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Abstract
The average farm size has more than doubled within the United States over the last three decades,
transforming the agricultural industry and rural farming communities. It is unclear, however, how
this ubiquitous trend has affected and is affected by the environment, particularly groundwater
resources critical for food production. Here, we leverage a unique multi-decadal dataset of
well-level groundwater withdrawals for crop irrigation over the Kansas High Plains Aquifer to
determine the interactions between groundwater depletion and growing farms. Holding key
technological, management, and environmental variables fixed, we show that doubling a farm’s
irrigated cropland decreases groundwater extractions by 2%–5% depending on the initial farm
size. However, a corresponding shift by larger farms to different irrigation technologies offsets this
reduction in groundwater use, leading to a slight increase in overall groundwater use. We find
groundwater depletion increases the likelihood farmland is sold to a larger farm, amplifying the
cycle of groundwater depletion and the consolidation of farmland.

1. Introduction

Small and midsized farm operations within the
United States have been increasingly consolidated
into larger farms (>800 ha; MacDonald et al 2018,
figure S1 (available online at stacks.iop.org/ERL/16/
084065/mmedia)). These large farms now comprise
one-third of all US harvested cropland, more than
quadrupled from three decades prior (MacDonald
et al 2018). At the same time, the share of small
andmidsized farms (40–200 hectares) has fallen from
40% to 20% (MacDonald et al 2018). Moreover, only
6% of the over 2 million US farms produce three-
quarters of all agriculture output (Sumner 2014). This
structural change within the agricultural sector is
expected to continue in the United States, as well as
other high-income countries (Rada and Fuglie 2019).

Previous studies have identified labor-saving
technological innovations, farm specialization, and
government policies as some of the underlying
drivers of farmland consolidation. Together, these

underlying drivers enable larger farms to exploit
constant or increasing returns of scale to improve
productivity (Kislev and Peterson 1982, Morrison
Paul et al 2004, Key 2019, Rada and Fuglie 2019).
Labor-saving innovations, such as mechanical farm
equipment, pesticides, genetically engineered seeds,
and precision technologies, reduce the required labor
hours per hectare, potentially freeing producers to
manage larger farms (Kislev and Peterson 1982,
MacDonald et al 2013). Tax policies and govern-
ment research programs can lower costs of capital
and technology, potentially leading to greater invest-
ments in labor-saving innovations that also enable
larger farms (MacDonald et al 2013). Broad-based
commodity programs and insurance absorb some
of the financial risk in growing certain field crops,
thereby permitting greater levels of specialization,
investments in commodity-specific equipment, and
access to capital—all precursors to cropland expan-
sion (Westcott and Price 2001, Roberts and Key 2008,
MacDonald et al 2013). These technological, policy,
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and market-based drivers of cropland consolidation
explain the societal forces behind this ubiquitous
trend. However, it is unclear how or if environmental
conditions, such as groundwater depletion, also con-
tribute to the consolidation of cropland.

A complicated mix of local and nonlocal
factors contribute to groundwater depletion, mak-
ing groundwater resources challenging to sustainably
manage. Local environmental conditions, such as
aquifer thickness, recharge, hydraulic conductivity,
depth to water table, specific yield, surface drainage,
and precipitation, strongly influence the degree to
which producers pump groundwater (Heath 1983).
Likewise, local social factors like a neighbor’s irrig-
ation schedule or crop planting decisions can also
influence groundwater withdrawals (Pfeiffer and Lin
2012, National Agricultural Statistics Service 2014,
Sampson and Perry 2018). Producers are embed-
ded within a global food system, such that national
subsidies (Deryugina and Konar 2017), interna-
tional trade policies and tariffs (Dalin et al 2012),
and global commodity prices (Marston and Konar
2017) can indirectly influencewater use for irrigation.
Determining the relationship between groundwater
pumping, aquifer depletion, and structural changes
in farming operations can help us understand the
broader systematic factors shaping both farm size
and groundwater overexploitation.

In this study, we answer two interrelated ques-
tions about the linkages between structural change
in the agriculture sector and the utilization of nat-
ural resources with a Kansas case study. More spe-
cifically, we focus on the potential feedbacks between
groundwater use and depletion and the expansion—
primarily via consolidation—of irrigated cropland by
asking: (a) Does a farm’s expansion of irrigated crop-
land lead to a reduction in their intensity of ground-
water use? and (b) Does an increase in the rate of
groundwater depletion increase the likelihood irrig-
ated cropland is transferred into the operation of a
larger farm? We answer these questions using a two-
way fixed effects (FE) model and a correlated random
effects (RE) model, respectively. These models were
developed on a unique multi-decadal dataset of well-
level groundwater withdrawals by irrigators over the
Kansas High Plains Aquifer. Our research improves
our understanding of how broad structural changes
within the agricultural industry are interconnected
with the overexploitation of groundwater resources.

2. Methods

2.1. Data
2.1.1. Groundwater well dataset
A geo-spatially referenced dataset from the Kan-
sas Department of Agriculture’s Division of Water
Resources and Kansas Geological Survey (KGS),
called Water Information Management and Analysis
System (WIMAS) program (Wilson et al 2005), is

used to develop the empirical models used in this
study. The Kansas Water Appropriation Act (Rogers
et al 2013) requires the installation of state approved
flowmeters on all irrigation wells and the report-
ing of annual water use for each point of diversion.
Since the penalties of failure to report water use (even
when no water was used that year) was added to the
water appropriation act in the early 1990s, around
93% of all water users now report their annual water
use (KDA 2020). Irrigators also report irrigated acre-
age, crop type, and irrigation system, which are all
recorded in theWIMAS database (Wilson et al 2005).
We assigned each groundwater well to the person
who filed the water use report for that well. That is,
we assume that the person making the operational
decisions is most likely to know the amount of water
applied and report that information to the state for
all the wells they operate. Irrigated farm size is calcu-
lated as the sum of irrigated acres across all wells for
a given irrigator (who is the operator/manager of all
the irrigated land of those wells, but not necessarily
the owner of all the land). Climate data from PRISM
(2004), monitoring well data from KGS (2018b), and
crop yield and producer price time series data from
US Department of Agriculture (USDA) (NASS 2009)
were also used to compile the complete dataset.

We restrict our analysis on the well-year combin-
ations where (a) the well is located within the High
Plains Aquifer extent and pumps from a groundwa-
ter source, and (b) water use is measured by state
certified flowmeters (as opposed to being estimated
by the irrigator). To reduce the effect of outliers,
which may reflect faulty meters or erroneous report-
ing, for example, we exclude records that are 1.5
times the inter-quartiles range outside the 1st quart-
ile and 3rd quartile range for groundwater irriga-
tion depth, as well as total irrigated cropland of the
irrigator. Furthermore, only wells with 90% or more
continuity of valid records after the filters described
above remained in our analysis. This combined and
cleaned dataset contains approximately 216 000 well-
level observations across 17 126 individual wells in
the Kansas part of the High Plains Aquifer during
1993–2014 (see table S1 for additional data details and
figure 1 for data spatial coverage).

2.1.2. Aquifer thickness dataset
Bedrock elevation contour lines (Kansas Geological
Survey 2018a) and the High Plains Aquifer phreatic
surface (produced using monitoring well readings
from the KGS’s Water Information Storage and
Retrieval Database (WIZARD) dataset (Kansas Geo-
logical Survey 2018b) were combined into a series
of raster files, which together provide an estim-
ate of the aquifer thickness at each pumping well.
Wells belonging to a different aquifer than the High
Plains Aquifer, such as the Arkansas River alluvial
aquifer, were excluded. Only monitoring records dur-
ing January, February, and March were used, as the
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Figure 1. The study area includes 17 126 groundwater wells (green points) across the Kansas portion of the High Plains Aquifer
(area shaded blue in inset). Here, we use the High Plains Aquifer boundary as defined by USGS (Survey 2003), which includes the
thinly saturated fringes of the aquifer.

water table is typically more stable during this period.
The difference between the annually varying water
table elevation and bedrock elevation (assumed to
be constant throughout the study period) equals the
aquifer thickness at the pumping well location for a
given year. Only valid records were maintained in the
final dataset (e.g. bedrock levels reported above the
ground surface were removed). The final set of wells
assigned aquifer thickness values, as well as other
previously described associated data, contained over
157 000 records. These records were used in the mod-
els described by equations (3) and (4) below.

2.2. Irrigated cropland expansion effect on
irrigation depth
Our approach estimates the relationship between
a farm’s expansion of irrigated cropland and its
groundwater withdrawals. We do this by exploiting

how withdrawals changed differently for wells man-
aged by producers that had a change in farm size (i.e.
irrigated cropland holdings) compared to those that
did not.

We estimate how farm expansion of irrigated cro-
pland impacts applied irrigation by taking advant-
age of multi-year observations of how applied water
changed differently for different changes in farm size
across wells. To capture variation across time and
space, we used a two-way FE model that includes
both well and year-specific intercepts. Our FE model
to estimate the direct effect on irrigation depth is as
follows:

wit = ln(Sizeit)β1 +X ′
itγ1 +Z ′

itγ2 +αi + δt + εit
(1)

where wit is the irrigation application rate (milli-
meter (mm)) for well i reported for year t. ln(Sizeit)
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is the natural logarithm of total irrigated area for the
producer operating well i in given year t. The nat-
ural log is taken to account for the skewed distribu-
tion of irrigated farm size. Xit is a vector of control
variables, which include quarterly reference evapo-
transpiration, quarterly precipitation, and each crop’s
county-level revenue per unit area. Zit denotes a set
of land use controls that include crop type and irrig-
ation technology. The land use controls include a
set of seven binary variables to indicate the irriga-
tion system (i.e. the seven irrigation technologies lis-
ted in table 1, plus ‘other systems’ which serves as
the baseline of comparison within our model). Each
crop type (corn, wheat, soybean, sorghum, alfalfa,
and other) and their combinations grown within the
study area are represented as a binary variable within
our model. αi is a well-FE, a well-specific intercept
that allows us to control a well’s time-invariant char-
acteristic such as soils. δt is the year-FE that accounts
for factors that change over time that are the same
across wells such as farm programs, energy and input
prices, and crop prices. Finally, εit is the error term.
β1, γ1, and γ2 are vectors of coefficients correspond-
ing to each of the variables.

We assume that there are no omitted variables
that change over time differently for different wells
that are correlatedwith changes in both irrigated farm
size and irrigation depth. Under this assumption, the
model coefficients in equation (1) are unbiased. Note
that our coefficient and standard error estimates are
unbiased even if there is measurement error in the
water use data due to errors in the flowmeter data
because these meter errors are unlikely to be system-
atically correlated with irrigated farm size. Standard
errors are clustered by wells to account for correla-
tion in the error for a given well over time and allow
different variances across wells.

We capture variation across time and space by
including a unique intercept/constant for each well
and a unique intercept/constant for each year in
the regression model, equivalent to controlling for
immeasurable factors specific to the well and the
year (among other variables explicitly included) that
could possibly lead to changes in both the owner farm
size and irrigation depth. These unique intercepts for
each well and year are commonly referred to as ‘fixed
effects’ in the economics literature (Wooldridge 2010,
Hendricks and Peterson 2012). The well-specific
intercepts control for the spatial variation in water
applied and farm size that could be due to confound-
ing variables. For example, regions with poor soils
may have smaller farm sizes and also apply more
water. The year-specific intercepts control for the
relationship in water applied and farm size over time
that could be due to confounding variables such as
crop prices or federal government policy. Intuitively,
our model exploits how changes in an operator’s total
irrigated area over time impacts the change in irriga-
tion depth applied at that well.

Once the model coefficients are established using
all well observations, we investigate the change in
irrigated depth {wit −wi,t−1} due to the expan-

sion of a producer’s irrigated cropland
{
ln(Sizeit)−

ln(Sizei,t−1) or, alternatively, ln
(

Sizeit
Sizei,t−1

)}
. Note

that ln
(

Sizeit
Sizei,t−1

)
is equivalent to the natural log of

the sum of a farm’s rate of irrigated cropland expan-
sion between year t and t − 1 and one. We calculated
the average farm expansion rate of irrigated cropland
for well records that showed an increase in irrigated
farm size from one year to the next, then we used the
estimated model coefficients to determine the corres-
ponding average change in irrigation depth due to
this average expansion in farm size. That is, in the
year these farms increased their irrigated cropland
their average single year growth rate was calculated by
summing their growth rates (with farms having more
wells weighted more) and then dividing this sum by
the number of well records that belonged to these
growing farms.

We estimate the total effect of farm size on irriga-
tion depth using the following FE model:

wit = ln(Sizeit)β2 +X ′
itγ1 +αi + δt + εit. (2)

Note that equation (2) omits the land use controls
(Z ′

it) that were included in equation (1).
The FEmodels (equations (1) and (2) above) con-

trol for time-invariant heterogeneity across wells (e.g.
soils) and time-dependent factors that affect all wells
(e.g. energy prices) by including well-specific and
year-specific intercepts. The key dependent variable is
the irrigation depth, a measure of irrigation intensity,
defined as volume of irrigation water applied divided
by irrigated area. The ‘direct effect’ in equation (1)
holds constant the land use, while the ‘total effect’ in
equation (2) allows land use to also change as farm
size changes. The total effect represents the expected
change in the intensity of groundwater use due to
growing irrigated farm size. The total effect encom-
passes both the direct and indirect effects. The dir-
ect effect also represents the change in the intensity of
groundwater use due to growing irrigated farm size;
however, the direct effect holds crop type and irrig-
ation technology constant (both of which have a sig-
nificant impact on irrigation withdrawals and might
also be impacted by farm size growth) to better under-
stand the source of the change in groundwater use
due to a irrigated cropland expansion. Put differently,
the direct effect is the unmediated impact of the farm
size change on irrigation water depth that cannot be
explained by the adjustments of any of the control
variables. The difference between the total and dir-
ect effects is the indirect effect of irrigated farm size
on irrigation depth through changes in the crop type
and irrigation system (Hendricks and Peterson 2012).
The indirect effect is the change in groundwater irrig-
ation applications due to adjustments in irrigation
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Table 1. Regression results for two-way fixed effects models of total effect and direct effect of changes in irrigated farm size on change in
irrigation depth. Values not in parentheses are the regression coefficients associated with each variable and represent the expected change
in irrigation depth (dependent variable; mm) for a one unit increase in this variable. Note that for the natural log of farm total irrigated
hectares the coefficient represents change in withdrawal (mm) that corresponds to one unit change in the natural log of the irrigated
area, instead of simply a 1 hectare change in the area. Negative regression coefficients indicate the dependent and independent variable
have an inverse relationship, while a positive coefficient value indicates a positive relationship. The standard error associated with each
variable is a measure of statistical precision of the estimated direction and magnitude of the relationship and is shown in parentheses.

Variable Total effect model Direct effect model

ln (farm total irrigated hectares) 1.574∗∗∗ −10.472∗∗∗

(0.534) (0.586)
Irrigation Tech.: flood — 55.041∗∗∗

— (7.146)
Irrigation Tech.: drip (subsurface irrigation) — −10.086

— (8.539)
Irrigation Tech.: center pivot sprinkler — 7.660

— (7.091)
Irrigation Tech.: center pivot sprinkler w/drop nozzles — 13.745∗

— (7.067)
Irrigation Tech.: sprinkler other than center pivot — −10.897

— (8.298)
Irrigation Tech.: center pivot and flood — 11.663

— (7.092)
Irrigation Tech.: drip and other systems — −0.671

— (9.830)
Precipitation (mm): Jan–Mar −0.093∗∗∗ −0.084∗∗∗

(0.013) (0.014)
Precipitation (mm): Apr–Jun −0.192∗∗∗ −0.234∗∗∗

(0.006) (0.006)
Precipitation (mm): Jul–Sep −0.153∗∗∗ −0.192∗∗∗

(0.005) (0.006)
Precipitation (mm): Oct–Dec −0.159∗∗∗ −0.166∗∗∗

(0.009) (0.010)
Reference evapotranspiration (mm): Jan–Mar 0.902∗∗∗ 1.071∗∗∗

(0.058) (0.063)
Reference evapotranspiration (mm): Apr–Jun 0.569∗∗∗ 0.605∗∗∗

(0.034) (0.037)
Reference evapotranspiration (mm): Jul–Sep 0.307∗∗∗ 0.310∗∗∗

(0.035) (0.037)
Reference evapotranspiration (mm): Oct–Dec −0.795∗∗∗ −0.718∗∗∗

(0.074) (0.081)
Revenue ($ hectare−1): alfalfa 0.414∗∗∗ −0.428∗∗∗

(0.131) (0.140)
Revenue ($ hectare−1): corn 0.049∗∗∗ 0.014

(0.008) (0.009)
Revenue ($ hectare−1): sorghum −0.031∗∗∗ −0.039∗∗∗

(0.008) (0.009)
Revenue ($ hectare−1): soybean 0.066∗∗∗ 0.044∗∗∗

(0.014) (0.015)
Revenue ($ hectare−1): wheat −0.143∗∗∗ −0.136∗∗∗

(0.0156) (0.017)
Year-specific intercepts Yes Yes
Well-specific intercepts Yes Yes
Crop choice controls No Yes
Response of irrigation depth (mm) to doubling of
farm total irrigated hectares

1.1a −7.3a

Standard errors in parenthesis.
∗∗∗ p < 0.01, ∗ p < 0.1.
a Note that the coefficient on the log of farm total irrigated hectares is the impact of a 1% change in farm size. We calculate the effect of

doubling farm total irrigated hectares as the coefficient times ln(2) because ln(2x)− ln(x) = ln(2), for any given farm size x. The

1.1 mm increase in average irrigation depth associated with the total effect represents a 0.34% increase from initial average irrigation

depths, while the 7.3 mm reduction associated with the direct effect represents a 2.3% decrease.
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management (i.e. a different irrigation system or a
different choice of crop(s)) corresponding to a trans-
fer in farm ownership or operation (see figure 2 for an
illustration of the relationship between direct effect,
indirect effect, and total effect).

The direct effect estimated as β1 in equation (1)
represents the change in applied irrigation depth due
to a change in irrigated farm size, holding constant
the cropping patterns and irrigation technology. The
total effect estimated as β2 in equation (2) represents
the change in applied irrigation depth due to a change
in irrigated farm size allowing for potential changes in
cropping patterns and irrigation technology related
to changes in irrigated farm size. The indirect effect
can be calculated as the difference between the total
effect and the direct effect (β2− β1). The indir-
ect effect represents the change in applied irrigation

depth through the pathway of land use adjust-
ment (i.e. change in crop choice and/or irrigation
technology).

2.3. Groundwater depletion effect on farm
consolidation
We analyze how aquifer depletion in previous years
impacts the probability of changing the manager
(i.e. a change in ownership or tenancy) using a
correlated RE model with a probit link function
(equation (3)). Including FE creates bias in non-
linear models where the dependent variable is bin-
ary, such as a probit model. A common solution
is to use the correlated RE model as a method
to control for unobserved time-invariant vari-
ables while avoiding the bias from including FE
(Wooldridge 2010). Our probit model is specified as

MCit = Φ

(
µ1Sati,t−1 +µ2∆Sati,t−1 to t +µ3Sati,t−1 ×∆Sati,t−1 to t +X ′

it γ1 +Z ′
it γ2+

θ1Sati,t−1 + θ2∆Sati,t−1 to t + θ3Sati,t−1∆Sati,t−1 to t +X ′
itγ3 +Z ′

itγ4 + δt + εit

)
(3)

where MCit is equal to 1 if year t + 1’s manager/ir-
rigator is different than year t. Φ(·) is the cumulative
standard normal distribution function. Sati,t−1 is the
aquifer thickness in year t − 1 while ∆Sati,t−1 is the
change in aquifer thickness (i.e. the depletion rate in
m yr−1, which is positive if there is reduction of thick-
ness) from year t − 1 to year t. The variables with
overlines are the mean values of the corresponding
variable for each cross-sectional unit/well i; this is to
effectively control for time-invariant unobserved het-
erogeneity (Wooldridge 2010). δt is the year specific
intercept. The coefficients accompanying variables θ1
to θ3 and γ1 to γ4 do not have a causal interpretation
but are rather a way of controlling for observed and
unobserved heterogeneity.

The transfer probability (i.e. MCit) is the likeli-
hood that a well is owned or operated by a new per-
son the following year. µ1 is a coefficient that relates
an aquifer thickness to the transfer probability, µ2

relates the annual change in aquifer thickness to the
transfer probability, and µ3 provides information on
whether the aquifer thickness and annual change in
aquifer thickness act in coordination when predicting
transfer probabilities. If an interaction term between
two independent variables has a coefficient (i.e. µ3)
estimate that is statistically significant, it indicates
that the influence of one of the two independent vari-
ables on the dependent variable depends on the value
of the other independent variable. In the context of
our model, a statistically significant interaction term,
µ3, means that the annual change (from year t − 1
to t) in aquifer thickness’ influence on the transfer

probability depends on the aquifer thickness in year
t − 1. Estimates of µ1 and µ2 cannot be easily inter-
preted directly due to model non-linearity. There-
fore, to determine the marginal effect of changes in
Sati,t−1 and∆Sati,t−1 to t (corresponding toµ1 andµ2,
respectively) all other variables were first set to their
mean, which is commonly referred to as the marginal
effect at the means.

To explore the differences between wells of differ-
entiated long-term depletion conditions, we divided
the records into four subsets based on their long-
term average annual depletion rate during the study
period: none/mild (<0.1 m yr−1), moderate (0.1–
0.5 m yr−1), severe (0.5–1.0 m yr−1), very severe
(>1.0 m yr−1). We determine the probability that
the irrigated cropland is transferred to another own-
er/operator for each depletion class for all levels
of aquifer thickness using the model described by
equation (3). The expected transfer probability and
associated 95% confidence intervals (CIs) were calcu-
lated as well.

Lastly, we determine if the overall trend in irrig-
ated cropland transfers is toward more fragmented
smaller holdings or larger farm holdings. To determ-
ine this trend, we isolated well records if the well
and corresponding irrigated cropland were identi-
fied as having an elevated probability of being trans-
ferred due to the underlying aquifer thickness and a
change in farm management was actually observed
(i.e. MCit = 1). Using equation (3), we calculate
the probability of transferring management under
the observed aquifer thickness versus the transfer

6
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Figure 2. Visual summary of models described by equations (1) and (2). The total effect (β2) of changing irrigated farm size on
irrigation depth is a function of the direct effect (β1) and the indirect effect (β2 − β1). The direct effect isolates the change in
applied groundwater irrigation due to growing irrigated farm size by holding constant crop type and irrigation technology. The
indirect effect denotes changes in groundwater irrigation applications due to adjustments in irrigation system and crop type that
correspond to an expansion of irrigated cropland.

probability if the aquifer thickness is one meter
thicker. For this subset of well records, the ratio
between the current and previous irrigated farm size
(SR) is calculated as below:

SR= exp

[
1

N

∑
ln

(
Sizei,t+1

Sizei,t

)]
(4)

where N is the total number of observations in the
filtered dataset. We introduce the natural logarithm
tominimize the impact of outliers. If SR is larger than
1.0, it indicates that on average, a transfer of irrigated
land attributable to groundwater depletion will result
in a larger operator.

3. Results

3.1. Irrigated cropland expansion effect on
groundwater irrigation
When a farm expands its irrigated cropland, the total
effect of increased irrigated farm size is an increase in
groundwater use per hectare (i.e. irrigation depth in
table 1). If a farm were to double its irrigated crop-
land, on average it would use 0.34% (1.1 mm) more
groundwater per year. However, the average total
effect masks differences in the effect on groundwater
use between different initial farm sizes. After group-
ing farms by their initial farm size (roughly follow-
ing the farm size categories of the USDA (MacDonald
et al 2013, 2018, Key 2019)), we find that the smal-
lest farms (0–80 hectares) use 1.2% less groundwa-
ter due to a doubling in size (figure 3). However,
the next smallest farm size category (80–200 hec-
tares) use 1.5% more groundwater due to a doub-
ling of the operator’s total irrigated cropland hold-
ings. The magnitude and direction (from a decrease
in pumping to an increase in pumping) of the change
between these two initial farm size categories sug-
gest that groundwater pumping in these small- to

medium-sized farms is the most sensitive to changes
in farm size.

Farms that increased their irrigated cropland
fromone year to the next grew by 49% from the previ-
ous year, on average. This increase in farm size led to
an average 4.2mm(1.3%) decrease (direct effect, 95%
CI: 3.7–4.6 mm) in applied irrigation depth hold-
ing constant technology and cropping patterns (table
S2). However, the increase in irrigated cropland hold-
ings also led to changes in farm irrigation technology
and cropping patterns. Taken together, the increase
in farm size and corresponding changes in irrigation
technology and cropping patterns (i.e. total effect) led
to an average increase of 0.6 mm (0.2%) in irrigation
applications (CI: 0.2–1.1 mm). If we evaluate rates of
farm expansion based on initial farm size, the average
expansion in irrigated cropland varies between 22%
and 83%, with smaller farms seeing larger relative
growth than larger farms. Table S2 shows the average
growth rate by initial farm size, as well as the associ-
ated direct and total effect of operatingmore irrigated
cropland on irrigation applications. Since the average
growth in farm size is dependent on both the initial
farm size and the length of records, we use a stand-
ard increase of 100% (i.e. doubling of irrigated cro-
pland) to provide a more uniform assessment of the
impact of increasing an operator’s irrigated cropland
on irrigation depths (figure 3).

The direct effect of farm expansion of irrigated
cropland is a reduction in groundwater use. Overall,
when all farm size categories are considered together,
a doubling of the average farm size leads to 7.3 mm
(2.3%; 95% CI:6.5–8.1 mm) reduction in irriga-
tion depth when holding every other factor constant.
Under the average farm size growth rate (49%) during
the study period, increasing irrigated cropland hold-
ings directly reduced groundwater irrigation depths
by 4.2 mm (1.3%; 95% CI: 3.7–4.6 mm).
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Figure 3. Direct and total effect of doubling of a producer’s managed irrigated cropland on irrigation depth (%). The percentage
change in irrigation depths is set from the baseline irrigation applications for each respective farm size category. Effects of
growing farms differ depending on the initial size of irrigated cropland, which are grouped here among common farm size
categories. The direct effect (blue ‘X’s) of an increase in irrigated cropland holdings on irrigation depth is determined by holding
constant changes in crop choice and irrigation technology, which are well documented determinants of water withdrawals. The
change in irrigated cropland holdings can also indirectly affect irrigation applications by leading to a change in cropping patterns
or irrigation technology. Together, the direct and indirect effect of an increase in irrigated cropland holdings is the total effect
(gray triangles). While the direct and indirect effects are determined by isolating and examining certain variables, the total effect
represents the overall impact of increasing irrigated cropland holdings on irrigation applications through all possible pathways.
Figure S2 replaces the units of the vertical-axis with mm.

The initial size of a farm strongly dictates the
direct effect of increasing its irrigated cropland
holdings on pumping reductions. While all farm size
categories show a decline in groundwater applica-
tions as irrigated cropland increases (figure 3, direct
effect), medium/large-sized farms show the greatest
reduction in groundwater irrigation depths (4.6%
reduction with doubling of irrigated cropland), while
the smallest and largest farm holdings exhibit a smal-
ler reduction in groundwater irrigation depths (2.1%
and 2.6%, respectively). This suggests that there is
some threshold of farm size whereby approaches to
reduce groundwater pumping become viable but after
these improvements are made, further improvements
are more limited.

Irrigation efficiency gains through improved
management (direct effect) are offset by an increase
in irrigation applications associated with a switch
in irrigation technology (indirect effect). Figure S3
shows that producers in the study area have shifted
from flood and traditional center pivot system to
drop nozzle center pivots over the last several dec-
ades. An increase in irrigated farm size results in an
increased probability of switching to drop nozzle
center pivot systems (p < 0.05) and a correspond-
ing decrease in traditional center pivot (p < 0.001;
see SI section 1.2). As shown in table 1, a switch

from flood to drop nozzle center pivot systems is
associated with a decrease in applied irrigation. How-
ever, there was a greater conversion from traditional
center pivot to drop nozzle center pivots than flood to
drop nozzle center pivots, which was associated with
a net increase in groundwater withdrawals. Drop
nozzle center pivot systems are approximately 2%
more efficient than traditional center pivot systems
(Perry 2006), yet we find that the switch to drop
nozzle irrigation actually increases irrigation applica-
tions (table 1, p < 0.1). Our data did not conclusively
show that growing farms have a greater tendency to
switch to water-intensive crops. There was a slight
increase in irrigated area after the land was trans-
ferred, however.

3.2. Groundwater depletion effect on cropland
consolidation
We find that the probability of a field transferring
to a different operator is greater when there is less
aquifer thickness available at the well’s location in
the aquifer. The median farm transfer is 53 hectares,
but transfers range from a few hectares to almost
900 hectares.When evaluated at the average condition
(all variables set to their mean values), an irrigated
parcel has a 3.91% probability of being transferred.
One less meter of aquifer thickness in the previous
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Table 2. Regression results showing groundwater depletion’s marginal effect on the transfer of irrigated farmland. The last row provides
the baseline probability the irrigated cropland is transferred to a new owner/operator between year t and t + 1 (transfer probability,
established at average conditions). The preceding rows show the marginal transfer probability from this baseline. Fields whose
underlying aquifer thickness is less than the average thickness have a higher probability of being transferred the next year, as indicated by
the negative marginal effect of aquifer thickness. There is not sufficient evidence to conclude whether the annual rate of depletion affects
the probability of farmland transfers (p > 0.1). This is true irrespective of the level of aquifer thickness (interaction term has p > 0.1).

Variable
Coefficient
estimate MEMa

Standard error
of MEM

95% confidence interval

Lower Upper

Aquifer thickness in year
t − 1 (m)

−0.00617∗∗∗ −0.053% 0.019% −0.090% −0.016%

Annual rate of
depletion, year t − 1 to
year t (m yr−1)

0.00725 −0.006% 0.028% −0.061% 0.049%

Interaction of aquifer
thickness and annual rate
of depletion

−0.000201 —

Response variable predicted value at average conditions
Transfer probability (unitless) 3.91% 0.20% 3.52% 4.29%
∗∗∗ p < 0.01, ∗ p < 0.1.
a Marginal effect at means (MEM) is the change of the response variable (i.e. here, the probability of farmland transfer) upon one unit

change of predictor variable (e.g. aquifer thickness), when all other variables are held constant at the average conditions.

Figure 4. Predicted farmland transfer probability for wells of different long-term depletion at different aquifer thickness. Note the
annual fluctuations in aquifer thickness used in the regression model differs from the average long-term depletion trends used
here.

year increases the probability the irrigated parcel is
transferred to another owner/operator by 0.053 per-
centage points. The results of the correlated REmodel
are presented in table 2 for the marginal effects of the
aquifer thickness and depletion rate when all other
variables are evaluated at their average.

While the current aquifer thickness increases the
probability that an irrigated parcel will be transferred
to another operator (p < 0.001), year-to-year fluc-
tuations in the rate of change in aquifer thickness
do not affect the probability a parcel is transferred
(table 2). However, the current aquifer thickness is

related to the long-termdepletion trend and these two
factors act together to change the probability a par-
cel is transferred. Irrigated parcels with very severe
rates of groundwater depletion (average >1.0 m yr−1

between 1993 and 2014) are 18.7% (0.67 percentage
points)more likely to be transferred than those exper-
iencing little to no change in groundwater depletion
(<0.1 m yr−1) on average (figure 4). When aquifer
thickness is between 25 and 75 m, the transfer prob-
ability is notably higher for wells experiencing very
severe depletion rates than wells with little or no
change in long-term depletion, even after considering
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the 95% CI. However, at thinner (<25 m) and thicker
(>75 m) aquifer thickness the impact of the long-
term depletion rate on transfer probability is not as
clear. Regardless of the rate of groundwater deple-
tion, larger operators (10% larger, on average; by
equation (4)) are more likely to acquire the irrigated
cropland being transferred. In this way, increasing
groundwater exploitation can serve as a catalyst in the
widespread trend of cropland consolidation.

4. Discussion and conclusion

Groundwater depletion and the consolidation of
irrigated cropland into larger farms are contem-
poraneous trends impacting the environmental and
socioeconomic sustainability of rural areas. This
study demonstrates the connection between farm
consolidation/expansion and groundwater depletion.
The direct effect of increasing a farm’s irrigated cro-
pland is a decrease in groundwater withdrawals (all
else equal), suggesting an improvement in groundwa-
ter irrigation efficiency. A key pathway toward irrig-
ation efficiency improvement is through better man-
agement practices, such as irrigation scheduling, use
of soil moisture sensors, residue management, and
proper tillage. Though irrigators apply groundwater
more efficiently as they increase their irrigated crop-
land holdings (all else being equal), their switch from
traditional center pivot to drop nozzle center pivot
systems increases the depth of groundwater irrigation
applications. Increasing groundwater pumping leads
to loss of aquifer thickness, which in turn increases
the likelihood the overlying cropland is transferred,
typically to larger farm holdings (10% on average, per
calculation of equation (4)). In this way, the cycle of
groundwater depletion and the consolidation of irrig-
ated cropland is amplified.

Increasing rates of groundwater depletion can
accelerate a shift of irrigated cropland to larger farm
holdings, which often comes at the expense of smaller
farms. The USDA’s Farm Service Agency offers loans
to assist new small producers purchase farms, espe-
cially historically underserved and women producers
(National Agricultural Statistics Service 2017). Over
the course of a typical 20 year farm loan, farms exper-
iencing very severe depletion rates (>1.0 m yr−1)
are 12% more likely to sell their irrigated crop-
land than those with little to no change in deple-
tion (<0.1 m yr−1). For each one-meter decline in
groundwater levels, the overlying irrigated cropland
loses between $27.7 ha−1 and $128.6 ha−1 in value
(Sampson et al 2019). During a 20 year loan period,
the loss in land value due to a 1 m yr−1 drop of the
water table amounts to between $554.6 and $2571.6
decrease in land value per hectare at average con-
ditions. For comparison, the average land price per
irrigated hectare is $6948.1 (Sampson et al 2019).
Declines in aquifer thickness impact parcel prices

more for thinner aquifer segments than for thicker
segments of the aquifer (Sampson et al 2019). If
groundwater levels drop such that the cropland can
no longer be irrigated, these highly leveraged pro-
ducers will lose, on average, one-third of their land
value (Sampson et al 2019). Further, the inability to
irrigate can lower profitability, which greatly inhib-
its borrowers’ ability to repay their loan. In this way,
groundwater depletion is not only a matter of envir-
onmental sustainability but also of socio-economic
sustainability.

The consolidation of cropland and groundwater
depletion have been persistent and significant over
the last several decades, with no signs of slowing. This
study shows how these trends of land and groundwa-
ter resources are interconnected, which has implic-
ations for the management of these resources and
the policies that shape them. Our results support
previous studies (e.g. Ellis et al 1985, Huffaker and
Whittlesey 1995, Ward and Pulido-Velazquez 2008,
Pfeiffer et al 2010, Contor and Taylor 2013, Pfeiffer
and Lin 2014, Grafton et al 2018, Sears et al 2018)
that show that more efficient irrigation technologies
can increase irrigation. Our findings call into ques-
tion incentive-based water conservation programs
that subsidize irrigation technologies, like the Envir-
onmental Quality Incentive Program and Irrigation
Water Conservation Fund established in Kansas to
fund the adoption ofmore efficient irrigation techno-
logies since more efficient irrigation technology may
not necessarily reduce groundwater withdrawals and
may be disproportionately utilized by growing farms.
Having demonstrated the connection between farm
structure and the state of the underlying aquifer, it
is important that any policy or regulation (such as
formal groundwater management (Edwards 2016),
proposed groundwater pumping restrictions (Cody
et al 2015, Drysdale and Hendricks 2018), or retire-
ments (Big Bend Groundwater Management Dis-
trict No. 5 Board of Directors 2019)) consider how
these interventions will impact both farm structure
and groundwater resources so to mitigate incidental
impacts.
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