
2013 1 - - - 1 2
2014 - 1 - 2 1 4
2015 - - 1 - - 1
2016 - - - - - -
2017 - - 1 - - 1
2018 - 2 - - - 2

Table 4.5: Number of undetected vulnerabilities discovered in a specific year. “-” denotes
zero undetected vulnerabilities were discovered.

an IDE; it was the fifth best tool in terms of the number of true positives. Clearly, in

this evaluation, shallow analysis tools seem to out perform deep analysis tools. This raises

two related questions: 3) are Android app security analysis tools that rely on deep analysis

effective in detecting vulnerabilities in general? and 4) are the deep analysis techniques used

in these tools well suited in general to detect vulnerabilities in Android apps? These questions

are pertinent because Ghera benchmarks capture known vulnerabilities and the benchmarks

are small/lean in complexity, features, and size (i.e., less than 1000 lines of developer created

Java and XML files) and yet deep analysis tools failed to detect the vulnerabilities in these

benchmarks.

Observation 10 From the perspective of vulnerabilities, every vulnerability captured by

Permission and System benchmarks were detected by some tool. However, none of the 2

vulnerabilities captured by Networking benchmarks were detected by any tool. Considering

all vulnerabilities, 12 of 42 known vulnerabilities captured in Ghera were not detected by

any tool (false negatives); see # Undetected row in Table 4.4. In other words, using all tools

together is not sufficient to detect the known vulnerabilities captured in Ghera.

In line with the observation made in Section 4.3.1 based on Table 4.2 – most of the

vulnerabilities captured in Ghera were discovered before 2016, most of the vulnerabilities

(9 out of 12) not detected by any of the evaluated tools were discovered before 2016; see

Table 4.5.

66



Open Questions 5 & 6 Of the 42 vulnerabilities, 30 vulnerabilities were detected by 14

tools with no or minimal configuration. This is collectively impressive. To build on this,

two questions are worth exploring: 5) with reasonable configuration effort, can the evalu-

ated tools be configured to detect the undetected vulnerabilities? and 6) would the situation

improve if vulnerability detection tools rejected during tools selection are also used to detect

vulnerabilities?

Observation 11 Of the 14 tools, 8 tools reported vulnerabilities that were not the focus

of Ghera benchmarks; see Other column in Table 4.4. Upon manual examination of these

benchmarks, I found none of the reported vulnerabilities in the benchmarks. Hence, with

regards to vulnerabilities not captured in Ghera benchmarks, tools exhibit a high false positive

rate.

Observation 12 To understand the above observations, I identified the relevant APIs and

security-related APIs used by the version of Ghera used in this evaluation. Relevant APIs

and security-related APIs mean the same as Considered APIs and security-related APIs

defined in Section 3.3. However, in this evaluation, security-related APIs were identified

manually and not from Stack Overflow posts as described in Section 3.3. I compared the

sets of relevant APIs used in benign apps (601 APIs) and secure apps (602 APIs). I found

that 587 APIs were common to both sets, while 14 and 15 APIs were unique to benign apps

and secure apps. When I compared security-related APIs used in benign apps (117 APIs)

and secure apps (108 APIs), 108 were common to both sets and 9 were unique to benign

apps. This suggests the benign apps (real positives) and secure apps (real negatives) are

similar in terms of the APIs they use and different in terms of how they use APIs (i.e.,

different arguments/flags, control flow context). This implies tools should consider aspects

beyond the presence of APIs to successfully identify the presence of vulnerabilities captured

in Ghera.
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Observation 13 I partitioned the set of 601 relevant APIs and the set of 117 security-

related APIs used in benign apps into three sets: 1) common APIs that appear in both

true positive benign apps (flagged as vulnerable) and false negative benign apps (flagged as

secure), 2) TP-only APIs that appear only in true positive benign apps, and 3) FN-only

APIs that appear only in false negative benign apps. The sizes of these sets in order in each

partition were 440, 108, and 53, and 60, 39, and 18, respectively. For both relevant and

security-related APIs, the ratio of the number of TP-only APIs and the number of FN-only

APIs is similar to the ratio of the number of true positives and the number of false negatives

(i.e., 108/53 ≈ 39/18 ≈ 30/12). This relation suggests, to be more effective in detecting

vulnerabilities captured in Ghera, tools should be extended to consider FN-only APIs. Since

vulnerabilities will likely depend on the combination of FN-only APIs and common APIs,

such extensions should also consider common APIs.

Observation 14 I compared the sets of relevant APIs used in the 12 false negative benign

apps (flagged as secure) and all of the secure apps (real negatives). While 491 APIs were

common to both sets, only 2 APIs were unique to benign apps. In the case of security-related

APIs, 77 APIs were common while only 1 API was unique to secure apps. This suggests,

in terms of APIs, false negative benign apps are very similar to secure apps. Consequently,

tools need to be more discerning to correctly identify benign apps in Ghera as vulnerable (i.e.,

reduce the number of false negatives) without incorrectly identifying secure apps as vulnerable

(i.e., increase the number of false positives).

Observation 15 I measured Ghera’s representativeness in terms of APIs that were used

in true positive benign apps (i.e., common APIs plus TP-only APIs) and the APIs that

were used in false negative benign apps. I considered TP-only (FN-only) APIs along with

common APIs as vulnerabilities may depend on the combination of TP-only (FN-only) APIs

and common APIs. I found that at least 83% (457 out of 548) of relevant APIs and 70%

(70 out of 99) of security-related APIs used in true positive benign apps were used in at
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least 50% of apps in the real-world app sample.6 These numbers are 84% (416 out of 493)

and 61% (48 out of 78) in case of false negative benign apps. This result suggests that the

effectiveness of tools in detecting vulnerabilities captured by Ghera benchmarks will extend to

real-world apps.

Observation 16 In terms of the format of the app analyzed by tools, all tools supported

APK analysis. A possible explanation for this is analyzing APKs helps tools cater to a wider

audience: APK developers and APK users (i.e., app stores and end users).

Observation 17 For tools that completed the analysis of apps (either normally or excep-

tionally), the median run time was 5 seconds with the lowest and highest run times being

2 and 63 seconds, respectively. So, in terms of performance, tools that complete analysis

exhibit good run times.

Observations Based on Evaluation Measures

Besides drawing observations from raw numbers, I also make observations based on evalua-

tion measures.

While precision and recall are commonly used evaluation measures, they are biased —

“they ignore performance in correctly handling negative cases, they propagate the underlying

marginal prevalences (real labels) and biases (predicted labels), and they fail to take account

the chance level performance”. So, I used informedness and markedness, which are unbiased

variants of recall and precision, respectively, as evaluation measures.

As defined by Powers, Informedness quantifies how informed a predictor is for the spec-

ified condition, and specifies the probability that a prediction is informed in relation to the

condition (versus chance) [93]. Markedness quantifies how marked a condition is for the

specified predictor and specifies the probability that a condition is marked by the predictor

(versus chance). Quantitatively, informedness and markedness are defined as the difference

6This sample is different from the sample of real-world apps discussed in Chapter 3. Here, I collected a
sample of 111K real-world apps with target API levels 19 thru 25 to match the API levels supported by the
version of Ghera used in this evaluation.

69



Tool Precision Recall Informedness Markedness

Amandroid1 0.500 0.067 0.000 0.000
Amandroid2 – 0.000 0.000 –
Amandroid3 – 0.000 0.000 –
Amandroid4 – 0.000 0.000 –
Amandroid6 – 0.000 0.000 –
Amandroid7 1.000 1.000 1.000 1.000
AndroBugs * 1.000 0.262 0.262 0.575
AppCritique * 1.000 0.167 0.167 0.545
COVERT – 0.000 0.000 –
DIALDroid – 0.000 0.000 –
DevKnox * 0.556 0.119 0.024 0.062
FixDroid 1.000 0.231 – 0.000
FlowDroid – 0.000 0.000 –
HornDroid 1.000 0.027 0.027 0.507
JAADAS * 1.000 0.143 0.143 0.538
MalloDroid – 0.000 0.000 –
Marvin-SA * 0.938 0.357 0.333 0.540
MobSF * 1.000 0.310 0.310 0.592
QARK * 1.000 0.333 0.333 0.600

Table 4.6: Precision, Recall, Informedness, and Markedness scores from tools evaluation.
“–” denotes measure was undefined. “*” identifies non-academic tools.

between true positive rate and false positive rate (i.e., TP/(TP+FN)−FP/(FP+TN)) and

the difference between true positive accuracy and false negative accuracy, (i.e., TP/(TP +

FP )− FN/(FN + TN)), respectively.7 When they are positive, the predictions are better

than chance (random) predictions. When these measures are zero, the predictions are no

better than chance predictions. When they are negative, the predictions are perverse and,

hence, worse than chance predictions.

In this evaluation, informedness is interpreted as a measure of how informed (knowledge-

able) is a tool about the presence and absence of vulnerabilities (i.e., will a vulnerable/secure

app be detected as vulnerable/secure?) and markedness as a measure of the trustworthiness

(truthfulness) of a tool’s verdict about the presence and absence of vulnerabilities (i.e., is an

app that is flagged (marked) as vulnerable/secure indeed vulnerable/secure?)

7TP, FP, FN, and TN denote the number of true positive, false positive, false negative, and true negative
verdicts, respectively.
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Table 4.6 reports the informedness and markedness for the evaluated tools. It also reports

precision and recall to help readers familiar with precision and recall but not with informed-

ness and markedness. It reports the measures for each Amandroid plugin separately as each

plugin was applied to different sets of benchmarks. It does not report measures for each

variation of JAADAS and QARK separately as the variations for each tool were applied to

the same set of benchmarks and provided identical verdicts. For tools that did not flag any

app as vulnerable (positive), markedness was undefined. Informedness was undefined for

FixDroid as it was not evaluated on secure (negative) apps.

Observation 18 Out of 13 tools, 6 tools were better informed than an uninformed tool

about the presence and absence of vulnerabilities (i.e., 0.14 ≤ informedness ≤ 0.33; see

Informedness column in Table 4.6). These tools reported a relatively higher number of true

positives and true negatives; see TP and TN columns in Table 4.4. At the extremes, while

Amandroid7 plugin was fully informed (i.e., informedness = 1.0), the remaining tools and

Amandroid plugins were completely uninformed about the applicable vulnerabilities they

were applicable to (i.e., informedness ≈ 0) as they did not report any true positives. This

suggests tools need to be much more informed about the presence and absence of vulnerabilities

to be effective.

Observation 19 Out of 14 tools, 8 tools provided verdicts that were more trustworthy than

random verdicts (i.e., 0.5 ≤ markedness; see Markedness column in Table 4.6). The verdicts

from Amandroid7 plugin could be fully trusted with regards to the applicable vulnerabilities

(benchmarks) (i.e., markedness = 1.0). The verdicts of Amandroid1 were untrustworthy

(i.e., markedness = 0). The verdicts of FixDroid cannot be deemed untrustworthy based

on markedness score because I did not evaluate FixDroid on secure apps. The remaining

tools and Amandroid plugins did not flag any apps from any of the applicable benchmarks

as vulnerable (i.e., no true positive verdicts). Unlike in the case of informedness, while there

are tools that can be trusted with caution, tools need to improve the trustworthiness of their

verdicts to be effective.
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Both the uninformedness and unmarkedness (lack of truthfulness of verdicts) of tools

could be inherent to techniques underlying the tools or stem from the use of minimal config-

uration when exercising the tools. So, while both possibilities should be explored, the ability

of tools to detect known vulnerabilities should be evaluated with extensive configuration before

starting to improve the underlying techniques.

Observation 20 In line with observation 9, in terms of both informedness and markedness,

shallow analysis tools fared better than deep analysis tools ; see H/E column in Table 4.1 and

Informedness and Markedness columns in Table 4.6. Also, non-academic tools fared better

than academic tools; see tools marked with * in Table 4.6. Similar to observation 9, these

measures also reinforce the need to explore questions 3, 4, and 5.

4.5 Threats to Validity

Internal Validity While all the tools were executed using all possible options but with

minimum or no extra configuration, I may not have used options or combinations of options

that could result in more true positives and true negatives. The same is true of extra

configuration required by certain tools (e.g., providing a custom list of sources and sink to

FlowDroid).

Personal preferences for IDEs (e.g., Android Studio over Eclipse) and flavors of analysis

(e.g., static analysis over dynamic analysis) could have biased how I addressed issues en-

countered while building and setting up tools. This could have affected the selection of tools

and the reported set up times.

I have taken utmost care in using the tools, collecting their outputs, and analyzing their

verdicts. However, bias along with commission errors (e.g., incorrect tool use, overly per-

missive assumptions about API levels supported by tools) and omission errors (e.g., missed

data) could have affected the evaluation.

All of the above threats can be addressed by replicating this evaluation; specifically, by

different experimenters with different biases and preferences and comparing their observa-
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tions with the observations documented in this dissertation and the artifacts repository (see

Section 3.7).

I used the categorization of vulnerabilities provided by Ghera as a coarse means to identify

the vulnerabilities to evaluate each tool. If vulnerabilities were mis-categorized in Ghera,

then I may have evaluated a tool against an inapplicable vulnerability or not evaluated a

tool against an applicable vulnerability. This threat can be addressed by verifying Ghera’s

categorization of vulnerabilities or individually identifying the vulnerabilities that a tool is

applicable to.

External Validity The above observations are based on the evaluation of 14 vulnerability

detection tools. While this is a reasonably large set of tools, it may not be representative of

the population of vulnerability detection tools. For example, it does not include commercial

tools, it does not include free tools that failed to build. So, these observations should

be considered as is only in the context of tools similar to the evaluated tools and more

exploration should be conducted before generalizing the observations to other tools.

In a similar vein, the above observations are based on 42 known vulnerabilities that have

been discovered by the community since 2011 and captured in Ghera since 2017. While

this is a reasonably large set of vulnerabilities and it covers different capabilities of Android

apps/platforms, it may not be representative of the entire population of Android app vulnera-

bilities. For example, it does not include different manifestations of a vulnerability stemming

from the use of similar yet distinct APIs, it does not include vulnerabilities stemming from

the use of APIs (e.g., graphics, UI) that are not part of the considered API categories, it does

not include native vulnerabilities. So, these observations can be considered as is only in the

context of the considered 42 known vulnerabilities. The observations can be considered with

caution in the context of different manifestations of these vulnerabilities. More exploration

should be conducted before generalizing the observations to other vulnerabilities.
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4.6 Evaluation Artifacts

Ghera benchmarks used in the evaluations described in this manuscript are available at

https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/src?

at=RekhaEval-3.

A copy of specific versions of offline tools used in tools evaluation along with tool output

from the evaluation are available in a publicly accessible repository: https://bitbucket.

org/secure-it-i/may2018. Specifically, vulevals and secevals folders in the repository con-

tain artifacts from the evaluation of vulnerability detection tools using benign apps and

secure apps from Ghera, respectively. The repository also contains scripts used to automate

the evaluation along with the instructions to repeat the evaluation.

To provide a high-level overview of the findings from tools evaluation, I have created a

simple online dashboard of the findings at https://secure-it-i.bitbucket.io/rekha/

dashboard.html. The findings on the dashboard are linked to the artifacts produced by

each tool in the evaluation. I hope the dashboard will help app developers identify security

tools that are well suited to check their apps for vulnerabilities and tool developers assess

how well their tools fare against both known and new vulnerabilities and exploits.

4.7 Related Work

Android security has generated considerable interest in the past few years. This is evident

by the sheer number of research efforts exploring Android security. Sufatrio et al. [21] sum-

marized such efforts by creating a taxonomy of existing techniques to secure the Android

ecosystem. They distilled the state of the art in Android security research and identified

potential future research directions. While their effort assessed existing techniques theo-

retically on the merit of existing reports and results, this effort evaluated existing tools

empirically by executing them against a common set of benchmarks; hence, these efforts are

complementary.

In 2016, Reaves et al. [49] systematized Android security research focused on application
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analysis by considering Android app analysis tools that were published in 17 top venues

since 2010. They also empirically evaluated the usability and applicability of the results

of 7 Android app analysis tools. In contrast, this study evaluated 14 tools that detected

vulnerabilities. Further, they used benchmarks from DroidBench, six vulnerable real-world

apps, and top ten financial apps from Google Play store as inputs to tools. While the

vulnerable real-world apps were likely authentic (i.e., they contained vulnerabilities), this

was not the case with the financial apps or the DroidBench benchmarks. In contrast, all

Ghera benchmarks used as inputs in this evaluation were authentic. While DroidBench

focuses on ICC related vulnerabilities and use of taint analysis for vulnerability detection,

Ghera is agnostic to the techniques underlying the tools and contains vulnerabilities related

to ICC and other features of Android platform (e.g., crypto, storage, web). While their

evaluation focused on the usability of tools (i.e., how easy is it to use the tool in practice?

and how well does it work in practice?), this evaluation focused more on the effectiveness of

tools in detecting known vulnerabilities and malicious behavior and less on the usability of

tools. Despite these differences, the effort by Reaves et al. is closely related to this work.

Sadeghi et al. [63] conducted an exhaustive literature review of the use of program

analysis techniques to address issues related to Android security. They identified trends,

patterns, and gaps in existing literature along with the challenges and opportunities for

future research. In comparison, this evaluation also exposes gaps in existing tools. However,

it does so empirically while being agnostic to techniques underlying the tools (i.e., not limited

to program analysis).

More recently, Pauck et al. [52] conducted an empirical study to check if Android static

taint analysis tools keep their promises . Their evaluation uses DroidBench, ICCBench, and

DIALDroidBench as inputs to tools. Since the authenticity of the apps in these benchmark

suites was unknown, they developed a tool to help them confirm the presence/absence of

vulnerabilities in the apps and used it to create 211 authentic benchmarks. Likewise, they

created 26 authentic benchmarks based on the real-world apps from DIALDroidBench. Fi-

nally, they empirically evaluated the effectiveness and scalability of 6 static taint analysis

tools using these 237 benchmarks. While their evaluation is similar to this evaluation in
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terms of the goals — understand the effectiveness of tools, there are non-trivial differences

in the approaches and findings. First, unlike their evaluation, this evaluation used Ghera

benchmarks which are demonstrably authentic and did not require extra effort to ensure

authenticity as part of the evaluation. Further, while their evaluation is subject to bias and

incompleteness due to manual identification of vulnerable/malicious information flows, this

evaluation does not suffer from such aspects due to the intrinsic characteristics of Ghera

benchmarks (e.g., tool/technique agnostic, authentic). Second, while they evaluated six se-

curity analysis tools, I evaluated 14 vulnerability detection tools (21 variations in total; see

Table 4.4) including three tools evaluated by Pauck et al.. Further, while they evaluated only

academic tools, this assessment considered academic tools and non-academic tools. Third,

while their evaluation focused on tools based on static taint analysis, this evaluation was

agnostic to the techniques underlying the tools. Their evaluation was limited to ICC related

vulnerabilities while our evaluation covered vulnerabilities related to ICC and other features

of the Android platform (e.g., crypto, storage, web). Fourth, while their evaluation used

more than 200 synthetic apps and 26 real-world apps, this evaluation used only 84 synthetic

apps (i.e., 42 vulnerable apps and 42 secure apps). However, since each benchmark in Ghera

embodies a unique vulnerability, this evaluation is based on 42 unique vulnerabilities. In

contrast, their evaluation is not based on unique vulnerabilities as not every DroidBench

benchmark embodies a unique vulnerability (e.g., privacy leak due to constant index based

array access vs privacy leak due to calculated index based array access).

4.8 Conclusion

When I started the evaluation, I expected many Android app security analysis tools to detect

many of the known vulnerabilities. The reasons for this expectation was 1) there has been

an explosion of efforts in recent years to develop security analysis tools and techniques for

Android apps and 2) almost all of the considered vulnerabilities were discovered and reported

before most of the evaluated tools were last developed/updated.

Contrary to my expectation, the evaluation suggests that most of the tools and techniques
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are able to independently detect only a small number of considered vulnerabilities. Further,

all tools together are unable to detect all of the considered vulnerabilities.

These observations suggest if current and new security analysis tools and techniques are

to be helpful in securing Android apps, then they need to be more effective in detecting vul-

nerabilities; specifically, starting with known vulnerabilities as a large portion of real-world

apps use APIs associated with these vulnerabilities. A two-step approach to achieve this is

1) build and maintain an open, free, and public corpus of known Android app vulnerabilities

in a verifiable and demonstrable form and 2) use the corpus to continuously and rigorously

evaluate the effectiveness of Android app security analysis tools and techniques.
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Chapter 5

SeMA: A Development Methodology

to Secure Android Apps

Android apps have become an integral aspect of modern-day living. With the growing use

of these apps, it is vital to secure them. Existing approaches to secure Android apps are cu-

rative, i.e., they are aimed at detecting vulnerabilities after they are introduced. Identifying

and fixing vulnerabilities after they occur increase the cost of development. Consequently,

there has been a growing call to integrate security into every phase of the software devel-

opment life-cycle. In a 2014 study, Green and Smith argued that to build secure software,

developers need support in various areas ranging from safer programming languages to better

security testing tools [41]. Therefore, given the current landscape of Android app security

and to support the call for secure software development, there is scope for exploring an al-

ternative approach aimed at preventing vulnerabilities from occurring as opposed to curing

them. In this chapter, I introduce SeMA, a development methodology based on existing

design artefacts that can be used to build apps with verifiable security guarantees.
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5.1 Motivation

In the last decade, researchers have developed a plethora of tools and techniques to help

detect vulnerabilities in Android apps. Even so, apps with vulnerabilities find their way to

app stores because app developers do not use these tools, or the tools are ineffective. The

latter reason is supported by the findings presented in Chapter 4. Additionally, Pauck et

al. [52] assessed six prominent taint analysis tools aimed at discovering vulnerabilities in

Android and found tools to be ineffective in detecting vulnerabilities in real-world apps.

Existing approaches to secure Android apps are curative (i.e., detect vulnerabilities after

they occur). Identifying and fixing a vulnerability in a curative manner increases the cost

of development [94]. Therefore, given the current landscape of Android app security, I am

proposing a preventive approach that can help prevent the occurrence of vulnerabilities in

apps (as opposed to curing apps of vulnerabilities).

SeMA is based on an existing mobile app design technique called storyboarding. It treats

security as a first-class citizen in the design phase and enables analysis and verification of

security properties in an app’s design. I demonstrate that SeMA can help prevent 49 of the

60 vulnerabilities captured in the Ghera benchmark suite (described in Chapter 2), which is

more than the vulnerabilities collectively detected by tools evaluated in Chapter 4. Further

a usability study with ten professional developers shows that SeMA helps reduce the time

to develop an app and enables developers to prevent known vulnerabilities in their apps.

5.2 Background

SeMA borrows heavily from Model-Driven Development (MDD) and UX design techniques

for Android apps.

Model Driven Development (MDD) In MDD, software is developed by iteratively

refining abstract and formal models [37]. A model is meant to capture the application’s

behavior and is expressed in a domain-specific language (DSL). Apart from models, the
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domain-specific platform is a crucial entity in MDD. The domain-specific platform provides

frameworks and APIs to enable easy refinement of a model into a platform-specific imple-

mentation. Since every aspect of an application can seldom be specified in the DSL, the

resulting implementation is often extended with additional code; mostly, the business logic

of the application.

Today, numerous tools exist to enable MDD in various domains. For example, Amazon

uses TLA+ to develop web services [95, 96]. Tools like Alloy [97], UML/OCL [98], and

UMLSec [99] help create and analyze models of software behavior, which form the basis for

further development.

Similar approaches have been explored to simplify the development of mobile apps and

reduce technical complexity and development costs. For example, Heitkotter et al. [100]

developed MD2, an MDD framework for making cross-platform apps. In this framework, a

developer can describe an app is a platform-independent textual DSL and eventually generate

platform-specific source code from the specification. Brambilla and others [101, 102] extended

the Information Flow Modeling Language (IFML), a standard for depicting UI behavior, to

enable the specification of a mobile app’s GUI in a platform-independent manner. MobML is

a collaborative framework for the design and development of data-intensive applications [103].

It offers four modeling languages, each addressing a different aspect of a mobile app (e.g.,

Navigation, UI, Content, and Business Logic), along with a code generator that translates

the models into source code for the target platform. Vaupel et al. [104] propose a model-

driven approach for developing mobile business apps that support the configuration of user

role variants. In this approach, app variants are generated for each user role, which are then

configured. Mobile Apps Generator or MAGS is a UML-based methodology that enables

MDD for mobile apps [105]. It enables the specification of an app’s requirements, structure,

and behavior via use case diagrams, UML class diagrams, and UML state machines. Further,

it generates a platform-specific implementation based on the UML models. Francese and

others propose modeling an app’s data-flow, control-flow, and user interactions in a finite

state machine [106] and translating the finite state machine to non-native code that can

be further modified by developers using cross-platform app development frameworks such

80



as PhoneGap. AXIOM is a model-driven methodology that uses the Abstract Model Tree

(AMT) representation for modeling platform-independent app behavior and requirements

[107]. This representation forms the basis for code generation.

In addition to the academic efforts described above, a few commercial efforts have also

explored MDD in the mobile app development space. For instance, the Mendix App Platform

allows developers to visually describe various app components and execute those models in a

runtime environment [108]. The IBM Rational Rhapsody provides developers with a visual

representation of the Android framework API [109]. Developers can use these representations

to create class diagrams of an app and execute them in a runtime environment.

Security Requirements Engineering Since MDD advocates developing software through

iterative modeling, we could consider security requirements in MDD. This idea is very similar

to the framework proposed by Hayley et al. [110] to elicit and analyze security requirements.

The framework offers capabilities to define security requirements, context, and assumptions

of a system along with capabilities to validate the requirements via formal and informal

structured arguments. Further, this idea has been explored by recent approaches to reason

about security of systems. For example, Basin et al. [111] proposed SecureUML for formally

specifying access control requirements. They used these models to generate security archi-

tectures for distributed applications. Secure Tropos is a software development methodology

that combines requirements engineering concepts with security-related concepts to aid the

design and development of secure software systems [112]. DIGS is a framework to help re-

quirements analysts define security goals and verify the completeness and correctness of the

requirements w.r.t the defined goals [113].

Storyboarding Android app development teams use storyboarding to design an app’s

navigation [114, 115]. A storyboard is a sequence of screens and transitions between the

screens. It serves as a model for the user’s observed behavior in terms of screens and transi-

tions. Numerous tools such as Xcode [116], Sketch [117], and Android’s JetPack [118] help

express a storyboard digitally. The storyboarding process is participatory in nature because
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it allows designers to get feedback from potential users about the features captured in the

storyboard and from developers about the feasibility of implementing those features. How-

ever, traditional storyboards cannot capture an app’s behavior (beyond UI and navigational

possibilities). This limitation of storyboards hinders collaboration.

MDD with Storyboarding Existing MDD approaches are based on software architec-

ture/design artifacts (e.g., UML diagrams) [37, 111, 112, 119]. While storyboards are struc-

turally similar to these artifacts, storyboards cannot capture app behaviors that are crucial

to enable model driven development of mobile apps. To remedy this situation, storyboards

can be extended with capabilities to capture an app’s behavior and then used as models of

apps.

This adaptation offers numerous benefits. First, since storyboards are now an integral

part of mobile app development IDEs [116, 118], storyboard based MDD can seamlessly

fit into the existing mobile app development life cycle. Second, an extended storyboard

can serve as a common substrate for collaboration between designers and developers to

specify an app’s behavior along with its UI and navigational features. Third, an extended

storyboard can serve as a basis for formal analysis of an app’s behavior. The abstractness

of the models helps with the analysis because analyzing behaviors captured in an abstract

model is relatively easier than extracting and analyzing the behaviors captured in code.

Finally, the storyboard can serve as a reference for an app’s behavior when auditing the

app’s implementation.

5.3 The Methodology

The proposed methodology, SeMA, enables the reasoning and verification of security prop-

erties of an app’s storyboard via iterative refinement. The development process of SeMA is

shown in Figure 5.2. The process begins with a developer sketching the initial storyboard of

an app as shown in Figure 5.1. The developer then extends the storyboard with the app’s

behavior and checks if the behaviors satisfy various pre-defined security properties. The
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Figure 5.1: Screenshot of the initial storyboard in Android Studio

developer may repeat the previous steps to revise and refine the behaviors. Once the story-

board has captured the behavior as intended by the developer while satisfying pre-defined

security properties, the developer generates an implementation from the storyboard with a

push of a button. As the final step, the developer adds business logic to the implementation

via hooks provided in the generated code.

5.3.1 Extended Storyboard

A traditional storyboard used in the design of mobile apps is composed of screens and tran-

sitions between screens. A screen is a collection of named widgets that allow the user to

interact with the app (e.g., clicking a button). A transition (edge) between two screens de-

picts a navigation path from the source screen to the destination screen. The basic structure

of a storyboard defines the navigational paths in an app.

For example, Figure 5.3 shows the traditional storyboard of an app with four screens:

Messenger, Contacts, MsgStatus, and SaveStatus. Starting from the Messenger screen, a

user can either add contact numbers to the app via Contacts screen or send a message to all

saved contact numbers.
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Figure 5.2: A schematic of the steps in SeMA
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Figure 5.3: Diagrammatic representation of the initial storyboard
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Messenger

Send

Add

Contacts
{“sema://home/{y}”, 
“sema://office/{y}”}

Phone = y

Save

SaveInPhone

MsgStatus

Status = 
“MsgSent”

Send.click and 
sendMsg(SMS.send, 
getContacts(INT_STORE.read, “contacts.txt”))

Non-boolean 
operation

Resource

Operation 
Argument

Add.click

User
Predicate

SaveStatus

Status = 
dispMsg(x)

Save.click and 
savePhone(INT_STORE.write, 

“contacts.txt”, Phone)
param x = PhoneBoolean 

operation

PhoneApp
app = “android.phone”

“android://view/”

SaveInPhone.click
param z = Phone

Input 
parameter

custom resource 
NOTIFICATION_MGR 
access=“user”
{
    NOTIFY param x ->
      notify(x)
}

app = “sema.app.msngr”

Figure 5.4: Example of an extended storyboard. The bubbles are not part of the storyboard.
They help the reader understand the storyboard entities.

A traditional storyboard does not support the specification of app behavior. Hence, I

propose the following extensions to traditional storyboards to enable the specification of

app behaviors in storyboards (i.e., enrich a traditional storyboard as in Figure 5.3 into an

extended storyboard as in Figure 5.4).

App Identity Every storyboard has an app attribute, which is a unique string constant

used to identify the app described by the storyboard.

Extensions to Screens Screens are extended with a mandatory name, optional input

parameters (in green in Figure 5.4), and optional URIs (in purple in Figure 5.4).

Input parameters of a screen are similar to parameters of a function in mainstream

programming. Input parameters bind to the values (arguments) provided when the screen

is activated by either another screen in the app via an incoming transition or an app via the

screen’s URI.

A URI associated with a screen can be used to access the screen from outside the app.

A URI can have input parameters; similar to query parameters in web URLs. URI input

85



parameters serve as input parameters of the screen. All URIs associated with a screen must

have the same set of input parameters. For example, both URIs associated with the Contacts

screen in Figure 5.4, have the input parameter y. External apps accessing a screen via its

URI must provide the arguments corresponding to the URI’s input parameters. Every URI

without its parameters must be unique in an app.

Proxy Screens of External Apps Apps often interact with external apps. To capture

this interaction, proxy screen representing a screens of an external app can be included an

extended storyboard of an app; see PhoneApp in Figure 5.4. Such proxy screens have a

mandatory name, a mandatory URI, and an optional app attributes. If app is specified in

a proxy screen, then the proxy screen denotes the screen identified by the URI in the app

named app. If app is not specified, then the proxy screen denotes any screen identified by

the URI in an app installed on the device and determined by Android.

Extensions to Widgets Widgets are extended with a mandatory value that can be as-

signed by the developer (e.g., in labels), entered by the user (e.g., in fields), provided by an

input parameter of the containing screen (e.g., when the screen is activated by a transition),

or returned by an operation. Based on the displayed content, widgets can be of different types

(e.g., a label and text widget display plain text while a web widget displays web content).

Further, depending on the widget’s type, a widget can be configured with a pre-defined set

of rules that regulate the data displayed in a widget. For example, a WebView widget can

be configured with a whitelist of trusted URL patterns (via trusted-patterns attribute) to

display content only from URLs in the whitelist.

Resources Android provides apps with resources with different capabilities (e.g., storage,

networking). Hence, to complement this aspect, storyboards are extended with a pre-defined

set of resources with specific capabilities that can be used by the apps being designed. 1

Android apps can offer UI-less services to other apps (e.g., broadcast receivers, content

providers). Such services are denoted by custom resources in storyboards. A custom resource

1The current realization of SeMA supports a subset of pre-defined resources offered by Android.
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offers capabilities that can be used by apps installed on the device. Each custom resource

has a mandatory identifier that is unique to the app. Each capability of a resource has a

mandatory identifier that is unique to the resource. Also, each capability that has security

implications can be marked as privileged. Access to a resource and its capabilities can be

controlled via the access attribute of the resource. This attribute can take on one of the

following three values: all implying any app can be accessed the resource/capability, user

implying user must grant a specific permission to access the resource/capability, and own

implying only the resource defining app x or an app that shares the digital signature of

app x. For example, in Figure 5.4, NOTIFICATION MGR is a custom resource that offers

NOTIFY capability with a notify operation. Based on its access attribute, a client will need

to seek the user’s permission to use its NOTIFY capability.

Operations In an extended storyboard, an operation indicates a task to be performed

(e.g., read from a file, get contents from a web server). An operation has a name, returns

a value, may have input parameters, and may use a capability (provided by a resource). An

operation is used by mentioning its name along with arguments and any required capabilities.

For example, in Figure 5.4, operation savePhone is used to save data in the device’s internal

storage by using the write capability of the internal storage device exposed as the resource

INT STORE. A use of an operation introduces (declares) it in the storyboard. An operation

is defined in the generated implementation (described in Section 5.3.5). Use of operations

must be consistent (i.e., a non-boolean operation cannot be used in a boolean value position).

Extension to Transitions Transitions between screens can be adorned with constraints

that when satisfied enable/trigger a transition. A constraint is a conjunction of a user action

(e.g., click of a button) and a set of boolean operations. A constraint is satisfied when the

user action is performed (e.g., save button is clicked) and every boolean operation evaluates

to true. For example, in Figure 5.4, the transition from Contacts screen to SaveStatus screen

is taken only when the user clicks the Save button and the savePhone operation evaluates to

true, that is, the value of Phone is successfully saved in “contacts.txt”, a file on the internal
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storage of the device.

As part of a transition, arguments are provided to the input parameters of the destination

screen (in green 5.4). An argument can be a literal specified in the storyboard, a value

available in the source screen of the transition (e.g., value of a contained widget, input

parameter to the screen), or a value returned by an operation. Further, every transition

to a screen must provide values (arguments) for every input parameter of that screen. For

example, if there are two transitions t1 and t2 to screen s with input parameters x and y,

then arguments for both x and y must be provided along both t1 and t2.

Multiple outgoing transitions from a screen may be simultaneously enabled when their

constraints are not mutually exclusive. Hence, to handle such situations, all outgoing tran-

sitions from a screen must be totally ordered; see Contacts screen in Figure 5.4. The im-

plementation derived from the storyboard will evaluate the constraints according to the

specified order of transitions and take the first enabled transition.

5.3.2 A Formal Specification of SeMA

This section formally defines the syntax and semantics of the extended storyboard, along

with progress and safety properties guaranteed by the semantics.

Syntax

The syntax domains and the meta-variables that range over the syntax domains used to

specify the storyboard language’s formal syntax are defined in Table 5.1.

Assume that the syntactic structure of values, identifiers, names, and URI strings is given.

For example, identifiers consist of non-empty string of letters. The remaining syntactic sets

are defined inductively via formation rules shown below.

The meta-variables can be sub-scripted or primed e.g. s′, s0 stands for an element in the

set S. The symbol ? is used to denote an optional syntactic construct. The formation rules

are presented in a variant of BNF (Backus-Naur form) in Figure 5.5.
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bv ∈ BV, BV = {true, false} v ∈ V, non-boolean values
app ∈ APP, apps appid ∈ APPID, app identifiers
vid ∈ VID, screen parameter identifiers wid ∈ WID, widget identifiers
sid ∈ SID, screen identifiers a ∈ ARG, operation arguments
s ∈ S, screens ps ∈ PS, proxy screens
w ∈ W, widgets wt ∈ WT, widget types
tr ∈ TR, transitions b ∈ B, boolean expressions
r ∈ R, resources rn ∈ RN
f ∈ F, operations p ∈ P, screen parameters
fn ∈ FN, operation identifiers tid ∈ TID, transition identifiers
u ∈ U, screen URIs us ∈ US, URI strings
c ∈ C, resource capabilities cn ∈ CN, capability names
g ∈ G, gestures.

Table 5.1: Syntax Domain

app ::= appId s r?

s ::= screen sid u? w tr? | proxy safe? sid appId? us

w ::= safe? wt wid (v | f | vid) | w0w1

wt ::= TextView | EditText | Button |WebView

f ::= fun fn (rn.cn)? a?

r ::= (access all | user | own) resource rn c | r0r1

c ::= priv? cn f | c0c1

a ::= (safe? v | vid | wid | f ) | a0a1

tr ::= transition tid dest sid cond ua (and b)? p? | tr0tr1

ua ::= wid.g

g ::= click | swipe | drag

p ::= param vid (wid | vid0 | v | f ) | p0p1

u ::= us | us/k | u0u1

k ::= vid | k0k1

b ::= bv | f | b0 and b1 | b0 or b1 | not b

Figure 5.5: Formation Rules
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Semantics

I present the small-step operational semantics of a storyboard in SeMA. Before, describing

the semantics, I introduce the function and operators in the meta-language that will be

needed to understand the semantics.

1. φ : ID → SID, where ID = V ID ∪WID is a function that is used to keep track of

the screen associated with a given widget or variable identifier. For a widget identifier

wid ∈ WID, it returns a screen identifier sid where wid is a widget in sid. For a

variable identifier vid ∈ V ID, it returns a screen identifier sid such that vid as an

input parameter of sid.

2. gen(id, sid) is an operator that takes a pair (id, sid) : id ∈ ID, sid ∈ SID and returns

a new id′ ∈ ID.

3. σ : ID ⇀ V is a partial function that maps IDs to Values and is used to denote

the state of the app. This function keeps track of the values assigned to widget and

variable identifiers in a screen.

4. init : APPID → SID is a function that maps an appId to the start screen identifier

sid of an app. The start screen of an app is the screen that the user sees when the app

is started for the first time. This function returns the screen ID in an app that needs

to be displayed when the app is started.

5. eval : F → X, where X = V ∪ BV is a function that returns a non-boolean value or

a boolean value for an operation f ∈ F . This function interprets an operation used in

the storyboard.

6. evalUriVar : ID ⇀ V is a partial function that returns the value associated with a

variable identifier associated with the URI of a screen. The value is provided by an

external app that uses the URI to trigger the corresponding screen. If no external app

provides a value for a variable identifier id, then evalUriV ar(id) =⊥.
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7. outTr : SID → TR is a function that returns all outgoing transitions tr ∈ TR from a

screen sid ∈ SID.

8. occur : UA → BV is a predicate that is true if the user performed a gesture (e.g.,

button click) and is false if the gesture was not performed. This predicate is used to

capture any gestures a user may perform on the widgets in a screen visible to the user.

9. validScr : (SID)→ BV is a predicate that is true if a given sid ∈ SID is the ID of a

screen in the app; and false otherwise.

10. compr : (h, h′)→ BV is a predicate that is true if ∀x ∈ dom(h) : (h(x) = v∧h′(x) =⊥

) ∨ (h(x) =⊥ ∧h′(x) = v); false otherwise.

11. stop : (APPID) → BV is a predicate that is true if an app with appId ∈ APPID

is moved to the background or is killed explicitly by the user or Android; and false

otherwise.

12. ρ : (RN,CN) → BV is a predicate that is true if a capability identifier cn ∈ CN

offered by a resource identifier rn ∈ RN is defined; and false otherwise.

13. erase(h, h′) is a binary operator that takes two partial functions h,h′ and returns

another partial function g such that ∀x ∈ dom(h′) : g(x) = h′(x), but g(x) =⊥ when

h(x) 6=⊥ ∧h′(x) 6=⊥. The operator is required to modify the state of the app, σ, when

the transition to a screen is taken.

14. eraseK(h, h′) is a binary operator that takes two partial functions h,h′ and returns

another partial function g such that ∀x ∈ K,K ⊆ dom(h′) : g(x) = h′(x), but g(x) =⊥

when h(x) 6=⊥ ∧h′(x) 6=⊥. The operator is used to change the state of the app, σ,

when a transition from a screen to itself is taken.

In addition to the meta-functions and meta-operators, I assume that the custom resources

defined in a storyboard are parsed beforehand and stored as the app’s custom resources.

Hence, resource definitions are not explicitly described in the semantics presented below.
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init(appId) = sid

〈appId s r, (⊥, σ)〉 → 〈appId s r, (sid, σ)〉
(5.1)

stop(appId) = true

〈appId s r, (sid, σ)〉 → (⊥, erase(σ, σ))
(5.2)

stop(appId) = false 〈s, (sid, σ)〉 → (sid′, σ′)

〈appId s r, (sid, σ)〉 → 〈appId s r, (sid′, σ′)〉
(5.3)

Table 5.2: App-related Semantic Rules.

Every syntactic construct defined in Section 5.3.2 is evaluated in a configuration of the

form (sid, σ), where sid denotes the current screen visible to the user of the app and σ

denotes the state of the app when the user is at screen sid. The initial configuration of the

app (⊥, σ).

App-related rules The rules listed in Table 5.2 describe an app’s behavior when a user

starts an app, interacts with the app, or closes the app.

When an app is started, as per rule 5.1, it moves from its initial configuration to a

configuration where the current screen is set to sid ∈ SID. sid is obtained from the meta-

function init.

As per rule 5.2, if an app is stopped by the user or Android, then the terminal config-

uration (⊥, σ), such that ∀x ∈ dom(σ) : σ(x) =⊥, is reached. This configuration indicates

that no screen of the app is visible to the user and the state of the app is undefined.

As per rule 5.3, an app in a configuration (sid, σ) moves to a new configuration if a screen

sid in the app changes the configuration.

Screen-related rules. The rules listed in Table 5.3 apply to an app’s screens. They are

informally described in Section 5.3.1 as screen extensions.

Rule 5.4 is applicable when the app is in a configuration (sid, σ) and sid is the identifier
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〈s0, (sid, σ)〉 → (sid′, σ′)

〈s0s1, (sid, σ)〉 → (sid′, σ′)
(5.4)

〈s1, (sid, σ)〉 → (sid′, σ′)

〈s0s1, (sid, σ)〉 → (sid′, σ′)
(5.5)

〈w, (sid, σ)〉 → (sid, σ′) 〈tr, (sid, σ′)〉 → (sid′, σ′′)

〈screen sid u w tr, (sid, σ)〉 → (sid′, σ′′)
(5.6)

〈w, (sid, σ)〉 → (sid, σ′)

〈screen sid u w , (sid, σ)〉 → (sid, σ′)
(5.7)

〈proxy sid appId u, (sid, σ)〉 → (sid, σ) (5.8)

Table 5.3: Screen-related Semantic Rules.

of the first screen s0 in the sequence s0s1.

Rule 5.5 is applicable when the app is in a configuration (sid, σ) and sid is the identifier

of some screen in the sequence s0s1.

As per rule 5.6, an app moves from current screen sid with state σ to a screen sid′ with

state σ′′ when the widgets in the screen sid extend the state σ to σ′ and one of the outgoing

transitions sets the current screen to sid′ with new state σ′′.

As per rule 5.7, a screen with no outgoing transitions causes the current state σ to change

to a new state σ′ when the widgets in the screen sid extend the state σ to σ′.

A proxy screen does not result in any configuration change as per rule 5.8.

Widget-related rules The rules listed in Table 5.4 correspond to linking widgets to data

sources in a screen. These rules are informally described as Widget Extensions in Sec-

tion 5.3.1.

As per rule 5.9, a sequence of widgets in a screen sid extends the corresponding state σ
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〈w0, (sid, σ)〉 → (sid, σ′) 〈w1, (sid, σ
′)〉 → (sid, σ′′)

〈w0w1, (sid, σ)〉 → (sid, σ′′)
(5.9)

〈x, (sid, σ)〉 → v

〈wt wid x, (sid, σ)〉 → (sid, σ[gen(wid, sid) 7→ v])
, x ::= vid or f (5.10)

〈vid, (sid, σ)〉 →⊥
〈wt wid vid, (sid, σ)〉 → (sid, σ)

(5.11)

〈wt wid v, (sid, σ)〉 → (sid, σ[gen(wid, sid) 7→ v]) (5.12)

Table 5.4: Widget-related Semantic Rules.

to σ′′ if each widget in the sequence extends σ.

As per rule 5.10, a widget wid extends state σ with value v if wid is initialized with a

variable vid or an operation f , and vid or f evaluates to v in state σ.

As per rule 5.11, a widget wid does not change the current configuration if wid is initial-

ized with an invalid variable (i.e., the variable is undefined in σ).

As per rule 5.12, a widget wid extends state σ with value v if wid is initialized with the

value v.

Transition-related rules The rules listed in Table 5.5 specify an app’s behavior in the

context of outgoing transitions from a screen. They are informally described as Extensions

to Transition in Section 5.3.1.

As per rule 5.13, if the first transition in an ordered set of transitions is taken, then the

remaining transitions are not evaluated.

As per rule 5.14, if the first transition in an ordered set of transitions is not taken, then

the remaining transitions in the ordered set are evaluated.

As per rule 5.15, a transition from a screen to a different screen is taken if the user action

associated with it evaluates to true, the associated boolean condition evaluates to true, and
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〈tr0, (sid, σ)〉 → (sid′, σ′) compr(σ, σ′)

〈tr0tr1, (sid, σ)〉 → (sid′, σ′)
(5.13)

〈tr0, (sid, σ)〉 → (sid, σ) 〈tr1, (sid, σ)〉 → (sid′, σ′)

〈tr0tr1, (sid, σ)〉 → (sid′, σ′)
(5.14)

〈ua, (sid, σ)〉 → true
〈b, (sid, σ)〉 → true validScr(sid′) = true 〈p, (sid, σ)〉 → (sid, σ′) sid 6= sid′

〈transition tid dest sid′ (cond ua and b) p, (sid, σ)〉 → (sid′, erase(σ, σ′))
(5.15)

〈ua, (sid, σ)〉 → true 〈b, (sid, σ)〉 → true validScr(sid′) = true

〈transition tid dest sid′ (cond ua and b) , (sid, σ)〉 → (sid′, erase(σ, σ′))
(5.16)

〈ua, (sid, σ)〉 → true
〈b, (sid, σ)〉 → true validScr(sid′) = true 〈p, (sid, σ)〉 → (sid, σ′)

〈transition tid dest sid (cond ua and b) p, (sid, σ)〉 → (sid, eraseWID(σ, σ′))
(5.17)

〈ua, (sid, σ)〉 → false

〈transition tid dest sid′ (cond ua and b) p, (sid, σ)〉 → (sid, σ)
(5.18)

〈b, (sid, σ)〉 → false

〈transition tid dest sid′ (cond ua and b) p, (sid, σ)〉 → (sid, σ)
(5.19)

Table 5.5: Transition-related Semantic Rules.
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the arguments to the destination screen’s parameters p extend the current state σ. Rule 5.16

is a variant of this rule for a transition without associated input parameters. Rule 5.17 is a

variant of this rule for a transition from a screen to itself.

As per rule 5.18, a transition is not taken if the user action associated with it evaluates

to false.

As per rule 5.19, a transition is not taken if the boolean condition associated with it

evaluates to false.

Operation-related rules The rules listed in Table 5.6 are used to evaluate an operation

used in the storyboard. These rules correspond to the informal description of Operations in

Section 5.3.1.

As per rule 5.20, an operation f evaluates to a value v, if the meta-function eval evaluates

f to a non-boolean value v and the resource used in the operation is defined. Rule 5.21 is a

variant of this rule for operations with arguments.

As per rule 5.22, an operation f evaluates to a value v, if the meta-function eval evaluates

f to a non-boolean value v. Rule 5.23 is a variant of this rule for operations without resources

or arguments.

As per rule 5.24, an operation f evaluates to a boolean value bv, if the meta-function

eval evaluates f to a boolean bv and the resource used in the operation is defined. Rule 5.25

is a variant of this rule for operation with arguments.

As per rule 5.26, an operation f evaluates to a boolean value bv, if the meta-function

eval evaluates f to a boolean bv. Rule 5.27 is a variant of this rule for operations without

resources or arguments.

ID-related rules The rules listed in Table 5.7 are used to evaluate a widget or variable

identifiers.

As per rule 5.28, a widget identifier wid evaluates to a value v under state σ if the state

σ maps wid to the value v.

As per rule 5.29, a gesture g on a widget wid evaluates to true, if the gesture occurs on
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ρ(rn, cn) = true eval(f) = v

〈fun fn rn.cn , (sid, σ)〉 → v
(5.20)

ρ(rn, cn) = true eval(f) = v

〈fun fn rn.cn a, (sid, σ)〉 → v
(5.21)

eval(f) = v

〈fun fn a, (sid, σ)〉 → v
(5.22)

eval(f) = v

〈fun fn , (sid, σ)〉 → v
(5.23)

ρ(rn, cn) = true eval(f) = bv

〈fun fn rn.cn , (sid, σ)〉 → bv
(5.24)

ρ(rn, cn) = true eval(f) = bv

〈fun fn rn.cn a, (sid, σ)〉 → bv
(5.25)

eval(f) = bv

〈fun fn a, (sid, σ)〉 → bv
(5.26)

eval(f) = bv

〈fun fn , (sid, σ)〉 → bv
(5.27)

Table 5.6: Operation-related Semantic Rules.
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σ(gen(wid, sid)) = v

〈wid, (sid, σ)〉 → v
(5.28)

〈occurs(wid, g), (sid, σ)〉 → bv

〈wid.g, (sid, σ)〉 → bv
(5.29)

σ(gen(vid, sid)) = v

〈vid, (sid, σ)〉 → v
(5.30)

σ(gen(vid, sid)) =⊥ evalUriV ar(gen(vid, sid)) = v

〈vid, (sid, σ)〉 → v
(5.31)

σ(gen(vid, sid)) =⊥ evalUriV ar(gen(vid, sid)) =⊥
〈vid, (sid, σ)〉 →⊥

(5.32)

σ(gen(wid, sid)) =⊥
〈wid, (sid, σ)〉 →⊥

(5.33)

Table 5.7: ID-related Semantic Rules.
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〈p0, (sid, σ)〉 → (sid, σ′) 〈p1, (sid, σ′)〉 → (sid, σ′′)

〈p0p1, (sid, σ)〉 → (sid, σ′′)
(5.34)

〈param vid v, (sid, σ)〉 → (sid, σ[gen(vid, φ(vid)) 7→ v]) (5.35)

〈x, (sid, σ)〉 → v

〈param vid0 x, (sid, σ)〉 → (sid, σ[gen(vid0, φ(vid0)) 7→ v])
, x ::= vid1, wid, or f (5.36)

〈x, (sid, σ)〉 →⊥
〈param vid0 x, (sid, σ)〉 → (sid, σ)

, x ::= vid1 or wid (5.37)

Table 5.8: Screen’s input parameter-related Semantic Rules.

the widget; false otherwise.

As per rule 5.30, a variable identifier vid evaluates to a value v under state σ if the state

σ maps vid to the value v.

As per rule 5.31, a variable identifier vid evaluates to a value v, if σ(vid) is undefined,

but an external app has provided the value v for vid via evalUriV ar.

As per rule 5.32, a variable evaluates to ⊥ if the variable identifier is undefined in σ and

no external app has provided a value for the variable.

As per rule 5.33, a widget evaluates to ⊥ if the widget identifier is undefined in σ.

Screen’s input parameter-related rules The rules listed Table 5.8 are used to evalu-

ate the arguments provided to input parameters of a screen as part of transitions to that

screen. An informal description of these rules is provided in Section 5.3.1 as Extensions to

Transitions.

As per rule 5.34, a sequence of syntactic constructs that provide arguments to the pa-

rameters of a screen sid extend the state σ, if each construct provides an argument to a

parameter (i.e., each construct in the sequence extends the state σ).

As per rule 5.35, a syntactic construct that provides an argument to a screen’s parameter
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extends the state σ in the current configuration with the value v, if the value v is provided

as an argument to parameter ID vid.

As per rule 5.36, a syntactic construct that provides an argument to a screen’s parameter

extends the state σ in the current configuration with the value of x, if x has the value v in

σ and x is either a variable, widget or an operation.

As per rule 5.37, A syntactic construct that provides an argument to a screen’s parameter

does not change the current configuration if the variable or widget that provides the argument

is undefined in σ.

Boolean-related rules The rules listed in Table 5.9 are related to boolean expressions

and are similar to traditional notions of conjunction, disjunction, and negation in logical

statements.

Example

Let us assume that the storyboard of the app in Figure 5.4 is composed of a sequence

of screens s0s1, where s0 is the Messenger screen and s1 is a sequence of the remaining

screens. Further assume that when the user starts the app, Messenger screen is displayed.

Hence, init(appId) = Messenger, where appId is the identifier (”sema.app.msngr”) of the app.

Finally assume that there is an ordered set of outgoing transitions, tr0tr1, from Messenger

screen, such that tr0 is the transition from Messenger to MsgStatus and the tr1 is an ordered

set of the remaining transitions from Messenger. Given these assumptions, we will apply the

semantic rules in the previous section to interpret a snippet of the storyboard as shown in

Table 5.10.

Safety and Progress

I say that an app is safe if the app does not reach an invalid configuration or a terminal

configuration. Since there are no invalid configurations, an app does not reach such a con-

figuration. As far as terminal configuration is concerned, I define it as the (⊥, σ), such

that ∀x ∈ dom(σ) : σ(x) =⊥. The only time an app reaches the terminal configuration is

100



〈b0, (sid, σ)〉 → true 〈b1, (sid, σ)〉 → true

〈b0 and b1, (sid, σ)〉 → true
(5.38)

〈b0, (sid, σ)〉 → false

〈b0 and b1, (sid, σ)〉 → false
(5.39)

〈b1, (sid, σ)〉 → false

〈b0 and b1, (sid, σ)〉 → false
(5.40)

〈b0, (sid, σ)〉 → true

〈b0 or b1, (sid, σ)〉 → true
(5.41)

〈b1, (sid, σ)〉 → true

〈b0 or b1, (sid, σ)〉 → true
(5.42)

〈b0, (sid, σ)〉 → false 〈b1, (sid, σ)〉 → false

〈b0 or b1, (sid, σ)〉 → false
(5.43)

〈b, (sid, σ)〉 → false

〈 not b, (sid, σ)〉 → true
(5.44)

〈b, (sid, σ)〉 → true

〈 not b, (sid, σ)〉 → false
(5.45)

Table 5.9: Boolean-related Semantic Rules.
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〈f0, (Messenger, σ′′)〉 → true 〈f0, (Messenger, σ′′)〉 → true

〈f0 and f1, (Messenger, σ′′)〉 → true

〈b, (Messenger, σ′′)〉 → true

〈Send.click, (Messenger, σ′′)〉 → true 〈b, (Messenger, σ′′)〉 → true
validScr(MsgStatus) = true Messenger 6= MsgStatus

〈tr0, (Messenger, σ′′)〉 → (MsgStatus, σ′) compr(σ, σ′)

〈tr0tr1, (Messenger, σ′′)〉 → (MsgStatus, σ′)

〈w, (Messenger, σ)〉 → (Messenger, σ′′)
〈tr0tr1, (Messenger, σ′′)〉 → (MsgStatus, σ′)

〈screen Messenger u w tr0tr1, (Messenger, σ)〉 → (MsgStatus, σ′)

〈s0s1, (Messenger, σ)〉 → (MsgStatus, σ′)

stop(appId) = false 〈s0s1, (Messenger, σ)〉 → (MsgStatus, σ′)

〈appId s0s1 r, (Messenger, σ)〉 → 〈appId s0s1 r, (MsgStatus, σ′)〉

Table 5.10: Inference Tree of a snippet of the storyboard in Figure 5.4 interpreted with the
semantic rules.

when the app is stopped by the user or Android. In this configuration no other transition

is possible and the app is said to be terminated. Since no rule defined above, except rule

5.2, makes an app reach the terminal configuration, I say that the semantics ensure safety

by construction.

The semantic rules defined above ensure that an app is never ”stuck”, that is, if an app

is in a valid configuration or a non-terminal configuration, then the app will either terminate

or will be evaluated further in some configuration. I call this property of not getting stuck

as progress. Formally, progress is specified as the following theorem:

Theorem 5.3.1. If an app is in a configuration (sid, σ), then ∃(sid′, σ′) : 〈app, (sid, σ)〉 →

〈app, (sid′, σ′)〉, or 〈app, (sid, σ)〉 → (⊥, erase(σ, σ))

I need the following lemma to prove theorem 5.3.1.

Lemma 5.3.2. If an app is in a configuration (sid, σ) and ∃tr ∈ TR : outTr(sid) = tr,

then ∃(sid′, σ′) : 〈tr, (sid, σ)〉 → (sid′, σ′), where (sid′, σ′) may or may not equal (sid, σ).

Proof. I prove Lemma 5.3.2 by induction on the structure of tr.

Base Case: When tr is one transition from the screen sid, Lemma 5.3.2 is trivially true

since either Rule 5.15, 5.16, 5.17, 5.18, or 5.19 will always apply.
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Inductive Case: When tr is an ordered set of transitions, tr0tr1, from the screen sid, then

either apply rule 5.13 and 5.14 with the induction hypothesis on tr0 or apply 5.14 with the

induction hypothesis on tr1.

Hence, by the principle of induction, Lemma 5.3.2 is true.

Proof. Let us assume that an app is in (sid, σ), where sid is a screen in the app and σ is the

state of the app at screen sid.

Assume that there is an ordered set of transitions tr from screen sid, then by lemma

5.3.2, ∃(sid′, σ′) such that the app will be further evaluated in (sid′, σ′) as per rule 5.3. If

the app is stopped, then the app will terminate as per rule 5.2.

5.3.3 Security Properties

An Android app often interacts with other apps on the device, the underlying platform, and

remote servers. Such interaction involves sharing of information, responding to events, and

performing tasks based on user actions. Many of these interactions have security implications

that should be considered during app development. For example, can the user’s personal

information be stored safely on external storage? (information leak and data injection),

who should have access to the content provided by the app? (permissions and privilege

escalation), how should an app contact the server? (encryption).

While security implications are relevant, SeMA focuses on implications related to confi-

dentiality and integrity of data.

Confidentiality An app violates confidentiality if it releases data to an untrusted sink.

Hence, an app (and, consequently, its storyboard) that violates confidentiality is deemed as

insecure. I explain the concepts of untrusted sinks in a storyboard in Section 5.3.4.

Integrity An app violates integrity if it uses a value from an untrusted source. Hence,

an app (and, consequently, its storyboard) that violates integrity is deemed as insecure. I

explain how a source is identified as untrusted in Section 5.3.4.

103



5.3.4 Analysis

There are multiple ways to check if extended storyboards satisfy various properties. In the

current realization of SeMA, I use information flow analysis and rule checking to check and

help ensure extended storyboards satisfy security properties concerning confidentiality and

integrity.

Information Flow Analysis

This analysis tracks the flow of information in the form of values from sources to sinks in a

storyboard.

A source is either a widget in a screen, an input parameter of a screen, or (the return value

of) an operation. The set of sources in a storyboard are partitioned trusted and untrusted

sources based on the guarantee of data integrity. Specifically, a source is untrusted if it is

an input parameter of a screen’s URI or it is an operation that reads data from an HTTP

server, an open socket, device’s external storage, or device’s clipboard; or uses the capability

of a resource provided by another app. All other sources are deemed as trusted.

A sink is either a widget in a screen or an argument to a screen or an operation. The set

of sinks in a storyboard are partitioned trusted and untrusted sinks based on the guarantee

of data confidentiality. Specifically, a sink is deemed as untrusted if it is an argument to an

external screen identified without the app attribute or to an operation that writes data to

an HTTP server, an open socket, device’s external storage, or device’s clipboard; or uses the

capability of a resource provided by another app. All other sinks are deemed as trusted.

To reason about the flow of information between sources and sinks, I define a binary

reflexive relation named influences between sources and sinks as follows: influences(x,y)

(i.e., source x influences sink y) if

1. x is assigned to an input parameter y of screen s on an incoming transition to s,

2. x is an argument to operation y, or
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3. value of operation x or input parameter x of screen s is assigned to widget y in screen

s.

Here are few instances of this relation in Figure 5.4. influences(y, Phone) because input

parameter y of Contacts screen is assigned to Phone widget. influences(x,dispMsg) because

x is provided as an argument to operation dispMsg. influences(dispMsg, Status) because the

value of operation dispMsg is assigned to Status widget in SaveStatus screen.

Further, all data flows inside the app are guaranteed to preserve the confidentiality and

integrity of used/processed data. The operations provided as part of the capabilities of cus-

tom resources provided by the app are assumed to preserve the confidentiality and integrity

of used/processed data.

With the above (direct) influence relation, guarantees, and assumptions, I use the transi-

tive closure of influences relation to detect violation of security properties. I detect potential

violation of integrity by identifying transitive (indirect) influences (x, y) ∈ influences∗ in

which x is an untrusted source. Likewise, I detect potential violation of confidentiality by

identifying transitive (indirect) influences (x, y) ∈ influences∗ in which y is an untrusted sink.

All such identified indirect influences are reported to the developer and must be eliminated.

Such an indirect influence can be eliminated by either replacing untrusted sources/sinks with

trusted sources/sinks or indicating the indirect influence as safe by marking one or more of

the direct influences that contribute the indirect influence as safe. When multiple sequences

of direct influences between a source and a sink support an indirect influence, at least one

direct influence in each sequence should be marked as safe to indicate the indirect influence is

safe. This marking is similar to data declassification in traditional information flow analysis.

For example, in Figure 5.4, the y parameter of Contacts screen is untrusted as it is

provided by an external app. So, the analysis will flag influences∗(y, Phone) as violating

integrity due to the assignment of y to Phone widget in Contacts screen. A developer can fix

this violation either by removing the assignment of y to Phone or marking the assignment

as safe (as done in Figure 5.4).
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Correctness argument The purpose of the analysis is to identify violations of confi-

dentiality or integrity. This is done in two steps: 1) calculate the potential flows in the

storyboard using the transitive closure of influences relation and 2) check if a flow involves

an untrusted source or sink and is not marked as safe. Since the second step is based on

pre-defined classification of sources and sinks and developer-provided safe annotations, the

correctness of the analysis hinges on the first step.

If the influences relation correctly captures the direct flow between sources and sinks in

a storyboard, then the transitive closure influences∗ will capture all possible flows between

the sources and sinks, including all flows violating confidentiality or integrity. Hence, the

analysis is complete in identifying every violation of confidentiality or integrity.

The influences∗ relation does not consider the effect of constraints on flows between

sources and sinks (i.e., all constraints on transitions are assumed to be true). Consequently,

the analysis may identify a flow between a source and a sink when there is no flow between

the source and the sink (at runtime). For example, suppose a screen s has two incoming

transitions i1 and i2 and two outgoing transitions o1 and o2 along with transition constraints

that dictate transition ox must be taken if and only if s was reached via transition ix.

Further, suppose an input parameter m of s is assigned a value along i1 and i2 and used as

an argument along o1 and o2. In this case, the value assigned to m along i1 (i2) will not

flow out of m along o2 (o1). However, the analysis will incorrectly identify the value assigned

to m along i1 (i2) may flow out of m along o2 (o1). Since the analysis may report invalid

violations, the analysis is unsound.

Formal Specification of the Analysis

This analysis tracks the flow of information in the form of values from sources to sinks in a

storyboard, as defined in Section 5.3.4. In this section, I formally describe the algorithm.

Meta-language: Before specifying the algorithm, I define the following functions and

structures required to understand it and the corresponding proof of correctness.

1. Idn : Exp → IDN , where Exp = W ∪ P ∪ F and IDN = WID ∪ V ID ∪ FN , is a
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function is used to obtain the identifier of a widget, input parameter, or an operation.

It is defined as follows:

(a) Widget : if w ∈ Exp and w ::= wt wid x, then Idn(w) = gen(wid, φ(wid))

(b) Parameter : if p ∈ Exp and p ::= param vid x, then Idn(p) = gen(vid, φ(vid))

(c) Operation : if f ∈ Exp and f ::= fun fn rn.cn a, then Idn(f) = fn

2. FV : Exp→ 2IDN , is a function that maps e ∈ Exp to the power set of IDN . FV is

used to retrieve the identifiers that are used as values of a widget, input parameter, or

operation. It is defined as follows:

(a) if e ∈ F , then

i. if e ::= fun fn rn.cn vid, then FV (e) = {gen(vid, φ(vid))}

ii. if e ::= fun fn rn.cn wid, then FV (e) = {gen(wid, φ(wid))}

iii. if e ::= fun fn rn.cn f ′, then FV (e) = {Idn(f ′)}

iv. if e ::= fun fn rn.cn a0a1, then FV (e) = FV (f0) ∪ FV (f0),

where f0 ::= fun fn rn.cn a0 and f1 ::= fun fn rn.cn a1

v. otherwise, FV (e) = ∅

(b) if e ∈ W , then

i. if e ::= wt wid vid, then FV (e) = {gen(vid, φ(vid))}

ii. if e ::= wt wid f , then FV (e) = {Idn(f)}

iii. otherwise, FV (e) = ∅

(c) if e ∈ P , then

i. if e ::= param vid0 vid1, then FV (e) = {gen(vid1, φ(vid1))}

ii. if e ::= param vid wid, then FV (e) = {gen(wid, φ(wid))}

iii. if e ::= param vid f , then FV (e) = {Idn(f)}

iv. otherwise, FV (e) = ∅
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3. The safe relation is used to collect direct flows between sources and sinks in the sto-

ryboard that have been marked by a developer with the safe keyword. Section 5.3.2

shows the syntax for marking direct flows as safe.

4. safeParams denotes the set of input parameters of a proxy screen ps ∈ PS such that

ps has been marked safe or ps has the app attribute set.

5. CV : F → BV is a predicate such that CV (f) = true if operation f is an untrusted

sink; CV (f) = false otherwise.

6. IV : F → BV is a predicate such that IV (f) = true if operation f is an untrusted

source; IV (f) = false otherwise.

Algorithm: The analysis algorithm proceeds in two stages. First, it captures the direct

relationships between the identifier of a widget, an input parameter, or an operation with

the identifier used as value in a widget, input parameter, or an argument to an operation

in a binary relation called influences. It then uses influences to build a reflexive transitive

closure influences∗ to capture the indirect relationships between widgets, input parameters,

and operations. Second, for each widget, operation, and input parameter expression, the

analysis collects their identifiers if they are directly or indirectly influenced by unsafe and

untrusted identifiers. A violation is detected if a widget, input parameter, or operation has

a non-empty set of such identifiers associated with it.

The algorithm is formally defined in the following steps:

1. Calculate the binary relation influences : IDN → IDN for each e ∈ W ∪ P ∪ F as

follows:

(a) Widgets w ∈ W :

i. if w ::= wt wid vid, then {(gen(vid, φ(vid)), gen(wid, φ(wid)))}.

ii. if w ::= wt wid f , then {(Idn(f), gen(wid, φ(wid)))}.

iii. if w ::= w0w1, then influencesw0 ∪ influencesw1 ∪ influences
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(b) screen input parameters p ∈ P :

i. if p ::= param vid0 vid1, then {(gen(vid1, φ(vid1)), gen(vid0, φ(vid0)))}

ii. if p ::= param vid wid, then {(gen(wid, φ(wid)), gen(vid, φ(vid)))}

iii. if p ::= param vid f , then {(Idn(f), gen(vid, φ(vid)))}

iv. if p ::= p0p1, then influencesp0 ∪ influencesp1 ∪ influences

(c) Operations f ∈ F :

i. if f ::= fun fn rn.cn vid, then {(gen(vid, φ(vid)), fn)}

ii. if f ::= fun fn rn.cn wid, then {(gen(wid, φ(wid)), fn)}.

iii. if f ::= fun fn rn.cn f ′, then {(Idn(f ′), fn)}

iv. if f ::= fun fn rn.cn a0a1, then influencesf0 ∪ influencesf1 ∪ influences,

where f0 ::= fun fn rn.cn a0 and f1 ::= fun fn rn.cn a1

2. Calculate influences∗, the reflexive transitive closure of the binary relation influences.

3. Mark untrusted sources using the Untrusted : IDN → BV predicate for each e ∈ F∪U

as follows:

(a) if e ∈ F ∧ IV (e), then ∀(Idn(f), k) ∈ influences∗ : Untrusted(k) = true

(b) if e ::= us/K, then ∀k ∈ K : Untrusted(k) = true ∧ ∀(gen(vid, φ(vid), y) ∈

influences∗ : Untrusted(y) = true

4. Collect flows marked safe for each e ∈ W ∪ F ∪ P as follows:

(a) if e ::= safe wt wid x, then {x, gen(wid, φ(wid)))}∪safe and ∀(gen(wid, φ(wid)), k) ∈

influences∗ : {(gen(wid, φ(wid)), k)} ∪ safe

(b) if e ::= w0w1, then safew0 ∪ safew1 ∪ safe

(c) if e ::= fun fn rn.cn safe x, then {(gen(x, φ(x)), fn)} ∪ safe, where x ∈ (WID ∪

V ID)

(d) if e ::= fun fn rn.cn safe f , then {(Idn(f), fn)} ∪ safe
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(e) if e ::= fun fn rn.cn a0a1, then safee0 ∪ safee1 ∪ safe, where e0 ::= fun fn rn.cn a0

and e1 ::= fun fn rn.cn a1

(f) if e ::= param vid x and gen(vid, φ(vid)) ∈ safeParams, then {(x, gen(vid, φ(vid))) ∈

safe}

(g) if e ::= p0p1, then safep0 ∪ safep1 ∪ safe

5. Calculate the function IF : Exp→ 2IDN for each e ∈ W ∪ F ∪ P as follows:

(a) if e ∈ W , then

i. if e ::= wt wid vid, then

IF(e) = {gen(wid, φ(wid)) | Untrusted(vid)∧(((vid, wid) /∈ safe)∧(∃(z, vid) :

(z, vid) ∈ influences =⇒ (∀(y, z) : (y, z) ∈ influences∗ =⇒ (y, z) /∈ safe)))

ii. if e ::= wt wid f , then

IF(e) = {gen(wid, φ(wid)) | IV (f) ∧ (Idn(f), wid) /∈ safe

iii. if e ::= w0w1, then IF(e) = IF(w0) ∪ IF(w1)

(b) if e ∈ F , then

i. if e ::= fun fn rn.cn wid, then

IF(e) = {fn|(wid, fn) /∈ safe ∧ Idn(w) = wid ∧ IF(w) 6= ∅}

∪ {fn|CV (e) ∧ ((wid, fn) /∈ safe) ∧ (∃(fn′, wid) : (fn′, wid) ∈ influences =⇒

(fn′, wid) /∈ safe) ∧ (∃(y, vid), (vid, wid) : ((y, vid) ∈ influences ∧ (vid, wid) ∈

influences) =⇒ (∀(k, vid) : (k, vid) ∈ influences∗ =⇒ (k, vid) /∈ safe))}

ii. if e ::= fun fn rn.cn vid, then

IF(e) = {fn|(Untrusted(vid)∨CV (e))∧(vid, fn) /∈ safe∧(∃(z, vid) : (z, vid) ∈

influences =⇒ (∀(y, z) : (y, z) ∈ influences∗ =⇒ (y, z) /∈ safe))}

iii. if e ::= fun fn rn.cn f , then

IF(e) = {fn|(IV (f) ∨ CV (e)) ∧ (Idn(f), fn) /∈ safe}

iv. if e ::= fun fn rn.cn a0a1, then

IF(e) = IF(e0)∪IF(e1), where e0 ::= fun fn rn.cn a0 and e1 ::= fun fn rn.cn a1
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(c) if e ∈ P , then

i. if e ::= param vid id, where id ∈ (WID ∪ V ID), then

IF(e) = {gen(vid, φ(vid)) | (id, vid) ∈ safe ∨ (∀(y, id) ∈ influences∗ : (y, id) /∈

safe)}

ii. if e ::= param vid f , then IF(e) = {gen(vid, φ(vid)) | Idn(f) = fn∧(fn, vid) ∈

safe

iii. if e ::= e0e1, then IF(e) = IF(e0) ∪ IF(e1)

The analysis reports a violation if ∃e ∈ Exp : IF(e) 6= ∅ in the storyboard.

As an example, consider information flow analysis of the storyboard in Figure 5.4. As

per the algorithm, I first build the binary relation:

influences = {(y, Phone), (Phone, z), (Phone, x), (dispMsg, Status), (x, dispMsg),

(Phone, savePhone), (getContacts, sendMsg)}

Next, a reflexive transitive closure is calculated as follows:

influences∗ = {(y, Phone), (Phone, z), (Phone, x), (dispMsg, Status), (x, dispMsg),

(Phone, savePhone), getContacts, sendMsg), (y, z), (y, x), (Phone, dispMsg),

(y, dispMsg), (y, Status), (x, Status)), ...}

The predicates IV and CV return false for every operation in the storyboard since none

of them use resources that correspond to untrusted source/sink. Since, y is a variable from

an external app, ∀(y, k) ∈ influences∗ : Untrusted(y, k) = true.

Table 5.11 shows the result of computing IF for each e ∈ Exp in the storyboard before

any flow was marked as safe. Since ∃e ∈ Exp : IF(e) 6= ∅, the analysis reports a violation.
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Exp IF IF (safe)

TextView Phone y {gen(Phone,φ(Phone))} {}
TextView Status ”MsgSent” {} {}
TextView Status dispMsg(x) {} {}

sendMsg(...) {} {}
getContacts(...) {} {}

dispMsg(x) {Idn(dispMsg)} {}
param z Phone {} {}
param x Phone {} {}

Table 5.11: Information Flow Analysis of Storyboard shown in Figure 5.4. The first column
indicates an e ∈ Exp (i.e., widget, operation, or input parameter of a screen). The second
column indicates a set obtained by evaluating IF(e) assuming that nothing was marked as
safe. The third column indicates IF with a flow marked as safe.

To fix the violation, the variable y needs to be obtained from a trusted source or the flow/s

related to y should be marked safe. If we take the latter approach and mark the flow between

y and the widget Phone as safe as shown in Figure 5.4, then on running the analysis again,

safe is as follows:

safe = {(y, Phone), (Phone, z), (Phone, x), ...}

Since ∀e ∈ Exp : IF(e) = ∅ as shown in Table 5.11 third column, no violations are

reported by the analysis.

Proof of Correctness

The correctness of the function IF hinges on the calculation of the transitive closure influences∗,

predicate Untrusted, and set safe. Since Untrusted and safe are based on a pre-defined list of

trusted and untrusted identifiers and developer-provided annotations/indicators, it is enough

to prove that the relations captured in influences∗ reflect the flow as specified in the seman-

tics.

Theorem 5.3.3. ∀a ∈ APP , ∀sid, sid′ ∈ SID, x, y ∈ ID, σ, σ′ : 〈(a), (sid, σ)〉 →∗ 〈a, (sid′, σ′)〉

∧ σ(x) = σ′(y) =⇒ (x, y) ∈ influences*
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Proof. I prove this by induction on the no. of steps it takes an app from the current config-

uration (sid, σ) to reach a configuration (sid′, σ′).

Base Case: Assume that a is an app, sid, sid′ ∈ SID, x, y ∈ ID, σ, σ′ such that 〈a, (sid, σ)〉 →

〈a, (sid′, σ′)〉 ∧ σ(x) = σ′(y). In screen sid′, ∃l such that l is a widget or provides an ar-

gument to an input parameter of another screen as part of a transition from sid′. Since

σ(x) = σ′(y), y = Idn(l) and k ∈ FV (l), where either k = x or k is the identifier of an

operation with an argument x. By the definition of influences, either (x, y) ∈ influences or

(x, k)and(k, y) ∈ influences. In either case, (x, y) ∈ influences*.

Therefore, 5.3.3 is true.

Inductive Case:

• Case 1: Let’s assume that a is an app, sid, sid′ ∈ SID, x, z ∈ ID, σ, σ′′ such that

〈(a), (sid, σ)〉 →k 〈a, (sid′, σ′′)〉 ∧ σ(x) = σ′′(z) =⇒ (x, z) ∈ influences*, where k is

the no. of steps it takes to reach from σ to σ′′. This is our induction hypothesis.

Further, assume that ∃sid′′ ∈ SID, y ∈ ID, σ′ such that 〈a, (sid′, σ′′)〉 → 〈a, (sid′′, σ′)∧

σ′′(z) = σ′(y) and l is a widget in screen sid′′ or provides an argument to the input

parameter of a screen via a transition from sid′′. Since σ′′(z) = σ′(y), y = Idn(l)

and k ∈ FV (l), where k = z or k is the identifier of an operation that uses z as

an argument. In either case, (z, y) ∈ influences due to the definition of influences.

Since influences ⊆ influence*, (z, y) ∈ influences*. From the induction hypothesis,

(x, z) ∈ influences*. Since, influences* is a transitive closure, (x, y) ∈ influences*.

• Case 2: Let’s assume that a is an app, sid, sid′ ∈ SID, σ, σ′ such that 〈(a), (sid, σ)〉 →m

〈a, (sid′〉, σ′) ∧ σ(x) = σ′(z) =⇒ (x, z) ∈ influences*, and sid′′ ∈ SID, σ′′ such that

〈(a), (sid′, σ′)〉 →n 〈a, (sid′′, σ′′)〉 ∧ σ′(z) = σ′′(j) =⇒ (z, j) ∈ influences*, and

k = m+ n.

Further, assume that ∃sid′′′ ∈ SID, y ∈ ID, σ′′′ : 〈a, (sid′′, σ′′)〉 → 〈a, (sid′′′, σ′′′) ∧

σ′′(j) = σ′′′(y) and l is a widget in screen sid′′′ or provides the argument to an input

parameter of a screen via a transition from sid′′′. Since σ′′(j) = σ′′′(y), y = Idn(l) and
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k ∈ FV (l), where k = j or k is the identifier of an operation that uses j as an argument.

In either case, (j, y) ∈ influences by the definition of influences. Since influences ⊆

influence*, (j, y) ∈ influences*. From the induction hypothesis, (x, z) ∈ influences*

and (z, j) ∈ influences*. Since, influences* is a transitive closure, (x, y) ∈ influences*.

Conclusion: By the principle of induction 5.3.3 is true.

The converse of Theorem 5.3.3 does not hold for the analysis because the analysis does

not consider the effects of constraints when building the influences relation. So, it is possible

that an ID x influences y even if the semantics does not allow x to flow into y. For example,

let us assume that a transition t is guarded by a constraint b and when b is true, an argument

a is passed to the destination screen. Let’s also assume that x ∈ FV(a) and y = Idn(a).

Finally, let us assume that b is always false. In such a scenario, x influences y but the

semantics will not allow x to flow into y. This implies that the analysis will flag violations

even if there isn’t any. However, the developer can override the violation by setting the safe

attribute appropriately.

Rule Checking

Prior research has developed guidelines and best practices for secure Android app develop-

ment [39, 40]. Based on these standards, I have developed rules that can be enforced at

design time to prevent the violation of properties related to confidentiality and integrity.

Following is the list of rules supported by the current realization of SeMA along with the

reasons for the rules.

1. Capabilities offered by custom resources must be protected by access control. If any

external client can access a custom resource (i.e., its access attribute is set to all)

and the resource offers privileged capabilities, then malicious clients can gain access

to privileged capabilities without the user’s consent. Further, Android’s policy of least

privilege stipulates that apps should have minimal privileges and acquire the privileges

required to use protected services.
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2. WebView widgets must be configured with a whitelist of URL patterns. A WebView

widget in an app works like a browser – it accepts a URL and loads its contents – but

it does not have many of the security features of full-blown browsers. Also, a WebView

widget has the same privileges as the containing app, has access to the app’s resources,

can be configured to execute JavaScript code. Hence, loading content from untrusted

sources into WebView widgets facilitates exploitation by malicious content.

3. Operations configured to use HTTPS remote servers must use certificate pinning. HTTPS

remote servers are signed with digital certificates issued by certificate authorities (CAs).

Android defines a list of trusted CAs and verifies that the certificate of an HTTPS re-

mote server is signed with a signature from a trusted CA. However, if a trusted CA

is compromised, then it can be used to issue certificates for malicious servers. Hence,

to protect against such situations, certificates of trusted servers are pinned (stored) in

apps and only servers with these certificates are recognized as legit servers by the apps.

4. Operations configured to use SSL sockets must use certificate pinning. The reasons

from the case of certificate pinning for HTTPS applies here as well.

5. Cipher operations must use keys stored in secure key stores (containers). The results of

cipher operations can be influenced by tampering the cryptographic keys used in cipher

operations. Further, since cryptographic keys are often used across multiple executions

of an app, they need to be stored in secondary storage that is often accessible by all

apps on a device. Hence, to protect against unwanted influences via key tampering,

cipher keys should be stored in secure key stores (containers).

Realization of Rule Checking Violations of rule 1 are detected by checking if a custom

resource offers a privileged capability and has its access attribute set to all.

The trust-patterns attribute of WebView widget is used to specify the whitelist of trusted

URL patterns. Violations of rule 2 is detected by checking if trust-patterns attribute is

specified for every WebView widget.
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Violations of rule 5 are detected by checking if the key argument provided to a cipher

operation is the value returned by a pre-defined operation to keys from a secure container.

Violations of rules 1, 2, and 5 are flagged as errors and must be addressed before moving

to the code generation phase.

Certificate pinning is enabled by default in every storyboard in the methodology. How-

ever, since techniques other than certificate pinning can be used to secure connections to

servers, a developer can disable certificate pinning by setting disableCertPin attribute in a

network-related operation. Such cases are detected as violations of rules 3 and 4. They are

flagged as warnings but do not inhibit the developer from moving to the code generation

phase.

5.3.5 Code Generation

Once the developer has verified that the specified storyboard does not violate properties

related to confidentiality and integrity, she can generate code from the storyboard. Figure 5.6

shows a fragment of generated code for the running example (Figure 5.4).

Mapping and Translation Rules

The current realization of SeMA hinges on various choices in mapping and translating

storyboard-level entities and concepts into code-level entities and concepts. These choices are

influenced by the semantics outlined in Section 5.3.2 and encoded in the following mapping

and translation rules used during code generation.

1. A Screen is translated to a Fragment. For each input parameter of the screen, a

function to obtain the value of the parameter is generated. If an input parameter is

not available at runtime, then the corresponding function returns null.

2. A widget is translated to the corresponding widget type in Android (e.g., a widget dis-

playing text is translated to TextView). The value of the widget is the corresponding

value specified in the storyboard. For example, if the value is provided by a screen’s
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Contacts Screen

Boolean operation that uses INT_STORE resource 
to save phone number in a file in internal storage.

Constraint based on user’s 
action on the button save.

Transition to MsgStatus screen
with “x” as argument.

Figure 5.6: Code generated for the Contacts screen in the storyboard depicted in Figure 5.4

input parameter x, then the return value from the getter function of x is set as the wid-

get’s value (e.g., TextView.setText(getX())). The value in a widget is obtained via

the corresponding getter function (e.g., TextView.getText()). If the corresponding

value is null, then the widget will have a default value.2).

3. The constraint associated with a transition from a source screen to a destination screen

is a conjunction of a user action and boolean operations. The user action part of

the constraint is translated to a listener/handler function in the source screen that

is triggered by the corresponding user action (e.g., button click). If the constraint

has a boolean operation, then a conditional statement is generated with the boolean

operation as the condition in the body of the listener function. The then block of the

conditional statement has the statements required to trigger the destination screen. If

the constraint has no boolean operations, then the body of the listener function has

statements required to trigger the destination screen. If the constraint has no user

action, then the checks corresponding to the boolean operations are performed when

2Every widget in Android has a default value (e.g., a TextView has empty string as default value.
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the source fragment is loaded.

I use Android’s navigation APIs to trigger a destination screen. If the destination screen

is a proxy screen, then intents are used to trigger the destination screen determined

by the URI and app attribute. Arguments to destination screens are provided as

key/value pairs bundled via the Bundle API.

When a screen has multiple outgoing transitions, the statements corresponding to the

transitions are chained in the specified order of the transitions in the storyboard.

4. An operation is translated to a function with appropriate input parameters and re-

turn value. Each reference to the operation in a storyboard is translated to call the

corresponding function.

The type of the input parameters depends on the type of the arguments provided to

the function. For example, if the argument is provided by a widget that displays text,

then the type of the parameter will be String. The return type depends on how the

function is used. For example, if the function is used as a boolean operation in a

constraint, then its return type will be boolean. If the function is assigned to a widget

that displays text, then the function’s return type will be String.

If the operation uses a capability provided by a pre-defined resource, then the body of

the corresponding function will contain the statements required to use the capability.

Otherwise, the function will have an empty body that needs to be later filled in by

the developer. For example, on line 27 in Figure 5.6, function savePhone contains

the statement required to create a file in the device’s internal storage since the same

operation uses write capability of the resource INT STORE in the storyboard.

If the operation raises an exception, then the exception is caught and null is returned

for a non-boolean operation and false is returned for a boolean operation.

5. A developer can extend the generated definitions of functions. For example, on line

28 in Figure 5.6, the generated code provides a hook for the developer to extend

savePhone.
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6. A custom resource is translated to an appropriate Android component. The capabilities

provided by a custom resource can be accessed via an Android intent. Currently, I only

support broadcast receivers as custom resources.

7. The use of a resource in the storyboard indicates an app depends on the resource.

Such dependencies are captured in the app’s configuration during code generation while

relying on the Android system to satisfy these dependencies at runtime in accordance

with the device’s security policy (e.g., grant permission to use a resource at install

time).

5.4 Canonical Examples

I illustrate SeMA with a couple of canonical examples. Each example demonstrates a vul-

nerability that can be prevented by the methodology at design time. Each example will have

a description of the expected behavior, a step-wise explanation of how the expected behav-

ior is specified in SeMA, and how SeMA helps uncover security violations in the specified

behavior.

5.4.1 Data Injection Example

Consider an app that allows users to log in and view their profile information. From another

app, a valid user of the app can navigate only to the screen showing profile information. The

example is based on the fragment injection vulnerability discovered in real-world apps [120].

The app will be specified in SeMA as follows:

Screens and transitions: As the first step, a developer specifies the screens of the app,

the widgets in each screens, and the possible transitions between the screens. As shown in

Figure 5.7, the initial storyboard has 4 screens – Start, LoginFrag, Home, and Profile.

Each screen has widgets (e.g., the Start screen has one button with label Launch). Finally,

the screens are connected to each other via transitions to indicate how the user can navigate
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between screens. For example, from the LoginFrag, a user can navigate to either Home or

Profile.

LoginFrag

Email

Login

Password

Home

Msg

ShowProfile

Profile

Name

SSN 

AddressResetPassword

Start

Launch

Figure 5.7: Data Injection Example: Initial Storyboard Design

Extend with user-controlled actions: A developer adds any constraints related to a

user’s action to the transitions. Such actions correspond to actions/gestures performed by

users on the widgets in the screens. In Figure 5.8 such constraints are highlighted in orange.

For example, the transition from Start to LoginFrag is taken when Launch button in Start

is clicked.

LoginFrag

Email

Login

Password

Home

Msg

ShowProfile

Profile

Name

SSN

Address

Login.click ShowProfile.click

Login.click

ResetPassword

Start

Launch.click

Launch

Figure 5.8: Data Injection Example: Adding user-related constraints

Add operations as constraints: A developer adorns transitions with operations that

return boolean values. Figure 5.9 demonstrates these extensions (highlighted in blue). For

example, the transitions from LoginFrag to Home is taken when the Login button is clicked,

the verify operation, and the isFragHome operation returns true. Likewise, the transition

from Profile to LoginFrag is taken when the validToken operation returns true. These

boolean operations may have input parameters. For example, the verify operation takes
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two input parameters, the arguments to which are provided by the values in widgets Email

and Password.

LoginFrag

Email

Login

Password

Home

Msg

ShowProfile

Profile

Name

SSN

Address

Login.click and
verify(Email, Password) and 

isFragHome(fragAddr) ShowProfile.click

Login.click and
verify( Email, Password) and 

isFragProfile(fragAddr)

ResetPassword

Start

Launch.click

Launch

! validToken()

Figure 5.9: Data Injection Example: Adding boolean constraints

Connect screen input parameters to data sources: A developer specifies data sources

as arguments to a screen’s input parameters. Arguments are provided in two ways – (1) as

part of incoming transitions to a screen, or (2) as part of URIs associated with screens. In

Figure 5.10, arguments provided as part of transitions are highlighted in green and arguments

associated with URIs are shown in purple. For example, the token input parameter of the

screen Home is provided the value of a non-boolean operation, getToken(Email) (highlighted

in orange), as argument associated with the transition from LoginFrag to Profile. Likewise,

if the transition from Home to Profile is taken, then token is provided the value from

getToken(user) as argument.

LoginFrag

Email

Login

Password

Home
Msg = 

showMsg(user)

ShowProfile

Profile
uri = “sema://profile/{token}

Name = getNm()

SSN = getSsn()

Address = getAddr()

Login.click and
verify(Email, Password) 

and isFragHome(fragAddr)
param user = Email 

ShowProfile.click

Login.click and
verify( Email, Password) 

and isFragProfile(fragAddr)
param token = getToken(Email)

! validToken(token)
param fragAddr = getFrag(token)

ResetPassword

param token = 
genToken(user)1

2

Start
Launch.click

param fragAddr = “Home”

Launch

Figure 5.10: Data Injection Example: Input Parameters, URIs, and Non-boolean operations

Analyze for security violations: A developer analyzes the specified behavior in the sto-

ryboard to verify the properties related to confidentiality and integrity. Figure 5.11 shows
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that there is a violation of integrity in the storyboard as isFragProfile and isFragHome

operations consume the input parameter fragAddr as argument. On the transition from

Profile screen to LoginFrag screen, fragAddr takes on the return value of getFrag opera-

tion that consumes token parameter of Profile screen. Since an external app provides the

token argument when Profile screen triggered via its URI, an external app can manipu-

late token to gain access to Home screen. Information flow analysis will detect and flag this

violation by following the chain of flow from untrusted source and sinks.

LoginFrag

Email

Login

Password

Home
Msg = 

showMsg(user)

ShowProfile

Profile
uri = “sema://profile/{token}

Name = getNm()

SSN = getSsn()

Address = getAddr()

Login.click and
verify(Email, Password) 

and isFragHome(fragAddr)
param user = Email 

ShowProfile.click

Login.click and
verify( Email, Password) 

and isFragProfile(fragAddr)
param token = getToken(Email)

! validToken(safe  token)
param fragAddr = getFrag(token)

ResetPassword

param token = 
genToken(user)

Data injection

1

2

Start
Launch.click
param fragAddr = “Home”

Launch

Figure 5.11: Data Injection Example: Security Analysis

Apply fix suggested by SeMA: This vulnerability can be fixed by changing param

fragAddr = getFrag(token) to param fragAddr = "profile" on the transition from Profile

screen to LoginFrag screen as this breaks the dependence between the app’s navigation and

token parameter.

Apply alternate fix: While the above fix will make the app more secure, SeMA will still

flag a vulnerability because the transition from Profile to LoginFrag is not guarded by a

user-related constraint. SeMA allows developers to override such warnings. However, it is

advisable not to do so. In this context, a more secure design would be to have a separate

screen that interacts with external apps. Figure 5.12 shows this design, which is more secure

because an external app cannot navigate to private screens in the app. While an external app

can influence the result of the boolean operation validToken, this is required since the app

needs to verify the provided token. To allow this requirement, the developer can let SeMA

know that the flow of token to validToken is safe (highlighted in blue in Figure 5.12).
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LoginFrag

Email

Login

Password

Home
Msg = 

showMsg(user)

ShowProfile

Profile
uri = “sema://profile/{token}

Name = getNm()

SSN = getSsn()

Address = getAddr()

Login.click and
verify(Email, Password) 

param user = Email 
ShowProfile.click

ViewProfile.click and
validToken(safe token)

ResetPassword

param token = 
genToken(user)

1 2
External

uri = “sema://profile/{token}

ViewProfile

ViewProfile.click and
! validToken(safe token)

Figure 5.12: Data Injection Example: Secure Version

5.4.2 Data Leak Example

Consider an app that allows a user to enter a trusted URL in a text field and displays the

content from the URL. If the URL is a file URL, then the data in the file is displayed to the

user and downloaded to the device’s external storage. The URL can be a file URL or a web

URL. The example is based on the sensitive data leak vulnerability discovered in Firefox

app for Android [121] and the Zomato app [122].

The app will be specified in SeMA as follows:

Screens and transitions: A developer starts by specifying the screens, widgets in each

screens, and the possible transitions between the screens in an initial storyboard as shown

on Figure 5.13. The app has 3 screens – Home, Display, and DisplayFile. The Display

screens is used to display web content from a URL entered in Url in Home screen. The

DisplayFile screen is used to display the contents of a file entered by the user in Url in

Home screen.
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DisplayFile

DispArea

Home

Load

Url

Display

wv

Figure 5.13: Data Leak Example: Initial Storyboard

Add user-controlled constraints: As described previously a developer adds user-controlled

actions as constraints to transitions. In the figure, a user can either navigate to Display or

DisplayFile from Home upon the click of the Load button in Home.

DisplayFile

DispArea

Home

Load

Url

Display

wv

Load.clickLoad.click 1 2

Figure 5.14: Data Leak Example: Adding user-related constraints

Add operations as constraints: Figure 5.9 shows these extensions (highlighted in blue).

For example, the transitions from Home to Display is taken when the Load button is clicked

and the startsWith operation returns true. The startsWith verifies if the URL entered by

the user starts with ”http”. Likewise, the transition from Home to DisplayFile is taken when

the Load button is clicked, the entered URL starts with ”file” (see startsWith operation in

Figure 5.15), and the save operation returns true (i.e., the content in the file path Url is

saved).

Add resources to operations: A developer adds more detail to the specified operations

via pre-defined resources. For example, a developer specifies the type of storage that will be

used by the save operation as shown in Figure 5.16 (highlighted in purple). In the figure, the
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DisplayFile

DispArea

Home

Load

Url

Display

wv

Load.click and
startsWith(Url, “file”) and

save(readFrom(Url)) 1 2
Load.click and

startsWith(Url, “http”)

Figure 5.15: Data Leak Example: Adding boolean constraints

save operation uses the write capability provided by the pre-defined resource EXT STORE

to write data to a file in the device’s external storage.

DisplayFile

DispArea

Home

Load

Load.click and
startsWith(Url, “file”) and

save(EXT_STORE.write, “myFile.txt”, readFrom(Url)) 12 Url
Load.click and

startsWith(Url, “http”)

Display

wv

Figure 5.16: Data Leak Example: Adding boolean constraints

Connect screen input parameters to data sources: As illustrated in the previous

example, a developer provides arguments as data sources to a screen’s input parameters.

For example, the Display screen has an input parameter u. The arguments to u are either

provided by the widget Url when the transition from Home to Display is taken (in green in

Figure 5.17 or by an external app (in purple in Figure 5.17).

DisplayFile

DispArea = 
show(EXT_STORE.read, 

“myFile.txt”)

Home

Load

Load.click and
startsWith(Url, “file”) and

save(EXT_STORE.write, “myFile.txt”, readFrom(Url)) 12 Url
Load.click and

startsWith(Url, “http”)
param u = Url

Display
uri = “sema://profile/{u}

wv = 
getContent(INTERNET.loadUrl, u)

Figure 5.17: Data Leak Example: Input Parameters, URIs, and Non-boolean operations

Connect widgets to data sources: A developer provides the data sources that will be

used by widgets to display data to users. As shown in Figure 5.18, the non-boolean operations

show and getContent are used as data sources of Display and wv widgets respectively. The
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operation show reads a file in the device’s external storage and the operation getContent

loads web content from a URL.

DisplayFile

DispArea = 
show(EXT_STORE.read, 

“myFile.txt”)

Home

Load

Load.click and
startsWith(Url, “file”) and

save(EXT_STORE.write, “myFile.txt”, readFrom(Url)) 12 Url
Load.click and

startsWith(Url, “http”)
param u = Url

Display
uri = “sema://profile/{u}

wv = 
getContent(INTERNET.loadUrl, u)

wv.allowJS = “true”

Figure 5.18: Data Leak Example: Widget Value

Configure WebView : A developer configures the Webview widget to allow JavaScript

execution, which is done by setting the allowJS flag to ”true” as shown in Figure 5.18.

Analyze for security violations: A developer analyzes the specified behavior in the

storyboard to check for violations related to confidentiality and integrity. The analysis

reveals a violation of confidentiality due to a data leak vulnerability. If the file path provided

in Url is a file in the app’s internal storage, then any file from the app’s internal storage

can be stored in the device’s external storage. Thus, all apps installed in the device can

access the app’s internal files since files in external storage can be accessed by all apps. This

violates the confidentiality of the data read from trusted sources. Information flow analysis

will detect and flag this violation by following the chain of flow from sources to untrusted

sinks. Further, rule checking will flag a violation of Rule 2 because a whitelist of trusted

URLs is not specified for wv widget via trust-patterns attribute. The absence of whitelist

will allow wv to execute JavaScript embedded in potentially malicious URLs.

Apply Fix suggested by SeMA: One way to fix this vulnerability is to not save internal

files to external storage. Instead, the data in an internal file should be directly displayed in

DisplayFile. The user should be provided with a button to download the displayed data

in external storage. This design is more secure since data in the app’s internal files cannot

be exposed without the user’s explicit approval via a UI action (e.g., button click). The rule
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violation is fixed by specifying a whitelist of trusted URLs for wv (e.g., wv.trust-patterns=

{".*sema.org.*"}). A secure design of the app is shown in Figure 5.19.

DisplayFile

DispArea = 
show(INT_STORE.read, 

“myFile.txt”)

Home

Load

Load.click and
startsWith(Url, “file”) and

save(INT_STORE.write, “myFile.txt”, readFrom(Url)) 12 Url
Load.click and

startsWith(Url, “http”)
param u = Url

Display
uri = “sema://profile/{u}

wv = 
getContent(INTERNET.loadUrl, u)

wv.allowJS = “true”
wv.trust-patterns = .*sema.org.*

Share

Share.click and
download(EXT_STORE.write, “myFile.txt”, safe DispArea)

Figure 5.19: Data Leak Example: Secure Version

5.5 Implementation

Android JetPack Navigation (AJN) is a suite of libraries that helps Android developers design

their apps’ navigation in the form of navigation graphs. A navigation graph is a realization of

a traditional storyboard in Android Studio. I have extended navigation graphs with features

that enable developers to specify an app’s storyboard, as illustrated in Figure 5.4, in Android

Studio. The developer can visually represent the screens, widgets, and transitions in the

navigation graph. While a developer cannot specify operations and constraints visually, she

can specify them in the corresponding XML structure of the navigation graph.

I have extended Android Lint [123], a static analysis tool to analyze files in Android

Studio, to implement the analysis and verification of security properties. The analysis is

packaged as a Gradle Plugin that can be used from Android Studio.

I have implemented a code generation tool that takes a navigation graph and translates

it into Java code for Android. A developer can extend the generated code with business

logic in Java or Kotlin. The code generation tool is also packaged as a Gradle Plugin that

can be used from Android Studio.

Designing an app in Android Studio with SeMA An app developer uses the existing

AJN libraries to build a navigation graph of the app. This graph serves as the initial
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storyboard (e.g., Figure 5.1). Next, she uses the SeMA provided extensions to the navigation

graph to iteratively specify the app’s behavior. In each iteration, she uses the extensions

to Android Lint tool to analyze the navigation graph for violations of pre-defined security

properties. Once the developer has verified the storyboard satisfies the desired properties,

she uses the code generation tool to generate an implementation of the app. Finally, she

adds the business logic to the generated implementation to complete the implementation of

the app.

All thru the development process, the developer operates within the existing development

environment while exercising the extensions provided by SeMA.

5.6 Evaluation

I evaluated SeMA in terms of (1) Effectiveness focused on its ability to detect and prevent

vulnerabilities, and (2) Usability focused on its ability to help developers build apps with

features that are often found in real-world apps but without a set of known Android app

vulnerabilities.

5.6.1 Effectiveness

I used the Ghera benchmark suite, described in Chapter 2, for this evaluation. Ghera has

60 benchmarks. Each benchmark captures a unique vulnerability. I used Ghera because the

vulnerabilities in Ghera benchmarks are valid (i.e., they have been previously reported in

the literature or documented in Android documentation). These vulnerabilities are general

and exploitable as they can be verified by executing the corresponding benchmarks on vanilla

Android devices and emulators. Further, each vulnerability is current as they are based on

Android API levels 22 thru 27, which enable more than 90% of Android devices in the world

and are targeted by both existing and new apps. Finally, the benchmarks are representative

of real-world apps in terms of the APIs they use, as established in Chapter 3. Hence, the

benchmarks in Ghera are well-suited for this evaluation.
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For each Ghera benchmark, I used SeMA to create a storyboard of the Benign app. If

SeMA detected the vulnerability in Benign’s storyboard, then I modified the storyboard till

SeMA found no vulnerabilities. I generated the code from this storyboard and verified the

absence of the vulnerability captured in Benign by executing it with the Malicious app.

If the Malicious app was unable to exploit the generated app, then I deemed that SeMA

prevented the vulnerability.

SeMA prevented 49 of the 60 vulnerabilities captured in Ghera benchmarks. Of the 49

prevented vulnerabilities, 30 were prevented by information flow analysis and rule checking

of the storyboard. The remaining 19 were prevented by code generation. Table 5.12 provides

the breakdown of the vulnerabilities in Ghera prevented by SeMA.

Of the 30 vulnerabilities detected by the analysis on the storyboard, 15 were prevented

by information flow, nine were prevented due to rule analysis, and six were prevented by

a combination of information flow and rule analysis. Two of these six vulnerabilities were

prevented by rule analysis and could have been prevented by code generation. These two

vulnerabilities relate to connecting to HTTP remote servers and connecting to HTTPS re-

mote servers without certificate pinning. While such vulnerabilities can be prevented by code

generation, I chose rule checking in the current realization of SeMA to offer flexibility in

using HTTP vs. HTTPS and certificate pinning in storyboards when connecting to remote

servers.

The current realization of SeMA was not applicable to 11 benchmarks in Ghera. While

the capabilities in SeMA are equipped to handle eight of the 11 benchmarks, the current

realization of SeMA does not yet have support for developing apps with features that cause

vulnerabilities in the eight benchmarks (e.g., Content Providers).

The remaining three benchmarks capture vulnerabilities that cannot be prevented by the

methodology since they occur due to defects in implementation and are not introduced while

specifying a storyboard (e.g., using a library containing vulnerabilities).

Comparison with existing efforts in vulnerability detection. Of the 49 vulnerabili-

ties prevented by the methodology, 28 can be detected curatively by source code analysis after
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implementing the apps. Detecting the remaining 21 vulnerabilities by source code analysis

is harder due to combinations of factors such as the semantics of general-purpose program-

ming languages (e.g., Java), security-related specifications provided by the developer (e.g.,

source/sink APIs), and the behavior of the underlying system (e.g., Android libraries and

runtime). This observation is supported by the results in Chapter 4 that show that existing

source code analysis tools are not effective in detecting vulnerabilities in an earlier version

of Ghera, which included 15 of the 21 vulnerabilities. Further, Pauck et al. [52] evaluated

six prominent static taint analysis tools aimed to detect data leak vulnerabilities in An-

droid apps and discovered that most tools detect approximately 60% of the vulnerabilities

captured in the DroidBench 3.0 benchmark suite. Finally, Luo et al. [124] qualitatively

analyzed Android app static taint analysis tools and observed that these tools need to be

carefully configured (e.g., relevant source/sink APIs) and should consider application context

to detect vulnerabilities in Android apps accurately.

In Chapter 4, 14 security analysis tools in isolation could detect at most 15 vulnerabilities

and the full set of tools collectively detected 30 vulnerabilities. This result suggests combining

different analysis will likely be more effective in detecting vulnerabilities. My experience

with SeMA suggests the same is likely true in the context of preventing vulnerabilities: a

combination of information flow analysis (deep), rule checking (shallow), and code generation

(shallow) helped detect and prevent 49 vulnerabilities.

Gadient et al. [125] found that real-world apps often expose credentials (e.g., crypto keys)

in the source code, use insecure communication channels (e.g., HTTP), and use malicious

input to load URLs in a WebView. These vulnerabilities are also captured in Ghera and

were prevented by SeMA in this evaluation. This finding suggests there are non-trivial

opportunities for techniques like SeMA to help improve security of real-world apps.
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Table 5.12: Results showing how a vulnerability in a

benchmark was detected/prevented. CG, IF, and RC re-

fer to Code Generation, Information Flow Analysis, and

Rule-based Analysis, respectively.

ID Benchmark Method

C1 BlockCipher-ECB-InfoExposure (A.1.1) CG

C2 BlockCipher-NonRandomIV-InfoExposure (A.1.2) CG

C3 ConstantKey-Forgery (A.1.3) RC

C4 ExposedCredentials-InfoExposure (A.1.4) CG

C5 PBE-ConstantSalt-InfoExposure (A.1.5) CG

I1 DynamicBroadcast-UnrestrictedAccess (A.2.1) RC

I2 EmptyPendingIntent-PrivEscalation (A.2.2) IF

I3 FragmentInjection-PrivEscalation (A.2.3) IF

I4 HighPriority-ActivityHijack (A.2.4) IF

I5 ImplicitPendingIntent-PrivEscalation (A.2.5) IF

I6 IncorrectHandlingImplicitIntent-UnauthorizedAccess (A.2.7) IF

I7 NoValidityCheckOnBroadcast-UnintendedInvocation (A.2.8) RC

I8 OrderedBroadcast-DataInjection (A.2.9) IF

I9 UnprotectedBroadcastRecv-PrivEscalation (A.2.16) RC

I10 TaskAffinity-ActivityHijack (A.2.12) CG

I11 TaskAffinity-LauncherActivity-PhishingAttack (A.2.13) CG

I12 TaskAffinity-PhishingAttack (A.2.11) CG

I13 TaskAffinityAndReparenting-PhishingAndDoSAttack (A.2.14) CG

N1 CheckValidity-InfoExposure (A.3.1) CG

N2 IncorrectHostNameVerification-MITM (A.3.2) CG

Continued on next page
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Table 5.12 – Continued from previous page

ID Benchmark Method

N3 InsecureSSLSocket-MITM (A.3.3) CG

N4 InsecureSSLSocketFactory-MITM (A.3.4) CG

N5 InvalidCertificateAuthority-MITM (A.3.5) CG

N6 OpenSocket-InfoLeak (A.3.6) IF

N7 UnEncryptedSocketComm-DataInjection (A.3.7) IF

N8 UnPinnedCertificate-MITM (A.3.8) RC

P1 UnnecesaryPerms-PrivEscalation (A.5.1) CG

P2 WeakPermission-UnauthorizedAccess (A.5.2) RC

S1 ExternalStorage-DataInjection (A.6.1) IF

S2 ExternalStorage-InformationLeak (A.6.2) IF

S3 InternalStorage-DirectoryTraversal (A.6.3) IF

S4 InternalToExternalStorage-InformationLeak (A.6.4) IF

Y1 CheckCallingOrSelfPermission-PrivilegeEscalation (A.7.1) CG

Y2 CheckPermission-PrivilegeEscalation (A.7.2) CG

Y3 EnforceCallingOrSelfPermission-PrivilegeEscalation (A.7.5) CG

Y4 EnforcePermission-PrivilegeEscalation (A.7.6) CG

Y5 ClipboardUse-InformationExposure (A.7.3) IF

Y6 DynamicCodeLoading-CodeInjection (A.7.4) IF

Y7 UniqueIDs-IdentityLeak (A.7.7) IF

W1 WebView-CookieOverwrite (A.8.3) IF & RC

W2 HttpConnection-MITM (A.8.1) RC

W3 JavaScriptExecution-CodeInjection (A.8.2) IF & RC

W4 UnsafeIntentURLImpl-InformationExposure (A.8.4) IF & RC

Continued on next page
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Table 5.12 – Continued from previous page

ID Benchmark Method

W5 WebViewAllowContentAccess-UnauthorizedFileAccess (A.8.6) IF & RC

W6 WebViewAllowFileAccess-UnauthorizedFileAccess-Lean (A.8.7) IF & RC

W7 WebViewIgnoreSSLWarning-MITM (A.8.8) CG

W8 WebViewInterceptRequest-MITM (A.8.9) RC

W9 WebViewLoadDataWithBaseUrl-UnauthorizedFileAccess (A.8.10) IF & RC

W10 WebViewOverrideUrl-MITM (A.8.11) RC

5.6.2 Usability

While the evaluation with the Ghera benchmarks shows that SeMA can be used to prevent

known vulnerabilities in small apps, it does not tell us if SeMA can be used by developers

to uncover vulnerabilities in apps with real-world capabilities and features. Further, SeMA

extends storyboards, an existing design artifact, to enable formal reasoning of security prop-

erties at design time. While formal reasoning approaches have been proven to be effective in

terms of uncovering defects in software (e.g., bugs and vulnerabilities), they can be a burden

on developers in terms of time to learn and use [126]. Consequently, the adoption of such

approaches in domains like mobile app development may be limited.

To address the concerns identified above, I conducted a usability study of SeMA with

ten developers and 13 real-world apps. In this study, I will answer the following research

questions:

• RQ1: Does SeMA affect app development time?

• RQ2: Does software development experience affect development time while using

SeMA?
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• RQ3: Does security-related feature development experience affect development time

while using SeMA?

• RQ4: Do features used in an app affect development time while using SeMA?

• RQ5: Does SeMA detect specific (expected) vulnerabilities introduced in an app’s

storyboard?

• RQ6: Does the use of SeMA (instead of the usual Android app development process)

increase the likelihood of introducing expected vulnerabilities?

• RQ7: Does software development experience affect the vulnerabilities introduced while

using SeMA?

• RQ8: Does security-related feature development experience affect the vulnerabilities

introduced while using SeMA?

In the following sections, I will describe the different aspects of the experiment, explain

the various design decisions, and present the results of the analysis on the observed data.

Study Design

I designed an experiment to gain insights into the effect of introducing SeMA to the Android

app development process. Specifically, I wanted to determine if SeMA helps a developer

prevent vulnerabilities when making an app. Additionally, I wanted to find out the cost of

using SeMA in terms of time taken to build an app with SeMA. Hence, I carried out the

following tasks to accomplish the study:

1. Identify real-world Android apps with expected vulnerabilities.

2. Hire developers to participate in the study.

3. Conduct interventions for the developers participating in the study.

4. Create development exercises for the developers participating in the study.
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5. Assign exercises to developers.

6. Collect observational data during exercises.

7. Design and administer surveys to collect information about developer experience and

developer opinion on SeMA.

8. Analyze collected data.

In the following paragraphs, I will explain the details and the rationale for performing

the above tasks.

Identifying Real-world Apps: For this experiment, I selected 30 Ghera benchmarks.

The selection was guided by the possibility of detecting the captured vulnerabilities via

information flow analysis or rule checking. These vulnerabilities are representative of vul-

nerabilities found in real-world apps based on API usage information, as shown in Chapter 3.

Hence, they are appropriate for measuring the effectiveness of the SeMA methodology.

Next, I randomly collected 50 apps from Google Play, Android’s official app store. I

manually analyzed the source code of the apps to look for features used in the 30 Ghera

benchmarks. The first 13 apps I analyzed accounted for the features used by 26 of the

30 selected Ghera benchmarks. None of the remaining 27 apps used features used by the

remaining 4 of the selected Ghera benchmarks. Of the 13 apps, seven apps had been publicly

reported to have at least one of the 30 Ghera vulnerabilities [57]. Based on the used features,

each of the 13 apps were associated with at least two, on average six, and at most 12

vulnerability benchmarks. The associated number of benchmarks hints at the number of

vulnerabilities to expect if these apps were recreated. I refer to these vulnerabilities as

expected vulnerabilities from hereon. Table 5.13 provides a brief description of each app and

lists the expected vulnerabilities in each app.

Hiring Developers: Since the purpose of this evaluation is to measure the effect of SeMA

on Android app development, the obvious candidates for this study are Android app devel-

opers. Due to limited local population of developers familiar with Android app development,
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ID App Name App Description Expected Ghera Vuln. Total

1 IRS2Go Allows registered users to check tax I4,N8,S1,S2,W1 5
refund status and make tax-related
payments

2 Geico Allows registered users to view and N8,S1,S2,Y7,W1 5
download their auto insurance policies

3 Slack Allows registered users to chat and call I3,I4,I6,N6,N7,N8, 7
other registered users W2

4 Ancestry Allows registered users to track and save N8,S2,W2 3
their family history details

5 MyBlock Allows registered users to upload tax- I3,I4,I6,N8,S1,S3, 7
H&R related documents and estimate their W2

annual tax
6 AESCrypto Allows users to encrypt and decrypt C3,S1 2

messages with a password
7 Grab Allows users to book transportation W1,W3,W4,W6, 7

and accommodation at a location W8,W9,W10
8 Zomato Allows users to order food from I6,W1,W3,W4,W6, 8

restaurants near their location W8,W9,W10
9 Clipboard Allows users to take notes and share N8,Y5,W2 3

Manager them via the clipboard or save to a
remote server

10 IRCCloud Allows users to upload files in their device I6,S1,S2,S3,S4 5
to the app

11 Harvest Allows users to uploads bills and receipts I3,I4,S1,S2,S3,S4 6
of their monthly expenditure

12 Firefox Allows users to view web or file content S2,S4,W1,W3,W4, 9
in a custom browser W6,W8,W9,W10

13 Yandex Allows users to view web content in I1,I7,I8,I9, 12
a custom browser and report a browser P2,W1,W3,W4,
crash W6,W8,W9,W10

Table 5.13: A description of the 13 apps along with the expected Ghera vulnerabilities in
each app.
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I reached out to local developers with some professional software development experience.

I curated a list of 30 professional developers sourced from personal contacts and sent out

personalized emails to each one of them, asking them about their interest in participating in

the study. In these emails, I promised to provide a small financial incentive (e.g., gift card)

if they participated in the study. Of the 30 developers, 15 agreed to participate in the study.

While I started the study with 15 participants, five participants withdrew from the study in

the middle. So, I completed the study with ten participants.

The participants have an average of 20 months of software development experience with

a minimum of three months and a maximum of 53 months as shown in Table 5.14. Seven

of them have experience in developing web applications professionally (i.e., outside of learn-

ing environments such as classrooms or boot camps), and four of the seven participants

experienced in web development have 12 months of experience or more. Further, four of

ten participants have experience in developing security features (e.g., authentication) for

applications. Finally, in terms of programming languages, eight of ten participants use Java

frequently, followed by JavaScript and Python, both of which are used by four participants.

However, only 3 participants have experience developing mobile apps professionally, and

none of them were in Android. Hence, participants selected in this study are not expert

Android app developers.

The rationale behind selecting professional developers with little to no exposure to An-

droid app development was that professional developers are likely to have real-world soft-

ware development experience. Further, in general, professional developers are likely to learn

quickly since many of them have to learn new concepts, tools, and languages on the job.

Finally, since commercial software often has to meet security standards, such developers will

have a better understanding of security-related features than beginners. Hence, considering

the experience of the participants, their exposure to security-related feature development, and

the popularity of the languages also used for Android app development the selected group of

participants are reasonable proxies for a developer involved in developing Android apps with

security-related features.. Finally, considering this set of developers will be more represen-

tative of Android app developers than considering students, which is the norm in usability
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Participant Software Web Mobile Android Security

404 53 17 0 0 17
704 3 3 0 0 0

1004 10 0 8 0 0
1503 14 14 0 0 14
1803 30 18 6 0 12
1904 6 6 0 0 0
2103 12 0 0 0 0
2403 3 0 2 0 0
2703 48 12 0 0 10
3103 6 3 0 0 0

Table 5.14: Experience in months for each participant across different platforms and secu-
rity features.

studies in software engineering [127–129].

Conducting Interventions: Since the participants in the study did not know how to

make an Android app, I had to train them in Android app development. Hence, I invited all

participants to a single 8-hour session. In this session, I introduced them to the fundamental

aspects of an Android app (e.g., activity, intents). This introduction included a presentation

of the necessary concepts, secure coding guidelines, and a live demonstration of how to

develop an Android app using Android Studio. After this session, the participants were

given Android-related resources such as the Android documentation and free video tutorials

(e.g., Marakana Android tutorials [130]) to learn more about the APIs needed to build

Android apps. They were given five days to examine the additional materials independently.

After this brief study period, I conducted a group Q&A session with all the participants.

This session comprised two parts. The first part of the session was aimed at helping the

participants address any confusion they had about developing an app in Android. The second

part of the session was meant to provide them with hands-on experience of Android Studio

and Android app development in general.

I designed a similar schedule to train the participants in developing Android apps with

SeMA. All the participants were invited to a single 8-hour group session. In this session, I

introduced the features in SeMA and demonstrated how to build an app with those features.
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I provided the participants with the documentation to SeMA and five days to peruse the

materials. Finally, I conducted a group Q&A session with all participants to help them learn

about developing an app with SeMA. In addition to the Q&A, in this session, they made an

app with SeMA with our assistance. The hands-on experience with SeMA helped them get

acclimatized to Android app development with SeMA.

This entire process of teaching ten participants Android and SeMA took approximately

two weeks to complete.

In any usability study that requires interventions, the application of the interventions to

the users should be designed carefully. In this study, since the training received by a par-

ticipant could affect the results, it was necessary to ensure that they received homogeneous

instruction. Hence, I conducted all the training and Q&A sessions for the participants to-

gether instead of individually. However, since each participant was allowed to independently

explore Android and SeMA, the effect of individual learning will affect the results of this

experiment.

Creating Development Exercises: I analyzed the selected 13 real-world apps in two

ways to design the development exercises for the participants. First, I decompiled the app

and manually analyzed its metadata and source code. This analysis revealed the screens in

the app, any external apps (e.g., remote server) the app communicates with, the data flow

of the app, and the APIs used in the apps. Second, I installed the app on an Android device

and interacted with it to understand the navigation of the app. Based on the analysis of an

app’s innards and navigation, I constructed a specification of the app. These specifications

were used as exercises for the participants in the study.

The motivation behind using these specifications as exercises for participants was that

I wanted to mimic a real-world scenario where a developer would have to start from a

description of an app’s expected behavior, understand it, and use the relevant features in

Android to realize the app. Further, since one of our goals was to measure the effectiveness

of SeMA in helping developers uncover vulnerabilities, the specifications provided in the

exercises were constructed to force participants to make decisions that would affect the
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security of the app.

As an example, consider the snippet from an exercise assigned to a participant in this

experiment – ”When the app is started, the user is shown a FileUploader screen. The File-

Uploader screen has a button to allow users to upload a file. Upon clicking this button, the

user is shown a list of files. Upon selecting a file, the selected file is saved and the user is

shown a message to indicate if the file was saved successfully.”. This specification asks the

participant to design an app that allows users to upload a file, a feature that requires the

participant to consider security implications. For example, if the participant decided to use

an external client to help the user select a file, then she would register the app to receive

the chosen file path from the external client via a message. In doing so, an app might open

itself to accepting malicious messages. If the app used the file path embedded in a malicious

message to create a destination where the selected file will be uploaded, then this decision

would enable data injection or directory traversal attack. Hence, the approach used by the

participant to design the file upload feature will have an impact on the security of the app.

These decisions and SeMA’s influence on them was the focus of this study.

Assigning Exercises to Participants: I assigned three distinct apps to every partic-

ipant. Of the three apps assigned to each participant, one baseline app was common to

all participants (App ID 1 in Table 5.13). All participants developed the baseline app first

with SeMA and then without SeMA (i.e., using the existing Android development process).

I ensured that the baseline app with SeMA and without SeMA was developed on different

days to reduce the effect of memorization. The rationale for developing the baseline app with

SeMA before developing the same app without SeMA was to avoid the inflation of SeMA’s

effect due to a participant’s prior knowledge about the app/exercise.

In addition to the baseline app, each participant built two apps using SeMA. This as-

signment strategy resulted in 40 sample implementations of 13 apps. Of the 40 samples, 20

were realizations of the baseline app – 10 using SeMA and 10 without SeMA. Keeping the

baseline app constant across all participants was necessary to measure the effect of SeMA on

one app for all participants. The remaining 20 samples were uniformly distributed across the
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remaining 12 apps (see Table 5.15). This distribution ensured all expected vulnerabilities

could be introduced by a participant.

Observing Development and Collecting Data: Each participant worked on the as-

signed development exercise via remote session. Participants decided on the length of each

session. There was no limit on the number of sessions to work on a development exercise.

In every session, participants shared their screen with us. Via this screen sharing, I

observed the development of apps and recorded when participants introduced vulnerabilities

that were expected in the developed apps. Also, I recorded the error messages and causes of

error reported by SeMA.

Designing and Administering Development Experience Surveys: I administered

two surveys after the participants finished their exercises. The purpose of the first survey

was to build a participant profile. It asked about the time spent developing software outside

formal learning environments (e.g., classrooms), experience developing web and mobile apps,

and familiarity with different programming languages and technologies. The purpose of the

second survey was to assess their experience with SeMA. It asked about various features of

SeMA and if they aided/impeded the development workflow.

Analyzing Observational Data: To answer RQ1, I analyzed the development time of

developing the baseline app with and without SeMA. The development of baseline apps

without SeMA served as the control group, while the development of baseline apps with

SeMA served as the treatment group. I computed the average difference in app development

time between the control and treatment groups and used a paired two-tailed t-test to measure

the effect of SeMA on app development time.

To answer RQ2, I partitioned the participants into two groups. The +2DX group com-

prised participants with two or more years of software development experience and the -2DX

group comprised participants with less than two years of development experience. I used a

two sample two-tailed t-test to compare the average development time using SeMA between
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these groups to quantify the effect of software development experience on developing software

using SeMA.

To answer RQ3, similar to RQ2, I partitioned the participants into two groups. +1SFDX

group comprised of participants with one or more years of security feature development

experience and -1SFDX group comprised of participants with less than one year of security

feature development experience.

To answer RQ4, I compared the average time taken by participants using SeMA to make

apps with expected vulnerabilities stemming from the features of a category and apps without

the same features. I used a two sample two-tailed t-test for this comparison.

To answer RQ5, I measured the proportion of total number of expected vulnerabilities

introduced by all participants while using SeMA that were then successfully detected by

SeMA. I also considered the proportion of expected vulnerabilities that were prevented by

SeMA (due to good defaults).

While SeMA is effective in detecting expected vulnerabilities, its use could affect the

introduction of expected vulnerabilities. I tackle this concern in RQ6 — does the use of SeMA

(instead of the usual Android app development process) increase the likelihood of introducing

expected vulnerabilities?

To answer RQ6, I measured the average proportion of expected vulnerabilities introduced

by participants in the baseline app with and without SeMA. I compared the average pro-

portions with a paired two-tailed t-test to determine if there was any significant difference

in the average proportion of vulnerabilities introduced in the baseline app with and without

SeMA.

To answer RQ7, I computed the proportion of expected vulnerabilities introduced while

using SeMA for both +2DX and -2DX groups. I compared these two proportions using a

two sample two-tailed z-test to measure the effect of the participants’ software development

experience on introducing vulnerabilities with SeMA.

To answer RQ8, I compared the proportion of expected vulnerabilities introduced while

using SeMA by participants in +1SFDX and -1SFDX group. I used a two sample two-tailed

z-test for the comparison.
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Results from Observational Data

RQ1: Does SeMA affect app development time? Every participant took less time

to make the baseline app with SeMA compared to without SeMA, as shown in columns 2

and 3 in Table 5.16. The median development time of an app with SeMA is 188 minutes

and without SeMA is 283 minutes, which shows that, for the participants considered in this

study, developing the baseline app with SeMA took 40% less than developing the same app

without SeMA.

Based on paired two-tailed t-test, SeMA has a significant effect (p-value = 0.0002 with

95% confidence interval [79 mins., 177 mins.]]) on the mean development time in devel-

oping the baseline app. The 95% confidence interval of SeMA’s effect on decreasing the

development time suggests that SeMA has the potential to reduce app development time.

RQ2: Does software development experience affect development time while using

SeMA? The three participants in the +2DX group took 142 minutes on average, to develop

an app with SeMA. This time was 150 minutes for the seven participants in the -2DX group.

Based on two sample two-tailed t-test comparing the means of these two groups, there is no

significant difference in the average time taken by participants from these two groups while

using SeMA (p-value = 0.75 with 95% confidence interval [-55 mins., 39 mins.]). Hence,

software development experience (not related to Android app development) does not affect

the time taken by a developer to make an app with SeMA.

RQ3: Does security-related feature development experience affect development

time while using SeMA? The four participants in the +1SFDX group took 160 minutes

on average, to make an app with SeMA. This time was 139 minutes for the six participants

in the -1SFDX group. While participants in the +1SFDX group took more time than

participants in the -1SFDX group in this sample, the difference is not significant based

on two sample two-tailed t-test (p-value = 0.37 with 95% confidence interval [-28 mins., 70

mins.]). Hence, security-related feature development experience does not affect the time taken

by a developer to make an app with SeMA.
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Participant Time to Time to Expected Added
Baseline App 2nd App 3rd App Vulns. Vulns.

no SeMA SeMA SeMA

404 276 165 85 102 15 10
704 440 255 105 135 14 4

1004 180 140 55 135 22 10
1503 588 315 180 150 12 5
1803 360 210 90 240 16 7
1904 290 210 150 110 24 16
2103 390 210 150 105 12 5
2403 210 138 120 60 21 12
2703 240 150 105 132 19 11
3103 240 135 80 100 22 11

Average 321 193 112 138

95% C.I ————[124,170]————

Table 5.16: Observational Data of each participant. The unit of time is minute. Only
the baseline app was made with and without SeMA. The non-baseline apps were made only
with SeMA. Expected Vulns. indicates no. of vulnerabilities that could have been introduced
by a participant while developing the three apps assigned to her with SeMA. Added Vulns.
indicates the no. of vulnerabilities introduced by a participant while developing the three apps
assigned to her with SeMA.
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RQ4: Do the features used in an app affect development time while using SeMA?

With SeMA, for the seven apps with ICC features based expected vulnerabilities (ICC apps),

the average development time was 58 minutes more than the average development time of

the six apps without ICC-based expected vulnerabilities (non-ICC apps). Based on two

sample two-tailed t-test, the 95% confidence interval of the difference between the average

development time to make ICC apps and non-ICC apps ranges from 21 to 95 minutes.

A likely reason for longer development time for ICC-apps is that ICC-apps tend to have

more screens and navigation between the screens. Considering the significant difference in

development time for at least one set of features (e.g., ICC), the features used in an app are

likely to affect the time taken to make the app with SeMA.

Based on the average development time using SeMA, the development of baseline apps

took more time than the development of non-baseline apps (see the average row in Ta-

ble 5.16). The longer development time for the baseline app is likely due to the methodology’s

novelty, considering the baseline app was the first app participants developed using SeMA.

This observation suggests that development time reduced as participants became familiar

with SeMA. However, development time did not necessarily decrease consistently across all

apps made with SeMA. For example, participant 1803 took more time to develop the third

app than the second app. This increase was likely because the third app had more features

than the second app, making the third app more complicated. Specifically, the third app

was more complicated since it had features related to user registration and authentication,

which were absent in the second app. Hence, the reduction in development time with SeMA

seems to be dependent on the familiarity with SeMA and the features used in the app.

RQ5: Does SeMA detect specific (expected) vulnerabilities introduced in an

app’s storyboard? The participants in this study introduced 91 of 177 instances of ex-

pected vulnerabilities in 30 app storyboards while using SeMA (see Added Vulns. column in

Table 5.16). For example, participants introduced all instances of expected vulnerabilities

in the Web category (see Table 5.18). SeMA detected and reported a violation for every one

of the 91 instances. Hence, SeMA is highly likely to detect expected vulnerabilities introduced
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Participant N S T W K D

404 3 2 5 0.6 0.4 0.2
704 2 0 5 0.4 0 0.4

1004 2 2 5 0.4 0.4 0
1503 2 3 5 0.4 0.6 -0.2
1803 2 2 5 0.4 0.4 0
1904 2 3 5 0.4 0.4 0
2103 1 1 5 0.2 0.2 0
2403 2 0 5 0.4 0 0.4
2703 2 1 5 0.4 0.2 0.2
3103 2 1 5 0.4 0.2 0.2

Average 0.4 0.3 0.1

Table 5.17: Proportion of expected vulnerabilities introduced in the baseline app by a par-
ticipant with and without SeMA. N indicates the no. of expected vulnerabilities introduced
by a participant in the baseline app without using SeMA. S indicates the no. of expected
vulnerabilities introduced by a participant in the baseline app using SeMA. T indicates the
no. of expected vulnerabilities in the baseline app. W indicates the proportion of expected
vulnerabilities introduced by a participant in the baseline app without SeMA. K indicates
the proportion of expected vulnerabilities introduced by a participant in the baseline app with
SeMA. D is the difference between W and K.

in a storyboard.

I anticipated SeMA would prevent 38 instances of expected vulnerabilities – two instances

of I1, 16 instances of I4, two instances of I9, and 18 instances of N8 – due to good defaults

provided by SeMA, e.g., certificate pinning is enabled by default. Since participants overrode

the defaults in three instances – two instances of I4 and one instance of I9, 35 of the 38

instances of expected vulnerabilities were prevented by the good defaults in SeMA. Hence,

the defaults built into SeMA are likely to prevent expected vulnerabilities.

Overall, since SeMA detected and prevented 126 of 177 (71%) instances of expected

vulnerabilities in the considered sample, we can conclude SeMA is likely to detect and prevent

expected vulnerabilities in an app’s storyboard.

Participants did not introduce 51 instances of expected vulnerabilities – one in Crypto,

five in ICC, 17 in Networking, 27 in Storage, and one in System – while using SeMA.

For example, in the Networking category, 15 of 18 instances of W2 were not introduced

since participants decided to use HTTPS over HTTP when communicating with a remote
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server. In Storage category, when participants introduced S2 (writing to external storage),

SeMA flagged the vulnerability. Since this informed the participants about the pitfalls of

using external storage, they were more cautious with the further use of external storage.

Consequently, only 5 of the 19 expected instances of S1 (reading from external storage) vul-

nerability were introduced by the participants. Hence, prior knowledge of vulnerabilities is

likely to affect the introduction of vulnerabilities and, consequently, the lower the observed

effectiveness of SeMA. On the positive side, unlike passive interventions like lists of vulner-

abilities, SeMA is likely to serve as an active intervention and improve developer awareness

about vulnerabilities.

RQ6: Does the use of SeMA (instead of the usual Android app development

process) increase the likelihood of introducing expected vulnerabilities? The

average percentage of introducing an expected vulnerability in the baseline app without

SeMA was 40% across all participants (column W in Table 5.17). With SeMA, the average

percentage of introducing an expected vulnerability in the baseline app was 30% (column

K in Table 5.17). The median and mean difference between the percentage of expected

vulnerabilities introduced with and without SeMA in the baseline app for each participant

is 0% and 10%, respectively (see column D of Table 5.17). Further, based on paired two-

tailed t-test, there is no significant difference between the mean percentage of introducing an

expected vulnerability in the baseline app with and without SeMA (p-value = 0.17 with 95%

confidence interval [-6%, 26%]). Consequently, SeMA is not likely to introduce any more or

less vulnerabilities compared to the prevalent app development process.

RQ7: Does software development experience affect the vulnerabilities introduced

while using SeMA? If we consider the participants’ software development experience,

then the three participants in the +2DX group introduced 53% of 50 expected vulnerabilities

while using SeMA. The seven participants in the -2DX group introduced 50% of 127 expected

vulnerabilities while using SeMA. The difference in the percentage of introducing an expected

vulnerability between the two groups of participants is not statistically significant (p-value
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Category Benchmark ID # Apps (A) # Expected (E) # Introduced (I)

Crypto C3 1 2 1

ICC I1 1 2 0
I3 2 4 3
I4 4 16 2
I6 5 9 9
I7 1 2 0
I8 1 2 0
I9 1 2 1

ICC Ave. 2.1 5.3 2.1

Networking N6 1 2 1
N7 1 2 1
N8 6 18 0
W2 7 18 3

Networking Ave. 3.8 10 1.25

P2 Permission 1 2 2

Storage S1 6 19 5
S2 7 20 10
S3 3 6 5
S4 3 6 4

Storage Ave. 4.8 12.8 6

System Y5 1 2 2
Y7 1 1 0

System Ave. 1 1.5 1

Web W1 4 6 6
W3 4 6 6
W4 4 6 6
W6 4 6 6
W8 4 6 6
W9 4 6 6
W10 4 6 6

Web Ave. 4 6 6

Total Ave. 3.1 6.8 3.5

Table 5.18: Frequency distribution of each Ghera vulnerability. A indicates no. of apps
with an expected vulnerability. E indicates no. of times a vulnerability was expected to be
introduced. I indicates no. of times an expected vulnerability was introduced and prevented.
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= 0.44 with 95% confidence interval [-10%, 22%]). Hence, software development experience

does not affect the proportion of expected vulnerabilities introduced by a developer in an app

while using SeMA.

RQ8: Does security-related feature development experience affect the vulnera-

bilities introduced while using SeMA? The four participants with one year or more

experience in security-related feature development introduced 54% of 62 expected vulnera-

bilities while using SeMA. The six participants with less than a year’s experience introduced

49% of 115 expected vulnerabilities while using SeMA. Further, there was no significant

difference between the proportion of expected vulnerabilities introduced by the two groups

of participants (p-value = 0.72 with 95% confidence interval [-13%, 17%]). A possible rea-

son for the absence of a statistically significant difference is, while the participants in the

+1SFDX group have prior knowledge of security features, they do not have experience in

security feature development in the context of Android apps. Hence, security-related feature

development experience not specific to Android does not affect the proportion of expected

vulnerabilities introduced by a developer in an app while using SeMA.

Observations from Survey Data

As mentioned previously, I conducted a survey to collect responses from participants about

their experience using SeMA. In the following paragraphs, I present our observations based

on a qualitative analysis of the participants’ responses. The participant responses are sum-

marized in Table 5.19

Did the SeMA extension to Android Studio help/impede in Android app develop-

ment? All participants found the extensions to Android Studio helpful. These extensions

included the extensions added to a storyboard (described in Section 5.3.1) and capabilities

related to generating code from a storyboard. Seven of the ten participants said that the

extensions helped them a lot. The remaining three said that the extensions aided their

workflow quite a bit. On the flip side, all participants, except one, said that the extensions
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did not impede their development. Even the one exception said that the extensions only

impeded a little. Hence, the participants in this study found the SeMA extension to Android

Studio to be largely useful.

Did the property annotation feature of SeMA help/impede in Android app devel-

opment? Eight of the ten participants found that the property annotations in a storyboard

(e.g., constraints on transitions) helped them in Android app development a lot. The other

two felt that the annotations helped them quite a bit. Only one of the ten participants said

that the annotations impeded her development a little. The participant responses show that

property annotations largely aided in app development and did not impede their workflow.

Did the property checking feature of SeMA help/impede in Android app de-

velopment? All the participants, except one, said that the property checking feature in

SeMA helped them a lot. The one exception said that it helped her quite a bit. However,

five participants said that it impeded their development a little and quite a bit while the

remaining five said that the property checking feature did not impede at all. Since the prop-

erty checking feature in SeMA forces developers to fix property violations before moving

to the next step, a few participants found it to be impeding their workflow. Hence, while

property checking was helpful for most participants; there is room for improving the process

of reporting and fixing violations.

Did the pre-defined properties provided by SeMA help/impede in Android app

development? Six of the ten participants felt that the pre-defined properties (e.g., re-

sources) helped their development a lot, and four of them felt that they helped quite a bit.

In a similar vein, six of them found that the pre-defined properties did not impede their

workflow at all, and four of them said that they impeded a little. Hence, participants felt

that the pre-defined properties largely aided their workflow. The four participants who found

the pre-defined properties to be a little invasive said that it was because they had to keep

referring to the documentation for understanding how to use them. This problem can be
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Scale
Question None A little Quite a bit A lot

How much did the SeMA extension to Android Studio 0 0 3 7
help in Android app development?
How much did the SeMA extension to Android Studio 9 1 0 0
impede in Android app development?
How much did the property annotation feature of SeMA 0 0 2 8
help in Android app development?
How much did the property annotation feature of SeMA 9 1 0 0
impede in Android app development?
How much did the pre-defined properties provided by SeMA 0 0 4 6
help in Android app development?
How much did the pre-defined properties provided by SeMA 6 4 0 0
impede in Android app development?
How much did the property checking feature of SeMA 0 0 1 9
help in Android app development?
How much did the property checking feature of SeMA 5 5 0 0
impede in Android app development?

Table 5.19: Questions asked to participants in a survey. The number in each cell indicate
the number of participants who chose a particular scale for a question.

addressed by adding more auto-completion support for SeMA.

Feedback: What would you change in SeMA? All the participants agreed that

storyboard-driven development helped them in their development. They particularly appre-

ciated the visualization of the storyboard as it helped them conceptualize the app’s behavior.

Further, most of them said that SeMA helped them uncover vulnerabilities in the app’s de-

sign that they would not have otherwise discovered. Typical feedback from participants was

to improve the code-completion aid for SeMA and provide access to documentation in the

IDE.

Threats to Validity

While the results from this study provide useful insights about the usability and effective-

ness of the SeMA methodology, the small number of participants and the small number of

apps made by each participant used in this study might affect the generalize-ability of the
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results. This limitation can be addressed by repeating the experiment with a large number

of participants or by increasing the number of apps made by a participant.

Despite the participants in this study having varied experience, the selected participants

might not be representative of all kinds of real-world developers. This limitation can be

addressed by repeating the study with a more varied sample of developers.

While the participants in this study are reasonable proxies for average Android app

developers, they did not have Android app development experience outside of learning en-

vironments. Hence, the results and observations from this study might change if repeated

with participants with experience in Android app development.

The representation of the Ghera vulnerabilities in the sample of real-world apps selected

in this study was not uniform (i.e., some vulnerabilities appeared more than others). This

lack of uniformity could have affected the results. This concern can be addressed by repeating

the experiment with a different sample of real-world apps.

While the exercises assigned to the participants were based on real-world apps, it is

possible that they were influenced by our knowledge of vulnerabilities that occur in Android

apps. This influence could have introduced bias for certain vulnerabilities in the exercises.

This limitation can be addressed by repeating the experiment with a different set of exercises.

While I ensured that each participant received the same intervention regarding Android

app development and SeMA, their personal capacities in grokking new material might have

affected the way they made an app. This difference could have influenced the final results.

Finally, I silently observed each participant when they were developing an app. This

environment might have caused some participants to behave differently, which might have

impacted the way they made an app. The influence of such factors can be verified by

conducting studies that consider environment-related aspects.

5.7 Open Challenges

Performance The current realization and evaluation of SeMA has focused on ensuring the

correctness of generated code. So, while SeMA adheres to performance guidelines outlined in
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Android’s documentation in the generated code, the generated code may not be performant.

This concern can be verified by evaluating the runtime performance of generated code.

Property Preservation One challenge that remains to be addressed in the current real-

ization of SeMA is ensuring the generated implementation satisfies the security properties

satisfied by the storyboard. This hinges on ensuring (1) the integrity of generated code and

(2) developer-added business logic does not violate the security properties verified in the app

storyboard. The current realization of SeMA deters developers from modifying the gener-

ated code. The generated code is kept separate from the developer-added code in Android

Studio. If a developer modifies generated code, a warning message is shown to the user as

a pop-up. If the developer modifies the generated code in spite of the warning, then the

code is re-generated when the developer compiles the app. While these methods discourage

the developer from modifying the generated code, they do not prevent it. One way to pre-

vent modifications to generated code is to use techniques (e.g., fingerprinting) to check and

enforce the integrity of the generated code.

While SeMA deters the modification of generated code, developers can add business logic

code in a way that may not guarantee property preservation. This challenge can be tackled by

inhibiting the execution of an app upon detecting the violation of security properties (using

techniques such as runtime checks and app sandboxing). However, the current realization of

SeMA does not address this concern.

5.8 Artifacts

The current realization of SeMA along with the instructions to build and use it is available

in the public repository https://bitbucket.org/secure-it-i/sema/src/master/.

The raw data collected during the usability study, along with the statistical tests used to

analyze the collected data are available in the public repository https://bitbucket.org/

secure-it-i/sema/src/master/usability-test/.
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5.9 Conclusion

In this chapter, we saw an alternative approach to develop secure Android apps. This

approach focusses on preventing vulnerabilities as opposed to the traditional approach of

detecting vulnerabilities after they have occurred. To this end, SeMA is a design-based

methodology based on Model-Driven development and existing design techniques to help

build secure Android apps.

SeMA extends storyboards with features that enable developers and designers to collab-

orate and specify an app’s behavior iteratively, at the same time reason about and verify

security properties related to confidentiality and integrity in an app’s design. Furthermore,

SeMA has code generation support that helps to translate annotated/extended storyboards,

specified in SeMA, to an implementation. Developers can enrich the generated implementa-

tion with business logic code in Java or Kotlin.

A proof-of-concept realization of SeMA is available for Android Studio. An empirical

evaluation of SeMA shows that SeMA can prevent 49 of 60 vulnerabilities captured in the

Ghera benchmark suite through a combination of information flow analysis, rule checking,

and code generation techniques.

A usability study of SeMA with ten professional software developers shows that SeMA

is likely to reduce Android app development time and help developers prevent expected

vulnerabilities in their apps.
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Chapter 6

Summary and Future Directions

We1 identified that, despite the focus on Android app security in recent systems security

research, there is a lack of detailed information about the manifestation of Android app

vulnerabilities. Hence, as a solution, we developed Ghera – an open repository of 60 Android

app vulnerabilities. While developing Ghera, we discovered characteristics of vulnerability

benchmarks, which are applicable in other contexts as well (e.g., performance). Ghera has

been used to 1) measure Android app security analysis solutions and 2) to learn about

vulnerabilities that occur in Android apps.

The evaluation of Android app security solutions is based on benchmarks, which are either

available or prevalent. Hence, we2 developed the notion of representativeness of a benchmark

based on API usage to measure the likelihood of a vulnerability in a benchmark occurring in

real-world apps. We used this metric to measure the representativeness of four benchmark

suites used to measure the effectiveness of solutions related to Android app security. The

observations from this exploration will help tool developers select benchmarks for evaluation

appropriately, and benchmark developers identify gaps in their benchmarks.

The recent focus on Android app security has led to the development of numerous tools

and techniques to secure Android apps. However, there has been no comprehensive effort

1This was a collaborative effort with Venkatesh-Prasad Ranganath, Aditya Narkar, and Nasik-Nafi
Muhammad.

2This was a collaborative effort with Venkatesh-Prasad Ranganath.
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to evaluate the effectiveness of such tools systematically. Hence, we3 considered 64 Android

security analysis tools and frameworks and evaluated the effectiveness of 14 of them in

detecting known vulnerabilities captured in the Ghera benchmarks. We discovered that a

tool could detect only 15 vulnerabilities in Ghera, and all tools together could detect only

30 of the vulnerabilities.

Since existing tools and techniques are not effective in detecting all known vulnerabilities

that occur in Android apps, there is a scope of an alternative solution to secure Android

apps. Hence, we4 developed SeMA, a design methodology to help build secure Android

apps. SeMA is based on Model-driven development and storyboarding – an existing design

artifact. As opposed to existing techniques, which take a curative approach to secure Android

apps by detecting them after they occur, SeMA helps developers prevent vulnerabilities by

helping developers reason about security properties such as confidentiality and integrity at

design time. SeMA can prevent 49/60 vulnerabilities in Ghera, which is more than what

is detected by the 14 vulnerability detection tools. Further, a usability study with ten

professional developers, showed developers take between 10% to 70% less time to make an

app with SeMA than without SeMA. In terms of effectiveness, SeMA helps developers prevent

vulnerabilities in at least 83% of the apps they develop with SeMA, and the vulnerabilities

prevented by SeMA is introduced by developers more or less 50% of the time.

6.1 Future Directions

Metrics and Benchmarks There is a need to continuously and rigorously evaluate An-

droid app security solutions. Hence, future work in this area can proceed in the following

ways:

• Extend Ghera with new benchmarks. There are two ways to add a benchmark to Ghera

– (1) create a variant, based on an existing benchmark that captures a manifestation

of the vulnerability in that benchmark, and (2) create a benchmark based on a new

3This was a collaborative effort with Venkatesh-Prasad Ranganath.
4This was a collaborative effort with Venkatesh-Prasad Ranganath, Torben Amtoft, and Michael Higgins.
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vulnerability, i.e., a vulnerability not in any Ghera benchmark. Extending Ghera will

involve exploring CVE reports, studying Android APIs, and examining real-world apps.

• Extend Ghera to iOS. Most research efforts in mobile app security have been focused

on Android since Android is open source, and Android apps are packaged as dex

code, which is relatively easier to analyze. Although iOS is the other major mobile

platform, comparatively fewer efforts have considered iOS app security. Hence, it

would be interesting to use Ghera’s methodology to catalog iOS app vulnerabilities as

benchmarks systematically.

• Develop richer metrics to measure representativeness of benchmark. Representative-

ness of vulnerability benchmarks is crucial to assessing the associated risks as vulner-

abilities more likely to be found in real-world apps will be more likely to be exploited.

This dissertation has developed API usage as a metric for representativeness. However,

richer metrics based on other aspects (e.g., data and control flow) need to be explored

to more accurately measure representativeness.

Secure by design apps SeMA proposes an alternative approach to developing secure

mobile apps. It advocates making security a first-class citizen of an app’s design by enabling

collaboration between developers and designers. While the methodology is feasible and

usable to some extent, it can be extended in the following ways:

• Expressibility This dissertation has explored SeMA in the context of developing An-

droid apps. It will be worthwhile to explore if the concepts captured in SeMA can

be used to develop apps in a platform-independent way. This exploration will include

mapping concepts used in other app development platforms to the ones in SeMA and

developing code generation schemes for each platform.

• Collaborative-ness SeMA claims to enable collaboration amongst app developers and

app designers. However, there is no evidence to suggest that SeMA indeed enhances

collaboration. Hence, usability studies with teams of app developers and designers will

need to be conducted to support this claim.

158



• Certification Since SeMA provides a specification of an app’s behavior in the form of

a storyboard, it can be used to generate a machine-checkable certificate of an app’s

behavior. App stores can verify such certificates before accepting apps.
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[13] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bod-

den, D. Octeau, and P. McDaniel. Iccta: Detecting inter-component privacy leaks in

android apps. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, volume 1, pages 280–291, 2015.

[14] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek. Covert: Compositional analysis of

android inter-app permission leakage. IEEE Transactions on Software Engineering, 41

(9):866–886, 2015.

161

https://www.checkmarx.com/blog/how-attackers-could-hijack-your-android-camera
https://www.checkmarx.com/blog/how-attackers-could-hijack-your-android-camera
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9463/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9463/


[15] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. An-

droid permissions demystified. In Proceedings of the 18th ACM Conference on Com-

puter and Communications Security, CCS ’11, page 627–638. Association for Comput-

ing Machinery, 2011. doi: 10.1145/2046707.2046779.

[16] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing

the android permission specification. In Proceedings of the 2012 ACM Conference

on Computer and Communications Security, CCS ’12, page 217–228. Association for

Computing Machinery, 2012. doi: 10.1145/2382196.2382222.

[17] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper: To-

wards automating risk assessment of mobile applications. In Proceedings of the 22nd

USENIX Conference on Security, SEC’13, page 527–542, USA, 2013. USENIX Asso-

ciation. ISBN 9781931971034.
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Appendix A

Catalog of Benchmarks

In this section, the current benchmarks in Ghera are cataloged according to the vulnerability

categories identified in Chapter 2. For each benchmark, I provide a short description of the

vulnerability and the exploit that uses the vulnerability.

A.1 Crypto

Crypto APIs help Android apps to encrypt, decrypt information, and manage cryptographic

keys.

A.1.1 Block Cipher encryption in ECB mode enables information

leak

Vulnerability: Apps that use the Block Cipher algorithm in ECB mode to encrypt sensi-

tive information are vulnerable to information leak.

Exploit: A malicious app on the device with access to the encrypted sensitive information

breaks the encryption to get access to the information.
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A.1.2 Constant Initialization Vector (IV) enables information leak

Vulnerability: Apps that use the Block Cipher algorithm in CBC mode along with a con-

stant Initialization Vector (IV) to encrypt sensitive information are vulnerable to information

leak.

Exploit: A malicious app on the device launch a known plain text attack to guess the IV

and break the encryption.

A.1.3 Constant Key saved in app’s source code leads to forgery

attack

Vulnerability: Apps that use the Cipher API need to provide a key. If such a key used

for encryption/decryption is saved in the source code, then an attacker can get access to it

and abuse it.

Exploit: An attacker obtains the key from from the decompiled source code and uses it in

a malicious app to either read sensitive information or inject malicious information.

A.1.4 Keystore without passwords expose cryptographic keys

Vulnerability: Apps can safely store encryption keys in a keystore. But if the keystore

is accessible to other apps and the key is not password protected then a malicious app

can retrieve it from the keystore. Hence, such apps are susceptible to leaking sensitive

information.

Exploit: An attacker accesses the keystore to steal all the keys in the keystore.
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A.1.5 Constant Salt for Password Based Encryption leads to in-

formation leak

Vulnerability: Apps that use password based encryption to encrypt sensitive information

use a salt to generate the password based encryption key. If the salt is not random then the

key can be re-generated by a malicious attacker with knowledge of the password.

Exploit: An attacker precomputes a dictionary of symmetric keys for known passwords

uses them to decrypt information.

A.2 Inter Component Communication

Android apps are composed of four basic kinds of components: 1) Activity components dis-

play the user interface, 2) Service components perform background operations, 3) Broadcast

Receiver components receive event notifications and act on those notifications, and 4) Con-

tent Provider components manage app data. Communication between components in an

app and in different apps is facilitated via exchange of Intents. Components specify their

ability to process specific kinds of intents by using intent-filters.

A.2.1 Dynamically registered broadcast receiver provides unre-

stricted access

Vulnerability: When a broadcast receiver is dynamically registered with the Android

platform, a non-null intent filter is provided. As a result, the component is automatically

exported to be accessible from other apps, including malicious apps.

Exploit: A malicious app broadcasts a message to a dynamically registered broadcast re-

ceiver. This triggers the broadcast receiver to process the intent and unintentionally perform

an action on behalf of the malicious app.
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A.2.2 Empty pending intent leaks privilege

Vulnerability: An app X can allow another app Y to perform an action on its behalf at

a future time via a pending intent ; these intents are saved in the system. When no action

is specified in a pending intent, the recipient of the pending intent can set any action and

execute it in the context of the app that sent the pending intent.

Exploit: A malicious app specifies its interest in the pending intent via an intent-filter.

Upon receiving an empty pending intent, the malicious app associates a malicious action

with the pending intent. Consequently, when the pending intent is processed, the malicious

action will be executed in the context of app X.

A.2.3 Unverified fragment loading enables privilege escalation

Vulnerability: A fragment is a reusable class implementing a portion of an activity. An

activity can accept a fragment name as input and load it at runtime. If the fragment name

is not validated then any fragment can be loaded in an activity.

Exploit: A malicious app on the device uses the benign app to load a fragment of its choice

at runtime.

Vulnerability: Android platform uses intent-filters to identify the service to process im-

plicit intents, that is, intents dedicated to a class of targets (as opposed to specific target).

When multiple services have the same intent-filter, the service with higher priority is chosen

to process corresponding intents.

Exploit: A malicious app has a service X with the same intent-filter as that of the service

Y in a benign app and with higher priority than Y. When an app requests the start of service

Y by relying on the intent-filter, service X in the malicious app will be started.
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A.2.4 Low priority activity prone to hijacking

Vulnerability: A priority can be specified for an activity in the app’s manifest file. When

an activity is started, Android displays all activities with the same intent-filter as a list to

the user in the order of priority (high to low).

Exploit: A malicious app registers an activity X with the same intent-filter as that of an

activity Y registered by a benign app and with higher priority than Y. Consequently, the

malicious app’s activity X will be displayed before the benign app’s activity Y.

A.2.5 Implicit pending intent leaks information

Vulnerability: A app X can create a pending intent containing an implicit intent. When

the pending intent is processed, the containing implicit intent will be processed by a compo-

nent identified based on the intent-filter. When multiple components have the same intent-

filter, the component with higher priority is chosen to process corresponding intents.

Exploit: A malicious app has a component X with an intent-filter same as that of the

component Y in the benign app and X has higher priority than Y. So, component X is

chosen (over component Y) to process the implicit intent in the pending intent.

A.2.6 Content provider with inadequate path-permission leaks in-

formation

Vulnerability: An app can use path-permissions to control access to the data exposed by

a content provider. When an app protects a folder by permissions, only the files in the folder

are protected by the permissions; none of the subfolders and their descendants are protected

by the permissions.

Exploit: A malicious app calls methods of a content provider to access and modify sub-

directories and contained files that are not protected by path-permissions.
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A.2.7 Incorrectly handling implicit intent leads to unauthorized

access

Vulnerability: A component that deals with sensitive information or performs sensitive

operations should be careful when handling implicit intents because accepting implicit intents

exports the component.

Exploit: A malicious app can access such a component with a crafted intent to steal

sensitive information or perform unauthorized operations.

A.2.8 Apps have unrestricted access to Broadcast receivers regis-

tered for system events

Vulnerability: When a Broadcast receiver registers to receive (system) intents from the

Android platform, it needs to be exported. Consequently, it is accessible by any app without

restrictions.

Exploit: A malicious app sends an intent to a broadcast receiver that is registered to

receive system intents and possibly forces it to perform unintended operations.

A.2.9 Ordered broadcasts allow malicious data injection

Vulnerability: When an ordered broadcast is sent, broadcast receivers respond to it in

the order of priority. Broadcast receivers with higher priority respond first and forward it to

receivers with lower priority.

Exploit: A malicious receiver with high priority receives the intent, changes it, and for-

wards it to lower priority receivers.
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A.2.10 Sticky broadcasts are prone to leaking sensitive informa-

tion and malicious data injection

Vulnerability: When a sticky broadcast message (intent) is sent, it is delivered to every

registered receiver and is saved in the system to be provided to receivers that register for the

message in the future. When the message is re-broadcasted with modification, the modified

message replaces the original message in the system.

Exploit: A malicious broadcast receiver registers for the message at later time and retrieves

any sensitive information in the message. Further, it can modify the contents of the message

and re-broadcast to provide incorrect information to future receivers of the message.

A.2.11 Non-empty task affinity of a non-launcher activity makes

an app vulnerable to phishing attacks via back button

Vulnerability: A task is a collection (stack) of activities. When an activity is started, it

is launched in a task. An activity can request that it be started in a specific task. This is

known as task affinity. If the back button is pressed from an activity ’A’ then the activity

below ’A’ in the task stack will be displayed as opposed the activity that started ’A’.

Exploit: An activity X in a malicious app has the same task affinity as an activity Y in

a benign app. If activity X is started before activity Y then pressing the back button from

activity Y will bring activity X to the foreground.

A.2.12 Non-empty task affinity of a non-launcher activity makes

an app vulnerable to phishing attacks

Vulnerability: A task is a collection (stack) of activities. When an activity is started, it is

launched in a task. An activity can request that it be started in a specific task. This is known

as task affinity. The task containing the displayed activity is moved to the background if
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none of the activities in that task are being displayed. When any activity from a task in

the background is resumed, then the activity at the top of the task (and not the resumed

activity) is displayed.

Exploit: An activity X in a malicious app requests to start itself in the same task as an

activity Y in a benign app. When activity X is at the top of the task, any call to activity Y

will cause activity X to be displayed to the user.

A.2.13 Non-empty Task affinity of a launcher activity makes an

app vulnerable to phishing attacks

Vulnerability: Android starts every activity in a task, based on task affinity1. If the

activity being started is a launcher activity then Android requires that the launcher activity

be the first activity in the task.

Exploit: An activity M1 in a malicious app requests to start itself in the same task as

B1, launcher activity in a benign app. If activity M1 is started before B1 then Android will

refuse to start B1 even if the user explicitly requests Android to start B1.

A.2.14 Task affinity and task re-parenting enables phishing and

denial-of-service

Vulnerability: An activity can request to always be at the top of a task. This is called

task re-parenting. In such cases, when an activity from that task resumed, activity at the

top of the task will be displayed to the user.

Exploit: An activity in a malicious app uses task affinity and task re-parenting to supersede

activities from other apps in a task and launch a denial-of-service attack or a phishing attack.

1The default task affinity of an activity is the package name of the app
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A.2.15 Unhandled exceptions enable Denial-Of-Service

Vulnerability: Apps that fail to handle exceptions while servicing incoming intents can

be crashed by sending appropriately crafted intents. Hence, such apps are vulnerable to

Denial of Service attack.

Exploit: A malicious app can inject a null value into an intent for a benign app. When

the benign app acts on the intent, it crashes.

A.2.16 Unprotected components allow unexpected action without

user approval

Vulnerability: If an app has the permission to perform a particular privileged operation

and if that operation is performed via an app component that is exported for public consump-

tion, then a malicious app can invoke the component method that performs the privileged

operation and make the app perform the operation on the behalf of the malicious app.

Exploit: Malicious invokes an exported broadcast receiver in *Benign* to send SMS with-

out having the permission to send SMS.

A.2.17 Content Provider API allow unauthorized access

Vulnerability: Content provider API provides a method call to call any provider-defined

method. With a reference to the content provider, this method can be invoked without any

restrictions.

Exploit: A malicious app uses call method to invoke content provider methods to access

the underlying data even when it does not have specific permissions to access this data.
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A.3 Networking

Networking APIs allow Android apps to communicate over the network via multiple proto-

cols.

A.3.1 Invalid remote server certificate enables MITM

Vulnerability: Android apps can use SSL/TLS to securely communicate with a web server

via a chain of certificates signed by trusted CAs. Every certificate in the certificate chain has

an expiration date which can be checked by the app. If an app connects to a server without

checking the expiration date of a certificate then the app might connect to a malicious server

using the expired certificate.

Exploit: A malicious server can use a certificate with an expired date and masquerade as

the legitimate server. Hence, the app will connect with the malicious application instead of

the legitimate server.

A.3.2 Incorrect server host name enables MITM

Vulnerability: Apps can employ HostnameVerifier interface to perform custom checks on

host name when using SSL/TLS for secure communication. If these checks are incorrect,

apps can end up connecting to malicious servers and be targets of malicious actions.

Exploit: A malicious server can use a host name to bypass the weak/incorrect host name

verification and connect with the app.

A.3.3 The InsecureSSLSocket API enables MITM

Vulnerability: Apps that use the SSLCertificateSocketFactory.getSocket(InetAddress,

...) method are vulnerable to MITM attacks.
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Exploit : A malicious server can masquerade as a legitimate server and connect with the

app.

A.3.4 The InsecureSSLSocketFactory API enables MITM

Vulnerability: Apps that use the SSLCertificateSocketFactory.getSocket(InetAddress, ...)

method are vulnerable to MITM attacks.

Exploit: A malicious server can masquerade as a legitimate server and connect with the

app.

A.3.5 Invalid Certificate Authority enables MITM

Vulnerability: In secure communication, apps employ TrustManager interface to check

the validity and trustworthiness of presented certificates. If these checks are incorrect, apps

can end up trusting certificates from malicious servers and be targets of malicious actions.

Exploit: A malicious server can use a certificate signed by an invalid certificate authority

to masquerade as the legitimate server and connect with the app.

A.3.6 Writing to open socket enables information leak

Vulnerability: Apps that send information to a remote server over an open socket are

vulnerable to information leak.

Exploit: A malicious app on the device connects to the open port and reads sensitive

information.
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A.3.7 Un-encrypted socket communication enables IP spoofing

attacks

Vulnerability: Apps that communicate with a server over TCP/IP without encryption

allow Man-in-the-Middle attackers to spoof server IPs by intercepting client-server data

streams.

Exploit: A malicious application takes advantage of lack of encryption and can launch an

IP spoofing attack.

A.3.8 Unpinned Certificates enables MITM

Vulnerability: An app can store a certificate it trusts and only trust that certificate when

connecting to a web server. This is called certificate pinning. Not pinning a trusted certificate

can compromise an app’s security if a certificate trusted by the device is compromised.

Exploit : A malicious server can use a certificate signed by a certificate authority trusted

by Android, masquerade as a legitimate server, and connect with the app.

A.4 NonAPI

Android apps use third party libraries to use features that do not come packaged with the

underlying Android framework APIs.

A.4.1 Apps that use libraries with vulnerable manifest are vul-

nerable

Vulnerability: When apps use libraries, the manifest file of the library is merged with

the manifest file of the app. If the manifest of the library has a vulnerability e.g., exported

component that should not be exported, then the app unknowingly inherits the vulnerability.
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Exploit: A malicious on the device can trigger a component in the third-party library

without the necessary permissions.

A.4.2 Apps that use outdated libraries might be vulnerable

Vulnerability: When an app uses an external library, it may use older versions of the

library which may contain vulnerabilities. As a result, the app may exhibit vulnerabilities

as result of using an outdated library.

Exploit: A malicious application may exploit the app by exploiting the vulnerabilities in

the outdated library.

A.5 Permission

Android apps run in a sandbox. Hence, they need permissions to use features outside the

sandbox.

A.5.1 Unnecessary permissions enable privilege escalation

Vulnerability: Android requires apps to explicitly request for permission when invoking

a protected API. However, if an app asks for more permissions than necessary then the

permission can be (mis)used by less privileged apps to invoke protected APIs.

Exploit: A malicious app on the device can use a protected API via an app that permis-

sions to access the protected API.

A.5.2 Normal Permissions are granted to apps at install time

Vulnerability: If an exported component is protected with a normal permission then any

app (including a malicious app), that specifies that it needs to use this permission will be

granted this permission by Android when the app is installed into the device.
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Exploit: A malicious app requesting permission P, if installed on the device will be able

to access a component protected with permission P without explicitly asking the user.

A.6 Storage

Android provides numerous options for storing application data. It provides

1. Internal Storage to store data that is private to apps. Every time an application is

uninstalled, its internal storage is emptied. Starting from Android 7.0, files stored in

internal storage cannot be shared with other apps.

2. External Storage as a data storage area that is common to apps. Its public partition is

accessible to any app without any restrictions. Its private partition is only accessible

to apps with a specific permission.

A.6.1 External storage allows data injection attack

Vulnerability: Files stored in external storage can be modified by an app with (appropri-

ate) access to external storage.

Exploit: A malicious app modifies external storage (e.g., add files) and the content in

external storage (e.g., change files).

A.6.2 Writing sensitive information to external storage enables

information leak

Vulnerability: Files stored in external storage can be accessed by an app with (appropri-

ate) access to external storage.

Exploit: A malicious app reads content from external storage.
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A.6.3 Accepting file path as input from external sources leads to

directory traversal attack

Vulnerability: If an app accepts a file path as input from an external source like the user,

or another app, or the web, and does not sanitize the input then it is possible to craft a

malicious input to obtain access to the app’s internal file-system and read, write, execute

files in it.

Exploit: A malicious app sends an intent to the vulnerable app with a crafted path em-

bedded in the intent.

A.6.4 Writing sensitive information in internal storage to external

storage enables information leak

Vulnerability: If an app has a component that takes internal file path as input from

untrusted sources and writes writes its contents to external storage then the app is leaking

information.

Exploit: A malicious app can craft a file path to download sensitive files in internal storage

to external storage. From external storage it can then read the downloaded files.

A.6.5 The execSQL() API is vulnerable to SQL injection attacks

Vulnerability: SQLiteDatabase.execSQL() method can be used by apps to update data.

If such uses rely on external inputs and use non-parameterized SQL queries, then they are

susceptible to sql injection attack.

Exploit: A malicious app creates a query and sends it to execSQL in the benign app,

which executes it.

191



A.6.6 The rawQuery() API is vulnerable to SQL injection attacks

Vulnerability: Apps that use SQLiteDatabase.rawQuery() method to construct non-parameterized

SQL queries are vulnerable to SQL injection attacks.

Exploit: A malicious app creates a specially crafted query to retrieve sensitive information

from the vulnerable app that uses rawQuery.

A.6.7 The absence of selectionArgs in SQLite queries can result

in SQL injection attacks

Vulnerability: Apps that do not use selectionArgs to construct SQLite queries are vul-

nerable to SQL injection attacks.

Exploit: A malicious app constructs a crafted query to retrieve all sensitive information

from the vulnerable app’s SQLite database.

A.7 System

System APIs help Android apps access low level features of the Android platform like process

management, thread management, runtime permissions etc.

Every Android app runs in its own process with a unique Process ID (PID) and a User

ID (UID). All components in an app run in the same process. A permission can be granted

to an app at installation time or at run time. If an app is granted a specific permission

at installation time, then all components of the app are granted the same permission. If

component in an app is protected by a permission, only components that have been granted

this permission can communicate with the protected component. If the permission is checked

at runtime, then all components have to request for the required permission.
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A.7.1 checkCallingOrSelfPermission method leaks privilege

Vulnerability: Before servicing a request, a component protected by a permission uses

checkCallingOrSelfPermission to check if the requesting component has the permission.

This method returns true if the app containing the requesting component or the app con-

taining the protected component has the given permission. When the app containing the

protected component has the permission, the method will always return true.

Exploit: A malicious app accesses a component that is protected by permission P, is

in an app that has permission P, and uses checkCallingOrSelfPermission to check for

permission.

A.7.2 checkPermission method leaks privilege

Vulnerability: Before servicing a request, a component protected by a permission uses

checkPermission to check if the given PID and UID pair has the permission. Typically,

getCallingPID and getCallingUID methods of Binder API are used to retrieve PID and

UID, respectively. When these methods are invoked in the main thread of an app, they

return the IDs of the app and not the IDs of the calling app.

Exploit: A malicious app accesses a component that is protected by permission P, is in an

app that has permission P, and uses checkPermission to check for permission in the main

thread of the containing app.

A.7.3 Writing sensitive information to clipboard enables informa-

tion leak

Vulnerability: Android allows all apps to access clipboard information. If an app allows

users to copy sensitive information then that information is written to Clipboard. A malicious

app can access Clipboard and retrieve the sensitive information.
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Exploit: A malicious app on the device reads data from the clipboard.

A.7.4 Unverified code loading enables code injection attacks

Vulnerability: Android apps can use dynamic code loading features to dynamically load

and execute code not packaged with the app. If the app does not verify the integrity and au-

thenticity of the code before dynamically loading and executing it then the app is vulnerable

to code injection attacks.

Exploit: A malicious application injects code, which when loaded will execute the context

if the benign app.

A.7.5 enforceCallingOrSelfPermission method leaks privilege

Vulnerability: Before servicing a request, a component protected by a permission uses

enforceCallingOrSelfPermission to check if the requesting component has the permis-

sion. This method raises SecurityException if the app containing the requesting compo-

nent or the app containing the protected component does not have the given permission.

When the app containing the protected component has the permission, the method will

complete without any exceptions.

Exploit: A malicious app accesses a component that is protected by permission P, is in

an app that has permission P, and uses enforceCallingOrSelfPermission to enforce the

permission.

A.7.6 enforcePermission method leaks privilege

Vulnerability: Before servicing a request, a component protected by a permission uses

enforcePermission to check if the given PID and UID pair has the permission. Typically,

getCallingPID and getCallingUID methods of Binder API are used to retrieve PID and
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UID, respectively. When these methods are invoked in the main thread of an app, they

return the IDs of the app and not the IDs of the calling app.

Exploit: A malicious app accesses a component that is protected by permission P, is in an

app that has permission P, and uses enforcePermission to enforce the permission in the

main thread of the containing app.

A.7.7 Collecting device identifier may enable information expo-

sure

Vulnerability: An app can use device identifiers to identify unique app instances. Collect-

ing such information could lead to exposing sensitive data related to the device. Malicious

actors can use such information to track the device.

Exploit: A malicious application accesses device ID, if the device ID is stored in a publicly

accessible location.

A.8 Web

Web APIs allow Android apps to interact with web servers both insecurely and securely (via

SSL/TLS), display web content through WebView widget, and control navigation between

web pages via WebViewClient class.

A.8.1 Connecting via HTTP enables Man-in-the-Middle (MitM)

attack

Vulnerability: Android apps that use HTTP to connect to remote servers are vulnerable

to information theft and IP spoofing attacks.

195



Exploit: An application takes advantage of the lack of a secure connection and mounts a

MitM attack.

A.8.2 Allowing execution of unverified JavaScript code in Web-

View exposes app’s resources

Vulnerability: When an app uses WebView to display web content and any JavaScript code

embedded in the web content is executed, the code is executed with the same permission as

the WebView instance used in the app.

Exploit: An app injects malicious JavaScript code into the web content loaded in WebView

(e.g., modify static web page stored on the device).

A.8.3 Allowing cookie access in WebViews enables cookie over-

write attacks

Vulnerability: Apps that allow websites viewed through WebView may enable cookie over-

write attacks.

Exploit: A malicious application overwrites the cookies in the webpage displayed via

WebView.

A.8.4 Unsafe Handling of Intent URIs leads to information leak

Vulnerability: Apps that do not safely handle an incoming intent embedded inside a URI

are vulnerable to information leak via intent hijacking.

Exploit: An application takes advantage of lack of validation on intent URIs and embeds

a malicious intent in a web page.
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A.8.5 Absence of explicit user approval leads to unintended infor-

mation exposure

Vulnerability: Apps that disclose sensitive information without explicitly requesting the

user for permission are vulnerable to unintended information exposure

Exploit: An application takes advantage of lack of user approval and exploits the vulner-

able app to disclose sensitive information.

A.8.6 Allowing unverified JavaScript code enables unauthorized

access to an app’s content providers

Vulnerability: Apps that allow Javascript code to execute in a WebView without verifying

where the JavaScript is coming from, can expose the app’s resources.

Exploit: A malicious app injects JavaScript code into the WebView to access an app’s

content providers without the necessary permission.

A.8.7 Allowing unverified JavaScript code enables unauthorized

access to an app’s files

Vulnerability: When WebView is used to display web content, JavaScript code executed

as part of the web content is executed with the permissions of the host app. Without proper

checks, malicious JavaScript code can get access to the app’s private files.

Exploit: A malicious app injects JavaScript code into the WebView to access an app’s files

without restriction.
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A.8.8 Ignoring SSL errors in WebViewClient enables Man-in-the-

Middle (MitM) attack

Vulnerability: When an app loads web content from a SSL connection via WebView and

is notified of an SSL error while loading the content (via onReceivedSslError method of

WebViewClient), the app ignores the error.

Exploit: An application takes advantage of ignored errors and mounts a MitM attack.

A.8.9 Lack of validation of resource load requests in WebView

allows loading malicious content

Vulnerability: When a resource (e.g., CSS file, JavaScript file) is loaded in a web page in

WebView, the app does not validate the resource load request in shouldInterceptRequest

method of WebViewClient. Consequently, any resource will be loaded into WebView.

Exploit: An application takes advantage of lack of validation of resource load requests and

mounts a MitM attack.

A.8.10 Web content with file scheme base URL enables unautho-

rized access of an app’s resources

Vulnerability: Apps that use loadDataWithBaseUrl() with a file scheme based baseURL

(e.g., file://www.google.com) and allow the execution of JavaScript sourced from unverified

source may expose the app’s resources.

Exploit: A malicious application inject JavaScript to access files in the benign app.
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A.8.11 Lack of validation web page load requests in WebView

allows loading malicious content

Vulnerability: When a web page is to be loaded into WebView, the app does not vali-

date the web page load request in shouldOverridUrlLoading method of WebViewClient.

Consequently, any web page provided by the server will be loaded into WebView.

Exploit: An application takes advantage of lack of validation of web page load requests

and mounts a MitM attack.

A.8.12 The HttpAuthHandler#proceed API enables unauthorized

access to a web service/resource

Vulnerability: Apps that use HttpAuthHandler#proceed(username, password) to in-

struct the WebView to perform authentication with the given credentials may give unautho-

rized access to third-party when the apps do not validate credentials, e.g., by sending token

of previously validated credentials.

Exploit: A malicious app uses previously validated credentials to bypass the authentica-

tion.
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