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Abstract

Fast analysis of damage information after a disaster can inform responders and aid agen-

cies, accelerate real-time response, and guide the allocation of resources. Once the details of

damage information have been collected by a response center, the rescue resources can be

assigned more efficiently according to the needs of different areas. The challenge of the infor-

mation collection is that the traditional communication lines can be damaged or unavailable

in the beginning of a disaster. With the fast growth of the social media platforms, the situa-

tional awareness and damage data can be collected, as affected people will post information

on social media during a disaster. There are several challenges to analyzing the social media

disaster data. One challenge is posed by the nature of social media disaster data, which

is generally large, but noisy, and comes in various formats, such as text or images. This

challenge can be addressed by using deep learning approaches, which have achieved good

performance on image processing and natural language processing. Another challenge posed

by disaster related social media data is that it needs to be analyzed in real-time because of

the urgent need for damage and situational awareness information. It is not feasible to learn

supervised classifiers in the beginning of a disaster given the lack of labeled data from the dis-

aster of interest. Domain adaptation can be applied to address this challenge. Using domain

adaptation, we can adapt a model learned from pre-labeled data from a prior source disaster

to the current on-going disaster. In this dissertation, I propose deep learning approaches to

analyze disaster related tweet text and image data. Firstly, domain adaptation approaches

are proposed to identify informative images or text, respectively. Secondly, a multimodal

approach is proposed to further improve the performance by utilizing the information from

both images and text. Thirdly, an approach for localizing and qualifying damage in the

informative images is proposed. Experimental results show that the proposed approaches



can efficiently identify informative tweets or images. Furthermore, the type and the area of

damage can be localized effectively.
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Chapter 1

Introduction

1.1 Motivation

It is important to achieve fast response during a disaster to rescue lives and protect proper-

ties. One challenge is that the disaster response teams may only have limited information

about the damage situation because the communication systems may become damaged or

unavailable at the beginning of a disaster. Nowadays, with the fast growth of social media

platforms such as Twitter and Facebook, people on the ground usually post a variety of

content in the form of textual messages and images during a disaster. It is useful to get in-

formation from the social media platforms to gain situational awareness, analyze the severity

of the damage and inform the rescue operations [5, 6, 7]. For example, if they can get infor-

mation about injured people in some area, then they can send medical teams to that area

or adjacent areas where medical services may be needed. Similarly, if they have information

about damaged roads or bridges, they can send engineers to fix the roads and bridges and

enable the traffic in the affected areas. This kind of information potentially provided by

eyewitnesses of the disaster on social media can help optimize the rescue process, especially

when the resources are limited at the beginning of the disaster.

One challenge faced by social media disaster data analysis is that there is a large amount

of data posted online. We need to identify the text or images that contain useful information,
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and then extract that information. Another challenge is that the data posted on the social

media platform can take multiple forms, such as text or images. Text or images have a

complicated intricate structure that may not be effectively learned from traditional machine

learning algorithms. The traditional machine learning models which have a simple model

structure may not learn a good text or image representation as the relationship between words

in a sentence or pixels in an image can be very complex [8, 9]. Furthermore, given that the

tweet data usually contains both text and image, the models used in disaster data analysis

need be be able to consume the information from both text and images. A third challenge

is posed by the need to analyze the data fast, ideally in real-time. The faster the relevant

information is extracted, the more informed and better the rescue process, because the

first few days are the ‘golden time’ to rescue people. This is not easy to do using supervised

learning, which requires time-consuming data labeling. This dissertation addresses the above

challenges. We discuss how to filter informative data and what information we can extract

in Section 1.2 to address the first challenge; deep learning and multimodal approaches for

analyzing text and images are discussed in Sections 1.3 and 1.4, respectively; one possible

solution for achieving fast analysis, called domain adaptation, is discussed in Section 1.5;

the outline and contributions of this dissertation are presented in Section 1.6.

1.2 Disaster Data Analysis

When a disaster occurs, an important task for response organizations is to extract useful

information from “chaos”. Lots of tweets and images are posted on social media platforms,

but many of them are not useful, as these data may not include the information needed by

response teams. Thus, the first step in disaster data analysis is to identify informative tweets

or images. It is straightforward to search by keyword, for example, search with the keyword

“hurricane Irma”. But the search results are still noisy and may miss some useful information

if users posting informative tweets do not include the keywords searched. For example, the

tweet: “With Harvey’s havoc fresh on their minds, Floridians brace for Hurricane Irma”

includes the keywords “Hurricane Irma” but there is no useful information for the response

2



Figure 1.1: Hierarchical Tweet Classification

teams. In contrast, this tweet: “Merritt Island community hit hard by likely Hurricane Irma-

spawned tornado” can help the response organizations to allocate rescue resources for people

in that area. We need machine learning algorithms to identify informative tweets or images

instead of simply performing query-based filtering. When data and labels are available,

machine learning models can be learned to classify each tweet/image into categories, such

as informative/not informative.

Other useful information can be extracted from tweets or images after filtering relevant

data. For example, we can identify eyewitness tweets, as those are the most useful to

the response teams, and in particular situational awareness tweets posted by eyewitnesses.

Furthermore, different types of damage and information about injured or missing people

can be identified. As shown in Figure 1.1, the information extraction can be conducted in a

hierarchical manner, where a classifier can be built for each task in a top-down fashion. Thus,

instead of having one model to predict all types of useful information, several classification

models can be trained independently, with one model being used on the output of the parent

model. In terms of learning algorithms, the same algorithm can be used for multiple tasks.
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Several studies have applied classification models to identify relevant/informative disaster

tweets [10, 11, 12, 13], eyewitness tweets [14, 15], situational awareness tweets [16, 17], and

damage severity in disaster images [18], among others.

1.3 Deep Learning

A tremendous amount of disaster-related data are in the format of text or images. Traditional

machine learning models may not be good at extracting features from such data or may

require extensive human effort to extract the features. Nowadays, with the fast growth of

deep learning, lots of methods have been published for analyzing images and text. The state-

of-art methods for image and text classification are convolutional neural networks (CNN)

and recurrent neural networks (RNN).

Convolutional neural networks (CNN) [19] have achieved impressive results in image

classification and text classification. Many network architectures have been proposed for

image classification in recent years, including AlexNet [20], VGG-19 [21], ResNet [22]. RNN

[23] can be used in time-series data, for example, text data. It has been applied to text

classification and achieved promising results [24]. RNN models include Long Short Term

Memory (LSTM) networks [25] or Gated Recurrent Units (GRU) [26], which capture short

and long terms dependencies in text, to further improve the classification performance.

In disaster analysis, these models can be applied to disaster text and images posted on

the social media platforms to provide information to response organizations. Some studies

have applied deep learning approaches to disaster data. It has been shown that the CNN

model can achieve better results than the Naive Bayes model for identifying informative

tweets during disasters [27]. Nguyen et al. [18] has applied the CNN model to assess the

damage severity in disaster images.
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1.4 Multimodal Approach

Given that the data in the social media platforms usually contain both text and images, it

is beneficial to combine the information from text and images into one model to improve

the overall classification performance. The first challenge of multimodal learning is how to

combine the text and images into one model. One possible way to combine the text and

images is to train two models for text and images independently, and average the output

as the final classification decision. Another way is to concatenate the output of text and

image models and co-training the two models by gradient descent, which is often used in the

optimization of deep learning models. Some multimodal approaches have been published, and

the two possible solutions outlined above have been explored in the deep learning literature

[28, 29, 30]. However, the application of multimodal approaches in disaster data analysis

is still in its infancy. Furthermore, prior studies do not address scenarios where the text

and the corresponding image have different labels, which can happen frequently in disaster

data analysis. Users may post a tweet with an unrelated image or post image with an

unrelated text. Most of the approaches published will output one classification decision

that cannot be applied to the data when the text and the image have different labels. In

this dissertation, we propose a deep learning based multimodal approach for disaster data

analysis, and experiment with different scenarios to address the challenge that text and

image may have a different label.

1.5 Domain Adaptation

Another challenge for the disaster tweet classification task is posed by the need for fast re-

sponse. Traditional supervised learning requires labeled data, which is generally expensive.

It makes the classification task difficult while the label for the current disaster is unavail-

able. One possible solution is to use Domain Adaptation [31]. Domain adaptation aims

to learn a model from a source data (previous disaster dataset which was pre-labeled) and

possibly target unlabeled data (currently ongoing disaster). Subsequently, the model is used
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to identify useful tweets in the target data. Thus, domain adaptation eliminates the need

for labeled target data, potentially allowing for improvements in terms of response time.

Usually, domain adaptation will combine supervised learning (used for source domain) and

unsupervised or self-supervised learning (used for target domain).

There are several popular deep learning based domain adaptation approaches. One ap-

proach is to make the representation for different domains similar. Domain adversarial

neural network (DANN) model proposed by Ganin et al. [32] is in this category. This model

is based on adversarial training which can generate images with similar distribution from a

set of target images. The difference between two domains (source and target) can be reduced

by DANN, then the classifier trained on source can be used on the target. There are other

adversarial based methods such as Domain Adversarial Residual Transfer Networks (DART)

[33], Domain Flow (DLOW) [34] and Cycle Consistent Adversarial (CyCADA) [35]. Another

type of approach is to conduct semi-supervised learning by reconstructing the target domain

[36]. The target domain will be reconstructed by an encoder and decoder. Then the encoder

will learn the information from the target domain and the representation obtained can be

used to learn a classifier from the source domain.

Domain adaptation is valuable in disaster data analysis. At the beginning of a disaster,

response organizations need to react fast, which makes it almost impossible to label the target

data given that the process of labeling data is time-consuming. The domain adaptation

approach is better suited for this situation compared to supervised learning which requires

a labeled dataset for the ongoing disaster. Several studies have been published to apply the

domain adaptation approach in disaster data analysis [10, 11, 12]. However, deep learning

based domain adaptation approaches, which might achieve better performance on disaster

text and images, are still under exploration.

1.6 Outline and Contributions

In this dissertation, I propose several approaches to analyze disaster data. First, domain

adaptation approaches are proposed to identify informative images and text, in Chapter
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2 and Chapter 3, respectively. The identification performance is further improved by a

multimodal approach presented in Chapter 4. Finally, an approach is proposed to localize

and qualify damage in the disaster images Chapter 5. The major published contributions of

this dissertation include:

• Chapter 2: Identifying Disaster Damage Images Using a Domain Adaptation Approach

[37]

In this chapter, we propose a domain adaptation approach, which is based on domain

adversarial training, to identify disaster damage images. This approach can reduce

the difference between the source and target domains. Thus, the damage images from

the target domain can be identified by utilizing pre-labeled images from the source

disaster. The damage images identified from the target domain can be used to perform

fast damage assessment.

• Chapter 3: Domain Adaptation with Reconstruction on Disaster Tweets [38]

In this chapter, we propose a domain adaptation approach for classifying informative

tweets. The method used was adapted from Domain Reconstruction Neural Networks.

We trained an autoencoder model (seq2seq model) to reconstruct the target data and

an RNN model to classify source tweets. The autoencoder and RNN models share the

feature extraction layer. The information from the target domain is extracted from the

autoencoder, and the classifier trained on the source domain is applied to label data

from the target domain. The proposed method was evaluated on two publicly available

datasets.

• Chapter 4: Improving Disaster-related Tweets Classification with a Multimodal Ap-

proach [39]

In this chapter, we propose an approach which utilizes both text and images. This

multimodal approach combines a CNN model, which extract feature from images,

and an RNN model, which learns representations for text. A fully-connected layer is

applied to the concatenated representations to predict the class label. The proposed
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multimodal approach can be used to improve the text classification performance, by

adding the image information.

• Chapter 5: Localizing and Quantifying Damage in Social Media Images [40, 41]

In this chapter, we propose an approach adapted from Grad-CAM [42], called Damage

Detection Map (DDM), to generate a smooth damage heatmap for an image. Based

on the damage heatmap, we also find a Damage Assessment Value (DAV), to quantify

the severity of the damage. Furthermore, we compare Grad-CAM and Grad-CAM++

[43] in the context of damage localization and quantification. We also explore the pro-

posed approach on different types of infrastructure damage (including building damage,

bridge damage, and road damage).
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Chapter 2

Identifying Disaster Damage Images

Using a Domain Adaptation Approach

2.1 Introduction

The increased popularity of social media websites has transformed the way in which affected

populations communicate with response organizations during and following major disasters.

Victims of several recent hurricanes, including Hurricane Harvey, Hurricane Irma and Hur-

ricane Florence, have turned to social media to request help and assistance, as emergency

hotlines were sometimes unreachable due to the high volume of calls [44, 45, 46]. According

to Rhodan [44], a woman and two children were rescued during Hurricane Harvey after the

woman posted a desperate message for help on Twitter: ‘I have 2 children with me and tge

[sic] water is swallowing us up. Please send help.’ Similarly, an image posted on Twitter,

which showed ‘elderly residents sitting in greenish flood water,’ raised awareness of a nursing

home situation and resulted in urgent help being sent to the nursing home [44].

While social media can help increase situational awareness, inform rescue operations, and

save lives, its value is highly unexploited by response teams, in part due to the lack of tools

that can help filter actionable information from the big data posted during disasters. A

recent study [47] reported that during Hurricane Harvey, FEMA missed 46% of the critical
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damage information posted by affected individuals on Twitter, and thus many areas heavily

impacted by the hurricane were missed from the original damage estimates provided by

FEMA. Similarly, Kryvasheyeu et al. [48] used Hurricane Sandy tweets, and Enenkel et al.

[49] used Hurricanes Harvey and Irma filtered, geo-located tweets to show that rapid early

damage assessment can be facilitated by social media. Among others, the above-mentioned

studies [48, 47, 49] suggest that tools that can identify critical social media information

in real-time are greatly needed, and should be incorporated into the operational decision-

making pipelines of response organizations.

To meet these requirements, many studies have focused on the design of machine learning

tools to identify relevant, informative, actionable situational awareness information in social

media [50, 51, 52, 53]. More recently, deep learning approaches have also been proposed in

the context of identifying information useful for disaster response on social media [54, 55,

27, 56, 57], and have been generally shown to produce better results than the traditional

supervised learning approaches. Research on classifying and retrieving useful information

from disaster images is still in its early stage, although recent studies have suggested that

useful social awareness information can be found in social media images [58, 59, 60]. To

advance the state-of-the-art in this area, Alam et al. [3] and Mouzannar et al. [61] recently

published multi-modal datasets, consisting of both tweet text and images. Furthermore,

Mouzannar et al. [61] developed a deep learning approach to identify damage images in their

dataset. Related to this, Nguyen et al. [62] proposed to classify disaster images according to

damage severity using fine-tuned convolutional neural networks, and Li et al. [40] proposed a

method based on class activation mapping (CAM) to localize and quantify damage in social

media images posted during disasters.

While significant contributions have been made in terms of developing traditional and

deep learning models to identify useful situational awareness information in social media,

most of the existing approaches are supervised learning approaches, which require labeled

data to train accurate models. It is unrealistic to assume that labeled data is readily available

in the early hours of a disasters, when help may be most needed. Domain adaptation or

transfer learning approaches [63], which make use of labeled data from a prior disaster
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(called source) and unlabeled data from the emergent disaster (called target), have been

shown to lead to better results as compared to supervised classifiers learned from a prior

disaster, when used for target tweet classification [64, 65]. Domain adaptation has been used

extensively for image classification using deep neural networks [66], including social media

image classification by fine-tuning a pre-trained deep neural network, such as VGG-16 or

VGG-19 [21], as in [62, 40]. However, domain adaptation from a source disaster to a target

disaster has not been explored in the context of classifying social media images posted during

and shortly after a disaster. Thus, the goal of this study is to gain insights into the usefulness

of transferring knowledge from a source disaster to a target disaster, when classifying images

according to damage severity.

We propose to use an approach called Domain-Adversarial Neural Network (DANN) in-

troduced by Ganin et al. [32]. The DANN approach is based on domain-adversarial training,

which reduces the shift between the source and target domains, by making the source and

target feature representations indiscriminate, while the source feature representation is dis-

criminative for the source classification task. Experimental results on images from several

source-target disaster pairs have shown that the DANN approach, which uses source labeled

data and unlabeled target data, can improve the classification accuracy obtained with a deep

neural network trained only from source labeled data, especially if the two disasters are of

different type (e.g., a hurricane and an earthquake).

The contributions of the paper are as follows:

• We have adapted the DANN model by combining it with VGG-19 to benefit from the

VGG-19 extensive training.

• We have performed extensive experiments on several pairs of disasters, and studied

the ability of the adapted model to transfer information about image damage from a

source disaster to a target disaster.

• We have performed visualization of the original and transformed representations of the

source versus target images to gain insights into the results of the model.
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The rest of this paper is organized as follows: We discuss “RELATED WORK” in the section

following the “INTRODUCTION”. Details of the domain adversarial neural network are

presented in the “BACKGROUND AND APPROACH” section. The experimental setup and

results are described in “EXPERIMENTAL SETUP” and “EXPERIMENTAL RESULTS”

sections, respectively. Finally, we conclude the paper, discuss the limitations of our work,

and also several ideas for future work.

2.2 Related Work

Domain adaptation on image data has received much attention in recent years [67]. In partic-

ular, approaches based on Convolutional Neural Network (CNN) have been very successful,

for example, Siamese networks [68] such as the one proposed in [69]. Approaches based on

reconstruction have also become popular. For example, Ghifary et al. [36] applied image

reconstruction on target unlabeled data by using a CNN autoencoder. Together with the

reconstruction model, a supervised model was also trained on the source labeled data. The

resulting model was used to retrieve information from target data. Ganin et al. [32] applied

adversarial training to adapt data from a source domain to a target domain. The adversarial

training was originally used to generate synthetic images [70]. In domain adaptation, the

adversarial training learns a data transformation which makes the source and target data to

have similar distributions. Then, the classifier trained on the transformed source data can

be used on the target data.

In disaster response, domain adaptation is a desirable approach, as it enables fast reac-

tion when a disaster occurs. Several studies have applied domain adaptation approaches on

disaster related text data. For example, Li et al. [64] used the iterative Self-Training [71]

strategy, with Naive Bayes as a base classifier, to perform domain adaptation for identifying

tweets related to a disaster. Domain adversarial training has been applied to disaster tweet

classification [2]. Compared to the research on disaster tweet classification, research on dis-

aster image classification and analysis is more limited as of now. Bica et al. [58] performed

a visual analysis of two 2015 Nepal Earthquakes, and found a positive correlation between
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damage severity and the number of geotagged images posted by eyewitnesses of the earth-

quakes. Lagerstrom et al. [59] studied the ability of machine learning approaches to identify

Twitter images posted during a bush fire emergency situation, and concluded that the fire

images can be identified with high accuracy.

More recently, Alam et al. [3] and Mouzannar et al. [61] recently published text and image

multi-modal datasets, which have the potential to advance the state-of-the-art in disaster

image analysis. Furthermore, Mouzannar et al. [61] developed a deep learning approach

to classify images based on damage. Similarly, Nguyen et al. [62] used an approach based

on CNNs to classify disaster images according to damage severity. Given that damage is a

concept quantifiable on a continuous scale, Li et al. [40] used the CAM approach to localize

and quantify damage in disaster images. While these studies represent important steps

towards disaster images analysis in real time, they assume target labeled data is available.

Domain adaptation approaches, while greatly needed, have not been studied until now.

2.3 Background and Approach

In this section, we introduce some background on image classification, and describe the

approach used to perform domain adaptation from a source disaster to a target disaster.

Figure 2.1 shows an overview of the model used, which has the VGG-19 network [21] as its

backbone, and uses the domain-adversarial training [32] to reduce the domain shift.

2.3.1 Adapted VGG-19 Architecture

Convolutional neural networks (CNN) have achieved impressive results in image analysis and

computer vision. Many network architectures have been proposed for image classification

in recent years, including AlexNet [20], VGG-19 [21], ResNet [22]. ResNet and VGG-19

models have won the ImageNet competition1, which proves that these models have good

performance on image classification. We choose VGG-19 as the backbone for our model

1http://image-net.org/challenges/LSVRC/
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Figure 2.1: Overview of the Model Architecture.

given that this network is relatively simpler than ResNet.

As can be seen in Figure 2.1, VGG-19 consists of 16 convolutional layers and 3 fully

connected layers. A convolutional layer can be seen as a feature extractor, as it extracts

image fragments (e.g., edge) that are important with respect to the classification task, while

ignoring noisy fragments which do not contribute to classification. Each convolutional layer

is accompanied by a non-linear ReLU activation. The 5 max pooling layers shown in the

figure are used to achieve dimensionality reduction and further filter out noise. The standard

VGG-19 has two fully connected layers with dimension 4096, and one softmax layer with

dimension 1000. The softmax layer has dimension 1000 because VGG-19 was originally

trained for a 1000-class object classification task. However, we aim to adapt VGG-19 to

classify disaster images in two classes: damage or no-damage, and thus, we have changed

the dimension of the softmax layer from 1000 dimensions to 2 dimensions. The VGG-19

model includes more then 130 million parameters that need to be learned. It is unfeasible

to learn all those parameters from scratch. Instead, we have used the pre-trained VGG-19

model to initialize the parameter values in our network for all, but the last fully connected
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layer (as that layer has a different dimension), and subsequently fine-tuned all parameters of

the model based on our disaster data. Given that the pre-trained VGG-19 model is learned

from millions of images, it is known to generalize well to other sets of images in terms of

informative features that it extracts. Thus, we can fine-tune it to our specific classification

task with a relatively small number of images.

2.3.2 Domain-Adversarial Neural Networks

Domain Adaptation is a machine learning setting, where data from a source domain, Xs,

is used to predict a target domain, Xt, under the assumption that the source and target

domains have different distributions (a.k.a., domain shift), but share some similar patterns.

In unsupervised domain adaptation, the labels of the source domain data, denoted as ys, are

available, while the labels of the target domain data, yt, are not available. The task is to

learn a classifier for the target data, using the labeled source data and the unlabeled target

data. A standard approach to domain adaptation is to transform the source and target data

representation (a.k.a., feature adaptation), so that the source and target distributions be-

come indistinguishable [63]. More precisely, one needs to identify a transfer function, T (X),

to transform the original source, Xs, and target, Xt, domain data into T (Xs) and T (Xt)

data which have similar distributions. Intuitively, a classifier learned on T (Xs) with labels

ys should presumably have a good predictive performance on T (Xt). Thus, the domain adap-

tation problem is reduced to finding the transfer function T (X). Inspired by the generative

adversarial network (GAN) proposed by Goodfellow et al. [70], Ganin et al. [32] designed a

Domain-Adversarial Neural Network (DANN), which includes a component that explicitly

aims to reduce the shift between a source and a target.

We have adapted the DANN model proposed by Ganin et al. [32] by combining its

adversarial training with the VGG-19 network, to take advantage of the extensive training

of VGG-19. The architecture of the adapted DANN network, is shown in Figure 2.1. As can

be seen in Figure 2.1, our model includes three components: 1) a transfer network, denoted

by T , which enables the transfer of information from the source to the target, by reducing
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the shift between the two domains (in our case, between the two disasters); 2) a domain

discriminative network, denoted by D, which identifies if an input image is from the source

or from the target domain; 3) a prediction network, denoted by P , which is used to predict

if an image is in the damage category or in the no-damage category. The input for the

transfer network, T , consists of images from either source or target domain. After applying

the transformation T to the source or target images, the transformed images are classified as

source or target by the discriminative network D, and classified as damage or no-damage by

the predictor network P . Informally, the idea of the adversarial training is to train a good

domain discriminant to separate the source and target domains, and at the same time, train

a transfer network to make the two domain look so similar, that even a good discriminant

network can not separate them. The predictor network, P , is trained on the transformed

source data and then used to classify the transformed target data.

As can be seen in Figure 2.1, the transfer network, T (X), consists of the first 16 convo-

lutional/pooling layers of VGG-19, together with the first fully connected layer in VGG-19.

The domain discriminative network, D(X), and prediction network, P (X), have similar

architectures, which are equivalent to the last two fully connected layers of VGG-19. Specif-

ically, D(X) has one fully connected layer with dimension 4096, and one fully connected

softmax layer with two dimensions, corresponding to the source (S) and the target (T) do-

mains, respectively. Similarly, P (X) has one fully connected layer with dimension 4096,

and one fully connected softmax layer with two dimensions, corresponding to damage and

no-damage categories, respectively.

DANN Model Training

The DANN is trained by minimizing the total loss of the model shown in Figure 2.1. To define

the total loss function, we first define the following cross-entropy loss functions, corresponding

to the three sub-networks in our model:

Lprediction = min
P
L(ys, P (T (x))), where ys is the true class label of the transform instance

x.

16



Ldomain = min
D
L(TDL,D(T (x))), where TDL is the true domain label, i.e., S for source,

and T for target.

Ltransfer = min
T
L(FDL,D(T (x))), where FDL is a fake domain label, i.e., S for target,

and T for source.

The total loss is defined as follows: Ltotal = Ldomain + Ltransfer + Lprediction

Let θD denote all the parameters in D(X), θT denote all the parameters in T (X), and θP

denote all the parameters in P (X). At each training step (a pass through the source data),

we first compute each loss, Ldomain, Ltransfer, and Lprediction, and update the parameters

accordingly. However, we notice that the discriminant loss function always ‘defeats’ the

transfer loss function. To account for this, we compute the transfer loss function two times

in each step, as suggested in [72]. Then, the transfer and domain losses become almost

equal, which means the transfer function reduced the difference between the two domains to

an extent that the discriminant function can not separate the domains. The update rules

are shown below:

θD ←− θD − µ∂Ldomain∂θD
(1)

θT ←− θT − µ∂Ltransfer

∂θT
(2)

θT ←− θT − µ∂Lprediction∂θT
(3)

θP ←− θP − µ∂Lprediction∂θP
(4)

where µ is the learning rate. We use the stochastic gradient descent (SGD) to optimize

the parameters. The pseudocode for training the DANN network using SGD is shown in

Algorithm 1. Parameter updates are performed for each batch sampled from source. Corre-

sponding to a batch from source of size m (line 5 in the algorithm), which is used to train

the prediction network, the algorithm also creates a batch that has half (i.e., m/2) source

instances and half target instances (line 6 in the algorithm). The source/target batch is used

to train the transfer and domain networks.
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Algorithm 1 DANN Training Using SGD

Input: Datasets S = {(xsi , ysi )}ns
i=1 (where ns represents the number of instances in the

source S) and
T = {xti}nt

i=1 (where nt represents the number of instances in the target T )
Output: θT , θP , θD

1: θT ← pre-trained VGG-19 weights
2: θP , θD ← random initial weights
3: Step k = 0
4: for k from 1 to steps do
5: for each source batch {(xsi , ysi )}mi=1 do

6: Sample source/target batch (xsj , x
t
j)
m/2
j=1

7: TDLj = 1 if xj ∈ source, 0 otherwise
8: FDLj = 0 if xj ∈ source, 1 otherwise
9: Compute the loss Ldomain

10: Update θD using Equation (1)
11: Compute the loss Ltransfer
12: Update θT using Equation (2)
13: Compute the loss Ltransfer
14: Update θT using Equation (2)
15: Compute the loss Lprediction
16: Update θT and θP using Equations (3) and (4)

2.4 Experimental Setup

In this section, we present the experimental setup, including the dataset used, cross-validation

setup, baselines, and implementation details. The experiments conducted in this study were

designed to answer the following research questions: (1) How does the DANN model work

for adaptation between disasters of the same type (e.g., two earthquakes) versus adaptation

between disasters of different types (e.g., an earthquake and a hurricane)? (2) Does the

source-target feature adaptation through DANN give better results as compared to the di-

rect source adaptation from VGG-19? (3) How do the results of the DANN model compare

to the results of a VGG-19 network adapted based on data from the target domain itself?
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Table 2.1: Disaster class distribution, together with the total number of labeled images in
each disaster.

Class Nepal Ecuador Ruby Matthew
Earthquake Earthquake Typhoon Hurricane

Damage 11,183 933 433 204
No-damage 7,919 791 400 127

Total 19,102 1,724 833 331

2.4.1 Dataset

We used the disaster image dataset published by Nguyen et al. [73] in our experiments.

The dataset contains images from four disasters, specifically Nepal Earthquake, Ecuador

Earthquake, Ruby Typhoon, and Matthew Hurricane. In the original dataset, there are

three damage classes: severe, mild, and none. However, Nguyen et al. [73] suggested that

the task of discriminating between mild and severe damage is very subjective, and there is

significant overlap in the dataset between the two classes. Therefore, we combine the classes

severe and mild into one class called damage. Our goal is to identify images that include

damage and separate them from images that do not show any damage. Table 2.1 shows the

total number of images in each disaster, and also the class distribution for each disaster.

2.4.2 Setup

Given the four disasters in our dataset, we experiment with all possible source/target pairs.

Thus, some source/target pairs consist of disasters of the same type (e.g., two earthquakes),

while other pairs consist of disasters of different types (e.g., an earthquake and a hurricane).

Furthermore, some pairs have smaller amounts of source data, while others have larger

amounts of source data. Similarly, some pairs have a smaller amount of target unlabeled

data, while other pairs have a larger amount of target unlabeled data. This variety of pairs

makes it possible to answer the research questions we have raised.

For each source/target experiment, we randomly split the target data into target unla-

beled (80%) and target test (20%). Each DANN model was trained on all source data and

the target unlabeled data, and subsequently tested on the test dataset. The results are eval-
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uated using four standard metrics, specifically, accuracy, precision, recall and F1-measure.

For cross-validation purposes, we created three different random splits for each source/target

pair. The metrics reported represent averages over the three random splits (together with

the standard deviation).

2.4.3 Baselines

We compared the DANN model against two baselines: 1) a model that uses only the labeled

source data to adapt the pre-trained VGG-19 – this model can generally be seen as a lower

bound for domain adaptation; 2) a model that uses the target data as labeled data to adapt

the pre-trained VGG-19 – this model can generally be seen as an upper bound for domain

adaptation.

2.4.4 Implementation Details

We used TensorFlow’s MomentumOptimizer procedure to train the model using the mini-

batch stochastic gradient descent on a K80 graphics card. Based on our preliminary experi-

mentation, we set the learning rate to 0.001, and the batch size to 64 images. Furthermore,

we used the dropout technique with a rate of 0.5 to prevent overfitting. The code for the

VGG-19 model was adapted from https://github.com/machrisaa/tensorflow-vgg.

2.5 Experimental Results

The results of the experiments are shown in Table 2.2 for the DANN model, which was

trained on source labeled and target unlabeled data (denoted as DANN-SL-TU), and for the

two baselines, VGG-19-SL (VGG-19 adapted using source labeled data), and VGG-19-TL

(VGG-19 adapted using target labeled data). The DANN model and the baselines are tested

on the same target test data. Each experiment was repeated three times with different target

unlabeled/test splits, and the results averaged over the three runs.
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Table 2.2: Classification results: average accuracy (Acc.), precision (Prec.), recall (Rec.)
and F1-measure (F1) for the damage class (average is taken over three runs), together with
the corresponding standard deviation (in parentheses), for DANN-SL-TU (which uses source
labeled data and target unlabeled data), VGG-19-SL (adapted using source labeled data),
and VGG-19-TL (adapted using target labeled data). Highlighted in bold font are results
that are statistically different when comparing VGG-19-SL and DANN-SL-TU using a paired
t-test with p ≤ 0.05.

Source Ecuador Earthquake
Target Matthew Hurricane Nepal Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.557 0.786 0.382 0.514 0.828 0.861 0.841 0.851 0.625 0.823 0.360 0.499

(0.023) (0.058) (0.014) (0.017) (0.006)) (0.004) (0.012) (0.006) (0.023) (0.074) (0.048) (0.043)
VGG-19-TL 0.821 0.823 0.902 0.859 0.897 0.911 0.916 0.912 0.864 0.872 0.896 0.872

(0.015) (0.026) (0.000) (0.011) (0.005) (0.019) (0.034) (0.005) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.687 0.791 0.683 0.726 0.820 0.842 0.840 0.726 0.741 0.774 0.728 0.744

(0.026) (0.089) (0.085) (0.023) (0.006) (0.025) (0.013) (0.023) (0.027) (0.072) (0.093) (0.031)

Source Nepal Earthquake
Target Matthew Hurricane Ecuador Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.642 0.916 0.455 0.606 0.873 0.908 0.852 0.878 0.699 0.890 0.483 0.622

(0.052) (0.035) (0.078) (0.077) (0.006) (0.026) (0.026) (0.006) (0.039) (0.036) (0.078) (0.077)
VGG-19-TL 0.821 0.823 0.902 0.859 0.923 0.908 0.957 0.930 0.864 0.872 0.896 0.872

(0.015) (0.026) (0.000) (0.011) (0.010) (0.040) (0.023) (0.008) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.706 0.860 0.634 0.724 0.871 0.860 0.909 0.884 0.800 0.808 0.812 0.819

(0.023) (0.086) (0.088) (0.038) (0.023) (0.025) (0.038) (0.022) (0.042) (0.043) (0.065) (0.042)

Source Matthew Hurricane
Target Ecuador Earthquake Nepal Earthquake Ruby Typhoon

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.747 0.744 0.813 0.777 0.760 0.788 0.808 0.797 0.683 0.650 0.851 0.736

(0.009) (0.013) (0.006) (0.005) (0.009) ()0.008) (0.036) (0.014) (0.006) (0.011) (0.023) (0.002)
VGG-19-TL 0.923 0.908 0.957 0.930 0.897 0.911 0.916 0.912 0.864 0.872 0.896 0.872

(0.010) (0.040) (0.023) (0.008) (0.005) (0.019) (0.034) (0.005) (0.012) (0.029) (0.049) (0.011)
DANN-SL-TU 0.761 0.747 0.870 0.802 0.755 0.784 0.805 0.793 0.681 0.669 0.774 0.713

(0.038) (0.054) (0.037) (0.023) (0.023) (0.012) (0.073) (0.030) (0.024) (0.038) (0.103) (0.032)

Source Ruby Typhoon
Target Matthew Hurricane Nepal Earthquake Ecuador Earthquake

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
VGG-19-SL 0.741 0.817 0.748 0.778 0.731 0.849 0.658 0.741 0.740 0.865 0.618 721

(0.018) (0.016) (0.027) (0.022) (0.009) (0.010) (0.008) (0.008) (0.018) (0.016) (0.027) (0.022)
VGG-19-TL 0.821 0.823 0.902 0.859 0.897 0.911 0.916 0.912 0.923 0.908 0.957 0.930

(0.015) (0.026) (0.000) (0.011) (0.005) (0.019) (0.034) (0.005) (0.010) (0.040) (0.023) (0.008)
DANN-SL-TU 0.736 0.818 0.740 0.774 0.763 0.813 0.777 0.792 0.809 0.814 0.840 0.825

(0.017) (0.057) (0.051) (0.009) (0.021) (0.023) (0.083) (0.033) (0.032) (0.024) (0.080) (0.037)
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2.5.1 Discussion of the Results

To answer our first research question, How does the DANN model work for adaptation between

disasters of the same type versus adaptation between disasters of different types?, we compare

the results of DANN-SL-TU with the results of VGG-19-SL for pairs of similar and different

disasters. We consider Matthew Hurricane and Ruby Typhoon to be disasters of the same

type, and the same for Ecuador Earthquake and Nepal Earthquake. Disaster pairs consisting

of a hurricane/typhoon and an earthquake are considered to be different. As can be seen

from Table 2.2, the results of DANN-SL-TU are similar and sometimes better than the

results of VGG-19-SL, for pairs of similar disasters. Furthermore, the DANN-SL-TU results

are generally better than the VGG-19-SL results for different disasters. For example, when

we use either Ecuador Earthquake or Nepal Earthquake as source, the results for predicting

the other earthquake are similar between DANN-SL-TU and VGG-19-SL. However, if we

use either disaster as source, and predict Matthew Hurricane or Ruby Typhoon, DANN-

SL-TU gives significantly better results. Similarly, when Ruby Typhoon is used as source,

the results obtained with DANN-SL-TU for Nepal Earthquake and Ecuador Earthquake are

significantly better then the results obtained with VGG-19-SL, while the two models are

similar for Matthew Hurricane.

Given the above-mentioned results, the answer to our second question, Does the source-

target feature adaptation through DANN give better results as compared to the direct source

adaptation from VGG-19?, is overall positive, as the DANN-SL-TU model gives similar or

better results than VGG-19-SL. However, if we consider the size of the datasets used in our

experiments, the results in Table 2.2 suggest that the DANN-SL-TU approach gives better

results if the source labeled data and the target unlabeled data used for training are relatively

large (e.g., a few thousands). Furthermore, it can be seen that DANN increased the recall

for the damage class in most case, especially when the source and target disasters are of

different types. Finally, when comparing DANN-SL-TU with VGG-19-TL to answer our

third question, How do the results of the DANN model compare to the results of a VGG-19

network adapted based on data from the target domain itself?, we observe that indeed VGG-
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19-TL acts as an upper bound for the DANN-SL-TU model. While the gap between the two

models is significant, the gap between VGG-19-TL and VGG-19-SL is also large, suggesting

that the source data distribution is indeed different from the target data distribution, and

better domain adaptation models have the potential to bridge the gap.

Figure 2.2 shows examples of images that are correctly classified or miss-classified by the

DANN-SL-TU/VGG-19-SL/VGG-19-TL networks, when Ruby Typhoon is used as target

disaster and Ecuador Earthquake is used as source disasters. Specifically, the top row in

Figure 2.2 shows examples of images that are correctly classified as damage by DANN-SL-

TU and VGG-19-TL, but miss-classified as no-damage by VGG-19-SL. As the VGG-19-SL

network is trained to recognize earthquake damage, it can fail to recognize rain/flood/wind

damage present in typhoon images. As opposed to that, the middle row in Figure 2.2

shows images that are miss-classified as damage by both DANN-SL-TU and VGG-19-TL,

but correctly classified as no-damage by VGG-19-SL. It seems that the networks that use

images from the target typhoon during training may over-learn that water-related or wind-

like images are showing damage. Finally, the bottom row in Figure 2.2 shows images that are

miss-classified by both DANN-SL-TU and VGG-19-SL. The first two images in the bottom

row are correctly classified by VGG-19-TL as damage and no-damage, respectively, while

the last two images are also miss-classified by VGG-19-TL as damage. Together with the

quantitative evaluation in Table 2.2, these examples suggest that more unlabeled images

from the target, and ideally more labeled images from the source, can potentially improve

the results.

2.5.2 Estimating the Distance between Source and Target Do-

mains before and after Adaptation

To evaluate the difficulty of the domain adaptation tasks in our study, we used the proxy

A-distance [74] to measure the domain shift. We expect domain adaptation to give better

results than VGG-19-SL if the source and target domains are different, and similar results

if the target and source domains are similar. Table 2.3 shows the domain pairs used in our
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Figure 2.2: Examples of images that are correctly classified or miss-classified by different
networks, when Ruby Typhoon is used as target disaster and Ecuador Earthquake is used as
source disaster. (Top) Images that are classified correctly as damage by DANN-SL-TU and
VGG-19-TL, and miss-classified as no-damage by VGG-19-SL. (Middle) Images that are
miss-classified as damage by DANN-SL-TU and VGG-19-TL, while VGG-19-SL correctly
classifies them as no-damage. (Bottom) The first two images on the left are miss-classified
by both DANN-SL-TU and VGG-19-SL, while VGG-19-TL correctly classifies image (h) as
damage and image (i) as no-damage. The last two images on the right have label no-damage
and are miss-classified by all networks as damage.
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Table 2.3: Proxy A-distance between different domains. In the ‘After Adaptation’ case,
(A → B) means that the model was trained with A as source and B as target, while
(B → A) means that the model was trained with B as source and A as target.

Domain A Domain B Before Adaptation
After Adaptation
(A→ B)

After Adaptation
(B → A)

Matthew Hurricane Ruby Typhoon 1.287 0.625 0.141
Ecuador Earthquake Matthew Hurricane 1.633 0.125 0.141
Ecuador Earthquake Ruby Typhoon 1.637 0.250 0.219
Nepal Earthquake Ecuador Earthquake 1.831 0.132 0.091
Nepal Earthquake Matthew Hurricane 1.951 0.078 0.281
Nepal Earthquake Ruby Typhoon 1.915 0.112 0.288

experiments and their corresponding domain divergence in terms of the proxy A-distance,

before and after feature adaptation. To compute the proxy A-distance, we trained a CNN

model to separate the source domain XS from the target domain XT using unlabeled data.

Then, we calculated the proxy A-distance as 2(1− 2ε), where ε is the mis-classification error

on test data. A high proxy A-distance means that the two domains are far apart, and

benefit from adaptation. A proxy A-distance close to zero means that the two domains have

essentially the same distribution. In addition to the proxy A-distance before adaptation, we

also calculated the proxy A-distance after adaptation to understand if domains with different

distributions are brought closer through adaptation. We should note that the model used

to obtain the proxy A-distance between T (XS) and T (XT ) is equivalent with a two layer

perceptron network, based on our model architecture. In practice, we found that sometimes

the classification error may be larger than 0.5, which resulted in a negative value for the proxy

A-distance. In such cases, we took the absolute value of the proxyA-distance, as suggested in

[74]. From Table 2.3, we can see that the distance between Matthew Hurricane and Typhoon

Ruby is the smallest among all the distances, suggesting that the distributions of the two

disasters are similar. Also, considering the pairs which contain Nepal Earthquake, we can

see that the smallest distance is obtained for Ecuador Earthquake. Thus, the distances in

Table 2.3 generally are in agreement with the classification results in Table 2.2. It is also

interesting to note that, after domain adaptation, all proxy A-distances become smaller,

which means that the distributions of T (XS) and T (XT ) are more similar as compared to

the original distributions of the source and target datasets.
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a Before adaptation b After adaptation c Before adaptation d After adaptation

Figure 2.3: Two dimensional representation of source (blue) and target (red) using the VGG-
19-SL representation of the images (before adaptation), and the DANN-SL-TU transformed
representation of the images (after adaptation), for two pairs of disasters. The pair on the left
consists of two dissimilar disasters, Ecuador Earthquake (source, blue) and Ruby Typhoon
(target, red). The pair on the right consists of two similar disasters, Ecuador Earthquake
(source, blue) and Nepal Earthquake (target, red).The two representations are reduced to 2
dimensions using the t-SNE [1] technique.

2.5.3 Visual Distribution Analysis

It can be proven that T (XS) and T (XT ) have similar distributions after the domain adver-

sarial training. Here, we visualize T (XS) and T (XT ) for some sample source/target pairs to

visually analyze the distributions of the transformed source and target data, by comparison

with the distribution of the original source and target data.

To perform this visualization, first, we randomly selected 64 images from Ruby Typhoon

and 64 images from Ecuador Earthquake, two disasters with relatively high distance. Using

the VGG-19 model trained on Ecuador Earthquake, we extracted the weights of the last

fully connected layer in the VGG-19 model (this layer has dimension 4096). Next, we used t-

SNE [1] to reduce the dimensionality from 4096 to 2. As a result, each image is represented

by a two dimensional vector. We plotted the 128 images using the binary representation

in Figure 2.3 (a), where we used blue triangles for images from Ecuador Earthquake and

red dots for images from Ruby Typhoon. Similarly, using the DANN model trained on

Ecuador Earthquake as source and Ruby Typhoon as target, we extracted the weights of

the first fully connected layer, which represents the output of the transfer function T (x).

The graph for the 128 images (from Ecuador Earthquake and Ruby Typhoon) is shown in

Figure 2.3 (b), where the blue triangles represent images from Ecuador Earthquake and

the red dots represent images from Ruby Typhoon. As can be seen, the graph in Figure
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2.3 (a) shows a clear boundary between the two domains, while in the graph in Figure

2.3 (b) the two domains are harder to separate as their distributions overlap significantly.

Thus, the visualization of the reduced representations shows that after domain adaptation,

the difference between source (Ecuador Earthquake) and target (Ruby Typhoon) has been

indeed reduced.

In addition to performing the visualization of the transformed representations for two

domains with high distance, we also performed if for two domains with relatively smaller

distance. Specifically, we randomly selected 64 images from Nepal Earthquake and 64 images

from Ecuador Earthquake. Following the same procedure described above, we plot two

graphs in Figure 2.3 (c) and (d), respectively. In (c), the VGG-19 model was trained on

Ecuador Earthquake and in (d), the DANN model was trained on Ecuador Earthquake as

source and Nepal Earthquake as target. As can be seen in (c), the distributions of the

two domains are indistinguishable even before adaptation, as the two domains have similar

distributions in the first place. Thus, in this situation, DANN can not improve much the

results of VGG-19, as the domains are already similar.

2.6 Conclusions and Discussion

In this paper, we studied the application of domain adaptation to identify disaster images

that show damage. We adapted the DANN approach by combining it with the VGG-19

model, and thus taking advantage of the available labeled data used to train VGG-19. Ex-

perimental results suggest that the domain adaptation approach is especially useful when

the source and target disasters are of different types, and thousands of labeled instances

are available for the source disaster (a requirement which can be met without much effor or

cost).

Given that the proposed approach does not require labeled data from the target domain,

it can potentially be used to identify damage images in nearly real time. To do this, one

would first use a pre-trained model that identifies images relevant to disasters and filters out

non-relevant images. A model like this is already available as part of the AIDR platform
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(http://aidr.qcri.org), as described by Nguyen et al. [73]. Subsequently, our approach

can be used to identify images that show damage, by first employing the model pre-trained

on source data, and gradually adapting it based on unlabeled disaster-relevant target images.

The identified damage images could be used to perform fast damage assessment, which in

turn can results in faster disaster response. Thus, we envision that our approach, together

with relevancy-filtering models, can be incorporated in the routine operations of disaster

response and management organization.

We should note that our current models were trained to distinguish between damage and

no-damage images. This is a limitation imposed by the data that was available for training,

which did not discriminate well between severe and mild damage classes. However, as labeled

images for more specific classes of damage become available, our models can be re-trained

and adapted to identify such classes. Moreover, one can further analyze images that show

damage by localizing and quantifying damage on a continuous scale, as shown in Li et al.

[40]. Such level of detail can help response teams prioritize their operations based on the

severity of the damage, assuming that resources are scarce.

As part of future work, we plan to apply the DANN approach to other disaster image

classification problems, for example, specific types of damage including building damage,

road damage, bridge damage, human damage, etc. We also plan to study other domain

adaptation approaches in the context of image analysis for disaster response. Finally, we

aim to study approaches that can help identify image features indicative of damage, or even

other features that might be useful for response teams.
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Chapter 3

Domain Adaptation with

Reconstruction on Disaster Tweets

3.1 Introduction

In recent years, social media platforms, such as Twitter or Facebook, have become effective

communication tools, complementing more traditional communication networks (e.g., 9-1-1

centers), which are not always well-equipped to handle the large volume of requests posted

by disaster-affected individuals [75, 47]. Early works in disaster management have discussed

the usefulness of social media data in improving disaster resilience [5, 76, 77], situational

awareness [78], and emergency response [79]. To facilitate the use of social media data

posted by eyewitnesses of disasters, machine learning approaches have been developed to

filter informative tweets and classify them with respect to various situational awareness

categories [80, 81, 82]. Many of the existing studies have employed supervised learning to

train a classifier on data from a disaster of interest, and used the classifier to make predictions

on data from the same disaster. In supervised learning, data need to be manually labeled

before a classifier can be trained. The data labeling process is usually expensive and time-

consuming, making it hard to use supervised learning in the beginning of a disaster.

However, unlabeled data from a target disaster accumulates quickly. In addition, labeled
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data from a prior source disaster is readily available. A supervised classifier learned on

the source disaster may not perform well on the target disaster due to differences in the

distributions of the two disasters (a.k.a., covariate shift). Domain adaptation approaches

that use the labeled source disaster data, together with unlabeled target disaster data, to

train a classifier on source and adapt it on target, represent a promising solution to the

filtering of information posted on social media during disasters. By eliminating the need for

labeled target data, domain adaptation approaches can potentially improve the response time

especially in the beginning of a disaster. While domain adaptation has produced promising

results on this task [10, 11, 12, 2],[37], the potential of domain adaptation approaches based

on deep learning is largely unexplored.

One challenge for domain adaptation is how to effectively use the information from unla-

beled target data to adapt a classifier trained on labeled source data [83]. There are several

popular approaches that can be used to address this challenge. One idea is to reduce the

shift between the source and target data distributions. Domain adversarial neural networks

(DANN) [32] implement this idea by co-training a feature extraction network together with

a source classification network. The feature extraction network aims to transform the source

and target features to make them indistinguishable. Given domain invariant features, the

source classification network trained on labeled source data can be effectively used to classify

target data. Another way to reduce the covariate shift is to utilize domain reconstruction-

classification networks (DRCN). The reconstruction network consists of an autoencoder (i.e.,

encoder-decoder) that reconstructs the target data in a self-supervised manner [36]. The au-

toencoder network is co-trained with a source classification network that shares the encoder

component of the autoencoder. Being shared between the two networks, the encoder will

learn information from both source and target data. As a consequence, the source classifi-

cation network, trained on labeled source data, can be used to classify target data.

In the context of disaster tweet classification, Alam et al. [2] proposed a domain adap-

tation approach which combines domain adversarial training and graph embeddings with a

classification network. The adversarial training is used to reduce the distribution shift, while

the graph embeddings are used to induce structural similarity between source and target
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data. [37] proposed an adaptation approach based on a domain adversarial neural network,

with a large convolutional neural network (CNN) as its backbone, to identify disaster images

that show damage. To the best of our knowledge, there is no study on the use of domain

reconstruction-classification networks on social media disaster data.

To fill in this gap, in Section 3.2, we propose a domain adaptation approach for tweet clas-

sification, which implements the domain reconstruction-classification idea using a sequence-

to-sequence autoencoder [84]. Both the encoder and the decoder components of the au-

toencoder represent recurrent neural networks (RNN), specifically long short-term memory

(LSTM) networks. Our experimental results in Section 3.3 show that the proposed domain

reconstruction-classification approach outperforms the existing approach based on domain

adversarial networks and graph embeddings [2]. We conclude the paper and present ideas

for future work in Section 3.5.

3.2 Approach

In this section, we describe the components of the proposed approach. The overall architec-

ture of the approach is shown in Fig. 3.1.

3.2.1 Domain Adaptation

Let Xs = {(Xs
i , y

s
i )
ns

i=1} be a labeled source dataset, where ns represents the number of

instances in the source dataset, Xs
i contains a sequence of words Xs

i = {xj}
|Xs

i |
j=1 and ysi is the

sequence label. Let Xt = {
(
X t
i

)nt

i=1
} be an unlabeled target dataset, where nt represents the

number of instances in the target dataset, and Xt contains a sequence of words X t
i = {xj}

|Xt
i |

j=1 .

The task in domain adaptation is to learn a classifier for the target domain using the labeled

source data, Xs, together with unlabeled target data X t. The source data and target data

may share some patterns but generally have different distributions. For example, the source

data may consist of tweets posted during an earthquake, while the target data may consist

of tweets posted during a hurricane.
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Figure 3.1: Architecture of the proposed approach

3.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) have been widely used for many tasks in Natural Lan-

guage Processing, as they can capture dependencies in sequence data. Among other tasks,

RNNs can be used to classify text. Formally, given a sequence (x1, x2, ..., xn), an RNN

model can predict the label y using the following forward equations:

hi = RNN(xi, hi−1) i ∈ 1, ..., n

y = RNN(hn)
(3.1)

where hi represents the hidden state at time step i and acts as the memory of the network

(h0 is initialized with a zero vector).

3.2.3 Seq2Seq Autoencoder

The seq2seq model was proposed by Sutskever et al. [84] in the context of machine trans-

lation. It uses an RNN network to encode an original sequence into a hidden vector and
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then uses another RNN network to decode the hidden vector into another output sequence.

If the original sequence and the output sequence are from different languages, the task

achieved is translation. If the original sequence and the output sequence are the same, the

task corresponds to autoencoding, and the model is called an autoencoder. An autoencoder

can produce a sequence representation in a self-supervised manner (a.k.a., unsupervised

learning). The representation retains all the information needed to reconstruct the original

sequence itself.

3.2.4 Domain Adaptation with Reconstruction

Our proposed domain adaptation with reconstruction model combines the techniques dis-

cussed above. For the source data Xs, we initialize a set of word embedding ws corresponding

to words xs in a sequence Xs
i , and then train network to predict the label for Xs

i :

ŷsi = FC(Encoder(Xs
i )) (3.2)

where the Encoder is an RNN network which extracts the encoded representation of the

sequence Xs
i , and FC is a fully-connected layer which predicts the label of Xs

i using the

representation. For the target data X t
i , we train a seq2seq autoencoder on the initialized

word embeddings. Formally, for each target instance X t
i , we have:

X̂ t
i = Decoder(Encoder(X t

i ))

The seq2seq model and the RNN classification network share the encoder layer. Thus, the

RNN encoder layer learns a good classifier on the labeled source data while using information

from the unlabeled target data. The model will be trained by optimize

L = min(L(ysi , ŷs) + L(X t
i , X̂

t
i ))
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where L is cross-entropy loss. The pseudocode for the training phase of the proposed model

is shown in Algorithm 2.

Algorithm 2 Model Training Using SGD

Input: Source Xs = {(Xs
i , y

s
i )
ns

i=1}, and target Xt = {
(
X t
i

)nt

i=1
}

Output: θE, θD, θP (where θE, θD, θP represent the parameters in the Encoder, Decoder
and Predictor components, shown in Fig. 3.1).

1: θE, θD, θP ← random initial weights
2: for k from 1 to steps do
3: for each source batch {(Xs

i , y
s
i )}mi=1 do

4: Sample target unlabeled batch (X t
j)
m
j=1

5: Update θE, θP to minimize the loss L(ysi , ŷ
s
i )

6: Update θE, θP to minimize the loss L(X t
i , X̂

t
i )

3.3 Experimental Setup

3.3.1 Implementation Details

The implementation details of our model are as follows: In the seq2seq model implemen-

tation, both the encoder and the decoder contain one layer of RNN cells. The dimension of

the hidden vector representation is p = 200. We use the Adam optimizer to train the model

with a learning rate of 0.001 and a mini-batch of size 64.

3.3.2 Datasets

The first dataset used in this study was published by Alam et al. [2], who made available

the train, validation and test splits used in their study. The dataset contains tweets crawled

during Queensland Floods (QFL) and Nepal Earthquake (NEQ). Each tweet was labeled as

relevant or non-relevant. Statistics about the dataset and the train, validation and test splits

are shown in Table 3.1. In our experiments, for a source-target pair, we used the train split

of the source data to train the RNN classification network, we used the validation split of
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the target data to train the seq2seq autoencoder, and finally the test split of the target data

to evaluate the model.

Dataset Relevant Non-Relevant Train Validation Test

NEQ 5527 6141 7000 1167 3503
QFL 5414 4619 6019 1003 3011

Table 3.1: Statistics of the dataset published in [2]

The second dataset used (called CrisisMMD) was published by Alam et al. [3]. It contains

tweets crawled during 7 disaster events. Each tweet was labeled as informative or non-

informative. Statistics about the CrisisMMD dataset are shown in Table 3.2. For each

source-target experiment, we randomly split the target data into 70% unlabeled and 30%

test. We used all the labeled source data to train the RNN classification network. The

target unlabeled data is used to train the autoencoder, while the target test data is used to

evaluate the model. We conduct experiments where the datasets D0, D1, D2, D3, D5 are

used as source datasets, respectively. We didn’t use the datasets D4 and D6 as sources,

as they are relatively small and unbalanced compared to the other datasets. In addition

to using one disaster as source, we also performed experiments where we used all-but-one

disasters as source and the remaining disaster as target.

Dataset Not-Informative Informative Total

D0 California Fire 324 1162 1486
D1 Hurricane Harvey 973 3027 4000
D2 Hurricane Irma 836 3201 4037
D3 Hurricane Maria 1490 2510 4000
D4 Iraq Iran Earthquake 85 402 487
D5 Mexico Earthquake 314 925 1239
D6 Srilanka Floods 544 287 831

Table 3.2: Statistics of the the CrisisMMD dataset [3]

3.3.3 Research Questions

Our experiments are designed to answer the following questions:
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R1 How do the results of our domain adaptation with reconstruction approach compare

with the results of the domain adversarial with graph embeddings approach [2]?

R2 How do the results of our domain adaptation with reconstruction approach compare

with the results of the corresponding cross-domain supervised RNN classification mod-

els?

R3 How do the results of the experiments that use one disaster as source compare with

the results of the experiments that use the union of all-but-one disaster as source?

3.4 Experimental Results

3.4.1 Results

The results of the experiments on the dataset introduced in [2] are presented in Table 3.3.

In addition to the results of the RNN and RNN+AE models (in domain and cross-domain),

Table 3.3 also shows the results of the models in [2]. As can be seen, the RNN classification

model is better than the supervised model used in [2] in both cross-domain (model trained on

source) and in-domain (model trained on target) experiments. The RNN model is also better

than the adaptation model proposed by Alam et al. [2] by a large margin. Furthermore, the

table shows that the domain adaptation with reconstruction model achieves better results

than the RNN model alone, even when used for in-domain experiments (where both the

RNN network and the autoencoder are trained on the target data).

The results of the experiments on the CrisisMMD dataset [3] are presented in Table 3.4.

We show the average accuracy, AUC and F1 score over five independent runs. Each row has

same target data, while each column has same source data (except for the last column that

shows the all-but-one results). The table also shows in-domain results (where the models

are trained on target). As can be seen from the table, the results of the domain adaptation

with reconstruction model are better than the results of the RNN network in most cases

(including for in-domain models). While the adaptation from one source disaster to the
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Model (cross-domain) Acc AUC F1 Acc AUC F1

source -> target QFL->NEQ NEQ->QFL

supervised [2] n/a 54.86 53.63 n/a 58.99 59.10

domain adv. (DA) [2] n/a 57.63 57.79 n/a 60.15 60.94

graph emb. (GE) [2] n/a 54.60 54.79 n/a 60.38 60.54

GE + DA [2] n/a 58.81 59.05 n/a 66.49 65.92

RNN 64.19 65.42 64.18 55.83 61.36 55.17

RNN+AE (our) 68.82 72.29 68.38 81.24 87.79 81.18

Model (in-domain) Acc AUC F1 Acc AUC F1

target NEQ QFL

supervised [2] n/a 61.22 60.89 n/a 80.14 80.16

RNN 69.99 76.35 69.97 93.09 97.71 93.07

RNN+AE 72.39 79.55 72.40 93.89 97.18 93.89

Bert 78.54 78.71 78.37 96.51 96.39 96.81

Table 3.3: Cross-domain and in-domain results.

target disaster improves the results of the RNN classification network (especially, when the

source and target disasters are similar, e.g., both are hurricanes), overall, the all-but-one

models give the best results for a target.

3.4.2 Discussion

We will use the results of the experiments reported in Tables 3.3 and 3.4 to answer our

research questions.

R1 Our proposed domain adaptation with reconstruction approach has dramatically better

performance as compared to the domain adversarial with embeddings, in all metrics

considered.

R2 The domain adaptation with reconstruction has better performance than the cross-

domain supervised RNN classification network in most cases.

R3 Using all the available sources for training (all-but-one experiments) with the domain
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Method Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1 Acc AUC F1
Pair D0→D0 D1→D0 D2 →D0 D3→D0 D5 →D0 all-but-D0 →D0
RNN 75.78 70.36 72.58 69.73 61.69 50.02 73.92 64.41 57.15 71.38 68.67 62.07 64.80 60.15 54.46 72.65 68.54 72.94
RNN+AE 75.11 71.37 72.11 78.25 66.77 52.88 79.45 71.71 60.27 73.99 68.43 60.37 77.88 68.74 57.44 80.27 73.27 76.24
Pair D0→D1 D1→D1 D2 →D1 D3→D1 D5 →D1 all-but-D1 →D1
RNN 68.79 62.04 53.46 81.17 82.41 78.92 77.00 76.37 62.27 72.56 75.38 66.47 58.97 62.49 54.52 77.17 78.53 76.33
RNN+AE 72.00 67.79 60.97 80.92 81.84 78.66 77.53 78.56 63.92 78.25 78.37 69.29 70.22 69.46 61.32 76.92 77.79 77.55

Pair D0→D2 D1→D2 D2 →D2 D3→D2 D5 →D2 all-but-D2 →D2

RNN 70.27 65.27 57.94 76.28 71.77 61.64 81.29 76.53 78.60 71.75 72.80 63.18 53.15 58.66 49.15 77.74 71.47 76.71
RNN+AE 73.21 69.59 59.87 77.05 75.94 64.14 80.54 76.91 78.13 74.00 75.13 63.64 58.56 64.65 53.65 78.48 75.26 78.68

Pair D0→D3 D1→D3 D2 →D3 D3→D3 D5 →D3 all-but-D3 →D3
RNN 60.69 56.91 52.05 66.44 70.59 55.21 67.67 71.51 59.25 72.25 77.47 71.06 54.78 58.19 53.98 68.58 73.31 66.04
RNN+AE 65.36 67.70 59.07 68.53 72.84 60.15 67.14 69.98 56.21 72.00 79.68 72.46 61.33 60.20 52.50 73.17 77.09 72.05
Pair D0→D4 D1→D4 D2 →D4 D3→D4 D5 →D4 all-but-D4 →D4

RNN 57.11 59.98 49.85 68.22 65.33 54.43 72.66 53.41 49.41 59.56 65.57 52.45 78.00 67.72 62.32 74.67 78.43 77.07
RNN+AE 77.56 65.77 55.25 81.56 67.29 52.10 79.11 51.39 51.36 81.11 66.97 58.86 77.78 69.21 55.98 79.33 77.31 78.44

Pair D0→D5 D1→D5 D2 →D5 D3→D5 D5 →D5 all-but-D5 →D5

RNN 70.34 63.03 59.40 71.69 66.58 57.56 76.34 63.97 56.08 52.78 56.56 50.51 75.27 72.36 74.10 74.19 71.74 74.28
RNN+AE 75.54 70.13 59.65 74.46 73.24 50.82 77.42 68.83 58.38 73.48 70.56 60.54 77.15 76.83 74.91 77.42 73.04 74.45

Pair D0→D6 D1→D6 D2 →D6 D3→D6 D5 →D6 all-but-D6 →D6

RNN 57.60 74.67 57.11 69.60 87.45 69.43 63.07 79.78 62.98 73.07 81.31 72.04 53.47 65.61 53.31 74.19 71.74 74.28
RNN+AE 65.73 80.62 65.15 71.33 92.19 71.18 57.60 82.52 57.38 69.07 86.93 68.71 56.00 77.45 55.71 78.00 90.30 78.14

Table 3.4: Cross-domain and in-domain (e.g., D0→D0) Accuracy, AUC and F1 for Crisis-
MMD. Results based on 5 independent runs.

adaptation with reconstruction approach gives the best performance overall.

3.5 Conclusions

In this paper, we proposed a domain adaptation approach for disaster tweet classification.

The approach works by reconstructing the target data to find an informative hidden rep-

resentation, and predicting the target label based on a classifier learned from the labeled

source data. Experimental results show that the performance of proposed model is better

than the performance of another adaptation model recently proposed for this task [2]. Given

the promising results, our approach can potentially help eliminate the laborious process of

labeling data in the beginning of a disaster. As a consequence, disaster response can be

accelerated and resources can be better allocated.

As part of future work, we plan to evaluate other implementations for the Autoencoder,

including Transformers, which have been shown to give good results in machine translation.

We also plan to experiment with different types of word embedding (e.g., BERT) fine-tuned

on disaster data, as an alternative to embeddings which are randomly initialized before

training the models.
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Chapter 4

Improving Disaster related Tweet

Classification with Using a

Multimodal Deep Learning Approach

4.1 Introduction

The importance of social media analysis in disaster management has been widely recognized

[7, 75, 85, 79]. During a disaster, there is a large volume of communication requests, as

people contact families and friends to inform them about disaster developments. Standard

communication means may be lost in the beginning of a disaster due to a very heavy work-

load. This can make the disaster response task very challenging, and presents a need for

more efficient communication and data collection tools. Social media has received lots of

attention in disaster response. It allows people to share information and to ask for help.

Furthermore, it is relatively easy to collect data from social media platforms (e.g., Twitter).

If data from social media can be analyzed effectively, the rescue and recovery process can be

accelerated because people can be connected with the resources that they need in a timely

manner.

There are several studies focused on data collection during a disaster [86, 3]. Such studies
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describe detailed steps for data collection and labeling, and make available labeled datasets

which can be used for image and/or text classification tasks.

Most of the prior works using such datasets have focused either on text classification

[17, 87, 80, 88, 13, 82] or image classification [18, 37]. However, the text and the image of

a tweet presumably hold complementary pieces of information, which can be used together

to improve the overall classification of disaster tweets. Because of this relationship between

Table 4.1: Tweet text and image examples

Text Label Informative Not Informative Informative

Text puerto rico could be
without power for
¡number¿ to ¡num-
ber¿ months after
hurricane irma ¡url¿
¡url¿

do n’t care if it ’s
hurricane irma , hy-
pothermia , or even
rae sremmurd . i
’m just here to throw
picks

hurricane irma de-
stroys ’¡number¿ ’
of french part of
caribbean island st
martin : official ¡url¿

Image Label Not Informative Not Informative Informative

Image

tweet text and images, it is of interest to utilize both text and images together in a model

to potentially improve the performance of the models learned from text and/or images sepa-

rately. Some existing studies proposed to use multimodel data for disaster tweet classification

[89, 29], and trained models on tweets for which the text and image labels agree. While it

is expected that the two modalities will enhance each other if their labels agree, it is also of

interest to study if they can help each other when the labels don’t agree.

Thus, in this paper, we propose a multimodel approach for tweet classification, which
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makes use of both text and image information in a tweet, when both are available. We

evaluate the multimodel approach under two different scenarios. In the first scenario, we

only use tweets with matching text and image labels to understand if combining the two

modalities results in better classification performance. In the second scenario, we use not

only tweets with matching text and image labels, but also tweets with different text and

image labels. Here, the goal is to see if one modality helps the classification with respect

to the other modality despite potential label mismatches betweet the two modalities. In

addition to understanding the benefits achieved when combining two modalities, we also

aim to understand if one modality is more predictive than the other.

The rest of this paper is organized as follows: We describe the proposed model in the

“APPROACH” section. We discuss the related work in “RELATED WORK”. Experimental

results are presented and discussed in the “EXPERIMENTAL RESULTS” section. Finally,

we conclude the paper in the “CONCLUSIONS” section.

4.2 Related Work

Lots of studies focused on supervised learning on tweet texts and images. Chowdhury et al.

[90] and Stowe et al. [91] proposed classification models for disaster related tweet classifi-

cation with traditional machine learning algorithms. Neppalli et al. [88] and Li et al. [13]

proposed the use of deep learning models to conduct text classification. Neppalli et al. [88]

also compared the performance between traditional Naive Bayes models and deep learning

models, while Li et al. [13] compared different word embeddings. There are also some studies

focused on disaster image analysis. Yang et al. [92] proposed a hierarchical image classifi-

cation approach to enhance situational awareness. Barnes et al. [93] and Vetrivel et al. [94]

analyzed satellite images to identify blocked routes and potential rescue targets. They also

analyzed satellite disaster images to assess disaster damage. An image classification model

has been proposed by Nguyen et al. [18], which applied the deep Convolutional Neural Net-

work model on disaster images.
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Hu and Flaxman [28] proposed an multimodal approach to predict emotion word tags

for posts made by Tumblr users. Our model is similar with their model but applied on

disaster-related tweets. A multimodal approach has been published by Mouzannar et al.

[29]. They trained a CNN model for text and another CNN model for images, and then

took the average of the output to generate the final classification decision. At a high level,

our proposed approach is similar to the approach in Mouzannar et al. [29]. However, we use

different base models for text and images, respectively, and an improved way of combining

the predictions, in addition to the average of the predictions. Nalluru et al. [30] proposed

a multimodal model which extracts embeddings for text and images and then applies the

lightGBM model, which is an implementation of fast gradient boosting on decision tree [95].

Compared to this work, we use different embedding extraction methods and apply a fully-

connected layer for classification ( instead of the lightGBM model), as this approach is widely

used in deep learning. Agarwal et al. [89] proposed a novel end-to-end multimodal framework.

Their framework addresses three classification tasks: tweet informativeness, infrastructure

damage and damage severity. They combine cues extracted from text and image modalities,

and merge them using the attention mechanism. All of the abovementioned works are used

for tweets with matching text and image labels, but do not consider the the scenario where

the labels of the text and images may disagree. Our proposed approach can handle both

scenarios and can be used on real Twitter data, where one does not know if the text and

image labels match prior to classification but can perform classification of the tweet text and

images using multimodal models.

4.3 Approach

In this section, we introduce some notations and elaborate the details of our approach.

Suppose a tweet i consists of both text and image. We denote the tweet text by Ti, while the

corresponding label of the text is denoted by yti. Similarly, we denote the tweet image by

Ii, while the label of the image is denoted by yii. In our study, the labels of both text and

images can take values informative or non-informative. For a tweet i which contains both
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0.68
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(a) RNN alone model.
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Convolutional Layers
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(b) CNN alone model.

CNN

RNN

CNN Pc
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Average
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Informative
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Concatenate

(c) multi-model (Independent).

(d) multi-model (Concatenate).

Fully-Connected 
Layer

Figure 4.1: Architecture of proposed model

text and an image, the text label yti and the image label yii can be the same or different,

as can be seen in the examples in Table 1. Therefore, the label of a tweet containing both

text and an image can be assigned based on the original text labels, or based on the original

image labels, unless the text and image have identical labels.

Regardless of the way tweet labels are assigned, a multi-modal labeled tweet instance

is denoted by {Ti, Ii}, yi for i = 1, · · · , n. Given a set of such multi-modal labeled tweet

instances, the goal is to learn a model that uses both the text Ti and image Ii to predict the

label yi. The architecture of our model is shown in Figure 4.1. As can be seen, the model

contains two distinct modules: a recurrent neural network (RNN) for processing the text

and a convolutional neural network (CNN) for processing the image. Next, we describe the

text model RNN, which predicts label yi using Ti, and the image model CNN, which predict

label yi using Ii. Then, we describe how we combine the two models into a multi-modal

model which predicts label yi using both modalities of the tweet, {Ti, Ii}.
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4.3.1 RNN

Recurrent Neural Networks (RNNs) have been used extensively in text classification [24].

An RNN learns sequential patterns by learning information from previous word together

with information from the current word. There are many variants of RNN networks. In

this study, we use Gated Recurrent Unit (GRU) networks [26]. The advantage of a GRU

is that it can help capture long-term dependencies, while maintaining a relatively simple

architecture. The text Ti consists of a sequence of words {w1, ...wj}, where j is the length of

the text. As shown in Figure 4.1 (a), the information of each word (current GRU unit/state)

will feed-forward to the next GRU unit. Formally, gi = GRU(wi, gi−1). The output y of the

network will be generated by the last word and the last GRU unit output. ŷ = GRU(wj, gj).

The model output is the prediction class: informative or non-informative.

4.3.2 CNN

Convolutional Neural Networks (CNNs) have been widely used in image classification. They

learn spatial patterns in an image by extracting information from the surrounding area of

each point through the means of a filter. As shown in Figure 4.1 (b), a CNN contains convo-

lutional layers and fully-connected layers. The convolutional layer uses a sliding window on

the image matrix to “walk” a filter through each image point. The filter identifies predictive

information that may be repeated at different points in the image. A convolutional layer is

usually followed by a pooling layer, which selects important information by taking the max

or average in a window. After several convolutional layers, several fully-connected layers are

used to produce final classification decisions. There are several CNN model architectures

published. We used AlexNet [20] because it is relatively simple and efficient architecture.

However, the CNN component of the model can potentially be improved by utilizing a deeper

and more effective CNN architecture.
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4.3.3 Multi-Modal Model

A multi-modal model is obtained by combining models corresponding to different modalities

into one global model. In this paper, we combined the RNN and CNN models into one global

model. As described above, the RNN component consumes text and the CNN component

consumes images. The combined model will output one label. There are two ways in which

we combine the RNN text and the CNN image models.

Train Text and Image Models Independently, and Average Predictions

The first way of combining the text and image models is to train the RNN and CNN models

independently and then take the average of their prediction probabilities to get the final

output of the network, as shown in Figure 4.1 (c).

Pr = RNN(Ti)

Pc = CNN(Ii)

ŷi = average(Pr, Pc)

where Pr/Pc represent the output probabilities from RNN/CNN. This idea is very straight-

forward and several works have already evaluated it in disaster management [89]. One

disadvantage of this model is that it is hard to find tweets where the text and image labels

match. Given that the two models are trained independently, their predictions cannot be

combined for tweets where the text and image have different labels. Another disadvantage

is that the AUC for this model will generally be lower than the best result because of the

averaging operator.

Concatenate the Text and Image Representations and Co-train the Correspond-

ing Models

Another way to combine the RNN and CNN models is to concatenate the outputs of their

last layers, as shown in Figure 4.1 (d), and feed the combined representation to a fully
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connected layer, which makes the final prediction.

Or = RNN(Ti);Oc = CNN(Ii)

ŷ = fc(concat(Or,Oc)) = ReLu(W ∗ concat(Or,Oc) + b)

where Or/Oc represent the last layers of the RNN/CNN models, respectively, and fc is

the fully-connected layer. W and b are the parameters in the fully-connected layer. The

activation function is the ReLu function, where f(x) = max(0, x). Fully-connected layers

are widely used in neural networks, especially to connect the final representation/embedding

layer to the classification layer. In this model, we extract representations from tweet text and

image in the concat(Or,Oc), and predict the label ŷ using the fully-connected layer. In this

case, the two models will be co-trained together. The advantage of this way of combining

the RNN and CNN is that the model will learn useful linking information automatically. If

the image is not helpful to the text classification, this will also be presumably captured by

the model. Thus, it is expected that the performance with respect to the base models will

not be degraded.

4.4 Experimental Results

4.4.1 Dataset

The dataset we used in this study is the CrisisMMD dataset that was published by Alam

et al. [3]. The dataset contains tweets crawled during seven disaster events. For each tweet,

the text and image of the tweet were labeled as informative/non-informative. The labels

for text and image might be different. We show the text label distribution in Table 4.2 left

panel, and the label distribution for text labels matched with image labels in Table 4.2 right

panel. As an be seen, the disaster related tweet datasets are quiet unbalanced in terms of

informative and not informative instances.

We also show the text/image label distribution in Table 4.3. We use the Hurricane Irma
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Table 4.2: Statistics of the the dataset CrisisMMD

Before filtering. Original text labels. After filtering. Matched labels.

Dataset
Not
Informative

Informative Total

D0 California Fire 345 1245 1590
D1 Hurricane Harvey 1105 3334 4439
D2 Hurricane Irma 957 3564 4521
D3 Hurricane Maria 1714 2844 4558
D4 Iraq Iran Earthquake 104 493 597
D5 Mexico Earthquake 350 1030 1380
D6 Srilanka Floods 655 367 1022

Dataset
Not
Informative

Informative Total

D0 California Fire 282 923 1205
D1 Hurricane Harvey 906 2262 3168
D2 Hurricane Irma 767 2032 2799
D3 Hurricane Maria 1295 1813 3108
D4 Iraq Iran Earthquake 102 398 500
D5 Mexico Earthquake 315 806 1121
D6 Srilanka Floods 632 229 861

Table 4.3: Hurricane Irma text/image distribution

txt/image informative non-informative
informative 2032 1532

non-informative 190 767

dataset as an example. The other datasets also show similar patterns. As can be seen in

Table 4.3, if the image is informative, 90% (2032 out of 2222) of text is also informative; if

the image is not informative, about 33% of text is not informative. This suggests that if the

image is informative, the text is usually informative; if the image is not informative, the text

might be informative or not.

4.4.2 Experimental Setup

Our multi-modal model aims to improve performance by learning from text and image to-

gether, so that the model will only output one decision for a text/image pair. We evaluate

two scenarios in this study. The scenarios differs in how we filter the dataset and select

labels for a text-image pair.

• In the first scenario, we filter out the tweets for which the corresponding text and

image labels do not match. The data will be {Ti, Ii}, yi where i = 1, ..., n′ and n′ < n.

The multi-model will predict the matched label yi from {Ti, Ii}. We compare three

results for this scenario: (1) Text only model with data Ti, yi; (2) Image only model

with data Ii, yi; (3) multi-modal model with data {Ti, Ii}, yi.

• In the second scenario, we predict text label using both text and image information,
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and image label using both text and image information. The text label data will be

{Ti, Ii}, yti where i = 1, ..., n, while the image label data will be {Ti, Ii}, yii where

i = 1, ..., n. This scenario is more realistic, as in practice we don’t know the text/image

label in advance (i.e., we can’t tell if they match or not), and thus we cannot filter out

unmatched label tweets. We compare two results for this scenario for text labels: (1)

Text only model; (2) multi-modal models. Similarly, we compare two results for image

labels: (1) Image only model; (2) multi-modal models. While predicting text or image

labels, the multi-model will learn some useful information from the other modality to

complement the modality whose labels are predicted.

We evaluate the performance for the proposed model on the seven datasets from Crisis-

MMD. Each dataset is randomly split into training (70%) and testing (30%) set. To avoid

splitting bias, we run each experiment three times on each dataset and average the results

over the three runs. We use Hurricane Maria to select hyper-parameters, given that this

dataset is larger than others. Specifically, we split Hurricane Maria into training (50%) and

development (20%) subsets and select hyper-parameters based on the development subset.

Specifically, we use Adam Optimizer with learning rate as 0.001. To avoid over-fitting, we

train each RNN model for at 10 epochs and each CNN model for 30 epochs.

4.4.3 Evaluation Metric

We use several standard evaluation metrics as defined below.

Accuracy

The accuracy represents the number of correctly predicted instances divided by the total

number of samples:

Accuracy =
∑
i

Iŷi=yi/n

where I is the indicator function, Iŷi=yi = 1 if ŷi = yi; Iŷi=yi = 0 otherwise, and n is the

sample size. The disadvantage of this metric is that it cannot capture well the performance
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on unbalanced data. If the model classifies all samples into one class, the accuracy is still

high but the model actually does not have good prediction ability.

AUC

We also use AUC (Area Under The Curve) to measure the models classification performance.

As the name suggests, AUC is the area under a curve, specifically the curve which plots TPR

vs. FPR at all possible thresholds, where True Positive Rate (TPR) is

TPR =
TP

TP + FN

and False Positve Rate (FPR) is

FPR =
FP

FP + TN
.

This is a measure which balances the True Positives (TP), True Negatives (TN), False

Positives (FP) and False Negatives (FN), and better captures the performance for unbalanced

data.

F1 Score

F1 Score is another measure which balances the precision and recall. In disaster management,

the dataset is generally unbalanced. This might be a better measure than Accuracy to make

the comparison.

4.4.4 Experimental Results

The experimental results for the first scenario are shown in Table 4.4. We compare the

results for text alone, image alone and two types of multi-modal models. These results

are performed on the matched label tweets for which the statistics are shown in Table 4.2,

right panel. Because the datasets are unbalanced, we focus our discussion on the AUC and

F1 scores. As can be seen, the RNN alone network has better AUC than the CNN alone
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Table 4.4: Experimental results for the first scenario (image/text matched label results).
D0: california wildfires D1: hurricane harvey D2: hurricane irma D3: hurricane maria D4:
iraq iran earthquake D5: mexico earthquake D6: srilanka floods

D0 D1 D2 D3 D4 D5 D6 Avg
Text only (RNN) Acc 75.15 79.86 78.70 76.20 74.25 72.73 90.67 78.22

AUC 71.51 83.47 81.38 84.33 66.65 72.90 92.21 78.92
F1 60.45 73.96 70.92 74.81 55.63 64.57 87.68 69.71

Image only (CNN) Acc 76.68 76.60 78.65 66.75 74.80 74.19 80.48 75.45
AUC 68.72 77.93 62.41 69.46 70.53 69.03 85.55 71.95
F1 75.03 75.40 71.54 66.41 73.18 71.57 80.27 73.34

Multimodal (RNN+ CNN) Acc 78.50 79.32 74.98 74.23 76.15 76.27 84.60 77.72
(independent+average) AUC 71.93 84.22 75.53 82.37 70.25 79.38 86.04 78.53

F1 76.04 78.17 72.26 73.89 71.89 73.27 83.90 75.63
Multimodal (RNN+CNN) Acc 75.45 79.78 79.91 76.67 75.06 73.62 91.59 78.87
(concat+co-train) AUC 71.49 84.29 81.36 83.64 71.64 76.71 96.50 80.80

F1 73.20 79.20 79.07 76.59 74.13 72.92 91.85 78.13

network, while the CNN alone network has better F1-score. However, the combination of

the two networks has better performance overall. As can be seen, the average performance of

the multimodal model over all experiments/datasets has better results than both the CNN

model and RNN model. This shows that the combination of text and image information

leads to better classification labels. The concatenation+co-training multimodal model gives

the best results overall. By looking at specific datasets, we can see that the multimodal

model has better results for hurricane disasters (D1, D2, D3), as compared to the results

for the fire disaster (D0). The reason for better performance might be the fact that the

hurricane datasets are larger and enable better learning of the models. Based on the results in

Table 4, we can conclude that the proposed multimodal model can improve the classification

performance for the matched label scenario. However, this scenario is not very useful from

a practical point of view, as we don’t know if the text and image labels will match when we

try to use this model for an ongoing disaster.

The experimental results for the second scenario are shown in Table 4.5 and Table 4.6 for

text labels and image labels, respectively. As can be seen in Table 4.5, for text labels, the

average multimodal model has better overall F1-score than the RNN alone model. However,

the AUC for the average multimodal model is overall worse than that of the RNN alone
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Table 4.5: Text label results. D0: california wildfires D1: hurricane harvey D2: hurricane
irma D3: hurricane maria D4: iraq iran earthquake D5: mexico earthquake D6: srilanka
floods

D0 D1 D2 D3 D4 D5 D6 Avg
Text only (RNN) Acc 75.90 79.17 78.81 70.41 76.23 74.90 89.84 77.89

AUC 66.08 77.60 73.60 75.74 70.47 71.17 96.07 75.82
F1 57.82 68.33 62.19 66.83 55.64 65.23 90.19 66.60

Multimodal (RNN+ CNN) Acc 77.62 76.34 76.15 67.11 81.11 74.91 78.26 75.93
(independent+average) AUC 67.35 71.65 63.49 69.47 67.98 73.11 83.47 70.93

F1 74.29 73.48 72.61 65.05 77.04 71.47 78.44 73.20
Multimodal (RNN+ CNN) Acc 73.65 77.86 79.69 71.56 80.89 75.35 89.86 78.41
(concatenate+co-train) AUC 68.59 77.79 73.90 76.81 72.28 72.95 95.99 76.90

F1 71.45 76.42 77.18 70.72 79.57 74.77 89.97 77.15

Table 4.6: Image label results. D0: california wildfires D1: hurricane harvey D2: hurricane
irma D3: hurricane maria D4: iraq iran earthquake D5: mexico earthquake D6: srilanka
floods

D0 D1 D2 D3 D4 D5 D6 Avg
Image only (CNN) Acc 76.68 76.83 78.65 64.33 83.33 74.19 81.20 76.46

AUC 68.72 70.79 62.41 65.11 76.30 69.03 85.47 71.72
F1 75.03 73.14 71.54 60.18 80.43 71.57 80.93 73.26

Multimodal (RNN+ CNN) Acc 77.13 77.08 77.74 65.58 81.33 75.81 78.40 76.15
(independent+average) AUC 67.41 71.96 65.30 66.40 70.13 72.31 84.76 71.18

F1 73.92 73.15 73.75 62.28 75.25 72.00 78.27 72.66
Multimodal (RNN+ CNN) Acc 75.11 78.42 80.38 71.42 80.00 73.39 92.00 78.67
(concatenate+co-train) AUC 70.11 77.92 72.24 77.35 72.28 75.32 96.09 77.33

F1 74.09 77.68 78.38 69.63 78.01 73.34 92.06 77.60
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model. The concatenation+co-train multimodal model has AUC performance better than

that of the RNN alone model, and has much better performance in terms of the F1 Score.

The concatenation+co-train multimodal model also has better performance than the average

multimodal model overall. Considering specific datasets, the multimodal model has better

performance on hurriane datasets, earthquake datasets and comparable results on flood

datasets. As in the first scenario, this shows that our proposed model benefits from larger

datasets. Based on these results, our conclusion is that the multimodal model (based on

concatenation+co-training) has better performance than the text only model. Thus, we

suggest to use the multimodal model when predicting the labels of tweet texts.

Similar patterns can be seen in Table 4.6 for image labels. When using text to supplement

image information, the results are comparable between the image only model and the average

multi-modal model. The concatenation+co-train multimodal model has better performance

overall. Similar individual pattern can be seen here. The multimodal model benefits most

from the larger hurricane datasets. The results suggests that text can also help the prediction

of image. Therefore, the concatenation+co-train multimodal model can be used in image

classification.

We also show some text prediction examples in Table 4.7 to get insights into how the

multimodal model helps. In the first two examples, the text is informative but the RNN

model misclassifies it as not-informative. The corresponding images show a damaged church,

and a hurricane, respectively, and help the multimodal model assign the correct labels. The

text in the third example is somewhat confusing cannot be used to predict the tweet as

not informative. However, the corresponding image is clearly not informative with respect

to a disaster and helps the multimodal model correctly classify the tweet. These examples

support our conclusion that the information from an image can help the prediction of text

labels.
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Table 4.7: Text Classification Examples: the multimodal model helps improve the classifi-
cation

Text Label Informative Informative Not Informative

Text Baptist church dam-
aged by #harvey can’t
use sanctuary

A piece of a #Harvey
rain band drifts north
through Breton Sound

Hurricane Harvey Re-
lief Supply Drive...and
efforts towards IRMA

Image Label Informative Informative Not Informative

Image

RNN prediction Not Informative Not Informative Informative

Multimodal prediction Informative Informative Not Informative

4.5 Conclusions

In this paper, we proposes a multi-modal model which combines text and image information

through the means of RNN and CNN models. We evaluate different scenarios and identify

a scenario where it is useful to use the multi-modal model as opposed to specific modality

models. Specifically, we show that our proposed multimodal model can be used to improve

the text classification by adding the image information and improve the image classification

by adding the text information. The future work for this study will be focused on explore

different text/image classification models to improve the multi-modal model architecture.

We will evaluate our approach on disaster-specific data (e.g., learn a model for hurricanes,

another model for earthquakes, etc.) and also on cross-disaster data (e.g., learn a model on

hurricanes and use it on a new type of disaster), so that we can get more insights into the

model performance. We will also evaluate our proposed models on other datasets, including
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multi-class datasets for predicting situational awareness categories.
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Chapter 5

Localizing and Quantifying Damage in

Social Media Images

5.1 Introduction

Fast detection of damaged areas after an emergency event can inform responders and aid

agencies, support logistics involved in relief operations, accelerate real-time response, and

guide the allocation of resources. Most of the existing studies on detecting and assessing

disaster damage rely heavily on macro-level images, such as remote sensing imageries [96, 97],

[98], or imageries transmitted by unmanned aerial vehicles [99]. Collection and analysis of

macro-level images require costly resources, including expensive equipment, complex data

processing tools, and also good weather conditions. To benefit the response teams, the

macro-level images have to be collected and analyzed very fast, which is not always possible

with traditional collection and analysis methods.

With the growth of social media platforms in recent years, real-time disaster-related

information is readily available, in the form of network activity (e.g., number of active

users, number of messages posted), text (e.g., tweets), and images posted by eyewitnesses of

disasters on platforms such as Twitter, Facebook, Instagram or Flicker. Many studies have

shown the utility of social media information for disaster management and response teams.
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For example, the analysis of text data (e.g., tweets from Twitter) has received significant

attention in recent works [100], [80], [48], [64], [101]. However, social media images, while

very informative [58], have not been extensively used to aid disaster response, primarily due

to the complexity of information extraction from (noisy) images, as compared to information

extraction from text.

By contrast with macro-level images, social media images have higher “resolution”, in

the sense that they can provide detailed on-site information from the perspective of the

eyewitnesses of the disaster [58]. Thus, social media images can serve as an ancillary yet rich

source of visual information in disaster damage assessment. Pioneering works with focus on

the utility of social media images in disaster response include [86], [18], where the goal is to

use convolutional neural networks (CNN) to assess the severity of the damage (specifically,

to classify social media images based on the degree of the damage as: severe, mild, and

none).

Due to ground-breaking developments in computer vision, many image analysis tasks

have become possible. Disaster management and response teams can benefit from novel

image analyses that can produce quantitative assessments of damage, and inform the relief

operations with respect to priority areas. In this context, it would be useful to locate

damage areas in social media images (when images contain damage), and subsequently use

the identified damage areas to assess the damage severity on a continuous scale. Possible

approaches for localizing damage in social media images include object detection [102, 103]

and image segmentation [104]. Object detection can be conducted by classifying some specific

regions in an image as containing damage or not. For example, Cha et al. [102] used a

convolution neural network (CNN) to classify small image regions (with 256 × 256 pixel

resolutions) as containing concrete crack damage or not. Maeda et al. [103] used a state-

of-the-art object detection approach, called Single Shot MultiBox Detector (SSD) [105], to

detect several types of road damage. Image segmentation has been used in [104] to detect

building damage based on high resolution aerial images.

Regardless of the method used, object detection or image segmentation, existing ap-

proaches for localizing damage first identify objects (i.e., potential damage regions) and sub-
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sequently classify the objects as damage (sometimes, severe or mild) or no damage. Thus,

there is a conceptual mismatch in the way existing approaches are used, given that damage

is generally regarded as a high-level concept rather than a well-defined object. By first iden-

tifying objects and then assigning discrete hard-labels to them, existing approaches produce

a clear-cut boundary for the damaged areas, although a smooth boundary would be more

appropriate.

Contributions: Inspired by the technique called Class Activation Mapping (CAM) [42],

we propose a novel approach, called Damage Detection Map (DDM), to generate a smooth

damage heatmap for an image. Our approach adopts the gradient-weighted CAM (Grad-

CAM) [106] technique to localize the area in an image which contributes to the damage

class. Based on the damage heatmap, we also propose a new quantitative measure, called

Damage Assessment Value (DAV), to quantify the severity of damage on a continuous scale.

One advantage of the proposed approach is that it only requires annotators to label images

as having damage or no damage, as opposed to requiring annotators to localize the damage.

Thus, our approach makes the disaster damage localization possible, and extends the use of

social media images in disaster assessment. We also evaluate the usefulness of the proposed

approach for localizing and quantifying different types of infrastructure damage, including

building damage, bridge damage and road damage. Furthermore, in addition to Grad-CAM,

we also use its Grad-CAM++ extension [43], which can identify multiple occurrences of a

class object, and compare Grad-CAM and Grad-CAM++ in the context of damage local-

ization and quantification. Extensive experimental results show that our approach makes

the disaster infrastructure damage localization possible, and thus extends the use of social

media images in disaster assessment.

The rest of this paper is organized as follows: we describe the proposed approaches for

generating DDM heatmaps, and computing DAV scores in Section 5.2. We describe the

experimental setup and results in Section 5.3. We discuss related work in Section 5.5, and

conclude the paper in Section 5.6.
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Figure 5.1: Overview of the proposed approach.

5.2 Proposed Approach

Our approach generates a Damage Detection Map, which visualizes the damage area for

a given image, and a score DAV, which quantifies the severity of the damage. The main

components of our approach, shown in Fig. 5.1, are the following: 1) a CNN that classifies

images into two classes, damage or no damage; 2) a class activation mapping, which generates

the DDM map by weighting the last convolutional layer of the CNN model; 3) finally, the

damage severity score computed by averaging the values in the map. The details for the

three components of our approach are provided in what follows.

5.2.1 Convolutional Neural Networks

Convolutional neural networks [107] have been used successfully for many image analysis

tasks [9, 8]. The ImageNet annual competition (where a dataset with 1.2 million images

in 1000 categories is provided to participants) has led to several popular architectures, in-

cluding AlexNet [20], VGG19 [21], ResNet [22] and Inception [108]. We choose VGG19 as

the architecture for our CNN model, as VGG19 has good classification accuracy and it is

relatively simpler compared to ResNet and Inception. Furthermore, the pre-trained model

58



are available for VGG19 and it is easy to fine tune them for different classification problems.

VGG19 [21] contains 16 convolutional layers (with 5 pooling layers) and 3 fully connected

layers. Each convolution layer is equipped with a non-linear ReLU activation [20]. The

convolutional layers can be seen as feature extraction layers, where each successive layer

detects predictive image features (i.e., image fragments that correspond to edges, corners,

textures, etc.) at a more abstract level than the previous layer.

As can be seen in Fig. 5.1, the size of the input to the convolutional layers is reduced by a

factor of 2 through max-pooling layers, but not all convolution layers are followed by a max-

pooling layer. After every max-pooling layer, the width of the convolution layer (i.e., number

of filters used) increases by a factor of 2. After the last max-pooling layer, there are two

fully connected layers with dimension 4096, and another fully connected layer whose neurons

correspond to the categories to be assigned to the input image. The last layer of the standard

VGG19 model has dimension 1000 because VGG19 was originally trained on a dataset with

1000 categories. However, as we are interested in using VGG19 to classify images in two

categories, damage and no damage, we change the dimension of the last fully connected

layer from 1000 to 2. Overall, the model includes more than 130 million parameters, and it

takes a significant amount of time (and a large number of images) to train it accurately [21].

However, the model parameters are highly transferable to other image classification problems

[109]. Thus, to avoid the need for a large number of images, we initialize our model with the

pre-trained VGG19 model (except for the last fully connected layer), and fine tune it using

disaster-related images. More specifically, given a training image x with label y represented

as a one-hot vector (e.g., if the label is damage, then y = [1, 0], otherwise y = [0, 1]), all the

parameters θ will be updated by:

θ ←− θ − µ∂L(y,CNN(x))

∂θ
, (5.1)

where µ is learning rate, L is the cross-entropy loss, and CNN(x) is the output of the CNN

given input x.
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5.2.2 Damage Detection Map

Our proposed Damage Detection Map (DDM) is inspired by the Gradient-weighted Class

Activation Mapping (GCAM) [106]. In a general classification problem, for an input image

and a trained CNN model, GCAM makes use of the gradients of a target category to compute

a category-specific weight for each feature map of a convolution layer. The weights are used

to aggregate the feature maps of the final convolutional layer, under the assumption that the

last level captures the best trade-off between high-level semantic features and spatial infor-

mation. The resulting maps can be used to identify the discriminative regions for the target

category (which explain the CNN model’s prediction), and implicitly to localize the category

in the input image. Thus, GCAM can be seen as a weakly supervised approach, which can

localize a category in an image based only on global image labels [106]. Furthermore, the

GCAM localized categories or objects (shown using heatmaps) have soft boundaries, and

can be used to gain both insight and trust into the model. This makes GCAM particularly

attractive for the problem of localizing damage in disaster images, assuming that only coarse

labeling of images as damage or not damage is available for training. The heatmaps showing

categories of interest using soft-boundaries are very appropriate for localizing damage, as

damage boundaries are inherently soft. Moreover, the heatmaps that explain the model’s

predictions can be used to gain the trust of disaster management teams, and thus increase

the usability of social media images in disaster response and recovery.

Given the above introduction to GCAM and motivation for use in the context of disaster

damage localization, we formally describe the GCAM approach [106] in remaining of this

subsection. Consider a 14× 14 matrix S, such that

si,j = ReLU(
∑
k

wkf
k
(i,j)) (5.2)

where wk is a gradient-based weight parameter (defined in Equation 5.3) corresponding to

each feature map fk in the last convolutional layer (of dimension 14 × 14 × 512), and fk(i,j)

represents the value at location (i, j) in the k-th feature map, for i = 1, . . . , 14, j = 1, . . . , 14,
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k = 1, . . . , 512. The ReLU function is used to cancel the effect of the negative values, while

emphasizing the effect of the positive values. Given an input image x and the output of the

CNN for the damage class yD (just before the softmax function is applied), the weights wk

are determined as the sum of the gradients of output yD with respect to fk(i,j), for all i, j.

Specifically:

wk =
1

14× 14

∑
i,j

∂yD
∂fk(i,j)

(5.3)

The feature maps fk in Equations (5.3) and (5.2) are in the last convolutional layer, as this

layer generally shows a good trade-off between high-level features and spatial information

in the original image. Our final goal is to localize damage in disaster images, in other

words to find regions that are discriminative for the damage class. Intuitively, the gradient

with respect to a neuron in the final convolutional layer represents the contribution of the

neuron to the class label. The procedure described above produces a 14× 14 matrix S (and

correspondingly a 14 × 14 image). Using an interpolation technique, we further resize S to

SC to match the original dimensions of the image. The heatmap showing the SC values is

the final Damage Detection Map.

Chattopadhyay et al. [43] identify two main drawbacks of the Grad-Cam approach,

and proposed an extension, called Grad-CAM++, to address the Grad-CAM drawbacks.

First, they observed that Grad-CAM does not properly identify/localize all occurrences of a

class object. Furthermore, Grad-CAM may not always localize the whole class object, but

only parts of it. Chattopadhyay et al. [43] noted that if a target class object has multiple

occurrences in an image, marked by footprints with different orientations and sizes, then only

the object occurrences with larger footprint will be visible in the heatmaps produced by Grad-

CAM. To alleviate this problem, they proposed Grad-CAM++, which assigns weighting

coefficients αki,j to the pixel (i, j) gradients for target class y and feature map k. Thus, in

Grad-CAM++ Equation (5.3) becomes:

w′k =
∑
i,j

αki,jReLU

(
∂y

∂fk(i,j)

)
(5.4)
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The effect of the ReLU function in Equation (5.4) is similar to the effect of ReLU in

Equation (5.2): it helps emphasize the positive values that contribute to the importance

(i.e., weight) of a particular feature map. Chattopadhyay et al. [43] derive closed-form

formulas for calculating the pixel-wise coefficients αki,j for a feature map fk and a target

class y. Replacing wk with w′k in Equation (5.2) leads to higher weights for features maps

corresponding to target objects with a smaller footprint in the original images, and thus

allows for multiple occurrences of the object to be identified (and similarly allows for the

localization of an object in its entirety).

We will experiment with both Grad-CAM and Grad-CAM++ approaches to identify and

localize damage in disaster images.

5.2.3 Measuring the damage severity

When a disaster occurs, eyewitnesses of the disaster will produce a huge number of images

in a short period of time. An important goal of disaster assessment is to extract and con-

cisely summarize the information contained in the images posted by eyewitnesses. To meet

this demand, we propose to use a damage assessment value (DAV) derived from the DDM

heatmap to represent the damage severity for each image.

The disaster damage map uses numerical values to measure the intensity of each pixel of

the image (the higher the intensity, the more severe the damage), and can be represented as a

heatmap. We take the average over all the numerical values in the heatmap of a given image,

and use the resulting value as an overall score for the severity of the damage. Formally, we

define the damage assessment value (DAV) as:

DAV =
1

14× 14

∑
i,j

si,j (5.5)

where si,j are the elements of the S matrix defined in Equation (5.2), and 14 × 14 is the

dimension of the matrix S.
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a (1) Damage b (2) Damage c (3) Damage d (4) Damage

e (1) DAV = 0.413 f (2) DAV = 0.453 g (3) DAV = 0.423 h (4) DAV = 0.385

i (5) No damage j (6) No damage k (7) No damage l (8) No damage

m (5) DAV = 0.01 n (6) DAV = 0.028 o (7) DAV = 0.0 p (8) DAV = 0.033

Figure 5.2: Examples of images in our dataset, and their corresponding DDM heatmaps and
DAV scores. The first row shows examples of images in the damage class, followed by their
corresponding DDM heatmaps and the DAV scores. Similarly, the third row shows examples
of images in the no damage class, followed by their corresponding DDM heatmaps and DAV
scores.
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Table 5.1: Social media image dataset consisting of images from four disaster events. Images
are labeled as Severe, Mild, or None. The number of images in each class, and the total
number of images for each disaster are shown.

Disaster Severe Mild None Total
Nepal Earthquake 5303 1767 11226 18296
Ecuador Earthquake 785 83 886 1754
Ruby Typhoon 76 325 463 864
Matthew Hurricane 97 89 130 316

5.3 Experimental Results I

We perform a series of experiments to evaluate the performance of our proposed method. The

experiments are designed to answer the following questions: (i) can the Damage Detection

Map accurately locate the damage areas, (ii) can the DAV score provide a reliable measure

for damage severity.

5.3.1 Experimental Setting

Datasets

We used two datasets in our experiments. The first dataset is assembled using Google image

search engine. Specifically, we performed two searches: first, we used ‘nepal’, ‘building’ and

‘damage’ as keywords, and crawled 308 damage images from the result; second, we used

‘nepal’ and ‘city’ as keywords, and crawled 311 no damage images. The keyword ‘nepal’ was

used in both searches to ensure that the two sets of images have similar scene, while the

keywords ‘building damage’ and ‘city’ were used to bias the search towards damage and no

damage images, respectively. We show some sample damage and no damage images from the

Google dataset in Fig. 5.2 in the first and third rows, respectively.

The second dataset used in our evaluation was previously used in [18], and consists of

social media images posted during four different disaster events: Nepal Earthquake, Ecuador

Earthquake, Ruby Typhoon, and Matthew Hurricane. For each disaster, the dataset contains

images in three categories, representing three levels of damage: severe, mild, and none. Table

5.1 provides the class distribution for each disaster dataset.
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In our experiments, each dataset is randomly split into a training set (80%) and a test

set (20%). We will use the proposed approach to learn a CNN that discriminates between

damage (including severe and mild) and no damage images, while also localizing the damage

and identifying image features discriminative for the damage class.

Hyper-parameters

We used TensorFlow’s GradientDescentOptimizer to train the model using mini-batch gra-

dient descent on a GeForce GTX 1070 graphic card. Based on preliminary experimentation

with the Ecuador Earthquake and Ruby Typhoon datasets, we chose to use a learning rate

of 0.001 and a batch size of 32 images in all our experiments. Furthermore, we used the

dropout technique with a rate of 0.5 to prevent overfitting. The code for the VGG19 model

was adapted from https://github.com/machrisaa/tensorflow-vgg.

5.3.2 Damage Detection Map Evaluation

We first use the Google dataset, where the damage images are easier to discriminate from the

no damage images, to evaluate the Damage Detection Map (DDM) approach (intuitively the

better the CNN classifier, the better the DDM map). Specifically, we train a CNN model on

the Google dataset as described in Section 5.2.1. The training accuracy of the CNN model

is 100%, and the test accuracy is 95.5%. Subsequently, we compute the DDM heatmaps as

described in Section 5.2.2. The DDM heatmaps corresponding to the sample damage and no

damage images are shown in Fig. 5.2, in the second and fourth rows, respectively. As can

be seen, the regions with high intensity DDM generally correspond to damage.

To answer our first research question, specifically to understand if the DDM can accu-

rately locate the damage areas, we will evaluate the localization capability of DDM by using

the Intersection-Over-Union (IOU) measure, which is frequently used to evaluate object

detection techniques [110]. The IOU measure is defined as follows:

IOU =
Area of Overlap

Area of Union
(5.6)
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where the ‘Area of Overlap’ and ‘Area of Union’ are computed with respect to a ground

truth image, where damage is manually marked. IOU takes values in [0, 1]. If the IOU value

for a pair of GCAM damage marked image and the corresponding ground truth image is

large, then the marked damage areas in the two images are similar, and thus the GCAM

approach performs well in terms of damage localization.

We randomly select 10 images from the Google test dataset for manual annotation,

and use the annotations to evaluate damage localization using IOU scores. The scores

are computed by comparing the automatically localized damage with the manually marked

damage. As damage is not an object, heatmaps with smooth boundaries are preferable to

bounding boxes when localizing damage. However, human annotators cannot provide precise

heatmaps, unless they have professional knowledge of disaster damage, in which case their an-

notation would be very expensive. To reduce the cost, generally human annotators will sim-

ply mark the regions of an image that contain damage (resulting in a binary included/not in-

cluded representation). We used the tool LabelMe (https://github.com/wkentaro/labelme)

to mark the damage.

To compare heatmaps with images marked by annotators in terms of IOU values, we

transform the heatmaps to a binary representation as follows: we determine the maximum

value in SC and use 20% of the maximum value as a cutoff value for including a region in

the disaster damage “object” or not [42]. In other words, only the regions in DDM with

values larger than the cutoff value will be part of the localized damage. In the resulting

transformed image (as well as in the human annotated images), the damage pixels have

value 255, while no damage pixels have value 0. We show the result of the IOU evaluation

on the sample consisting of 10 Google images, by comparison with annotations from two

independent annotators A and B, in Table 5.2. To understand the difficulty of the task

of identifying damage in a picture, we also compute IOU values that show the agreement

between annotators A and B.

Conventionally, if the IOU value corresponding to a detected object (marked with a

bounding box) is larger than 0.5, the detection/localization of that object is considered to

be correct [110]. However, given that the damage is not an object but a concept, we find that
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Table 5.2: IOU for 10 Google images. Annotation A and Annotation B are provided indepen-
dently by two annotators. The image heatmaps were transformed to a binary representation
by using a threshold equal to 20% of the max value in the DDM

Image 1 2 3 4 5 6 7 8 9 10 Average

IOU
Annotation A versus DDM 0.334 0.401 0.568 0.360 0.474 0.270 0.349 0.156 0.418 0.477 0.380 ± 0.116
Annotation B versus DDM 0.444 0.623 0.633 0.473 0.583 0.445 0.258 0.440 0.616 0.658 0.517 ± 0.126
Annotation A versus B 0.677 0.541 0.744 0.681 0.695 0.546 0.673 0.237 0.621 0.689 0.610 ± 0.146

the 0.5 threshold is too strict in the context of detecting and localizing damage, especially

as the average IOU agreement between annotators is 0.610. If we consider an IOU score

of 0.4 as detection, then the GCAM-based approach detects 50% of the damage marked by

annotator A, and 90% of the damage marked by annotator B. To better understand the

results, in Fig. 5.3, we show the annotations for three sample images, specifically, image 5

for which the IOU agreement with both annotators is above 0.4, image 7 for which the IOU

agreement with both annotators is smaller than 0.4, and image 1, for which the agreement

with Annotator A is below 0.4 and the agreement with the Annotator B is above 0.4. As can

be seen, the damage areas marked based on the DDM heatmaps look accurate overall, and

in some cases better than the damage areas marked by the annotators, which confirms that

identifying damage is a subjective task, and that DDM can be useful in localizing damage

and providing visualizations that can help responders gain trust in the annotations produced

by deep learning approaches.

5.3.3 Damage Assessment Value Evaluation

We calculate the Damage Assessment Value (DAV) as described in Section 5.2.3. The DAV

values for the sample Google images in Fig. 5.2 are shown below the corresponding heatmap

images. As can be seen, images that present a more severe damage scene have higher DAV

values, while images with no damage have DAV values very close to zero.

We also use the disaster datasets shown in Table 5.1 to further evaluate the DAV values.

For each disaster, we use the corresponding training set to fine-tune the CNN model to that

specific disaster. For this purpose, we combined the original severe and mild damage classes

into a single damage class, while the original none class label is used as no damage class. We
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a (a) Original 1 b (b) DDM c (c) DDM+Threshold d (d) Annotator A e (e) Annotator B

f (a) Original 5 g (b) DDM h (c)
DDM+Threshold

i (d) Annotator A j (e) Annotator B

k (a) Original 7 l (b) DDM m (c)
DDM+Threshold

n (d) Annotator A o (e) Annotator B

Figure 5.3: Damage Detection Map (DDM) versus human annotations for images 1, 5 and 7 in
Table 5.2. (a) Original Google image; (b) DDM damage heatmap; (c) Binary representation
of the DDM computed with a threshold whose value is 20% of the max value in the DDM
heatmap; (d) Damage marked by Annotator A; (e) Damage marked by Annotator B.

used the CNN model of each disaster to produce DDM heatmaps for all test images from

that disaster. Subsequently, we used the heatmaps to generate DAV values for each test

image, and generated DAV density plots for the damage versus no damage classes, shown in

Fig. 5.5. As can be seen in the figure, the density plots show clearly differentiable patterns

between the two classes, with the damage class exhibiting higher values overall, as expected.

However, there is also overlap in terms of DAV values for damage and no damage images.

This can be partly explained by the noisiness of the dataset, and the difficulty of the task of

separating images in damage severity classes, as also noted in [18]. To illustrate this claim,

in Fig. 5.4, we show several images that seem to be mislabeled in the original dataset.
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a Mild, DAV=0.328 b None, DAV=0.307 c None, DAV=0.435 d Mild, DAV=0.375 e Severe, DAV=0.376

Figure 5.4: Examples of images mislabeled in the disaster dataset. The original image label
and the DAV score are shown.

a DAV (Nepal Earth-
quake)

b DAV (Ecuador Earth-
quake)

c DAV (Ruby Typhoon)d DAV (Matthew Hur-
ricane)

Figure 5.5: Smoothed density curves for DAV values. The no damage class is shown in blue
and the damage class is shown in red. The graphs are based on the test set of each disaster
dataset.

5.3.4 Classification using DAV values

In this section, we study the usefulness of the DAV values in classifying images into several

damage categories. Specifically, we consider the severe, mild, and none categories, as the

images in the disasters used in our study are already labeled with these categories. Using

the training data, we perform a grid-search to find two threshold values for DAV, denoted

by c1 and c2, which minimize the classification error on the training data. Using these

thresholds, we design a simple classifier as follows: test images with DAV values smaller than

c1 will be classified as none, those with DAV values in between c1 and c2 will be classified

as mild, and finally those with DAV values greater than c2 will be classified as severe. The

classification results of our simple classifier (averaged over five independent runs), together

with the average results of a three-class CNN model (trained on the corresponding training

set of each disaster in each run), are reported in Table 5.3.The classification results of the

simple classifier based on DAV are similar to those of the CNN model for Ecuador Earthquake
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Table 5.3: Classification accuracy for each disaster dataset. The first row shows the average
accuracy of our simple DAV-based classifiers (over 5 independent runs), together with stan-
dard deviation. The second row shows the average accuracy of the three-class CNN models.
The third row shows the results published in [4], which used the same datasets.

Method
Nepal
Earthquake

Ecuador
Earthquake

Ruby
Typhoon

Matthew
Hurricane

DAV 0.801±0.013 0.886±0.018 0.793±0.017 0.533±0.043
VGG19 0.851±0.003 0.901±0.013 0.852±0.018 0.603±0.151
VGG16 [4] 0.840 0.870 0.810 0.740

and Matthew Hurricane (i.e., the results are not statistically different based on a t-test with

p ≤ 0.05). While the CNN accuracy looks better overall, the results indicate that DAV

can capture severity damage (on a continuous scale), and it can help produce simple and

interpretable classifiers.

5.4 Experimental Results II

1

5.4.1 Experimental Setup

We perform a series of experiments to evaluate the performance of our proposed method.

The experiments are designed to answer the following questions:

1. Can the Damage Detection Map accurately locate the damage areas?

2. What type of damage can be localized more accurately?

3. Can the DAV scores provide a reliable measure for damage severity?

4. Among two-class (damage or no-damage), four-class (building-damage, bridge-damage,

road-damage, or no-damage) or six-class (building-damage, no-building-damage, bridge-

1This is part of a post-peer-review, pre-copyedit version of an article published in Social Network Analysis
and Mining. The final authenticated version is available online at: http://dx.doi.org/10.1007/s13278-019-
0588-4
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damage, no-bridge-damage, road-damage, or no-road-damage) models, what model

leads to better results overall?

5. Between Grad-CAM and Grad-CAM++, which approach is better?

Data Description

The main dataset we used in this paper was originally published in [18] and it is available

from http://crisisnlp.qcri.org. The dataset was assembled from Google by using search

queries such as building-damage, bridge-damage, road-damage. In addition to images in one

of these three categories, the dataset contains images labeled as no-damage. The numbers

of images in the building-damage, bridge-damage, road-damage and no-damage categories

are 903, 813, 826, 463, respectively. From the original dataset, we manually filtered out

images that did not contain buildings, bridges or roads, and also noisy/mis-labeled images.

Furthermore, we manually classified the remaining no-damage images as no-building-damage,

no-bridge-damage and no-road-damage, and used Google search to crawl more images in

these specific no-damage categories. Finally, as we aim to localize damage in images, we

manually marked the damage area in each damage image. As damage is not an object,

heatmaps with smooth boundaries are preferable to bounding boxes when localizing damage.

However, human annotators cannot provide precise heatmaps, unless they have professional

knowledge of disaster damage, in which case their annotation would be very expensive. To

reduce the cost, generally human annotators will simply mark the regions of an image that

contain damage (resulting in a binary included/not included representation). We used the

tool LabelMe, available from http://labelme.csail.mit.edu, to mark the damage. The

statistics about the final dataset used are shown in Table 5.4. Sample images in the damage

categories, together with the ground-truth localization annotations, are shown in Fig. 5.6.

We will refer to this dataset as Google dataset in what follows.

We randomly split the Google dataset into training (80%) and test (20%) subsets. The

VGG19 models were fine-tuned on the training subset, and the evaluation was performed on

the test subset.
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Category Bridge Building Road Total
Damage 347 709 525 1581
No-Damage 731 510 497 1738
Total 1078 1219 1022 3319

Table 5.4: Statistics about the Google damage dataset, which contains images in the following
categories: bridge-damage, no-bridge-damage, building-damage, no-building-damage, road-
damage, and no-road-damage

Severity 0 0.25 0.5 0.75 1 Total
Damage 46 15 47 86 56 250

Table 5.5: Statistics about the Building Damage Severity dataset, which contains building
images in the following categories: no-damage (0), slight-damage (0.25), moderate-damage
(0.5), heavy-damage (0.75), and total-destruction (1)

To evaluate the ability of the DAV scores to capture the severity of the damage in an

image, we used the dataset published in [111]. This dataset contains images with building

damage caused by natural disasters. Each image was manually labeled using one of the

following categories, which are indicative of the degree of damage: no-damage, slight-damage,

moderate-damage, heavy-damage, and total-destruction. Each category is associated with a

numeric value: no-damage ↔ 0, slight-damage ↔ 0.25, moderate-damage ↔ 0.5, heavy-

damage↔ 0.75, total-destruction ↔ 1. The statistics about the final dataset used are shown

in Table 5.5. Sample images with different degrees of severity, are shown in Fig. 5.7. We

will refer to this dataset as Building Damage Severity dataset in what follows.

VGG19 Models Trained

We trained two-class, four-class and six-class VGG19 models. There are three two-class

models trained to discriminate between damage and no-damage images, specifically, building-

damage versus no-building-damage, bridge-damage versus no-bridge-damage, and road-damage

versus no-roda-damage, respectively. The four-class model was trained to discriminate be-

tween road-damage, building-damage, bridge-damage and no-damage images. Finally, the

six-class model was trained to discriminate between building-damage, no-building-damage,

bridge-damage, no-bridge-damage, road-damage, and no-road-damage.
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a (a) Original building-damage images

b (b) Annotated building-damage images

c (c) Original bridge-damage images

d (d) Annotated bridge-damage images

e (e) Original road-damage images

f (f) Annotated road-damage images

Figure 5.6: Sample images together with their corresponding damage localization annotation
for building-damage, bridge-damage and road-damage, respectively.
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a Slight-damage
(0.25)

b Moderate-damage
(0.5)

c Heavy-damage
(0.75)

d Total-destruction
(1)

Figure 5.7: Sample images from the Building Damage Severity dataset, together with their
severity annotations

Hyper-parameters

We used TensorFlow’s GradientDescentOptimizer to train the model using mini-batch gra-

dient descent on a GeForce GTX 1070 graphic card. Based on preliminary experimentation,

we chose to use a learning rate of 0.001 and a batch size of 32 images in all our experi-

ments. Furthermore, we used the dropout technique with a rate of 0.5 to prevent overfit-

ting. The code for the VGG19 model was adapted from https://github.com/machrisaa/

tensorflow-vgg.

Evaluation Metrics

We used several metrics to evaluate the performance of the proposed approaches on the test

data. First, we evaluated the performance of the VGG19 models using the classification

accuracy (by comparing the predicted image labels with the ground truth labels). The

ability of the Grad-CAM and Grad-CAM++ approaches to produce DDM heatmaps that

accurately localize the damage was evaluated using the average intersection-over-union (IoU)

metric [110] over all correctly classified images.

To compare heatmaps with images where damage is manually marked in terms of IOU

values, we transform the heatmaps to a binary representation as follows: we determine the

maximum value in SC and use 20% of the maximum value as a cutoff value for including

a region in the disaster damage “object” or not [42]. In other words, only the regions in

DDM with values larger than the cutoff value will be part of the localized damage. In the
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a Original Image b 6c,GCAM,
0.4729

c
4c,GCAM,0.4906

d
2c,GCAM,0.4321

e Manual Annota-
tion

f
6c,GCAM,binary

g
4c,GCAM,binary

h
2c,GCAM,binary

i Original Image j
6c,GCAM,0.5936

k
4c,GCAM,0.6164

l 2c,CAM,0.4189

m Manual Anno-
tation

n
6c,GCAM,binary

o
4c,GCAM,binary

p
2c,GCAM,binary

q Original Image r
6c,GCAM,0.3941

s
4c,GCAM,0.4034

t
2c,GCAM,0.3684

u Manual Annota-
tion

v
6c,GCAM,binary

w
4c,GCAM,binary

x
2c,GCAM,binary

Figure 5.8: Visualization of Damage Detection Maps for a building image (top two rows), a
bridge image (middle two rows) and a road image (last two rows). The first row corresponding
to an image shows the original image and the DDM maps produced with a six-class (6c),
four-class (4c) and two-class (2c) VGG19 model, respectively. The Grad-CAM (GCAM)
is used with all models. For each model, the IoU value of the image is also shown. The
second row corresponding to an image shows the manual damage annotation of the image,
together with the binary maps obtained from the DDM heatmaps (the binary maps are used
to calculate the IoU values).
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resulting transformed image (as well as in the human annotated images), the damage pixels

have value 255, while no damage pixels have value 0.

To evaluate the ability of the proposed approaches to properly detect “damage ar-

eas/objects” we consider different IoU detection thresholds k (i.e., an object is detected

if its IoU with the ground object is greater than the threshold k), and calculate the average

precision over the detected objects. This metric is denoted as AP@k.

Finally, the ability of the DAV scores to capture the severity of the damage was evaluated

using the root mean square error (RMSE).

5.4.2 Experimental Results and Discussion

In this section, we show the results of the experiments for evaluating the damage detection

maps produced by our approach on the bridge. building and road categories, as well as the

damage assessment value computed based on the damage detection maps. Finally, we use

the results of the experiments to answer the research questions that we raised in Section

5.4.1.

Damage Detection Map Evaluation

The results of the experiments on the Google test dataset are shown in Table 5.6. The table

first shows the accuracy of the VGG19 models used on the test data, as intuitively, a more

accurate model will lead to a better DDM map. As can be seen in the table, the two-class

VGG19 models are more accurate than the four-class and six-class models. The two-class

model that discriminates between road-damage and no-road-damage is the most accurate

among the two-class models, while the six-class model has the lowest accuracy overall. The

two-class road model is also the best in terms of the average IoU regardless of the CAM

approach used to construct the DDM heatmap, but the six-class model is slightly better

than the four-class model. The two-class bridge model has worse IoU values as compared

to the other models. We should also note that the standard deviation for all IoU values

is relatively high, which means that some some images have high IoU, while others have
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low IoU. A sample image in each category, together with its manual annotation, the DDM

heatmaps obtained with different models, and the corresponding binary maps are shown in

Figure 5.8. As can be seen, the heatmaps produced by different models are not very different,

but they lead to different binary maps and consequently different IoU values. Finally, it can

be seen that overall the Grad-CAM approach leads to better average IoU as compared to

the Grad-CAM++ approach, regardless of the model used.

In addition to accuracy and average IoU, Table 5.6 also shows the average precision

for each category of interest (i.e., bridge, building, and road) at different IoU thresholds k

(specifically, k = 0.5, 0.4, and 0.3) with different VGG19 models (six-class, four-class and

two-class) and different CAM approaches (Grad-CAM and Grad-CAM++). For a particular

VGG19 model, one of the two CAM approaches is used to create a heatmap. Subsequently, a

“damage object” is detected by taking a threshold on the values in the heatmap, as explained

in Section 5.4.1. The IoU between the detected object and the corresponding ground truth

object is computed. If the Iou is greater than the threshold k, the object is considered to

be a true positive, otherwise it is considered to be a false positive. This information is used

to compute AP@k. Intuitively, a higher threshold k may lead to some objects not being

detected, while a lower threshold k may lead to false positives. As can be seen in Table 5.6,

when using the six-class and four-class models, for the bridge category the AP@0.4 is worse

than then AP@0.5 and also worse than AP@0.3, while for the other two categories, the

values increase as k decreases. A similar pattern is consistently observed for the two-class

models, where the performance increases as k decreases. It can also be seen that Grad-

CAM generally gives better results than Grad-CAM++. When comparing the models for

a particular category, we can see that the two-class road model is competitive in terms of

average precision for the road category, although the four-class model perform well on this

category as well. However, the six-class model is the best overall in terms of average precision

for the bridge and building categories.
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Damage Assessment Value Evaluation

To evaluate the ability of the DAV scores to capture damage severity, we used the two-class

VGG19 model fine-tuned to discriminate between building-damage and no-building-damage

and tested it on the Building Damage Severity dataset. More specifically, we first used the

two-class VGG19 building model and Grad-CAM/Grad-CAM++ to create a re-scaled DDM

heatmap SC for each test image in the Building Damage Severity dataset. Subsequently, we

used the heatmap SC to compute a DAV score for each test image. Finally, we computed

the RMSE over the set of images in the Building Damage Severity dataset, by comparing the

DAV score of an image with the numeric annotation of the image (which captures damage

severity). The resulting RMSE value for the Grad-CAM approach is 0.2538, while the RMSE

value for the Grad-CAM++ approach is 0.4189, a result which further confirms the previous

finding that Grad-CAM performs better than Grad-CAM++ in terms of damage detection

and quantification.

The DAV values for the sample images in Fig. 5.7 are shown below the corresponding

heatmap images in Fig. 5.9. As can be seen, images that present a more severe damage scene

have higher DAV values, while images with less damage have smaller DAV scores. Thus, the

DAV scores accurately reflect the degree of damage.

Discussion of the Results

Given the results presented above, in this subsection we answer the research questions that

we raised in Section 5.4.1.

1. Can the Damage Detection Map accurately locate the damage areas? Conventionally,

if the IoU value corresponding to a detected object (marked with a bounding box) is

larger than 0.5, the detection/localization of that object is considered to be correct

[110]. However, given that the damage is not an object but a concept, we find that

the 0.5 threshold is too strict in the context of detecting and localizing damage. To

explain this, we got an estimate for the average IoU agreement between two human

annotators. Specifically, we had a second annotator mark damage for a random subset
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six-class four-class two-class two-class two-class
all all bridge building road

Accuracy 0.8359 0.8700 0.8714 0.9198 0.9550

Avg. IoU (Grad-CAM) 0.3299 0.3132 0.2477 0.3361 0.4184
Std. IoU (Grad-CAM) 0.1758 0.1837 0.1575 0.1971 0.1745
Avg. IoU (Grad-CAM++) 0.3148 0.3054 0.2345 0.3366 0.3836
Std. IoU (Grad-CAM++) 0.1825 0.1876 0.1565 0.1926 0.1644

AP@0.5 bridge (Grad-CAM) 0.3167 0.2935 0.2803 N/A N/A
AP@0.5 building (Grad-CAM) 0.5221 0.3493 N/A 0.4424 N/A
AP@0.5 road (Grad-CAM) 0.2454 0.3049 N/A N/A 0.2718
AP@0.5 bridge (Grad-CAM++) 0.3167 0.2934 0.2038 N/A N/A
AP@0.5 building (Grad-CAM++) 0.5156 0.3560 N/A 0.4559 N/A
AP@0.5 road (Grad-CAM++) 0.2416 0.2516 N/A N/A 0.2725

AP@0.4 bridge (Grad-CAM) 0.5738 0.5526 0.2006 N/A N/A
AP@0.4 building (Grad-CAM) 0.5425 0.5159 N/A 0.4729 N/A
AP@0.4 road (Grad-CAM) 0.4172 0.4678 N/A N/A 0.4547
AP@0.4 bridge (Grad-CAM++) 0.2349 0.2934 0.2146 N/A N/A
AP@0.4 building (Grad-CAM++) 0.5420 0.5160 N/A 0.4943 N/A
AP@0.4 road (Grad-CAM++) 0.3749 0.4757 N/A N/A 0.3952

AP@0.3 bridge (Grad-CAM) 0.4537 0.4270 0.5005 N/A N/A
AP@0.3 building (Grad-CAM) 0.7267 0.7098 N/A 0.6049 N/A
AP@0.3 road (Grad-CAM) 0.5881 0.6998 N/A N/A 0.7222
AP@0.3 bridge (Grad-CAM++) 0.4537 0.4270 0.4455 N/A N/A
AP@0.3 building (Grad-CAM++) 0.7178 0.6639 N/A 0.6113 N/A
AP@0.3 road (Grad-CAM++) 0.5589 0.6558 N/A N/A 0.6918

Table 5.6: Experimental results on the Google test dataset
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a Slight-damage
(0.25)

b Moderate-damage
(0.5)

c Heavy-damage
(0.75)

d Total-destruction
(1)

e DAV=0.33 f DAV=0.48 g DAV=0.68 h DAV=0.82

Figure 5.9: Heatmaps (top row) and the corresponding binary maps (bottom row) for the
sample images from the Building Damage Severity dataset, together with their severity
annotations (shown below the top images) and the DAV scores (shown below the bottom
images). The DAV scores properly reflect the severity of the damage.

of the images in our dataset (precisely, 768 images). The average IoU between the

two manual annotations was 0.5356, with standard deviation 0.2323 (larger than the

standard deviation obtained with the automated approaches). Furthermore, recall that

that the average precision for different categories was generally best for IoU threshold

k = 0.3. This result, together with the relatively low agreement between annotators

and the large standard deviation, suggests that the average IoU obtained using the

automated approaches, which is as high as 0.4184 for road damage, is an indication

that the damage detection map does a reasonable job at identifying infrastructure

damage. This can also be seen from the samples images in Figure 5.10, which shows

both images with DDMs that produce high IoU values, and images with DDMs that

produce low IoU values. As can be seen, for some of the images with low IoU values

(e.g., the building image), one can argue that the annotations may not best capture

the damage area in the first place, while for others (e.g., the bridge image), the model

fails to annotate the most relevant damage area.
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a Manual Annotation b Manual Annotation c Manual Annotation

d DDM, IoU=0.6774 e DDM, IoU=0.6103 f DDM, IoU=0.5198

g Manual Annotation h Manual Annotation i Manual Annotation

j DDM, IoU=0.1732 k DDM, IoU=0.1663 l DDM, IoU=0.1890

Figure 5.10: Examples of images with DDM heatmaps that lead to high/low IoU values.
The first two rows show images with high IoU values, while the last two rows show images
with low IoU values.

2. What type of damage can be localized more accurately? The two-class VGG19 road

model is the most accurate and produces the highest average IoU values. Furthermore,

a high average precision value (specifically, 0.722) is obtained for the road category

when using the same two-class VGG19 model and an IoU threshold of 0.3. However,

the highest average precision value overall is 0.7267, and it is obtained for the building

category with the six-class VGG19 model. Thus, we can say that both road damage

and building damage can be detected with high accuracy. For the bridge category, the

highest average precision value is 0.5738 and it is also obtained with the six-class VGG
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model. One reason for bridge damage being harder to localize may come from the fact

that bridge damage can be mistaken for road damage or building damage, as has been

observed when analyzing the original labels of the images in the Google dataset.

3. Can the DAV scores provide a reliable measure for damage severity? Our results show

that the RMSE between the DAV scores produced by our approach and the ground

truth damage severity annotations is 0.2538, when the Grad-CAM approach is used

to generate the DDM heatmaps and subsequent DAV scores. Given that the damage

severity is in the range [0,1], we find this result to be very promising, in other words,

we can claim that the DAV score provide a good measure for damage severity, although

the reliability can be further improved.

4. Among two-class, four-class, or six-class models, what model leads to better results

overall? Overall, the six-class VGG19 model together with Grad-CAM works best for

our set of images, although the four-class model is also competitive, and the two-class

VGG19 road model is the best for road damage. Intuitively, the six-class model, which

is trained to discriminate between bridge-damage, no-bridge-damage, building-damage,

no-building-damage, road-damage, and no-road-damage, learns not only features that

are indicative of damage versus no-damage, but also features that are indicative of a

specific category among the three target categories (bridge, building, road). As opposed

to that, the four-class model, which is train to discriminate between bridge-damage,

building-damage, road-damage, and no-damage may learn features that identify no-

damage in general, as opposed to no-damage in a particular category (in addition

to features for discriminating between different categories), and thus leads to worse

results than the six-class models. While the two-class road model works the best for

road damage, as expected, it seems surprising that the two-class bridge and building

models are generally worse than the other models. Given that some bridge images

look similar to building images, it may be that the richer features extracted from the

combined dataset help get better DDM heatmaps. As opposed to that, road damage

might be more distinctive and easier to identify with a two-class model.
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5. Between Grad-CAM and Grad-CAM++, which approach is better? Our results show

that the Grad-CAM approach is consistently better than the Grad-CAM++ approach.

This may seem surprising, as Grad-CAM++ is an extension of Grad-CAM, which has

been shown to give better results on datasets with multiple occurrences of an object in

an image. However, in the context of damage localization, damage is rather as a concept

with soft boundaries rather than an object with hard boundaries, and as such, it doesn’t

present multiple occurrences. The Grad-CAM++ may highlight additional regions that

are not representative of damage, as marked by human annotators. Therefore, Grad-

CAM++ can lead to worse results as compared to Grad-CAM, which focuses on the

most representative regions for the damage.

5.5 Related Work

Social media data has been shown to have significant value in disaster response [112, 113, 114].

Many machine learning approaches [87, 80, 64], including deep learning approaches [54, 4],

have been proposed and used to help identify and prioritize useful textual information (e.g.,

tweets) in social media. Some works have focused specifically on identifying situational

awareness information [51, 52], including information related to damage assessment [48, 101,

115, 116].

Despite the extensive use of machine learning tools for analyzing social media text data

posted during disaster events, there is not much work on analyzing social media images

posted by eyewitnesses of a disaster. One pioneering work in this area [18], used trained

CNN models, specifically, VGG16 networks fine-tuned on the disaster image datasets that

are also used in our work (see Table 5.1), and showed that the CNN models perform better

than standard techniques based on bags-of-visual-words. Our CNN results, using VGG19

fine-tuned on the same disaster image datasets, are similar to those reported in [18], except

for Matthew Hurricane, for which the dataset is relatively small and the model can’t be

trained well. However, as opposed to [18], where the focus is on classifying images into three

damage categories, we go one step further and use the Grad-CAM approach [106] to localize
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damage, with the goal of improving the trust of the response teams in the predictions of the

model. Furthermore, we produce a continuous severity score, as a way to quantify damage.

Other prior works focused on image-based disaster damage assessment use aerial or satel-

lite images, e.g. [96, 97]. Compared to such works, which use more expensive imagery, we

focus on the use of social media images, which are readily available during disasters, together

with interpretability approaches, i.e., Grad-CAM, to produce a damage map and a damage

severity score for each image.

Similar to us, Nia and Mori [111] use ground-level images collected using Google to assess

building damage. Their model consists of three different CNN networks (fine-tuned with raw

images, color-masked or binary-masked images, respectively) to extract features predictive

of damage. Subsequently, a regression model is used with the extracted features to predict

the severity of the damage on a continuous scale. Compared to [111], we use the features

identified at the last convolutional layer of the CNN network to build a detection map, and

use the map to produce a numeric damage severity score. While CAM-type approaches have

been used to explain model predictions in many other application domains, to the best of

our knowledge, they have not been used to locate damage and assess damage severity in

prior work.

5.6 Conclusion

Given the large number of social media images posted by eyewitnesses of disasters, we

proposed an approach for detecting and localizing disaster damage at low cost. Our approach

is built on top of a fine-tuned VGG19 model, and utilizes the Grad-CAM approach to produce

a DDM heatmap. Furthermore, the DDM is used to calculate a DAV score for each image.

This scoring is performed on a continuous scale and can be used to assess the severity of

the damage. The DAV score, together with the DDM heatmap, can be used to identify and

prioritize useful information for disaster response, while providing visual explanations for

the suggestions made to increase the trust in the computational models. Quantitative and

qualitative evaluations of DDM and DAV components show the feasibility of our proposed
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approach.

As part of future work, it is of interest to study the applicability of the proposed approach

to estimate the global damage produced by a disaster based on aggregating the DAV values

from individual images. Also, geo-tagging images would enable disaster response teams not

only to identify damage, but also to find its physical location.
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Chapter 6

Conclusions and Future Work

With the fast growth of deep learning methods and their successful application in many

domains, including image processing and natural language processing [9], it is of great interest

to use deep learning to analyze social media data posted by users during disaster events. In

this dissertation, we propose several deep learning based approaches to analyze disaster data

posted on the social media platform Twitter.

Firstly, we propose two domain adaptation approaches to identify informative text and

images, respectively. To achieve near real-time analysis, we propose a domain adaptation

based approach that takes advantage of pre-labeled disaster data from a source disaster to

filter data for an ongoing target disaster for which labeled data is not available. For text data

analysis, we adapt the Domain Reconstruction approach, which learns tweet representations

from the target disaster data using a reconstruction approach. Each word in source data

and target data is represented by a word embedding which captures dependencies between

words. The embeddings and the parameters in different layers together capture the intrinsic

information in a tweet. The classifier trained on source data, which uses the representation

learned from the target data, can be applied to label the target data. For image analysis, we

adapt a Domain Adversarial approach which extracts common features between source data

and target data. This approach contains a discriminative component and a generative com-

ponent. The discriminative component identifies the source of the data (source disaster or
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target disaster); the generative component reduces the difference between the representation

of the source data and target data so that the discriminative component cannot separate it

(thus, the name adversarial). After this adversarial process achieves a balance, the repre-

sentations of source data and target data become similar, and the classifier trained on the

source representation can be applied on the target representation. This approach is evalu-

ated on the images collected during four disasters. Experimental results of the two domain

adaptation approaches show that the proposed methods can be used to identify informative

text and images efficiently and effectively. Furthermore, since text and images are usually

posted together, we propose a multimodal approach that combines the information from

text and images. Our approach combines a CNN model for images and an RNN model for

text. The last layers of the two models are concatenated and another fully connected layer

is applied on the concatenated layer. We study several scenarios to address the challenge

that the text and image may have different labels. Experimental results show that the text

classification performance can be improved by adding the image information and the image

classification performance can be improved by adding the text information.

After the informative tweets and images have been filtered, we propose a damage lo-

calization approach to identify the type of damage and the area of damage in images. We

introduce the Grad-CAM approach in disaster image analysis to generate a heatmap that

highlights the damaged area. This approach trains a VGG model to classify images into

damage/no-damage first. The trained model contains key features that classify the images

into different categories. In our case, the key features show the damage/no-damage area.

The Grad-CAM approach helps to extract these key features from the VGG model. Since

the model is trained by gradient descent, the idea of Grad-CAM is to find the area which

has the largest gradient. The area with the highest gradient will give the key features that

show damage. Then the heatmap can be calculated with the values of the gradients. Fur-

thermore, the value which assesses the severity of damage in images is calculated on top of

the heatmap. This approach was evaluated on the images collected during four disasters.

As an extension of this work, we evaluated the performance of Grad-CAM++ which is an

extension of Grad-CAM. Both methods are evaluated also on a larger dataset. Specifically,

87



we label a dataset downloaded using google images search engine. The dataset contains

several types of infrastructure damage, including building damage, bridge damage, and road

damage. Our proposed approaches show promising results on the damage localization and

damage evaluation tasks. Experimental results also show promising results for localizing and

evaluating the different types of damages.

We propose several future extension directions for the approaches in this dissertation. For

the domain adaptation approach for text classification, we plan to evaluate other approaches

for the reconstruction framework. For example, we plan to use the Transformer model, which

is another autoencoder model similar to the Seq2seq model. For the domain adaptation ap-

proach on image classification, we plan to explore the addition of the domain reconstruction

method in addition to the current domain adversarial framework. These changes may lead

to better performance by enabling the model to learn more information from the target

data. For the multimodal approach, we plan to extend it to a domain adaptation approach

framework. This will allow us to conduct a near-real-time analysis on the combination of

text and image data for the ongoing disaster. Finally, we also plan to evaluate the proposed

models on other classification tasks, such as identifying eyewitness tweets and classifying

tweets into situational awareness categories, in addition to filtering the informative text and

images. With more experiments on other tasks, the proposed models can be used to build

an end-to-end solution for disaster data analysis.
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Appendix A

Optimally of the Adversarial Training

In this supplementary material document, we present theoretical results that show the opti-

mally of the adversarial training component of our domain adaptation model for identifying

disaster damage images.

A.1 Global Optimally of PT (Xs) = PT (Xt)

Our problem can be seen as a multi-task leaning problem. Thus, the loss function Ltotal can

be re-written as:

Ltotal = Ladversarial + Lprediction (A.1)

where Ladversarial = Ldomain +Ltransfer is the loss which needs to be minimized to reduce the

difference between the source and target domains, and Lprediction is the loss that needs to

be minimized to train the source classifier. We will prove that the adversarial training will

lead to source and target representations with similar distributions, i.e., PT (Xs) = PT (Xt).

Minimizing the adversarial loss, Ladversarial, is equivalent with:

min
T

max
D

L(T,D) = Exslog(D(T (Xs)))

+ Extlog(1−D(T (Xt))

(A.2)
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Here, D(T (x)) = 0 if x is from source, and D(T (x)) = 0 if x is from target. In practice, we

use the one-hot vector representation of different domains. Our optimally proof is inspired

from a similar proof by Goodfellow et al.[70], who introduced GAN and showed that the

generated samples have similar distribution with the real samples.

Theorem 1. For T (X) fixed, the optimal D(X) is:

D∗(X) =
PT (Xs)

PT (Xs) + PT (Xt)

(A.3)

Proof. Given T (X), the optimal D(X) maximizes a function L, defined as L(T (X), D(X)) =

=

∫
PXs log(D(T (xs)))dxs +

∫
PXt log(1−D(T (xt)))dxt

=

∫
PT (Xs) log(D(x))dx+

∫
PT (Xt) log(1−D(x))dx

=

∫ (
PT (Xs) log(D(x)) + PT (Xt) log(1−D(x))

)
dx

The function a log(y) + b log(1− y) achieves its maximum when y = a
a+b

. Therefore, D∗(X)

is given by Equation (A.3).

Theorem 2. The global optimum of L(T (X), D(X)) is achieved if and only if PT (Xs) =

PT (Xt).

Proof. By definition: L(T (X), D(X)) =

=

∫
PXs log(D(T (xs)))dxs +

∫
PXt log(1−D(T (xt)))dxt

=

∫
(− log 2 + log 2 + PXs log(D(T (xs)))) dxs

+

∫
(− log 2 + log 2 + PXt log(D(T (xt)))) dxt

= − log 4 +

∫ [
PT (Xs) log(2 ·D(x))

+ PT (Xt) log(2 · (1−D(x)))
]
dx

According to Theorem 1, for any given T (X), the optimal D(X) is given by Eq. (A.3).
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Therefore, max
D

L(T (X), D(X)) =

= − log 4 +

∫ [
PT (Xs) log

(
2PT (Xs)

PT (Xs) + PT (Xt)

)
+ PT (Xt) log

(
2PT (Xt)

PT (Xs) + PT (Xt)

)]
dx

(A.4)

Lin [117] defined the following divergence between two distribution p1 and p2:

K(p1, p2) =
∑
i

pi(x)log
2pi(x)

p1(x) + p2(x)
(A.5)

According to the Shannon inequality, K(p1, p2) ≥ 0, and K(p1, p2) = 0 if and only if p1 = p2

[117]. Using this divergence in Equation (9), we have: maxD L(T (X), D(X)) = − log 4 +

K(PT (Xs), PT (Xt)) ≤ − log 4. Thus, the minimum after T (X) is obtained when PT (Xs) =

PT (Xt), which means that the global optimum of L(T (X), D(X)) is achieved if and only if

PT (Xs) = PT (Xt).
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