USE OF SPECTRAL ANALYSIS AND NONLINEAR
PARAVMETER ESTIMATION TECHNIQUES IN ANALYZING
WATER QUALITY INFORMATION SYSTEMS

=

by — =

JAIPRAKASH SHASTRY
B. Tech., Indian Institute of Technology, Bombay, 1968

A MASTER'S THESIS
submitted in partial fulfillment of the
requlrements for the degree
MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1971

Approved by

K. T T

Major Professor



.“___\g)x”
)
&

"

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
CHAPTER II LITERATURE REVIEW
INTRODUCTION
MODELS PROPOSED
STATISTICAL MODELING
CHAPTER III SPECTRAL ANALYSIS
INTRODUCTION
'HARMONIC ANALYSIS
SPECTRUM ANALYSIS
l. Objectives
2. Characteristics
3. Autocorrelation
4, Autospectral Analysis
5., Smoothing Spectral Estimates

6. Crosscorrelation and Crossspectrum
Analysis

7. Transfer Function and Coherence
CONCLUSION
CHAPTER IV APPLICATION TO WATER POLLUTION STUDIES
INTRODUCTION
DESIGN OF SPECTRAL ANALYSIS
COMPUTATIONAL PROCEDURE
ANALYSIS AND INTERPRETATION OF THE DATA

POSITION CORRELATION ANALYSIS FOR THE OHIO
RIVER

i1

L6
50
sk
55
55

60
60

62



CHAPTER V

CHAPTER VI

Analysis of Flow Records
1. Autocovariance
2. Power Spectral Estimates
3. Crosscovariance
L, Transfer Function and Coherence
Analysis of Temperature Records
- Analysis of Dissclved Oxysen Records
VARIABLE CORRELATION OF OHIO RIVER DATA
Temperature - BOD
Temperature - Dissolved Oxygen
Dissolved Oxygen - BOD
ANALYSIS FOR OTHER STREAMS
Detroit River
Coasa River
Missouril River
COMPARISON OF RESULTS
CONCLUDIKG REMARKS
MODELING FOR WATER QUALITY
INTRODUCTION
RESULTS FROM SPECTRAL ANALYSIS
DEVELOPMENT OF MODELS
PARAVETER ESTIMATION
INTRODUCTION
MATHEMATICAL MODEL

CRITERIA FOR ESTIMATION

111

64
68
76
81
89

114
114
115
126
129
129
137
143
154
157
161
161
16z
166
174
174
174
176



METHODS FOR PARAMETER ESTIMATION
BARD'S MODIFICATION
Choice of Directlon
Cholce of Step Slze
RESULTS OF PARAMETER ESTIMATION
CHAPTER VII RECOMMENDATIONS FOR FUTURE WORK
NOMENCLATURE
ACKNOWLEGEVENTS
APPENDICES
REFERENCES

iv

178
180
181
182
184
191
195
198
199
202



CHAPTER I
INTRODUCTION

The rapid expansion of population and increase In industrial
development have resulted in increasingly difficult problems of
water pollution control. One of the most significant problems
in this area is the control of water quality in a specific body
of water in order to minimize the harmful effects of pollution
caused by the dischargé of municipal and industrial wastes,

The treated wastes discharged from municipal or industrial
treatment plants contain a large variety of chemical compounds;
many of these are biodegradable by aerobic mlicroorganisms which
consume oxygen. These compounds are degraded into inoffensive
components by bacteria and other organisms in natural water as
long as sufficient oxygen 1s present in the water., The source
of oxygen for the stream organisms which degrade the waste
materials 1s the dissolved oxygen in the stream. The dissolved
oxygen concentration and the stream ecology are sensitively
balanced, and too great a disturbance at any point may cause
unpredictable and irreversible changes 1n the entire environment
[1].

For example, if the dissolved oxygen concentration falls
below a certain critical level, many of the oxygen requiring
species in the stream may not survive. Microbial decomposition
of the dead specles further decreases the oxygen concentration

until anaerobic conditions may eventually result.
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The quality of any body of water can be measured in terms

of the biochemical oxygen demand, the dissolved oxygen, Escherichia

Coll serogroups, dissolved sollds and the inorganic and organic
constituents. Although many water quality standards specify
minimum acceptable levels for a varlety of water quallty
parameters, the most commonly used parameter to specify stream
pollution resulting from biodegradable wastes 1s dissolved
oxygen [ 2]. For the preservation of aquatic life and water
reuse it is required by regulatory agencies that the dissolved
oxygen concentration should not be less than 5.0 mg/l. The task
of any water pollutlon control program, therefore, 1sto design
a system of waste treatment plants for partially treating the
waste discharges, so that the water quality criteria is not
violated at any point along the stream and at the same time the
cost of such a treatment system is minimized. To develop an
effective water pollution control program, however, one must
possess accurate knowledge and understanding of the assimilative
capacity of the stream and the ability to predict the response
of any body of water to speciflec waste inputs. This knowledge
i1s the necessary basis for the precise determination of waste
treatment requirements in any specific situation and is,
therefore, the principal requirement for accurate evaluation of
the costs of a pollution control program.

The purpose of developing a water pollution control program

is to maximize the benefits from the avallable water resources

[3]. This can be achieved by predetermining a desired quality



for the individual water ways and analyzing the entire system
of water and pollution sources to obtain the most economical
means of maintaining the desired water quality. This requires
optimal design and operation of the waste treatment plants and
a knowledge regarding the volume and concentration of the
effluent that may be discharged into the stream. One of the
important steps in this analysis is to develop techniques for
predicting changes in water quality, more specifically the
dissolved oxygen, due to waste discharges.

Work in this area began as early as 1925 but no precise
and accurate method has been developed due to the complexity of
the system. The purpose of the present investigation is to
recognize the chemical, physical, biologlcal and ecological
factors that govern the water quality changes and hence, the
assimilative capacity of the stream, and incorporate these
factors in the mathematical formulations.

Recently, considerable effort has been expended to collect
Wwater quality data by installing automatic water quality
montoring and data collection stations on a number of rivers [4].
Spectral analysis techniques are specifically designed for
analyzing this type of data. This technique 1s used to determine
the cause-~effect relationships that influence the water quality.
Improved mathematical models are developed based on thils
analysis and the values of the constants in the model are

estimated by a nonlinear parameter estimation technique, The

treatment is restricted to streams in the present investigation,



but the extension to estuarine systems ls apparent.



CHAPTER II
LITERATURE REVIEW

INTRODUCTION

Streams have been used to carry away municipal wastes from
the time people began discharging their wastes into sewers [5].
The streams have the ability to decrease thelr concentration of
the blodegradable wastes by complex biological processes
involving microorganisﬁs and other species found in streams.

These microorganisms require oxygen for growth and the
amount of oxygen required is directly related to the microbial
growth rate and the number of microorganisms. The microbial
growth depends on the concentration of the wastes in the stream
as measured by BOD*, the temperature of the stream and other
physical and biological factors. The oxygen level in the stream,
therefore, is a complex function of temperature, BOD, the time
of travel and other stream parameters. Because oxygen is a
critical component, the quality of water is speciflied in terms
of the dissolved oxygen and it becomes necessary to develop
methods to predict and control the dissolved oxygen (DO) level
in the stream. Methods have been developed to describe the
change in the DO concentration in the stream resulting from a

single polluter discharging at a point source [6, P 8].

# BOD is the blochemlical oxygen demand which is a measure of
pollution in the stream and 1s defined as the amount of
oxygen consumed by the microorganisms in stabllizing a stream

sample.



MODELS PROPOSED

A stream may be defined as a body of flowing water in which
the velocity is the significant component of the flux and in
which the longitudinal dispersion in the direction of the flow
may be neglected.

The measure of dispersion used in these situations is the

Peclet number which 1s defined as

NPe = E;B (1)
in which

u = average velocity of the stream

LR = length of the reach under consideration

D = axlal diffusion coefficlent.

For streams, where u and Ly are very high, the Peclet number

is usually very high. This high value of Peclet number cor-
responds to plug flow behavior [9] and hence the effect of
dispersion can be neglected., Under the ideal plug flow
assumption the most general form of the equation that describes
the temporal and spatial distribution of conservative and
nonconservative substances (water quality model) in a one
dimensional stream may be written as [10]

SLE - ey 32 @xit)s ) £ S(eyxt) (2)



in which
¢ = concentration of the substance
A = cross sectional area which is a function of x and t
Q = stream flow
S = sources and sinks of the substance
X = distance along the stream
t = time of travel

Various forms of the above equations have been proposed as
models to describe the change in dissolved oxygen concentration
in a stream due to waste discharges. Most of these try to
relate the change in dissolved oxygen to the change in BOD and
are based on material balances of resources and demands. Some

of these models are based on the following assumptions:

(1) The stream flow is steady and uniform.

(11) The process for the stretch as a whole 1s a steady state
process, the conditions at every crossection being
unchanged with time.

(1i1) The BOD and DO are uniformly distributed over each
crossection, thus permitting the equations to be written

in one-dimensional form,

The Streeter-Phelps model [11], which attempts to describe
the system under steady state conditions, conslders only two

independent mechanisms affecting the DO. They are



a) the decrease in oxygen concentration due to bacterial
oxidation which 1s proportional to the BOD present and

b) the increase in dissolved oxygen content due to reaeration
from the atmosphere. This model is written as a set of

differential equatlions, one each for BOD and DO.

dL
i€ = -le
(3)
dC
at = -le + kz(Cs - C)

The second equation may also be written in terms of the DO

deficit, D = CS - C as

4aDn _ - a
5 = le kzD (3a)

In these equations,

L = BOD level in the stream in mg/l

C = DO level in the stream in mg/1l

k, = bacterial action rate constant in day-l
k2 - reaeration constant in day-l

CS - saturation DO level in mg/1

t = time of reaction in days

For a point source the initial condltlons are

L=L,and D=D_ at t =0 (4)



Equation 3 can be solved analytically with the boundary

conditions given by Equation 4 , the solution is

=k_t
1
= L
L 0e
k.-t =k.t =k .t
D= ElEQ_(e 1" e 2 ) +# De 2 (5)
k. .=k o
I

Criticisms expreséed against this model for its obvious
limitations led other investigators to modify this model or
propose different approaches to predict the dissolved oxygen
concentration in a flowing stream. Notable among these are the
contributions of O'Connor [10,12], Dobbins [13], Thayer and
Krutchkoff [14], Thomann [15], and Pyatt [16]. Dobbins [13]
included eight additional phenomenologlcal processes that may

take place in a particular stretch of the stream; these are:

1, The removal of BOD by sedimentation or absorptilon.

2. The addition of BOD along the stretch by the scour of bottom
deposits or by the diffusion of partially decomposed organic
products from the benthal layer into the water above.

3. The addition of BOD along the stretch by the local runoff.

L, The removal of oxygen from the water by diffusion into the
benthal layer to satisfy the oxygen demand in the aerobic
zone of thls layer.

5. The removal of oxygen from the water by purging action of

gases rising from the benthal layer,
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6. The addition of oxygen by the photosynthetic action of

plankton and fixed plants.,

7. The removal of oxygen by the respiration of plankton and

fixed plants.

8. The continuous redistribution of both BOD and oxygen by the

effect of longitudinal dispersion.

Dobbins [13] proceeded to show that the dispersion effect

may be neglected for many streams. Incorporating these effects

in the Streeter-Phelps equations, the model proposed by Dobbins

1s obtained as

or

dp
at

in which

k4

The model

1]

k. L = k

1 3L + La

(6)

-le + kz(CS -C) - DB

le - kzD + DB

rate constant for BOD sedimentation, assumed to be
a first order rate process, in day'l

BOD addition due to local runoff, assumed to be
constant all along the stream, in mg/l

DO depletion due to benthal demand, again assumed to

be constant, in mg/1

of Equation 6 can be solved analytically, with the



1l

boundary conditions of Equation 4. The solution is

L
a
L = L_exp -(k1+k3)t + wl - exp -(-k1+k3)t ]
K L
D - 1

[L — s——=—T[exp =(kq#k,)t = exp(-k,t)] (7
kz—(qu-kB) o k1+k3[ 1t 3 Xp 2 :I )

D
DOEXP(-kzt) o [ —B + —(F—)']{l - exp(=k t)}

The unsteady state BOD and DO equations were solved by
Dobbins [8] for a a point input, In these calculations Dobbins
included the diffusion term and the second order partial
differential equation, thus obtained, was solved by a two-step
numerical method. It seems at thls stage that this two-step
procedure can be avolded if proper boundary conditions are chosen.
In the next section some stochastic approaches used for water

quality modeling are presented.

STATISTICAL MODELING

Many investigators found that BOD and DO values predicted
by deterministic formulations often differ from the actual
observed values due to unpredictable (random) changes in the
stream parameters., A probabilistlic approach often becomes
necessary because one has to consider random variatlions in rate
constants, in stream flow conditions and in waste inputs.
Thayer and Krutchkoff[lu] analyzed Dobblns' model but used a

probability approach in which the mechanlsms affecting BOD and
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DO concentrations were modified so as to be random in nature,
By constructing a series of probability statements about BOD and
DO, the joint probability function for BOD and DO distributions
was developed. The differential-difference equation thus
obtailned was solved by a moment generating functions technique
to derive expressions for the mean and variance of the BOD and
DO distributions as functions of time. They examined three
different initial conditions and derived expressions for the
mean and variance for each of these, In this approach Thayer and
Krutchkoff had to discretize the BOD and oxygen values,

Kothandaramen and Ewing [17] used a deterministic approach
but accounted for the random variations in the reaction velocity
constants by using Monte Carlo simulation. They accounted for
the diurnal variation in the oxygen productiom due to
photosynthesis by including in their model a perilodic function
expanded in terms of sines and cosines. The results obtained
by using this statistical sampling technique are in good agreement
with the experimental values of DO for the Chio river
system.

Thomann [15,18] used spectral analysls techniques with
a systems analysls approach and obtained expressions for
amplitude and phase transfer functions for the system shown in
Fig 2.1. These functions were, then, used to calculate the
response of the stream to deterministic and stochastic waste
load inputs. 1In his paper Thomann has stressed the importance

of the system analysis approach to this problem., The stream
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ls envisaged as a system represented by two blocks, the input
to the system belng the waste discharged and the output being
the dissolved oxygen; BOD appears as an intermediate (Flg. Z.1).
Relatlons are obtalned between the power spectral densities of
the input and output for the case of stochastic inputs
characterized by known autocorrelation coefficients or power
spectral denslity estimates,

In another publication Thomann and Sobel [19] assumed that
the estuary can be segmented into a discrete number of sections.
The DO concentration may vary from segment to segment but it is
assumed to be homogeneous within each segment. The rate of
change of DO concentration in the kth segment 1s assumed to be
dependent on 1) the net volume transported from the (k-1l)th
segmnent into the (k)th segment and frém the (k)th to the (k4+1l)th
segment 11) dispersion from both the (k-=1)th and the (k+l)th
segment into the (k)th segment and 1ii) sources and sinks in
segment k. This model is equivalent to the n CSTR-in-series
model with backflow between stages often used in chemical
engineering to describe a tubular reactor system. A4 materizal
balance for oxygen resources and demands gives a filnite difference
equation for each segment; however, these equations must be solved
simultaneously.

All these models in essence describe the behavior of
dissolved oxygen and BOD in the stream., In general these two
water quality pérameters can be represented as shown in Fig. Z.2.

For a constant waste load input at x = 0 the bidchemical oxygen
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demand decreases continuously with increasing distance as the
microorganisms consume the wastes that are present. The
dissolved oxygen concentration, however, exhibits a minima.

The DO decreases initially if the blodegradable wastes consume
the oxygen faster than the rate of reaeration, but after a
certain stage the rate of addition of oxygen due to reaeration
exceeds the rate of depletion due to consumption and oxygen
concentration shows as increase, The minimum value of DO
reached is the most critical one and it is this value of DO

which one must take into account in designing any water pollution
control program. It becomes necessary, therefore, to predict

the DO values at any section along the stream. It has long been
recognized that the BOD kinetic models used so far are not
adequate and an effort to correlate the change in BOD and DO with
the growth of microorganisms 1s required, An attempt has been
made in thlis investigation to correlate all the water guality
parameters by spectral analysis. Details of this data analysis
technique and its application to water quality modeling are

considered in later chapters.,
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CHAPTER III
SPECTRAL ANALYSIS

INTRODUCTION

Recently increasing attention is being paid to the use of
systems analysis and simulation in the management of water
quality. A water pollution control program may wish to utilize
the assimilative capacity of the stream to its fullest extent,
In developing such a pfogram one needs to determine the
assimilative capacity of the stream. This requires developing
systematic procedures for data collection and'handling which
upon further analysis, can lead to problem definition and
solution. The problem involves characterization of the stream
system coupled with measurement of the physical, chemical, and
blological parameters of interest. It has been reported that
effective management of water quality 1s possible through the
development of more sophlsticated measuring techniques [20].

The wastes discharged from municipal or industrial sewage
treatment plants contain a large variety of chemical compounds;
usually, the most significant among these 1s the bilodegradable
and oxygen consuming portion of the wastes. The strength of
these wastes 1s measured in terms of its blochemical oxygen
demand. When this material is introduced into a body of water,
1f undergoes bilochemical oxidation caused by microorganisms
which utilize the organlc matter and oxygen for energy and growth,

Besides this biological phenomenon, there are other physical
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and chemical processes taking place in the stream which
influence the water quality. The gquallty of water at any
section on the stream, therefore, depends on the temperature,
stream flow, distance from the discharge, the count and type of
plankton population in the stream and the nature of the bottom
deposits., The deslign of the data measurement and collection
system consists of developing methods to analyze each of the
above parameters,

In developing any water pollution control program it is
necessary to obtain water quality data., During the initial
phase of this investigation water quality data were obtained
from several federal, state and private agencies monitoring
water quality stations. In this investigation spectral analysis
techniques were used to analyze the water quality data,

Spectral analysis techniques are specifically designed for
analyzing this type of data. These techniques are becoming
popular due to the avallability of automatically monitored data
and high speed computing machines. A time serles is a record of
repeated observations made at a particular location; it is a
momentary addition of everything that is happening to the
particular parameter. Spectral analysis of time series aims at
a more fundamental understanding of the underlying phenomena;
it identifies the underlying generating processes which are then
used for model building or prediction purposes,

Wastler [21], Gunnerson [ 22] and Thomann [ 23] have initiated

the use of this technique in the area of water pollution studies,
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Wastler [21] in his report described in detail a method which
calculates the individual power spectra of a given time series.,
He then proceeded to 1llustrate thls by computing the individual
power spectra for records of BOD and DO from the field survey

of the Potomac Estuary. These two spectra were examined
individually for existence of 'long' and 'short' period effects.
The physical interpretation of each of the harmonics present at
different stations was attempted in light of the advective and
diffusive processes, the diurnal variations of the waste
discharge and the photosynthetic activity.

Gunnerson [22] approached the problem from the standpoint
of optimizing the sampling time interval for water quality
measurement., He concluded from the spectral analysis of
estuarine water quality records that the sampling time interval
nust be shortened near the dominant source of pollution. With
increasing distance downstream, mixing and stabilization
processes result in increasing homogeneity and, therefore, the
sampling interval may be lncreased., Each enviroment, according
to him, has peculiar data collection requirements,

Thomann [ 23] analyzed the DO and temperature data taken
from the Delaware estuary [2&]. On the basis of this analysis
he grouped the harmonics present in the record into 'low
frequency harmonics' and 'high frequency harmonics'. The low
frequency harmonics were attributed to the non-linear interactions
among the variation of the saturation value of DO with

temperature, the variabillty of photosyntheslis with temperature
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and sunlight, variable estuarine flow, and the nonlinear
microbial growth process. Diurnal variations in temperature or
in DO due to solar heating and photosynthesis were included in
the high frequency harmonics.,

The work done so far pertains to calculation and
interpretation of individual power spectra for dissolved oxygen
and temperature. In thls chapter these techniques are reviewed
end in addition, the technique of cross-spectral analysis, which
is used in this investigation, is introduced.

Spectral analysis of any time series may be divided into
two steps 1) harmonic analysis and 1i1) variance (power) spectrum

analysis. These techniques are discussed next,

HARMONIC ANALYSIS

This analysis 1s done prior to spectrum analysis to identify
certain periodicities in the record [25]. The harmonics
corresponding to these periodicities are, then, removed from the
data and the residual 1s examined by spectrum analysis, The raw
data can also be analyzed by spectral analysis and the results
compared,

Let X(t) represent a time series with reasonably well-
defined periodicitics. Thls can be represented by a Fourier
expansion in terms of sines and cosines as

M

X(t) '_-}_{-I-

RES

kEI{Ak sin(kut) + B cos(kwt) - + X___(t)

(8)



in which
W= 22
T
T = fundamental period
t = time
k = the harmonic number
X = mean value of X(t)
M = the number of harmonics used in the series,
XHES(t) = residﬁal variation not accounted for by the

M harmonics
Ak' Bk = Fourler harmonic coefficients for the kth

harmonic

The constants Ak and Bk are calculated by using the orthogonal

properties of sine and cosine functions as

n
A = £ z X, sin(kwt) (9)
W i
2 n
Bk = £ z Xt cos(kwt) (10)
t=1
in which
Xt = discrete data at time t
N = total number of data points

After Ak and Bk have been determined from the observed data,
the amplitude and phase angles for the kth harmonic may be

calculated as
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C. = Alf + B? (11)
By

The varliance corresponding to the kth harmonlc can be computed

from the equation

b 2 N
Uk = Ck/2 ’ -k < E

2 2 N bl
ak = Ck ’ k = -é

This type of analysis is useful in physically interpreting the
results and generating hypothetical or missing data. The
spectral estimate calculated using the raw data shoots to a
very high value for zero frequency. This makes it difficult to
isolate periods with low frequency. If these low frequency
harmonics are 'removed' from the data additional events with low
frequencies can be identified. A computer subroutine (IBM)
called RHARM is avallable [ 26] for the computation of the Fourier
coefficients. This subroutine uses the fast Fourier transform
method developed by Cooley and Tukey [27]. This program is used
in the present work for computing the Fourler
coefficients,

The next step in analyzing the time series by means of
spectral analyslis is to carry out a varlance spectrum analysis

of the residuals, XRES(t). This spectrum analysis can also be



applied to the raw data. The next section discusses the

theoretical development necessary for this analysis,

SPECTRUM ANALYSIS

The purpose of thls analysis 1s to describe methods to
predict water quality. To control any phenomenon it is
important to know the structure of the generating mechanism of
the fluctuations that are present in the phenomenon. The
generating mechanism is usually partitioned into the source and
system [28]. The source is considered as the origin of the
randomness and the system is considered to operate under this
source to produce the phenomenon under consideration. The
initial step in developihg any control policy 1s process
identification [29]. Process identification consists of
identification of the source and identification of the system,
In the identification of the source the autocorrelation functions
and the power spectral density estimates are calculated for the
time series representing the input. This analyzes the source
from the standpoint of its frequency content. In the identifica-
tion of the system the response characteristics of the system
are determined., This includes the calculation of the amplitude
and phase of the transfer function that relates the output to
the input. In summary this is the process of system identifica-
tion by spectral analysis. Once the process is identified and

the underlying phenomenon understood, mathematical equations can

be written down to represent the process.



For the analysis let the system under consideration be
divided into two subsystems (Fig. 3.1l). It is assumed that
X(t), Y(t) and Z(t) can be measured as continuous functions of
time, The response characteristics of systems A and B will be
identified from the observations of X(t), Y(t) and Z(t). In
this analysis the sets [X(t), n(t)] and [¥Y(t), m(t)] will be
taken as second order, two dimensional stochastic processes
which will be assumed stationary. Each of these sets [X(t),
n(t)] and [Y(t), m(t)] are assumed to be mutually orthogonal and

uncorrelated processes.

l, Objectives

The starting point in any spectral analysis is a function
of time X(t) defined in the interval 0<t <T relative to an
arbitrary origin. Such a function X(t) is a record of repeated
observations at a particular location, Each observation is =a
momentary summation of the effects of everthing that is happening
to the particular parameter. These effects may be caused by
cyclic or other phenomena affecting the system under investiga-
tion and by certaln random disturbances superimposed on these
Phenomena,

One of the alms of spectral analysis is the determine the

nature of these effects. The other objectives of this analysis

are [ 30,31,32].

1, to determine the frequencies at which different factors

cause the record to vary and to provide an estimate of the
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variance that 1s derived from each of these factors,

2. to obtain more direct physical interpretation in the frequency
domain,

3+ to determine the underlying generating processes for model
building and prediction purposes,

4, to determine interactions and correlations between two pairs
of variables at each frequency,

5. to measure the degree of llnearity of the physical processes
and,

6. to estimate the amplitude and phase of the transfer function

relating the input and output,

Before going into the detalls of spectral analysis techniques,
the assumptions that need be made will be described [30]. In the
spectral calculations all the random processes considered will be
assumed stationary., A stochastic process is stationary if the

probability distribution laws of the groups

x(tl). X(tz), « %N x(tn)

and

X(ty + 7)), X(t2 T e ow o x o X(tn + T)

are identical.

For a stationary process, therefore, the mean and variance
are constants and the correlation between two points in the time

domain is a function of time interval and not the individual time



values [33]. Symbolically,

mean u(t) = constant (14)
variance 02(1:) = constant (15)
cross-covarlance ulz(tl' t2) = ulz(t1 - tz) (16)

In the next section the characteristics of the spectral
analysis techniques are described. These characteristics can
gulde the design of spectrum calculations and the interpretation

of the results which are derived.

2. Characteristics [ 29, 33, 34]

To understand the basic properties of time series and the
variability and characteristics of its periodic and lrregular
oscillations, one needs to recognize the following characteristics

of spectral analysis.

1. Translation of the time series on the time axis does not
alter the statistical properties of a stationary process,

2+ The statistical manipulation of the time serles data by
spectral analysls results in the computation of those parts of
the variance that recur at constant time intervals as well as the
part that 1s nonrecurring in nature.,

3. The spectral analysls resolves the variance of a time series
into its components. Thils variance is interpreted as a statistic
descriptive of both the random and nonrandom character of a

time series,



4, 1If the variance is due to a linear trend, all the variance
1s concentrated in the zero frequency spectral estimate. This
spectral estimate includes

(1) any truly random fluctuations in the record

(11) any linear trends in the record and

(iii)any perlodic components in the record that are of so

low a frequency that they appear as linear trends in
the record.

5. Use of a smaller sampling interval for a given record length
increases the number of measurements used in the analysis and,
therefore, increases the degree of freedom upon which the
estimate 1s based.
6. If the sampling interval is not small enough to vermit
resolution of the shortest periods that contribute significantly
to the variance of the record, the short period variance 1s not
lost but 1s reported as harmonics of true perlod. This is
known as aliasing or folding. Aliasing occurs due to high
frequency records that add variance to the record but are not
"seen" by the sampling interval. Variance from this type of
even 1s folded into the record and reavpears at a lower frequency.
When the period of the high frequency even 1s known, the period
of the aliased record can readlly be determined. For, any cyclic
event that occurs at a period less than twice the sampling
interval, the true periocd of the event wlll never be seen.

Digital analysis will have to be used if values of X(t) are

read off at equidistant time intervals from a continuous record,



Suppose that as a result of reading X(t) at increments of t in
a time interval 0 <t < T (T = n/t), one has a sequency of n
discrete observations X,y X,» eeey X o It 1s clear [22] that
reading at thls sampling interval has meant a certain loss of
information., In fact all the direct information is lost for

frequencies above the Nyquist frequency which 1s defined as [32]

L. =A—% (radians/sec) (17)
There is no way of directly estimating the amplitude of
frequencies higher than the Nyquist frequency. As 2w_ is

N

indistinquishable from w, as far as the data 1s concerned, what

N
one is actually able to measure at a frequency WN is not the
spectral density functlon corresponding to the frequency WN
but the latter confounded with all frequencies which are
indistinguishable from Wy

7« The precision of each estimate is a function of the total
number of samples and the number of lags used in the computation.
8. Occurrence of a negatlive spectral estimate is due to the use

of a finite record.

A complete detalled discussion of spectral analysis is
beyond the scope of this thesis. For a detailed description the
readers are referred to references 32, 33, 34 and 35. In the
next section the quantities that need to be calculated in

gathering the spectral information will be described along with
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the computational procedure for calculating these quantities.
In the analysis that follows, X(t) 1s taken as a time seriles
with finite second moments which may be either continuous or
discrete, the process is assumed stationary and ergodic, and the

mean of the time series is taken as zero.

3. Autocorrelation [32, 35, 36, 37]

Autocorrelation means correlation with i1tself. Autocorrela-
tion coefficients are 6rd1nary linear correlation coefficients
between a time series and the same time series an interval of
time later. Thls difference is called a lag, For a stationary
time series autocorrelation depends only on the lag, In terms

of expectations, autocorrelation functions are defined as

R_(7) = E[X(t) * X(t 4 )] (18)
1 T
=3 [ X(t) X(t 4+ T)dt (19)
0
in which
X(t) = deviation from the mean value
T = total time period for which data is analyzed,
Bxx(f) = autocorrelation of X(t) for a lag 7.

If 02 is the variance of the time series, the autocorrelation
coefficient can be defined as

o (T) =§9.;2;_(2 (20)
Xx 2

g
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When 7-=0, Rxx(o) denotes the mean square value of X(t).
For a time series with zero mean, Rxx(o) defines the wvariance
of the series and the autocorrelation coefficient pxx(o) is

unity. That is, if E X(t)] = O,
R_(0) =c?and p_ (0) = 1 (21)
XX x

For a nonzero T, Rxx(f) denotes the degree of correlation between
the value of X at t and the value at some time later t4T.

One of the important properties of the autocorrelation
function BXX(T) is that it 1s always less than or euqal to the
variance. The autocorrelation can be regarded as a measure of
the randomness of a function; if X(t) is truly random, X(t) and
X(t + T) rapidly become uncorrelated as T increases and for

large values of T, 1.e.

1&2 R (7) =0 (22)
Autocorrelation retains all the harmonics of the given time
series but discards all their phase angles. In otherwords, all
the periodic functions having the same harmonic amplitudes but
differing in their initial phase angles have the same
autocorrelation function. Autocorrelation is an even function

of T; it is aymmetrical about 7=0, i.e.

Rxx(?) &= Rxx(-f) (23)
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For a discrete series with n data points Equation 18 can be

written in terms of summation. Autocorrelation at a lag Tr is

given by
1 N=Ir
® = e = s e
RJE]{( I') = = 121 X1X1+r! r 0, 1, 2, y I (24)
in which
T
m = maximum number of lags = —%

If adjacent data points are used in these calculations the

sampling interval corresponds to the increment in the lag.

At = A« (25)

Autocorrelation functions for simple well defined functions can
be calculated by analytical methods. The autocorrelation of a

sinusoid, for example,

X(t) = Acos(wt + 8) (26)
is
2
Rxx(T) . %? COsSWT (27)

These two functions as well as aut99orre1ations of other typical
functions are shown in Fig. 3.2 [3%3.

Autocorrelation functions are useful in prediction and
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forecasting. A positive autocorrelation at a lag T implies

that if X(t) is above normal now, it will be above normal T

time intervals later. This willl be useful in determining the
trend in the variation of the parameter represented by the time

- series. This kind of information is also helpful in forecasting
the temperature or DO values for a particular section of a stream.
A negative autocorrelation indicates that the functlion will go

below normal after the corresponding lag.

4, Autospectral Analysis [32, 35, 39]

To be empirically useful a stationary stochastic process
must often be defined by analytic formulas other than correlation
estimates of its distribution functions. Spectral analysis is
an example of such an alternative. The spectrum is obtained by
applying harmonic analysis to the autocorrelation of X(t). This
expresses the behavior of the function in the frequency domain.
Spectral analysis resolves the variance of a time series record
into its components just as a prism resolves a light beam into
its component colors of different intensity. Typical spectra
obtained from several time dependent processes and functions are
presented in Fig. 3.3 [22, 32]

The transformation from time to frequency domain is
performed by the Fourler transformation, and

o -iwT
Sxx(w) = _wf Rxx(f)e dr (28)
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Fig-33. Power specfrum estimates of some records [22,32)]
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in which
Sxx(w) = power spectral estimate of the variable X(t) at
frequency W,
Rxx(T) = autocorrelation at lag T

A necessary condition for Sxx(W) to exist is

] X(t) dt = k (a finite quantity)

-0l -

Iir Sxx(w) exists, Equation 29 1s satisfiled and the inverse

Fourier transform is given by

1 b jwT
RXI(T) = =- -mf SXX(W)e dw

N

If X(t) is assumed to be a stationary random function

(29)

(30)

known for all time, the integral in Equation 29 will be infinite

and the inverse will not exist. One may consider a large

finite segment of the function defined by

]

T =
X (€)= X(£), =3 <t <3

0, t > I

]

where T may be chosen to be a large but finite value., The
autocorrelation function for this wvariable is
/2

1
RXX(T) = -szf XT(t) XT(t + T)dt

(31)

(32)
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As Rx (T) contains no contribution for t > %. Equation 33
%
can be rewritten as

1 oo

-00

The power spectrum 1 the Fourier transform of the auto-

correlation function Expanding the exponential term in Equation
28 1in terms of trigonometric quantities, this equation

becomes

[= =] (-]
T T4T - <
[ Rxx( ) cos wTd pt _mf Rxx( ) sin wtdT

(34)

Sxx(W) =

-00

As Rxx(f) is an even function (Equation 23) Rxx(f) sin WT is odd
end the second integral (in the right hand side) of Equation 34
vanishes over the symmetrical limits. The spectral function,

therefore, 1ls given as

S (w)
Xx

J Rxx(‘f) cos WTAT (35)

and the Fouriler inverse formula gives

m

Bxx(T) - 1 mf Sxx(w) cos wTdw (36)

For a band limited discrete serles (a series consisting of a

finite number of equispaced ordinates), the spectral function
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i1s calculated as

m-1
-k T nbT
Sxx(p) = = Rxx(o) 4+ 2 Tzl Rxx( ) cos =
+ Rxx(m) cos 1p (37)
P = lag corresponding to a frequency of w, W = mp
m
k =1 foer p = 1. 2 veey m=1

=1/2 for p=0and p=nmn

Sxx(p) = PFourier cosine transform of the autocorrelation

at lag p

T = lag number which varles from 1 tp m-1l

5. BSmoothing the Spectral Estlimates

The spectral estimates obtained by Equation 37 are termed
'raw' and they need to be smoothed before further analysis is
carried out., In this section methods are described to accomplish
this.,

If the sample under consideration is of a finite size,
Rxx(T) needs to be truncated at a certain maximum value of T

denoted by Tm. The value of Tm must be such that

(38)

A
IA
I3

The effect of this truncatlion can be taken into account by
defining a new function which is called the lag window. The

simplest lag window is the rectangular window which is defined
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as follows1i

wir) = 1, T <7
(39)
W(T) = 0, T >T

The lag window truncates the autocorrelation function., The
power spectrum obtained by using this autocorrelation is called
the truncated spectrum, and it is denoted by SPxx and deflned as

oo =1WT
SP. = [ wW(T) Rxx('t') e dr (40)

XX _e

W(T) is an even function and may be regarded as a window of
variables transmission which modifies the value of Rxx(f)
differently for different lags. This window 1s analogous to an
electrical filter which attenuates all frequencies except

those within a certain band, f(w = 2nf). The spectral window
corresponding to the lag window W(T) is found by taking the
Fourier transform, which is

o

B{w) = J W(T) cos wTdT (41)
-t
It is of importance to choose the shape of the lag window W(T)
so that its Fourler transform B(w) will be concentrated near
w — 00

In the spectral window corresponding to the lag window
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defined by Equation 38 the first minor lobe is 20% as large as
the major lobe (see Fig. 3.5). This will allow transmission of
the spectrum generated from the frequencies outside the band
width. To obtain a sharper resolution one needs to reduce the
band width of the filter (window) so that transmission is
concentrated at the desired frequency. Moreover, use of Equation
38 usually results in leakage from the first minor lobei i.e.

the contributions from-this lobe will be negative. This shows
that the rectangular lag window is a poor choice as far as the
spectral window is concerned.

Various lag windows are avallable. Table 3.1 presents a
list of the most commonly used lag windows and the corresponding
spectral windows, These lag windows are plotted in Fig. 3.4
and the corresponding spectral wondows are plotted in Fig. 3.5.
To concentrate the major lobe one has to make W(T) flat and
blocky and to reduce the minor lobes one has to make W(T) smooth
and gently changing. This can be easlly accomplished by using
either Window 4 (whose use is called 'hanning') or Window 3
(whose use 1s called 'hemming'). The shape of these two windows
and their abllity to concentrate the spectral window near zero
can be seen by examining Fig., 3.4 and 3.5. The main lobes in
Windows 3 and 4 are four times as wlde as the side lobes, and
the normal side lobe width is 1/(2?m). These two windows,

although similar, are different in the following aspects [Fig. 3.5}

1l. The highest side lobe for the "hanning" window is about
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3 times the height of the highest side lobe for the
"hamming" window.
2. The heights of the side lobes for the "hanning" window

fall off more rapidly than do those for the "hamming" window,

In this work window 4 was used for analysis, The smoothed
spectral estimates for a discrete time series using "hamming"

are

SPXX(O) = 0.54 Sxx(O) + 0,46 Sxx(l)

SP, . (p) = 0.23 Sxx(p-l) + 0.54 Sxx(p) + 0,23 5__(ps+1),

(Hamming) (42)

6. Crosscorrelation and Crossspectrum Analysis [ 32, 39, 40]

For two stationary processes X(t) and Y(t), the theory of
cross spectral analysis can be developed along the same lines
as that used for autospectral analysis. This is particularly
useful it one is considered as the input to the system and the
other as the output.

The crosscovariance (cross correlation) of the two series
X(t) and Y(t) is calculated as

-]

R, () =% I X(t) Y(t 4 7)dt (43)

-00
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For a discrete series the estimation is similar to that of
autocorrelation functions. Unlike the autocorrelation, however,

the crosscorrelation is not an even function, i;e..
R T R -T Ly
(T # By (=T) (4)

One can therefore, define two crosscorrelations, one for a
positive lag and one for negative lag., For a discrete record
of n data points the crosscorrelation between two series X(t)

and Y(t) with a positive lag is

Ne=T
—
ny('r) = === q:s:__l X(q) Y(qg + T) (45)

and with a negative lag is

N=T
B (-7) ==2- £ X(qg+ 7) ¥{a) (46)

Xy n-7 q:l
The crosscovariance attempts to determine the correlation
between the two series at each frequency. For 2 continuous

time serles, the crosscovariance is given by

3 4
Bxy('r) = 7 -T/ZI xT(t) YT(t + T)dt (47)

where XT(t) and YT(t) are defined as in Equation 31. Equations
43 and 47 are equivalent since XT(t) and YT(t) are zero outside

the range -T/2 < t < T/2. The cross-spectrum is defined as the
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Fourier transform of the crosscovariance and written mathemati=

cally as

o =iwT
S (w) = ] R_(T) e aTt (48)
Xy o X

- Y
It should be noted that unlike the autospectrum the cross-
spectrum is a complex quantity and, therefore, can be written as

a sum of real and imaginary parts. Equations 48 can be rewritten

as
W) = C W i W n
80 = O (0) 4+ 1Q () (49)
in which
C_ (w) = cospectrum of series X(t) and Y(t) at frequency w
Qxy{w) — quadraspectrum of series X{(t) and Y(t) at

frequency w

The cospectrum measures the contributions of oscillations
at different frequencies to the total crosscovariance (cross-
correlation) at lag zero between two time series whereas the
quadrespectra measures the contributions of the different
harmonics to the total crosscovariance between the series when
all the harmonics of the series X(t) are delayed by a quarter
period.

Assumptions similar to the ones made in the development of

autospectral analysis may be made for computing the cross-
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spectrum of a finite record., Under these assumptions the
cospectra and quadraspectra for a discrete finlite series can be

calculated using the following relationships.,

L o _
Cy(P) = 4E I [R (7] & R ()] cos(p /7)) (50)
bt 5
Qxy(p) = = Tzo[ny(‘l‘) - ny(—‘f)] sin(p /) (51)
in which
nut
P = ..;T.n.

m = number of data points in the record

t=1/29 T=0and.1'm

1, 0<r<T (52)

These raw estimates of the cross-spectra are, then, smoothed
by "hamming". The smoothed spectra are used for further analysis
and interpretation.

As the cross-spectrum is a complex quantity, its amplitude

can be calculated using the relation

2 2 1/2
am, o (w) = [SC (w) + SQXy(W)] (53)
in which
Scxy — smoothed estimate of the cospectra

SQxy = smoothed estimate of the quadraspectra
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Likewlise, the phase difference of the smoothed estlimates of the

cross-spectrum 1s
PH, (W) = ARCTAN(SQ, /SC,.) (54)

Two other important quantities the transfer function and
coherence can also be calculated from the information obtained
from the crossspectrum analysis, These are described in the

next section.

7+ Transfer Function and Coherence

These two quantities are useful in Interpreting cross-
spectrum results. When crosscorrelation is used, one searches
for correlations fof different lags in time considering the
process as a whole, On the other hand when a coherence function
1s used one investigates 1f there is any correlation between the
frequencles in a very small range of frequencies. The coherence
function provides a direct measure of the square of the
amplitude correlation at frequency w; this coherence square can
be defined in terms of the smoothed cospectra, quadraspectra,
and spectral estimates as follows:
scfty + sr.:z,fcy

2
Y© (w) = A
xy SP, . SPYY

(55)

It can be shown that the numerical value of the coherence square

function usually lies between 0 and 1.
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The power spectral functlon 1s useful in computing the
transfer function for the system from the measurements of input
and output. If prx(w) is the power spectral function for the
input and SPyy(w) is the power spectral function for the output
(Fig. 3.6), then [41]

2
SPyy(w) = SPxx(w) H(w) (56)

in which H(w) is the transfer function from the input to the

output and is expressed as

H(w) = E(w) e° (57)

8 being the phase of the transfer function. It should be noted

that only the magnitude of the transfer function appears in this
relation (Equation 56) and no information regarding the phase

is available. Crosscorrelation and cross spectral calculations

need to be used if any information regarding the phase angle is

desired. It has been shown by Solodovnikov[44] that for a

linear system
Sny(W) = H(w) SP__(w) (58)

By combining Equation 58 with Equation 59, it can be shown that
for linear systems the coherence square 1s independent of

frequency and is always equal to unity. The coherence function,



Input X(t) Output Y(t)

input Autospectrum=g, (f) Output powerspefrum=swlf)

Fig36. System representation for transfer
function calculation.
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therefore, serves as a measure of linearity of the system,
Small coherence at any frequency w indicates that both C(w) and
Q{(w) are small. Therefore, the estimate of Q(w)/C(w) is likely
to have a very large variance. Frequenclies with high coherence
will be more 1nformafive. A plot y2 vs w for O <sw<m
1s called the c¢coherence dlagram.

For a system which deviates slightly from linearity, the

output Y(t) can be expressed as

oo

Y(t) = [ h{T) X(t - 7)dT +7 (%) (59)
0
in which
n(T) = unit impulse response function

7l (t) = noise

One of the problems in spectral analysis 1s the estimation of
the noise spectra. This spectra gives an indlcation of
periodicities in series Y(t) which are not shared by X(t).

This can be computed as

- - v? 60
SI;m (W) = SPyy(w){l ny(w)} (60)

It is assumed in this analysis that the coherence between X(t)
and (t) is zero for all frequencies, i.e., these two series

are assumed to be orthogonal.
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CONCLUSION
When all the spectral information is obtained the next step

1s to physically interpret the results and propose methods to
predict or forecast future values of the time series. This is
a black bex approach in that one measures the input and output
of the system and tries to find a functional relation that
relates them in the frequency domain, without being concerned
about what takes place-in the system. These calculations yield
a measure of linearity of the system and the relation between

two time serles considered for analysis.
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CHAPTER IV

APPLICATION TO WATER POLLUTION STUDIES

INTRODUCTION

The water quality parameters of interest in this investiga-
tion are dissolved oxygen, flow rate, BOD, coliforms and
temperature. In developing mathematical models for water
quality, the temperature is often assumed to be constant [8. 11,
13] and the change in dissolved oxygen 1s often related to the
corresponding change in BOD. Most of the water quality models
developed so far [6. 8, 11, 12, 13] have followed this approach,
but water quality prediction methods based only on dissolved
oxygen and BOD have proved to be inadequate because of the
inherent complexity of the system [14, 1?]. Because of this
complexity 1t may be necessary to consider temperature and the
growth of microorganisms and their effect on the other water
quality parameters. The nature of microblal growth and the
response of these living organisms depends on many environmental
factors; therefore, the response may not be identical under
ldentical conditions of temperature, BOD and dissolved oxygen.

To include microbial growth in the model, one must under-
stand how the bacterlal count is related to other water quality
parameters such as temperature, BOD and dissolved oxygen.
Spectral analysis technlques can be useful for this purpose,

Flve time series representing the temperature, dissolved

oxygen, BOD total coliform and flow rate are used in the present
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work to gather the spectral information related to the water
quality parameters. This analysls enables one to forecast
future values of water quallty if the amount and type of the
waste discharges are known. This information is also useful in
determining the relationship between various water quality
parameters and serves as a measure of linearity among these
variables, Here the study of this spectral information is
divided into two distinct topics, variable correlation and
position correlation.

l, Variable Correlation: The correlation between the various
varlables measured at one particular location is determined.
The data obtained for these calculations are for all the variables
at one particular location. Some of the relationships to be
investigated are represented in Fig. 4.1l. The transfer function
for each of these blocks 1s determined by calculating the input
and output power spectrum. Each block 1s tested for linearity
by calculating the coherence function between the input and
output.

2« Position Correlation: 1In this part of the investigation
correlation between the same variable measured at different
locations 1s calculated. This information is then used to
determine the transfer functlon relating a variable at two
locations and to formulate models for the change of the water
quality parameters with position. For this analysis data
collected from the same stream are used. Agailn, coherence

functions are calculated to measure the linearity of the system



57
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Fig.4.1.Systems to be examined using spectral
analysis.



58

and to formulate mathematical expressions describing the
changes in water quality. The data used for this analysis were
obtained from the avallable data on the Ohlo River. Data from

five stations on this river are used in this investigation.

DESIGN OF SPECTRAL ANALYSIS

Spectral analysis requires a large volume of data at a
very small sampling interval. The shortest period that 1is
necessary to resolve determines the sampling interval and the
longest perlod necessary determines the total record length.
It is assumed in this investigation that resolutions of 24 hour
periods will be sufficiently small for a nontidal stream. To
resolve this period a sampling interval of duration no greater
than 12 hours must be used. The longest period resolved from
any record depends on the number of lags used in the computation
and the sampling interval. It has been shown [35] that
calculation up to a lag of 10% of the total number of measurements
is an optimum balance between the resolution of spectral
components and the precision of individual spectral estimates.
The total record length and the sampling interval employed in
this investigation were limited by the amount and type of data
available. As shown in Table 4.1, experimental data from
several stations on several rivers were obtalned for this inves-
tigation. The duration for each record is approximately one
year, The information regarding these statlons was obtained

from Reference 45. Digltized tables were available at some of
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the stations but for others (e.g. Omaha) strip charts were

obtained from FWQA and digitized manually.

COMPUTATIONAL PROCEDURE

A general computer program was written during this
investigation to carry out the spectral calculations on an IBM
system 360/50 digital computer. This program calculates the
autocorrelation functions, the estimates of power spectrum,
crosscorrelation functions, the cross spectrum, transfer function
and the coherence function of the time series., Three other
computer programs (Table 4.2 and Appendix 4) were obtained from
other sources and theilr performance compared with the one
written during this work. It was found that BMDO<T, a program
written by University of California, Health Sclence Computing
Facility [46] was very efficlent and suitable for these
computations. This program was used for all computations in this
spectral analysis. Detalls of thls and other programs are
presented in the references [46, 47, 48] and will not be
repeated here. A brief summary of each of the programs can be

found in Appendix A,

ANALYSIS AND INTERPRETATION OF THE DATA

Before proceeding with the spectral calculations all the
raw data were examined to detect any perlodicity, recurring
frequencies or missing observations. Values for missing

observations were supplied using linear interpolation and the
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Table 4,2 Programs From Other Sources

1) BMDOZT University of California, Los Angeles [46]

2) BMDX92 University of California, Los Angeles [47]

and

3) FUTSA University of Tennessee [48]
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preceeding and following data points or by examining the cycle
of events graphically and determining values for the missing
observations.

The complete data (no missing observations) were then
subjected to harmonic analysis to determine any major periodic
events, In this analysis only a few of the records were
subjected to harmonic analysis, because periodicities in some of
the records were similar and it was not necessary to identify
them for every case. Only three of the five water quality
parameters could be adequately examined because of the need for
actual data at frequent intervals for harmonic analysis,

To obtain the correlation between two variables, the
transfer function, crosscorelation, and coherence were evaluated
directly using the complete data (no missing observations).

The results of this analysis are presented in the next section

along with the physical interpretation,

POSITION CORRELATION ANALYSIS FOR THE OHIO RIVER
Analysls of Flow Records

Flow records for the dally flow of the Ohlo River were
obtained for the five different monitoring stations listed in
Table 4.1. Each was examined individually for the presence of
any periodicities or recurring frequencies, These values
(monthly averages) are tabulated in Table 4,3, This mean values
indicate that ﬁhe average flow lncreases as one proceeds down

stream from Station 1. It was observed that Stations &
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(Miami fort) and 5 (Cincinnati) are close together and, there-
fore, there is little change in the flow between Stations 4

and 5. Station 5 was, subsequently, omitted from the analysis
of the flow behavior. The peak flow in each of the records

was noted and the time of travel of this peak from one station
to the other was determined.

1. Autocorrelation Function (Autocovariance): The autocorrela-
tion values for the fléw records at Station 1 (South Heights)
are tabulated in Table 4.4 and are plotted in Fig. 4.2. The
autocorrelation function is positive till a lag of 21 days, and
then positive again between 36 and 40 days. These results
indicate that large changes in stream flow usually occur over a
period of time requiring many days. If the flow fluctuated
daily about the mean flow, the autocorrelation would drop toward
zero very rapidly. On the other hand, for a very slowly chang-
ing flow, the autocorrelation function would decrease toward
zero very slowly, Since the autocorrelation function at zero
lag 1s the varlance, this value can be used as a measure of the
variation that 1s present in the system.

A second order polynomial can be fitted to these
autocorrelation values. All the autocorrelation values at this
station were normalized by dividing the autocorrelation at any
lag by the autocorrelation at lag zero. These values are present
in Table 4.5 along with the normalized autocorrelations at other

stations., These normalized autocorrelation values serve as a
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Table 4,4 Autocovariance of Flow Records (xlo-é),
Ohio River.

Lag Autocovariance Autocovariance Autocovariance Autocovariance
(days) of Station 1 of Station 2 of Station 3 of Station b
0 745,618 861, 248 4 278,906 8511.479
1 681 . 294 813.883 4101.512 8293.523
2 621.915 737.117 3804.397 7851,134
3 581,428 677.119 3486, 246 7306,907
L 552.545 638.358 3192.800 6736.543
5 517 .490 600. 226 2932.626 6167.683
6 482,313 557« 944 2701.833 5624, 250
7 LL2,830 -508.777 2497431 5119.795
8 403,111 458,941 2318.118 4659,191
9 366,481 L12.252 2143.470 L227.834
10 312.849 364,574 1951.922 3805.026
11 274,032 315.761 1748,473 3366.814
12 235.530 276,463 1547,680 2927 ,.890
13 212.051 242,303 1353.810 2471 ,896
14 169,493 209,767 1175.113 2032,316
15 142, 246 178.343 995.956 1634,386
16 111.491 142.119 830.553 1300.916
17 87.817 108.871 680,514 1014,501
18 68,081 81,262 529.019 745,297
19 50.328 60.679 382.319 495,868
20 31.215 38.331 248,635 262,568
21 12.466 15.848 133,938 63.789
22 4,682 ~2.633 45,287 -100,104
23 -15-262 '160278 -23'529 -25209?3
24 -25.482 -300651 -101!398 —u11.021
25 -41,739 -48,890 -174,817 -562,764
26 -55.823 -64,671 =244 ,817 =695, 290
27 -64,985 =75.252 =-295.032 -807.471
28 ~73.289 -83.550 -318,476 =870,407
29 -78,.813 -89,757 =341 ,006 -872.023
30 -80.553 -93.851 -336.439 -843,010
31 =76 .,479 -91,538 -306,380 ~801,.434
32 -64,833 ~83.,441 -271.856 ~7U46,596
33 -54,672 ~69.423 -231.090 -662.974
34 =40,.807 -52,604 =176.455 -553.054
35 =23.600 -31.450 -100.037 ~415,557
36 -1.770 ~8.271 4,760 -2524=54
37 19.741 18,350 128,012 -69,924
38 41,670 k5,126 250,462 136,296
39 66,478 754853 374,636 346,085
4o 91.668 106.397 L77.400 536.389
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Table 4,5 Normalized Autocovariances for Flow
Record, Ohio River (1968),

Station South Helghts Stratton Huntington Cincinnati
Lag (days) (Station 1) (station 2) (Station 3) (Station 4)
0 1.000 1.000 1.000 1.000
1 0.9137 0.9450 0.9586 0.9743
2 0.8340 0.8558 0.8892 0.9224
3 0.7797 0.7862 0.8148 0.8585
4 0.7410 0.7411 0.7461 0.7914
5 0.6940 0.6969 0.6853 0,7245
6 0.6468 0.,6478 0.6313 0.6607
8 0.5406 0.5328 0.5418 0.5474
Q9 0.4915 0.4725 0.5009 0.4966
10 0.4195 0.4232 0.4560 0.4470
11 0.3675 0.3677 0.4086 0.3954
12 0.3158 0.3209 0.3616 0,3439
13 00,2709 0.2813 0.3162 0.2903
14 0.2273 0.2414 0.2746 0.,2387
15 0.1907 0.2070 0.2325 0.1919
16 0.1495 0.1650 0.,1940 0.,1527
17 0.1177 0.1263 0.1589 0.1191
18 0.0913 0.0942 0.1236 0.,0875
19 0.0674 0.0703 0.0892 0.0581
20 0.0418 0.0447 0.0579 0.0308
21 0.0161 0,0183 0.0310 0.0074
22 -0,0062 -0.0030 0.0105 =-0,0117
23 -0 00204 -0.0188 -0.0053 “0-0296
24 -0,0341 -0.,0355 -0.0236 -0,0482
25 -0.,0559 -0.0566 ~-0.0406 -0,0618
26 -0-0?48 —0.0?SO -0.0570 -010816
27 -0-0871 -0.08?3 -0-0689 -0.91"'8
28 -0,00982 -0,0969 -0,0743 -0.1022
29 -0-105? —0.1041 -0.0?9? "0-102‘4’
30 -0.1080 -0.,1089 -0.0785 -0,0990
31 -0.,1025 -0.1062 -0,0715 -0,0941
32 ~0,0869 -0.9680 -0.0633 -0,0876
33 -0,0733 -0,0805 -0.,0539 =0.0777
34 =-0,0547 -0,0610 -0.,0411 -0,0649
35 -0.0316 -0.0364 -0.0233 -0,0487
36 -0.0023 -0.0095 0.0011 -0,0296
37 0.0264 0.0212 0.0299 -0,0081
38 0.0558 0.0523 0.0585 0.0159
39 0.0891 0.0880 0,0875 0,0406
4o 0.1229 0.1234 0.1115 0.0629
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criterion to compare the autocorrelatlon values at these stations.
The monthly averages for Statlon 2 are also presented in Table
4,3, These values are generally larger than the flow values at
South Heights (Station 1) meaning that in addition to the
transfer of bulk material from Statioﬁ 1 to Station 2 there is an
input side stream added to the river. The graph of this auto-
correlation function (Fig. 4.3) has a form very similar to the
one for the South Heights station. The autocovarliance (auto-
correlation) is negative for all lags between 22 and 36 and is
positive otherwise., The autocovariance once agaliln reaches a
minima at a lag of 30 days. The flow data at the other two
stations (Stations 3 and 4) on the Ohio River are also summarized
in Table 4.3. The average flow rates at Stations 3 and 4 were
considerably higher than these at the first two stations. This
was mainly due to additions from two streams, Muskingum and
Kanawha. Autocorrelations of flow values for these two stations
are plotted in Figs. 4.4 and 4.5. These values in a normalized
form are also presented in Table 4,5. The autocorrelations
(autocovariances) show a similar trend; all of them reach a
minimum value at a lag of thirty days. The normalized auto-
correlations are plotted in Fig. 4.6 for comparison. This figure
shows that the autocorrelations for the same lag tend to decrease
as one moves downstream from Station 1.

2« Power Spectral Estimates: The power spectrum estimates at

Station 1 which are calculated according to Equation 31.are

presented in Table 4.6 and in Fig. 4.7. The spectral estimates
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for smaller frequencies are exceedingly large. The period

| corresponding to each frequency can be calculated by noting that

= 2 6
P=x (61)
in which

P = period in days

f

frequency in dycles/day'

It should be noted that each of these periods corresponds

to a lag and is related to the lag by the following relation

_ 2mAT '
P, = 2n0l . (62)
in which
Pr = period corresponding to lag r
AT = sampling interval in hours
m = total number of lags

T

lag number

The spectral estimates at this station are very large for
low frequenclies but drop suddenly at a frequency of 0,1 cycles
per day corresponding to a 10 day period. After this frequency
the estimate oscillates showing a number of periodic components,

Power spectral estimates at Station 2 in Fig. 4.8 show two
somewhat slgnificant perlods at frequencies of 0,125 and 0.2
cycles per day, corresponding to periods of 8 and 5 days

respectively., There 1s apparently no spectrum for frequencles
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higher than 0.3 cycles/day. These values are also tabulated in
Table 4.6,

Power spectral estimates at the other stations (Stations 3
and 4) are also presented in Table 4.6. These estimates do not
show any significant periodicities. For Hungtington (Station 3),
the spectral estimate drops to a low value for a frequency of 0.2
cycles/day and remains almost constant except for small periodic
components., For Cincinnati (Station 4), the spectral estimates
show no significant periodicities. These estimates are shown in
Figs. 4.9 and 4.10. The flow records were also analyzed by
harmonic analysis techniques, The residual data were calculated
by removing the first, second and the third harmonics. The
spectral estimates of these resliduals show a periodic event with
a period of about 14 days. This feature is common at all the
five stations. The results of spectral analysis of the residual
records are also shown in Figs, 4.7 to 4,9,

3. Crosscorrelation function (crosscovariance): Crosscovariance
(crosscorrelation function) values for a correlation monitoring
stations (Stations 1 and 2) are shown in Fig. 4.11., These values
are not symmeterical; the crosscovariance for negative lags is
larger for very small and very large lags than the ecrosscovariance
for positive lags. For intermediate lags, however, the
crosscovariance for positive lags is larger. This can be
interpreted in the followling way., If the flow rate at station 1

1s above normal, then the flow rate at station 2 was above normal

for the previous 21 days and will be above normal for a lag
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Table 4,6 Power Spectral Estimates of Flow Records, Ohlo River.

Frequency
(Cyecles/
Day )

0.0
0.012
0,025
0.037
0.050
0.062
0.075
0,087
0.100
0,112
0.125
0.137
0.150
0.162
0.175
0,187
0,200
0.212
0.225
0.237
0.250
0,262
0.275
0,287
0,300
0,312
0.325
0.337
04350
0,362
0.375
0.387
0.L400
0,412
0.425
0,437
0.450
0.462
0.475
0,487
0.500

Power Power Power
Spectral Spectral Spectral
Estimates of Estimates of Estimates of
Station61 Stat10n62 Stat10n63
( x 107°) (x 107°) (x 107°)
3819,006 4h65,197 2326.6516
3350.475 3910.924 1980.0330
1969,918 2280.849 1108.4156
688,752 803.752 373.9676
318.011 L05.063 190,7837
132.927 207 . 419 131.4337
89,547 149,554 108.6604
874316 114,701 85.0515
83.659 92.609 66.6785
80.935 874317 49.6595
82.352 98,105 L0.6386
67.785 90,306 23.4193
63,820 79,518 15.8825
52.159 60,124 14,0573
42,065 52.408 12.9230
35.612 h5,172 9.4057
42,612 504317 9.1239
Lh, 366 43,280 9.4123
37.633 28 . 240 8.0017
30,910 17.568 L,7270
32,466 19.226 L,4125
23,838 13.695 2.8633
18,494 10,137 3.0245
14,895 8.048 2.9246
14,900 10,172 2.,8064
14,716 8,296 2.0799
19,117 7961 2.2907
19,739 4,811 1,9675
15,891 3475 2,8601
10,168 1.324 1.9515
8443 2+339 1.2150
5,117 1.633 1.3680
5,547 3.123 1.6952
6,747 2.726 1.3318
9,451 2.697 1.8556
12,197 1.099 L.4942
15.215 2.881 1.2542
15.109 3,469 1,1314
12.375 b, 448 1.5303
64272 2.989 1.3740
4,733 2+ 548 1.5635

Power
Spectral

Estimates of
Stationéh
=)

(x 10

L56h 6512
40413,9750
2399.2500
867.1608
396,3616
219,8349
163.2221
138.4812
101, 2305
54,1535
35.2294
15,0292
13.0911
18,1469
17.5881
8.8814
7.8742
6.2155
7.9607
5.4578
L,0504
2.8359
2.8529
1.4948
3.0504
2.3342
2.0325
1.3138
1,8170
0.9920
1,2798
1.5605
1.5036
1.8055
0.6871
0.9023
0.5957
1.4522
1.2990
1.8226
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period of 22 days. It wlll be below normal or constant for lags
between 23 and 36 days and also for lags from -23 to =36 days.,
For these two stations the crosscorrelation peaks near zero

lag.

The crosscovarlance between time series representing flow
rates at station 1 and 3 and 1 and 4 is shown respectively in
Figs. 4.12 and 4.13. The general nature of the curve is the
same as that for Stations 1 and 2. The crosscovariance reaches
minima at two points corresponding to lags of 30 and -30 perilods.,
While, it cannot be easily visualized from these figures, unlike
in Fig. 4,11 each of these crosscovariances reaches a maxima at
a lag of 1-3 days., This 1is because after this period the same
bulk of fluid is present at the next station, and hence there is
a good correlation. These crosscovarilance are tabulated in
Table 4,7(a-c).

b, Transfer Function and Coherence: The amplitude and phase
of the transfer function relating the flow between each of the
three sets of stations may be tabulated as a function of the
frequency. The amplitudes which are plotted in Figs., 4.14 and
4,15 indicate an increase in the flow rate as one proceeds
downstream from Station 1. The amplitude functions fall off at
high frequencies just as amplitudes in Bode diagrams do for
flrst and second order systems. Comparison of the experimental
amplitude--frequency plot with the theoretical curves for first

and second order systems indicate that the system is close to a

first order one with small nonlinear interactions.
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Table 4.7a Crosscovariance of Flog Record between
Station 1 and 2 (x 10™°)

Crosscovariance
between Stations 1 and 2
(Negative Tau)

Crosscovariance
between Statlions 1 and 2
(Positive Tau)

oo Swp-HO

780,077 780,077
735.927 740,743
672,564 676,115
626,443 628,352
591,680 593.745
558.379 5584357
479.144 474,905
437.378 429,853
396.532 388,715
345,954 343,252
299.742 291.012
262.853 29,106
231.968 209,432
201,258 174,035
171,483 145,669
136,456 114,464
106,693 88.622
82.924 64,825
64,170 45.703
43,491 254597
21.871 54578
3.774 -10,788
-10.022 "20.?28
=23.528 -31,416
"L"l [} ?98 -48 004?
-57.063 ~62,010
-6?'26“’ "? 20 212
"'84- 168 -830 298
-86,852 -87.157
-81.995 -85.149
=70.922 =76,169
=-58,160 =64,757
-450??4 -48e030
-28,081 ~-28,185
-4,851 -5.330
19,422 19,270
41,772 4l 470
68,060 73,046
95,565 101.146
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Table 4,.,7b

Crosscovariance of Flow Record_
between Stations 1 and 3 (x 10

Crosscovariance
between Stations 1 and 3
(Positive Tau)

1571,601
1623,765
1569,083
1478,.858
1393.004
1311.607
1225.,147
1138,581
1063.954
995,109
910,190
818,859
737.303
646,583
560,549
Lo2,689
418,506
345,865
284, 225
219,993
156,334
103,704
55.174
12.997
-55-837
-9L4, 229
=116,.044
=124,516
-134,967
~135,045
~123,651
=100, 570
-61.821
-29.570
11.733
59.011
111.529
161,425
211.931
266,374

6

)
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Table 4.,7¢ Crosscovariance of Flowéﬁecord between
Stations 1 and 4 (x 107°).

Lag Crosscovariance Crosscovariance
Days between Stations 1 and 4 between Stations 1 and 4
(Positive Tau) (Negative Tau)
0 2128,062 2128.,062
il 2160.,959 1999.896
2 2145,162 1820, 389
3 2083.713 168 2,772
L 1999,148 1571.745
5 1905,997 1444, 096
6 1794,.148 1300.929
7 1676.950 1171.734
8 1570,649 1035,488
9 1467, 299 897.298
10 1349,987 761,504
11 1235.326 633.707
12 1118 , 371 536,587
13 986,079 L40,833
14 848,084 346,397
15 725,584 2l6,923
16 615.442 152212
17 513.994 68,771
18 420,941 3,418
19 334,797 -53.403
20 237.178 =108,487
21 150,028 ~154,069
22 76.676 =184,563
23 13.787 -209.856
24 ~42,508 -245,326
25 -96,600 -282.460
26 -144,978 -319.153
27 =185, 540 =351.517
29 ~-220,587 -380.046
30 -227.062 -364,073
31 -213.653 -349,705
32 -186,180 =337.933
33 -137.981 -309,078
34 -85.396 -264,738
35 "'310033 "211- 2?8
36 28.597 -148,892
37 92.924 ~-78.664
39 224,013 61,001
%) 293,068 121.554
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The coherence squares tabulated in Table 4.8 can be used as
a measure of linearity. A system 1s classified as linear if the
coherence square between the input and output is independent
of frequencies and is equal to unity for all frequencies, For
the flow rate between Station 1 and 2, the coherence square
ranges from 0.09974 to 0.9989. This means that the relationship
between the flow rates is not perfectly linear. At small
frequencies, however, the coherence square function is quite
high and close to unity but this function falls down to lower
values at higher frequencies, Thls indicates nonlinearity in
the systen.,
Analysis of the Temperature Records

Monthly average temperature values for the five monitoring
stations on the Ohio River are summarized in Table 4.9, The
sampling interval for this record was 12 hours; thus, 732 data
points were obtained for each of the time series, The raw data
indicate that the temperature of the stream has some
perliodicities which can be identified using spectral analysis.

The autocovariance (autocorrelation function) of each
temperature series was calculated up to a lag of 104, This
corresponds to 75 lag periods or 37 1/2 days. These results
are plotted in Fig. 4.,16. All autocorrelations (autocovariances)
up to a lag of 75 are positive., This means if the temperatures
~ above the annual mean temperature now, it will probably stay
above the mean for all these lag periods. All autocorrelations

are linear with lag for higher lags but tend to curve off for



Table 4,8 Coherence Sguare between Flow Records at
different stations Ohio River (1968).

Coherence Square

Station 1 Station 1 Station 1
(Cycles/Halfday) and and and
Station 2 Station 3 Station 4
0.0 0.7479 0.8975 0.9003
0.,0067 0.5768 0.7871 0.,8017
0,0133 0.,1271 0.0349 0.0161
0.0200 0.0020 0.0270 . 0.4729
0.0267 0.0314 0.3531 0.1020
0.0467 0.2453 0.3865 0.4692
0.0533 0.1296 0.2582 0.0409
0.0600 0.2199 0.2548 0.6313
0.,0667 0.,1708 0.0128 0.3328
0.0733 0.2330 0.3852 0.3697
0.0800 0.1411 0.0609 0.1613
0.0867 0.0142 0.0041 0.,0687
0.0933 0.0027 0.1503 0.0112
0.,1000 0.3743 0.2681 0.0601
0.,1133 0.,0881 0.2425 0.0728
0,1200 0.1991 0.,0635 0.,1745
0.1267 0.2684 0,0118 0.0717
0.1333 0.3705 0.1492 0.3514
0.1400 0.3996 0.1018 0.1839
0.1467 0.5730 0.1857 0.1520
0.1533 0.1642 0.3473 0.0880
0.,1600 0.0474 0.3428 0.2443
0.1667 0.1007 0.1528 0.2878
0.1733 0.2850 0.2662 0.,1012
0.1800 0.2027 0. 2644 0.1191
0,1867 0.4740 0.0572 0.1953
0.1933 0.0659 0.,0177 0.3342
0.2000 0.,1089 0.0131 0.2826
0.2133 0.3119 0,0089 0.1869
0.2200 0.0478 0.0991 0.1948
0,2267 0.1172 0.0388 0.2062
0.2333 0.1736 0.0574 0.0L64L
0.2400 0.,3417 0.,0594 0.0659
0,2467 00,0484 0.0174 0.0390
0.2533 0.1193 0.428L4 0.1818
0.2600 0.4637 0.0274 0.2033
0.2667 0.1209 0.3350 0.3744
0.2733 0.0624 0.1758 0,2056
0.2800 0,.,2415 0.1581 0,201
0,2867 0.3565 0.1541 0.0949

0.2933 0.1537 0,1981 0.,0588



Table 4.8 (Cont'd)

Coherence Square

Frequency Station 1 Station 1 Station 1
(Cycles/Halfday) and and and
Station 2 Station 3 Station 4
0.3000 0.1250 0.0967 0.0771
0.3067 0.1220 0.3024 0.0269
0.3133 0.4704 0.2921 0.0178
0.3200 0.,2219 0,0111 0.2495
0.3267 0.1802 0.,1738 0,.,2018
0.3333 0.1271 0.0401 0.0961
0.3%00 0.3429 0.,1104 0,0152
0.,3467 0.2638 0.0879 0.0280
0.3533 0.2239 0.,1069 0.0107
0,3600 0.1060 0.2052 0.1446
0.3667 0.1857 0.0357 0.0792
0.3733 0.2877 0,0447 0.1253
0.3800 0.1943 0.3287 0.0115
0,3867 01157 0.4150 0.1130
03933 00,3450 0.0836 0.3048
0.4000 0.3036 0.0562 0.1458
0.4067 0.0781 0.1191 0.0021
0.4133 0.1314 0.0174 0.0215
0.4200 0.2543 0,0252 0,0738
0.4267 0.2016 0.0722 0.1746
0.4333 0.0188 0.0020 0,3687
0.,4400 0.1939 0.0856 0.2637
04467 0.1715 0.0627 0.,0985
0.4533 0.1682 0.0109 0.1410
0.4600 0.2043 0.,0831 0.,1662
0.4667 0.3218 0.1383 0.,0201
0.4733 0.3394 0.0911 0.0073
0.4800 0,2281 0.,0463 0.0020
0.4867 0.1243 0.0678 0.0164

0.4933 0.0995 0,0371 0.0415
05000 0,0772 0,0086 0.0554
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Fig. 4.16  Autccorrelation of temperature record

for Stations|-5, Ohio River, 1968.
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very low lags. This long linear protion of the curve may be

due to the variation in stream temperature caused by seasonal
factors while the nonlinear portion of the curve at small lags
may be caused by changes in stream temperature due to weather
conditions, thermal discharges, and other factors. Extrapolation
of these curves shows that autocorrelation goes below zero for
lags beyond 125. Unlike the autocorrelation for the flow records
these autocorrelations.do not show an& extreme, and are
monotonically decreasing, they can be represented by linear
equations in terms of the lag., The temperature records at all
the five stations were analyzed by means of spectrum analysis.
The results of this analysis are presented in Figs. 4,17 through
L,21,

The temperature series at all the five locations were also
analyzed by means of harmonic analysis., For this, Fourier
coefficients corresponding to each of the harmonics were computed
and the significant harmonics were subtracted from the data,
Table 4.10 summarized these results. In these computations any
harmonic contributing less than 1% to the total variance was
considered insignificant. The harmonic coefficlents A and B
calculated using Equations 9 and 10 (Chapter III) are also shouwn
in this Table, The fundamental period of 366 days and other
large periods (Table 4.10) were removed from the raw data by
substracting off the contributions due to these harmonies. The

resldual record was again analyzed by spectral analysis, This

time some additional periodic phenomena could be observed as
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Table 4,10 Results of Harmonic Analysis of Temperature

Records.
Station Period Harnomic A"
(days) Number
1 366 1 23.1
183 2 2.1
122 3 1.0
91.5 L <1
73.2 5 <1l
2 366 1 21.6
183 2 1.96
122 3 0.86
91,5 4 <1
73-2 5 <]
3 366 1 25.6
183 2 3.1
122 3 2.6
91,5 4 <1
73.2 5 <1
4 366 1 24,1
183 2 2.01
122 3 0.76
91,5 4 <1
73.2 5 <]
5 366 1 26.0
183 2 2.18
192 3 0477
91.5 L <1
7342 5 <1

L ] [ ] -
D NO R

Hoo &

<]

2L, 5
1.18
1.01
<1
<1

19.5
0.83
0.08

<1

%,

23.8
1-96
0.923

<1

<1

26,1
2.62
0.613

<]

<]

- A and B represent harmonic coefficients corresponding to

the harmonics given in column 3 [See Equation (8)].
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shown in Figs. 4,17 through 4,21,

As can be seen from the figures the temperature record
shows a large number of periodicities. This is understandable
as the temperature of the stream can be influenced by periodic
variations in industrial activity. From the figure certain
periodic frequencies can be identified, At all the stations
the raw temperature records show definite cyeclic events corr-
esponding to periods of 1.10, 3.30, 6.50 and 14 days. The daily
period is due to the diurnal cycle that occurs in all streams
and estuaries. Periods shorter than this could not be resolved
as the sampling interval was chosen as 12 hours. The other
periods may be due to some kind of regular discharge causing a
thermal disturbance in the stream, Nonlinear interactions
between several periodic phenomena or certalin complexities
inherent in the system may also cause these periodic phenomena,
The 3 day period which appears to be the largest one for Stations
1l and 5 couldnot be identified precisely. Stations 4 and 5
show some additional rather peculiar cyclic events as shown in
Figs. 4.20 and 4,21, These events range from a periodicity of
1.1 days to 14 days. A periodic event with periodicity 12,0 days
was present at Station 5, Although it is often not possible to
explain the cause of each periodic event by examining only the
temperature record, this together with a knowledge of local
weather information and industrial activity may provide good
understanding of thermal conditlions in the stream,

The crosscovariance between temperature records measured



at two different locations was calculated for half day lag
periods from =75 to 75. All the crosscovariances from the base
station to other stations were positive. As one proceeds further
away from the base station, the crosscovariance decreases

showling decreasing dependence on the temperature at the base
station. Crosscovarlance values were positive for both positive
and negative lags. A Positlve correlation indicates that an
above normal temperature can be predicted for all stations irf
the temperature at the base station is above normal. The cross-
covariance shows some kind of a maxima between lags of -30 and 0,
This phenomena is not unnatural as the temperature at the base
station may be well correlated with the temperature at other
stations with negative lags, These crosscorrelations are shown
in Pigs. 4.22 and 4, 23.

Analysis of Dissolved Oxygen Records

Data for dissolved oxygen Were obtained for five stations
on the Ohio River. The sampling interval was 12 hours and the
duration for this record was one year, This record also shows
several perlodicities.,

Autocorrelation values (autocovariances) for DO records for
all the five statlons were calculated; these results are plotted
in Figs., 4.24 and 4,.,25. All the autocorrelation values are
poslitive and show a similar decreasing trend and decrease with
increasing lag., The slope of these curves, however, decreases
with lag and approaches zero at higher lags., All autocorrela-

tion values are positive indicating that 1if the DO 1s below the
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critical value today 1t may remaln below this value for sometime.
This factor may be qulte important in deslgning a water pollu-
tion control program.

The autocorrelation at Station 5 is considerably lower
than the autocorrelation values at the other stations.

Power spectral estimates of the dissolved oxygen records
are shown in Flgs. 4.26 thru 4,30, The spectral estimate for
Station 1, for example, shows a cyclic event with a period of
10 days (0.05 cycles/half day). This long period (10 days) may
be due to interactions among the variation of the saturation
value of DO with temperature periodicities, the variation in
BOD due to periodic discharges, and the blological grouwth
processes, This l0-day period may also be due to a combination
of several smaller periods. At Station 2, for example, there
are smaller periodicities present corresponding to the
frequencies of 0.2 and 0.35 cycles/day. The five day period
(0.2 cycles/day) and the smaller period (0.35 cycles/day) may
be due to some industrial discharge. Station 2, also exhlbits
a periodic event corresponding to a frequency of 0.88 cycles/day.
This period (1.15 days) is also present at Stations 4 and 5.

Several smaller periods are present at all stations; these
are difficult to interpret. Some of the minor periods may be
due to interactions of several phenomena.

The erosscivariance with respect to position for dissolved
oxygen at different monitoring stations shows certain Iinteresting

results., As shown in Fig. 4.31 the DO records at Stations Z, 3,
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4 and 5 were respectively correlated with the dissolved oxygen
values at Station 1. The crosscovarlance between DO values at
Stations 1 and 2 and 1 and 3 are positive and are more than 2.0,
The crosscovariance between Stations 1 and 3 1s generally

higher than the crosscovariance between 1 and 2. This indicates
that Stations 1 and 3 are more positively correlated than
Stations 1 and 2. Stations 4 and 5 show a negative correlation
with Station 1 with Station 4 being more negatively correlated
than Station 5. Although one would not expect to find a

negative correlation such as this, there may be good reason for
it., For example, runoff from rural areas which is very dependent
on local weather conditions may differ considerably from

Station 1 to Station & in its seasonal pattern. The fact that
the slope is relatively constant for Stations 4 and 5 in Fig. 4.31
suggests that seasonal changes may be at least partly responsible

for these results,

VARIABLE CORRELATICN OF OHIO RIVER DATA

In this sectlon the correlation between two water quality
parameters measured at the same location is considered. The
results are presented in graphical form and where possible
physically interpreted,
Temperature and Biochemical Oxygen Demand

It is known that an increase in temperature often results
in an inecrease in the BOD level in the stream. To verify this

Temperature and BOD were correlated at all five stations on the



115

stream and compared. For all stations these two water quality
parameters show a positive correlation. The relative magnitudes
of these crosscovariances can be obtained by comparing Figs. 4.32
and 4.33. The crosscorrelation function 1s maximum at Station
3 and decreases slightly as one proceeds in elther direction
from this station. All values are positive indlicating that a
higher temperature means higher BOD and, therefore, a higher
state of pollution. The results for Station 5 appear to
indicate that a change in temperature may also lead to a
corresponding change in BOD at a later time. This type of
result would be expected when temperatures decrease as the
Wwinter season approaches.,

Coherence square functions for some of the statlions are
presented in Table 4.11l. The coherence square is a periodic
function of fregquency and ranges from 0,075 to 0.90. This result
means that the relationship between temperature and BOD is not
linear,

Temperature and Dissolved Oxygen

It is common knowledge that the solubllity of a gas
decreases with increasing temperature. The conditions in the
stream are so complex that this may not be the dominant effect,
The temperature and dissolved oxygen correlatlions are shown in
Fig. 4.34, For South Helghts (Station 1), the correlation is
negatlve as expected and temperature and DO have an inverse
relationship. For all other stations, however, the cross-

covariance reaches a positive value, especlally for positive
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Table 4,11 Coherence Square for Temperature and
BOD Correlation.

Frequency Coherence Square

(Cycles/ Station 2 Station 3 Station 5
halfday)

0.0 0.4518 0.9305 00,0688
0.0067 0.4460 0.8820 0.0961
0.0133 0.2554 0.4467 0,0043
0,0200 0.4558 0.1821 0.0965
0.,0267 0.2107 0.1510 0.2608
0.0333 0.9736 0.1761 0.0660
0.0400 0.,7917 0.3726 0.2731
0.0467 0.,6847 0.4770 0.4206
0.0533 0.6495 0.2536 0.1528
0.0600 0.9426 0.2462 0.4502
0.0667 0.5081 0.0466 © 0.0936
0.,0733 0.7759 0.1585 0.2107
0.,0800 0.9498 0.1364 0.1998
0.,0867 0.6211 0.0547 0.2932
0.0933 0.0430 0.1564 0.1917
0,2000 0.5712 0.1209 0.1402
0.1067 1.1918 0.3121 0.2431
0.1133 0.1474 0.2068 0,3306
0.1200 0.7388 0.2308 0.1772
0.1267 0.2843 0.1904 0.1595
0.1333 0.4330 0.1927 0.5207
0.1400 0.3404 0.1242 0.0986
0.1467 0.3135 0.0353 0.0441
0.1533 0.9196 0.0470 0.0494
0.1600 1.0799 0.,0526 0.9243
0.1667 0.3010 0.1506 0.0245
0.1733 0.8928 0.1052 0.1953
0.1800 0.3407 0.1424 0.2020
0.1867 0.5627 0.1286 0.0284
0.1933 0.,2139 0.1458 0.4635
0.2000 0.3845 0.0749 0.0204
0.2067 0.3157 0.1480 08972
Qw213 0.1726 0,0688 0.,0554
0.2200 0.3317 0.0808 0.4117
0.2267 0.1459 0.0911 0.1866
0.2333 0.0468 0.2071 0.3926
0. 2400 0.4834 0.2209 0.3901
0.2467 0.3027 0.1718 0.1042
0.2533 0.3958 0.0717 0.1246
0.2600 0.3539 0.0912 0.1309
0. 2667 0.5649 0.0148 0.1727
0.2733 0.5749 0.,0641 0.2726

0.2800 0.3541 0.0259 0.1292



Table 4.11 (Cont'd)

Frequency
(Cycles/ - Coherence Square
halfday) Station 2 Station 3 Station 5
0.2867 0.2534 0.1026 0.1318
0.2933 0.4174 0.1337 0.0968
0.3000 0.4107 0.0848 0.1028
0.3067 0.6678 0.0185 0.2679
0.3133 0.3553 0.0032 0.0035
0.3200 0.5581 0.0016 0.2358
0.3333 0.7584 0.1191 0.0440
0.3400 0.7740 0.0520 0.0268
0.3467 0.7854 0.0449 0.1159
0.3533 0.5732 0.2508 0.0956
0.3600 0.6325 0.2475 0.1016
0.3667 0.5069 0.1784 0.3411
0.3733 0.2316 0.1296 0.0954
0.3800 0.3067 0.2139 0:1272
0.3867 0.5088 0.2004 0.1R10
0.3933 0.2594 0,014z 0.0529
0.4000 0.3673 0.0561 0.0891
0.4067 0.4630 0.2935 0.1640
0.4133 0.bzzz 0+ 3767 0.2163
0.4200 0.1193 0.1856 0.,0344
0. 4267 0.1088 0.1205 0.0903
0.4333 0.2612 0.1176 0.0250
0.4400 0,.3190 0.,0761 0.0196
0. 4lL67 0.2618 0.0092 0.0432
0.4533 0.1132 0.0673 0.0684
0.4600 0.2560 0.0810 0.1529
0.4667 0.4457 0.,0860 0.0605
0.4733 0.,3471 0.0267 0.0797
0.4800 0.1592 0.1099 0.0217
0.4867 0.,2906 0.1269 0.,0004
0.,4933 0.4710 0.0114 0.0382

0.5000 0.4868 0.0034 0.0407
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lags, For Stations 2, 3, and 4, the slopes of the curves,
which are relatively constant, may suggest a seasonal effect,
Stimulation of algae growth and other photosynthetiec processes
by temperature could account for these results,

Coherence square functions calculated for these two water
quality parameters are shown in Table 4.12. These values are
scattered and thus, they are difficult to plot;however, from
this table the following generalizations can be made.,

i) The coherence square function does not show any definite
shape,

z is very high for low frequencies. This

1i) For station 1,y
drops to a value of 0.142 at a frequency of 0.32 cycles/
day and remains below this value except for a small number
of fluctuations, This indicates a linear relation at low
frequency.

1ii) For Station 2 and 3 coherence value ranges from 0,001 to
0.981.

iv) A changing coherence function indicates a nonlinear

relatibnship between dissolved oxygen and temperature,

The amplitude of the transfer function relating dissolved
oxygen to temperature is always less than 1. This is a function
of frequency as can be seen from Table 4.1 3; however the
amplitude values indicate no definite form for the dissolved
oxygen temperature relatlionship.

It 1s seen from these two correlations, temperature BOD and



Table 4,12 Coherence Square between DO and Temperature.,

Frequency Coherence Square
(Cycles/day) Station 2 Statlion 5
0.0 0.0340 0.8999
0.,0067 | 0.1069 0.8202
0.0133 0.1686 0.0990
0.0200 0.0607 0.0922
0.0267 0.0594 0.3364
0.0333 0.2113 0.2757
0.0400 0.3995 0.0877
0.,0467 0.1768 0.2131
0.0533 : 0.2290 0.2620
0.0600 0.2399 0.4830
0.,0667 0.0326 0.2478
0.0733 0.2234 0.4337
0.0800 0.2061 0.1689
0.0867 0.6405 0.0112 -
0.0933 0.7684 0.1226
0.1000 0.2687 0.3286
0.1067 0.3244 0.,1756
0.1133 0.6341 0.1678
0,1200 0,2713 0.2015
0.1267 0.3677 0.5624
0.1333 0.,0578 0.1315
0.1400 0.0353 0.0530
0.1467 0.2296 0.1364
0.1533 0,0192 0.1050
0.,1600 0.0172 0.1110
0.1667 0.2528 0.2169
0.1733 0.0393 0.2608
0.1800 0.0331 0.1544
0.1867 0.3464 0.0591
0.1933 0.1829 0.0565
0.2000 0.0505 0.3207
0.2067 0.1272 0.2428
0.2133 0,0973 0.2210
0.,2200 0.5695 0.0583
0.2267 0.1172 0.0070
0.2333 0.2267 0.1004
0.2400 0.1004 0.0107
0.2467 0.0881 0+1007
0.2533 0.0422 0.1930
0.2600 0.0254 0.0696
0.2667 0.2187 0.,0623
0.2733 0.2721 0.,0134
0.2800 0.0753 0,0036

0.2867 0.1051 0.0130

N
2%
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Table 4.12 (Cont'd)

Frequency Coherence Square
(Cycles/day) Station 2 Station 5
0.2933 0.0110 0.1244
0.3000 0.0836 0.1130
0.3067 0.2263 0.0360
0.3133 0.1081 0.0399
0.3200 0.2299 0.0262
0,3267 0.0233 0.0743
0.3400 0.0362 0.1902
0.3467 : 0.0922 0.0662
0.3533 0.0478 0.1170
0.3600 0.1191 0.0505
0.3667 0.1424 0,0309
0.3733 0.1392 0.1041
0.3800 0.1213 0.0556
0.3867 0.1191 0.2110
0.3933 0.0544 0.,1196
0.,4000 0.0285 0.0027
0.4067 0.0617 0.1375
0.4133 0.0492 0,1986
0.4200 0.0132 0.2677
0.4267 0.,0483 0.,2151
0.4333 0.,0336 0.3374
0. 4400 0.0362 0.2283
0.4467 0.1928 0.2104
0.4533 0.0382 0.0176
0.4600 0,0017 0.0002
0.4667 0,0184 0.0836
0.4733 0.0934 0.0396
0.4800 0.1313 0.0140
0.4867 0.,1271 0.1644
0.4933 0.1788 0.,2568

0.5000 0.1773 031062
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Table 4.13 Amplitude of Transfer Function relating
DO to Temperature, Stations 1 and 2.

Frequency _ Amplitude
(Cycles/day) Station 1 Station 2

0.0 0.0554 0.0505
0.0067 0.1025 0.0658
0.0133 0.1965 0.0295
0.,0200 0.1471 0.2675
0,0267 0.1737 0.5790
0.0333 0.2311 0.2851
0.0400 0.2328 0.6642
0.0467 - 0.2684 0.7891
0.0533 0.4243 0.5082
0.0600 0.3295 0,7643
0.0667 0.,0671 0.2956
0.0733 0.3118 0.3476
0.0800 0.1790 0,2679
0.0867 0.,2601 0.3029
0.0933 0.3431 0.2879
0.1000 02771 0.2870
0.1067 0.3354 0.3414
0.1133 0.5429 0.3308
0.1200 0.2302 0.2181
0.,1267 0,2001 0.,1716
0.1333 00,2971 0.2418
0.1400 042175 0.1156
0.1467 0,3068 0.1005
0.1533 0.1264 0.1047
0.1600 0,3408 0.3677
0,1667 0, 2059 0.0440
0.1733 0.3077 0.1564
0.1800 0.1602 0.2263
0.1867 0,2596 0.0824
0.1933 0.1759 0,3879
0.2000 0.3676 0.0898
0.2067 0,267 0.5443
0.,2133 0.2601 0.,1173
0.2200 0.1313 0.2518
0,2267 0.1436 0.1570
0.2333 0.2204 0.2629
0.2467 0.2260 0,2985
0.2533 0.2124% 0.2879
0.2600 0.2180 0.2631
0.2667 0,.2078 0.3198
0.2733 0.2049 0,2867
0.2800 0.1863 0.1384

0.2867 0.0154 0.1139



Table 4,13 (Cont'd)

Frequency - Amplitude
(Cycles/day) Station 1 Station 2
0.2933 0.2487 0.1186
0.3000 0.0780 0.0325
0.3067 0,0780 0.0325
0.3133 0.1434 0.2L426
0.3200 0.2269 0.2830
0.3267 0.1258 0.0702
0.3333 0.,0594 0.0505
0.3400 0.1116 0.1099
0.3533 0.0876 0.,1326

0.3600 0.1454 0.1123
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temperature-dissolved oxygen, that the variable correlations at
all stations are not ldentical. The temperature BOD correlation
curve has the same general shape at all statlions, but the
temperature dissolved oxygen crosscorrelations show a change in
sign and a change in shape indicating a change in the nature of
the relationship from station to station.

Dissolved Oxygen and Biochemical Oxygen Demand

Since the oxidation of organic wastes requires oxygen, a
continuously high BOD at any point along a stream should cause
a reduced dissolved oxygen concentration 1f microbial consumption
of the organic wastes is taking place. A negative crosscovariance
between these two parameters 1s observed for all lags as shown
in Fig. 4.35. At other stations the dissolved oxygen-BOD
relationship is similar and, therefore, the results are not
presented.,

The coherence square for the dissolved oxygen-BOD
transformatlion is wvery low indicating a highly nonlinear
relationship. Although the transformation relating DO to BOD
cannot be expressed by a linear differential equation in the
time domain, the functional form resembles the form for a first
order system to some extent as shown in Fig. 4.36. The
dimensional amplitude of the transfer function is always less
than unity and is a function of the frequency., In Flg. 4,36
time is made dimensionless by employing a time constant of 3 days

and the amplitude is made dimensionless by dividing by an

amplitude of 1l.56z%,



Crosscovariance

| 1

L

Fig 4- 35

/

~a5 35 0 15 25 75

Lag (half day periods )}
Crosscovariance between dissolved oxygen

and BOD at Station 2, Ohio River (1968)

b B



128

First order system
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Fig4-36 Comparison -of amplitude of dissolved oxygen
and BOD transfer function with that for a
linear first order system, Station 2, Ohio

River (1968)



Some crosscorrelation results between temperature and
coliform count are shown in Fig. 4.37. These results and the
crosscorrelation results relating dissolved oxygen and coliform
are scattered due to the nature of the coliform time series;
however, the results do indicate a positive correlation between

temperature and coliform concentration.

ANALYSIS FOR OTHER STREAMS

The sampling interval for the data obtalned from the Coosa
and Detroit Rivers was not small enough to resolve the daily
periods. These data were also analyzed using spectral analysis
techniques., The results of thls analysis is presented in the
following sections.
Detroit River

The results for this river are presented in Figs. 4.39 thru
4,42, In Fig. 4.39, temperature, DO and BOD autocovariances are
compared. For this stream all the normalized autocovariances
fall in the same range. Crosscovariances are plotted in
Figs. 4.40 through 4.42. For this river more information on the
coliform count was available, and, therefore, the results with
coliform should be more meaningful. The scatter in the cross-
covariance values however, makes 1t imposslble to plot these
results which are shown in Tables 4,14 and 4,15, Crosscovariance
values between BOD and coliform count are negative showing a
negative relationship. The crosscovarlance value tends to

decrease with lags, and reaches a minimum of -2976 at a lag of
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Fig.4.37 Crosscovariance between temperature  and
coliform at Station |, Ohio River (1968).
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Fig-4-39 Comparison of normalized autocovariance
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and BOD, Detroit river (1965).
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Fig-4-4| Crosscovariance between temperature and

dissolved oxygen, Detroit river (1965)
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Fig-4-42 Crosscovariance between dissolved oxygen
and BOD records, Detroit River(1965)



Table 4.14% Crosscovariance between BOD and Coliforms,

Lags
(Days)

VOO FWPH PO

Detroit

Crosscovarliance
(Positive Lag)

River.

-1645.630
-1782.123
-1742,288
-1943,806
‘1955-629
-1960|218
-1722.844
-1859.088
-1971.621
-1875.666
-218118?9
-2131.885
~1911, 281
-1975.816
-2117.460
-2035.323
-1898.292
-2095.375
-2366o650
-2276.294
-2219.031
-25210?61
-2637.032
-2585.198
~2425,569
-ZSHBOBQO
‘26081882
-2299.920
-2515.219
-2538.885
-23150006
-2483.529
-2658.491
-2919,403
-2849,830
-2914,599
”2911!360
-29?3|7b6
-29?60631

Crosscovariance
(Negative Lag)

-1652.746
=1715.417
-1745.831
-1805.902
-1851,901
-15530277
-1838.061
-1?@0.201
-1863.898
~1736.633
-16950930
-15291941
-1978.516
-1717.,103
-1861,124
-1869.815
-1775.966
-1950,637
-2053.647
-2135.403
-19&20669
'22“3-978
-2178.728
-2258.572
“2429-654
~2315.233
—2299n316
-2392.449
-2”9?.584
-2443,651
-2355.712
-2318.524
-23&30010
-2314,225
-2286.650
-2270.414
-25360166
-2404,014
=-2390.032

135
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Table 4.15 Coherence Square and Amplitude of Transfer
Functions Relating Dissolved Oxygen and Temperature,
Detroit River.

(C§ng:;gzgs) Coherence Square Amplitude
0.0 0.0854 98,4864
0.0125 0.0417 74,1684
0,0250 0.0353 137.7814
0.,0375 0.0344 517 . 2260
0.0500 0.0066 226.1953
0.0625 0.1041 832.3232
0.,0750 : 0.0442 i1, 9741
0.0875 0.0284 324.8149
0.1000 0.0677 654,0903
0.1125 0.0533 545,6381
0.1250 0.0535 912.5700
0.,1375 0,1113 1418,9616
0.1500 0.3175 2589,41 28
0.1625 0.1887 1687.5415
0.1750 0,0405 590,5170
0.1875 0.,0396 Lok ,9807
0.2000 0.0732 835.0295
0.2125 0,0751 889.5156
0.2250 0.1027 1289,2966
0.2375 0.,0029 225.7072
0.2500 0.0940 1261,0937
0.2625 0.0408 683, 5441
0.2750 0.1816 1618, 2949
0.2875 0,2345 1765,7609
0.3000 0.0004 77,0189
0.3125 0.0722 992,3728
0.3250 0,1769 1909,0903
0.3375 0.1244 1756.8349
0,3500 0.0621 1118, 2314
0.3625 0.0309 733.4743
0.3750 0.0144 366,0627
0.3875 0.,0383 616.7397
0.4000 0.1995 1556, 2970
0.4125 0.1952 1591,8190
0.4250 0.1440 1536,0383
0.4375 0.0264 559,9746
00,4500 0.0780 1070.4306
0.4625 0.1665 2017 .3818
0.4750 0.1330 1693, 2348
0.4875 0.,0735 1218,908z2

0.5000 0.,0939 2145,4819
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40 days. Coherence square between these two variables. is
very low; it ranges from 0 to 0.32 and 1s a function of frequency,
This indicates a nonlinear relationship between the BOD and
coliform count. The amplitude of the transfer function does
not show any definite functional form; in fact, these values
peak at several frequencles.,
Coosa Rlver

For the sampling station on the Coosa river some information
about BOD and coliform was avallable., Some of the data were
interpolated by a linear interpolation procedure to generate a
continuous record. These data were analyzed in the same manner
and the results are presented in Figs. 4.43 through 4.45,
In Fig. 4.43, normalized autocorrelations for BOD, DO and
temperature are plotted, Unlike the autocovarlances for the
Detroit River, the autocovariances for DO slope down to a very
low value. Extrapolation of this curve shows that the
autocovariance for DO on the Coosa River would reach zero for
a lag of 52 days, whereas for DO on the Detroit River it would
take more than 85 days. The results show a negative relation-
ships between DO and BOD and between DO and Temperature.

The crosscovariance values for a correlation between DO
and coliform are all positive indicating (Table 4,16) a
positive relationship. This means if dissolved oxygen
concentration increases from normal, the coliform count also
increases. Coherence square and amplitude of the transfer

function from DO to coliform are presented in Table 4.17,
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Fig 4.45. Crosscovariance between BOD and
dissolved ~ oxygen, Coosa River (1965),



Table 4,16 Crosscovarliance between DO and Coliform,
Coosa River,

(Day)

Vo~ Fuwpp o

Crosscovariance
(Positive Tau)

3953.17
3924.51
3886,04
3753.22
3747.94
3624,.17
3543,91
3391.38
3417.60
2
3366.3

3226,68
3296.,94
3218.89
3212.89
3222.75
3215.60
3236.45
3265.17
3215.89
3069, 20
3136,.80
3183.92
3101.72
2047 .94
3837.51
2784 .50
2771.32
2700.11
2795.47
2642.80
2569,02
2453,41
2519.,07
2549,00
2603.85
2694 ,80
2696, 35
2611.57
2588 . 54
2544, 25

Crosscovariance
(Negative Tau)

3953.17
3929.63
3925.09
3873.68
3695,29
3700, 56
3674,51
3535.43
3567 .54
3581.82
3584,82
3542.05
3537.20
3631.09
3549.73
3575.08
3595.91
3562.59
3497, 24
3679, 38
3694 ,11
3621.23
3625.59
3730.70
3661.24
3557.22
3577.99
3602.75
3551.88
3458, 24
3428, 139
3334.91
3238.96
3220.87
3129.95
3096.99
3001.07
2975.59
2926 .51
2838.39
2761, 26
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Table 4,17 Coherence Square and Amplitude of Transfer Function
for DO and Coliform, Coosa River,

Frequency Coherence Square Amplitude of
(Cycles/day) Transfer Function
0.0 0.6183 406,02
0.0125 0.5184 408,11
0.0250 0.1569 515,54
0.0375 0.3262 1201.22
0.0500 0.2249 1097.29
0.0625 0,1299 1121, 27
0,0750 0.1702 1497 ,69
0.0875 - 042365 1629,67
0,1000 0.1631 1868,88
0.1125 0.0212 555.61
0.1250 0.0027 255.44
0.1375 0.0374 1680.05
0.1500 0.1022 3629.64
0.1625 0.1167 3015,.94
0,1750 0.,0091 909.19
0.1875 0.0060 545,89
0,2000 0.0217 10311:71
0.2125 0.1445 2359.61
0.2250 0.0546 155644
0.2375 0,1074 2940,01
0.2500 0.1756 4799.96
0.2625 0.0441 1786,17
0.2750 0.,2438 4365,80
0.2875 0.3300 L698,14
0,3000 0.0282 1594 ,49
0.3125 0.1407 L221,64
0.3250 0.1121 4613,96
0.3375 0.1019 4187,70
0.3500 0.3861 10794 ,07
0,3625 0.0916 3778.23
0.3750 0.0689 2671.71
0.3875 0.0440 2283.33
0.4000 0,1151 3253.16
0.4125 0.0856 2519, 135
0.4250 0.0243 1460.,14
0.4375 0.0637 2186,68
0.,4500 0.0167 1289.89
0.4625 0.0085 1082, 30
0.4750 0.1427 4812,.86
0.4875 0.1166 4259.02
0,.,5000 0,0088 1575:35



143

The coherence square 1s, generally, very low and is a function
of frequency. The amplitude of the transfer functlon for the
transformation relation DO and coliform varies considerably
with frequency. This variation 1s gquite erratic due to the
nature of the coliform data and could not be put in any
functional form.

Missouri River

Sampling interval for data digitized from the strip charts
for Omaha Statlion on the Missouri River was 8 hours., With
this sampling interval cyclic events with perlods less than
24 hours can be resolved. The results of the énalysis carried
out for this station are presented in Figs. 4.46 through
FPig. 4,49, Autocovariances for DO, BOD and temperature are
compared in Fig. 4,46, For this river autocovariance for DO
reaches zeroc at a lag of 43 days. '

The results show a negative relationship between dissolved
oxygen and Temperature but unlike the crosscorrelation for
Coosa River crosscorrelations at Omeha show a minimum at zero
lags the correlation between DO and collforms ls the same as
the correlation at the Coosa River,

Power Spectral estimates of Temperature and DO serles are
presented in Table 4,18, The estimates for temperature show
cyclic events corresponding to perlods of 7, 3.9, 2.3, 1.0
end 0.75 days. The DO series at the same statlon has periodic
events corresponding to 2.9, 1.75 and 0,97 days.

Coherence square between Temperature and DO (Table 4,19)
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Fig.4.46  Comparison of normalized autocovariances
for Missouri River (Omaha Station)
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dissolved oxygen at Omaha Station, Missouri
River.
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at Omaha Station, Missouri River
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Table 4,18 Power Spectral Estimates of DO and Temperature
Series, Missouri River,

Frequency _ Spectral Estimates
(Cycles/day) Temperature DO
0.0 2224 ,609 85.531
0.005 1069.850 bly,157
0.010 75.194 6.725
0.015 164225 2.995
0.020 12.357 2.156
0.025 7533 0.777
0,030 4,951 0.313
0.035 ' 3.693 0.273
0.040 2.631 0.291
0.045 L ,80g## 0.331
0.050 3.519 0.161
0,055 3.041 0.147
0.060 2.736 0.150
0.065 1.771 0.125
0,070 0.577 0.106
0.075 0.995 0.143
0.080 1,183 0,146
0.085 1,480 0.132
0.090 0.953 0.082
0.095 0.549 0.066
0.100 0.212 0.048
0.105 0.463 0.035
0.110 0.575 0.039
0.115 0.752%% 0,054
0.120 0.499 0.035
0.125 0.283 0.023
0.130 0,082 0,026
0,140 0.450 0.021
0,145 0.642 0.016
0.150 0.478 0.015
0.155 0.262 0.018
0.160 0.065 0.016
0.165 0.195 0.017
0.170 0.309 0.014
0.175 0.445 0.013
0.180 0.343 0.010
0.185 0227 0,008
0,190 0.059 0.007
0.195 0.118 0.011
0.200 0,215 0,009
0,205 0.337 0,008
0,210 0,261 0,006
0.215 0.169 0.008

0.220 0.045 0,008



Frequency
(Cycles/day)

0.225
0.230
0.235
0.240
0.245
0,250
0.255
0. 260
0.265
0.270
0.275
0.280
0.285
0,290
0.295
0.300
0,305
0,310
0.315
0,320
0.325
0.330
0.335
0.340
0,345
0.350
0.355
0,360
0.365
0.370
0.375
0.380
0.385
0.390
0.395
0,400
0.405
0,410
0.415
0.420
0.425
0.430
0.435
0,440

Table 4,18 (Cont'd)

Spectral Estimates
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Temperature

0.094
0,166
0.259
0.190
04122
0.024
0.065
0,117
0,196
0.149
0,100
0,018
0.050
0.090
0.157%%
0,118
0,081
0.007
0,028
0,046
0,108
0,143%%
0.132
0,011
0,017
0.031
0.079
0,058
0,041
-0,006%
0.012
0,018
0.057
0.035
0.024
-0,012%
0.007
0,011
0,042
0022
0,020
-0,009%
0.006
0.002

DO

0.008
0.006
0,007
0,006
0.006
0,005
0.006
0.005
0,006
0.004
0.005
0.006
0,007
0,006
0,007
0,006
0,005
0.005
0.006
0,005
0.005
0.007
0.010
0,005
0,005
0,00k
0,005
0.004
0.004
0.003
0.00k
0.004
0,004
0.003
0,003
0,003
0.003
0,003
0.00L
0,004
0,004
0,003
0,003
0.003



(Cycles/day)

*
#3

Frequency

0-“’“’5
0.450
0.455
0.460
0.465
0.470
0.475
0.480
0.485
0.490
0.495
0.500

This estimate is negative indicating some leakage.

Table 4.18 (Cont'd)

Spectral Estimates

Temperature

0-026
0.011
0.016
-0,006
0.007
-0,000
0.016
0,004
0.015
0.001
0.010
-0,000

This represents an important cyclic event,

DO

0,003
0,003
0,004
0.004
0,003
0.003
0,003
0.003
0,003
0.003
0.004
0.005

150
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Table 4,19 Coherence Square and Amplitude of Transfer Function
for DO-Temperature, Missouri River.

Frequency Amplitude of
(Cycles/day) Coherence Square Transfer Function
0.0 0,724 0.166
0.0050 0,660 0.165
0.0100 0.242 0,147
0,0150 0.052 0.098
0.0200 0.029 0.072
0.0250 0,068 0,084
0.0300 0.334 0.145
0.0350 - 0,105 0.088
0.0400 0.223 0.157
0.0450 0.186 0.113
0.0500 0.208 0.097
0.0550 0.084 0.063
0,0600 0.433 0.154
0.0650 0.371 0.162
0.0700 0.280 0,227
0.0750 0.336 0.220
0.0800 0,080 0.099
0.0850 0.279 0.157
0.0300 0.296 0.159
0.0950 0.216 0.162
0.1000 0.926 0.462
0.1050 0.884 0.259
0.1100 0.341 0.153
0.2150 0.466 0.183
0.1200 0.147 0.101
0.1250 2, 52l 0.457
0.1300 1,048 0,577
0.1350 1,323%% 0.387
0.1400 0.126 0.077
0.1450 0.890 0.152
0.1500 0.545 0.133
0.1550 0,896 0. 249
0.1600 24370%% 0.769
0.1650 2.,053%% 0.428
0.1700 0.553 0.158
0.1750 0.606 0.136
0.1800 0.605 0.134
0.1850 1.985%% 0.274
0.,1900 3.9 b 0,704
0.1950 3,780 0.612
0.2000 0,231 0.098
0.2050 1. 4554 0,186
0.2100 0.821 0.146

0.2150 1,463%% 0.278



Frequency
(Cycles/day)

0.2200
0.2250
0.2300
0.2350
0.2400
0.2450
0.2500
0.2550
0.2600
0.2650
0.2700
0.2750
0.2800
0.,2850
0.2900
0.2950
0.3000
0.3050
0.3100
0.3150
0.3200
0.3250
0.3300
0.3350
0.3400
0.3450
0.3500
0.3550
0.3600
0.3650
0.3700
0.3750
0.3800
0.3850
0.3900
03950
0.4000
0.4050
0.4100
0.4150
0.4200
0.4250
0.4300
0.4350

Table 4,19

5,156
3.186
0.752
0.920
0.993
2. 0145
4 ,853%#
4,931 %%
0.342
1,817##
0.943
1.,620%%
7 489 3%
2.700%%*
1.309**
0.581
8:535
2,021 %%
9,764
54 5O
0.471
1.?91**
0.507
0,619
8,848
4,31 3%
2,78 2%%
0.571
0.838
1,633%*
0.0 *
5.4l
1,167%#*
1,170%%*
1. 300%#*
1.466%%
0.0 *
5499 3%#%
24591
0,490
0.939
1.130%#%
0.0 *
2.935%*

(Cont'd)

Coherence Square

152

Amplitude of
Transfer Function

0.963
0.519
0,170
0,163
0,188
0.335
1.060
0.724
0.136
0,243
0,175
0.303
1,646
0.625
0. 298
0,168
0,168
0.379
2.511
1.094
0.240
0.302
0.163
0.216
P.lzg
1,153
0,641
0.202
0,254
0.414
0.0 *



#%

Frequency
(Cycles/day)

0.4400
0.4450
0.4500
0.4550
0,4600
0.4650
0.4700
0.4750
0.4800
0.,4850
0.4900
0.4950
0.5000

Table 4,19

Coherence Square

2,491 3%
1.,0169
1.,8001%%
0,3084
0.0 *
1, 234 2%
0.0 *
0.1500
0.6785
0.,2321
7'9856**
0.1350
0.0 *

(Cont'd)

Amplitude of

153

Transfer Function

1

6671

Indicates this value is not computable due to a negative
or zero power spectral estimate.

Indicates that this value is too high due to sampling

error,
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exceeds 1.0 for a number of frequencies. This 1s due to
sampling error to invalid interpolation of the missing data,
Coherences at some frequencles could not be computed as
temperature power spectral estimateé were negative at these

frequencies.

COMPARISON OF RESULTS

In this section the results obtained in the previous
sections are compared. The normalized autocorrelations for
three time series on the Ohlo River are presented in Fig. 4,50,
The autocorrelation coefficlents for flow decrease fastest and
reach a zero value for a lag of 22 days ( 45 half day periods),
This indicates that flow changes from above normal to below
normal in a much shorter duration of time than temperature and
dissolved oxygen. The temperature autocorrelation coefficients
have a very small negatlive slope. This shows that it takes a
long time for the temperature to drop from above normal to
below normal due to seasonal fluctuations. The dissolved
oxygen autocorrelation coefficlients lie in between these two
autocorrelation coefficients (temperature and flow).

The autocorrelation coefficlents for the temperature record
for three rivers are presented in Fig. 4.51. Autocorrelations
for Coosa River have the largest slope. But for all three cases
the trend 1s similar and these values reach zero only for

very large lags. These results in a way confirm the validity of

the data at these three stations.
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for three rivers.
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Autocorrelations for oxygen records at these three stations
are shown in Fig. 4.52. These results are simllar to the
temperature autocorrelation coefficlents in that they have the

same relative magnitudes,

CONCLUDING REMARKS

It can be concluded from these calculations and physical
interpretations that spectral analysis serves as a very useful
means of analyzing systems with time serles data. Several
conclusions derived during this investigation are described in
this section and in the next chapter in which these results
are used,

The Ohio river system, which i1s assumed to consist of
five time series in this work 1s so complex that no general
conclusions true for all rivers can be derived from such a
limited study. More water quality information must be
collected from representative rivers of all types in various
geographical locations and analyzed systematically in order to
develop general mathematical formulations.,

It i1s well known that it takes about flve days to determine
the BOD of a given sample. This time lag ln the measurement
of thls very important water quallity parameter is a significant
factor iIn the development of a water pollution control program
and 1n the analysis of the water quality data. Methods have
been developed (49) to measure BOD instantaneously from a

water sample. Correlation between this BOD and the standard
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Fig-4-52 Comparison of dissolved oxygen auto-
correlations for three rivers.
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five day BOD should be attempted as all the models (Chapter 3)
relate the five day BOD to dissolved oxygen. Instruments have
also been developed to measure COD (Chemical Oxygen Demand) in
a very short time. This parameter can be correlated with the
standard five day BOD.

Another difficulty encountered during this analysis
was the lack of data on coliforms of microorganisms. A new
instrument which enbales one to gqulckly determine the bacterial
blo-mass by measuring cellular ATP is now available (50).

This can be correlated with the cell concentratlon or used as
such in water quality modeling.

This analysis also indicates a sophisticated method should
be developed for obtaining continuous data without any missed
observations.

The results presented in this chapter show a variety
of relationships in the time and frequency domains, The
interpretations from these results are already presented in the
previous sections, Analysis of the flow rate data indicates
that there are not many significant periodicities in the power
spectrum estimates. The 1increase in flow from one station to
another (Table 4.3) due to the addition of small side streams
increases the autocovarliance and, therefore, the variance of
flow records as one goes from station 1 to station 4, Data
obtained at a smaller sampling interval would enable one to
search for smaller periods.

Temperature and dissolved data were analyzed with a
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sampling interval of 12 hours, With this data no cycle event
with a period less than one day can be identified. The auto-
correlations for these two water quality parameters provide a
method for predicting the future values of the parameters,

As BOD and coliform data were hypothetically generated
autocorrelation and autospectrum of these records were not
calculated.

The crosscorrelation and coherence sgquare functions of
these water quality parameters yleld some very interesting
results. All the coherences are frequency dependent 1indicating
a nonlinear relationship. The crosscorrelation calculations
show that BOD is positively correlated with temperature and
negatively correlated with DO; the oxygen 1s negatively
correlated with temperature. No definite concluslons could be
drawn from the results with coliform data.

The conclusions derived in this chapter are used in

Chapter V for developing a mathematical formulatlion,
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CHAPTER V
MODELING FOR WATER QUALITY

INTRODUCTION

In any systems engineering study, the construction of mathe-
matical models to represent the phenomenological processes
taking place in the system is important. Only phenomena
pertinent to the behavior under study are allowed to enter the
model, A mathematical.model is often considerably more
versatile and less expenslve than a physlical medel, Once a
model is obtalned, elither empirically or from the mechanism of
the process, the next step is to obtaln experimental data to
test the goodness of the model. 1In this chapter several models
Will be developed for water quality prediction of streams,

In water pollution the oblectives for developing
mathematical models are [3, 17]

i) to develop a method for evaluating the cause and effect
relationships between the external environment (waste
discharges, temperature, etc.) and the quality of
water in terms of 1its dissolved oxygen concentration.

ii) to utilize a portion of this evaluation to develop
further a rational approcach to the attainment of the
various quality goals.

The models for water quality will be developed by using the

spectral analyslis results as well as other avallable information

and experience., In the next section some general conclusions
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derived from the study of spectral analyslis are presented.

RESULTS FROM SPECTRAL ANALYSIS

The following general observations can be made from the
results of spectral analysis presented in the preceding chapter

1. Like most other natural processes, the stream ecology
is 2 nonlinear process. All the water quality parameters are
nonlinearly related to one another, The linear models developed
so far are only an approximation to the actual system. The
coherence calculations indicate that the system is appreciably
nonlinear and is affected by nonlinear interactlions among the
variables, It is necessary, therefore, to use sophiscated
modeling techniques and nonlinear parameter estimation
procedures to establish more realistic models,

2« As the system consists of a large number of state
variables, a more complex analysis involving the calculation
of multiple coherences, spectral density matrices and partial
coherences is necessary. The analysis presented in this thesis
considers only two variables at a time and attempts to correlate
these parameters. Techniques have been developed [51] to
analyze multiple order systems by spectral analysis procedures.,
These techniques can be used to analyze the stream with five
water quality parameters, namely dissolved oxygen, blochemical
oxygen demand, temperature, flow rate and coliform count
simultaneously.

3. There 1s a definite negative relatlionship between
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temperature and dissolved oxygen at some locations. This is
understandable as the solubllity of a gas in a liquid decreases
with increasing temperature, As the temperature increases the
rate of reaeration increases but the saturation oxygen
concentration decreases. The rate of microblal decay or the
rate of oxygen consumption by microcorganisms increases with
temperature. The net effect is that there is reduction in
oxygen concentration.

This is the cause of pollution without any additional
waste discharge. The dumping of high temperature water into the
stream, increases the water temperature causing thermal
pollution, This causes a stratified flow and may increase the
rate of microblal growth and hence the rate of oxygen demand.
Hence, an increase in temperature may cause the .oxygen concentra-
tion to fall below a critical level.

4, The results of spectral analysis show a negative
correlation between BOD and DO. This means, if at a point on
the stream BOD increases with time DO would tend to decrease,

5. Although the coliform data obtained at some of the
stations were not very good, the analysis at the other stations
points to the following conclusions., The coliform count has a
positive correlation with temperature. It 1is known that an
increase in temperature will lncrease the rate of growth of
microorganisms, and thus an increase 1ln the coliform count with

temperature is understandable, BOD and coliform count are

negatively correlated indicating that the number of coliform
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decreases with an lncrease in blochemlical oxygen demand.

From these correlations 1t can be concluded that an
increase in temperature may cause an lncrease in the number of
coliform bacteria,

A more realistic water quality model should include the
growth of microorganisms and thelr effect on the blochemical
oxygen demand and dissolved oxygen concentration. This can be
done in elther of two ways: i) by including in the model a
third differential equatlion based on the cell material balance
or 1i) by assuming a constant cell concentration and by
using a Michaelis~-Menten kinetic model for BOD decay in the
stream. Models formulated using these approaches will be
presented later in the chapter.

6. The transfer function calculated between dissolved
oxygen at two points indlicates that the transformation can be
represented by a system somewhere in between first and second
order, The first order system would represent the plug flow
case Where the propertlies would be uniform across the stream.
The second order system would mean that the ideal plug flow has
been superimposed by a diffusion transfer which causes mass
transfer in the axial direction. It has been shown by Dobbins
[13] that for nontidal streams diffusion can be neglected and
first order differential equation can be used for modeling water
quality. The parameter which correctly characterlzes the role
played by dispersion is a dimensionless group &% which is the

reciprocal of the axial Peclet number for mass transfer. For
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stream u and L are often very large and so &% is very small no
matter how large D is, This low value of %% corresponds to
plug flow behavior [9].

This justifies the plug flow assumption used so far in the
modeling of water quality. In this work first order differential
equations will be used for water quality modeling,

7. The periodicities in the dissolved oxygen spectrum,
especlally the hlgh frequency harmonics, necessiate the inclusion
of photosynthesis terms in the model. Thls can be accomplished
by including in the model the photosynthetlc terms expanded
in terms of sines and cosines. The maximum photosynthetic rate
may vary with temperature and seasonal fluctuations, The
duration of sunshine may change from season to season causing
a shift in the photosynthetic period.

8. The most general model for a stream under steady state
would include equatlion for the varliation of temperature and
temperature dependent models for the following constants.

1) reseration constant, kz
1i) bacterial decay constant, kl
jii)saturation oxygen concentration, Cq
iv) the maximum photosynthesis rate, B
v) the maximum specific growth rate, LA

Inclusion of these will enable one to analyze the effects

on water quality resulting from a high temperature discharge.
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DEVELOPMENT OF MODELS

The model developed to represent the system mathematically
is a simplified construction of the real world that seeks to
explain and predict events in this world. 1In setting up a model
for quality prediction the following processes are assumed to
be taking place.
a) The growth of microorganisms and their effect on BOD and
DO level in the streams The growth rate of microorganisms in

stream can be taken as [52]

AN  Ymax LN -k

in which
N = number of microorganisms per liter
L = BOD in mg per liter
KL = saturation concentration in mg per liter
kD = endogenous metabolism constant, hr~1
umax = maximum specific growth rate, hr-1

This phenomenon decreases BOD and dissolved oxygen, the rate of

decrease of BOD is given by

uTIlB.X LN
Ty = = Y(K,+L) (75)
in which

Y = yield in number of cells per unit mass of substrate

(BOD) .
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b) Increase in DO due to reaeration from the atmosphere. The
rate of this increase 1s proportional to the difference between
the saturation concentration and the actual DO present. The
reaeration constant is taken as kz. The rate of increase of

oxygen concentration in the stream due to reaeration is given

as

r, = kz(CS - c)_ (76)

The regeration constant k2 i1s a function of stream
velocity, depth, the axial diffusion coefficient, density of the
stream and the stream viscosity. Formulae for calculating k2
from the stream parameters are presented in [53, 54]. The
reaeration k2 i1s also a function of temperature, the relation-
ship being given as [ 53]

ky =y 0 (77)

The saturation oxygen concentration in the strean Cs' is
also temperature dependent. Thls parameter decreases with
increasing temperature. A polynomial of order 2 has been fitted

to CS vs T data and this 1is in good agreement with the

experimental results

C_=a+bl4 cT? (78)
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¢c) Decrease in the biochemical oxygen demand due to
sedimentation or adsorption or both. The rate of depletion is
proportional to the amount of BOD present in the system. The
first order rate constant for this process 1s taken as kj'

d) BOD addition due to local runoff; this is assumed constant
along a stream length and denoted by La'

e) Addition of oxygen due to photosynthetic action of plankton
gnd fixed plants. Results of spectral analysis show that this
rhenomenon needs to be considered. This additlion depends on
the sunlight intensity, the mass of algae, nutrients and the
temperature. The rate of photosynthetic addition of oxygen is
assumed to vary with the sunlight intensity reaching a maximum
at noon and vanishing at sunset and sunrise. Thls source can

be written as

Pl

il

P Sinl—)t Ogt <p
. (79)

in which

P = period of oscillation of the periodic function, days

P - amplitude of the periodic function

=]

t7 = time of flow in days of a mass of water since
sunrise after the mass has entered the head end of a
reach considered (t1 =t = 7T)

If the period p equals half a day the function reduces to
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o - < _ <
Ptl = Pm sin zm(t T) 0 < (¢t T) =

ol

<(t-1)< (80)

n

[ 4]

Pl
A
(-]

This function Pt 1s perlodic 1in nature and can be expanded in
terms of sines and cosines using Fourler analysis. The
expnasion is [17]
P P - 2
P.1-= 4+ 2 sin an(t - 7) - —57 ©os ba(t - 7) (81)

f) Oxygen consumption due to respiration and benthal demand.
This 1s also assumed constant all along the stretch and is
denoted by DB‘

It has been shown that a nontidal stream can be assumed
to be in plug flow without introducing appreclable error [13].
From a differential material balance taken over an elemental
length assuming a constant crosssecticnal area the following
differential equations can be obtained [9]. Note that the
equations derived will contaln a velocity term u and a distance
term x. For plug flow these can be combined (t = %) and
replaced by a residence time term. This 't' is the time of

travel along the stream measured from an arbltrary origin.

dL max - 8<
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4ac Upax LN i 1

E’c""_'ﬂ'ﬁ;:f)"*kz(cs = C) - Dy + Pm{n"' 5 B Enh = ¥)
- -3% cos Lm(t - ‘l‘)] (83)

dN Umax N

s v St L85

As a steady state for growth of microorganisms 1is attained
after a certaln time, these equations can be reduced down to

two equations namely,

k=L
aL _ _ 1 - 8
dt = T Y(K, + T Tl + iy b5
kL
ac 1 1 1 )
at = "~ ¥ Ky, + L + ky(Cg - C) - Dp + Pm{; + 3 sin zn(t - 7)

- 2 cos 4n(t - T)} (86)

Models of Equations 83 through 86 are examined along with

the models glven by the following equations:

k., LC
dL 1
at = K+ L~ kil + Ly (87)
k- ILC
dC 1 1 1
‘="K aT* K0 -0 DB*Pm{'ﬁ*‘zsm il - %)

Z cos Um(t - T) (88)
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% = - KLC - kL + I (89)

- 0,0 g nfEe s
- é% cos 4m(t - T) (90)

%% = = KL 4 k,(C, - C) - Dy + Pm{% * % sin zn(t - 7)

- g% cos 4m(t - T) (92)

Table 5.1 summarizes the models and lists the number of
unknown parameters 1n each of these models. To discriminate between
these models one needs to estimate the parameters present in the
models and test the valldity of each of these models against
the experimentally measured data. The criteria used for model
discrimination are

1) value of the objective function [Chapter VI]

i1) residual at each experiment

111) standard deviation of the parameters.

As 211 the proposed models are nonlinear with respect to
the parameters the ordinary least squares technigque cannot be used
for parameter estimation. Specialized nonlinear parameter estimation
techniques are avalilable for this estimation and one of these

techniques (Bard's) is used in this investigation., This technique



is described in the next chapter along the results obtained

for models in Table 5.1.

17



Table 5.1 Models and Parameters to be Estimated.
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Represented Dby Unknown Number of
Number Equation (s) Parameters Parameters
1l 82’ 83 and 84 max, Y. kj' La. 10
k2. CS. DB. Pm.
¥, Kr,
2 85 and 86 kl' Vs k3, La’ 10
kza Cs' Dp» Pm'
i K.
3 87 and 88 kl' kj' La’ KL' 9
k2’,DB' CS' Pml
4 89 and 90 kp» kg Lgs ¥, 8
Cs’ DB"F' Pm
5 91 and 92 kl. k2’ kj' La' 8

Dpr Cgr Py 7
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CHAPTER VI
PARAMETER ESTIMATION

INTRODUCTION

Engineers frequently propose mathematical models or
equations which attempt to describe the relationships between
physically measured variables, These models usually contain
parameters or coefficients whose values are unknown. The object
of parameter estimatioﬁ is to determine the values of these
unknown parameters so that the proposed model behaves as closely
as possible to the actual system. In other words the proposed
equations should give the best possible fit to the experimentally
obtained data. The measure of *fit' or "closeness' are the
residuals - the difference between the observed and predicted
values of the dependent variables. The best fit criteria used
may be least squares, weighted least squares, maximum 1likelihood
or Bayesian fitting [55].

A method 1s described in this Chapter which is capable of
estimating parameters in nonlinear algebraic or differential

models.

MATHEMATICAL MODEL

The model which relates the observed variables to the

Independent varlables, may usually be written in the form,

0. u:l. 2y wssy N (93)

S(Yur xur 8)



175

in which
g = vector of functions
® = vector of parameters, 6 = [8,, O s wees 6]
xu = the vector of independent variables, accurately
known, for the uth experiment X, = [xul' xuz, sy Xun]
and

y = the vector of dependent variables for the uth

experiment

To specify the model, one must assign mathematical
expressions to each of the gk's. In explicit form Equation 93

becomes

Yy = f(xun 8), U=1, 2y esey N (94)

If the above equation is linear in the parameters (6)
the system is referred to as a linear system and the problem of
parameter estimation reduces to a linear least square problem,
the solution of which can be found in any standard text on
regression analysis. In this chapter a method is presented
Which estimates parameters in a nonlinear system. It can be
shown that due to errors in experimentation and inaccuracies in
the model one cannot determine parameter values that will
satisfy Equation 94 exactly for each experiment., In these cases

Equation 93 1s rewritten as

U o= f(x,» 6) - Y, (95)
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in which
u_ = vector of residuals which represents the difference

- between the predicted values and the observed
values of y at the uth experiment.

CRITERIA FOR ESTIMATION

In the parameter estimation procedure a certain function
G(e) of u is minimized. This functlional form determines the
criteria used for estimation; the forms usually employed are

discussed below [55]1 -

(1) Least squares: In this case there is only one observation

per experiment and 6 1s determined to minimize

G..(8) 2 u‘?-z[f(x ) - y 1% (96)
LS =u=1 g = " Yu

(11) ©Weighted least sguares: Here, there are k observations

per experiment and one minimizes

Grg(®) = ufnilwitfitxu. 0) = ¥,0] (97)

to obtain the values of the parameters.

(111) Maximum likelihood: In this case u's are assumed to be

random variables possessing a joint probability density
function p(u.4>) and the values of 8 and , which maximize the
likelihood of havling made the actual observatlons, are

determined. The function to be maximized is
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Gy (899 ) = Log p(f(xys 8) = ¥ v ) (98)

in which

4) = & parameter necessary to specify the probability
distributions

(iv) Bayesian estimation: In maximum likelihood estimation it

is assumed that the probability density of 6's as given, but
in case of Bayesian fitting one assumes the probabllity
density of y's are given and one maximizes p(e/yu) which 1s

the probabllity density of 6's given the observations Ty
1
p(6/y,) = & p(y,/®) p (8) (99)

in which
C = normalizing constant

po(e) = prior distribution of 9

and

(v,/8) = plu )

Writing in terms of logarithms, the objective function of

Equation 99 becomes

Go(0yP) = log p(f(x s 8) = ¥u0 ) + log p,(6) (100)



178

METHODS FOR PARAMETER ESTIMATION

A number of methods have been proposed in the literature to
obtain this minimization. These range from linearization
methods as proposed by Gauss [ 56] to steepest descent method as
formulated by Davidon [57]. In the linearization method the
nonlinear model of Equation 94 is linearized by a truncated
Taylor series expansion. The vector [Ae] is, then, calculated

by solving a set of simultaneous linearized algebralc equatlions,

The solution is [57]

[Q]ae] = - [p] [101]

in which
Q = anlﬁ xfg métrix
‘R = number of independent parameters
® = independent parameter search vector
p = vector of first partial derivatives of the sum of

squares function

In case of Gauss' method the elements of the matrix Q are

[56]

Q = B £ .a_f_ (102)

1j 1 99

Y%
@
™)

whereas in Newton's method

3%

= m— (103)
Uy = 06400
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In the steepest descent method the sums of squares surface
1s visualized to be a response surface ln which the parameters
are variables, It involves the calculation of a linear
independent parameter search vector As based on the first
partials of the sums of squares function and, possibly, welghting

factors for each parameter

A 0, = - hwi(agéi)- (110)

in which

[&ei = 1'% clement of the search vector
"1 = Weighting factor for ith independent parameter
search vector > 0
G = quantity to be minimized

h = scalar distance factor > 0

Equation 110 defines a search direction but the distance depends
on the value used for the scalar distance factor h, This
equation always provides a search trajectory which possesses
truncation convergence, since each element in the search vector
1s always of opposite sign to the corresponding partial
derivative, The usual experience with this method is slow
progress in the viecinity of the optimum due to what has been
termed 'lack of quadratic convergence.' The steepest descent
usually produces a serles of ever smaller zig zag steps in the

vicinity of the minimum as discussed by Buehler, Shah and

Kempthorne [ 58].
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Experience with fitting many models indicates that the
steepest descent is very stable for the initial iterations
While a linearization method is often more efficient for the
final iterations. Compromise methods have been suggested,

[55, 59] which tend to emphasize steepest descent at the outset
and linearlization in the final stages. In this work one such
compromise method called the absolute Gauss or Bard's [ 55]
method is used for parameter estimation. This method will be

described in the next section,

BARD'S MODIFICATION [55]

Let G(8) be a scalar function of the vector e, possessing
continuous first and bounded second derivatives. We wish to
find a vector & that maximizes G. (G may be any of the criteriag
functions discussed in the preceeding section.) The
maximization of G(6) proceeds in an iterative fashion.

Each iteration are starts with an initial guess 9(0) for the
vector 8 and proceeds to find a new guess 6(1) such that G(e(l))

> G(e(o)). As in other gradient methods, one assumes

Be] = X[R][p] (105)

in which

a vector of derivatives of G, [%%]

a positive scalar which determines the step size

-
|

and

R=8an n xn matrix



181

This method is described for maximizing G; for a minimization
the negative of the objective function is maximized. In the
course of each iteration two things must be determined: a
direction A6 to proceed in, and the length K of the step to be
taken along this direction. The value of K should be admissible;
that is, it should be such that 61} - (%) 4 kAe showrd

satisfy all bounds and constraints on the parameters.

Choice of Direction

)
If R is any positive definite matrix, the direction [Ae] = [R][p]

Let p be the vector of partial derivatives %E at 8 = 9(0).

is easily shown to be admissible, If 9(0) is sufficiently

near the maximum of G, the matrix

. Xzl
Q= - 3000, (106)

is positive definite and it can be shown that Q'l is the most
efficient choice for [R]. Using [R] = [Q"lj at all points
constitutes the Newton-Raphson method, but this method is likely
to yleld non-admissible directions in the regions where [Q] is
not positive definite. Greenstadt [60] has suggested a method
to overcome this difficulty. The matrix [Q] may be represented

by means of its eigenvalues and eigenvectors:i

n
Qjy = E Vix Ve %] (107)
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in which V is the ith element of the kth eigenvector of Q

ik
and uk is the kth eigenvalue of Q. We now set

1
Ry, = kfl Vig Vix l uk! (108)

This R 1s always positive definite and coincides with Q where

the latter itself 1is positive definite.

Cholice of the Step Size
The value of step size K is determined by a quadratic

search involving the usual 1nperpolation-extrapolation procedure,

Let K. be a positive number such that 6(0) 4 K\ 6 1s in the

0
.admissible region. Initially, one sets K1 = min (KO. 1) and

B(l) = B(O) + Klﬁse and evaluates G, = G(B(O)) and

0

Gl - G(B(o) + Klﬁle). Define

F (6 = G + L [p"(RI(eTk + (o) - oy - [pTIIIp]IK?

1
(109)
in which
* [p?]: transpose of the matrix [p]
0]
This function 1s obtained by setting F(K) = G(B( ) + K[2o]).
The function F(K) is then approximated by a parabola
a 4 bK =+ cKE. matching the values of the parabela at K = 0
and K = K1 and 1ts derivatives at K = 0,
dF DG! @ A
22 s ol . [A8] = p A8 =2 p DS (110)
dK(g_0 98| e=06(0) 171
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Now, compute the wvalue of X, say K2 which maximlzes this

parabola. The steps in this maximization are as follows:

(a) If the e(o) + K, 0 1s infeasible, truncate KE appropriately,
4

(b) If G, > G_., compute the value K = which maximizes

1 0

[ - < ] =
F(K) If Kl K2 0.1 set K

Ko
1 Otherwise, compute

G_ = G(e(o) + K2[R][p]), and set K = K. or K = K, depending

2 1 2

on whether G1 1s or is not greater than G This is the

extrapolation procedure,

2.

(c) Interpolation

(1) If G, > G, again compute K, as before, and it is

1 0 2
guaranteed that 0 < K2 < Kl. Now compute G2 and set
K = K2. it F2 > Fo. Otherwise, replace K1 with K2.

define a new parabola FZ(K)' find its maximum, etc.

< ’ =
(i1) If G1 G0 set K3

(0) -
G3 = G(#o * K3Rp). Ir G3 > GO set K = K3 and

proceed to the next iteration. Otherwise replace K2

max(Kz, 1/4 Kl) and compute

with K., draw a new parabola, and reproceed, This

3
method 1s called the absclute Newton method.

If the model fits the data reasonably well, yu - f(xu. 8)
&
will be small and hence Qij = 5%%33_ may be qulte accurately
approximated by the term involving only the product of flrst

derivatives, Let the elements of this matrix be

o, 2,

Zu’u (111
091 09 )

QA.'LJ = 2

The approach suggested by Greenstadt is again used to
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insure positive definiteness of QA for all criteria functions,

The matrix Qzl used to calculated A8 is calculated from

Wiy = . ik Jk ‘“kl 2)
where V1k is the ith element of the kth elgenvector of QA and

uk i1s the kth eilgenvalue of QA' This method is called the
absolute Gauss method.-

A general computer program is available from the IBM
contributed program library [61]. This program calculates the
mean values of the parameters according to all of the criteria
listed in this chapter, the standard deviations of these
parameters, the residuals at each point and value of the
objective function G. In estimating the parameters in the
models of Table 5.1 this general program was used. The data
used for estimating these parameters was obtained from the
Sacremento River water quality survey [61]. The data obtained

for three different runs were used for analysis,

RESULTS OF PARAMETER ESTIMATION

The parameters appearing in the three models (3, L and 5)
presented in the chapter have been obtained using two different
criteria -~ least squares and maximum likelihood, Results of
these estimation procedures are presented in Tables 6,1 through
Table 6.3. BOD and DO values calculated using the estimated

values of parameters and models 3, 4 and 5 are plotted in
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Figs. 6.1 through 6.2 and compared with the experimental data.

The results indicate that the maximum likelihood gives
a better estimate (lower variance) than the least squares
criteria., This is because maximum likelihood estimators are
calculated to maximize the probability of having actually made
the observations. In other words, maximum likelihood estimates
maximize the probabllity of having taken the data. The least
squares criteria, on the other hand, minimlzes the square of
the error, It may be noted that all the parameters lie within
the range of values given in the literature. Other models in
Table 5.1 were not tested by parameter estimation techniques
as no data for N, the cell number, was available, The standard
deviations were used for model discrimination. It can be seen
from the values of standard deviations that Model 3 fits the
set of data better than the other two models.

It can be concluded from this procedure that Bard's method
serves as an efficient method for parameter estimation in
nonlinear dynamic systems. The method converged reasonably
fast for all three models (average computation time Z21.3
minutes) and it converged to almost the same values of the

parameters from several different starting points.,
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Table 6.1 Estimated Values of Parameters for Model 3
with two Criteria.

Parameter

Maximum Likelihood

Least Squares

o TEEED v S
kg 0.2534x10'3 0.403x107° 0.6566x10""  0.410x10™7
k, 0.4999 0.206x10"%  0,4560 0.3239x107"
k, 0., 4671 0.7016x107% 0.1441 0.3020%10" %
D, 0.5000 0.4037x107% 0.4838 0.05759
L, 0.9974 0.5162x10"% 0.3873 0.004573
P 0.5002 0.6328x10"% 1,933 0.1538
&y 0.4998 0.5079%x10™%  0.4907 0.06130
Cg 9.000 0.3243x10"% 9.008 0.06028
K 0.199x10'3 0.202x107°  0,219x10™° 0.767x10'5
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Table 6,2 Estimated Values of Parameters for Model 4,

Parameter

Maximum likelihood

Least Squares

Standard Standard
Mean Deviation Mean Deviation
k, 0.256x10"° 0.39x10~> 0.656x10"F  0.316x10"7
k, 0.4993 0.199x10'2 0.4560 0.03239
k, 0.4671 0.7010x10"%  0.4603 0.3029
D, 0.50014 0.4002x10"2  0.4315 0.06813
L, 0.8974 0.500x10"%  0.3317 0.01260
B, 0.5002 0.6300x10"2 0.99850 0.04021
g 0.4998 0.4985x107%  0.4571 0.06035
c 9.007 0.003229 9.000 0.01740
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Table 6.3 Estimated Values of Parameters for Model 5.

Parameters

Maximum Likelihood

Least Sguares

T, e T
k, 0.350 4.0 x 1072 0.1395 0.02988
k, 0.3859  0.0198 0.1370 0.03623
k, 0.45448  0,06740 0.4776 0.031564
D, 0,17553  0.00402 0.3455 0.04890
L, 0.888909  0.01032 0.5642 0,0252211
P 0.25699  0.00502 1.446 0.2478
v 0.62058  0.02817 0.4939 0.06725
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Fig6.l Comparison of experimental and predicted
values for BOD for Models 3,4 and 5,

Sacremento River (1962).
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Fig6.2 Comparison of experimental and predicted
values for Dissoived Oxygen for Models
3.4 and 5, Sacremento River (1962)
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CHAPTER VII
RECOMMENDATIONS FOR FUTURE WORK

Several problems arise from this study of water gquality
data. In thils chapter some of these problems will be recognized
and outlined in brief,

It was assumed in this analysis that the system variables
can be treated two at a time. This 1s a preliminary study.

All the water quality ﬁarameters can be treated simultaneously
using multiple spectral analysis and multiple coherence
techniques. A system-model with several inputs androutputs can
be conceived for the stream (Fig. 7.1) and based on this model
multiple coherence and spedtral density matrix can be calculated.
This analysis will yield more information regarding the basic
phenomenological processes taking place in the stream.

Five water guality paresmeters were used for study in this
investigation., Additlonal water quality parameters can be
included in the future work. It was noted elsewhere in this
thesis that continuously recorded data for BOD and coliform
was not available at most of the stations. Techniques need to
be developed for monitoring these two water guality parameters,
An alternative would be to measure some other varilable, which
can be measured quickly, and correlate it with BOD.

Oxygen uptake has been used for this purpose [49] but the
correlation of this variable with the standard 5 day BOD has

not been confirmed, ATP can be used as a measure of blomass
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or cell concentratlion [50]. Measurement of oxygen uptake and
ATP and thelr correlation with BOD and blomass respectively
may constitute a part of the future work.

A plug flow model was assumed for the streams under
investigation., For estuaries and slow moving streams this
assumption is no longer vealid and axial diffusion must be
included in the analysis. Thls approach has been attempted in
the past but the analysls has been inadequate because of the use
of incorrect boundary conditions. A study should be made of all
the available boundary conditions for the diffuslion model so
that those most appropriate for each stream can be chosen for
analysis.,

The analysis in this study was restricted to two or three
streams. More data 1s being made available as a large number of
water quality sensing monitors are being installed. An attempt
should be made to acqulre additional water quality data,

This should then be analyzed and compared with the results
presented in this analysis. Additional data such as information
in the periodic discharges to the stream should also be obtained
and used in the analysis,

It is observed that there are often nissing data due to
difficulties in fileld operations. 1In thils work these data were
generated by interpolation. A technique has been developed for
spectral analysis of data with regularly missed observations,

This should be extended to handle irregularly missed observations

so that the data may be handled without any manipulation,
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New methods should be developed to generate the missing data
in case the data is too irregularly missing., Harmonic analysis
can be used for this purpose. The availlable data can be fitted
to an equation consisting of the first two harmonics with a
random component superimposed on them. Eguation 113 is an

example of such a model

X(E) = T(E) » A‘lsinwt + BjcOSWE 4 Azsin.?wt

+ B,cos zwt « XRES(t) (113)

The missing data can, then, be generated using this equation.

The parameter estlmation results presented here were for
only one set of data, Thls study can be extended by using data
from several rivers. For some rivers, no BOD data 1s available.
To handle such cases, the estimation technique should be
modified to enable parameter estimation when only one state
variable 1s measured. More parameter estimation should be done
with the diffusion model to test the validity of this model.
The parameter estimation methods should be modified for these
cases.

Lastly, results of these studles should be used to develop
a more economical and more preclise water pollutlion control

program,
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X, (1) ——— |

" { 5

Fig. 71 System to be considered for multiple coherence
calculations.
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NOMENCLATURE
Alx, t) variable stream cross-sectional area square miles
A harmonic coefficient
B harmonic coefficient
B(w) spectral window
C(p) cospectrum
C amplitude of the harmonics
C concentfatlon of the substance (oxygen) in

stream, mg[l

CS saturation DO level, mgdz

D axial diffusion coefficient, (miles)</day

DB DO depletion due to benthal demand

E expected value of (an operator)

G objective function for parameter estimation
H(w) Fourier transform of the unit impulse function

step size in Band's mocification

saturation constant, mg{t

£

harmonic number

bacterial action rate constant, day-l

1

=

reaeration constant, day~

o]

sedimentation rate constant, day'l

o

BOD level in stream, mg/L

length of the reach under consideration in mlles

o)

BOD addition due to local runoff, mg{f

’th" =t BN " OR"R O F R B

total number of harmonics
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m total number of lags

m(t) noise

N total number of data points
NPe Peclet number, dimensionless

N number of miecrocorganisms

n(t) noise

P rate of photosynthetic addition of oxygen, ml/day
P lag number

Q Hessian matrix

Q _ stream flow cubic miles/day
Q(p) quadraspectrum

R(T) autocorrelation function

S(w) raw power spectral estimates
SP(w) smoothed spectral estimate

T temperature, °c

T fundamental period, days

T(w) transfer function

t time of travel, days

u error at each experiment

U average stream velocity, miles
w(T) lag window

W frequency, radians/day

X(t) time series

XRES(t) ‘residual series

X distance along the stream, miles

X yield
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Y(t) time series

Z(t) time series
SUBSCRIPTS

1 number of data points
J number of data points
k harmonic number

m maximum value

x of time series X(t)

y of time serles Y(t)

GREEK LETTERS

B phase angle

2] unknown parameter to be estimated
u mean

u speciflie growth rate

p(T) autocorrelation coefficient

02 varlance

T lag for time series, days
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APPENDIX
BRIEF DESCRIPTION OF THE COMPUTER PROGRAMS

1. BMDO2T [46]:

This program computes the antocovariance, power spectrun,

cross-covariance, cross—-spectrum, transfer function and coherence

function of time series. A slight modiflication in the original

deck was necessary to run it on the K3U IBM 360/50 computer,

This program allows transformation and detrending of the input

data.
a)

b)

g)

h)

The output from the program includes:

Input data printed and plotted.

Autocovariance printed and plotted.

Power spectral estimates (power spectrum) printed and
plotted.

Cross=covariance of two time series printed and plotted.
Cross-spectrum of two time series printed and plotted.
Phase shift between two time series printed and

plotted.

Coherence function of two time series printed and

plotted-

Transfer function of two time series printed and plotted,

Provislon is also made in the program to print out error

messages whenever the power spectral estimate becomes negative

or the coherence square exceeds 1l.1.
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2, BMDX92 [47]

This program estimates autospectra, cross-spectra and
coherences for stationary time serlies. Each series is decomposed
into frequency components by means of finite Fourler transform
and the required estimates are obtained by summing products of
the transformed series. The output from this program includes;

a) Graph of the frequency response function of the

prefilter (opfional)

b) Graph of the frequency window of the power spectrum

estimates (optional)

c¢) Power spectrum for each series

d) Graphs of the power against frequency (optional)

e) Graphs of the logarithm of the power against frequency

{optional)

f) Amplitude, phase, and coherence spectra for each pair

of series

g) Filtered data (optional)

Fa FUTSA (Forecasting, Using Time Series Analysis)

This program decomposes monthly time series data into
components for trend, business actlvity level, seasonality and
irregularity. Each component lis described in the same units
as the raw time series data., A user's manual 1s avallable,

Three forecasting models can be used with this program.
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APPENDIX B

Monitoring Stations Analyzed on the Ohio River

So. Height

Wheelng

*
i Hénghngfm

Ghﬁbb

’

Cincinnati
! Miocmi str'f

— s

* indicates data were obtained for the station
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ABSTRACT

Considerable effort has been expended to collect water
quality information by installing automatic water quality
monitoring and data collectlon stations on a number of streams
and estuaries. This thesis deals with modern techniques for
eanalyzing this data.

The technique of spectral analysis 1s introduced and
employed to determine fhe cause-effect relationshlips that
influence water quality. For thls analysis monitored data
availlable from the Coosa, Detroit, Missouri and Ohio river are
used, Usling the results of spectral analysis, mathematical
models are developed to represent the pheriomenological
processes taking place in the stream., Once the structural
form of a model has been obtained nonlinear parameter
estimation techniques are used to determine the values of the
constants in the model which are most appropriate for a
particular stream or river., Speclfically, Bard's modification
of Gauss-Newton method is used for parameter identification,

Finally, recommendations are made for future work in this

area.





