Asymetric Oxidation Reactions Catalyzed by Chiral Substituted Polymers / Nanoclusters; Synthesis of 6-(dimethylamino)-2-phenylisoindolin-1-one Derivative.

by
Bo Hao
B.S., Xiamen University, 2011

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Chemistry
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Abstract

The discovery of new methodologies to advance the fields of synthetic organic, nanoclusters, and polymer chemistry is critical in the asymmetric synthesis of organic compounds. Particularly, catalytic asymmetric oxidation reactions are economic. The oxidation reactions provide chiral molecules and additional functionality onto the molecules for functional group manipulation. New kinds of polymers, namely chiral-substituted poly- N-vinylpyrrolidinones (CSPVPs), stabilize the bimetallic nanoclusters such as $\mathrm{Pd} / \mathrm{Au}$ or $\mathrm{Cu} / \mathrm{Au}$ and induce chirality. These chiral polymers wrap around the nanometer-sized ($\sim 3 \mathrm{~nm}$) bimetallic nanoclusters and catalyze a number of enantioselective oxidation reactions using oxygen or hydrogen peroxide as the oxidant. Cycloalkanediols were asymmetrically oxidized by 1 atm of oxygen gas to yield the corresponding hydroxyl ketone under the catalysis of $\mathrm{Pd} / \mathrm{Au}$ (3:1) - CSPVP nanoclusters. Alkenes were oxidized by $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP nanoclusters under 2 atmospheric of oxygen in water to give the syn-dihydroxylated products in high chemical and excellent optical yields. Various cycloalkanes underwent regio- and enantio-selective $\mathrm{C}-\mathrm{H}$ oxidation with $\mathrm{Cu} / \mathrm{Au}$ (3:1)-CSPVP and 30% hydrogen peroxide to produce the corresponding chiral oxo-molecules in very good to excellent chemical and optical yields. We further discovered an enantioselective desymmetrization of α, α-dialkenyl-alkanols and α, α-dialkenyl-amino acid ethyl esters to give chiral disubstituted lactones and lactams, respectively. A number of medium-sized natural products and drugs were also oxidized regioselectively to give the corresponding mono-oxygenated products. A broad-spectrum predictive C-H oxidation of complex molecules is possible. Chapter 1 mainly discussed the synthesis and characterization of the new classes of chiral substituted PVP and bimetallic nanoclusters. Chapter 2 focus on various kind of oxidation reactions by the catalysis of CSPVP stabilized bimetallic nanoclusters.

Among various bioluminescence assays, firefly luciferase based bioluminescence assays are popular due to their high specific activity, low background noise and ease of use. However, it has been found that some aromatic carboxylic acid substantially inhibited the firefly luciferase reporter enzyme's activity. In order to study firefly luciferase inhibition and the proteins associated with inhibition mechanism, we designed two 6-(dimethylamino)-2-phenylisoindolin-1-one derivatives as probe molecules. The synthesis of one probe molecule is discussed in Chapter 3 and the further investigation of its inhibitory activity on firefly luciferase is being conducted by our collaborator, Dr. Madoka Nakagomi at Itsuu Foundation, Japan.

Asymetric Oxidation Reactions Catalyzed by Chiral Substituted Polymers / Nanoclusters; Synthesis of 6-(dimethylamino)-2-phenylisoindolin-1-one Derivative.

by

Bo Hao
B.S., Xiamen University, 2011

A DISSERTATION
submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Chemistry
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2018
Approved by:
Major Professor
Dr. Duy H. Hua

Copyright
© Bo Hao 2018.

Abstract

The discovery of new methodologies to advance the fields of synthetic organic, nanoclusters, and polymer chemistry is critical in the asymmetric synthesis of organic compounds. Particularly, catalytic asymmetric oxidation reactions are economic. The oxidation reactions provide chiral molecules and additional functionality onto the molecules for functional group manipulation. New kinds of polymers, namely chiral-substituted poly- N-vinylpyrrolidinones (CSPVPs), stabilize the bimetallic nanoclusters such as $\mathrm{Pd} / \mathrm{Au}$ or $\mathrm{Cu} / \mathrm{Au}$ nanoparticles and induce chirality. These chiral polymers wrap around the nanometer-sized ($\sim 3 \mathrm{~nm}$) bimetallic nanoclusters and catalyze a number of enantioselective oxidation reactions using oxygen or hydrogen peroxide as the oxidant. Cycloalkanediols were asymmetrically oxidized by 1 atm of oxygen gas to yield the corresponding hydroxyl ketone under the catalysis of $\mathrm{Pd} / \mathrm{Au}$ (3:1) - CSPVP nanoclusters. Alkenes were oxidized by $\mathrm{Pd} / \mathrm{Au}$ (3:1)-CSPVP nanoclusters under 2 atmospheric of oxygen in water to give the syn-dihydroxylated products in high chemical and excellent optical yields. Various cycloalkanes underwent regio- and enantio-selective $\mathrm{C}-\mathrm{H}$ oxidation with $\mathrm{Cu} / \mathrm{Au}$ (3:1)-CSPVP and 30% hydrogen peroxide to produce the corresponding chiral oxo-molecules in very good to excellent chemical and optical yields. We further discovered an enantioselective desymmetrization of α, α-dialkenyl-alkanols and α, α-dialkenyl - amino acid ethyl esters to give chiral disubstituted lactones and lactams, respectively. A number of medium-sized natural products and drugs were also oxidized regioselectively to give the corresponding mono-oxygenated products. A broad-spectrum predictive C-H oxidation of complex molecules is possible. Chapter 1 mainly discussed the synthesis and characterization of the new class of chiral

substituted PVP and bimetallic nanoclusters. Chapter 2 focus on various kinds of oxidation reactions by the catalysis of CSPVP stabilized bimetallic nanoclusters.

Among various bioluminescence assays, firefly luciferase based bioluminescence assays are popular due to their high specific activity, low background noise and ease of use. However, it has been found that some aromatic carboxylic acid substantially inhibited the firefly luciferase reporter enzyme's activity. In order to study firefly luciferase inhibition and the proteins associated with inhibition mechanism, we designed two 6-(dimethylamino)-2-phenylisoindolin-1-one derivatives as probe molecules. The synthesis of one probe molecule is discussed in Chapter 3 and the further investigation of its inhibitory activity on firefly luciferase is being conducted by our collaborator, Dr. Madoka Nakagomi at Itsuu Foundation, Japan.

Table of Contents

Table of contents viii
Structure-Number Correlation Chart x
List of Figures xxvi
List of Tables xxvii
List of Schemes xxviii
List of Symbols xxix
List of Abbreviations xxx
Acknowledgements xxxii
Dedication xxxiii
Chapter 1 - Synthesis and Characterization of Chiral Substituted Poly- N-vinylpyrrolidones and Bimetallic Nanoclusters 1
1.1 Background and Significance 1
1.2 Synthesis of Chiral Substituted Poly- N-vinylpyrrolidinone 3
1.2.1 Synthesis of 5-Substituted Chiral PVP 4
1.2.2 Synthesis of 3,4-Disubstituted Chiral PVP 9
1.2.3 Characterization of Chiral Substituted PVP 12
1.3 Synthesis and Characterization of CSPVP Stabilized Bimetallic Nanoclusters 16
1.3.1 Synthesis of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters 16
1.3.2 Characterization of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters 18
1.4 Conclusion 27
1.5 Synthetic Experimental Procedures 27
1.5.1 General 27
1.5.2 Representative Synthesis 28
Chapter 2 - Asymmetric Oxidation Reactions and Late Stage Oxidation Reactions Catalyzed by
Bimetallic Nanoclusters 49
2.1 Selective Asymmetric Oxidation Reactions of Alcohols. 49
2.1.1 Background and Significance 49
2.1.2 Results and Discussions 50
2.2 Asymmetric Dihydroxylation of Alkenes. 57
2.2.1 Background and Significance 58
2.2.2 Results and Discussions 58
2.3 Selective C-H Asymmetric Oxidation Reactions of Cycloalkanes. 67
2.1.1 Background and Significance 67
2.1.2 Results and Discussions 68
2.4 Asymmetric Oxidative Ring-Closing Reaction of Dienes 78
2.1.1 Background and Significance 78
2.1.2 Results and Discussions 78
2.5 Selective Late-stage C-H Oxidation of Complex Molecules 84
2.1.1 Background and Significance 84
2.1.2 Results and Discussions 86
2.6 Conclusion 91
2.7 Synthetic Experimental Procedures 91
2.6.1 General 91
2.6.2 Procedures and Analysis Results for Oxidation of trans-Cycloalkanediols. 92
2.6.3 Procedures and Analysis Results for Oxidation of cis-Cycloalkanediols, 110
2.6.4 Procedures and Analysis Results for Dihydroxylation of Alkenes. 120
2.6.5 Procedures and Analysis Results for Oxidation of Cycloalkanes. 146
2.6.6 Procedures and Analysis Results for Oxidative Ring Closing Reaction of Dienes. 175
2.6.7 Procedures and Analysis Results for Late-stage C-H Oxidation of Complex Molecules.193
Chapter 3 - Synthesis of 6-(Dimethylamino)-2-phenylisoindolin-1-one derivative. 200
3.1 Background and Significance 200
3.2 Synthetic Route and Discussions 204
3.3 Future Work 209
3.4 Synthetic Experimental Procedures 209
3.4.1 General 209
3.4.2 Representative Synthesis 210
Reference 225
Appendix A. ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}$ NMR and Mass Spectrum 239

Structure-Number Correlation Chart

1

5

2

6

3

7

4

11

15

16

18

20

21

22

23

24

28
25
26

29

30

31

33

$(\pm)-37$

(\pm)-39

(S)-41

43

35

39A

41A

44

(S)-38

$(\pm)-40$

45

38A

36

$(\pm)-46$

$(\pm)-47$

$(R, R)-47 \mathrm{~A}$

(S)-49

(R, R)-48A

(S)-51

54

(1S,2R)-58

(S)-49A

(S)-50A

53

57

(S)-51A

55

59

(\pm)-48

(S)-50

(1R,2S)-61

(2R,3R)-65

(R)-69

66

$(1 S, 2 R)-67$

$(1 S, 2 R, 4 R)-70$

73

$(2 R, 3 R)-74$

75

77A
75A

78A

78B

78C

78D

79

 80C

$(1 S, 2 R)-83$

$(1 S, 2 R)-84$

(1R,2S,4R)-85

(S)-87

88

89

90

91

92

$(2 R, 5 S)-93$

96

100

(R)-101

(R)-99

95

(1S,2R)-102

$(1 S, 2 R)-112$

$(1 S, 2 R)-113$

$(1 S, 2 R)-114$

(1S,2R)-115

116

119

(S)-121

(S)-122

(S)-123

(S)-124

(S)-125

(S)-126

(1R,3S)-127

(1R,3S)-128

(S)-129

$(1 R, 3 S)-130$

(1R,3S)-131

(S)-132

133

134

195

196

197

(S)-200
199

(S)-203

(S)-208

(S)-211

(S)-212

(S)-209

(S)-213

(S)-210

(S)-216

221

225

222

226

230

231

(2S,7aS)-218
 224

223

227

229

232

237

241

243
244

242

245

246

247

248

249

250

251

List of Figures

Figure 1. Inverse Relationship Between the Total Number of Atoms in Full Shell Clusters and the Percentage of Surface Atoms1
Figure 2. Polymer Having a Side-chain Chiral Ligand or Main-chain Chiral Ligand. 4
Figure 3. (a) PVP (b) 5-substituted Chiral PVP (c) 3,4-disubstituted Chiral PVP. 4
Figure 4. Gel Permeation Chromatography Chart of CSPVP 1. 13
Figure 5. Dynamic Light Scattering Studies of CSPVP 1 (A \& B) \& 26 (C \& D). 15
Figure 6. A Representative Atomic Force Microscopy Image and Measurement of Particle Height for CSPVP 1 (A \& B) \& 26 (C \& D). 16
Figure 7. IR Spectra for (A) CSPVP-26, (B) Cu:Au-CSPVP26 (C) Pd:Au-CSPVP26 (D) Pd/Au Complex with CSPVP 19
Figure 8. A Representative Atomic Force Microscopy Image and Measurement of Particle Height for Pd:Au-CSPVP26 (Panel A \& B) and Cu:Au-CSPVP26 (Panel C \& D). 20
Figure 9. Dynamic Light Scattering Results for Pd:Au-CSPVP26 (Panel A \& B),Cu:Au-CSPVP26 (Panel C \& D).21
Figure 10. Representative TEM Image and Measurement of the Diameter for Pd:Au-CSPVP26(Panel A \& B), Cu:Au-CSPVP26 (Panel C \& D)... 23Figure 11. X-ray photoelectron spectroscopy Results for Pd:Au-CSPVP1 (Panel A, B \& C),Cu:Au-CSPVP1 (Panel D, E \& F). .. 25Figure 12 Representative UV-Vis spectra of CSPVP26, Pd:Au-CSPVP26 \& Cu:Au-CSPVP2626
Figure 13. Representative CD spectra of Cu:Au-CSPVP26 \& Pd:Au-CSPVP26 (top panel),CSPVP 26 (middle panel), and Au, Cu, and Pd standard solution as controls. 27
Figure 14 COSY Study and ${ }^{1} \mathrm{H}$ NMR Assignment for 13-Oxo-oxymatrine N-oxide (230). 87
Figure 15. Surface view of (a) firefly luciferase without its substrate (Protein Data Bankaccession number 1LCI) ${ }^{[152]}$ (b) firefly luciferase in complex with bromoform (Protein DataBank accession number 1BA3). ${ }^{[154]}$201
Figure 16. Structure of D-luciferin and Firefly Luciferase Inhibitors. 203
Figure 17. Synthons and Synthetic Equivalents of 242. 206

List of Tables

Table 1. 5-Substituted Chiral PVP 1-4 5
Table 2. 3,4-Disubstituted Chiral PVP 25 \& 26 10
Table 3. Polydispersity Index of CSPVP $1,25 \& 26$ 13
Table 4. Reaction Condition Studies for the Oxidation of (\pm)-trans-cyclohexanediol(37) 51
Table 5. Results of Catalytic Asymmetric Oxidation of 1,3 and 1,2-Cycloalkanediols. 55
Table 6. Results of Catalytic Asymmetric Dihydroxylation of Alkenes. 62
Table 7. Results of Catalytic Asymmetric C-H Oxidation of Cycloalkanes. 73
Table 8. Results of Catalytic Oxidative Ring-Closing Reactions. 82
Table 9. Results of Late-stage C-H Oxidation for Complex Molecules 89

List of Schemes

Scheme 1. Synthesis of N-vinyl-5-benzhydryloxymethylpyrrolidinone (13) 6
Scheme 2. Synthesis of N-vinyl-5-substituted pyrrolidinone 15 \& 21 7
Scheme 3. Polymerization for 5-substituted Chiral PVP. 8
Scheme 4. Synthesis of N-vinyl-3,4-disubstituted pyrrolidinone $33 \& 34$ 11
Scheme 5. Polymerization for 2,3-Disubstituted Chiral PVP 25 \& 26. 12
Scheme 6. The Synthesis of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters. 18
Scheme 7. Benzoylation of (S)-Hydroxycycloalkanones and Dibenzoylation of Recovered(R, R)-Cycloalkanediols.56
Scheme 8. Proposed Mechanism for the Asymmetric Catalytic Oxidation of Racemic and Meso1,3-Cycloalkanediols and 1,2-Cycloalkanediols... 57
Scheme 9. Oxidation of Cyclooctadiene. 59
Scheme 10. The Preparation of the Substrates for Dihydroxylation Reactions 64
Scheme 11. Confirmation of the Absolutely Configurations of the Dihydroxylation Products. 66 66
Scheme 12. Proposed Mechanism and Stereo- and Regio-chemistry of the Enantioselective Oxidation of Alkenes. 67
Scheme 13. The Synthesized Molecules for Confirming the Absolutely Configurations of the Cycloalkanes Oxidation Products 75
Scheme 14. The Preparation of the Substrates for Cycloalkane C-H Oxidation Reactions 76
Scheme 15. Proposed Mechanism of the Enantioselective Catalytic Oxidation of Alkanes. 77
Scheme 16. Syntheses of Known Molecules for Confirming the Absolutely Configurations of the Oxidative Ring-Closing Products. 83
Scheme 17. Preparations of the Substrates for Oxidative Ring-Closing Reactions 84
Scheme 18. Proposed Mechanism of the Enantioselective Ring Closing Reaction for Dienes. 85
Scheme 19. The Synthetic Route for the Confirmation of the C-H Oxidation Product. 90
Scheme 20. Luciferase Catalyzed Reactions 202
Scheme 21. Structure of F-53, 242 and 242A 204
Scheme 22. The Synthetic Route for Compound 242 208

List of Symbols

delta, chemical shift
enantiomeric excess

List of Abbreviations

PVP	Poly- N-vinyl-pyrolidinone
PAMAM	Poly(amidoamine)
THF	Tetrahydrofuran
CSPVP	Chiral substituted poly- N -vinyl-pyrolidinone
AIBN	Azobis(isobutyronitrile)
NVP	N-vinylpyrrolidone
DMF	Dimethylfomaide
DP	Degree of polymerization
GPC	Gel Permeation Chromatography
DLS	Dynamic Light Scattering
AFM	Atomic Force Microscopy
NMR	Nuclear magnetic resonance
TEM	Transition electron microscopy
XPS	X-ray photoelectron spectroscopy
CD	Circular dichroism
TON	Turnover Number
DCM	Dichloromethane
EA	Ethyl Acetate
HTS	High throughput screening
ATP	Adenosine triphosphate
D-LH2	D-isomer of firefly luciferin
AMP	Adenylate
Co-A	Coenzyme A
NBS	N -Bromosuccinimide
TBSCl	Tert-Butyldimethylsilyl chloride
EtOH	Ethanol
PCC	Pyridinium chlorochromate
DIBAl-H	Diisobutylaluminium hydride

MOMCl
DIPEA
IBX

Chloromethyl methyl ether
N, N-Diisopropylethylamine
2-Iodoxybenzoic acid

Acknowledgements

First of all, many thanks go to my advisor Dr. Duy H. Hua and his wife Mrs. Sadami Hua. It is really my honor to have a chance to work in the Hua's group. From here, I got systematic training of how to be a qualified synthetic chemist. Dr. Hua is the one who told me never give up. Except all of the synthetic techniques, he also taught me the importance to be a reliable and responsible person. Mrs. Sadami Hua is a super-nice lady who always cares about the group members and shares delicious home-made cookies with us.

Then, I would like to thank all my committee members, Dr. Stefan H. Bossmann, Dr. Ping Li and Dr. Wenjun Ma for their generous suggestions, helps and dedications during my Ph. D. study. Really appreciate it.

I would like to give my thanks to my labmates in the Hua group, Dr. Jianyu Lu, Dr. Serkan Koldas, Dr. Sahani Weerasekara, Dr. Man Zhang, Dr. Medha J. Gunaratna, Dr. Huafang Fan, Dr. Fei Ma, Mr. Zongbo Tong, Mr. Kyle Apley, Ms. Sarah Seiwald, Mr. Vu Nguyen, Mr. Eric Carlson and Mr. Alex Meier for their excellent teamwork in different projects. Thank all my collaborates and friends for providing analytical instrument for different analysis.

Thank K-State Chemistry Department for all of the technique support. Thank the department faculties and staff, Mr. Jim Hodgson, Dr. Leila Maurmann, Dr. Simon Sham, Mr. Ron Jackson, Mr. Tobe Eggers, Dr. Tingting Liu, Ms. Mary Dooley and Ms. Kimberly Ross and others for their kind help in my five years.

Dedication

My beloved wife, Jiawei Gong, and my parents: Mr. Jianmin Hao and Mrs. Lianqing Chu. They are the ones who always stand by my side and encourage me all the time during my Ph.D. study. Thank all my friends in and outside the United States for their companion and friendship in my five years abroad study.

Chapter 1 - Synthesis and Characterization of Chiral Substituted Poly- N-vinylpyrrolidones and Bimetallic Nanoclusters

(Partial of the results and discussions in this chapter was published ${ }^{[1]}$ and adapted with permission of Journal of the American Chemical Society. Copyright © 2016 American Chemical Society.)

1.1 Background and Significance

Catalyst is considered as a chemical compound capable of directing and accelerating reactions while remaining unaltered at the end of the reactions. There are many types of catalysts used in the industry or specific reactions, including transition metal salts, ${ }^{[2]}$ organic molecules, ${ }^{[3]}$ enzymes, ${ }^{[4]}$ organometallic compounds, ${ }^{[5]}$ etc. They can be divided into groups as heterogeneous, homogeneous and biological. ${ }^{[6]}$ Beside the biological catalyst, the homogeneous catalysts mostly have higher catalytic activity since it can dissolve in the solvent and contact with the substrates directly. However, they often decompose rapidly during the reaction conditions.

Figure 1. Inverse Relationship Between the Total Number of Atoms in Full Shell Clusters and the Percentage of Surface Atoms.

Transition metal nanoclusters gain great interest recently due to their unique chemical and physical properties result from their nano-dimensions. ${ }^{[7]}$ Metal clusters have a geometry rule which is designed full-shell or magic number clusters. The number of atoms increases while the percentage of the surface atoms reduced. (Figure $\mathbf{1}^{[8]}$)

Transition metal nanoclusters are nearly monodispersed particles and generally are less than 4 nm in diameter. They have generated great attentions over the past decade. Nanoclusters also have notable potential as new type of catalysts and they also have high activity and selectivity than standard metal catalysts. Without stabilizing material, the metal nanoclusters likely aggregate, due to their high surface area to volume ratio. To overcome aggregation and provide high nanoclusters stability, polymer-stabilized metal nanoclusters have been used. ${ }^{[9]}$

Polymer science, which focuses on primarily synthetic polymers, becomes a hot research area in the recent years. Developing methods for the synthesis of polymer with specific functional is critical on both research and industry purpose. Polymer-stabilized chiral catalysts and reagents have received considerable attention in regard to organic synthesis of optically active compounds. ${ }^{[1]}$ The use of polymer-stabilized catalysts has become one of the essential techniques in organic synthesis. ${ }^{[10-12]}$ From the point of view of green chemistry, the polymer-stabilized chiral catalysis method provides a clean and safe alternative method of asymmetric processes. Not only their practical aspect but also the particular microenvironment they may create in a polymer network will make them attractive for utilization in organic reactions, especially in stereoselective synthesis. Chiral polymer synthesis that is directed toward chiral catalysts must be developed. In this case, the polymer, which will be used for the stabilization of bimetallic nanoclusters as asymmetric catalyst, need to induce a stereogenic center on the polymers.

Most polymeric support materials used for the chiral catalyst have been crosslinked polystyrene derivatives, mainly because of their easy preparation and introduction of functional groups on the side chain of the polymer. ${ }^{[13, ~ 14] ~ E a c h ~ p o l y m e r ~ s u p p o r t ~ w o u l d ~ p r o v i d e ~ a ~ s p e c i f i c ~}$ microenvironment for the reaction if they can be precisely designed.

Alloying has been serving as an effective method for modifying the catalytic properties of transition-metal surfaces. Supported bimetallic clusters regularly exhibit catalytic properties superior to those of their single-metal counterparts. ${ }^{[15-17]}$ For this reason, they have attracted great interest in recent years ${ }^{[16,18]}$. Due to the high ratio of surface area and volume, different kinds of supporting materials are needed, including inorganic oxides, carbon, ${ }^{[19]}$ organic ligands, ${ }^{[20]}$ organic polymers, ${ }^{[10]}$ etc. However, the use of chiral polymers as supporting material and chiral inducers has not been developed. Herein, poly- N-vinylpyrrolidinone, which is so called PVP as abbreviate, have been focused and chiral substituted PVP was designed and synthesized. Normally, PVP is a polymeric fine chemical obtained from its monomer, N-vinylpyrolidinone (NVP), by free radical polymerization in laboratory. It is soluble in water with a very high solubility, and also soluble in most of the organic solvent, such as alcohols, carboxylic acids, halogen alkanes, esters, ketones and THF. Moreover, PVP is relatively stable under high temperature and no significant changes under $250^{\circ} \mathrm{C}$.

1.2 Synthesis of Chiral Substituted Poly- N-vinylpyrrolidinone

Poly- N-vinylpyrrolidinone, as a chain polymeric material, has two ways to induce the chirality including side-chain chirality and main-chain chirality ${ }^{[21]}$.(Figure 2) Since there are only two carbon the backbone of PVP in each unit and polymerization with the radical mechanism, it is difficult to control the chirality on the main-chain of PVP. Making a chiral substituted
N-vinylpyrrolidinone, as the monomer of chiral substituted PVP, becomes important and sufficient. In particular, with the successful synthesis of CSPVP, we realized the tacticity of CSPVP is not randomly assembled in certain cases. I will discuss it later. ${ }^{[22]}$

Figure 2. Polymer Having a Side-chain Chiral Ligand or Main-chain Chiral Ligand.

On the five-membered pyrrolidinone ring, there are three secondary carbons which can induce the stereogenic center. Base on that, we designed and synthesized two classes of CSPVPs. One is the 5 -substituted chiral polymer, and the other one is the 3,4-disubstituted chiral polymer. (Figure 3)
(a)

(b)

(c)

Figure 3. (a) PVP (b) 5-substituted Chiral PVP (c) 3,4-disubstituted Chiral PVP.

1.2.1 Synthesis of 5-Substituted Chiral PVP

We synthesized four 5-substituted chiral PVPs $\mathbf{1 - 4}$ from cheap optically pure amino acids. (Table 1) The synthetic procedure can be divided into two parts, the synthesis of the corresponding monomer and polymerization.

Table 1. 5-Substituted Chiral PVP 1-4.

The synthetic route for the monomer of CSPVP 1 is shown in Scheme 1. Chiral compounds 11 were made from L -amino acids by following a reported procedure. ${ }^{[23-26]} \mathrm{N}$-Boc- O - t-butyl L-serine 7 is commercially available material or made from L-serine 5. L-serine was basified with LiOH , complexed with $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}$ to protect both amino group and carboxylic acid, followed with protecting the hydroxyl group by isobutylene and removed boron complex with NaOH to afford O-tert-butyl L-serine (6). The amino group in compound 6 was protected by $\mathrm{Boc}_{2} \mathrm{O}$ in the presence of base to give compound 7. Compound 7 was coupled with Meldrum's acid with coupling reagent DCC and DMAP, followed by reduction of the ketone function with sodium borohydride, cyclization under heat, and removal of both the Boc group and O-tert-butyl group with trifluoroacetic acid (TFA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under $50{ }^{\circ} \mathrm{C}$ to give compound 11. Consequently, (R)-5-benzhydryloxymethyl-2-pyrrolidinone (12) was synthesized from the alkylation of compound $\mathbf{1 1}$ with sodium hydride and benzhydryl bromide. N-Vinylation of $\mathbf{1 2}$ with $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ and vinyl acetate ${ }^{[27]}$ under anhydrous condition gave corresponding N-vinylpyrrolidinones $\mathbf{1 3}$ with 51% yield.

5

8

7

Scheme 1. Synthesis of N-vinyl-5-benzhydryloxymethylpyrrolidinone (13).

Notably, if compound $\mathbf{1 0}$ with 10% TFA in methylene chloride being refluxed under $50{ }^{\circ} \mathrm{C}$ for 5 hours, both the Boc group and O-tert-butyl group were removed. However, under room temperature for 2 hours, only Boc group in compound 10 was removed by 10% TFA in methylene chloride to give compound 14. Compound 15 was obtained by the N-vinylation of compound 14 with vinyl acetate by the catalysis of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ under base condition. ${ }^{[27]}$ Moreover, the synthesis of compound 21, as the monomer of CSPVP 3 , can be made with similar method from Boc-phenylaniline. (Scheme 2)

Scheme 2. Synthesis of N-vinyl-5-substituted pyrrolidinone 15 \& 21.

The preparation of poly- N-vinyl-5-substituted pyrrolidinone 1-3 were carried out by dispersion polymerization with N-vinyl-5-substituted pyrrolidinone (CSNVP) 13, 15, 21, as initial monomer, poly(N-vinyl-5-substituted pyrrolidone-co-vinyl acetate) 22-24 as dispersant, and 2, 2^{\prime}-azobisisobutyronitrile (AIBN) as initiator. ${ }^{[28]}$ (Scheme 3) The copolymerization process of CSNVP 13, 15, 21 and 1 equiv of vinyl acetate with a free radical initiator for both vinyl compounds were refluxed in acetone to give corresponding copolymer. After the formation of copolymer, hexane was added to precipitate the polar polymer from acetone. For the polymerization of CSNVP, Zhai's group prepared polyvinylpyrrolidone (PVP) microspheres in ethyl acetate by dispersion polymerization with NVP as initial monomer, poly(N-vinylpyrrolidone-co-vinyl acetate) (P (NVP-co-VAc)) as dispersant, and AIBN as free radical initiator. ${ }^{[28]}$ Since the monomer, N-vinyl-5-substituted pyrrolidinone, is much more bulky than normal NVP, the connection of the free radical on the vinyl carbon becomes much more
difficult and needs higher energy to form the backbone of polymer. High temperature and high concentration of the monomer was conducted in the polymerization step. Polymerization of 13, 15, 21 separately with a catalytic amount of AIBN and in the presence of 1% of respective copolymer 22 - 24 in DMF at $120^{\circ} \mathrm{C}$ for 7 days gave polymers $\mathbf{1}-\mathbf{3}$. CSPVP is soluble in DMF and diethyl ether is also needed to isolate CSPVP from solvent. Polymer 4 was prepared through the removal of the tert-butyl group of polymer $\mathbf{1 5}$ with 10% TFA in dichloromethane. All the four CSPVPs are white solid and gradually become sticky after exposing in the air with the absorption of moisture.

AIBN, acetone reflux, 30 h

$13: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}{ }_{2}$
22: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}{ }_{2}$
23: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$
24: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$
$21: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$

$13: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}{ }_{2}$
1: $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{OCHPh}_{2}(85 \%$ yield $)$
$15: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}$
2 : $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{O}-t-\mathrm{Bu}(84 \%$ yield)
$21: \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}$
$3: R^{1}=\mathrm{CH}_{2} \mathrm{Ph}(90 \%$ yield $)$

Scheme 3. Polymerization for 5-substituted Chiral PVP.

The modification of CSPVP, such as the step from CSPVP 2 to CSPVP 4, provides a sufficient method to get new CSPVP containing different functional group with different size and properties. I have also tried to synthesize CSPVP $\mathbf{1}$ from CSPVP $\mathbf{4}$ by treatment CSPVP $\mathbf{1}$ with NaH and benzhydryl bromide. Under a very harsh reaction condition, only 92% of the units were reacted and remained 8% of hydroxyl group on the new polymers. It is because the bulky group is difficult to connect onto the limited space in the polymers in some certain tacticity of CSPVP. It also gives side evidence that the 5 -substituted chiral PVP, at least CSPVP 4 is atactic. It can also be confirmed by ${ }^{13} \mathrm{C}$ NMR which shows many sets of signal on the similar carbon from different units. Both R - and S-stereochemistry (labelled * in Table 1) are likely presented in the stereogenic center in the polymer alkane backbone, and they are not identifiable. Presumably, this stereogenic center of the polymers can be isotactic, atactic, and syndiotactic. ${ }^{[29]}$

1.2.2 Synthesis of 3,4-Disubstituted Chiral PVP

With the experience from the successful synthesis of 5-substituted chiral PVP, a new class of CSPVP was designed, due to the hypothesis that in the bimetallic CSPVP nanoclusters, the substituent on the pyrrolidinone ring controls the stereochemical outcome of the reactions, resulting in asymmetric oxidations. Two new polymers $25 \& 26$ (Table 2) are derived from D-isoascorbic acid (27), an inexpensive starting material comparing with chiral amino acids especially the unnatural amino acids.

The synthesis of polymer $25 \& 26$ was achieved from the corresponding monomer $33 \& 34$. Chiral compound 32 was made from D-isoascorbic acid by following a reported procedure. ${ }^{[22,30,}$ ${ }^{31]}$ (Scheme 4) D-Isoascorbic acid (27) was oxidative cleaved by 30\% hydrogen peroxide and sodium carbonate. Acetonide formation was carried out by the coupling of compound 28 with acetone under the catalysis of anhydrous CuSO_{4}. Compound $\mathbf{2 9}$ was treated with sodium azide
in N, N-dimethylformamide (DMF) at $100^{\circ} \mathrm{C}$ to open the lactone ring with $\mathrm{S}_{\mathrm{N}} 2$-type mechanism, followed by the reduction of the azido function with hydrogen and Pd / C in methanol and yielded very polar compound 31. After heating compound 31 under high vacuum and heat $\left(120{ }^{\circ} \mathrm{C}\right)$, compound $\mathbf{3 2}$ is formed and sublimated by using a sublimator. Vinylation of chiral lactam $\mathbf{3 2}$ with vinyl acetate (distilled), potassium carbonate and catalytic amount of freshly prepared $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ at $50^{\circ} \mathrm{C}$ gave N-vinyllactam 33 in an 80% yield. ${ }^{[27]}$ Compare with 5 -substituted pyrolidinone, the yield of vinylation significantly increased, may due to the steric hinderance effect in 1-4. The nitrogen in compound 33 is on a much opener site for an easier, faster vinylation and avoiding the side products.

Table 2. 3,4-Disubstituted Chiral PVP 25 \& 26

To get compound 34, similar procedure was done by using 3-pentanone instead of acetone to give (3aR, $6 a R$)-2,2-diethyl-dihydrofuro[3,4-d][1,3]dioxol-4(3aH)-one. After the azidation, reduction and sublimation, a new pyrrolidinone analog with diethyl group was obtained and became difficult for the vinylation without clear reason. Therefore, a new ketal exchange reaction was discovered by dissolving compound 33 in 3-pentanone with adding zinc chloride under $65^{\circ} \mathrm{C}$ to distill off the produced acetone for 40 hours to yield 67% of the desired product 34.

Scheme 4. Synthesis of N-vinyl-3,4-disubstituted pyrrolidinone 33 \& 34.

Similar to CSPVP 1-4, CSPVP $25 \& 26$ were prepared separately in about 90% yield by heating N-vinyl pyrrolidinone derivatives $\mathbf{3 3} \& \mathbf{3 4}, 1 \%$ of respective copolymer $\mathbf{3 5} \& \mathbf{3 6}$ and a catalytic amount of azobisisobutyronitrile (AIBN) in ethyl acetate at $70{ }^{\circ} \mathrm{C}$ for 2 days. The polymerization conditions are milder and reactions time are significantly dropped, comparing with CSPVP 1-4, may also due to the size of the CSNVP.

33: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$
34: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}$

33: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$
34: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}$

35: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} \quad$ Yield: 82%
36: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}$ Yield: 87%

25: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3} \quad$ Yield: 90%
26: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}$ Yiled: 91%

Scheme 5. Polymerization for 2,3-Disubstituted Chiral PVP 25 \& 26.

1.2.3 Characterization of Chiral Substituted PVP

All the CSPVPs are water soluble and their molecular weights were determined by gel permeation chromatography with CSPVP water solution in Dr. Shi's Lab in Grain Science, KSU. (Figure 4) TSKgel GMHxl column was used and THF as eluent solvent with a flow rate of 1 $\mathrm{mL} / \mathrm{min}$. The molecule weight (Mw) was shown in Table 1 and Table 2. Base on the calculation, the degree of polymerization for CSPVP 1, 2, 3, 25, 26 are 345, 345, 378, 409, 436, respectively, which means the method for polymerization is constant. Because the relatively difficulty for the polymerization, degree of polymerization (DP) of CSPVP 1-3 are smaller than CSPVP 25 \& 26.

Figure 4. Gel Permeation Chromatography Chart of CSPVP 1.

The polydispersity index is used as a measure of the broadness of a molecular weight distribution of a polymer, and is defined by: Polydispersity index $(\mathrm{PI})=\mathrm{Mw} / \mathrm{Mn}$. The number average molecular weight, abbreviate as Mn , is the statistical average molecular weight of all the polymer chains in the sample, and the weight average molecular weight, shown as Mw, is quoted for a molecular weight distribution. There is an equal weight of molecules on either side of Mw in the distribution. The larger the polydispersity index, the broader the molecular weight. A monodisperse polymer where all the chain lengths are equal has an $\mathrm{Mw} / \mathrm{Mn}=1$. Base on the results from GPC, the polydispersity index for CSPVPs are around 1.05 to 1.1.(Table 3) The result suggested the size of CSPVPs are uniform from the dispersion polymerization method ${ }^{[28]}$ and may give constant results on the catalytic activity of the bimetallic-CSPVP nanoclusters.

CSPVP $1 \quad$ CSPVP $25 \quad$ CSPVP 26

Mw	106,184	75,245	91,988
Mn	100,602	68,185	85,232
Polydispersity Index	1.055	1.104	1.079

Table 3. Polydispersity Index of CSPVP 1, $25 \& 26$.

The average sizes, size distribution were also studied by dynamic light scattering (DLS). In Figure 5, Panel A and C are the autocorrelation function over time of $\mathbf{1} \& 26$ in $\mathrm{H}_{2} \mathrm{O}$ (deionized) solution with concentration of $0.12 \mathrm{~mol} / \mathrm{L}$, respectively, Panel B and D are size distribution graph of $\mathbf{1} \& 26$ in $\mathrm{H}_{2} \mathrm{O}$ solution with concentration of $0.12 \mathrm{~mol} / \mathrm{L}$. DLS graphs of $\mathbf{1}$ showed a major ensemble of $12-20 \mathrm{~nm}$ sizes particles with an average size of 18.6 nm along with a few 152 nm -sized particles, suggesting that different shapes and few large aggregates were presented in the aqueous solution. Similarily, DLS graphs of 26, taken on ZetaPALS zeta potential analyzer, showed a major ensemble of $11-18 \mathrm{~nm}$ sizes particles with an average size of 14.6 nm along with a few 158 nm -sized particles. The size of polymer particle is also in a narrow band which fit the result of polydispersity from GPC analysis.

From the image of atomic force microscopy (AFM) obtained from Nanoscope IIIa SPM atomic force microscope, the size of the polymer can also be measured.(Figure 6) In panel A and C, AFM image of CSPVP $\mathbf{1 \& 2 6}$ are shown and indicated the shapes and sizes of the polymers. Panel B and D measure the height (Y axis) and width (X axis) of polymer $\mathbf{1 \& 2 6}$. On the mica, the CSPVPs appeared unshaped with a diameter of $\sim 15-30 \mathrm{~nm}$ and a height of 1 nm .

The NMR spectrum is difficult to analysis for the polymers since the signals in ${ }^{1} \mathrm{H}$ NMR are broad and ${ }^{13} \mathrm{C}$ NMR is complex unless the polymer is regularly assembled. The ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR of commercially available PVP, CSPVP 1-3 are all difficult to analyze which means the stereogenic center on the polymers backbone can be isotactic, atactic, and syndiotactic. ${ }^{[29]}$ Fortunately, it likely has lesser effect on the asymmetric oxidation reactions which will discuss later. However, based on the ${ }^{13} \mathrm{C}$ NMR spectra of polymers $\mathbf{2 5}$ and 26, they likely adapted syndiotactic or isotactic stereochemistry in the polymer backbone. For example, the ${ }^{13} \mathrm{C}$ NMR spectrum of polymer 25 shows only 12 signals having δ values (in ppm) of $160.9(\mathrm{C}=\mathrm{O}), 113.5$
(O-C-O), $74.7(\mathrm{C}-\mathrm{O}), 73.0(\mathrm{C}-\mathrm{O}), 48.8(\mathrm{C}-\mathrm{N}), 47.7(\mathrm{C}-\mathrm{N}), 43.0\left(\mathrm{CH}_{2}\right), 42.7(\mathrm{CH}-\mathrm{N}), 29.2\left(\mathrm{CH}_{2}\right)$, $28.5\left(\mathrm{CH}_{2}\right)$, $8.4\left(\mathrm{CH}_{3}\right)$ and $7.0\left(\mathrm{CH}_{3}\right)$, the simplicity of signal patents suggest the polymer was regularly assembled during polymertization. The exactly tacticity will be studied and confirmed.

Figure 5. Dynamic Light Scattering Studies of CSPVP 1 (A \& B) \& 26 (C \& D).

Since the purpose of making the different functionalized CSPVP is used for inducing a chiral environment on the asymmetric synthesis, the catalyst, CSPVP stabilized bimetallic nanoclusters was synthesized.

Figure 6. A Representative Atomic Force Microscopy Image and Measurement of Particle Height for CSPVP 1 (A \& B) \& 26 (C \& D).

1.3 Synthesis and Characterization of CSPVP Stabilized Bimetallic Nanoclusters

Various of nanoclusters for different purpose have been made by number of methods including molecular beams, chemical reduction, thermal decomposition, ion implantation, electrochemical synthesis, radiolysis, sonochemical synthesis, and biosynthesis. ${ }^{[32]} \mathrm{We}$ have synthesized various bimetallic nanoclusters including $\mathrm{Pd} / \mathrm{Au}$ and $\mathrm{Cu} / \mathrm{Au}$, using the chemical reduction method ${ }^{[10]}$ in the presence of various of CSPVPs. We used gold due to its high catalytic activity and synergistic electronic effects, which will enhance the catalytic activity of Pd and $\mathrm{Cu}^{[10-12,33-35]}$

1.3.1 Synthesis of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters

In the bimetallic nanoclusters, both the valences of two metals are 0 , which means the high valence metal salt need to be reduced in the solution. For example ${ }^{[10]}$, a solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(3$ equiv.), HAuCl_{4} (1 equiv.), and CSPVP 1 (0.11 equiv.) in deionized water was well mixed to give a yellow solution. To it, 40 equiv. of NaBH_{4} were added under ice bath and stirred under room temperature for 30 min (Scheme 6) to give a light brown to dark grey solution depending on the concentrations. After adding $\mathrm{NaBH}_{4}, \mathrm{Pd}(\mathrm{II})$ in $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$ and $\mathrm{Au}(\mathrm{III})$ in HAuCl_{4} were reduced to $\operatorname{Pd}(0)$ and $\mathrm{Au}(0)$, respectively. The color of the solution changes to black immediately to indicate the formation of Pd/Au-CSPVP nanoclusters. Because the presence of CSPVP as supporting material, $\operatorname{Pd}(0)$ and $\operatorname{Au}(0)$ do not aggregate due to the metal atom or nanocluster complex with the carbonyl of CSPVP. Different from the bulky metal (0), the high solubility of CSPVP stabilized bimetallic nanoclusters in water makes the nano-size metal as a homogeneous dispersion without precipitate. Without CSPVP, Pd and Au will form black precipitate after adding NaBH_{4}, suggesting CSPVP is nessecary for the formation of nanoclusters.

Theoritically, only 9 equiv. of hydride are needed for the reduction of Pd (II) (3 equiv.) and Au (III) (1 equiv.). Therefore, for certain reaction, especially $\mathrm{C}-\mathrm{H}$ oxidation, only 8 equiv. of NaBH_{4} was added to avoid the large excess NaBH_{4} influencing the reaction outcome.

Similarly, $\mathrm{Cu} / \mathrm{Au}$-CSPVP nanoclusters were synthesized using the chemical reduction method. CuCl_{2} is a good Cu source which has a high solubility in water, easily storage and relatively stability. However, the $\mathrm{Cu} / \mathrm{Au}$-CSPVP nanoclusters made from Cu (II) are not stable due to the precipitation. Therefore, CuCl was used for preparing the $\mathrm{Cu} / \mathrm{Au}-\mathrm{CSPVP}$ nanoclusters. Notably, CuCl can be slowly oxidized by HAuCl_{4} to give CuCl_{2}. To avoid it, CSPVP (0.11 equiv.), HAuCl_{4} (1 equiv.) and NaBH_{4} (40 equiv.) were added into $0{ }^{\circ} \mathrm{C} \mathrm{CuCl}$ (3 equiv.) in deionized water solution in sequence to give a dark brown solution. The solution was stirred
under room temperature for 30 minutes and $\mathrm{Cu} / \mathrm{Au}-\mathrm{CSPVP}$ nanoclusters solution was ready to use for the asymmetric catalytic reactions. (Scheme 6)

Scheme 6. The Synthesis of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters.

For the CSPVP stabilized bimetallic nanocluster catalyzed oxidation reaction, the nanoclusters catalyst solution was used directly into the reaction. But for the characterization of nanoclusters, the crude nanocluster solution was filtered through a Vivaspin 20 centrifugal filter device (3,000 MWCO), washed with deionized water twice to remove low MW inorganic materials, and lyophilized to give a powder. The resulting nanoclusters was dissolved in water to certain concentration and subjected to analysis.

1.3.2 Characterization of Pd/Au-CSPVP Nanoclusters and Cu/Au-CSPVP Nanoclusters

It has been reported the carbonyl in the amide group in PVP was coordinated with the surface of Pd in the nanoclusters. ${ }^{[36,37]}$ Because of the chelation, the amide $\mathrm{C}=\mathrm{O}$ have greater character of ${ }^{\delta-} \mathrm{O}-\mathrm{C}=\mathrm{N}^{\delta+}$ which give the pyrolidinone ring at $1648 \mathrm{~cm}^{-1}$ of polymer 26 in IR spectrum shifted to $1643.5 \mathrm{~cm}^{-1}$ for $\mathrm{Cu} / \mathrm{Au}(3: 1)-26$ and $1641.9 \mathrm{~cm}^{-1}$ for $\mathrm{Pd} / \mathrm{Au}(3: 1)-26$. The shift of $\mathrm{Cu} / \mathrm{Au}$ (3:1)-26 suggests the similar chelation for Cu and CSPVP. (Figure 7)

Figure 7. IR Spectra for (A) CSPVP-26, (B) Cu:Au-CSPVP26 (C) Pd:Au-CSPVP26 (D) Pd/Au Complex with CSPVP.

As a nanomaterial, several kinds of microscopy or size distribution analysis were conducted including atomic force microscopy (AFM), transition electron microscopy (TEM) and dynamic
light scattering (DLS). In AFM images obtained from Nanoscope IIIa SPM atomic force microscope, (Figure 8) $50-100 \mathrm{~nm}$ in diameters and $\sim 5 \mathrm{~nm}$ in heights of spherical particles were found for both Pd/Au-CSPVP26 and Cu/Au-CSPVP26, as example. And in DLS which was taken on ZetaPALS zeta potential analyzer, (Figure 9) 90-120 nm sized nanoparticles were revealed in Pd/Au-CSPVP26 and Cu/Au-CSPVP26 water solutions with a concentration of 4.36 $\mathrm{mol} / \mathrm{L} \mathrm{Pd} / \mathrm{Au}(3: 1)$ or $\mathrm{Cu} / \mathrm{Au}(3: 1)$ and $0.12 \mathrm{~mol} / \mathrm{L}$ CSPVP26, suggesting the size of polymer 26 wrapped particles was ~ 7.5 times larger than polymer 26 alone (14.6 nm shown in Figure 5), and the measured sizes of the particles from AFM and DLS were similar. Small amount of 12 14 nm size particles shown in DLS may indicate the free CSPVP which was not chelate with metals.

Figure 8. A Representative Atomic Force Microscopy Image and Measurement of Particle Height for Pd:Au-CSPVP26 (Panel A \& B) and Cu:Au-CSPVP26 (Panel C \& D).

Figure 9. Dynamic Light Scattering Results for Pd:Au-CSPVP26 (Panel A \& B), Cu:Au-CSPVP26 (Panel C \& D).

TEM images, which is taken on FEI CM100 TEM instrument, revealed average diameters of $3.32 \pm 1.08 \mathrm{~nm}$ and $3.41 \pm 1.13 \mathrm{~nm}$ for $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ and $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$, respectively. The nano-sizes ($3-4 \mathrm{~nm}$) of the nanoclusters are similar to those reported for $\mathrm{Pd} / \mathrm{Au}$ using PVP as a stabilizer. ${ }^{[10,36]}$ The approximate total numbers of metal atoms and molecules of polymer in a spherical nanocluster can be calculated utilizing the magic-cluster sizes $\mathrm{N}_{\text {total }}=$ $1 / 3\left(10 n^{3}-15 n^{2}+11 n-3\right)$, where n is the number of layers of shell in the metallic nanoparticles with face-centered cubic close-packed structure. ${ }^{[38]}$ Since the average sizes of $\mathrm{Pd} / \mathrm{Au}$ (3:1)-26 and $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ nanoclusters are 3.32 and 3.41 nm , respectively (from TEM), utilizing the aforementioned equation there are respectively ~ 727 and 923 atoms of $\mathrm{Pd} / \mathrm{Au}(3: 1)$ and $\mathrm{Cu} / \mathrm{Au}$
(3:1) in a nanocluster, and each nanoclusters are stabilized by approximately 20 and 25 polymers, respectively. The calculation is shown below:

For Pd/Au (3:1)-2:

(diameters for Au and Pd are 0.288 and 0.275 , respectively.)
Diameter $\mathrm{d}=(3 \times 0.275+0.288) / 4=0.278$
Nanocluster diameter: $11.9 \mathrm{~d}=3.32 \mathrm{~nm}$ (the diameter of $\mathrm{Pd} / \mathrm{Au}$ is obtained from TEM)
The shell number: $\mathrm{n}=6.5$
The number of atoms in a 3.32 nm nanocluster: $\mathrm{N}=1 / 3[10 \mathrm{n} 3-15 \mathrm{n} 2+11 \mathrm{n}-3]=727$ atoms
Mole of metals in each nanocluster: $1.21 \times 10^{-21} \mathrm{~mol}$
Mole of CSPVP in each nanocluster: $1.21 \times 10-21 \times 0.11 / 4=3.3 \times 10^{-23} \mathrm{~mol}$
Number of CSPVP in each nanocluster: $3.3 \times 10-23 \times \mathrm{N}_{\mathrm{A}}$ (Avogadro number) $=3.3 \times 10-23 \times$
$6.022 \times 1023=20.0$

For $\mathrm{Cu} / \mathrm{Au}(3: 1)-2$:

(diameters for Au and Cu are 0.288 and 0.256 , respectively.)
Diameter $\mathrm{d}=(3 \times 0.256+0.288) / 4=0.264$
Nanocluster diameter: $12.9 \mathrm{~d}=3.41 \mathrm{~nm}$ (the diameter of $\mathrm{Cu} / \mathrm{Au}$ is obtained from TEM)
The shell number: $\mathrm{n}=7$
The number of atoms in a 3.41 nm nanocluster: $\mathrm{N}=1 / 3[10 \mathrm{n} 3-15 \mathrm{n} 2+11 \mathrm{n}-3]=923$ atoms
Mole of metal in each nanocluster: 1.53×10^{-21}
Mole of CSPVP in each nanocluster: $1.53 \times 10-21 \times 0.11 / 4=4.22 \times 10^{-23}$
Number of CSPVP in each nanocluster: $5.3 \times 10-23 \times 6.022 \times 1023=25.4$

Because of the numbers and extended structure of the chiral polymer, the sizes of the bimetallic nanocluster/polymer found by AFM and DLS are much larger than bimetallic nanoclusters found in TEM (the polymer cannot be observed by TEM).

Figure 10. Representative TEM Image and Measurement of the Diameter for Pd:Au-CSPVP26 (Panel A \& B), Cu:Au-CSPVP26 (Panel C \& D).

Moreover, the elemental analysis including inductively coupled plasma-mass spectrometry (ICP-MS) were carried out. Results of the ICP-MS, taken on NexION® 300D, showed a ratio of 2.985 ± 0.172 of Pd and Au in the $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ sample, and a ratio of 3.148 ± 0.432 of Cu and Au in the $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ sample. This is in agreement of the $3: 1$ ratio of the two metals used in the preparation of nanoclusters. To digest the metallic samples, the following method is used. To a solution of 10 mg of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ or $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ in $100 \mu \mathrm{~L}$ of deionized water
was added 2 mL of aqua regia solution at $70^{\circ} \mathrm{C}$ under sonication for 3 h , and the solution was cooled to $25^{\circ} \mathrm{C}$, diluted to 1 mL with a $1 \% \mathrm{HNO}_{3} / 2 \% \mathrm{HCl}$ solution. The resulting solution was diluted to certain concentration for the ICP-MS analysis.

In wdie-scan XPS spectrum of the $\mathrm{Pd} / \mathrm{Au}-\mathbf{1}$ and $\mathrm{Cu} / \mathrm{Au}-\mathbf{1},($ Panel $\mathrm{A} \& \mathrm{C}$) major elements of the polymer, carbon (C 1s at 284.6 eV), oxygen (O 1s at 530.6 eV), and nitrogen (N 1 s at 398.6 eV) are shown. Panel B \& C showed the binding energy of two maximums at 84.1 eV and 335.1 eV derived from $4 f_{7 / 2} \mathrm{Au}$ and $3 \mathrm{~d}_{5 / 2} \mathrm{Pd}$, respectively in $\mathrm{Pd} / \mathrm{Au}-1$ sample. Similarly, 932.7 eV derived from $2 \mathrm{p}_{3 / 2} \mathrm{Cu}$ is also appeared in $\mathrm{Cu} / \mathrm{Au}-\mathbf{1}$ sample in Panel F. ${ }^{[36]}$ X-ray photoelectron spectroscopy (XPS) study was performed on a PHI 5400 XPS system. (Figure 11)

The UV-vis spectrum of $\mathrm{Pd} / \mathrm{Au}-26$ and $\mathrm{Cu}-\mathrm{Au}-26$ were also obtained from Agilent Cary 100 UV-Vis Spectrophotometer. (Figure 12) It is clearly shows the presence of strong signal at 303 nm in the nanoclusters which is very weak in the CSPVP26 alone.

In order to study the chirality of CSPVP stabilized bimetallic nanoclusters, circular dichroism (CD) was taken on Jasco J-815 Circular Dichroism (CD) Spectropolarimeter. (Figure 13) For the CSPVP26 in water solution with a concentration of 0.011 mM alone, there is only a slight negative band on 520 nm . But after forming the bimetallic nanoclusters, they exhibit positive $C D$ band at 280 nm and strong band at 500 nm , which is similar like the reported chiral polymers and chiral Au nanoclusters. ${ }^{[36,39,40]}$ The strong optical absorptions are not from CSPVP26 or metals. It has been reported the $(\mathrm{R})-\mathrm{Au}_{38}$ and $(\mathrm{S})-\mathrm{Au}_{38}$ nanoclusters presented mirror-imaged CD spectra with similar optical absorption but on opposite sign. It illustrated the chirality of nanoclusters can be performed by CD spectra. The presence of strong optical absorption in $\mathrm{Pd} / \mathrm{Au}-\mathbf{2 6}$ and $\mathrm{Cu} / \mathrm{Au}-26$ indicate the nanoclusters solution is a chiral environment.

Figure 11. X-ray photoelectron spectroscopy Results for Pd:Au-CSPVP1 (Panel A, B \& C), Cu:Au-CSPVP1 (Panel D, E \& F).

Figure 12 Representative UV-Vis spectra of CSPVP26, Pd:Au-CSPVP26 \& Cu:Au-CSPVP26

Figure 13. Representative CD spectra of Cu:Au-CSPVP26 \& Pd:Au-CSPVP26 (top panel), CSPVP 26 (middle panel), and Au, Cu, and Pd standard solution as controls.

1.4 Conclusion

In this chapter, the synthesis of two classes of new polymers, namely chiral-substituted poly-N-vinylpyrrolidinones (CSPVPs) were discussed. From the characterization results, the CSPVPs are uniform. They were used for the stabilization of the bimetallic nanoclusters such as $\mathrm{Pd} / \mathrm{Au}$ or $\mathrm{Cu} / \mathrm{Au}$ and inducted of chirality into the nanomaterial. The size, component and other physical / chemical properties of the bimetallic nanoclusters ($\sim 3.5 \mathrm{~nm}$), which are wrapped around by chiral polymers, were also studied and discussed.

1.5 Synthetic Experimental Procedures

1.5.1 General

${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (100 MHz) were measured from a solution in CDCl_{3} unless otherwise mentioned. The chemical shift data for each signal on ${ }^{1} \mathrm{H}$ NMR are given in units of δ relative to TMS $(\delta=0)$ or $\mathrm{CHCl}_{3}(\delta=7.26)$ in ppm. For ${ }^{13} \mathrm{C}$ NMR spectra, the chemical shifts are recorded relative to $\mathrm{CDCl}_{3}(\delta=77.0)$. Low-resolution mass spectra were taken from an API 2000-triple quadrupole ESI-MS/MS mass spectrometer. High-resolution mass spectra were obtained using a Waters LCT Premier time of flight mass spectrometer. IR spectra were measured directly in solid form from Agilent Cary 630 FTIR. UV-Vis spectra were obtained from Agilent Cary 100 UV-Vis Spectrophotometer. Optical Rotation were measured by Bodenseewerk Perkin-Elmer \& Co Gmbh Ueberlingen.

1.5.2 Representative Synthesis

Poly[(5R)-5-(benzhydryloxymethyl)-1-vinylpyrrolidin-2-one] (1). (BH7-041)

1
To a hot $\left(120^{\circ} \mathrm{C}\right)$ solution of 1.2 mg (1% by weight) of copolymer 24 in 0.5 mL of DMF under argon, were added $120 \mathrm{mg}(0.43 \mathrm{mmol})$ of compound 13 and $0.28 \mathrm{mg}(1.7 \mu \mathrm{~mol})$ of AIBN. The solution was stirred for 6 days at $120^{\circ} \mathrm{C}$ (until no monomer $\mathbf{1 3}$ was found by NMR spectrum of an aliquot from the reaction solution), cooled to $25^{\circ} \mathrm{C}$, and diluted with diethyl ether. The precipitate was collected by filtration, dried under vacuum to give 102 mg (84% yield) of polymer 1 as a white solid. The average molecular weight of polymer 1, 106,000, was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 7.3-6.8(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 6.6-6.3(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph})$, 3.8-3.76(m, 1 H), 3.4-3.0(m, 3 H), 2.45-1.0(m, 7 H$).{ }^{13} \mathrm{C}$ NMR $\delta 176.1-175.4,145.5-144.5$, 128.6-124.3, 72.4-69.1, 69.0-67.2, 45.9-41.5, 40.6-39.3, 37.3-34.4, 32.2-34.6, 19.0-18.5. IR (neat) v 3050, 2954, 2890, 1650 (s), 1462, 1441, 1423, 1290.

Poly[(5R)-5-(tert-butoxymethyl)-1-vinylpyrrolidin-2-one] (2). (BH4-048)

2

To a solution of $90 \mathrm{mg}(0.45 \mathrm{mmol})$ of monomer 15 and 2 mg of copolymer 22 in 0.2 mL of ethyl acetate under argon was added a solution of 0.3 mg of AIBN in 0.1 mL of ethyl acetate. The solution was heated to reflux for 14 h , cooled to $25^{\circ} \mathrm{C}$, diluted with diethyl ether, and filtered to collect the white solid. The solid was dried under vacuum to give 76 mg (83% yield) of polymer 2. The average molecular weight of polymer 2 was 68,000 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 4.0-3.0(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.4(\mathrm{bm}, 6 \mathrm{H}), 1.71(\mathrm{bs}, 9 \mathrm{H}, t-\mathrm{Bu})$. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.
$\operatorname{Poly}[(5 R)$-5-(benzyl)-1-vinylpyrrolidin-2-one] (3). (BH1-046)

3
To a solution of $0.30 \mathrm{~g}(1.5 \mathrm{mmol})$ of monomer 21 and 3 mg of copolymer $\mathbf{2 3} \mathrm{in} 0.6 \mathrm{~mL}$ of ethyl acetate under argon was added a solution of 1 mg of AIBN in 0.1 mL of ethyl acetate. The solution was heated to reflux for 6 h , cooled to $25^{\circ} \mathrm{C}$, diluted with diethyl ether, and filtered to collect the white solid. The solid was dried under vacuum to give 0.27 g (89% yield) of polymer 3. The average molecular weight of polymer $\mathbf{3}$ was 76,000 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 7.25-6.25(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.0-3.0(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.2(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 175.8-174.8, 145.2-144.9, 139.8-135.0, 45.3-41.3, 30.5-30.2, 19.8-18.6. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.

4
A solution of $0.20 \mathrm{~g}(3 \mu \mathrm{~mol})$ of polymer 2 and $34 \mathrm{mg}(0.3 \mathrm{mmol})$ of trifluoroacetic acid in 0.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $25^{\circ} \mathrm{C}$ for 2 h , and concentrated to dryness to give 0.14 g (96% yield) of polymer 4. The average molecular weight of polymer 4 was 56,480 , which was determined by gel permeation chromatography using TSKgel GMHxl column and THF as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} .{ }^{1} \mathrm{H}$ NMR $\delta 4.1-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.5-1.25(\mathrm{~m}, 7 \mathrm{H})$. The polymer was used in the subsequent catalytic asymmetric oxidation reactions without further purification.
(S)-2-Amino-3-tert-butoxypropanoic acid (6) (BH4-039)

6
A solution of $0.5 \mathrm{~g}(4.7 \mathrm{mmol})$ of L -serine and $0.197 \mathrm{~g}(4.7 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O} \mathrm{IN} 3 \mathrm{~mL}$ of deionized water was stirred for 1 hour, concentrated to give white solid as serine mono lithium salt and dissolved in 7.05 mL of anhydrous THF. To it, 2.82 mL of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was dropwise added, stirred under Ar at room temperature overnight and $45^{\circ} \mathrm{C}$ for 2 hours to give a gray solution. The resulting solution was concentrate under vacuum and the residue was dissolved in 14.7 mL of dioxane in a seal tube. To it, 0.21 mL of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ was added and cooled to $-20^{\circ} \mathrm{C}$ followed by 20 mL of isobutylene (by introducing the gas directly) into the sealed tube reactor and react under room temperature for 2.5 hours, evaporated all the isobutylene, added 1 N NaOH solution to $\mathrm{pH}=10$, concentrated under vacuum to give 3.1 g crude product as white
solids. This mixture (containing 6 and other inorganic salts) was used in the following step without further purification.

(S)-3-tert-Butoxy-2-(tert-butoxycarbonyl)propanoic acid (7) (BH4-043)

7
To a solution of 3.1 g of crude material t-Bu-serine (6) in 10 mL of $1: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ solution, 3 eq of NaHCO_{3} and 1.2 eq of $\mathrm{Boc}_{2} \mathrm{O}$ were added at $0{ }^{\circ} \mathrm{C}$ under ice bath and stirred overnight under room temperature, extracted with $3 \times 10 \mathrm{~mL}$ diethyl ether. The combined organic layer was acidified with concentrated citric acid to $\mathrm{pH}=4-5$, extracted with $3 \times 10 \mathrm{~mL}$ dichloromethane, washed with brine, dried over anhydrous sodium sulfate, concentrate to give desired product. The NMR data is the same as the commercially available compound.

(S)-tert-Butyl

3-tert-butoxy-1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-1-oxopropan-2-ylcarbamate (8). (BH7-030)

A solution of $4.0 \mathrm{~g}(15.3 \mathrm{mmol})$ of N-Boc-O-tert-butyl-L-serine (7), $3.3 \mathrm{~g}(23 \mathrm{mmol})$ of Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione), and 2.8 g (22.9 mmol) of 4-(dimethylamino)pyridine (DMAP) in 80 mL of dichloromethane under argon was cooled to $0^{\circ} \mathrm{C}$ over an ice-water bath. To it, a solution of $3.47 \mathrm{~g}(16.8 \mathrm{mmol})$ of
N, N '-dicyclohexylcarbodiimide (DCC) in 20 mL of dichloromethane was added dropwise. The mixture was stirred for 12 hours under argon and the precipitated (N, N '-dicyclohexylurea) was removed by filtration. The filtrate was washed with 50 mL of $5 \% \mathrm{HCl}$, and then water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to dryness leaving 5.83 g of compound $\mathbf{8}$ as a white solid. This compound was used in the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 5.67-$ 5.63 (m, 1 H), 5.49-5.47 (m, 1 H), 3.74-3.70 (m, 2 H), $3.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3$ H), $1.46(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 206.8,172.7,152.3,105.9,79.0,75.0,62.0,60.6$, 59.9, 30.0 (3 C), 28.4 (3 C), 25.6 (2 C). MS (ESI, MeOH): $m / z=388.7\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(R)-tert-Butyl

3-tert-butoxy-1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propan-2-ylcarbamate (9).

 (BH7-031)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $5.80 \mathrm{~g}(15.2 \mathrm{mmol})$ of compound $\mathbf{8}$ in 150 mL of dichloromethane under argon were added $5.51 \mathrm{~g}(91.8 \mathrm{mmol})$ of acetic acid and $1.51 \mathrm{~g}(39.8 \mathrm{mmol})$ of NaBH_{4}. The solution was stirred at $0^{\circ} \mathrm{C}$ for three hours and at $25^{\circ} \mathrm{C}$ for 12 hours, diluted with 30 mL of water, the dichloromethane layer was separated, and the water layer was extracted with dichloromethane three times. The combined organic layers were washed with water and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated to give a yellow oil, which was crystallized from diethyl ether to give 5.27 g of compound 9 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 5.08-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.00$ (m, 1 H), $3.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.45-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.5-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}$, $3 \mathrm{H}), 1.72$ (s, 3 H), $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 208.0,174.6,151.0,105.7,79.3,74.7$, 69.8, 49.6, 47.1, 31.9, 28.4, 25.7. MS (ESI, MeOH): $m / z=374.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, 299.9.
(R)-N-(tert-Butoxycarbonyl)-5-(tert-butoxymethyl)-pyrrolidin-2-one (10). (BH7-032)

10
A solution of $5.26 \mathrm{~g}(14.10 \mathrm{mmol})$ of compound 9 in 40 mL of toluene under argon was heated to reflux for 6 hours, cooled to $25^{\circ} \mathrm{C}$, concentrated under vacuum, and column chromatographed on silica gel using hexane and ethyl acetate (4:1) as eluent to give 3.44 g (83% overall yield in three steps) of compound 10 as a yellow oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+80.7\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.09-$ 4.07 (m, 1 H), $3.52(\mathrm{dd}, \mathrm{J}=10,4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, \mathrm{J}=10,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dt}, \mathrm{J}=17.6,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, \mathrm{J}=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\delta 175.3,150.1,82.6,73.2,62.9,58.0,32.5,28.2,27.5,21.7 . \operatorname{MS}(E S I, M e O H): m / z=$ $294.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 272.0\left([\mathrm{M}+\mathrm{H}]^{+}\right), 194.1,172.1,116.0$. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{4}: 272.1862$; found: 272.1887.
(R)-5-(Hydroxymethyl)pyrrolidin-2-one (11). (BH7-033)

11

A solution of 1.0 g (3.6 mmol) of compound 10 in 5 mL of 10% trifluoroacetic acid in dichloromethane was stirred at $50^{\circ} \mathrm{C}$ for 5 hours, cooled to $25^{\circ} \mathrm{C}$, and diluted with dichloromethane. The solution was washed with an aqueous solution of NaHCO_{3}, then water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give 0.42 g (99% yield) of compound $\mathbf{1 1}$ as a brown oil. This material was used in the subsequent step without further purification. $[\alpha]_{D}{ }^{22}=-60.2$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 6.7-6.6(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.46(\mathrm{dd}, \mathrm{J}=11.2,4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, \mathrm{J}=$ $11.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ and OH$), 1.98-1.87(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR $\delta 181.6,65.2,57.5,30.3,22.3$; MS (ESI, MeOH): $m / z=116.0([\mathrm{M}+\mathrm{H}]+100 \%), 98.1$. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{Na}^{+}: 138.0531$ found: 138.0537.
(R)-5-(Benzhydryloxymethyl)pyrrolidin-2-one (12). (BH7-043)

12
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $0.43 \mathrm{~g}(3.74 \mathrm{mmol})$ of compound 11 in 1 mL distilled THF under argon, was added 0.15 g (3.74 mmol) of $\mathrm{NaH}(60 \%$ in mineral oil; NaH was washed twice with dried diethyl ether). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and added $1.11 \mathrm{~g}(4.48$ mmol) of bromodiphenylmethane. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 12 hours, diluted with 1 mL of $\mathrm{H}_{2} \mathrm{O}$, and the organic THF layer was separated and concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give 0.93 g (88% yield) of compound $\mathbf{1 2}$ as a brown oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-63.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.4-7.2(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 6.06-5.98(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}$, CHN), 3.48 (dd, J = 9.6, 3.6 Hz, 1 H, CHO), 3.36 (dd, J = 9.6, $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 2.41-2.27 (m, 2 $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.1,141.8(2 \mathrm{C}), 128.7(4$ C), 127.9 (2 C), 127.1 (4 C), 84.1, 73.0, 54.1, 29.9, 23.4; MS (ESI, MeOH): $m / z=304.1$ ([M + $\left.\mathrm{Na}]^{+}\right)$, 194.0, 167.1. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 304.1313$; found: 304.1320 .
(R)-5-(Benzhydryloxymethyl)-1-vinylpyrrolidin-2-one (13). (BH7-048)

13

To a solution of $1.20 \mathrm{~g}(4.27 \mathrm{mmol})$ of compound $\mathbf{1 2} \mathrm{in} 50 \mathrm{~mL}$ of vinyl acetate under argon, were added 4.0 g of $3 \AA$ molecular sieves, $27 \mathrm{mg}(0.34 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $1.06 \mathrm{~g}(7.69 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 28 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and diethyl ether (1:1) as an eluent to give 0.67 g (51% yield) of pure compound $\mathbf{1 3}$ as a brown oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+24.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.35-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=16.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.38\left(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.34(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ $(\mathrm{dt}, \mathrm{J}=17,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 178.8,142.5,138.1$, 128.7 (4 C), 127.9 (2 C), 127.1 (4 C), 96.8, 84.2, 73.6, 54.0, 30.2, 23.7. MS (ESI, MeOH): m / z $=330.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}^{+}: 330.1470$; found: 330.1490.
(\boldsymbol{R})-5-(\boldsymbol{t}-Butyloxymethyl)pyrrolidin-2-one (14). (BH4-057)

14
A solution of $10.2 \mathrm{~g}(37.5 \mathrm{mmol})$ of compound 10 in 100 mL of 7% trifluoroacetic acid (TFA) in dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 15 minutes and then diluted with 30 mL of saturated NaHCO_{3}. The mixture was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layer was washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give $6.28 \mathrm{~g}(98 \%$ yield $)$ of compound $\mathbf{1 4}$ as a brown oil. This material was used in the subsequent step without further purification. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-10.8$ (c 1.0, CHCl_{3}) ${ }^{1} \mathrm{H}$ NMR $\delta 7.8-7.72(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.43(\mathrm{dd}, \mathrm{J}=9.0,3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.25\left(\mathrm{dd}, \mathrm{J}=9.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.61-2.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.28-2.18(\mathrm{~m}$,
$1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.5,74.4,65.2,59.7,32.4,28.0$ (3 C), 22.5. MS (ESI, MeOH): $m / z=194.1\left([\mathrm{M}+\mathrm{Na}]^{+} ; 100 \%\right)$, 172.3. \quad HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}^{+}: 194.1157$; found: 194.1172.
(R)-5-(t-Butyloxymethyl)-1-vinylpyrrolidin-2-one (15). (BH4-058)

15
To a solution of $2.0 \mathrm{~g}(11.6 \mathrm{mmol})$ of compound 14 in 35 mL of vinyl acetate under argon, were added 4.0 g of $3 \AA$ molecular sieves, $0.27 \mathrm{~g}(0.9 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $2.25 \mathrm{~g}(16.3 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 14 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as an eluent to give 0.96 g (42% yield) of pure compound $\mathbf{1 5}$ as a yellow oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+9.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.0(\mathrm{dd}, \mathrm{J}=16,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.45(\mathrm{~d}, \mathrm{~J}$ $\left.=9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.44\left(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 3.52(\mathrm{dd}, \mathrm{J}=9.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.41\left(\mathrm{dd}, \mathrm{J}=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.64(\mathrm{dt}, \mathrm{J}=17.2,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.35-2.26(m, 1 H), 2.14-2.05 (m, 2 H), $1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.3,139.7,93.1,74.6,63.5$, 58.8, 32.4, 28.2 (3 X), 20.8. MS (ESI, MeOH): $m / z=220.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, $198.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$, 187.1. HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}^{+}: 220.1313$; found: 220.1333.

(S)-tert-Butyl

1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-1-oxo-3-phenylpropan-2-ylcarbamate (17).

(BH1-042)

A solution of $1.33 \mathrm{~g}(5.0 \mathrm{mmol})$ of Boc-L-phenylalanine, $1.08 \mathrm{~g}(7.5 \mathrm{mmol})$ of Meldrum's acid, and 0.95 g (7.5 mmol) of 4-(dimethylamino)pyridine (DMAP) in 70 mL of dichloromethane under argon was cooled to $0^{\circ} \mathrm{C}$ over an ice-water bath. To it, a solution of $1.13(5.5 \mathrm{mmol}) \mathrm{g}$ of N, N '-dicyclohexylcarbodiimide (DCC) in 15 mL of dichloromethane was added dropwise. The mixture was stirred for 12 hours under argon and the precipitated (N, N '-dicyclohexylurea) was removed by filtration. The filtrate was washed with $5 \% \mathrm{HCl}$ twice, and then water, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated to dryness leaving 1.90 g of $\mathbf{1 7}$ as white solid. This compound was used in the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.3-7.15(\mathrm{~m}$, $5 \mathrm{H}), 4.5-4.4(\mathrm{~m}, 1 \mathrm{H}), 4.3-4.2(\mathrm{~m}, 1 \mathrm{H}), 3.9-3.8(\mathrm{~m}, 1 \mathrm{H}), 2.8-2.7(\mathrm{~m}, 2 \mathrm{H}), 1.7(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.5,170.8,153.1,135.8,129.6$ (2 C), 128.9 (2 C), 127.4, 105.7, 80.3, 62.7, 60.3, 33.8, 28.4, 26.8.

(R)-tert-Butyl 1-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-3-phenylpropan-2-ylcarbamate

(18). (BH1-043)

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $1.90 \mathrm{~g}(4.85 \mathrm{mmol})$ of compound $\mathbf{1 7}$ in 25 mL of dichloromethane under argon were added $1.75 \mathrm{~g}(29.1 \mathrm{mmol})$ of acetic acid and $0.48 \mathrm{~g}(12.6 \mathrm{mmol})$ of NaBH_{4}. The solution was stirred at $0^{\circ} \mathrm{C}$ for three hours and at $25^{\circ} \mathrm{C}$ for 12 hours, diluted with 30 mL of water, the dichloromethane layer was separated, and the water layer was extracted with dichloromethane three times. The combined organic layers were washed with water and brine,
dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give 1.78 g of compound 18 as a white solid. This compound was used in the subsequent step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.19(\mathrm{~m}, 5 \mathrm{H})$, 4.48-4.43(m, 1H), 4.24-4.20(m, 1H), 3.92-3.90(m, 1H), 2.88-2.83(m, 2H), 2.31-2.11(m, $2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 174.7, 150.2, 137.3, 129.6 (2 C), 129.0 (2 C), 127.1, 83.2, 59.2, 39.7, 31.3, 28.3 (3 C), 21.8. ${ }^{[41]} \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=400.2$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(R)- N-(tert-Butoxycarbonyl)-5-benzylpyrrolidin-2-one (19). (BH1-029)

19
A solution of $0.35 \mathrm{~g}(0.93 \mathrm{mmol})$ of compound 18 in 20 mL of toluene under argon was heated to reflux for 4 hours, cooled to $25^{\circ} \mathrm{C}$, concentrated, and column chromatographed on silica gel using hexane and ethyl acetate (4:1) as eluent to give 0.23 g (88% overall yield in three steps) of compound 19 as a yellow oil. The material was used in the subsequent step without purification. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+48.7\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{[41]}+48.5\left(\mathrm{c} 1.50, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.34-$ 7.29 (m, 2 H), 7.28-7.24 (m, 1 H), 7.20-7.17 (m, 2 H), 4.39-4.34 (m, 1 H, CHN), 3.13 (dd, J = 13.5, $4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, J = 13.5, $9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35-2.27 (m, 2 H), 2.20-1.90 (m, 1 H), 1.85$1.76(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.8,150.1,137.3,129.6$ (2 C), 129.0 (2 C), 127.1, 83.3, 59.3, 39.7, 31.3, 28.4 (3 C), 21.8. MS (ESI, MeOH): $m / z=298.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(R)-5-Benzylpyrrolidin-2-one (20). (BH2-053)

A solution of $1.0 \mathrm{~g}(12.9 \mathrm{mmol})$ of compound 19 in 5 mL of 10% trifluoroacetic acid in dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 2 hours, diluted with dichloromethane, and washed with an 10% aqueous solution of NaHCO_{3}, then water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated to give 0.61 g (96% yield) of compound $\mathbf{2 0}$ as a brown oil. This material was used in the subsequent step without further purification. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+39.7(\mathrm{c} 1.19, \mathrm{EtOH})$; Lit. ${ }^{[41]}+39.6(\mathrm{c} 1.19, \mathrm{EtOH})$. ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.12(\mathrm{~m}, 5 \mathrm{H}), 5.95-5.90(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 3.92-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 2.83(\mathrm{dd}, \mathrm{J}=$ $13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=13.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 178.1,137.8,129.3$ (2 C), 129.2 (2 C), 127.1, 55.9, 43.2, 30.3, 27.2; MS (ESI, MeOH): $m / z=198.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(R)-5-(Benzyl)-1-vinylpyrrolidin-2-one (21). (BH2-059)

21
To a solution of 0.60 g (3.42 mmol) of compound 20 in 30 mL of vinyl acetate under argon, were added 2.0 g of $3 \AA$ molecular sieves, $88 \mathrm{mg}(0.30 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $0.86 \mathrm{~g}(6.2 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ under argon for 28 hours, cooled to $25^{\circ} \mathrm{C}$, filtered, concentrated under vacuum, and column chromatographed on silica gel using a mixture of hexane and diethyl ether (1:1) as an eluent to give 0.46 g (67% yield) of pure compound 21 as a yellow oil. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+38.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.34-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H})$, $7.08(\mathrm{dd}, \mathrm{J}=16.4,9.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.63\left(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.60(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right)$, 4.22-4.17 (m, $\left.1 \mathrm{H}, \mathrm{CHN}\right), 3.00(\mathrm{dd}, \mathrm{J}=14,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, \mathrm{J}=14,8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.24-2.17 (m, 1 H), 2.10-1.91 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR δ 173.7, 137.1, 129.7, 128.9 (2 C), 128.4, 127.1 (2 C), 95.3, 57.0, 36.6, 30.1, 22.8; MS (ESI, MeOH): $m / z=224.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 202.0$ $\left(\mathrm{M}+\mathrm{H}^{+} ; 100 \%\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}: 224.1051$; found: 224.1076.

Copolymer 22 from (R)-5-(benzhydryloxymethyl)-1-vinylpyrrolidin-2-one (13) and

 vinylacetate. (BH7-040)

22
To a solution of $93 \mathrm{mg}(0.33 \mathrm{mmol})$ of compound 13 and $28 \mathrm{mg}(0.33 \mathrm{mmol})$ of vinyl acetate in 0.15 mL of acetone under argon, was added $10 \mathrm{mg}(0.066 \mathrm{mmol})$ of AIBN, and the solution was stirred under reflux for 30 h . The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and stirred for 10 min . The white precipitate was collected by filtration, dried under vacuum to give 0.106 $\mathrm{g}(88 \%$ yield $)$ of copolymer 22 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 7.50-6.3(\mathrm{~m}, 11 \mathrm{H}, \mathrm{Ph} \& \mathrm{CH}), 3.6-$ 1.0 (m, 16 H$)$.

Copolymer 23 from (\boldsymbol{R})-5-(tert-butoxymethyl)-1-vinylpyrrolidin-2-one (15) and vinylacetate.

 (BH3-035)

23
From $30 \mathrm{mg}(0.15 \mathrm{mmol})$ of $\mathbf{1 5}, 13 \mathrm{mg}(0.15 \mathrm{mmol})$ of vinyl acetate and 0.25 mg of AIBN, copolymer 23, $39 \mathrm{mg}\left(90 \%\right.$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 4.90-2.75(\mathrm{~m}, 5 \mathrm{H}), 2.70-0.80(\mathrm{~m}$, 20 H).

Copolymer 24 from (\boldsymbol{R})-5-benzyl-1-vinylpyrrolidin-2-one (21) and vinylacetate. (BH1-045)

24
From $50 \mathrm{mg}(0.25 \mathrm{mmol})$ of monomer 21, $21.4 \mathrm{mg}(0.25 \mathrm{mmol})$ of vinyl acetate and 0.7 mg of AIBN, copolymer 24, $65 \mathrm{mg}\left(91 \%\right.$ yield), was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 7.20-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.75-$ $6.30(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.00(\mathrm{~m}, 3 \mathrm{H}), 2.5-1.1(\mathrm{~m}, 13 \mathrm{H})$.

Poly[(3aR,6aR)-2,2-dimethyl-5-vinyl-dihydro-3aH-[1,3]dioxolo[4,5-c]pyrrol-4(5H)-one] (25).

 (BH9-043)

25
To a solution of 0.3 mg (0.2% by weight) of copolymer 35 in 0.5 mL of ethyl acetate under argon, were added $70 \mathrm{mg}(0.38 \mathrm{mmol})$ of compound 33 and $0.3 \mathrm{mg}(2 \mu \mathrm{~mol})$ of AIBN. The solution was stirred for 2 days at $70^{\circ} \mathrm{C}$ (until no monomer $\mathbf{3 3}$ was detected by NMR spectrum of an aliquot from the reaction solution), cooled to $25^{\circ} \mathrm{C}$, and diluted with hexane. The precipitate was collected by filtration, dried under vacuum to give 63 mg (90% yield) of polymer $\mathbf{2 5}$ as a white solid. The average molecular weight of polymer $\mathbf{2 5}, 75,000(\mathrm{n}=410)$, was determined by gel permeation chromatography using TSKgel GMHxl column and water as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} . \quad[\alpha]_{\mathrm{D}}{ }^{22}=-74.3\left(\mathrm{c} 1.6, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 4.7-4.3(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHO}), 3.8-3.0(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CHN}, \mathrm{CH}_{2} \mathrm{~N}$), 1.6-1.1 ($8 \mathrm{H}, \mathrm{CH}_{2}, 2 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\delta 161.0,113.0,74.7,72.1,48.7,47.8$, 46.1, 45.6, 27.2, 25.9. IR (neat) v 3020, 2940, 2143, 1648 (s), 1420, 1285, 1169, 1024, 830.

26
To a solution of 0.4 mg (0.2% by weight) of copolymer 36 in 0.8 mL of ethyl acetate under argon, were added $0.18 \mathrm{~g}(0.99 \mathrm{mmol})$ of compound 34 and $0.72 \mathrm{mg}(4 \mu \mathrm{~mol})$ of AIBN. The solution was stirred for 2 days at $70^{\circ} \mathrm{C}$ (until no monomer $\mathbf{3 4}$ was detected by NMR spectrum of an aliquot from the reaction solution), cooled to $25^{\circ} \mathrm{C}$, and diluted with hexane. The precipitate was collected by filtration, dried under vacuum to give 0.16 g (91% yield) of polymer 26 as a white solid. The average molecular weight of polymer 26, $92,000(\mathrm{n}=436)$, was determined by gel permeation chromatography using TSKgel GMHxl column and water as solvent with a flow rate of $1 \mathrm{~mL} / \mathrm{min} . \quad[\alpha]_{\mathrm{D}}{ }^{22}=-138.9\left(\mathrm{c} 1.8, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR} \quad \delta 4.7-4.6(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHO}), 3.7-3.0$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{CHN}, \mathrm{CH}_{2} \mathrm{~N}$), 1.6-1.3 ($6 \mathrm{H}, \mathrm{CH}_{2}$), $0.9-0.6\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 160.9,113.5$, 74.7, 73.0, 48.8, 47.7, 43.0, 42.7, 29.2, 28.5, 8.4, 7.0. IR (neat) v 3423, 2949, 2884, 1648 (s), $1460,1420,1270,842$; UV-Vis $299 \mathrm{~nm}\left(\varepsilon=45090 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.
(3R,4R)-3,4-Dihydroxy-dihydrofuran-2(3H)-one (28). (BH11-084)

28
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $17.6 \mathrm{~g}(0.1 \mathrm{~mol})$ of D-isoascorbic acid (27) in 250 mL of $\mathrm{H}_{2} \mathrm{O}, 21.2 \mathrm{~g}$ $(0.2 \mathrm{~mol})$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $22.7 \mathrm{~g}(0.2 \mathrm{~mol})$ of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ were added dropwise, the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes and $42{ }^{\circ} \mathrm{C}$ for 30 minutes. To the reaction solution, 4.0 g of
activated charcoal was added in portion over 10 minutes, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 minutes, filtered through Celite during hot and washed the filter cake with 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The filtrate was carefully acidified with 6 N HCl until pH 1 , concentrated on a rotary evaporator and then under vacuum to give 36.9 g of solid. The crude products were purified by adding 200 mL of ethyl acetate and heating to reflux for 10 minutes. The hot solution was filtered and the filtrate containing the desired product was saved. The extraction of the product from the solid was repeated by refluxing in 200 mL of ethyl acetate and filtered. Both filtrates were combined, cool over an ice-water bath, and the crystallized white solid was collected by filtration to give $11.0 \mathrm{~g}(94 \%$ yield $)$ of the titled compound. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-73.2\left(\mathrm{c} 0.5, \mathrm{H}_{2} \mathrm{O}\right), \mathrm{Lit}^{[22]} \quad[\alpha]_{\mathrm{D}}{ }^{22}=-72.8$ (c $0.498, \mathrm{H}_{2} \mathrm{O}$) ; ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 5.75$ (dd, $J=7.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), $5.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 4.39-4.34 (m, 1 H), 4.26 (dt, $J=10,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10,3.2 \mathrm{~Hz} 1$ H); ${ }^{13}$ C NMR (DMSO-d6) $\delta 177.1,72.5,70.1,69.0 ; \mathrm{MS}(E S I, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=141.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, 72.4 .

(2R,3R)-O-Isopropylidene-D-erythronolactone (29). (BH9-145)

To a solution of $1.6 \mathrm{~g}(13.6 \mathrm{mmol})$ of $\mathbf{2 8}$ in 25 mL of anhydrous acetone under argon, 4.5 g (28.5 mmol) of CuSO_{4} was added. The mixture was stirred for 36 hours and the precipitated inorganic salt was removed by filtration over a pad of Celite. The filtrate was concentrated to dryness leaving 2.32 g of yellow solid. The crude product was column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give $1.90 \mathrm{~g}(89 \%$ yield) of the titled compound as a pale yellow solid. $[\alpha]_{\mathrm{D}}{ }^{22}=-114.64$ (c 1.5, acetone), $\mathrm{Lit}^{[42]}$. $[\alpha]_{\mathrm{D}}{ }^{20}=+116.3\left(\mathrm{c} 1.5\right.$, acetone); ${ }^{1} \mathrm{H}$ NMR $\delta 4.85(\mathrm{bs}, 1 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H}), 4.39(\mathrm{bs}, 2 \mathrm{H}), 1.42$
(s, 3 H), $1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.8,113.9,75.8,74.8,70.5,26.9,25.6$; MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=181.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 95.6$.
(2R,3R)-4-Azido-4-deoxy-2,3-O-isopropylidene-D-erythronic acid (30). (BH9-147)

A solution of $1.90 \mathrm{~g}(12.0 \mathrm{mmol})$ of $\mathbf{2 9}$ and $2.73 \mathrm{~g}(42.1 \mathrm{mmol})$ of NaN_{3} in 12 mL of distilled DMF was heated to $110{ }^{\circ} \mathrm{C}$ under argon for 24 hours. The reaction solution was diluted with 500 mL of diethyl ether, 10 mL of $\mathrm{H}_{2} \mathrm{O}$ and 20% aqueous HCl to pH 2 , and extracted with 40 mL of ethyl acetate four times. The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give 1.03 g (42% yield) of the titled compound as a pale yellow solid. The major by-product was azido((4R,5R)-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanone. $[\alpha]^{22}{ }_{\mathrm{D}}$ (c 0.47, acetone); Lit. ${ }^{[30]}+72$ (c 0.47 , acetone); ${ }^{1} \mathrm{H}$ NMR $\quad \delta 9.52-9.0(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.2,6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.2,112.2,73.8,70.8,52.0,27.1,26.2$; MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=224.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 143.6,85.6$.
(2R,3R)-4-Amino-4-deoxy-2,3-O-isopropylidene-D-erythronic acid (31). (BH9-151)

31
44

To a solution of $1.01 \mathrm{~g}(5.0 \mathrm{mmol})$ of $\mathbf{3 0} \mathrm{in} 100 \mathrm{~mL}$ of methanol, 50 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ was added, and the mixture was shake under 2 atm . of hydrogen gas for 4 hours in a hydrogenator. The mixture was removed from the hydrogenator, filtered through a pad of Celite, the filtrated was concentrated to dryness leaving 0.86 g (99% yield) of the titled compound as a pale yellow solid. $[\alpha]_{\mathrm{D}}{ }^{22}=+91.6$ (c 1.0, 60% aqueous acetone), $\mathrm{Lit}^{[30]}[\alpha]_{\mathrm{D}}{ }^{20}=+92$ (c 1.02, 60% aqueous acetone); ${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 4.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=176.1\left([\mathrm{M}+\mathrm{H}]^{+}\right), 198.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(2R,3R)-4-Amino-4-deoxy-2,3-O-isopropylidene-D-erythronolactam (32). (BH9-031)

32
An amount of $0.16 \mathrm{~g}(0.93 \mathrm{mmol})$ of $\mathbf{3 1}$ was placed in a sublimator and heated to $160-170{ }^{\circ} \mathrm{C} / 0.5$ mm Hg under vacuum, and 92 mg (63% yield) of $\mathbf{3 2}$ was obtained as white solid. This material was used in the subsequent step without further purification. $\quad[\alpha]^{22}{ }_{\mathrm{D}}=-60.3(\mathrm{c} 0.78, \mathrm{MeOH})$; $\mathrm{Lit}^{[30]}$. $-59(\mathrm{c} 0.78, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.31(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.79(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}$, $J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=11,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.4,113.0,76.7,74.9,46.0,27.2,25.8$; MS (ESI, MeOH): m/z=158.4 ([M $\left.+\mathrm{H}]^{+}\right)$.
(2R,3R)-4-Amino-4-deoxy-2,3- O-isopropylidene- N-vinyl-D-erythronolactam (33). (BH9-035)

33

To a solution of $90 \mathrm{mg}(0.57 \mathrm{mmol})$ of compound 32 in 10 mL of vinyl acetate under argon, were added 1.0 g of $3 \AA$ molecular sieves, $13 \mathrm{mg}(0.046 \mathrm{mmol})$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}$, and $0.14 \mathrm{~g}(1.03$ mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 14 hours, cooled to $25^{\circ} \mathrm{C}$, filtered through Celite, concentrated under vacuum, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give 84 mg (80% yield) of $\mathbf{3 3}$ as a yellow oil. $\quad[\alpha]_{\mathrm{D}}-20.1\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 7.05(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.82-$ $4.79(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.48(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 3.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.4$, 129.2, 113.0, 96.7, 78.1, 72.1, 48.7, 27.2, 25.9; MS (ESI, MeOH): m/z = $184.0\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-ESI: m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}$: 184.0974 found: 184.0952.

(3aR,6aR)-5-Vinyl-2,2-diethyl-dihydro-3aH-[1,3]dioxolo[4,5-c]pyrrol-4(5H)-one (34).

(BH10-011)

34
A mixture of $0.25 \mathrm{~g}(1.37 \mathrm{mmol})$ of compound $33,5 \mathrm{mg}$ of $\mathrm{ZnCl}_{2}(0.04 \mathrm{mmol})$ and 7 mL of 3-pentanone was placed in a distillation apparatus equipped with a short distill head and heated to $65{ }^{\circ} \mathrm{C}$ to remove the by-product acetone over 40 hours. The resulting mixture was diethyl ether, filtered through Celite, and washed with a small amount of diethyl ether. The filtrate was
concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as an eluent to give 192 mg (67\% yield) of $\mathbf{3 4}$ as a yellow oil. $\quad[\alpha]_{\mathrm{D}}$ -43.2 (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR} \quad \delta 7.07(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=), 4.84-4.81(\mathrm{~m}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55\left(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.49\left(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 3.64$ (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=6 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 169.3,128.8,115.5,96.6,78.0,71.9,48.6,30.0,29.6,8.4,7.6 . \quad$ MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=212.2\left([\mathrm{M}+\mathrm{H}]^{+}\right) 234.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}$: 212.1287 found: 212.1269 .

Poly(3,4-disubstituted N-vinyl pyrrolidinone-co-vinyl acetate) [P(DVP-co-VAc)] 35 from compound 33 and vinyl acetate. (BH9-042)

35
To a solution of $10 \mathrm{mg}(55 \mu \mathrm{~mol})$ of N-vinylpyrrolidinone 33 and $4.7 \mathrm{mg}(55 \mu \mathrm{~mol})$ of vinyl acetate in $20 \mu \mathrm{~L}$ of acetone under argon, was added $0.1 \mathrm{mg}(0.6 \mu \mathrm{~mol})$ of azobisisobutyronitrile (AIBN), and the solution was stirred under reflux for 30 h . The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and stirred for 10 min . The white precipitate was collected by filtration, dried under vacuum to give 12 mg (82% yield) of copolymer $\mathbf{3 5}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\quad \delta$ 4.90-2.75 (m, 5H), 2.70-0.80(m, 22 H).

Poly(3,4-disubstituted N-vinyl pyrrolidinone-co-vinyl acetate) [P(DVP-co-VAc)] 36 from compound 34 and vinyl acetate. ($\mathrm{BH} 10-15$)

36
To a solution of $15 \mathrm{mg}(55 \mu \mathrm{~mol})$ of compound $\mathbf{3 4}$ and $4.7 \mathrm{mg}(55 \mu \mathrm{~mol})$ of vinyl acetate in 20 $\mu \mathrm{L}$ of acetone under argon, was added $0.1 \mathrm{mg}(0.6 \mu \mathrm{~mol})$ of AIBN, and the solution was stirred under reflux for 30 h . The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with hexane, and stirred for 10 min . The white precipitate was collected by filtration, dried under vacuum to give 17.2 mg (87% yield) of copolymer 36 as a white solid. ${ }^{1} \mathrm{H}$ NMR $\delta 4.90-2.75(\mathrm{~m}, 5 \mathrm{H}), 2.70-0.80(\mathrm{~m}, 26$ H).

Chapter 2 - Asymmetric Oxidation Reactions and Late Stage Oxidation Reactions Catalyzed by Bimetallic Nanoclusters

(Partial of the results and discussions in this chapter was published ${ }^{[1]}$ and adapted with permission of Journal of the American Chemical Society. Copyright © 2016 American Chemical Society.)

Organic transformation reactions using bimetallic nanoclusters ${ }^{[15]}$ in the oxidation of alcohols, ${ }^{[10,}$ ${ }^{43,44]}$ formic acid oxidation, ${ }^{[45]}$ aldehyde oxidation, ${ }^{[46]}$ C-H oxidation, ${ }^{[36]}$ Ullmann coupling, ${ }^{[47]}$ Suzuki coupling reaction, ${ }^{[48]}$ tandem oxidation-Michael addition reaction, ${ }^{[49]}$ have been reported. However, these reports do not include studies of enantio- or stereo-selectivity.

Catalytic asymmetric oxidation is challenging and the results can have a great impact to the chemistry community. With the catalysis of CSPVP stabilized bimetallic nanoclusters, several kinds of the oxidation reaction, including alcohol oxidations, alkene dihydroxylations, alkane C-H oxidations, oxidative ring closing of dienes and late-stage oxidations of complex molecules are all investigated and discussed in this chapter.

2.1 Selective Asymmetric Oxidation Reactions of Alcohols.

2.1.1 Background and Significance

Oxidation of alcohols to their respective aldehyde or ketone is a useful and fundamental organic reaction. Many methods have been developed by inducing stoichiometric amount of oxidants, which may produce large amount of highly polluted and toxic waste, such as bromate ${ }^{[50]}$, permanganate ${ }^{[51]}$ or chromate ${ }^{[52]}$. Recently, transition metal nanoparticle-catalyzed aerobic alcohol oxidation with high catalytic activity and selectivity has been investigated. [${ }^{[10, ~ 44]}$

Alcohol can be selectively oxidized to ketone or aldehyde in the presence of other functional groups.

Although desymmetrization of meso diols and diol derivatives using various organic reagents and enzymes have appeared, ${ }^{[53-55]}$ reports on the enantioselective oxidation of a mixture of racemic diols via kinetic resolution are limited, with the exception of oxidation of racemic benzylic vicinal diols. ${ }^{[56]}$ Hence, asymmetric oxidation of racemic diols by kinetic resolution or meso diols using bimetallic nanoclusters with chiral stabilizer may give high catalytic activity, regio- and enantioselectivity.

2.1.2 Results and Discussions

With the general idea, (\pm)-trans-1,3-cyclohexanediol (37) was used to study the reaction conditions and possible products. (\pm)-trans-1,3-cyclohexanediol was prepared by the seperation of mixture of cis \& trans-1,3-cyclohexanediol by adding CuCl_{2}. cis-1,3-Cyclohexanediol was precipitated in diethyl ether due to the formation of complex with Cu^{2+} and trans-1,3-cyclohexanediol remained in diethyl ether. Ammonia acetone solution was used to destroyed the cis-1,3-cyclohexanediol/ Cu^{2+} complex and yield pure cis-1,3-cyclohexanediol (44).

For instance, treatment of (\pm)- $\mathbf{3 7}$ with $0.2 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{Au}-\mathrm{CSPVP} 3$ (the amount of catalyst is based on the total moles of Pd and Au) and 0.3 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in water under 1 atmospheric oxygen to yield (S)-3-hydroxycyclohexanone (38). After screening different ratios of Pd versus Au such as 1:0, $9: 1,3: 1,1: 1,0: 1$ of the bimetallic nanoclusters, $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP appears to provide the highest catalytic activity and chemical yields in the aerobic catalytic asymmetric oxidation of (\pm)-trans-cyclohexanediol (37).(Table 4, entries 1-5) Higher temperature was
needed when using palladium without gold and the reaction gave lower enantioselectivity. However, gold nanaclusters cannot catalyze the oxidation reaction even under $100{ }^{\circ} \mathrm{C}$ which indicate palladium is the real catalyst in the reaction and gold can improve the catalytic reactivity. Another control experiment was conducted by using normal PVP $(M W=40,000)$ instead of CSPVP, which gave achiral product. It is also an evidence which shows the chiral environment was induced from CSPVP.(Table 4, entry 6)

	$\xrightarrow[\mathrm{O}_{2}(1 \mathrm{~atm} .), \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O},]{0.15 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{Au} \text { (ratio)-(CS)PVP }}$ (S)-38					
entry	PVP	Pd:Au	reaction time	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	\% yield	\% ee
1	3	1:0	14 days	80	42	64
2	3	9:1	14 days	60	44	83
3	3	3:1	7 days	60	47	88
4	3	1:1	7 days	60	38	82
5	3	0:1	no reaction under $100^{\circ} \mathrm{C}$			
6	achiral	3:1	7 days	60	46	0

Table 4. Reaction Condition Studies for the Oxidation of (\pm)-trans-cyclohexanediol(37).

After understanding the best ratio of $\mathrm{Pd} / \mathrm{Au}$, the reaction condition was consistently used for the oxidation of (\pm)-trans-cycloalkanediols to give the similar and comparable results. The first generation of polymer $\mathbf{1 - 4}$ were tested in the same reaction condition. $0.2 \mathrm{~mol} \%$ of $\mathrm{Pd} / \mathrm{Au}$ (3:1)-CSPVP 1 - $\mathbf{4}$ and 0.3 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in water under 1 atmospheric oxygen at $60{ }^{\circ} \mathrm{C}$ for 7 days was used for the oxidation of (\pm)-trans-1,3-cyclohexanediols (37) and gave 46-49\% chemical yields and $70-99 \%$ ee of (S)-3-hydroxycyclohexanone (38) along with the recovered
(R, R)-37 (Table 5, entries 1-4). It appears CSPVP1 gives the best enantioselectivity due to the bulkiest C5-substituent group. It is also another provement thet the enantioselective oxidation was because of the appearance of CSPVP. Therefore, Pd:Au(3:1)-CSPVP1 was locked to be the catalyst of diol oxidation reactions.

Through kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst, resulting in an enatioencriched sample of the less reactive enantiomer. In the oxidation of (\pm)-trans-1,3-cyclohexanediols (37), 50% of diols was recovered with 92% ee, which means at least 96% of (R, R) - $\mathbf{3 7}$ was not oxidized in 7 days. With the kinetic resolution of $\mathrm{Pd}: \mathrm{Au}(3: 1)-\mathrm{CSPVP1},(S, S)-\mathbf{3 7}$ was oxidaized much faster than $(R, R)-37$. Therefore, stopping the reaction before half of the starting material reacted was needed to get optical pure (S)-38. Since the reactions were difficult to stop at exactly half point and partial of $(S, S)-\mathbf{3 7}$ remained in the recovered enriched $(R, R)-\mathbf{3 7}$, the enantiomeric excess of the recovered $(R, R)-\mathbf{3 7}$ was related to the experiment operation and have potential to increase. It also provides an effective way to separate the racemic $\mathbf{3 7}$ to $(R, R)-\mathbf{3 7}$ from (S, S)-37. Moreover, hydroxyl ketone (S)-38 did not undergo oxidation, revealing an electron-withdrawing ketone group impeded further oxidation.

Using $0.2 \mathrm{~mol} \%$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}$, other five- and seven-membered cycloalkanes, such as 1,3-trans-cycloalkanediols $(\pm)-39,(\pm)-40$ and trans-1,2-cycloalkanediols $(\pm)-46-(\pm)-48$, were similarly oxidized to give excellent chemical and optical yields. Results are presented in Table 5 (entries 5 and 6 , and entries $10-12$). trans- $(\pm)-39$ and trans $-(\pm)-40$ were obtained with Cu^{2+} complex method similar like trans- $(\pm)-37$. trans- $(\pm)-46-(\pm)-48$ were separated from mixture of cis and trans mixture by column chromatography on silica gel. Meanwhile, cis-43-45 and 5254 were isolated for oxidation study.

When the amounts of catalysts were increased to $0.40 \mathrm{~mol} \%$ (double) or $0.80 \mathrm{~mol} \%$ (quadruple) of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}$, the oxidation of $(\pm)-\mathbf{3 7}$ were respectively completed in 6 and 5 days, with chemical yields of 47% (99% ee) and 49% (99% ee) of (S)-38. Hence, an increase of the amounts of catalyst shortens the reaction time. The recyclability of the $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}$ catalyst was also examined. Hence, the catalyst, recovered from the oxidation reaction of (\pm)-37, was reused under similar reaction conditions for a second time, and 39\% yield (99\% ee) of (S)-38 was isolated. The catalyst was further recycled for a third time but only 18% yield ($98 \% \mathrm{ee}$) of (S)-38 was obtained, showing the catalyst can be reused albeit with lower catalytic activities. The turnover number (TON) of the catalytic oxidation reaction after three cycles is >706.

The meso 1,3 and 1,2-cis-cycloalkanediols do not undergo oxidation reaction under similar reaction conditions as those of trans-diols. It may due to the fact that cis-diols form stable complexes with the nanoparticles. ${ }^{[57]}$ However, under elevated pressure of oxygen (30 psi) and temperature $\left(120^{\circ} \mathrm{C}\right)$, the reactions took place in 3 days to give $89-97 \%$ yields in $90-92 \%$ ee of the oxidized (S)-hydroxyl ketones (Table 5, entries 7-9 and entries 13-15). The higher reaction temperature $\left(120^{\circ} \mathrm{C}\right)$ lowered slightly the optical yields comparing with those obtained from trans-cycloalkanediols. This oxidative desymmetrization of meso-diols is synthetically useful, since it provides the chiral hydroxyketones without the recovery of starting diols. Importantly, both trans- and cis-diols gave only the (S)-hydroxy ketones. No changes in reaction rate and chemical and optical yields in the oxidation reaction of meso-53 were found when doubling the amount of $\mathbf{1}$ but maintaining the amount of $\mathrm{Pd} / \mathrm{Au}(3: 1)$.

			$\xrightarrow{0.15 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{Au}(3: 1) \text {-CSPVP }}$					
entry	substrate	CSPVP	product	\% yield ${ }^{(a)}$	\% ee	recovered dio	\% yield ${ }^{(b)}$	\% ee
1	 $(\pm)-37$	1	 (S)-38	49	99		50	92
2	(\pm)-37	2	(S)-38	46	83	$(R, R)-37$	52	79
3	(\pm)-37	3	(S)-38	46.5	88	$(R, R)-37$	52	81
4	(\pm)-37	4	(S)-38	46	70	$(R, R)-37$	51	65
5	 (\pm)-39	1	 (S)-41	48	99	$(R, R)-39$	53	91
6	 (\pm)-40	1	 (S)-42	46	99		53	85
$7{ }^{\text {(c) }}$		1		97	90	$-$	-	-
$8^{(c)}$	 44	1	 (S)-38	89	91	-	-	-
$9^{(c)}$		1	 (S)-42	94.5	92	-	-	-

(to be continued)
entry substrate
(a) Isolated yields were based on starting racemic or meso-diols. (b) Percent recoveries were based on recovered unreacted starting diols. (c) Reactions were carried out at $120^{\circ} \mathrm{C}$ under 30 psi. of oxygen for 3 days.

Table 5. Results of Catalytic Asymmetric Oxidation of 1,3 and 1,2-Cycloalkanediols.

The absolute configurations of $(S)-\mathbf{3 8},(S)-41$ and $(S)-49-(S)-51$ were determined by comparison of the sign of the reported specific rotations. ${ }^{[58-61]}$ The specific rotation of $(S)-\mathbf{4 2}$ has not been reported previously and its absolute configuration was assumed based on the retention time of its benzoate derivative in HPLC/chiral column. Optical purities were measured through HPLC/chiral column of their benzoyl derivatives, which were synthesized by the treatment of the hydroxyl ketones with benzoyl chloride and pyridine. In all cases, PVP was used in place of CSPVP under similar reaction conditions to provide the racemic products for HPLC/chiral column analyses. The absolute configurations and optical purities of the unreacted diols $(R, R)-37,(R, R)-39,(R, R)-40$ and $(R, R)-46-(R, R)-48$ were similarly determined by comparison of the sign of the reported specific rotations ${ }^{[62,63]}$ and through HPLC/chiral column of their dibenzoate derivatives obtained from the reactions of the diols with benzoyl chloride and pyridine. (Scheme 7)

Scheme 7. Benzoylation of (S)-Hydroxycycloalkanones and Dibenzoylation of Recovered ($\boldsymbol{R}, \boldsymbol{R}$)-Cycloalkanediols.

Dr. Hua has proposed the mechanism for the oxidation of diols. ${ }^{[1]}$ (Scheme 8) It has been reported a η^{2}-peroxido $\mathrm{Pd}^{\text {II }}$ (peroxopalladium) species $\mathbf{I I}^{[64]}$ formed with the oxidation of $\operatorname{Pd}(0) .{ }^{[65]}$ Then the hydroxyl group in diols attacks $\mathrm{Pd}(\mathrm{II})$, open the three membered ring and gives complex III, which undergoes proton transfer to give IV. Finally, the base, $\mathrm{K}_{2} \mathrm{CO}_{3}$, removes the C-1 proton and gives the corresponding ketone, \mathbf{I} and $\mathrm{H}_{2} \mathrm{O}_{2}$. Oxidation of \mathbf{I} with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives II and go into next catalytic circle. ${ }^{[66]}$ The exact mechanism for the enantioselectivity is not clear.

Nanoclusters Pd/Au-CSPVP provides excellent enantioselectivities (91-99\% ee) in the oxidation of diols, and results of the enantioselectivity from the oxidation of trans-diols are comparable to those reported using enzymes. ${ }^{[67,68]}$

Scheme 8. Proposed Mechanism for the Asymmetric Catalytic Oxidation of Racemic and Meso 1,3-Cycloalkanediols and 1,2-Cycloalkanediols.

2.2 Asymmetric Dihydroxylation of Alkenes.

2.2.1 Background and Significance

The development of catalytic reaction of alkene transformed the chemical industry and gave various ways for the organic synthesis. For example, the Nobel Prize in chemistry 2001 was divided to Professor Knowles, Noyori and Sharpless for their work on chirally catalyzed hydrogenation or dihydroxylation reactions. Dihydroxylation is the process by which an alkene is converted into a vicinal diol. Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal, such as Prevost anti-Dihydroxylation ${ }^{[69]}$, Upjohn syn-Dihydroxylation ${ }^{[70]}$ and syn-Woodward Dihydroxylation ${ }^{[71]}$, catalytic asymmetric syn-dihydroxylation reactions were majorly conducted by the Sharpless asymmetric dihydroxylation process. ${ }^{[72]}$ However, the use of toxic and volatile osmium tetraoxide catalyst makes the reaction purification difficult. Moreover, the enantioselective dihydroxylation of some Z-1,2-disubstituted alkenes and alkenes containing stereogenic centers using Sharpless method gave lower enantioselectivity. ${ }^{[72]}$ Therefore, Other asymmetric dihydroxylation reactions with osmium-free catalysts ${ }^{[73]}$ including palladium-catalyzed difunctionalization of alkenes, ${ }^{[74]} \mathrm{RuO}_{4},{ }^{[75]} \mathrm{KMnO}_{4},{ }^{[76]}$ and iron complexes ${ }^{[77]}$ have also been investigated. Until now, Asymmetric dihydroxylation of alkenes using bimetallic nanoparticles and chiral polymers have not been discovered. $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP catalyst without osmium dihydroxylated alkenes with similar or higher enantioaselectivity compare with sharpless method.

2.2.2 Results and Discussions

Although no dihydroxylation of alkenes took place at 1 atmospheric of oxygen with $\mathrm{Pd}: \mathrm{Au}(3: 1)-\mathrm{PVP}$ nanoclusters, but with the co-catalyst CuCl , (no reaction without CuCl) the
corresponding ketone (56) was isolated from the oxidation of cyclooctadiene (55) with 70% yield in DMSO. The dihydroxylation product was not detected. (Scheme 9)

Scheme 9. Oxidation of Cyclooctadiene.

However, various alkenes were readily oxidized at 30 psi . of oxygen in excellent to good chemical yields and excellent optical yields. Results of the oxidation are summarized in Table 6. For example, treatment of 1,2-dihydronaphthalene (57) with $0.5 \mathrm{~mol} \%$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}$ in water at $25^{\circ} \mathrm{C}$ under 30 psi. of oxygen for 3 days gave ($1 S, 2 R$)-58 in 86% yield and 99% ee (Table 6, entry 1). Only a single product was isolated in the reaction. The Sharpless dihydroxylation of $\mathbf{5 7}$ using DP-PHAL gave 56% ee of $(1 R, 2 S)-\mathbf{5 8} .{ }^{[78]}$ Other disubstituted alkenes including trans- and cis- β-methylstyrene (59 and 62, respectively; Table 6, entries 2 and 3) also underwent oxidation reactions at $25^{\circ} \mathrm{C}$. In the oxidation of trans-59, the syn-adduct ($1 S, 2 S$)-60 was isolated in 87% yield and 99% ee along with a small amount of anti-adduct $(1 R, 2 S)$-61 in 6% yield and 97% ee. Similarly, in the oxidation of cis-62, the syn-adduct $(1 S, 2 R)-\mathbf{6 1}$ was isolated in 90% yield and 98% ee as well as 8% yield of anti-adduct $(1 R, 2 R)-\mathbf{6 0}$ in 98% ee. However, only syn-addut $(1 S, 2 R)$ - $\mathbf{5 8}$ was isolated when 0.3 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to the oxidation reaction of $\mathbf{5 7}$ at $25^{\circ} \mathrm{C}$. The disubstituted alkenes without aromatic ring were also examined, for example, cyclohex-2-enone (73) and cyclooct-4-enone (75), were oxidized under similar condition except at $50^{\circ} \mathrm{C}$ to $(2 \mathrm{R}, 3 R)-74$ (86% yield) and $(4 \mathrm{~S}, 5 R)-76(85 \%$ yield), respectively. (Table 6, entries 9 and 10) The increase of reaction temperature indicates the aryl group, as a electron-donating group, increased the activity for the oxidation reaction. The higher ee value (99\%), the oxidation of $\mathbf{7 3}$ and $\mathbf{7 5}$ gave, indicate the enantioselectivity of

CSPVP26 is better than CSPVP1 even the reaction temperature are higher. Notably, the dihydroxylation takes place from the $r e$ face of the alkenes (in regarding to C 1 of $\mathbf{5 7}, \mathbf{5 9}, \mathbf{6 2}, \mathbf{7 3}$ and 75).

The oxidation of alkenes containing an electron-withdrawing group such as trans-cinnamic acid ester 63 and indene ($\mathbf{6 6}$) only proceeded at $50^{\circ} \mathrm{C}$ giving the syn-adducts $(2 R, 3 S)-\mathbf{6 4}$ (82% yield; 99% ee) and ($1 S, 2 R$)-67 (67% yield; 93% ee), respectively, as the major products. The respective anti-adducts, ($2 R, 3 R$)-65 (3% yield; 97% ee) and ($1 R, 2 R$)-68 (11% yield; 94% ee) were also isolated as minor products. (Table 6, entries 4 and 5) Since $(1 R, 2 R)-68$ was obtained in 11% yield, anti-adduct was tried to improve as a major product. As expected, in the presence of 0.3 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at $70^{\circ} \mathrm{C}$ for $5 \mathrm{~h},(1 R, 2 R)-\mathbf{6 8}$ was isolated in 59% yield and 91% ee. (Table 6, entries 6)

Trisubstituted alkenes such as $(R)-(+)$-limonene (69), containing a stereogenic center, also underwent stereoselective oxidation at $25^{\circ} \mathrm{C}$ to give a single stereoisomer ($1 S, 2 R, 4 R$)-70. (Table 6, entries 7) The formation of $(1 S, 2 R, 4 R)$ - 70 from the dihydroxylation reaction of limonene is remarkable, since the dihydroxyl functions were delivered from the same side of the bulky isopropenyl group. The cyclic trisubstituted alkene reacted preferentially compared to the acyclic terminal disubstituted olefin group, suggesting electron-donating groups such as alkyl and aryl enhance the reactivity towards the nanoclusters.

(
(To be continued)
entry CSPVP
(a) Reactions were conducted at $25^{\circ} \mathrm{C}$ for 3 days; (b) reactions were conducted at $70^{\circ} \mathrm{C}$ for 5 h in the presence of 0.3 equiv $\mathrm{K}_{2} \mathrm{CO}_{3}$; (c) $5 \% \mathrm{~mol}$ of Pd :Au-CSPVP nanoclusters was used.

Table 6. Results of Catalytic Asymmetric Dihydroxylation of Alkenes.

However, the terminal disubstituted olefin group can also be oxidized by increasing the amount of the catalyst. With 5% of $\mathrm{Pd} / \mathrm{Au}(3: 1)$-CSPVP26, 2-methylhept-1-ene (71) were oxidized to (S)-2-methylheptane-1,2-diol (72) with 73\% chemical and 97\% optical yield. (Table 6, entries 8)

Molecule (+)-(R)-71 has previously been obtained from an improved Sharpless oxidation in a 85% yield and 86% ee. ${ }^{[79,80]}$ The successful oxidation of 71 expanded the scope of the oxidation method.

The oxidation of trisubstituted alkenes containing an electron-withdrawing group, ethyl cycloalk-1-enecarboxylate ($77-\mathbf{8 0}$) were also oxidized at $50^{\circ} \mathrm{C}$ and gave the syn-adducts $(1 S, 2 R)-\mathbf{8 1} \mathbf{- 8 4}$ with $77-81 \%$ yield and $\sim 99 \%$ ee. (Table 6, entries 11-14)

The substrates were commercially available if not mentioned below. Compound $\mathbf{7 1}$ was made by Wittig Reaction from 2-heptanone (71A). With the epoxidation of cyclooctadiene (55) with mCPBA in methylene chloride, reduction with LiAlH_{4} in THF and oxidation of alcohol with Jones Reagent, cyclooct-4-enone (56) was obtained. Compound $\mathbf{7 7 - 8 0}$ were made from cycloalkanone 77A-80A, respectively. The compounds 77A-80A were treated with NaH and diethyl carbonate in toluene, reduced the ketone with NaBH_{4}, protected the resulting alcohol with $\mathrm{MsCl}-\mathrm{Et}_{3} \mathrm{~N}$ and eliminate to give 77-80 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The preparation of the substrates was conducted by Dr. Man Zhang and Mr. Kyle Apley. (Scheme 10)

Scheme 10. The Preparation of the Substrates for Dihydroxylation Reactions.

The absolute configurations were determined by comparing the sign and specific rotations of the respective reported molecules. ${ }^{[67,68,81,82]}$ To determine the stereochemistry of 70 (which has not been reported previously), we independently prepared $(1 S, 2 R, 4 R)-70$ and its $(1 R, 2 S, 4 R)$-diastereomer $(\mathbf{8 5})^{[83]}$ by the reaction of (R) - $\mathbf{6 9}$ with OsO_{4} (catalytic amount)-NMO in $\mathrm{t}-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ followed by silica gel column chromatography. The syn-stereochemistry of the products were confirmed independently by oxidizing 79 with $\mathrm{OsO}_{4}-\mathrm{NMO}$ in $\mathrm{t}-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ to give (\pm)-83, whose ${ }^{1} \mathrm{H}$ NMR spectrum was identical to that of (-)-83. The absolute configuration of $\mathbf{8 1}$ and $\mathbf{8 2}$ were deduced by oxidation with IBX-DMSO to the corresponding (-)-(1S)-1-hydroxy-2-oxocycloalkanecarboxylic ethyl esters (86 and 87, respectively), whose specific rotations are similar to those reported (+)-(1R)-isomers but possessing opposite sign. ${ }^{[84]}$

The C1-absolute stereochemistry of (-)-83 was established by converting it to the known compound, (2S)-2-hydroxy-2-methylcycloheptanone (91). ${ }^{[85]}$ Molecule 83 was reduced by LiAlH_{4} to give corresponding triol and mesylated the primary alcohol with $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$ to give $\mathbf{8 9}$. Molecule 89 was reduced with LiAlH_{4} and oxidized the secondary alcohol with IBX/DMSO to give 91. The highest reported $\%$ ee's of the dihydroxylation products of $\mathbf{5 9}, \mathbf{6 2}, \mathbf{6 3}$ (the ethyl ester analog), 66, $\mathbf{7 1}$ and $\mathbf{7 3}$ from Sharpless asymmetric dihydroxylation reactions are $98,{ }^{[86]}$ $81,{ }^{[87]} 99,{ }^{[82]}, 89,{ }^{[88]} 86{ }^{[79]}$ and $99,{ }^{[89]}$ respectively. Optical purities of all dihydroxylated molecules were measured using HPLC/chiral column. Hence, the $\mathrm{Pd} / \mathrm{Au}-\mathrm{CSPVP}$ provided higher or similar enantiomeric selectivities in the catalytic asymmetric dihydroxylation reactions.

Dr. Hua has also proposed the mechanism for the dihydroxylation of alkenes. ${ }^{[1]}$ Similar to that described in Scheme 8, $\operatorname{Pd}(0)$ was oxidized to η^{2}-peroxido $\operatorname{Pd}(I I)$ (peroxopalladium) species II and complexed with $\mathrm{C}=\mathrm{C}$ in alkenes. Through intermediate VIII, metallo-1,2-dioxolane $\mathbf{I X}^{[65]}$ was formed. Carbon-1 of IX undergoes a 1,2-alkyl shift from Pd to oxygen (path a) leading to intermediate \mathbf{X}, which hydrolyzes to give the syn-adducts. In some case, the 1,2 -alkyl shift takes place rapidly and only the syn-adducts were found. In other investigated alkenes, in addition to major path a, water attacks C 1 of intermediate IX from the backside, path b , providing anti-addition diols as the minor products. (Scheme 12)

Scheme 11. Confirmation of the Absolutely Configurations of the Dihydroxylation Products.

The asymmetric aerobic oxidation of alkenes by $\mathrm{Pd} / \mathrm{Au}-\mathrm{CSPVP}$ at ambient temperature or $50^{\circ} \mathrm{C}$ provided excellent chemical and optical yields of the syn-dihydroxylated products and in certain cases where higher temperature (such as $70^{\circ} \mathrm{C}$) is required, an addition of a weak base such as $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded anti-dihydroxylated molecules as the major products.

II
Path b: anti-addition, producing the minor product

Scheme 12. Proposed Mechanism and Stereo- and Regio-chemistry of the Enantioselective Oxidation of Alkenes.

2.3 Selective C-H Asymmetric Oxidation Reactions of Cycloalkanes.

2.1.1 Background and Significance

C-H oxidation has a long history and an ongoing presence in research at the forefront of chemistry and interrelated fields. In a single molecule, even medium-size organic molecules, so many different C-H bond can be oxidized. The active C-H oxidative sites normally have weaker

C-H bond dissociation energy and other effect, such as electronic effect, steric effect, conjugation and hyperconjugation, etc. ${ }^{[90]}$ Therefore, the active C-H oxidation sites are normally on aromatic ring, ${ }^{[91]}$ benzylic ${ }^{[92]}$ or allylic ${ }^{[93]}$ position. Regio- and enantioselective C-H oxidation of cycloalkanes is one of the most challenging transformations in organic synthesis. In general, directing groups such as hydroxyl group, ester or amide are needed for the regioselectivity. Although various of different catalyst such as iron complexes, ${ }^{[94-96]}$ gold reagents, ${ }^{[97]}$ and others ${ }^{[90, ~ 98-100]}$ in C-H oxidation have been reported, no research on the use of bimetallic nanoclusters and chiral supports in the catalytic enantio- and region-selective C - H oxidation appears. C-H oxidation is a highly atom-economic process, and regioselective catalytic asymmetric C-H oxidation would provide a powerful tool for organic synthesis. To explore the scope of the oxidation reactions, a more challenging catalytic asymmetric $\mathrm{C}-\mathrm{H}$ oxidation was investigated.

2.1.2 Results and Discussions

Since the Pd:Au(3:1)-CSPVP did not work well for the C-H oxidation, different bimetallic nanoclusters have been investigate for the $\mathrm{C}-\mathrm{H}$ oxidation including $\mathrm{Fe}: \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ and $\mathrm{Cu}: \mathrm{Au}(3: 1)$-CSPVP. Both $\mathrm{Fe}: \mathrm{Au}(3: 1)$-CSPVP and $\mathrm{Cu}: \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ have the catalytic activity on the C-H oxidation of isopropylcyclohexane to yield 3-isopropylcyclohexanone. However, $\mathrm{Fe}: \mathrm{Au}(3: 1)$-CSPVP nanoclusters are not stable at high temperature, forming the black precipitate which is magnetic. Therefore, instead of using Pd:Au (3:1)-CSPVP nanoclusters, $\mathrm{Cu}: \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ nanoclusters was used for the C-H oxidation of the cycloalkanes.

Under oxygen atmosphere (30 psi .), no C-H oxidation product was detected, making the stronger oxidizer (hydrogen peroxide) necessary for the oxidation reactions. After making the crude $\mathrm{Cu}: \mathrm{Au}(3: 1)$-CSPVP solution, the substrate was added into it followed with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. The
remaining NaBH_{4} was also quanched by $\mathrm{H}_{2} \mathrm{O}_{2}$ with the formation of hydrogen gas. Since the organic substrates are difficult to dissolve in water, acetonitrile was added slowly into the reaction system until the entire substrate dissolving after heating to $50{ }^{\circ} \mathrm{C}$. Too much acetonitrile ($>1 / 2$ by volumn by experience) may produce black precipitate after heating for several hours which means the nanoclusters decomposition.

Results of the catalytic asymmetric C-H oxidation reactions of various substituted achiral cycloalkanes using $1 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{C S P V P}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ at $50^{\circ} \mathrm{C}$ are summarized in Table 7. The products are chiral molecule obtained from the desymmetrization process of the achiral substrates. For example, oxidation of meso-trans-1,4-diisopropylcyclohexane (92) gave an 87% yield of $(2 R, 5 S)-93$. (Table 7, entry 1) There are four C-H bond positions which has potenssial to be oxidized. The four methyls on isopropyl group, two methine C-H's on isopropyl group, two methine C-H's on cyclohexanone ring and four methylene groups on the ring. It appears the four methine C-H's, which have weaker bond dissociation energies, ${ }^{[90]}$ and four sterically less hindered methyls were not oxidized. Moreover, the four methylene group was selectively oxidize two of them to give a chiral product with 81% ee. The $\mathrm{Cu}: \mathrm{Au}(3: 1)$-CSPVP1 performed both region- and enantioselectivity on the catalytic oxidation reaction of $\mathbf{9 2}$. The specific rotation and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of $(2 R, 5 S)-93$ were in agreement with those of the reported compound synthesized from (S)-perillaldehyde. ${ }^{[101]}$

Similarily, 1-isopropylcycloalkanols $\mathbf{9 4 - 9 6}$ and 1-isopropenylcyclohexanol (100) were conducted to be oxidized with the catalysis of $\mathrm{Cu}: \mathrm{Au}(3: 1)-\mathrm{CSPVP1}$ and yield corresponding ketone $(R)-97-(R)-\mathbf{9 9}$, and $(R)-101$, respectively (Table 7, entries $2-5$). The hydroxyl group is the directing group in the reaction and only γ position away from hydroxyl group were oxidized to give both region- and enantioselectivity. Notebly, the $-\mathrm{C}=\mathrm{CH}_{2}$ of $\mathbf{1 0 0}$, which is more active
than the alkane moiety, was not oxidized at $50^{\circ} \mathrm{C}$ under $\mathrm{H}_{2} \mathrm{O}_{2}$ with the $\mathrm{Cu}: \mathrm{Au}$ (3:1)-CSPVP nanoclusters,

The regiochemistry of $(R)-\mathbf{9 7}-(R)-\mathbf{9 9}$, and $(R)-101$ were analyzed by 2D COSY spectroscopy. In the COSY spectrum of $(R)-97$, the signal at $\delta 2.41-2.30 \mathrm{ppm}$ assigned for C2-hydrogens has no correlation with other protons, while the signals at ~ 2.25 and 2.05 ppm assigned for C 5 hydrogens show correlation with C4 hydrogens at 2.01 and 1.60 ppm . Similar correlations were found in the 2D COSY spectra of $(R)-\mathbf{9 8},(R)-\mathbf{9 9}$, and $(R)-\mathbf{1 0 1}$. Moreover, $(R)-\mathbf{9 8}$ and $(R)-\mathbf{9 9}$ were independently synthesized from $(S)-\mathbf{3 8}$ and $(S)-\mathbf{4 2}$, respectively, by silylation of the C3-hydroxyl group followed by addition reaction with isopropylmagnesium bromide, ${ }^{[102]}$ removal of the silicon protecting group, and oxidation with IBX-DMSO.(Scheme 13) Their NMR spectra and specific rotations were similar to those obtained from the $\mathrm{C}-\mathrm{H}$ oxidations. The products indicated the chelation of nanoclusters and the tert-hydroxy group directed asymmetric oxidation at γ-carbon away from C-OH group of cycloalkanes.

More directing group effect, such as alcohol, ester, and amide, were studied. Compounds 102 105 were designed and investigated due to the presence of acetoxy, hydroxyl and ethyl ester group. Oxidation of $\mathbf{1 0 2} \mathbf{- 1 0 5}$ with $1 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ at $50^{\circ} \mathrm{C}$ gave exclusively C3-oxo products 106 - 109 ($76-83 \%$ yields), respectively.(Table 7, entries $6-9$) Compare with the oxidation results from $94 \mathbf{- 9 6}$, the active $\mathrm{C}-\mathrm{H}$ bonds for the $\mathrm{Cu} / \mathrm{Au}$ (3:1)-CSPVP catalytic oxidation of $\mathbf{1 0 2} \mathbf{- 1 0 5}$ should be γ^{\prime} - carbon which are not in agreement with the real results. The oxidation took place at the γ-carbon away from C-OH group of cycloalkanes. It indicated the directing group in 102 - $\mathbf{1 0 5}$ were acetoxy group, which directed the oxidation on the γ-carbon away from $\mathrm{C}=\mathrm{O}$ of acetoxy group. With the appearance of $\mathrm{C}=\mathrm{O}$, the directing effect of hydroxyl group was override, indicated the directing effect of $\mathrm{C}=\mathrm{O}$ was stronger than hydroxyl group.
Cyclic alkanes $\xrightarrow[30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}, 7 \text { days }]{\text { 5 mol\% Cu/Au (3:1)-CSPVP }}$ Chiral oxidized cyclic alkanes
entry CSPVP
(To be continued)
entry CSPVP
(To be continued)
entry CSPVP
(a) $1 \% \mathrm{~mol}$ of $\mathrm{Cu}: A u-C S P V P$ nanoclusters was used.

Table 7. Results of Catalytic Asymmetric C-H Oxidation of Cycloalkanes.

After changing the acetoxy group to pivaloyl group, the oxidation took place at the γ '- carbon of the C1-hydroxyl group, which was in agreement of the hydroxyl directing effect. For example, oxidation of compounds 110-112 gave only 113-115, respectively, in $83-90 \%$ yields.(Table 7, entries 11-13) Because the bulky tert-butyl moiety blocks the chelation of $\mathrm{C}=\mathrm{O}$ in PvO with
nanoclusters, allowing the OH group to chelate and direct the oxidation. The regiochemistry of 113-115 were revealed by their 1H and 2D COSY NMR spectra. Notably, no desired oxidation product was isolate from the treatment of monopivaloyl (PvO) analog of ($1 S, 2 R$)-Ethyl 1,2-dihydroxycyclopentanecarboxylate ($\mathbf{8 1 A}$) even heating to $100{ }^{\circ} \mathrm{C}$ with seal tube. (Table 7, entries 10) It may due to the crowed environment on the five-membered ring which prevented the active $\mathrm{C}-\mathrm{H}$ bond oxidation.

This functional-group directing effect provides guidance for desymmetrized C - H oxidation. Hence, monofunctionalized cyclohexanes 116 - $\mathbf{1 2 0}$ were oxidized readily to give respective (S)-121 - (S)-125 in excellent chemical (72-94\%) and optical (92-94\% ee) yields (Table 7, entries 14-18). Notebly, in order to study the effect of borane in the catalyst solution, molecular weight cut off membrane was used to remove all the inorganic small molecules including borane. The remaining solution was used directly to conduct the $\mathrm{C}-\mathrm{H}$ oxidation of $\mathbf{1 2 0}$ to $\mathbf{1 2 5}$ and gave similar results as the crude catalyst solution with 87% yield and 92% ee. The acetoxy, acetamide, and ethyl ester functions apparently directed the oxidation at the γ-carbon away from $\mathrm{C}=\mathrm{O}$ group on the ring. From the above results, the aptitude of directive oxidation can be summarized as followed: $\mathrm{CH}_{3} \mathrm{CO}_{2} \sim \mathrm{CH}_{3} \mathrm{CONH}>\mathrm{OH}>\mathrm{CO}_{2} \mathrm{Et}$.

The NMR spectra of $\mathbf{1 2 1}, \mathbf{1 2 3}-\mathbf{1 2 5}$ were identical to those reported. ${ }^{[103-105]}$ The sign of specific rotation of $(S) \mathbf{- 1 2 1}$, is opposite to that reported $(R)-\mathbf{1 2 1} .{ }^{[103]}$ Compound $(S) \mathbf{- 1 2 3}$ was converted to 2-(S)-aminocyclohexanone (132) by the treatment with 85% hydrazine at $70^{\circ} \mathrm{C}$, (Scheme 13) and the sign of specific rotation of the resulting amine, $[\alpha]_{\mathrm{D}}{ }^{22}=-71.3\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$, is opposite to that of reported 2-(R)-aminocyclohexanone. ${ }^{[103]}$ The absolutely configuration of $\mathbf{1 2 2}$ and $\mathbf{1 2 4}$ were assumed based on the oxidation result of $\mathbf{1 1 8}$ to $(S) \mathbf{- 1 2 3}$. Absolute configuration of $(S)-\mathbf{1 2 5},[\alpha]_{\mathrm{D}}{ }^{22}=+2.62(\mathrm{c} 1.61, \mathrm{MeOH})$, was similar to that reported. ${ }^{[105]}$

Scheme 13. The Synthesized Molecules for Confirming the Absolutely Configurations of the Cycloalkanes Oxidation Products.

Trans-92 was made by Birch Reduction by $\mathrm{Li}-\mathrm{NH}_{3}$ from 1,4-diisopropylbenzene (133). Compounds 94 - 96 and 100 were made from the addition reactions of isopropylmagnesium bromide or isopropenylmagnesium bromide with cycloalkanones in the presence of 0.2 equiv of ZnCl_{2} in THF at $0^{\circ} \mathrm{C}$, respectively. ${ }^{[102]}$ Alcohols $\mathbf{8 1}-\mathbf{8 4}$ were mono-acetylated with acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ and pyridine to give $89-95 \%$ yields of $\mathbf{1 0 2 - 1 0 5}$ and mono-pivaloylated with pivaloyl chloride and $\mathrm{Et}_{3} \mathrm{~N}$ to give $85-88 \%$ yields of $\mathbf{1 1 0}$ - 112. Compounds $\mathbf{1 1 6}$ - $\mathbf{1 2 0}$ were simply esterificated or acetylated from cyclic alcohol or amine, respectively.(Scheme 14) Dr. Man Zhang and Mr. Kyle Apley helped to prepare the substrates 94-96 and 116-120.

133
134
trans-92

Scheme 14. The Preparation of the Substrates for Cycloalkane C-H Oxidation Reactions

Dr. Hua has also proposed the mechanism for the $\mathrm{Cu} / \mathrm{Au}-\mathrm{CSPVP}$ catalytic $\mathrm{C}-\mathrm{H}$ oxidation reactions based on the previously suggested mechanism of copper complexes bearing trispyrazolylborate ligands. ${ }^{[1,106]}$ (Scheme 15) $\mathrm{Cu}^{0} / \mathrm{Au}$ XIV first reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ to give copper(II) oxo complex XV, which activated the C-H bond by pulling a hydrogen atom from the substrate to produce hydroxyl copper(I) radical and cycloalkyl radical complex XVI. Cycloalkyl radical and hydroxyl radical then form a C-O bond to yield alcohol and regenerates XIV. The alcohols were further oxidized under the reaction conditions to give ketones. $\mathrm{Cu}(\mathrm{II})$ complexed with the directing group and O in $\mathrm{Cu}(\mathrm{II})=\mathrm{O}$ formed hydrogen bonding with the H on
the active site, constructed a six (hydroxyl group as directing group) or seven-membered ring (carbonyl as directing group) transition state.

Scheme 15. Proposed Mechanism of the Enantioselective Catalytic Oxidation of Alkanes.

Various substituted cycloalkanes were oxidized by $\mathrm{Cu} / \mathrm{Au}-\mathrm{CSPVP}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ to furnish chiral cycloalkanones. With the presence of various directing group, the regio-selective C-H oxidation was achieved with high chemical yield. Moreover, the desymmetrization of 1,4-disubstituted cyclohexane or monosubstituted cycloalkanes expanded the scope of the asymmetric oxidation catalyzed by CSPVP stabilized bimetallic nanoclusters and gave application prospects for the oxidation of complex compounds.

2.4 Asymmetric Oxidative Ring-Closing Reaction of Dienes.

2.1.1 Background and Significance

After the discovery of C-H oxidation on the cyclic compounds, acyclic substrates have also been investigated. Unfortunately, the acyclic compounds, such as heptan-4-yl acetate or N-(heptan-4-yl)acetamide, cannot be oxidized with the similar condition. However, based on the directing effect of OH group, 5-methylnona-1,8-dien-5-ol was conduct for the oxidation reaction and the desymmetrized ring-closing product γ-Lactone was isolated without other $\mathrm{C}-\mathrm{H}$ oxidation products.(discovered by Dr. Man Zhang in Hua's laboratory) γ-Lactones or lactams are part of the important core structural in many research fields such as pharmaceutical chemistry, natural products, perfumes and food additives. ${ }^{[107, ~ 108] ~ D i f f e r e n t ~ k i n d s ~ o f ~ c a t a l y s t s ~ w i t h ~}$ different catalytic mechanisms have been reported for the formation of chiral lactone or lactam, such as gold, ${ }^{[109]}$ rhodium, ${ }^{[110]}$ titanium, ${ }^{[111]}$ palladium, ${ }^{[112]}$ and chiral phosphoric acid ${ }^{[113]}$. Various copper catalyzed oxidative ring-closing reaction has been reported, such as arylation, ${ }^{[114-116]}$ lactone formation ${ }^{[107]}$ or lactam formation ${ }^{[117]}$. However, the use of bimetallic NCs and chiral supports in the asymmetric oxidative ring-closing reaction for making lactone or lactam has not been reported. The development of the new methodology gives an efficient and fast route for the synthesis and functionalization of lactone or lactam with a stereogenic center on the γ position.

2.1.2 Results and Discussions

Base on Dr. Man Zhang's discovery of the γ-Lactone formation, the reaction condition was optimized for getting desirable results with better chemical and optical yield. For example, compound 197 was added into $4 \mathrm{~mol} \%$ of $\mathrm{Cu} / \mathrm{Au}(3: 1)-26$ in water, (crude nanocluster solution),
followed with adding $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, heating to $50{ }^{\circ} \mathrm{C}$ and adding mimimum amount of $\mathrm{CH}_{3} \mathrm{CN}$ to dissolve the substrate. Notebly, because of the appearance of ester group in the substrates, 40 equiv. of NaBH_{4} (compare with 1 equiv. of $\mathrm{HAuCl}_{4}, 100$ equiv. of substrates) will be a significant amount which will hydrolysis the ester group. Therefore, the amount of NaBH_{4} was cutted to 10 equiv. (compare with 1 equiv. of $\mathrm{HAuCl}_{4}, 100$ equiv. of substrates) for the oxidative ring-closing reaction.

The results for the oxidative ring-closing reaction were summarized in Table 8. For example, treatment of $\mathbf{1 9 5}$ with $4 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}$ (3:1)-26 and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ at $50^{\circ} \mathrm{C}$ gave (S)-200 in $\mathbf{7 1 \%}$ yield and $\mathbf{9 6 \%}$ ee. (Table 8, entry 1) Instead of using CSPVP26, CSPVP25 and CSPVP1 were also used to investigate the enantioselectivity of 5-monosubstituted polymers and 3,4-disubstituted polymers. With CSPVP $\mathbf{2 5}$ or CSPVP1, 95% or 90% ee product were obtained respectively, indicating CSPVP26 gave the highest enantioselectivity among the three polymers. Other analogs with phenyl group or ethyl ester group such as $\mathbf{1 9 6} \mathbf{- 1 9 9}$ were conducted with similar condition to yield similarly catalytic asymmetric oxidative ring closing reaction product 201-204, respectively. (Table 8, entries $2-5$) With this method, highly stained four-membered ring lactone 201 and 203 were produced although the yield is lower because of the formation of polymers.

Not only γ-lactone, γ-lactam 208-210 were also produced with similar reaction condition from the amino ester analog 205 - 207, respectively, in good chemical (64-93\%) and excellent optical (92-95\% ee) yields. (Table 8, entries 6-8)

The absolute configuration of (S) $\mathbf{- 2 0 0}$ was determined by converting it to (-)-(S)-5-phenyl-5-propyl-dihydrofuran-2-one (213) with $[\alpha]_{\mathrm{D}}{ }^{22}=-42.1(\mathrm{c} 0.02, \mathrm{MeOH})$, and the optical rotation agrees to that reported. ${ }^{[118]}$ Molecule (S)-200 was ozonolysized with O_{3} in methylene
chloride and reduced with NaBH_{4} to give corresponding alcohol 211. Then the alcohol 211 was mesylated by MsCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and reduced to remove OMs with NaBH_{4} and gave known compound (S)-213. ${ }^{[119]}$ The absolute configuration of (S)-208 was determined by conversion into a previously reported pyrrolizidinone (218) with similar reported optical rotation. ${ }^{[120]}$ Molecule (S)-208 was ozonolysized with O_{3} in methylene chloride and educed with NaBH_{4} to give corresponding alcohol 214. The alcohol 214 was mesylated by MsCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to give a good leaving group OMs in compound 215. After the treatment of 215 with $\mathrm{NaH}, \mathrm{N}^{-}$in the lactam ring attacked the $\mathrm{CH}_{2} \mathrm{OMs}$ and gave cyclized product 216. Molecule 216 was treated with LDA to form enolate and hydroxylated by $\mathrm{MoOPH}^{[121]}$ (57% yield along with 8% of the $\alpha-\mathrm{OH}$ isomer). Finally, ethyl ester (217) was tranfered to methyl ester 218. (Scheme 16)

Compounds 195-199 were maily prepared by Kyle Apley and they were made by the Grignard Reaction from isopropyl benzoate or diethyl oxalate with corresponding alkenyl magnesium bromide, respectively. Compounds 205 and 207 were prepared from glycine ethyl ester (222) by the sequence: (i) treatment with ethyl formate to give 223, ${ }^{[122]}$ (ii) isocyano product (224) formation with $\mathrm{POCl}_{3}-\mathrm{Et}_{3} \mathrm{~N},{ }^{[122]}$ (iii) alkylation with NaH and corresponding alkenyl bromide, (iv) hydrolysis of isocyano group to give desired products. Compound 206 were synthesized by treatment of ethyl 2-nitroacetate (227) with 1-propenyl acetate followed the reduction with $\mathrm{Zn} / \mathrm{AcOH}$. (Scheme 17)

entry substrate
(To be continued)
entry substrate

Table 8. Results of Catalytic Oxidative Ring-Closing Reactions.

Scheme 16. Syntheses of Known Molecules for Confirming the Absolutely Configurations of the Oxidative Ring-Closing Products.

A mechanism for the formation of lactones and lactams is proposed (Scheme 19), Similarily, $\mathrm{Cu}^{0} / \mathrm{Au}$ XIV first reacts with $\mathrm{H}_{2} \mathrm{O}_{2}$ to give copper(II) oxo complex XV, which subtracts a hydrogen atom from OH or NH_{2} in the substrates, gives hydroxyl copper(I) radical and a oxygen or nitrogen radical intermediate XIX. The two radicals then form a $\mathrm{Cu}-\mathrm{O}(\mathrm{N})$ bond and the $\mathrm{C}=\mathrm{C}$ in substrates is oxidized by hydroxyl copper to give corresponding alcohol XXI and $\mathrm{Cu}^{0} / \mathrm{Au}$ XIV. After removing a molecule of formaldehyde from XXI, intermediate XXII is attacked by water and give XXIII which is further oxidized to corresponding lactone or lactam.

Scheme 17. Preparations of the Substrates for Oxidative Ring-Closing Reactions

2.5 Selective Late-stage C-H Oxidation of Complex Molecules.

2.1.1 Background and Significance

Among the frontier challenges in chemistry in the twenty-first century are the interconnected goals of increasing synthetic efficiency and diversity in the construction of complex molecules. The selective and efficient modification of complex molecules, such as nature products and bioactive compounds, with disparate functional groups is a long-standing challenge that has been solved gradually by using catalysts to perform relatively pure transformations. The straightforward step(s), which is so-called "late-stage" functionalization, provide various analogs with similar scaffold without doing intricate total synthesis. Due to the size of the molecule,
more active sites can be converted in single molecule and selective transformation is important.

Lactone or Lactam

Scheme 18. Proposed Mechanism of the Enantioselective Ring Closing Reaction for Dienes.

However, most of the reported C-H oxidation ${ }^{[123]}$ and halogenation ${ }^{[124]}$ often take place at the allylic C-H, or benzylic C-H bond due to a lower bond dissociation energy comparing with that of unactivated CH_{2} and CH_{3} bonds. The "late-stage" aliphatic $\mathrm{C}-\mathrm{H}$ alkylation, ${ }^{[125, ~ 126] ~} \mathrm{C}-\mathrm{H}$ azidation, ${ }^{[127]}$ and C-H oxidation ${ }^{[128-130]}$ have been investigated in recent years and newly installed functional groups can be further converted into various functionalities, building up a molecule library for testing the bioactivity or drug mechanism study.

2.1.2 Results and Discussions

With the successful C-H oxidations of small size cycloalkanes, medium to large size molecule or nature products were also oxidized to their corresponding analogs. Due to the oxidation difficulty and valuable products, more catalyst ($5 \mathrm{~mol} \%-30 \mathrm{~mol} \%$) were used and several substrates gave positive results. For example, oxymatrine (229) is one of quinolizidine alkaloid compounds extracted from a Chinese herb called Sophora Flavescens and can be used for the protection of cardiovascular system. ${ }^{[131]}$ With the catalysis of $30 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ in $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$, single oxidative product $\mathbf{2 3 0}$ was isolate with 60% yield and recover 33% of 229. (Table 9, Entry 1) $\mathrm{Cu} / \mathrm{Au}-26$ catalyzed reaction has highly selectivity with the directing effect by the carbonyl on $\mathrm{C}-15, \beta$-carbon away from $\mathrm{C}=\mathrm{O}$. The structure was determined by comparing the ${ }^{13} \mathrm{C}$ NMR with reported compound. ${ }^{[132]}$ No C-H oxidation of oxymetrine has been reported previously except microorganism catalyzed oxidation of $\mathbf{2 3 0}$, giving 10 products with hydroxyl or oxo group on C-12, C-13, C-14. ${ }^{[132]}$ COSY study has been taken. Base on the assignment of oxymatrine which was reported ${ }^{[133]}$ and the COSY of the product, the ${ }^{1} \mathrm{H}$ NMR assignment was shown below. (Figure 14)

δ	intergration	assignment
$5.15-5.09$	1	11 CH
4.41	1	17 CH
4.20	1	17 CH
$3.50-3.25$	2	$14 \mathrm{CH}_{2}$
$3.22-3.02$	5	$2 \mathrm{CH}_{2}, 6 \mathrm{CH}, 10 \mathrm{CH}_{2}$
$2.82-2.60$	2	$3 \mathrm{CH}, 9 \mathrm{CH}$
$2.48-2.37$	1	12 CH
2.32	1	12 CH
$2.10-2.04$	1	8 CH
$1.89-1.48$	7	$3 \mathrm{CH}, 4 \mathrm{CH}, 5 \mathrm{CH}$,
		$7 \mathrm{CH}, 8 \mathrm{CH}, 9 \mathrm{CH}$

Figure 14 COSY Study and ${ }^{1} \mathrm{H}$ NMR Assignment for 13-Oxo-oxymatrine N-oxide (230)

A medium-sized natural product, ambroxide (231), also underwent regioselective oxidation with $5 \mathrm{~mol} \%$ of $\mathrm{Cu} / \mathrm{Au}(3: 1)-26$ to give sclareolide (232) with 74% yield and (2S)-2-hydroxysclareolide (233) with 6\% yield. (Table 9, Entry 2) The oxygen in 231 activated $\alpha-\mathrm{C}$ for $\mathrm{C}-\mathrm{H}$ oxidation and gave lactone, as reported. ${ }^{[134,135]}$ However, unlike reported iron complex, ${ }^{[134]}$ sclareolide (232) was further oxidized to (2S)-2-hydroxysclareolide (233) in 38% yield and 3% yield of 1-oxosclareolide (234) along with 46% recovery of 232, in a separate experiment. (Table 9, Entry 3) Notably, the C2-equatorial hydroxyl function of $\mathbf{2 3 3}$ does not undergo further oxidation, likely due to steric hindrance ($\mathrm{C} 2-\mathrm{axial}-\mathrm{H}$ is shielded by $\mathrm{C} 15-\beta$ - and C16-methyls). ${ }^{[136]} \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of 233 and 234 are identical to those reported. ${ }^{[96,136]}$
entry complex molecule
(To be continued)

Table 9. Results of Late-stage C-H Oxidation for Complex Molecules.

Steroid type of compound was also selectively oxidized. For example, estrone is an estrogenic hormone and has been discontinued for medical use with the superseding by its derivatives. ${ }^{[137]}$ With $5 \mathrm{~mol} \%$ of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}_{2}, 58 \%$ yield of 12β-hydroxyl estrone derivative (236) was isolated from pivaloyl ester of estrone (235) with 15% recovery yield. (Table 9 , Entry 4) The activated $\mathrm{C}-12$ was directed by the carbonyl group which is β-carbon away. Copper catalyzed C-H oxidation of estrone derivatives with 12β-hydroxyl product has been reported and the conversion from ketone to imine as a directing group for copper is necessary. ${ }^{[138]}$ The structure of $\mathbf{2 3 6}$ was determined by comparison of the reported 12β-hydroxyl estrone derivative $\mathbf{2 4 1}{ }^{[138]}$ after the convertion of pivaloyl ester to methoxy group by hydrolysis with $\mathrm{LiOH} / \mathrm{MeOH}$ and methylation with $\mathrm{CH}_{3} \mathrm{I}$. (Scheme 20)

Amantadine has been approved for use as an anti-viral and an anti-parkinsonian medical by FDA. N-Acetylamantadine (237) was oxidized at the δ-carbon (away from $\mathrm{C}=\mathrm{O}$) to give 238 in $\mathbf{7 4 \%}$ yield with the catalysis of $5 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}(3: 1)-26$. (Table 9, Entry 5) The oxidation took place at C3 (δ-carbon) of 237, which may due to ring strain of adamantane structure. ${ }^{[139]}$ (Table $\mathbf{9}$, Entry 5) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{2 3 8}$ are identical to those reported. ${ }^{[140]}$

To my surprise, caryophyllene oxide (239) was also oxidized, but not similar C-H oxidation. The terminal $\mathrm{C}=\mathrm{C}$ was oxidized to $\mathrm{C}=\mathrm{O}$ and gave kobusone (240) with 67% yield by the catalysis of $5 \mathrm{~mol} \% \mathrm{Cu} / \mathrm{Au}(3: 1)-26$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 240 are identical to those reported. ${ }^{[141]}$ The synthesis of kobusone has been reported from caryophyllene oxide in 2 steps (47% overall yield), as reported. ${ }^{[141]}$

Scheme 19. The Synthetic Route for the Confirmation of the C-H Oxidation Product.

In summary, the oxidation produced ketone function (in some cases, the hydroxyl group), which can be converted into amines, amides, or oxime for possible enhancement of bioactivity or for biological mechanistic study. Importantly, there are few methods in the literature can produce the proposed oxidized products in merely one step. Even though the oxidations of complex molecules with the catalysis of $\mathrm{Cu} / \mathrm{Au}-\mathrm{CSPVP}$ are not predictable for now, but it still gives a chance for the late-stage modification and provides various value products.

2.6 Conclusion

In this chapter, several of oxidation reactions were discussed. Cycloalkanediols were asymmetric oxidized by 1 atm of oxygen gas to yield corresponding hydroxyl ketone under the catalysis of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ nanoclusters. Alkenes were oxidized by $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ nanoclusters under 2 atmospheric of oxygen in water to give the syn-dihydroxylated products in high chemical and excellent optical yields. Various cycloalkanes underwent regio- and enantio-selective $\mathrm{C}-\mathrm{H}$ oxidation with $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathrm{CSPVP}$ and 30% hydrogen peroxide to produce the corresponding chiral oxo-molecules in very good to excellent chemical and optical yields. An enantioselective desymmetrization of α, α-dialkenyl-alkanols and α, α-dialkenyl amino acid ethyl esters to give chiral disubstituted lactones and lactams, respectively. A number of medium-sized natural products and drugs were also oxidized regioselectively to give the corresponding mono-oxygenated products. A broad-spectrum predictive C - H oxidation of complex molecules is possible.

2.7 Synthetic Experimental Procedures

2.6.1 General

${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR spectra (100 MHz) were measured from a solution in CDCl_{3} unless otherwise mentioned. The chemical shift data for each signal on ${ }^{1} \mathrm{H}$ NMR are given in units of δ relative to TMS $(\delta=0 \mathrm{ppm})$ or $\mathrm{CHCl}_{3}(\delta=7.26 \mathrm{ppm})$. For ${ }^{13} \mathrm{C}$ NMR spectra, the chemical shifts are recorded relative to $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$. Low-resolution mass spectra were taken from an API 2000-triple quadrupole ESI-MS/MS mass spectrometer. High-resolution mass spectra were obtained using a LCT Premier time of flight mass spectrometer from Waters. IR spectra were measured directly in solid form from Agilent Cary

630 FTIR. Optical Rotation were measured by Bodenseewerk Perkin-Elmer \& Co Gmbh Ueberlingen. Optical purities of various oxidized products were determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries, Exton, PA.

2.6.2 Procedures and Analysis Results for Oxidation of trans-Cycloalkanediols.

(R, R)- trans-1,3-Cyclohexanediol (37) \& (S)-3-hydroxycyclohexanone (38) (BH7-056)

$(R, R)-37$

(S)-38

To a solution of 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1})$ in $\mathrm{H}_{2} \mathrm{O}$, were added $0.16 \mathrm{~g}(1.39 \mathrm{mmol})$ of racemic trans $-1,3$-cyclohexanediol (37) and $68 \mathrm{mg}(0.42$ $\mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$ under 1 atmospheric pressure of O_{2} (a balloon was used). The solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 7 days and the reaction progress was monitored by ${ }^{1} \mathrm{H}$ NMR until about a half of the diol was consumed. The reaction solution was cooled to $25^{\circ} \mathrm{C}$, diluted with water, and extracted three times with dichloromethane (20 mL each). The combined extracts were dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and diethyl ether (3:7) as an eluent to give 78 mg [97.5% yield based on reacted (S, S)-37] of (S)-3-hydroxycyclohexanone (38) in 99% ee and 81 mg (50% recovery based on racemic diol) of (R, R) - $\mathbf{3 7}$ in 92% ee. (S)-38: $[\alpha]_{\mathrm{D}}{ }^{22}=+45.2\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right)$; Lit. ${ }^{[58]}+37.3$ (c $0.80, \mathrm{CHCl}_{3} ; 82 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $\delta 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 3.30(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.56(\mathrm{dd}, \mathrm{J}=$ 14, 4.4 Hz, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), $2.33\left(\mathrm{dd}, \mathrm{J}=14,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.24(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 2.05-1.87(m, 2 H), 1.75-1.56 (m, 2 H) ${ }^{13} \mathrm{C}$ NMR $\delta 210.9,69.8,50.6,41.1,32.9$, 20.9. MS (ESI, MeOH): $m / z=137.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. The \% ee's of the hydroxyketones and diols were determined by subjecting the benzoate derivatives to HPLC using chiral column 92
[Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}] . \quad(R, R)-37$: NMR spectra were identical to the authentic trans-1,3-cyclohexanediol. $[\alpha]_{\mathrm{D}}{ }^{22}=+3.18\left(\right.$ c $2.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); Lit. ${ }^{[63]}-3.5$ (c 2.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The \% ee was determined from the HPLC/chiral column of the benzoate derivative (R, R)-37A \& (S)-38A.
(R,R)-1,3-Di(phenylcarbonyloxy)cyclohexane (37A). (BH8-015)

$(R, R)-37 \mathrm{~A}$
A solution of $10 \mathrm{mg}(86 \mu \mathrm{~mol})$ of $(R, R)-\mathbf{3 7}, 24 \mathrm{mg}(0.17 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 0.3 mL of dichloromethane was stirred at $25^{\circ} \mathrm{C}$ for 8 h under argon. The solution was diluted with 1 mL of water, concentrated to dryness, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 17 mg (61% yield) of $(R, R)-37 \mathrm{~A}$ in 92% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8$ $\mathrm{Hz}, 4 \mathrm{H}), 5.47-5.45(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.0$ (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C), 70.8 (2 C), 36.1, 30.6 (2 C), 19.7. MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=347.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane: $i-\operatorname{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=15.7 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=18.6 \mathrm{~min}(S, S$ enantiomer, minor). The racemic trans-dibenzoate 37A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-3-Oxocyclohexyl benzoate (38A). (BH7-073)

To a solution of $50 \mathrm{mg}(0.44 \mathrm{mmol})$ of $(S)-38$ in 1.5 mL of dichloromethane under argon at $0^{\circ} \mathrm{C}$, was added 0.1 mL of pyridine and $0.12 \mathrm{~g}(0.85 \mathrm{mmol})$ of benzoyl chloride. The reaction solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h , diluted with water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and hexane (1:2) as an eluent to give 88 mg (92% yield) of (S)-38A in 99% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56(\mathrm{t}, \mathrm{J}=$ 7.6 Hz 1 H$), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.75(\mathrm{dd}, \mathrm{J}=14.8,4 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.66(\mathrm{dd}, \mathrm{J}=14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.2 .0(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 208.4,165.7,133.4,129.8,128.7,128.6,72.4,46.8,41.3,29.6,21.1 . \operatorname{MS}(E S I$, $\mathrm{MeOH}): m / z=241.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane- $\mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=$ $21 \min \left(R\right.$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-3-Hydroxycyclopentanone (41) \& (R,R)-cyclopentanediol (39) (BH7-067)

From $15 \mathrm{mg}(0.147 \mathrm{mmol})$ of (\pm)-cyclopentanediol (39), 0.48 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(0.22 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.07 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.008 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}, 6.8 \mathrm{mg}(96 \%$ yield based on reacted diols $\mathbf{3 9} ; 99 \%$ ee) of $(S)-41$ and $8.0 \mathrm{mg}\left(53 \%\right.$ recovery of $(R, R)-\mathbf{3 9}$ in 91% ee. Compound $(S)-41:[\alpha]_{\mathrm{D}}{ }^{22}=$ -33.8 (c 0.6, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Lit. ${ }^{[59]}$-18.3 (c $0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; for S-configuration, 83% ee). ${ }^{1} \mathrm{H}$ NMR δ 4.63-4.60 (m, $1 \mathrm{H}, \mathrm{CHO}$), 2.52-2.36 (m, 2 H$), 2.28-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.85-$ 1.87 (bs, $1 \mathrm{H}, \mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\delta 218.0,69.9,47.9,35.8,32.3$. MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=123.0$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad(R, R)-39:$ The NMR spectra were identical to those of the authentic 1,3-trans-cyclopentanediol. $\quad[\alpha]_{D}^{22}=+17.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The \% ee was determined from the HPLC/chiral column of the benzoate derivative (R, R)-39A \& (S)-41A.

($\boldsymbol{R}, \boldsymbol{R}$)-1,3-Diphenylcarbonyloxycyclopentane (39A). (BH8-021)

From $15 \mathrm{mg}(0.147 \mathrm{mmol})$ of $(\mathrm{R}, \mathrm{R})-19$ and $82 \mathrm{mg}(0.59 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 0.5 mL of dichloromethane, 26 mg (57% yield) of $(R, R)-\mathbf{3 9 A}$ in 91% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 2 \mathrm{H})$, 2.16-2.13 (m, 2 H), 1.94-1.86 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.6$ (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C), 71.5 (2 C), 39.7, 24.5 (2 C). MS (ESI, MeOH): $m / z=332.8\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$,. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n-hexane: $i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}(R, R$ enantiomer, major $)$, $\mathrm{t}_{\mathrm{R}}=19.6 \mathrm{~min}(S, S$ enantiomer, minor). The racemic trans-dibenzoate 39A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-3-Oxocyclopentyl benzoate (41A). (BH7-075)

From $6.8 \mathrm{mg}(68 \mu \mathrm{~mol})$ of $(S)-41$ and $19 \mathrm{mg}(0.14 \mathrm{mmol})$ of benzoyl chloride and 0.1 mL of pyridine in 1 mL of dichloromethane, 13 mg (94% yield) of $(S)-\mathbf{4 1 A}$ in 99% ee. ${ }^{1} \mathrm{H}$ NMR δ 8.09-8.07 (m, 2 H), 7.59-7.46 (m, 1 H), 7.45-7.42 (m, 2H), 5.49-5.44 (m, 1 H), 2.73-2.68 (m, $1 \mathrm{H}), 2.55-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 215.8,165.7,133.4,129.8$, 128.7, 128.6, 72.5, 44.4, 35.6, 29.2. MS (ESI, MeOH): $m / z=227.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column,
n-hexane/i-PrOH $=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.5$ \min (S enantiomer, major).

(R, R)-Cycloheptanediol (40) \& (S)-3-Hydroxycycloheptanone (42). (BH7-104)

From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of (\pm)-cycloheptanediol (40), 0.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1}(0.35 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.12 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}, 13.4 \mathrm{mg}$ (92% yield based on reacted diols $\mathbf{4 0} ; 99 \%$ ee) of (S)-42 and $15.8 \mathrm{mg}\left(53 \%\right.$ recovery) of $(R, R)-\mathbf{4 0}$. Compound $(S)-\mathbf{4 2}:[\alpha]_{\mathrm{D}}{ }^{22}=+16.4$ (c 0.8 , $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}^{[60]} \delta 4.13-4.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 2 \mathrm{H})$,
$1.94-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 212.4,67.7,51.8,44.5,39.0,24.5$, 23.9. MS (ESI, MeOH): $m / z=151.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) .(R, R)-40:$ The NMR spectra were identical to those of authentic 1,3-trans-cycloheptanediol. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+16.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The \% ee was determined from the HPLC/chiral column of the benzoate derivative $(R, R)-\mathbf{4 0 A} \boldsymbol{\&}(S)-\mathbf{4 2 A}$.
(R,R)-1,3-(Diphenylcarbonyloxy)cycloheptane (40A). (BH8-020)

From $15 \mathrm{mg}(0.12 \mathrm{mmol})$ of $(R, R)-40$ and $64 \mathrm{mg}(0.46 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 0.5 mL of dichloromethane, 22 mg (56% yield) of $(R, R)-40 \mathrm{~A}$ in 85% ee. ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 5.49-5.44(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.5$ (2 C), 133.1 (2 C), 130.8 (2 C), 129.8 (4 C), 128.6 (4 C), 70.9 (2 C), 36.3, 29.1 (2 C), 24.1 (2 C). MS (ESI, $\mathrm{MeOH}): m / z=361.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 249.1,217.3,123.1,102.2$. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane: $i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.1 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=18.8 \mathrm{~min}(S, S$ enantiomer, minor).The racemic trans-dibenzoate 40A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-3-Oxocycloheptyl benzoate (42A). (BH7-107)

From $10 \mathrm{mg}(0.078 \mathrm{mmol})$ of $(S)-\mathbf{4 2}, 22 \mathrm{mg}(0.16 \mathrm{mmol})$ of benzoyl chloride and 0.1 mL of pyridine in 0.5 mL of dichloromethane, 18 mg (98% yield) of (S)-42A (99% ee) was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.54-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, \mathrm{J}=12,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, \mathrm{J}=12,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.25(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 208.2, 165.7, 133.7, 129.8 (2 C), 129.0, 128.6 (2 C), 72.4, 46.8, 40.8, 29.1, 21.8, 21.0. MS (ESI, MeOH): $m / z=255.1([M+$ $\mathrm{Na}]^{+}$). The \% ee of this compound was determined by HPLC using chiral column, Chiralpak
$\mathrm{AD}(-\mathrm{H})$ column, n -hexane/i- $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=23 \min (S$ enantiomer, major).

(R,R)- 1,2-Cyclopentanediol (46) \& (S)-2-hydroxycyclopentanone (49) (BH7-102)

$(R, R)-46$

(S) -49

From $30 \mathrm{mg}(0.29 \mathrm{mmol})$ of $(\pm) \mathbf{- 4 6}, 1.0 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(0.438 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.146 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.017 \mu \mathrm{~mol}$ of $\mathbf{1})$ in $\mathrm{H}_{2} \mathrm{O}, 14 \mathrm{mg}(94 \%$ yield; based on reacted $(S, S)-\mathbf{4 6})$ of $(S)-49$ (99% ee) and $15 \mathrm{mg}(50 \%$ recovery) of $(R, R)-46$. The \% ee of $(S)-49$ was determined by HPLC/chiral of
benzoate derivative (S)-49A. Compound $(S)-49:[\alpha]_{\mathrm{D}}{ }^{22}=+40.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$; Lit. ${ }^{[61]}-37.4$ (c $1.0, \mathrm{CHCl}_{3}$) for (R)-configuration ($>99 \%$ ee). ${ }^{1} \mathrm{H} \mathrm{NMR} \delta 4.10(\mathrm{dd}, \mathrm{J}=12,5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 3.65-3.55 (bs, $1 \mathrm{H}, \mathrm{OH}), 2.50-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 211.9,75.1,40.5,37.6,26.3$. MS (ESI, MeOH): $m / z=123.0\left(\mathrm{M}+\mathrm{Na}^{+}\right) . \quad(R, R)-46:$ The NMR spectra were identical to those of the authentic 1,2-trans-cyclopentanediol. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-19.9$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right)$; Lit. ${ }^{[62]}-21.3\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right)$ for (R, R)-configuration ($>99 \%$ ee).
($\boldsymbol{R}, \boldsymbol{R}$)-1,2-(Diphenylcarbonyloxy)cyclopentane (46A). (reaction was taken by Dr. Man Zhang. HPLC was taken by me)

(R, R)-46A
From $14 \mathrm{mg}(0.14 \mathrm{mmol})$ of $(R, R)-\mathbf{4 6}, 58 \mathrm{mg}(0.41 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 2 mL of dichloromethane, gave 29 mg (67% yield) of $(R, R)-\mathbf{4 6 A} .{ }^{1} \mathrm{H}$ NMR δ 8.04-8.00 (m, 4 H), 7.58-7.53 (m, 2 H), 7.46-7.38 (m, 4 H), 5.50 (t, J = $4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CHO}$), 2.362.29 (m, 2 H), 2.00-1.80 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.2,133.3,130.3,129.9$ (4 C), 128.6 (4 C), 79.7, 30.8, 21.9. MS (ESI, MeOH): $m / z=333.0\left(\mathrm{M}^{2} \mathrm{Na}^{+}\right), 265.3,189.1,105.2$. The \% ee (88%) of $(R, R)-46 A$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i$ - $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=17.3 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=$ 20.0 min (S, S enantiomer, minor). The racemic trans-dibenzoate 46A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-2-Oxocyclopentyl benzoate (49A). (BH7-113)

(S)-49A

From $10 \mathrm{mg}(0.1 \mathrm{mmol})$ of $(S)-49$ and $28 \mathrm{mg}(0.2 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 0.5 mL of dichloromethane, 16.8 mg (82% yield) of $(S)-49 \mathrm{~A}$ in 99% ee was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 8.08(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2$ H), $5.46(\mathrm{dd}, \mathrm{J}=9,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1), 1.95-$ 1.85 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 204.6,169.2,133.4,130.1$ (2 C), 129.9, 128.6 (2 C), 77.2, 39.9, 31.2, 21.4. $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=227.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane/i- $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23.3 \mathrm{~min}(S$ enantiomer, major $)$.

(R,R)-1,2-Cyclohexanediol (47) \& (S)-2-hydroxycyclohexanone (50) (BH7-061)

From $161 \mathrm{mg}(1.39 \mathrm{mmol})$ of $(\pm)-\mathbf{4 7}, 4.8 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of Au-0.08 $\mu \mathrm{mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}, 72 \mathrm{mg}(89 \%$ yield; based on reacted $(S, S)-\mathbf{4 7})$ of $(S)-50$ (99% ee) and $80 \mathrm{mg}\left(50 \%\right.$ recovery) of $(R, R)-47$. Compound $(S)-50:[\alpha]_{\mathrm{D}}{ }^{22}=-20.7\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right)$; Lit. ${ }^{[67]}+20.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for $(R)-50\left(>99.0 \%\right.$ ee).${ }^{1} \mathrm{H}$ NMR $\delta 4.11$ (dd, J = $12,7 \mathrm{~Hz}, 1 \mathrm{H}$, CHO), 3.70-3.55 (bs, $1 \mathrm{H}, \mathrm{OH}$), 2.60-2.30 (m, 3 H), 2.15-1.45 (m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.7$, 75.6, 39.7, 36.9, 27.8, 23.6. MS (ESI, MeOH): $m / z=115.1\left(\mathrm{M}+\mathrm{H}^{+}\right) . \quad(R, R)-47:[\alpha]_{\mathrm{D}}{ }^{22}=-34.7(\mathrm{c} 1.0$, $\left.\mathrm{H}_{2} \mathrm{O}\right)$; Lit. ${ }^{[61]}+37.1\left(\mathrm{c} 1.0, \mathrm{H}_{2} \mathrm{O}\right)$ for $(S, S)-29(>99.0 \%$ ee $)$.
(S)-2-Oxocyclohexyl benzoate (50A). (BH7-078)

(S)-50A

From $50 \mathrm{mg}(0.44 \mathrm{mmol})$ of $(S)-50$ and $0.122 \mathrm{mg}(0.87 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 1.5 mL of dichloromethane, $66 \mathrm{mg}\left(69 \%\right.$ yield) of $(S)-\mathbf{5 0 A}(99 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR δ $8.08(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, \mathrm{J}=12,7 \mathrm{~Hz}, 1$ H), 2.60-2.40 (m, 3 H), 2.18-1.64 (m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR $\delta 204.7$, 169.2, 133.3, 130.1 (2 C), 129.9, 128.6 (2 C), 77.2, 40.7, 33.4, 27.4, 24.0. MS (ESI, MeOH): $m / z=241.4\left(\mathrm{M}+\mathrm{Na}^{+}\right) . \quad$ The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=22.5$ \min (S enantiomer, major).

(R, R)-1,2-Di(phenylcarbonyloxy)cyclohexane (47A). (BH8-015)

(R, R)-47A
From $20 \mathrm{mg}(0.17 \mathrm{mmol})$ of $(R, R)-47$ and $49 \mathrm{mg}(0.34 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 0.6 mL of dichloromethane, 51 mg (85% yield) of $(R, R)-47 \mathrm{~A}$ was isolated after silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\delta 7.94(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2$ H), $7.33(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.90-$ 1.77 (m, 3 H), 1.63-1.49 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.2$ (2 C), 133.1 (2 C), 129.9 (2 C), 129.1 (4 C), 128.6 (4 C), 74.5 (2 C), $30.4(2 \mathrm{C}), 23.6(2 \mathrm{C}) . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=347.2\left(\mathrm{M}+\mathrm{Na}^{+}\right), 243.2$, 123.1, 102.1. The $\%$ ee (87%) of $(R, R)-47 \mathrm{~A}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.2 \mathrm{~min}(R, R$ enantiomer, major), $\mathrm{t}_{\mathrm{R}}=18.9 \min (S, S$ enantiomer, minor $)$. The racemic trans-dibenzoate 47A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(R,R)-1,2-Cycloheptanediol (48) \& (S)-2-hydroxycycloheptanone (51) (BH7-108)

(R, R)-48

(S)-51

From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of (\pm)-cycloheptanediol (48), 0.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1}(0.35 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.12 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}, 13.5 \mathrm{mg}$ (93% yield based on reacted diols $(S, S)-\mathbf{4 8} ; \mathbf{9 9 \%}$ ee) of $(S) \mathbf{- 5 1}$ and $16.3 \mathrm{mg}(54 \%$ recovery) of $(R, R)-\mathbf{4 8}$ (88% ee). The \% ee was determined by HPLC/chiral column of benzoate derivative (S)-51A. Compound (S)-51: $[\alpha]_{\mathrm{D}}{ }^{22}$ $=-143.9\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit} .^{[61]}$-86.4 (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$ for $(R)-51(>99.0 \% \mathrm{ee}) .{ }^{1} \mathrm{H}$ NMR $\delta 4.31-$ $4.26(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.75(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.71-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, \mathrm{J}=17,11,4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.3$, 77.20, 39.9, 33.5, 29.4, 26.5, 23.6.

MS (ESI, MeOH): $m / z=129.2\left(\mathrm{M}+\mathrm{H}^{+}\right) . \quad(R, R)-48:$ The NMR spectra were identical to those of the authentic 1,2-trans-cycloheptanediol. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-4.9\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{[61]}+10.7$ (c 1.0, CHCl_{3}) for $(S, S)-48(>99.0 \%$ ee $)$.
($\boldsymbol{R}, \boldsymbol{R}$)-1,2-Di(phenylcarbonyloxy)cycloheptane (48A). (reaction was taken by Dr. Man Zhang. HPLC was taken by me)

(R, R)-48А
From $10 \mathrm{mg}(0.077 \mathrm{mmol})$ of $(R, R)-48$ and $32 \mathrm{mg}(0.23 \mathrm{mmol})$ of benzoyl chloride in $61 \mu \mathrm{~L}$ of pyridine and 2 mL of dichloromethane, 23 mg (90% yield) of $(R, R)-48 \mathrm{~A}$ was isolated after silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\delta 7.97(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ 7.34 (m, 4 H), 5.42-5.40 (m, 2 H, CHO), 2.20-2.00 (m, 2 H), 1.88-1.75 (m, 4 H), 1.75-1.60 (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.3,133.1,130.5,129.8(4 \mathrm{C}), 128.5$ (4 C), 77.6, 30.7, 28.5, 23.1. MS (ESI, $\mathrm{MeOH}): m / z=361.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The $\%$ ee (88%) of $(R, R)-48 \mathrm{~A}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=16.8 \mathrm{~min}(R, R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=19.5 \mathrm{~min}(S, S$ enantiomer, minor $)$. The racemic trans-dibenzoate 48A were similarly prepared for HPLC/chiral column study from the corresponding racemic trans-diols.

(S)-2-Oxocycloheptyl benzoate (51A). (BH7-118)

From $10 \mathrm{mg}(78 \mu \mathrm{~mol})$ of $(S)-51$ and $22 \mathrm{mg}(0.16 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 0.5 mL of dichloromethane, 17.6 mg (97% yield) of (S)-51A (99% ee) was obtained. ${ }^{1} \mathrm{H}$ NMR $\delta 8.08(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.65(\mathrm{~m}$, $1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.0-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.4,165.1,133.4,130.1$ (2 C), 129.9, 128.6 (2 C), 79.9, 40.8, 30.8, 27.3, 26.1, 22.0. MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=255.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The \% ee of this compound was determined by HPLC
using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=21.5 \mathrm{~min}(S$ enantiomer, major $)$.

2.6.3 Procedures and Analysis Results for Oxidation of cis-Cycloalkanediols.
(S)-3-Hydroxycyclohexanone (38) (BH7-053)

(S)-38

To a solution of 4.8 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(2.1 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1})$ in $\mathrm{H}_{2} \mathrm{O}$, were added 16 mL of deionized $\mathrm{H}_{2} \mathrm{O}, 0.16 \mathrm{~g}(1.39 \mathrm{mmol}$; 662 equivalents based on Pd mole atoms) of racemic meso-cis-1,3-cyclohexanediol (44) and $68 \mathrm{mg}(0.42 \mathrm{mmol}) \mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was transferred into a high pressure apparatus (Parr Pressure Reactor), stirred at $120^{\circ} \mathrm{C}$ under 30 psi O_{2} for 3 days. The stirring was stopped and reactor was cooled to $25^{\circ} \mathrm{C}$. The solution was extracted three times with dichloromethane (20 mL each) and the combined extracts were washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of ethyl acetate and hexane (1:1) as an eluent to give 0.141 g (89% yield) of (S) $\mathbf{- 3 8}$ in 91% ee (determined by HPLC/chiral column of the benzoate derivative (S)-38A). (S)-38: $[\alpha]_{\mathrm{D}}{ }^{22}=+40.1\left(\right.$ c $\left.0.8, \mathrm{CHCl}_{3}\right)$.; Lit. ${ }^{[58]}$ for (S)-38: +37.3 (c $0.80, \mathrm{CHCl}_{3} ; 82 \%$ ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S) - $\mathbf{3 8}$ obtained from the oxidation of trans-1,3-cyclohexanediol.

(S)-3-Oxocyclohexyl benzoate (38A). (BH7-071)

(S)-38A

From $0.1 \mathrm{~g}(0.87 \mathrm{mmol})$ of $(S)-\mathbf{3 8}$ and $0.24 \mathrm{~g}(1.74 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 3 mL of dichloromethane, 0.174 g (92% yield) of (S)-38A (91% ee) was obtained. The \% ee of (S)-38a was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25 \mathrm{~min}$ (S enantiomer, major).

(S)-3-Hydroxycyclopentanone (41) (BH7-069)

From $30 \mathrm{mg}(0.29 \mathrm{mmol})$ of $\mathbf{4 3}, 1.0 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1}(0.438 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.146 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.017 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 28.3 mg (97% yield) of (S)-41 in 90% ee (determined by HPLC/chiral column of the benzoate derivative ($(S) \mathbf{- 4 1 A}$) was isolated. $(S)-41:[\alpha]_{\mathrm{D}}{ }^{22}=-29.9\left(\mathrm{c} 0.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, Lit. ${ }^{[59]}-18.3\left(\mathrm{c} 0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; for S-configuration, 83% ee $)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S)-\mathbf{4 1}$ obtained from the oxidation of trans-1,3-cyclopentanediol.
(S)-3-Oxocyclopentyl benzoate (41A). (BH7-076)

From $20 \mathrm{mg}(0.20 \mathrm{mmol})$ of $(S)-41$ and $56 \mathrm{mg}(0.40 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 1 mL of dichloromethane, 29 mg (71% yield) of (S)-41A (90% ee) was obtained. The \% ee (90%) of compound (S)-41A was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n -hexane/i- $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21.8 \mathrm{~min}$ (R enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.5 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-3-Hydroxycycloheptanone (42). (BH7-080)

(S) -42

From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of $\mathbf{4 5}, 0.79 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1}(0.347 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.116 \mu \mathrm{~mol}$ of Au- $0.013 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 28 mg (94.5% yield) of (S)-42 in 92% ee (determined by HPLC/chiral column of the benzoate derivative (S)-42A) was isolated. $[\alpha]_{\mathrm{D}}{ }^{22}=+15.2\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S)-\mathbf{4 2}$ obtained from the oxidation of trans-1,3-cycloheptanediol.
(S)-3-Oxocycloheptyl benzoate (42A). (BH7-106)

(S)-42A

From $25 \mathrm{mg}(0.20 \mathrm{mmol})$ of $(S)-42$ and $55 \mathrm{~g}(0.39 \mathrm{mmol})$ of benzoyl chloride in 0.1 mL of pyridine and 1 mL of dichloromethane, 44 mg (97% yield) of (S)-42A (92% ee) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S)-\mathbf{4 2 A}$ as described above. The $\%$ ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \min (R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=23 \mathrm{~min}$ (S enantiomer, major).

(S)-2-Hydroxycyclopentanone (49) (BH7-065)

(S)-49

From $60 \mathrm{mg}(0.588 \mathrm{mmol})$ of 52, 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(0.89 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.296 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.034 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, 55.4 mg (94.2% yield) of $(S)-49$ in 91% ee (determined by HPLC/chiral column of the benzoate derivative $(S)-49 \mathrm{~A}$). $[\alpha]_{\mathrm{D}}{ }^{22}=+38.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;$ Lit. $^{[61]}-37.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for (R)-configuration (>99\% ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S)-49$ obtained from the oxidation of trans-1,2-cyclopentanediol.
(S)-2-Oxocyclopentyl benzoate (49A). (BH7-112)

(S)-49A

From $40 \mathrm{mg}(0.40 \mathrm{mmol})$ of $(S)-49$ and $0.112 \mathrm{~g}(0.80 \mathrm{mmol})$ of benzoyl chloride in 0.3 mL of pyridine and 1.5 mL of dichloromethane, 80 mg (98% yield) of (S)-49A (91% ee) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-49A as described above. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23.3$ $\min (S$ enantiomer, major).

(S)-2-Hydroxycyclohexanone (50) (BH7-058)

(S)-50

From 0.161 g (1.39 mmol ; 662 equivalents based on Pd mole atoms) of $\mathbf{5 3}, 4.8 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}$ (3:1)-1 (2.1 $\mu \mathrm{mol}$ of $\mathrm{Pd} / 0.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.08 \mu \mathrm{~mol}$ of $\mathbf{1})$ in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 4 days, 0.142 g (96.5% yield) of (S) - 50 in 92% ee [determined by HPLC/chiral column of the benzoate derivative $(S)-\mathbf{5 0 A}]$ was isolated. $\quad(S)-50:[\alpha]_{\mathrm{D}}{ }^{22}=-18.8\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right) ; \mathrm{Lit}^{[67]}+20.6$ (c 1.0, CHCl_{3}) for (R)-50 ($>99.0 \%$ ee). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-50 obtained from the oxidation of trans-1,2-cyclohexanediol.
(S)-2-Oxocyclohexyl benzoate (50A). (BH7-077)

(S)-50A

From $0.10 \mathrm{~g}(0.87 \mathrm{mmol})$ of $(S)-50$ and $0.245 \mathrm{~g}(1.74 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 3 mL of dichloromethane, $0.169 \mathrm{~g}(89 \%$ yield) of $(S) \mathbf{5 0 A}$ ($92 \% \mathrm{ee}$) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-50A as described above. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=20 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}$ $=22.5 \mathrm{~min}(S$ enantiomer, major).

(S)-2-Hydroxycycloheptanone (51) (BH7-110)

From $30 \mathrm{mg}(0.23 \mathrm{mmol})$ of $\mathbf{5 4}, 0.79 \mathrm{~mL}$ of $\mathrm{Pd} / \mathrm{Au}(3: 1) \mathbf{- 1}(0.347 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.116 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.013 \mu \mathrm{~mol}$ of $\mathbf{1}$) in $\mathrm{H}_{2} \mathrm{O}$ at $120^{\circ} \mathrm{C}$ and 30 psi of O_{2} for 3 days, $27.6 \mathrm{mg}(94 \%$ yield) of (S)-51 in $\mathbf{9 1 \%}$ ee (determined by HPLC/chiral column of the benzoate derivative $(S) \mathbf{- 5 1 A}$). (S)-51: $[\alpha]_{\mathrm{D}}{ }^{22}=-130.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. Lit. $^{[61]}-86.4\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$ for $(R)-51(>99.0 \%$ ee $) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(S)-\mathbf{5 1}$ obtained from the oxidation of trans-1,2-cycloheptanediol.
(S)-2-Oxocycloheptyl benzoate (51A). (add notebook \#)

(S)-51A

From $20 \mathrm{mg}(0.156 \mathrm{mmol})$ of $(S)-51$ and $44 \mathrm{mg}(0.31 \mathrm{mmol})$ of benzoyl chloride in 0.2 mL of pyridine and 1 mL of dichloromethane, 35 mg (97% yield) of (S)-51A (91% ee) was obtained. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of (S)-51A as described above. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak AD(-H) column, n -hexane/i-PrOH $=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=19 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=21.5$ $\min (S$ enantiomer, major).

2.6.4 Procedures and Analysis Results for Dihydroxylation of Alkenes.

(Z)-cyclooct-4-enone(56) (BH1-071)

To a $0{ }^{\circ} \mathrm{C}$ solution of $23 \mu \mathrm{~mol}$ of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}, 7 \mu \mathrm{~mol}$ of HAuCl_{4} and $0.8 \mu \mathrm{~mol}$ of PVP in 1.5 mL DMSO, $20 \mathrm{mg}(20 \mu \mathrm{~mol})$ of NaCNBH_{3} was added and stired for 30 minutes to give Pd:Au(3:1)-PVP nanoclusters DMSO solution. To it, 5 mL of DMF, 31 mg (312 mmol) of CuCl was added and stirred for 30 minutes under 1 atmospheric of O_{2} to give a dark green solution. To it, $0.033 \mathrm{~g}(0.313 \mathrm{mmol})$ of cyclooctadiene 55 was added and reacted under 1 atmospheric of O_{2} for 7 days, extracted with $3 \times 20 \mathrm{~mL}$ of diethyl ether, washed combined organic layer with 5 mL water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give $27 \mathrm{mg}\left(69.6 \%\right.$ yield) of 56. ${ }^{1} \mathrm{H}_{\mathrm{NMR}}{ }^{[142]} \delta 5.74-5.63(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 6 \mathrm{H}), 2.33-$ $2.08(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 215.0,130.9,130.4,47.4,40.5,26.5,24.1,22.0$; MS (ESI, MeOH): $m / z=125.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
(1S,2R)-1,2,3,4-Tetrahydronaphthalene-1,2-diol (58) (BH7-051)

(1S,2R)-58
To an aqueous solution of 6.6 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-1(2.9 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.96 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.10 \mu \mathrm{~mol}$ of $\mathbf{1}$) in a Parr pressure reactor, were added 14 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $0.10 \mathrm{~g}(0.77 \mathrm{mmol})$ of 1,2-dihydronaphthalene (57). The apparatus was charged at 30 psi of O_{2} and stirred at $25^{\circ} \mathrm{C}$ for

3 days. The solution was then maintained under normal atmosphere, extracted with ethyl acetate three times (20 mL each), and the combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 89 mg (86% yield) of ($1 S, 2 R$)-58 in $\mathbf{9 9 \%}$ ee. The optical purity was determined using HPLC-chiral column. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+35.0$ (c 0.74 , CHCl_{3}). Lit. ${ }^{[67]}+35\left(\mathrm{c} 0.74, \mathrm{CHCl}_{3} ;>98 \%\right.$ ee $) .{ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H})$, 2.82-2.78(m, 1 H$), 2.53-2.45(\mathrm{bs}, 2 \mathrm{H}, \mathrm{OH}), 2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 136.6,136.4,130.1,128.8,128.4,126.7,70.2,69.8,27.1,26.5 . \operatorname{MS}(E S I, M e O H): m / z=$ $165.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. The \% ee of this compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21.6 \mathrm{~min}$ $(1 S, 2 R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.2 \mathrm{~min}(1 R, 2 S$ enantiomer, major $)$.

(1S,2S)-1-Phenylpropane-1,2-diol (60) and (1R,2S)-1-phenylpropane-1,2-diol (61)
(BH7-044)

$(1 S, 2 S)-60$

(1R,2S)-61

From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(7.9 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 2.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.29 \mu \mathrm{~mol}$ of $\mathbf{1})$ and $0.25 \mathrm{~g}(2.1 \mathrm{mmol})$ of trans- β-methylstyrene (59) in 30 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $0.281 \mathrm{~g}(87 \%$ yield) of ($1 S, 2 S$)-60(99\% ee) and $19 \mathrm{mg}(6 \%$ yield) of $(1 R, 2 S)-\mathbf{6 1}(97 \%$ ee) along with 13 mg of $\mathbf{5 9}$ (5% recovery) were obtained after column chromatography. The optical purity was determined using HPLC/chiral column as described above. $\quad(1 S, 2 S)-60:[\alpha]_{\mathrm{D}}{ }^{22}=+51.7\left(\right.$ c $\left.1.9, \mathrm{CHCl}_{3}\right)$. Lit. $^{[68]}+54.3\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86($ pent, J = $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.15$ (bs, 1 H , OH), $1.75-1.60(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.07(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.3,129.9$ (2 C), 128.6, 126.7 (2 C), 79.9, 72.4, 18.1. MS (ESI, MeOH): $m / z=175.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ Compound $(1 R, 2 S)-61:[\alpha]_{\mathrm{D}}{ }^{22}=-37.3\left(\right.$ c 2.52, $\left.\mathrm{CHCl}_{3}\right) . \quad$ Lit. ${ }^{[68]}-29.9\left(\mathrm{c} 2.52, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\delta 7.36-$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.80(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 1.75-1.50$ (bs, $1 \mathrm{H}, \mathrm{OH}$), $1.05(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.4$, 128.2 (2 C), 127.9, 126.7 (2 C), 77.5, 71.4, 17.5. MS (ESI, MeOH): $m / z=174.9\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The $\%$ ee (99%) of $(1 S, 2 S)-\mathbf{6 0}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=$ 85:15, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22.6 \mathrm{~min}(1 S, 2 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}(1 R, 2 R$ enantiomer, minor).

The \% ee (97%) of $(1 R, 2 S)-\mathbf{6 1}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=29.6 \mathrm{~min}(1 R, 2 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=32.2 \min (1 S, 2 R$ enantiomer, minor $)$.

(1S,2R)-1-Phenylpropane-1,2-diol (61) and (1R,2R)-1-phenylpropane-1,2-diol (60)
(BH8-026)

From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(7.94 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 2.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.29 \mu \mathrm{~mol}$ of $\mathbf{1})$ and $0.25 \mathrm{~g}(2.1 \mathrm{mmol})$ of cis- β-methylstyrene (62) in 30 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $0.291 \mathrm{~g}(90 \%$ yield) of $(1 S, 2 R)-61(98 \%$ ee $)$ and $26 \mathrm{mg}(8 \%$ yield) of $(1 R, 2 R)-\mathbf{6 0}(98 \%$ ee $)$ were obtained after column chromatography. $(1 S, 2 R)-61:[\alpha]_{\mathrm{D}}{ }^{22}$ $=+37.1\left(\right.$ c $\left.2.52, \mathrm{CHCl}_{3}\right)$. Lit. $^{[68]}+36.1$ (c 2.52, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of compound $(1 R, 2 S)-\mathbf{6 1}$. The \% ee (98%) of $(1 S, 2 R)-\mathbf{6 1 A}$ was determined by HPLC using chiral column, Chiralpak AD(-H) column, n-hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=29.6 \min (1 R, 2 R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=32.2 \min (1 S, 2 R$ enantiomer, major $)$.

$(1 R, 2 R)-60:[\alpha]_{\mathrm{D}}{ }^{22}=-51.8\left(\mathrm{c} 1.9, \mathrm{CHCl}_{3}\right) . \quad$ Lit. ${ }^{[68]}-51.3$ (c 3.5, CHCl_{3}). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of $(1 S, 2 S)-\mathbf{6 0}$. The \% ee (98%) of $(1 R, 2 R)-\mathbf{6 0}$ was determined by HPLC using chiral column, Chiralpak $\operatorname{AD}(-\mathrm{H})$ column, n-hexane $/ i$ - $\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=22.6 \mathrm{~min}(1 S, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25.8 \min (1 R, 2 R$ enantiomer, major $)$.

(2R,3S)-Isopropyl 2,3-dihydroxy-3-phenylpropanoate (64) and (2R,3R)-isopropyl
2,3-dihydroxy-3-phenylpropanoate (65) (BH7-116)

(2R,3S)-64

(2R,3R)-65

From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(1.97 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.66 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.073 \mu \mathrm{~mol}$ of $\mathbf{1})$ and $0.10 \mathrm{~g}(0.52 \mathrm{mmol})$ of trans-isoproyl 3-phenylpropenoate (63) in 20 mL of deionized water, after stirring at $50^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, $96 \mathrm{mg}(82 \%$ yield) of $(2 R, 3 S)-\mathbf{6 4}(99 \%$ ee) and 3.7 mg (3% yield) of $(2 R, 3 R)-\mathbf{6 5}(97 \%$ ee) were obtained after column chromatography. The optical purity was determined using HPLC/chiral column as described above. ($2 R, 3 S$)-64: $[\alpha]_{\mathrm{D}}{ }^{22}=+9.7\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) . \quad \mathrm{Lit}^{[81]}+10.6\left(\mathrm{c} \mathrm{1.02}, \mathrm{CHCl}_{3} ;>99 \%\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.36(\mathrm{~m}$, 3 H), 7.34-7.32 (m, 2 H), 5.16 (hept, J = $6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (d, J = $6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (d, J = 6 Hz, 1 H), 2.70-2.48 (bs, $2 \mathrm{H}, \mathrm{OH}$), $1.31(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.8,144.6$, 130.3, 129.1 (2 C), 128.2 (2 C), 86.1, 74.2, 67.9, 22.2. MS (ESI, MeOH): $m / z=225.0\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ The $\%$ ee (99%) of $(2 R, 3 S)-\mathbf{6 4}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\operatorname{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=21.1 \mathrm{~min}(2 R, 3 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=$ $25.8 \mathrm{~min}(2 S, 3 R$ enantiomer, minor).

$(2 R, 3 R)-65:[\alpha]_{\mathrm{D}}{ }^{22}=+7.3\left(\mathrm{c} 0.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H})$, 5.14 (hept, J = 6 Hz, 1 H), $5.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.00(\mathrm{bs}, 2 \mathrm{H}$, OH), $1.31(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 169.4,145.4,131.3,130.0$ (2 C), 129.2 (2 C), 87.4, 75.1, 69.1, 23.1. MS (ESI, MeOH): $m / z=225.0\left([M+H]^{+}, 100 \%\right)$. The \% ee (97\%) of $(2 R, 3 R)-65$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=28.1 \mathrm{~min}(2 R, 3 R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=$ $32.0 \min (2 S, 3 S$ enantiomer, minor).

(1S,2R)-2,3-Dihydro-1H-indene-1,2-diol (67) and (1R,2R)-2,3-dihydro-1H-indene-1,2-diol (68). (BH7-084)

(1S,2R)-67

(1R,2R)-68

From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(19.3 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 6.7 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.74 \mu \mathrm{~mol}$ of $\mathbf{1})$ and $0.30 \mathrm{~g}(2.59 \mathrm{mmol})$ of indene (66) in 20 mL of deionized water, after stirring at $50^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 2 days, $0.261 \mathrm{~g}(67 \%$ yield) of $(1 S, 2 R)-67(93 \%$ ee $)$ and $44 \mathrm{mg}(11 \%$ yield $)$ of $(1 R, 2 R)-68(94 \%$ ee $)$ were obtained after column chromatography. The optical purity was determined using HPLC/chiral column. Compound ($1 S, 2 R$)-67: $[\alpha]_{\mathrm{D}}{ }^{22}=-46.9$ (c 1.14, CHCl_{3}). Lit. ${ }^{[67]}-48.0\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 3 \mathrm{H})$,
5.03-5.02 (m, 1 H, CH-O), 4.54-4.52 (m, $1 \mathrm{H}, \mathrm{CH}-\mathrm{O}), 3.14(\mathrm{dd}, \mathrm{J}=16,6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, \mathrm{J}=$ $16,4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.50-2.25 (bs, $2 \mathrm{H}, \mathrm{OH}$) ${ }^{13} \mathrm{C}$ NMR $\delta 142.2,140.2,129.0,127.4,125.6,125.3$, 76.2, 73.7, 38.9. MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=173.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ Compound $(1 R, 2 R)-67:[\alpha]_{\mathrm{D}}{ }^{22}$ $=-28.8(\mathrm{c} 0.675, \mathrm{EtOH}) . \quad$ Lit. ${ }^{[82]}+30.5(\mathrm{c} 0.675, \mathrm{EtOH}) . \quad{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ $7.18(\mathrm{~m}, 3 \mathrm{H}), 5.02-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=16,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}$ $=16,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}), 2.05-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.8,141.3$, 130.1, 128.9, 128.3, 126.6, 73.0, 72.4, 37.5 MS (ESI, MeOH): $m / z=151.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. The $\%$ ee (93%) of $(1 S, 2 R)-67$ compound was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=27.8 \mathrm{~min}(1 S, 2 R$ enantiomer, major $)$.

The $\%$ ee (94%) of compound $(1 R, 2 R)-\mathbf{6 8}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}$ $(1 R, 2 R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=35 \mathrm{~min}(1 S, 2 S$ enantiomer, minor $)$.

(1S,2R)-2,3-Dihydro-1H-indene-1,2-diol (46) and (1R,2R)-2,3-dihydro-1H-indene-1,2-diol (47) (BH7-063)

(1S,2R)-67

(1R,2R)-68

To an aqueous solution of 15 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(6.5 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 2.2 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.24 \mu \mathrm{~mol}$ of 1) in a Parr pressure reactor, were added 5 mL of deionized $\mathrm{H}_{2} \mathrm{O}, 77 \mathrm{mg}(0.56 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $0.20 \mathrm{~g}(1.75 \mathrm{mmol})$ of indene ($\mathbf{6 6}$). The apparatus was charged at 30 psi of O_{2} and stirred at
$70^{\circ} \mathrm{C}$ for 5 hours. The solution was then maintained under normal atmosphere, extracted with ethyl acetate three times (20 mL each), and the combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 0.117 g (59% yield based on recovered 66) of ($1 R, 2 R$)-68 in 91% ee and 10 mg (5% yield based on recovered $\mathbf{6 6}$) of $(1 S, 2 R)-\mathbf{6 7}$ in 89% ee, along with $47 \mathrm{mg}(23.5 \%$ recovery $)$ of 66. $\quad(1 R, 2 R)-\mathbf{6 8}:[\alpha]_{\mathrm{D}}{ }^{22}=-27.7\left(\mathrm{c} 1.14, \mathrm{CHCl}_{3}\right) . \quad$ Lit. ${ }^{[82]}$ $+30.5(\mathrm{c} 0.675, \mathrm{EtOH}) .(1 S, 2 R)-67:[\alpha]_{\mathrm{D}}{ }^{22}=-44.9\left(\mathrm{c} \mathrm{1.14}, \mathrm{CHCl}_{3}\right) . \quad$ Lit. ${ }^{[81]}-48.0$ (c 1.14, $\left.\mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 7}$ and $\mathbf{6 8}$ were identical to those described above. No hydroxyindanones were detected. The \% ee (89\%) of ($1 S, 2 R$)-67 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=25.0 \min (1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=27.8 \min (1 S, 2 R$ enantiomer, major $)$.

The \% ee (91%) of $(1 R, 2 R)-\mathbf{6 8}$ was determined by HPLC using chiral column, Chiralpak AD(-H) column, n-hexane $/ i$ - $\mathrm{PrOH}=85: 15$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}(1 R, 2 R$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=34.6 \min (1 S, 2 S$ enantiomer, minor $)$.

(1S,2R,4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohexane-1,2-diol (70) (BH8-030)

$(1 S, 2 R, 4 R)-70$
From $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{1}(2.86 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.99 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.11 \mu \mathrm{~mol}$ of $\mathbf{1})$ and $52 \mathrm{mg}(0.39 \mathrm{mmol})$ of $(R)-(+)$-limonene ($\mathbf{6 9}$) in 20 mL of deionized water, after stirring at $25^{\circ} \mathrm{C}$ under 30 psi of O_{2} in a Parr pressure reactor for 3 days, 61 mg (92% yield) of $(1 S, 2 R, 4 R)-70$ was obtained as a single
stereoisomer after column chromatography. No other stereoisomers were detected. $[\alpha]_{D}{ }^{22}=$ $+22.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}$, $1 \mathrm{H}), 2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.58(\mathrm{bs}, 2 \mathrm{H}$, $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 149.3,109.3,74.4,71.7,37.5,35.6,33.9,29.4,27.0,21.1 . \operatorname{MS}(\mathrm{ESI}, \mathrm{MeOH}):$ $m / z=171.0\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-ESI: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{Na}^{+}: 193.1199$; found: 193.1197.
(1S,2R,4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohexane-1,2-diol (70) and (1R,2S,4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohexane-1,2-diol (85) (BH8-038)

(1S,2R,4R)-70

(1R,2S,4R)-85
A solution of $0.20 \mathrm{~g}(1.47 \mathrm{mmol})$ of $(R)-(+)$-limonene ($\mathbf{6 9}), 7.5 \mathrm{mg}(29 \mu \mathrm{~mol})$ of OsO_{4}, and 0.21 $\mathrm{g}(1.76 \mathrm{mmol})$ of N-methylmorpholine N-oxide (NMO) in 2 mL of t - $\mathrm{BuOH}, 7 \mathrm{~mL}$ of acetone and 2.5 mL of water was stirred $0^{\circ} \mathrm{C}$ for 30 min and $25^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was filtered through Celite and concentrated on a rotary evaporator to remove acetone and $\mathrm{t}-\mathrm{BuOH}$, diluted with water (20 mL), and extracted three times with dichloromethane (20 mL each). The combined extract was washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as eluent to give 27 $\mathrm{mg}(11 \%$ yield $)$ of $(1 S, 2 R, 4 R)-70$ and $0.118 \mathrm{~g}\left(47 \%\right.$ yield) of $(1 R, 2 S, 4 R)-85^{[83]}$ along with 46 mg (23\% recovery) of (R)-limonene. $\quad(1 S, 2 R, 4 R)-70:[\alpha]_{\mathrm{D}}{ }^{22}=+22.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical to those of compound 70 obtained from the catalytic asymmetric dihydroxylation reaction described above. $\quad(1 R, 2 S, 4 R)-\mathbf{8 5}:[\alpha]_{\mathrm{D}}{ }^{22}=+41.8(\mathrm{c} 1.0, \mathrm{MeOH}) ; \mathrm{Lit}^{[81]}$ $+42(\mathrm{c} 1.0, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\delta 4.72-4.69(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.30(\mathrm{bs}, 1 \mathrm{H}$,
$\mathrm{OH}), 1.93-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.55-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.9,108.7,73.5,71.2,37.2,33.6,33.3$, 26.1, 25.7, 20.6.

(S)-2-Methylheptane-1,2-diol (72) (BH10-143)

To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-2(10 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 3.3 \mu \mathrm{~mol}$ of Au , and 0.16 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor, were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $30 \mathrm{mg}(0.27$ mmol) of 2-methylhept-1-ene (71). The apparatus was maintained under 30 psi of O_{2}, stirred at $50{ }^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 28.6 mg (73.4\% yield) of (\mathbf{S})-72 in 97% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-2.28$ (c 1.2, CHCl_{3}), Lit. ${ }^{[80]}+2.3$ (c 1.21, $\mathrm{CHCl}_{3} ; 97 \%$ ee, R-configuration); ${ }^{1} \mathrm{H}$ NMR $\delta 3.46$ (dd, $J=11.2,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 73.2,69.8,38.7,32.5,23.5,23.0,22.3,14.2 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=147.3\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ The $\%$ ee (97%) of (S)-72 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ \mathrm{i}-\mathrm{PrOH}=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=17.8 \mathrm{~min}$ (R enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=19.9 \min (S$ enantiomer, major $)$.

(2R,3R)-2,3-Dihydroxycyclohexanone (74) (BH10-071)

(2R,3R)-74

To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-26(0.84 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 0.27 \mu \mathrm{~mol}$ of Au , and 0.03 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and 21 mg (0.21 mmol) of cyclohex-2-enone (73). The apparatus was maintained under $30 \mathrm{psi}^{\text {of }} \mathrm{O}_{2}$, stirred at $50{ }^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $24 \mathrm{mg}(86 \%$ yield $)$ of $(2 R, 3 R)-74$ in 99% ee. $\quad[\alpha]_{D}{ }^{22}=-13.8$ (c $0.6, \mathrm{CHCl}_{3}$); Lit. ${ }^{[89]}+1.48$ (neat, $1=2 \mathrm{dm}$; for $2 S, 3 S$ configuration). ${ }^{1} \mathrm{H}$ NMR $\delta 4.41(\mathrm{~d}, J=$
$3.2,1 \mathrm{H}), 4.21(\mathrm{dd}, J=6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~b}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{td}, J=14.8,1.6 \mathrm{~Hz}$, 1H), 2.17-2.04 (m, 2H), 1.95-1.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 210.1,82.6,72.3,38.0,31.0,18.9$; MS (ESI, MeOH$): \mathrm{m} / \mathrm{z}=267.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ The $\%$ ee (99%) of $(2 R, 3 R)-74$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: 0.46 cm x 25 cm , from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=19.6 \mathrm{~min}(2 S, 3 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=23.8 \mathrm{~min}(2 R, 3 R$ enantiomer, major)

(4S,5R)-4,5-dihydroxycyclooctanone (76) (BH10-091)

(4S,5R)-76

To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}(0.75 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 0.25 \mu \mathrm{~mol}$ of Au , and 0.014 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor, were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $25 \mathrm{mg}(0.2$ mmol) of (Z)-cyclooct-4-enone (56). The apparatus was maintained under 30 psi of O_{2}, stirred at $50^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 26.8 mg (85% yield) of $(4 S, 5 R)-76$ in 99% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-16.4$ (c $\left.0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 3.78(\mathrm{~d}, J=7.8,1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.02-$ $1.97(\mathrm{~b}, 1 \mathrm{H}), 1.85-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.6,79.3,78.3,42.2,33.5,32.2,26.5,17.5 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=181.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{3}{ }^{+}: 159.1021$, found: 159.1023. The \% ee (99\%) of $(4 S, 5 R)$ - 21 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=$ 85:15, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=15.7 \mathrm{~min}(4 R, 5 S$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=19.4 \min (4 S, 5 R$ enantiomer, major $)$.

(1S,2R)-Ethyl 1,2-dihydroxycyclopentanecarboxylate (81). (BH10-062)

$(1 S, 2 R)-81$
To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}(0.84 \mu \mathrm{~mol}$ of $\mathrm{Pd} / 0.27 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.0295$ $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $0.03 \mathrm{~g}(0.214$ mmol) of ethyl cyclopent-1-enecarboxylate (77). The apparatus was maintained under 30 psi of O_{2}, stirred at $50^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted three times with ethyl acetate (20 mL each). The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to dryness. The crude product was column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give 28.3 mg (77% yield) of $(1 S, 2 R)-\mathbf{8 1}$ in 99% ee. $\quad[\alpha]_{\mathrm{D}}=-36.8\left(1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.04(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~b}, 1 \mathrm{H}), 2.64(\mathrm{~b}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.03(\mathrm{~m}$, $1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), \quad 1.73-1.58\left(\mathrm{~m}, \underset{138}{2 \mathrm{H}),} 1.30 \quad(\mathrm{t}, \quad J=6.8 \mathrm{~Hz}, \quad 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \quad \mathrm{NMR}\right.$
$\delta 176.4,79.1,75.9,62.0,33.4,27.5,25.6,14.0 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=197.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{4}{ }^{+}: 175.0970$, found: 175.0962. The \% ee (99%) of $(1 S, 2 R)$-81 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ i-\mathrm{PrOH}=$ 85:15, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=22.6 \mathrm{~min}(1 R, 2 S$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25.3 \mathrm{~min}(1 S, 2 R$ enantiomer, major $)$.

(1S,2R)-Ethyl 1,2-dihydroxycyclohexanecarboxylate (82). (BH9-069)

$(1 S, 2 R)-82$
To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}(2.44 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 0.81 \mu \mathrm{~mol}$ of Au , and 0.09 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $0.1 \mathrm{~g}(0.65 \mathrm{mmol})$ of ethyl cyclohex-1-enecarboxylate (78). The apparatus was maintained under 30 psi of O_{2}, stirred at $50{ }^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted with ethyl acetate three times (20 mL each). The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and
ethyl acetate as eluents to give $102 \mathrm{mg}(83 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{8 2}$ in 99% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-29.6$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 4.29(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~b}, 1 \mathrm{H}), 2.22$ $(\mathrm{d}, \quad 1 \mathrm{H}), \quad 1.93-1.42(\mathrm{~m}, \quad 8 \mathrm{H}), \quad 1.30 \quad(\mathrm{t}, \quad J \quad=6.8 \mathrm{~Hz}, \quad 3 \mathrm{H}) ; \quad{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ $\delta 177.9,79.1,73.8,60.8,33.2,28.5,22.4,20.3,14.4 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=211.2([\mathrm{M}+$ $\left.\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{4}{ }^{+}$: 189.1127 , found: 189.1129. The $\%$ ee (99%) of $(1 S, 2 R)-\mathbf{8 2}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: 0.46 cm x 25 cm , from Daicel Chemical Industries], n -hexane $/ \mathrm{i}-\mathrm{PrOH}=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=17.6 \mathrm{~min}$ $(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=22.3 \min (1 S, 2 R$ enantiomer, major $)$.

(1S,2R)-Ethyl 1,2-dihydroxycycloheptanecarboxylate (83). (BH9-025)

(1S,2R)-83
To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-\mathbf{2 6}(1.12 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 0.37 \mu \mathrm{~mol}$ of Au , and 0.041 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor, were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $50 \mathrm{mg}(0.30$
mmol) of ethyl cyclohept-1-enecarboxylate (79). The apparatus was maintained at 30 psi of O_{2}, stirred at $50{ }^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted with ethyl acetate three times (20 mL each). The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $51 \mathrm{mg}(85 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{8 3}$ in 99% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-71.6$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 4.27(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~b}, 1 \mathrm{H}), 2.24$ $(\mathrm{d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.39(\mathrm{~m}, 9 \mathrm{H}),, 1.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.2,78.8,76.4,62.3,35.2,32.2,27.6,23.2,20.8,14.4 . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=225.3([\mathrm{M}$ $+\mathrm{Na}]^{+}$). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}{ }^{+}$: 203.1283 found: 203.1279; The \% ee (99%) of $(1 S, 2 R)-\mathbf{8 3}$ was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=16.2 \mathrm{~min}$ $(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=20.6 \mathrm{~min}(1 S, 2 R$ enantiomer, major $)$.

(1S,2R)-Ethyl 1,2-dihydroxycyclooctanecarboxylate (84). (BH10-083)

To an aqueous solution of 2 mL of $\mathrm{Pd} / \mathrm{Au}(3: 1)-26(1.53 \mu \mathrm{~mol}$ of $\mathrm{Pd}, 0.51 \mu \mathrm{~mol}$ of Au , and 0.056 $\mu \mathrm{mol}$ of 26) in a Parr pressure reactor, were added 18 mL of deionized $\mathrm{H}_{2} \mathrm{O}$ and $74 \mathrm{mg}(0.41$ mmol) of ethyl cyclooct-1-enecarboxylate (80). The apparatus was maintained under 30 psi of O_{2}, stirred at $50{ }^{\circ} \mathrm{C}$ for 3 days, vented to normal atmosphere, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 72.3 mg (81% yield) of $(1 S, 2 R)-\mathbf{8 4}$ in 99% ee. $[\alpha]_{\mathrm{D}}{ }^{22}=-16.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.29(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~b}, 1 \mathrm{H}), 2.25(\mathrm{~d}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.42(\mathrm{~m}, 12 \mathrm{H}), 1.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 176.9,79.4,73.8,62.2,33.5,31.2,27.4,26.5,24.7,21.2,14.3 ;$ MS (ESI, MeOH$): \mathrm{m} / \mathrm{z}=239.4$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4}^{+}: 217.1440$, found: 217.1429; The \% ee (99%) of $(1 S, 2 R)-\mathbf{8 4}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ i-\mathrm{PrOH}=85: 15$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=15.3 \mathrm{~min}$ $(1 R, 2 S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}(1 S, 2 R$ enantiomer, major $)$.

(S)-Ethyl 1-hydroxy-2-oxocyclopentanecarboxylate (86) (BH10-139)

(S)-86

To a solution of $17.4 \mathrm{mg}(0.1 \mathrm{mmol})(1 S, 2 R)$-ethyl 1,2-dihydroxycyclopentanecarboxylate in 1 mL DMSO, $56 \mathrm{mg}(0.2 \mathrm{mmol})$ of IBX was added and stirred at room temperature for 10 hours. The resulting solution was diluted with 2 mL water, extracted with $3 \times 10 \mathrm{~mL}$ ethyl acetate, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $12.1 \mathrm{mg}(70 \%$ yield $)$ of the titled compound. $\quad[\alpha]_{\mathrm{D}}-14.6\left(0.2, \mathrm{CHCl}_{3}\right) ;$ Lit. ${ }^{[84]}[\alpha]_{\mathrm{D}}+12$ (1.0, CHCl_{3} for R configuration); ${ }^{1} \mathrm{H}$ NMR $\quad \delta 4.19-4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~b}, 1 \mathrm{H})$, $2.44-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.5,171.5,79.9$, $62.4,35.8,34.8,18.8,13.8 . \operatorname{MS}(E S I, \mathrm{MeOH}): 173.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-87

To a solution of $18.8 \mathrm{mg}(0.1 \mathrm{mmol})(1 \mathrm{~S}, 2 \mathrm{R})$-ethyl 1,2-dihydroxycyclopentanecarboxylate in 1 mL DMSO, $56 \mathrm{mg}(0.2 \mathrm{mmol})$ of IBX was added and stired at room temperature for 10 hours. The resulting solution was diluted with 2 mL water, extracted with $3 \times 10 \mathrm{~mL}$ ethyl acetate, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $11.6 \mathrm{mg}(61 \%$ yield $)$ of the titled compound. $\quad[\alpha]_{D}-126.8\left(0.1, \mathrm{CHCl}_{3}\right) ; \quad$ Lit. ${ }^{[84]}[\alpha]_{D}+134$ (1.0, CHCl_{3} for R configuration); ${ }^{1} \mathrm{H}$ NMR $\delta 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.49$ $(\mathrm{m}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 207.4,170.1,80.7,62.1,39.0,37.7,27.1,22.0,14.1 . \quad$ MS (ESI, MeOH): 187.1([M + $\mathrm{H}]^{+}$).

(1R,2R)-1-(Hydroxymethyl)cycloheptane-1,2-diol (88) (BH9-044)

88
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $18 \mathrm{mg}(0.09 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 3}$ in 1 mL of THF under argon was added $5.1 \mathrm{mg}(0.13 \mathrm{mmol})$ of LiAlH_{4}. The mixture was warmed to room temperature, stirred for 2 hours, and added 2 g of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and one drop of $\mathrm{CH}_{3} \mathrm{COOH}$. The resulting solution was filtered through Celite, washed with 20 mL of methylene chloride, and concentrated under vacuum to give 14.1 mg of compound $\mathbf{8 8}$. This material was used in the subsequent step without further purification. $[\alpha]_{\mathrm{D}}{ }^{22}=-22.3\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.96(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~b}, 1 \mathrm{H}), 2.62(\mathrm{~b}, 1 \mathrm{H}), 1.91-1.46(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 81.4,71.9,65.8,32.6$, 29.3, 28.5, 25.9, 22.8; MS (ESI, MeOH): m/z = $161.2\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
[(1R,2R)-1,2-Dihydroxycycloheptyl]methyl methanesulfonate (89) (BH9-045)

89
To a solution of $12 \mathrm{mg}(0.075 \mathrm{mmol})$ of $(1 R, 2 R)-\mathbf{8 8}$ in 4 mL of distilled methylene chloride under argon were added $7.5 \mathrm{mg}(0.075 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $8.5 \mathrm{mg}(0.075 \mathrm{mmol})$ of methanesulfonyl chloride (MsCl). It was stirred for 5 hours, diluted with 5 mL of $\mathrm{H}_{2} \mathrm{O}$, and extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of diethyl ether and hexane in a ratio of 6:1 as an eluent to give 11 mg (60% yield) of $(1 R, 2 R)-\mathbf{8 9} \cdot[\alpha]_{\mathrm{D}}{ }^{22}=$ -80.7 (c 0.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.06(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~b}$, $1 \mathrm{H}), 2.03(\mathrm{~d}, 1 \mathrm{H}), 1.86-1.46(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 78.9,76.4,69.2,37.9,35.5,31.4,27.6,22.9$, 20.6; MS (ESI, MeOH): m/z = $261.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(1S,2R)-1-Methylcycloheptane-1,2-diol (90) (BH9-051)

90
To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $9.8 \mathrm{mg}(0.041 \mathrm{mmol})$ of $(1 R, 2 R)-\mathbf{8 9}$ in 1 mL of distilled THF under argon was added $1.56 \mathrm{mg}(0.041 \mathrm{mmol})$ of LiAlH_{4}. The mixture was warmed to room temperature and stirred for 6 hours, diluted with 1 mL of water and 0.5 mL of HCl , and extracted twice with 10 mL each of ethyl acetate. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to give $(1 S, 2 R)-90$. This material was used in the subsequent step without further purification. ${ }^{1} \mathrm{H} \operatorname{NMR} \delta 3.91(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~b}, 1 \mathrm{H}), 2.23(\mathrm{~d}, 1 \mathrm{H})$,
$1.88-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 80.6,73.6,32.5,28.5,27.0,24.7,22.6,20.5 ; \quad \mathrm{MS}$ $(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=183.4\left([\mathrm{M}+\mathrm{K}]^{+}\right)$.
(S)-2-Hydroxy-2-methylcycloheptanone (91) (BH9-053)

91
To a solution of $14 \mathrm{mg}(0.048 \mathrm{mmol})$ of 2-iodoxybenzoic acid (IBX) in 1 mL of DMSO under argon was added $6.3 \mathrm{mg}(0.044 \mathrm{mmol})$ of $(1 S, 2 R)-90$. The solution was stirred for 8 hours, dilute with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and washed three times with 5 mL each of $\mathrm{H}_{2} \mathrm{O}$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 5.2 mg (83% yield) of (S)-91. $[\alpha]_{\mathrm{D}}{ }^{22}=-71.2\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right) ;$ Lit. $^{[85]}-71$ (c $0.24, \mathrm{CHCl}_{3} ; S$-configuration); ${ }^{1} \mathrm{H}$ NMR $\delta 3.42(\mathrm{~b}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.60(\mathrm{~m}, 6$ H), $1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 216.3,89.2,36.9,33.5,31.4,27.2,25.9,21.3$. MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=165.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

2.6.5 Procedures and Analysis Results for Oxidation of Cycloalkanes.

1,4-Diisopropyl-1,4-cyclohexadiene (134) (BH4-110)

134

To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of 40 mL of liquid NH_{3} under argon was added $0.86 \mathrm{~g}(0.12 \mathrm{~mol})$ of lithium wire, and the resulting blue solution was stirred at $-35^{\circ} \mathrm{C}$ for 1 h . To it, a solution of 4.0 g (24.7 mmol) of 1,4-diisopropylbenzene in 5.4 g of $t-\mathrm{BuOH}$ was added, and the solution was stirred for 6 h at $-35^{\circ} \mathrm{C}$ under argon. The reaction solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$ mL), extracted twice with diethyl ether, and the combined extract was washed with water, brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed by distillation under normal pressure, and residue was column chromatographed on silica gel using hexane as eluent to give $2.81 \mathrm{~g}(70 \%$ yield) of 1,4-diisopropyl-1,4-cyclohexadiene (134) along with 0.96 g (24% recovery) of 1,4-diisopropylbenzene. ${ }^{1} \mathrm{H}$ NMR $\delta 5.46$ (s, $2 \mathrm{H},=\mathrm{CH}$), $2.64\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.19 (hept, J = 7 Hz , $2 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.9,116.4,34.7,27.8,21.5$. MS (ESI, MeOH): $m / z=165.0\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
trans-1,4-Diisopropylcyclohexane (92) (BH4-112)

92
A mixture of $2.0 \mathrm{~g}(12.2 \mathrm{mmol})$ of 1,4-diisopropyl-1,4-cyclohexadiene and 0.14 g of $10 \% \mathrm{Pd} / \mathrm{C}$ in 30 mL of ethyl acetate in a bottle was shaken under 30 psi of H_{2} on a Parr hydrogenator for 16 h and then maintained under normal pressure. The mixture was filtered through Celite, and the filtrate was concentrated by distillation under normal pressure and column chromatographed on silica gel using pentane as solvent to give 1.3 g (65% yield) of pure $\mathbf{9 2}$ along with 0.50 g of $\mathbf{9 2}$ and 134 (2:1). Compound 92: ${ }^{1} \mathrm{H}$ NMR $\delta 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.05(\mathrm{~m}, 7 \mathrm{H}), 0.95-0.90$ $(\mathrm{m}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 42.6,30.2,26.7,20.1$. MS (ESI, MeOH): m / z $=207.0\left([\mathrm{M}+\mathrm{K}]^{+}\right)$.
(2R,5S)-2,5-Diisopropylcyclohexanone (93) (BH7-100)

To a solution of 2 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1}(4.46 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 1.49 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.16 \mu \mathrm{~mol}$ of $\mathbf{1})$ were added 3 mL of acetonitrile, $0.10 \mathrm{~g}(0.60 \mathrm{mmol})$ of $\mathbf{9 2}$ and 3 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and the resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days. The solution was cooled to $25^{\circ} \mathrm{C}$ and extracted three times with diethyl ether (15 mL each). The combined extracts were washed with water and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluents to give 94 mg (87% yield) of $(2 R, 5 S)-93$ in 81% ee along with 7 mg (7% recovery) of $\mathbf{9 2}$. The optical purity was determined using HPLC/chiral column. Compound $(2 R, 5 S)-93: \quad[\alpha]_{\mathrm{D}}{ }^{22}=+12.1\left(\mathrm{c} 1.5, \mathrm{CHCl}_{3}\right) . \quad$ Lit. ${ }^{[101]}+14(\mathrm{c}$ 1.51, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR $\delta 2.38$ (ddd, $\left.\mathrm{J}=12,3.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.52$ (m, 3 H), 1.43-0.85 (m, 5 H), 1.01 (d, J = $7 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 213.0, 56.2, 46.5, 32.6, 28.8, 27.9, 25.9, 21.2, 19.6 (2 C), 18.6 (2 C). MS (ESI, MeOH): $m / z=205.1$ $\left([\mathrm{M}+\mathrm{Na}]^{+} ; 100 \%\right), 139.0$. The \% ee (81%) of $(1 R, 5 S)-93$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=14.5 \mathrm{~min}(2 R, 5 S$ enantiomer, major $), \mathrm{t}_{\mathrm{R}}=17.2 \mathrm{~min}(2 S, 5 R$ enantiomer, minor).

(R)-3-Hydroxy-3-isopropylcyclopentanone (97). (BH7-091)

From $90 \mathrm{mg}(0.70 \mathrm{mmol})$ of 1-isopropylcyclopentanol ($\mathbf{9 4}$), 2.4 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1}(5.27 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 1.75 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.19 \mu \mathrm{~mol}$ of $\mathbf{1}$), 2 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 7 days, $91 \mathrm{mg}\left(91 \%\right.$ yield) of $(R)-97$ in 92% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+13.7\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.41-2.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{Hs}), 2.30-2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5 \mathrm{H}), 2.07-1.80(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 5 \mathrm{H}, \mathrm{C} 4 \mathrm{Hs}, \&$ CHMe_{2}), 1.72-1.60 (m, $2 \mathrm{H}, \mathrm{C} 4 \mathrm{H} \& \mathrm{OH}$), $1.02(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H})$. The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR δ 205.9, 73.3, 53.6, 42.4, 32.5, 22.0, 16.7. MS (ESI, MeOH): $m / z=143.0\left([M+H]^{+}\right)$.. HRMS-Hexane Atmospheric

Pressure Chemical Ionization (HAPCI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$: 142.0994; found: 142.0049. The \% ee (92%) of (R)-97 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i$ - $\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=$ $23.5 \min \left(S\right.$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=27.5 \min (R$ enantiomer, major $)$.

(R)-3-Hydroxy-3-isopropylcyclohexanone (98) (BH7-098)

(R)-98

From $0.10 \mathrm{~g}(0.70 \mathrm{mmol})$ of 1-isopropylcyclohexanol (95), 2.4 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1}(5.27 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 1.75 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.19 \mu \mathrm{~mol}$ of $\mathbf{1}$), 2 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for

7 days, $0.107 \mathrm{~g}(98 \%$ yield $)$ of $(R)-98$ in 91.4% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+6.1\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}$ NMR $\delta 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 6 \mathrm{H}$). The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR $\delta 205.1,73.2,54.2,42.4,34.3,29.3,23.7,17.5 . \quad$ MS (ESI, MeOH): $m / z=157.3([\mathrm{M}+$ $\mathrm{H}]^{+}$). HRMS-Hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2}$: 157.1229 ; found: 157.1221 . The $\%$ ee (91.4%) of $(R)-56$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: 0.5 $\mathrm{mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.8 \mathrm{~min}(S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=24.7 \mathrm{~min}(R$ enantiomer, major).

Alternate synthetic route for $(\boldsymbol{R})-98$ to determine the absolutely configuration (S)-3-(t-Butyldimethylsilyloxy)cyclohexanone (126) (BH8-034)

(S)-126

To a solution of $40 \mathrm{mg}(0.35 \mathrm{mmol})$ of (S)-3-hydroxycyclohexanone ($\mathbf{3 8}$), $4 \mathrm{mg}(0.036 \mathrm{mmol})$ of 4-dimethylaminopyridine, and $0.10 \mathrm{~g}(1.0 \mathrm{mmol})$ of trimethylamine in 3 mL of dichloromethane at $0^{\circ} \mathrm{C}$ under argon, was added $77 \mathrm{mg}(0.51 \mathrm{mmol})$ of t-butyldimethylsilyl chloride. The solution was stirred for 4 h , diluted with 10 mL of water, and extracted three times with ethyl acetate (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel to give 28 mg (35% yield) of (S)-3-(t-butyldimethylsilyloxy)cyclohexanone (126) and 17 mg (49\% yield) of 2-cyclohexenone along with 4 mg (10% recovery) of starting 3-hydroxyketone 38. ${ }^{1} \mathrm{H}$ NMR $\delta 4.17-4.12(\mathrm{~m}, 1$ H), 2.62 (dd, J = 14, $4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dd, J = 14, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (t, J = 6.5 Hz, 2 H), 2.152.00 (m, 2 H), 1.82-1.65 (m, 2 H), 1.00 (s, 9 H), 0.38 (s, 6 H$)$.

(1R,3S)-3-(t-Butyldimethylsilyloxy)-1-isopropylcyclohexanone (127) (BH10-040)

(1R,3S)-127

To a mixture of $1.7 \mathrm{mg}(13 \mu \mathrm{~mol})$ of anhydrous ZnCl_{2} in 2 mL of dry THF under argon at $25^{\circ} \mathrm{C}$, was added a solution of 0.18 mmol of isopropylmagnesium bromide in 1 mL of THF, and the solution was stirred for 1 h and then cooled to $0^{\circ} \mathrm{C}$. To it, was added a solution of $28 \mathrm{mg}(0.12$ mmol) of (S)-126 in 0.5 mL of THF via cannula under argon and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water (10 mL),
extracted three times with ethyl acetate (20 mL each), and the combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give $23 \mathrm{mg}(70 \%$ yield of (1R,3S)-3-(t-butyldimethylsilyloxy)-1-isopropylcyclohexanone (127). No other stereoisomer was found. ${ }^{1} \mathrm{H}$ NMR $\delta 4.37(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.50(\mathrm{~m}, 8 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $0.91(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 73.3,66.2,37.5,35.6,33.1,26.2,23.9$ (3 C), 20.9, 18.6, 16.9 (2 C), -1.15 (2 C).
(1R,3S)-1-Isopropyl-1,3-cyclohexanediol (128) (BH8-046)

(1R,3S)-128
A solution of $14 \mathrm{mg}(52 \mu \mathrm{~mol})$ of the above $(1 R, 3 S)-127$ and $0.10 \mathrm{~mL}(0.10 \mathrm{mmol})$ of $n-\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF) in 0.5 mL of THF was stirred under argon at $0^{\circ} \mathrm{C}$ for 1 h and then at $25^{\circ} \mathrm{C}$ for 1.5 h . The solution was diluted with water (10 mL), and extracted three times with diethyl ether (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum to give 8.7 mg of ($1 R, 3 S$)-1-isopropyl-1,3-cyclohexanediol, which was used immediately in the following reaction without further purification.
(R)-3-Hydroxy-3-isopropylcyclohexanone (98) (BH8-046)

(R)-98

To a solution of 128 in 0.5 mL of DMSO was added $16 \mathrm{mg}(57 \mu \mathrm{~mol})$ of IBX under argon at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred for 14 h , filtered to remove white solid, and rinsed with 20 mL of diethyl ether. The ether filtrate was washed three times with water (10 mL each), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as eluent to give 7.6 mg (95% yield) of (R)-3-hydroxy-3-isopropylcyclohexanone (98). $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+6.4\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical those of $(R)-\mathbf{9 8}$ synthesized from the $\mathrm{Pd} / \mathrm{Au}-\mathbf{1}$ catalytic oxidation reaction.
(R)-3-Hydroxy-3-isopropylcycloheptanone (99). (BH7-096)

(R)-99

From $42 \mathrm{mg}(0.27 \mathrm{mmol})$ of 1-isopropylcycloheptanol (96), 0.92 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1}(2.0 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 0.65 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.074 \mu \mathrm{~mol}$ of $\mathbf{1}$), 1 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 7 days, $41 \mathrm{mg}(89 \%$ yield $)$ of $(R)-99$ in 93% ee. $[\alpha]_{D}{ }^{22}=+23.8\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 2.35$ (d, J = $2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 2 \mathrm{Hs}$), 2.16-2.18 (m, $2 \mathrm{H}, \mathrm{C} 7 \mathrm{Hs}$), 1.97-1.93 (m, $2 \mathrm{H}, \mathrm{C} 6 \mathrm{Hs}$), 1.90-
 (bs, $1 \mathrm{H}, \mathrm{OH}), 0.86(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 6 \mathrm{H})$. The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR δ 206.1, 74.4, 52.8, 41.6, 37.4, 33.9, 27.0, 21.0, 17.1 (2 C). MS (ESI, MeOH): $m / z=171.1\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-Hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2}$: 171.1385; found: 171.1381. The \% ee (93%) of (R)-99 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column,
n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=21.7 \mathrm{~min}$ $(S$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=25.8 \mathrm{~min}(R$ enantiomer, major $)$.

Alternate synthetic route for (\boldsymbol{R})-99 to determine the absolutely configuration (S)-3-(t-Butyldimethylsilyloxy)cycloheptanone (129) (BH8-044)

(S)-129

To a solution of $15 \mathrm{mg}(0.12 \mathrm{mmol})$ of (S)-3-hydroxycycloheptanone ($\mathbf{4 2}$), $1.5 \mathrm{mg}(0.012 \mathrm{mmol})$ of 4-dimethylaminopyridine, and $35 \mathrm{mg}(0.35 \mathrm{mmol})$ of trimethylamine in 1 mL of dichloromethane at $0^{\circ} \mathrm{C}$ under argon, was added $25 \mathrm{mg}(0.17 \mathrm{mmol})$ of t-butyldimethylsilyl chloride. The solution was stirred for 8 h , diluted with 10 mL of water, and extracted three
times with ethyl acetate (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel to give 19 mg (76% yield) of (S)-3-(t-butyldimethylsilyloxy)cycloheptanone and 3.2 mg (25% yield) of 2-cycloheptenone. The silyloxycycloheptanone was used in the following step without purification. (S)-3-(t-Butyldimethylsilyloxy)cycloheptanone: ${ }^{1} \mathrm{H}$ NMR $\delta 4.12-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2$ H), 2.55-2.40(m, 2 H$), 1.95-1.55(\mathrm{~m}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H})$.

(1R,3S)-3-(t-Butyldimethylsilyloxy)-1-isopropylcycloheptanone (130) (BH8-048)

(1R,3S)-130
To a mixture of $1.1 \mathrm{mg}(8 \mu \mathrm{~mol})$ of anhydrous ZnCl_{2} in 0.5 mL of dry THF under argon at $25^{\circ} \mathrm{C}$, was added a solution of 0.12 mmol of isopropylmagnesium bromide in 0.2 mL of THF, and the solution was stirred for 1 h and then cooled to $0^{\circ} \mathrm{C}$. To it, was added a solution of $19 \mathrm{mg}(0.078$ mmol) of (S)-3-(t-butyldimethylsilyloxy)cycloheptanone in 0.2 mL of THF via cannula under argon and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The solution was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and water $(10 \mathrm{~mL})$, extracted three times with ethyl acetate (10 mL each), and the combined extract was washed with brine, dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluent to give 14 mg (62% yield) of ($1 R, 3 S$)-3-(t-butyldimethylsilyloxy)-1-isopropylcycloheptanone (130). No other stereoisomer was found. ${ }^{1} \mathrm{H}$ NMR $\delta 4.42-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.35-$ $1.20(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}), 0.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 75.6,70.9,35.0$, 33.1, 30.6, 29.6, 25.8 (3 C), 25.5, 24.3, 20.0, 17.2 (2 C), -1.6 (2 C).
(1R,3S)-1-Isopropyl-1,3-cycloheptanediol (131) (BH8-050)

A solution of $7 \mathrm{mg}(24 \mu \mathrm{~mol})$ of the above $(1 R, 3 S)-130$ and $48 \mu \mathrm{~L}(48 \mu \mathrm{~mol})$ of $n-\mathrm{Bu}_{4} \mathrm{NF}(1 \mathrm{M}$ in THF) in 0.5 mL of THF was stirred under argon at $25^{\circ} \mathrm{C}$ for 2 h . The solution was diluted with water (10 mL), and extracted three times with diethyl ether (10 mL each). The combined extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under vacuum to give 4.2 mg of $(1 R, 3 S)$-1-isopropyl-1,3-cycloheptanediol, which was used immediately in the following reaction without further purification.
(R)-3-Hydroxy-3-isopropylcycloheptanone (99) (BH8-050)

(R)-99

To a solution of $\mathbf{1 3 1}$ in 0.5 mL of DMSO was added $8 \mathrm{mg}(26 \mu \mathrm{~mol})$ of IBX under argon at $25^{\circ} \mathrm{C}$. The resulting mixture was stirred for 14 h , filtered to remove white solid, and rinsed with 10 mL of diethyl ether. The ether filtrate was washed three times with water (10 mL each), dried (anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$), concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl acetate (1:2) as eluent to give $4.0 \mathrm{mg} \quad(96 \%$ yield) of (R)-3-hydroxy-3-isopropylcycloheptanone (99). $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+25.9\left(\mathrm{c} 0.20, \mathrm{CHCl}_{3}\right) . \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were identical those of 99 synthesized by the oxidation reaction from 1-isopropyl-1-cycloheptanol with $\mathrm{Pd} / \mathrm{Au}-1$ catalyst.

(R)-3-Hydroxy-3-(isopropenyl)cyclohexanone (101) (BH8-024)

(R)-101

From $70 \mathrm{mg}(0.50 \mathrm{mmol})$ of 1-isopropenylcyclohexanol (100), 1.7 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1) \mathbf{- 1}$ (3.75 $\mu \mathrm{mol}$ of $\mathrm{Cu} / 1.25 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.13 \mu \mathrm{~mol}$ of $\mathbf{1}$), 1.5 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$, and 1.5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ stirring at $50^{\circ} \mathrm{C}$ for 8 days, $76 \mathrm{mg}(98 \%$ yield $)$ of $(R)-101$ in 93% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+17.3\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\delta 5.07(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 4.95(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 2.35-2.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2$ Hs), 2.16-2.15 (m, 2 H, C6 Hs), 2.00-1.95 (m, 2 H, C4 Hs), 1.85 (s, 3 H), 1.85-1.7 (m, $2 \mathrm{H}, \mathrm{C} 5$ Hs), 1.7-1.55 (bs, $1 \mathrm{H}, \mathrm{OH}$). The proton NMR assignments were derived from 2D COSY spectrum. ${ }^{13} \mathrm{C}$ NMR $\delta 209.5,152.2,109.2,76.1,52.9,40.8,38.8,23.0,17.8 . \operatorname{MS}$ (ESI, $\mathrm{MeOH}): m / z=177.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-hexane Atmospheric Pressure Chemical Ionization (HAPCI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{2}$: 155.1072; found: 155.1088. The \% ee (93\%) of $(R)-101$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate: $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.8 \mathrm{~min}$ (S enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=24.9 \mathrm{~min}(R$ enantiomer, major $)$.

(1S,2R)-Ethyl 2-acetoxy-1-hydroxycyclopentanecarboxylate (102) (BH10-068)

$(1 S, 2 R)-102$
A solution of $20 \mathrm{mg}(0.12 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 1}, 12 \mathrm{mg}(0.11 \mathrm{mmol})$ of acetic anhydride and 9.1 $\mathrm{mg}(0.11 \mathrm{mmol})$ of pyridine in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred under argon for 12 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted twice with 10 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 24 mg (96% yield) of (1S,2R)-102. $[\alpha]^{22}{ }_{\mathrm{D}}=+125.6\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 5.09(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{q} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{bs}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 175.4,170.2,78.5,78.0,62.2,28.7,23.9,21.0,17.9,14.3 ;$ MS (ESI, MeOH): m/z $=239.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{5}{ }^{+}: 217.1076$, found: 217.1080.

$(1 S, 2 R)-103$
To a solution of $50 \mathrm{mg}(0.27 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 2}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon were added 27 $\mathrm{mg}(0.27 \mathrm{mmol})$ of acetic anhydride and $21 \mathrm{mg}(0.27 \mathrm{mmol})$ of pyridine. The solution was stirred for 6 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted twice with 10 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 26 mg (42% yield) of ($1 S, 2 R$)-103 and 19 mg (38% recovery) of $(1 S, 2 R)-\mathbf{8 2}$. $[\alpha]^{22}{ }_{\mathrm{D}}=+28.4\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.08(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q} J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.85(\mathrm{~b}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 8 \mathrm{H}), 1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 176.0$, $170.3,79.1,78.3,62.2,36.2,29.4,28.7,20.9,19.8,14.2 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=231.4([\mathrm{M}+$ $\mathrm{H}]^{+}$). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5}^{+}$: 231.1232, found: 231.1235.

(1S,2R)-Ethyl 2-acetoxy-1-hydroxycycloheptanecarboxylate (104) (BH9-034)

$(1 S, 2 R)-104$
To a solution of $48 \mathrm{mg}(0.24 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 3} \mathrm{in} 2 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 24 \mathrm{mg}(0.24 \mathrm{mmol})$ of acetic anhydride and $18 \mathrm{mg}(0.24 \mathrm{mmol})$ of pyridine were added. The reaction was stirred under argon for 3 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as an eluent
to give $26 \mathrm{mg}(45 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{1 0 4}$ and $24 \mathrm{mg}(50 \%$ recovery $)$ of $(1 S, 2 R)-\mathbf{8 3} . \quad[\alpha]^{22}{ }_{\mathrm{D}}=$ $+48.6\left(0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 5.07(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25$ $(\mathrm{b}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.55(\mathrm{~m}, 10 \mathrm{H}), 1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.9,169.9$, $78.6,78.0,62.3,35.6,28.6,27.3,23.3,21.4,21.2,14.3 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=267.1([\mathrm{M}+$ $\mathrm{Na}]^{+}$). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5}^{+}: 245.1389$, found: 245.1392 .
(1S,2R)-Ethyl 2-acetoxy-1-hydroxycyclooctanecarboxylate (105) (BH10-159)

$(1 S, 2 R)-105$
To a solution of $20 \mathrm{mg}(0.093 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 4}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 9.48 \mathrm{mg}(0.093 \mathrm{mmol})$ of acetic anhydride and $7.4 \mathrm{mg}(0.093 \mathrm{mmol})$ of pyridine were added. The reaction was stirred under argon for 5 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted three times with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ each. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ether as an eluent to give $17.6 \mathrm{mg}(74 \%$ yield $)$ of $(1 S, 2 R)-105 .[\alpha]^{22}{ }_{\mathrm{D}}=+16.2\left(0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ $5.03(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q} J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~b}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.55(\mathrm{~m}, 12 \mathrm{H})$, $1.25(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 175.4,170.9,78.6,77.8,62.3,30.4,28.9,28.6,26.1,23.8$, 21.0, 18.4, 14.1; MS (ESI, MeOH): m/z = $\left.281.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right).\right] ; \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5}^{+}: 259.1546$, found: 259.1550 .

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-26(0.69 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.23 \mu \mathrm{~mol}$ of Au , and $0.025 \mu \mathrm{~mol}$ of $\mathbf{2 6}$), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.092 \mathrm{mmol})$ of $(1 S, 2 R)-102$. The resulting solution was stired at $50^{\circ} \mathrm{C}$ for 3 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 17.7 mg (83% yield) of $(1 S, 2 S)$-106. $[\alpha]^{22}{ }_{\mathrm{D}}=+134.2\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 2 \mathrm{H}) 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 212.0$, 177.1, 173.1, 100.2, 76.4, 62.2, 27.6, 20.5, 17.6, 14.2; MS (ESI, MeOH): m/z = $231.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS-ESI: m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{6}{ }^{+}: 231.0869$, found: 231.0870.
(1S,2S)-Ethyl 2-acetoxy-1-hydroxy-3-oxocyclohexanecarboxylate (107) (BH10-037)

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(0.82 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.27 \mu \mathrm{~mol}$ of Au , and $0.030 \mu \mathrm{~mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $25 \mathrm{mg}(0.109 \mathrm{mmol})$ of $(1 S, 2 R)-103$. The resulting solution was stired at $50^{\circ} \mathrm{C}$ for 3 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 22 mg (83% yield) of ($1 S, 2 S$)-107. $[\alpha]^{22}{ }_{\mathrm{D}}=+20.2\left(0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~b}, 1 \mathrm{H})$,
2.52-2.48 (m, 2H), $1.96(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.72(\mathrm{~m}, 4 \mathrm{H}) 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 212.0$, $177.2,173.0,100.0,76.3,62.4,32.1,27.9,23.5,20.7,14.2 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=267.1$ ([M $+\mathrm{Na}]^{+}$). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{6}{ }^{+}: 245.1025$, found: 245.1031.

(1S,2S)-Ethyl 2-acetoxy-1-hydroxy-3-oxocycloheptanecarboxylate (108). (BH9-040)

$(1 S, 2 S)-108$
To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-26(0.80 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.26 \mu \mathrm{~mol}$ of Au , and $0.029 \mu \mathrm{~mol}$ of $\mathbf{2 6}$), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $26 \mathrm{mg}(0.107 \mathrm{mmol})$ of $(1 S, 2 R)-104$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 3 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 21 mg (76% yield) of $(1 S, 2 S)$-108. $[\alpha]^{22}{ }_{\mathrm{D}}=+18.6\left(0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.48(\mathrm{~b}, 1 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.54(\mathrm{~m}, 6 \mathrm{H}) 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.2,177.5,172.4,100.0,76.5,61.4,32.1,30.6,25.6,24.5,20.7,14.2$; MS (ESI, $\mathrm{MeOH}): \mathrm{m} / \mathrm{z}=281.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad \mathrm{HRMS}-\mathrm{ESI}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{6}{ }^{+}:$259.1182, found: 259.1176 .

(1S,2S)-109
To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(0.43 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.15 \mu \mathrm{~mol}$ of Au , and $0.016 \mu \mathrm{~mol}$ of $\mathbf{2 6}$), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $15 \mathrm{mg}(0.058 \mathrm{mmol})$ of $(1 S, 2 R)-105$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $13.2 \mathrm{mg}(83 \%$ yield) of $(1 S, 2 S) \mathbf{- 1 0 9}$ and recover $0.8 \mathrm{mg}\left(5.3 \%\right.$ yield) of $(1 S, 2 R)-\mathbf{1 0 5} . \quad[\alpha]^{22}{ }_{\mathrm{D}}=+43.8(0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $1.90-1.48(\mathrm{~m}, 8 \mathrm{H}) 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.8,177.5,173.7,100.2,76.4,62.2$, $34.4,32.2,26.8,25.3,23.7,21.3,14.2$; $\operatorname{MS}(E S I, M e O H): m / z=295.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{6}{ }^{+}:$273.1138, found: 273.1133.
(1S,2R)-Ethyl 1-hydroxy-2-(pivaloyloxy)cyclohexanecarboxylate (110) (BH10-140)

$(1 S, 2 R)-110$
To a solution of $50 \mathrm{mg}(0.27 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 2}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon were added 32 $\mathrm{mg}(0.27 \mathrm{mmol})$ of pivaloyl chloride and $21.3 \mathrm{mg}(0.27 \mathrm{mmol})$ of pyridine. The solution was stirred for 10 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted twice with 20 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an
eluent to give $57 \mathrm{mg}(80 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{1 1 0} .[\alpha]^{22}{ }_{\mathrm{D}}=+21.2\left(0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ $5.02(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.01-1.54(\mathrm{~m}, 8 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 1.26 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\delta 177.0,172.6,79.5,79.1,62.2,38.9,31.8,28.5,27.5,22.8,19.5$, 14.4; $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=273.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{5}{ }^{+}: 273.1702$, found: 273.1700 .

(1S,2R)-Ethyl 1-hydroxy-2-(pivaloyloxy)cycloheptanecarboxylate (111) (BH9-057)

$(1 S, 2 R)-111$
To a solution of $80 \mathrm{mg}(0.396 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 3}$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon were added $48 \mathrm{mg}(0.396 \mathrm{mmol})$ of pivaloyl chloride and $31.3 \mathrm{mg}(0.396 \mathrm{mmol})$ of pyridine. The solution was stirred for 15 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted twice with 20 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 39 mg (34% yield) of $(1 S, 2 R) \mathbf{- 1 1 1}$ and 42 mg (52% recovery) of $(1 S, 2 R) \mathbf{- 8 3}$. $[\alpha]^{22}{ }_{\mathrm{D}}=+14.6\left(0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.04(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.49(\mathrm{bs}, 1 \mathrm{H}), 1.92-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 176.9$, $172.6,79.4,79.3,62.2,38.7,32.1,28.9,27.3,26.4,24.7,21.1,14.2 ; \mathrm{MS}(E S I, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=$ $287.1\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{5}^{+}$: 287.1859, found: 287.1864.

(1S,2R)-112
To a solution of $40 \mathrm{mg}(0.185 \mathrm{mmol})$ of $(1 S, 2 R)-\mathbf{8 4}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon were added $22 \mathrm{mg}(0.185 \mathrm{mmol})$ of pivaloyl chloride and $14.6 \mathrm{mg}(0.185 \mathrm{mmol})$ of pyridine. The solution was stirred for 10 hours, acidified with $1 N \mathrm{HCl}$ to pH 5 , and extracted twice with 20 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 51 mgheld) of $(1 S, 2 R)-112 . \quad[\alpha]^{22}{ }_{\mathrm{D}}=+67.3\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.04(\mathrm{~d}, J$ $=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{bs}, 1 \mathrm{H}), 1.86-1.44(\mathrm{~m}, 12 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 176.5,172.2,79.5,79.0,62.2,39.1,31.8,30.0,29.3,28.5,25.5$, 22.9, 17.1, 14.4; MS (ESI, MeOH): m/z = $315.7\left([\mathrm{M}+\mathrm{H}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{5}^{+}: 315.2015$, found: 315.2017.

(1S,2R)-Ethyl 1-hydroxy-5-oxo-2-(pivaloyloxy)cyclohexanecarboxylate (113) (BH11-023)

$(1 S, 2 R)-113$
To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(2.05 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.69 \mu \mathrm{~mol}$ of Au , and $0.075 \mu \mathrm{~mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $15 \mathrm{mg}(0.055 \mathrm{mmol})$ of $(1 S, 2 R)-110$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 6 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 13.1 mg (83%
yield) of $(1 S, 2 S) \mathbf{- 1 1 3}$ and recover $1.1 \mathrm{mg}(7.2 \%$ yield $)$ of $(1 S, 2 R)-\mathbf{1 1 0} . \quad[\alpha]^{22}{ }_{\mathrm{D}}=+61.3(0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\quad \delta 4.25\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.62-3.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPv}), 2.71(\mathrm{dd}, J=$ $7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}$), 2.59 (dd, $J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.22(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; The proton NMR assignments were derived from 2D COSY spectrum; ${ }^{13} \mathrm{C}$ NMR $\delta 211.4,176.9,174.3,80.6$, $79.3,62.2,47.5,38.8,33.2,26.4,21.4,14.4 ; \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=309.4\left([\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{6}{ }^{+}: 287.1495$, found: 287.1501.

(1S,2R)-Ethyl 1-hydroxy-6-oxo-2-(pivaloyloxy)cycloheptanecarboxylate (114) (BH9-059)

To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(2.50 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.83 \mu \mathrm{~mol}$ of Au , and 0.09 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.066 \mathrm{mmol})$ of $(1 S, 2 R)-111$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 18.3 mg (87.5% yield) of $(1 S, 2 S)-113$ and recover $1.3 \mathrm{mg}(6.5 \%$ yield $)$ of $(1 S, 2 R)-111 . \quad[\alpha]^{22}{ }_{\mathrm{D}}=+16.4\left(0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.25\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.82-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOPv}), 2.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, CHC=O), $2.60(\mathrm{~d}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}), 2.37-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.51$ $(\mathrm{s}, 9 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; The proton NMR assignments were derived from 2D COSY spectrum; ${ }^{13} \mathrm{C}$ NMR $\delta 210.4,176.9,173.1, ~ 80.2,79.3,62.1,46.5,43.5,38.7,27.4,26.5$ 21.2, 14.0; $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=323.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{6}{ }^{+}: 301.1651$, found: 301.1651 .

(1S,2R)-Ethyl 1-hydroxy-7-oxo-2-(pivaloyloxy)cyclooctanecarboxylate (115) (BH11-025)

To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(1.9 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 0.63 \mu \mathrm{~mol}$ of Au , and 0.069 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $15 \mathrm{mg}(0.05 \mathrm{mmol})$ of $(1 S, 2 R)-112$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 14.1 mg (90% yield) of $(1 S, 2 S)-115 .[\alpha]^{22}{ }_{\mathrm{D}}=+21.7\left(0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.40(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 4.24(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.76-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.46-2.23 (m, 3H), 2.10-1.96 (m, 2H), 1.76-1.72 (m, 3H), $1.51(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; The proton NMR assignments were derived from 2D COSY spectrum; ${ }^{13} \mathrm{C}$ NMR $\delta 210.2,176.9,172.9,80.6,79.1,62.1,41.6,40.6,38.7,33.5,27.4,24.7,21.2,14.3 ; \quad$ MS (ESI, $\mathrm{MeOH}): \mathrm{m} / \mathrm{z}=337.7\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ; \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{6}{ }^{+}: 315.1808$, found: 315.1807.
(S)-2-Oxocyclohexyl acetate (121) (BH10-135)

(S)-121

To an aqueous solution of 5 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(7.0 \mu \mathrm{~mol} \mathrm{of} \mathrm{Cu}, 2.3 \mu \mathrm{~mol}$ of Au , and 0.132 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $30 \mathrm{mg}(0.188 \mathrm{mmol})$ of 116. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $30.7 \mathrm{mg}(94 \%$ yield $)$ of $(S) \mathbf{- 1 2 1} . \quad[\alpha]_{\mathrm{D}}{ }^{22}=$ -80.4 (c 1.2, MeOH); Lit. ${ }^{[103]}[\alpha]_{\mathrm{D}}{ }^{22}=+75.8$ (c 1.2, MeOH for 88% ee R configuration); ${ }^{1} \mathrm{H}$ NMR : $\delta 5.17(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.89(\mathrm{~m}, 3 \mathrm{H})$, 1.66-1.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $: \delta=204.2,170.3,76.3,40.1,32.7,26.9,23.2,20.1$; MS (ESI, $\mathrm{MeOH}): \mathrm{m} / \mathrm{z}=179.5\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; The \% ee (94%) of $(S)-121$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=21.9 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-N-(2-Oxocyclopentyl)acetamide (122) (BH12-095)

(S)-122

To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(6.7 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 2.2 \mu \mathrm{~mol}$ of Au , and 0.132 $\mu \mathrm{mol}$ of 26), were added 0.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $22.5 \mathrm{mg}(0.178 \mathrm{mmol})$ of 117. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 10 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 17.5 mg (76% yield) of (S) $\mathbf{- 1 2 2}$ and recover $3.8 \mathrm{mg}(16.9 \%$ yield $)$ of 117. $[\alpha]_{\mathrm{D}}{ }^{22}=-41.6\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.62-4.51(\mathrm{~m}$, $1 \mathrm{H}), 4.11(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 2.68-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.75(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 210.2$, $170.5,60.5,32.3,23.3,14.2,12.9$; HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{2}{ }^{+}: 142.0868$, found: 142.0861 . The $\%$ ee (92%) of $(S) \mathbf{- 1 2 2}$ was determined by HPCL using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=28.6 \mathrm{~min}\left(\mathrm{R}\right.$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=31.0 \mathrm{~min}(\mathrm{~S}$ enantiomer, major).

(S)-N-(2-Oxocyclohexyl)acetamide (123) (BH10-099)

(S)-123

To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(13.4 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 4.5 \mu \mathrm{~mol}$ of Au , and 0.263 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $50 \mathrm{mg}(0.357 \mathrm{mmol})$ of 118. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 39.2 mg (72% yield) of $(S) \mathbf{- 1 2 3}$ and recover $8.6 \mathrm{mg}(17.2 \%$ yield $)$ of 118. $[\alpha]_{\mathrm{D}}{ }^{22}=-62.4\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{[104]} \delta 5.90(\mathrm{bs}, 1 \mathrm{H}$,

NH), 4.51-4.44 (m, 1H), 2.70-2.35 (m, 3H), 2.19-2.11 (m, 1H), 2.02 (s, 3H), 1.95-1.79 (m, 2H), 1.75-1.66 (m, 1H), 1.35-1.26 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 209.9,171.4,60.0,43.0,37.4,30.0,25.4,25.0$; The \% ee (93\%) of (S)- $\mathbf{1 2 3}$ was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ i-\mathrm{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=26.1 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=29.5 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-2-Aminocyclohexanone (132) (BH10-133)

(S)-132

A solution of $15.5 \mathrm{mg}(0.1 \mathrm{mmol})$ of $\mathbf{1 2 3}$ in 1 mL of hydrazine was heated to $70^{\circ} \mathrm{C}$ under argon for 12 hours until no starting material remaining. The resulting solution was purified by
column chromatography on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $11.4 \mathrm{mg}(99 \%$ yield $)$ of (S)-132. $[\alpha]_{\mathrm{D}}{ }^{22}=-71.3\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) \mathrm{Lit} .^{[103]}[\alpha]_{\mathrm{D}}{ }^{22}=$ +68.1 (c $0.5, \mathrm{CHCl}_{3}$ for R configuration); ${ }^{1} \mathrm{H}$ NMR : $\delta 3.35-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.12(\mathrm{~m}, 3 \mathrm{H})$, $1.96-1.50(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : 8209.3, 57.7, 38.7, 27.6, 26.7, 20.8; MS (ESI, MeOH): m/z = 114 $\left([M+H]^{+}\right)$.

(S)-N-(2-Oxocycloheptyl)acetamide (124) (BH12-097)

(S)-124

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(6.7 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 2.2 \mu \mathrm{~mol}$ of Au , and 0.132 $\mu \mathrm{mol}$ of 26), were added 0.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $27.5 \mathrm{mg}(0.178 \mathrm{mmol})$ of 119. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 10 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 25.6 mg (84% yield) of (S) - $\mathbf{1 2 4}$ and recover $2 \mathrm{mg}(7.3 \%$ yield $)$ of 119. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-127.2\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}^{[104]}: \delta 6.25(\mathrm{br}, 1 \mathrm{H})$, 4.69-4.59 (m, 1H), 2.71-2.41 (m, 2H), 2.14-2.05 (m, 1H), $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.67(\mathrm{~m}, 5 \mathrm{H})$, $1.50-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 210.4,169.5,59.0,41.6,32.9,29.1,27.6,23.4$, 23.2. The \% ee (93%) of (S)-124 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane/i- $\mathrm{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=$ $24.2 \min \left(\mathrm{R}\right.$ enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=28.0 \mathrm{~min}(\mathrm{~S}$ enantiomer, major $)$.

(S)-Ethyl 3-oxocyclohexanecarboxylate (125) (BH10-122)

(S) $\mathbf{- 1 2 5}$

To an aqueous solution of 8 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-26(20.5 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 6.8 \mu \mathrm{~mol}$ of Au , and $0.383 \mu \mathrm{~mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 3 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $80 \mathrm{mg}(0.548 \mathrm{mmol})$ of 120. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $76.9 \mathrm{mg}(88 \%$ yield $)$ of $(S) \mathbf{- 1 2 5} . \quad[\alpha]_{\mathrm{D}}{ }^{22}=$ $+2.62(\mathrm{c} 1.61, \mathrm{MeOH}) \mathrm{Lit}^{[105]}[\alpha]_{\mathrm{D}}{ }^{22}=+2.7(\mathrm{c} 1.6, \mathrm{MeOH}, 96 \%$ ee $)$ The $\% e e(93 \%)$ of $(S)-46$ was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=95: 5$, flow
rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=32.4 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=35.2$ $\min \left(S\right.$ enantiomer, major); ${ }^{1} \mathrm{H}$ NMR : $\delta 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.58$ $(\mathrm{m}, 2 \mathrm{H}), 2.78-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 209.3,173.7,61.1,43.2,43.1,40.9,27.6,24.3,14.3 ;$ MS (ESI, MeOH): m/z $=193.2$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

2.6.6 Procedures and Analysis Results for Oxidative Ring Closing Reaction of

Dienes.

(S)-5-(3-Butenyl)-5-phenyl-dihydrofuran-2(3H)-one (200) (BH10-021)

(S)-200

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(3.7 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 1.2 \mu \mathrm{~mol}$ of Au , and 0.13 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $25 \mathrm{mg}(0.116 \mathrm{mmol})$ of 5-phenylnona-1,8-dien-5-ol (195). The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 3 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 10 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 35.3 mg (71% yield) of (S)-200 in 96\% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-14.6\left(0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.84-$ $5.74(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.79(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.2,142.3,138.9,127.2,126.2,125.1,115.4,92.2,40.1,34.4,32.2,28.1$; MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=217.1\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}$: 217.1229, found: 217.1227. The \% ee (96\%) of (S) - $\mathbf{2 0 0}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\operatorname{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 254 nm wavelength; $\mathrm{t}_{\mathrm{R}}=22.2 \mathrm{~min}(R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-5-(3-Hydroxypropyl)-5-phenyl-dihydrofuran-2(3H)-one (211) (BH11-056)

(S) $\mathbf{- 2 1 1}$

To 6 mL of methylene chloride, ozone was bubbled into it under $-78^{\circ} \mathrm{C}$ for 3 minutes and gave a blue solution. To it, 19 mg of $\mathbf{2 0 0}(0.0879 \mathrm{mmol})$ was added and stir for 5 minutes under -78 ${ }^{\circ} \mathrm{C}$ until no starting material remaining. After the ozone evaporates, $6.7 \mathrm{mg}(0.176 \mathrm{mmol})$ of NaBH_{4} was added, the mixture was warmed up to room temperature and stirred for 1 hour under Ar. The reaction was quenched by 2 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted three times with 20 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 13 mg (67% yield) of 211. $[\alpha]_{D}{ }^{22}=-143.1$
($\left.0.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 2 \mathrm{H})$, 2.10-1.52 (m, 7H); ${ }^{13} \mathrm{C}$ NMR δ 175.1, 142.3, 127.2, 126.2, 125.1, 92.2, 34.3, 33.0, 28.6, 28.0; MS (ESI, MeOH): m/z = $243.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(S)-3-(5-Oxo-2-phenyl-tetrahydrofuran-2-yl)propyl methanesulfonate (212) (BH11-062)

(S)-212

To a mixture of $211(13 \mathrm{mg}, 0.059 \mathrm{mmol})$ and dry triethylamine ($6.6 \mathrm{mg}, 0.065 \mathrm{mmol}$) in 1 mL of dry dichloromethane under argon, methanesulfonyl chloride ($15.4 \mathrm{mg}, 0.135 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 hours at room temperature, quenched with 0.5 mL of water and extracted with methylene chloride (3 x 10 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum to give $17 \mathrm{mg}(96.5 \%$ yield) 212. The residue was used in the subsequent step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.13-4.02(\mathrm{~m}, 2 \mathrm{H})$, $2.95(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.52(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 175.4, 142.3, 127.1, 125.7, $124.6,91.9,71.7,35.7,32.9,27.66,26.8,21.6 ; \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=299.1\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
(S)-5-Phenyl-5-propyl-dihydrofuran-2(3H)-one (213) (BH11-063)

(S)-213

To a mixture of $212(17 \mathrm{mg}, 0.057 \mathrm{mmol})$ and t-BuOH ($21 \mathrm{mg}, 0.285 \mathrm{mmol}$) in 1 mL 1,2-dimethoxyethane, $\mathrm{NaBH}_{4}(6.4 \mathrm{mg}, 0.171 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The reaction solution
was stirred for 30 minutes at room temperature, heated to reflux overnight, quenched with 15 mL of water and extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrated under vacuum and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $8.4 \mathrm{mg}\left(72 \%\right.$ yield) 213. $[\alpha]_{\mathrm{D}}{ }^{22}=-42.1(\mathrm{cc} 0.02, \mathrm{MeOH})$, Lit. ${ }^{[118]}-33.0(\mathrm{c} 0.01, \mathrm{MeOH}$ for (S)-58C with 74\%ee); ${ }^{1} \mathrm{H}$ NMR $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H})$, $1.34-1.25(\mathrm{~m}, 1 \mathrm{H}) 1.08-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.3,143.5,128.7$, 127.7, 125.0, 90.0, 45.1, 35.5, 29.1, 17.6, 14.3; MS (ESI, MeOH): m/z = $205.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-4-Allyl-4-phenyloxetan-2-one (201) (BH10-053)

(S)-201

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(3.9 \mu \mathrm{~mol} \mathrm{of} \mathrm{Cu}, 1.3 \mu \mathrm{~mol}$ of Au , and 0.073 $\mu \mathrm{mol}$ of $\mathbf{2 6}$), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 8 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN} 15 \mathrm{~mL}$ of water and $25 \mathrm{mg}(0.133$ mmol) of 4-phenylhepta-1,6-dien-4-ol (196). The resulting solution was heated to $60^{\circ} \mathrm{C}$ for 6 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 10 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $10.9 \mathrm{mg}(44 \%$ yield $)$ of (S)-201 in 92% ee and $7.3 \mathrm{mg}(29 \%$ recovery $)$ of 196. $[\alpha]_{D}{ }^{22}=$ $-16.8\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 7.43-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, $4.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=14$, $6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 2.52(\mathrm{dd}, \quad J \quad=\quad 14, \quad 6.4 \mathrm{~Hz}, \quad 1 \mathrm{H}) ; \quad{ }^{13} \mathrm{C} \quad \mathrm{NMR}$ $\delta 174.9,142.9,138.9,127.3,126.3,125.2,115.5,92.8,43.7,37.6 ;$ MS (ESI, MeOH$): \mathrm{m} / \mathrm{z}=$ $189.1\left([\mathrm{M}+\mathrm{H}]^{+}\right) ; \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}$: 189.0916, found: 189.0918.

The \% ee (92\%) of (S)-201 was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ \mathrm{i}-\mathrm{PrOH}=95: 5$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 254 nm wavelength; $\mathrm{t}_{\mathrm{R}}=24.3 \mathrm{~min}(R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=27.0 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-Ethyl 2-(but-3-enyl)-5-oxo-tetrahydrofuran-2-carboxylate (202). (BH11-051)

(S)-202

To an aqueous solution of 5 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(2.9 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 1.0 \mu \mathrm{~mol}$ of Au , and 0.11 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 5 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.095 \mathrm{mmol})$ of ethyl 2-(but-3-enyl)-2-hydroxyhex-5-enoate (197). The resulting solution was heated to $50{ }^{\circ} \mathrm{C}$ for 3 days, and extracted three times with 10 mL each of ethyl acetate. The combined extracts were
washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $16.7 \mathrm{mg}(84 \%$ yield) of (S)-202 in 93% ee and recovered $0.6 \mathrm{mg}(3 \%$ yield $) . \quad[\alpha]_{\mathrm{D}}{ }^{22}=+35.7\left(0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.85-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=12,6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~m}, J=9.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.4,174.9,138.9,115.4,97.6,61.5,40.1,34.4,30.2,23.8,14.9 ;$ MS (ESI, MeOH): m/z = $234.0\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4}^{+}: 213.1127$, found: 213.1127 . The \% ee (93\%) of (S)-202 was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n -hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}$ (R enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=23.1 \min (S$ enantiomer, major).

(S)-Ethyl 2-allyl-4-oxooxetane-2-carboxylate (203) (BH11-013)

(S)-203

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(3.4 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 1.4 \mu \mathrm{~mol}$ of Au , and 0.13 $\mu \mathrm{mol}$ of 26), were added 2 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 3 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.115 \mathrm{mmol})$ of ethyl 2-allyl-2-hydroxypent-4-enoate (198). The resulting solution was stirred to $50^{\circ} \mathrm{C}$ for 7 days, and extracted three times with 15 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 6.2 mg (33% yield) of (S)-203 in 93% ee and $1 \mathrm{mg}(5 \%$ recovery $)$ of 198. $[\alpha]_{\mathrm{D}}{ }^{22}=+28.9\left(0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.83-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=$ 7.2 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 176.9,173.3,137.7,115.3,86.6,61.4,40.2,25.8,14.8$; MS (ESI, $\mathrm{MeOH}): \mathrm{m} / \mathrm{z}=207.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right) ; \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}{ }^{+}:$185.0814, found: 185.0811. The \% ee (93\%) of (S)-203 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=22.3 \min (R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=25.1 \mathrm{~min}(S$ enantiomer, major $)$.

Ethyl 2-hydroxy-2-(pent-4-enyl)hept-6-enoate.(199) (BH11-045)

199
To a suspension of $70.88 \mathrm{mg}(2.95 \mathrm{mmol}) \mathrm{Mg}$ in 5 mL anhydrous THF, $100 \mathrm{mg}(0.671 \mathrm{mmol})$ of 5-bromopent-1-ene was added and heated with heat gun to initiate the reaction. To it, 300 mg (2.031 mmol) of 5-bromopent-1-ene was added and heated to $50{ }^{\circ} \mathrm{C}$ under argon until no Mg remaining. $111.1 \mathrm{mg}(1.61 \mathrm{mmol})$ of diethyl oxalate in 5 mL of anhydrous THF was dropwise cannulated into the Grignard reagent under $-78^{\circ} \mathrm{C}$, stirred at room temperature for 3 hours, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted three times of 30 mL each of methylene chloride and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 112 mg (35% yield) of the titled compound. ${ }^{1} \mathrm{H}$ NMR $\delta 5.74$ (m, 2H), 4.96 (dd, $J=17.21 .6 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 4 \mathrm{H})$,
$1.75-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.5,138.4,114.8,79.6,61.0,43.0$, 35.8, 24.2, 14.5; MS (ESI, MeOH): m/z = 267.1 ([M + Na]+).
(S)-ethyl 6-oxo-2-(pent-4-enyl)-tetrahydro-2H-pyran-2-carboxylate (204). (BH11-049)

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(4.8 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 1.6 \mu \mathrm{~mol}$ of Au , and 0.17 $\mu \mathrm{mol}$ of 26), were added 2 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $40 \mathrm{mg}(0.0845 \mathrm{mmol})$ of ethyl 2-hydroxy-2-(pent-4-enyl)hept-6-enoate (199). The resulting solution was heated to $50{ }^{\circ} \mathrm{C}$ for 6 days, and extracted three times with 25 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 33 mg (83% yield) of (S)-204 in 93\% ee and recovered $2 \mathrm{mg}\left(6 \%\right.$ yield) of 199. $[\alpha]_{D}{ }^{22}=$ $+17.5\left(0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR} \quad \delta 5.84-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\quad \delta 177.7,174.7,138.9,115.4,89.0,61.4,37.5,34.4,32.9,29.3,24.9,23.8,14.8 ;$ MS (ESI, MeOH): $\mathrm{m} / \mathrm{z}=235.0\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{+}$: 241.1440, found: 241.1440. The \% ee (93\%) of (S)-204 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ \mathrm{i}-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=18.6 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=22.0 \min (S$ enantiomer, major $)$.

(S)-Ethyl 2-(but-3-enyl)-5-oxopyrrolidine-2-carboxylate (208). (BH10-051)

(S)-208

To an aqueous solution of 15 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(21.3 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 7.1 \mu \mathrm{~mol}$ of Au , and 0.7 $\mu \mathrm{mol}$ of 26), were added 5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 5 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and 150 mg (0.711 mmol) of ethyl 2-amino-2-(but-3-enyl)hex-5-enoate (205). The resulting solution was stirred to $50^{\circ} \mathrm{C}$ for 3 days, cooled to room temperature, and extracted three times with 40 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $126 \mathrm{mg}(84 \%$ yield $)$ of $(\mathbf{S})-\mathbf{2 0 8}$ in 95% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+18.6(0.2$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.18(\mathrm{bs}, \mathrm{NH}), 5.83-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=$
$9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 176.9,173.5,138.1,115.3,61.6,27.0,40.1,36.7,33.4,23.2,14.8$; MS (ESI, MeOH): m/z = $234.6\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}{ }^{+}:$ 212.1287, found: 212.1288. The \% ee (95%) of (S)-208 was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=19.6 \min (R$ enantiomer, minor $), \mathrm{t}_{\mathrm{R}}=22.2 \min (S$ enantiomer, major $)$.

(S)-Ethyl 2-allyl-4-oxoazetidine-2-carboxylate (209). (BH11-060)

(S)-209

To an aqueous solution of 2 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(3.2 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 1.0 \mu \mathrm{~mol}$ of Au , and 0.06 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.1093 \mathrm{mmol})$ of ethyl 2-allyl-2-aminopent-4-enoate (206). The resulting solution was heated to $50^{\circ} \mathrm{C}$ for 7 days, and extracted three times with 20 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 12.8 mg (64% yield) of (S)-209 in 92% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+33.7\left(0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.28(\mathrm{bs}, 1 \mathrm{H}), 5.80-5.70$ (m, 1H), $5.16(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.12$ $(\mathrm{m}, 2 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.0,173.3,137.7,115.3,61.8,57.0,38.4,24.3,14.0 ; \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=206.2([\mathrm{M}+$ $\left.\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}: 184.0974$, found: 184.0963. The $\%$ ee (92%) of (S)-209 was determined by HPLC using chiral column, Chiralpak AD(-H) column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: 0.46 cm x 25 cm , from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=20.9 \mathrm{~min}$ (R enantiomer, minor), $\mathrm{t}_{\mathrm{R}}=24.1 \mathrm{~min}(S$ enantiomer, major $)$.

(S)-Ethyl 6-oxo-2-(pent-4-enyl)piperidine-2-carboxylate (210) (BH11-037)

(S)-210

To an aqueous solution of 2 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(2.5 \mu \mathrm{~mol} \mathrm{of} \mathrm{Cu}, 0.8 \mu \mathrm{~mol}$ of Au , and 0.046 $\mu \mathrm{mol}$ of 26), were added 1 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 5 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $20 \mathrm{mg}(0.0845 \mathrm{mmol})$ ethyl 2-amino-2-(pent-4-enyl)hept-6-enoate (207). The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 5 days, cooled to room temperature, and extracted three times with 15 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $18.6 \mathrm{mg}(93 \%$ yield $)$ of $(\boldsymbol{S})-210$ in 94% ee. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=+48.7(0.5$,
$\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 5.79-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{td}, J=10.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}) 1.77-1.37(\mathrm{~m}, 10 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\quad \delta 177.9,172.4,138.9,116.4,61.4,56.5,39.0,34.4,31.1,27.0,23.5,22.8,14.8 ;$ MS (ESI, MeOH): m/z = $262.2\left([\mathrm{M}+\mathrm{Na}]^{+}\right) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+}$: 240.1660, found: 240.1651. The \% ee (94%) of (S) - $\mathbf{2 1 0}$ was determined by HPLC using chiral column, Chiralpak $\mathrm{AD}(-\mathrm{H})$ column [Chiralpak $\mathrm{AD}(-\mathrm{H})$ column, size: $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$, from Daicel Chemical Industries], n-hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$, detected at 220 nm wavelength; $\mathrm{t}_{\mathrm{R}}=21.2 \min (R$ enantiomer, $\operatorname{minor}), \mathrm{t}_{\mathrm{R}}=24.5 \min (S$ enantiomer, major $)$.

(S)-Ethyl 2-(3-hydroxypropyl)-5-oxopyrrolidine-2-carboxylate (214) (BH11-019)

(S)-214

To a solution of 12 mL of methylene chloride under argon at $-78^{\circ} \mathrm{C}$, ozone was bubbled into it for 3 minutes while the argon was turned off, to give a blue solution. To it, 35 mg of $\mathbf{2 0 8}$ (0.167 mmol) was added and stirred for 15 minutes at $-78{ }^{\circ} \mathrm{C}$ (until no starting material remaining). The remaining ozone was evaporated by introducing argon into the system for 10 minutes. To it, $12.6 \mathrm{mg}(0.33 \mathrm{mmol})$ of NaBH_{4} and 0.5 mL of methanol were added, and the solution was warmed up to room temperature and stirred for 1 hour. The reaction was quenched by 2 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted three times with 40 mL each of methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $26.2 \mathrm{mg}(75 \%$ yield $)$ of 214. $[\alpha]_{\mathrm{D}}{ }^{22}=+31.7(0.05$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\quad \delta 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.25-1.62$ $(\mathrm{m}, 8 \mathrm{H}), 1.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.0,173.4,65.8,62.6,61.6,35.0,29.6,27.2$, 24.1, 14.8; \quad MS (ESI, MeOH$): \mathrm{m} / \mathrm{z}=216.3\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

(S)-Ethyl 2-(3-(methylsulfonyloxy)propyl)-5-oxopyrrolidine-2-carboxylate (215)

 (BH11-021)
(S)-215

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $214(26 \mathrm{mg}, 0.123 \mathrm{mmol})$ and triethylamine $(13.6 \mathrm{mg}, 0.135 \mathrm{mmol})$ in 2 mL of dichloromethane under argon was added methanesulfonyl chloride ($15.4 \mathrm{mg}, 0.135$ mmol) dropwise. The reaction solution was stirred for 8 hours at room temperature, diluted with 0.5 mL of water and extracted with methylene chloride (3 x 10 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, and concentrated on a rotary evaporator and then under vacuum to give 29 mg (80.4% yield) $\mathbf{2 1 5}$. The residue was
used in the subsequent step without further purification. $[\alpha]_{\mathrm{D}}{ }^{22}=+131.6\left(0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.22(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-3.85(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.64(\mathrm{~m}$, $8 \mathrm{H}), 1.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.0,173.4,70.0,65.9,61.6,37.9,35.0,29.9,26.1$, 20.5, 14.9; MS (ESI, MeOH): m/z $=316.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(S)-Ethyl 3-oxo-hexahydro-1H-pyrrolizine-7a-carboxylate (216) (BH11-027)

(S)-216

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $29 \mathrm{mg}(0.099 \mathrm{mmol})$ of 215 in 2 mL distilled THF under argon was added $\mathrm{NaH}(2.5 \mathrm{mg}, 0.104 \mathrm{mmol})$, and the solution was stirred at room temperature for 3 hour, quenched with 0.5 mL of water, and extracted with methylene chloride (3 x 10 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, concentrated under vacuum, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give $16 \mathrm{mg}(78 \%$ yield $)$ of 216. $[\alpha]_{D}{ }^{22}=-41.6(0.05$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.4,173.4$, 67.7, 61.6, 43.2, 42.4, 32.2, 27.2, 20.0, 14.8; MS (ESI, MeOH): m/z = $220.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(2S,7aS)-Ethyl 2-hydroxy-3-oxo-hexahydro-1H-pyrrolizine-7a-carboxylate (217)

(BH11-053)

(2S,7aS)-217
To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of $0.11 \mathrm{~mL}(\underset{191}{(1.05 \mathrm{mmol})}$ of diisopropylamine in 5 mL distilled THF
under argon was added 1 mL of $n-\mathrm{BuLi}$ (1 M in hexanes). The resulting solution was warmed up to room temperature and stirred for 1 hour to give a LDA solution. To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of 216 ($19 \mathrm{mg}, 0.096 \mathrm{mmol}$) in 1 mL of distilled THF under argon, 0.6 mL of LDA solution was added dropwise and stirred at room temperature for 30 minutes. To 62.5 mg (0.144 mmol) of MoOPH at $-30^{\circ} \mathrm{C}$ under argon was added the above anion solution via cannula, and the solution was stirred for 40 minutes, warmed to room temperature, diluted with 2 mL of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, and extracted with ethyl acetate (3 x 10 mL). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate, concentrated to dryness, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 11.7 mg (57% yield) of ($\mathbf{2 S}, \mathbf{7 a S}$) $\mathbf{- 2 1 7}$ and $1.6 \mathrm{mg}(7.8 \%$ yied) of (2R,7aS)-217. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-8.9\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H}$ NMR $\delta 5.91(\mathrm{~b}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $6.8,1 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.98(\mathrm{~m}, 2 \mathrm{H})$, $1.62(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.4,173.7,74.1,72.2,61.6,41.0,39.9,36.0$, $25.5,14.9 ; \mathrm{m} / \mathrm{z}=236.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
(2S,7aS)-Methyl 2-hydroxy-3-oxo-hexahydro-1H-pyrrolizine-7a-carboxylate (218) (BH11-067)

(2S,7aS)-218

To a solution of ($11.5 \mathrm{mg}, 0.054 \mathrm{mmol}) 217(11.5 \mathrm{mg}, 0.054 \mathrm{mmol})$ in 2 mL of distilled MeOH under argon was added 1 mg of MeONa , and the solution was stirred at room temperature for 8 hours, concentrated on a rotary evaporator, and diluted with 20 mL of methylene chloride. The solution was washed with 5 mL of water, and 5 mL of brine, dried over anhydrous sodium
sulfate, concentrated under vacuum, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 4.2 mg (37% yield) of $\mathbf{2 1 8}$ and 4.8 mg (41% recovery) of 217. Compound 218: $[\alpha]_{\mathrm{D}}{ }^{22}=-10.2\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right)$, Lit. ${ }^{[120]}-10.2\left(\mathrm{c} 0.88, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 4.95(\mathrm{bs}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=6.8,1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dt}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ $(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.4,173.8,74.1,72.2,52.8,41.2$, $39.8,36.0,25.5 ; \mathrm{m} / \mathrm{z}=222.1\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

2.6.7 Procedures and Analysis Results for Late-stage C-H Oxidation of Complex Molecules.

13-Oxo-oxymatrine \boldsymbol{N}-oxide (230) (BH11-088)

To an aqueous solution of 6 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(41.6 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 13.9 \mu \mathrm{~mol}$ of Au , and 0.76 $\mu \mathrm{mol}$ of 26), were added 3 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $49 \mathrm{mg}(0.185 \mathrm{mmol})$ of oximatrine N-oxide (229). The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 31 mg (60% yield) of 230 and recover $16.3 \mathrm{mg}\left(33.3 \%\right.$ yield) of 229. $[\alpha]_{\mathrm{D}}{ }^{22}=+14.6(\mathrm{c} 0.2, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.15-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=12,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.25$ $(\mathrm{m}, 2 \mathrm{H}), 3.22-3.02(\mathrm{~m}, 5 \mathrm{H}), 2.82-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$,
2.10-2.04 (m, 1H), 1.89-1.48 (m, 7H); ${ }^{13} \mathrm{C}_{\mathrm{NMR}}{ }^{[132]} \delta 210.1,169.1,69.1,68.3,66.6,52.3$, $45.2,43.3,42.0,41.5,34.5,26.0,24.4,17.3,17.0$; $\mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): \mathrm{m} / \mathrm{z}=301.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}: 279.1709$, found: 279.1714. The ${ }^{13} \mathrm{C}$ NMR data is in agreement with that reported ${ }^{[132]}$ and the structure was further verified by NMR 2D COSY experiment.

Sclareolide (232) \& (2S)-2-Hydroxysclareolide (233). (BH11-086)

232

233

To an aqueous solution of 8 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(15.9 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 5.3 \mu \mathrm{~mol}$ of Au , and 0.30 $\mu \mathrm{mol}$ of 26), were added 2 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $100 \mathrm{mg}(0.423 \mathrm{mmol})$ of ambroxide 231. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 5 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 78.3 mg (73.9% yield) of $\mathbf{2 3 2}, 6.7 \mathrm{mg}$ (5.9% yield) of $\mathbf{2 3 3}$ and recover 3.2 mg (3.2% yield) of 231. 232: ${ }^{1} \mathrm{H}$ NMR $\delta 3.39(\mathrm{dd}, J=14.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, \mathrm{J}=16.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dt}, \mathrm{J}=12,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95(\mathrm{dd}, \mathrm{J}=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.058(\mathrm{dd}, \mathrm{J}=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.82$ (s, 3 H) ${ }^{13}{ }^{3} \mathrm{C}$ NMR $\delta \quad 86.6,59.3,56.8,42.4,39.7,38.9,36.3,33.4,33.3,28.9,21.8,21.1,20.8$, 18.3, 15.3; MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=251.2\left(\mathrm{M}+\mathrm{H}^{+}\right) . \quad$ 233: $[\alpha]_{\mathrm{D}}{ }^{22}=+78(\mathrm{c} 0.1, \mathrm{MeOH}) . \quad$ Lit. ${ }^{[136]}$ -100 (c 0.006, MeOH). ${ }^{1} \mathrm{H}$ NMR $\delta 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, \mathrm{J}=$ $16.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dt}, \mathrm{J}=12,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, \mathrm{J}=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}$,
$3 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.08(\mathrm{dd}, \mathrm{J}=13,3 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $176.0,86.0,64.4,58.9,56.3,51.6,48.4,38.5,37.5,34.7,33.2,28.7,21.9,21.7,20.1,16.2$; MS $(\mathrm{ESI}, \mathrm{MeOH}): m / z=289.4\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

(2S)-2-Hydroxysclareolide (233) \& 1-Oxosclareolide (234) (BH8-098)

233

234

To a solution of 12 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{1}(24 \mu \mathrm{~mol}$ of $\mathrm{Cu} / 8.0 \mu \mathrm{~mol}$ of $\mathrm{Au}-0.88 \mu \mathrm{~mol}$ of $\mathbf{1})$ in $\mathrm{H}_{2} \mathrm{O}$ (as described above) were added 12 mL of acetonitrile, $100 \mathrm{mg}(0.40 \mathrm{mmol})$ of (+)-sclareolide (232) and 1.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, and the resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 6 days. The solution was cooled to $25^{\circ} \mathrm{C}$, diluted with water, and extracted three times with diethyl ether (20 mL each). The combined extracts were washed with water and then brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate, followed by dichloromethane and methanol as eluents to give 40 mg (37.5% yield) of $\mathbf{2 3 3}$ and 3.3 mg ($\mathbf{3} \%$ yield) of $\mathbf{2 3 4}$ along with 46 mg (46% recovery) of $\mathbf{2 3 2}$ and 10 mg of unidenficable polymers. The NMR data of $\mathbf{2 3 3}$ is the same as the one synthesis from 231. 234: ${ }^{1} \mathrm{H}$ NMR $\delta 2.96(\mathrm{dd}, \mathrm{J}=17,7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, \mathrm{J}=16,8.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=$ $16.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, \mathrm{J}=15.6,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, \mathrm{J}=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-$ 2.05 (m, 1 H$), 1.94-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H})$, $1.04-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.91-0.86(\mathrm{~m}, 1 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}, \mathrm{MeOH}): m / z=287.3([\mathrm{M}+$ $\mathrm{Na}]^{+}$).

Estrone pivalate (235) (BH12-062)

To a solution of $100 \mathrm{mg}(0.37 \mathrm{mmol})$ of estrone in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon were added 44 $\mathrm{mg}(0.37 \mathrm{mmol})$ of pivaloyl chloride and $29.2 \mathrm{mg}(0.37 \mathrm{mmol})$ of pyridine. The solution was stirred for 10 hours, acidified with 1 N HCl to pH 5 , and extracted three times with 20 mL each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as an eluent to give 117 mg (89% yield) of the titled compound. $[\alpha]_{\mathrm{D}}{ }^{22}=+97\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}^{[143]} \delta 7.28(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 2 \mathrm{H})$, $2.53-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.16-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.0,172.6,79.5,79.1,62.2,38.9,31.8,28.5,27.5,22.8,19.5,14.4$.

12ß-hydroxy estrone pivalate (236) (BH12-105)

To an aqueous solution of 5 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(7.5 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 2.5 \mu \mathrm{~mol}$ of Au , and 0.28 $\mu \mathrm{mol}$ of 26), were added 3 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $70.8 \mathrm{mg}(0.2 \mathrm{mmol})$ of 235 . The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine,
dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 42.6 mg (58.2% yield) of $\mathbf{2 3 6}$ and recover $10.9 \mathrm{mg}(15.4 \%$ yield $)$ of 235. $[\alpha]_{\mathrm{D}}{ }^{22}=-5.6\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad \delta 7.25(\mathrm{dd}, J=9.6,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94-2.87 (m, 2H), 2.59-2.46 (m, 2H), 2.41-2.30(m, 1H), 2.20-1.98(m, 3H), 1.78-1.72 (m, $1 \mathrm{H}), 1.63-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 222.0,174.1,149.3,136.0$, $131.2,126.0,117.9,116.9,72.9,52.1,48.5,42.8,38.6,36.6,35.8,32.6,29.6,27.0,21.1,9.4$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{4}{ }^{+}: 371.2222$, found: 371.2209 .

12 β-Hydroxy-3-methoxy-estra-1.3.5(10)-triene-17-one (241). (BH12-107)

241

To a solution of $18.5 \mathrm{mg}(0.05 \mathrm{mmol})$ of 236 in 1 mL MeOH , add $3.6 \mathrm{mg}(0.15 \mathrm{mmol})$ of LiOH . The resulting solution was stirred at room temperature for 6 hours until no starting material remaining, concentrated under vacuum and dissolve with 10 mL methylene chloride, adjusted the pH to 2 with HCl and extracted 2 times with each 10 mL methylene chloride. The combined organic solution was concentrated under vacuum. To the residue, 2 mL of $\mathrm{MeOH}, 6.9 \mathrm{mg}$ (0.05 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}, 7.1 \mathrm{mg}(0.05 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$ was added and heated to reflux for 6 hours. After cooling down, the solution was concentrated under vacuum, dissolve with 10 mL methylene chloride \& 5 mL of water, extract 2 times with each 10 mL methylene chloride. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to
give $10.1 \mathrm{mg}(67.6 \%$ yield $)$ of 241. $\quad[\alpha]_{\mathrm{D}}{ }^{22}=-40.2\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}^{[138]} \delta 7.16(\mathrm{dd}, \mathrm{J}=$ $8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, \mathrm{J}=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=10.8,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.98(\mathrm{~m}$, $3 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.35(\mathrm{~m}, 5 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 222.8,157.9,137.7$, $131.3,126.2,114.2,111.7,72.8,55.5,52.3,48.5,42.4,37.4,36.0,33.3,29.7,26.4,21.6,8.5$.

N-3-hydroxyadamantan-1-yl acetamide (238) (BH11-029)

To an aqueous solution of 4 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(9.7 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 3.2 \mu \mathrm{~mol}$ of Au , and 0.18 $\mu \mathrm{mol}$ of 26), were added 2 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 4 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $50 \mathrm{mg}(0.259 \mathrm{mmol})$ of 237 . The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 7 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 32.1 mg (74% yield) of $\mathbf{2 3 8}$ and recover $6.4 \mathrm{mg}(12.8 \%$ yield $)$ of $237 .{ }^{1} \mathrm{H}_{\mathrm{NMR}}{ }^{[140]} \delta 5.25-5.17(\mathrm{bs}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95$ $(\mathrm{m}, 2 \mathrm{H}), 1.95-1.88(\mathrm{~m}, 7 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 169.8,69.6$, 54.8, 49.5, 44.5, 40.8, 35.3, 31.0, 25.0.

Kobusone (240) (BH10-080)

To an aqueous solution of 3 mL of $\mathrm{Cu} / \mathrm{Au}(3: 1)-\mathbf{2 6}(8.5 \mu \mathrm{~mol}$ of $\mathrm{Cu}, 2.9 \mu \mathrm{~mol}$ of Au , and 0.31 $\mu \mathrm{mol}$ of 26), were added 2 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, 2 \mathrm{~mL}$ of $\mathrm{CH}_{3} \mathrm{CN}$ and $50 \mathrm{mg}(0.23 \mathrm{mmol})$ of 239. The resulting solution was stirred at $80^{\circ} \mathrm{C}$ for 4 days, cooled to $25^{\circ} \mathrm{C}$, and extracted three times with 20 mL each of ethyl acetate. The combined extracts were washed with water, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as eluents to give 34.0 mg (67.4% yield) of $\mathbf{2 4 0}$ and recover $8.7 \mathrm{mg}(17.4 \%$ yield $)$ of 239. $[\alpha]_{\mathrm{D}}{ }^{22}=-131.6\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{[141]} \delta 3.01-3.09(\mathrm{~m}$, $1 \mathrm{H}), 2.67(\mathrm{dd}, J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=2.4,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.07-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{td}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 214.6,61.9$, $59.2,52.8,51.6,39.2,37.9,35.5,34.7,29.6,26.7,25.0,22.4,16.4 ;$ MS (ESI, MeOH): m/z = $245.3\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

Chapter 3 - Synthesis of

6-(Dimethylamino)-2-phenylisoindolin-1-one derivative.

3.1 Background and Significance

Bioluminescence is the production and emission of light by a living organism. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria and terrestrial invertebrates such as fireflies. ${ }^{[144]}$ Bioluminescence is widely used in high throughput screening (HTS) as a light based detection method to assay biological activities of molecules, proteins or genes against a defined set of enzymes or receptor targets. ${ }^{[145]}$ In a general sense, the principal chemical reaction in bioluminescence involves some light-emitting molecule and an enzyme, generally called the luciferin and the luciferase, respectively. Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photo protein. The luciferase requires other cofactors such as calcium or magnesium ions, and sometimes also the energy-carrying molecule adenosine triphosphate (ATP). ${ }^{[144]}$ Hence firefly luciferase is used as a sensor of the ATP content in cells as a measure of cell viability, and in biochemical assays to measure ATP-dependent enzyme reactions such as kinases. ${ }^{[146]}$ Besides that, firefly luciferase has been commonly used as a reporter in cells expressing a luciferase gene or its enzymatic activity under the control of a promoter of interest to assess its transcriptional activity. ${ }^{[147,148]}$ However, it has been found that some molecules can directly inhibit firefly reporter enzyme in cells, independently from promoter-specific transcriptional activity. ${ }^{[149]}$ In contrast, some inhibitors have found to form stable firefly enzyme-inhibitor complexes which are more resistant to degradation than the free firefly enzyme. ${ }^{[150,151]}$ This leads to a reporter enzyme accumulation and signal activation in
cells, independent of effects on transcription/translation. ${ }^{[150,151]}$ These phenomena give rise to false results in cell-based HTS assays. ${ }^{[150]}$ Therefore, to avoid these misleading activities, study of firefly luciferase inhibitors and their mechanisms of inhibition are highly relevant.

Crystal structure of firefly luciferase has shown two distinct domains, a large N-terminal domain (residues 1-436) and a small C-terminal domain (residues 440-550), separated by a wide cleft. ${ }^{[152]}$ It is suggested that, seven residues (Gly200, Lys206, Glu344, Asp422, Arg437, Gly446 and Glu455) play a crucial role in the binding of ATP and in adenylate formation. ${ }^{[152]}$ Hence, the active site of luciferase is proposed to locate on the surface of both domains facing each other across a large cleft. ${ }^{[152]}$ Further, it is believed that upon substrate binding, the two domains move together to form the active center. ${ }^{[152]}$ Site-directed mutation studies have shown that Lys529 is crucial for effective substrate orientation and for transition state stabilization which lead to efficient adenylate formation. ${ }^{[153]}$ (Figure 15)

Figure 15. Surface view of (a) firefly luciferase without its substrate (Protein Data Bank accession number 1LCI) ${ }^{[152]}$ (b) firefly luciferase in complex with bromoform (Protein Data Bank accession number 1BA3). ${ }^{[154]}$

Natural substrate of luciferase enzyme is the D-isomer of firefly luciferin ($\mathrm{D}-\mathrm{LH}_{2}$) which is chemically defined as (S)-2-(6'-hydroxy-2'-benzothiazolyl)-2-thiazoline-4-carboxylic acid (Figure 16). ${ }^{[155]}$ The bioluminescent chemical reaction catalyzed by luciferase is a two-step
process. ${ }^{[146, ~ 155]}$ In the first step of the bioluminescent reaction, D-luciferyl-adenylate (D-LH2-AMP) intermediate is formed by the reaction of D-luciferin $\left(\mathrm{D}-\mathrm{LH}_{2}\right)$ and ATP in the presence of $\mathrm{Mg}^{2+} \cdot{ }^{[146,155]}$ Oxidation of luciferyl-adenylate (D-LH2-AMP) intermediate with molecular oxygen in the following step produces AMP, oxyluciferin and light. ${ }^{[146,155]}$ (Scheme 20, eq 1-2)

It is reported that the primary structure of firefly luciferase has a high sequence similarity to a long-chain acyl-CoA synthetase. ${ }^{[156]}$ Therefore, besides the light emitting reactions, firefly luciferase catalyzes fatty acyl-CoA synthesis as well. ${ }^{[157]}$ First, long-chain fatty acids are adenylated in the presence of ATP and Mg^{2+}, and the subsequent step is the thioesterification with CoA. ${ }^{[157,158]}$ (Scheme 20, eq 3-4) It is suggested that luciferase catalyzes the adenylation of fatty acids via carboxylic acid moiety in a mechanism similar to the adenylation step of the bioluminescence reaction of luciferase. ${ }^{[159]}$ As reported, long chain fatty acids (C12-C20) can be a competitive inhibitors of firefly luciferase against luciferin in micromolar concentration level. ${ }^{[158,160]}$

$$
\begin{align*}
& \text { luciferase }+\mathrm{D} \text {-luciferin }+\mathrm{ATP}-\mathrm{Mg}^{2+} \rightleftharpoons \text { luciferase.D-luciferyl-AMP }+\mathrm{PPi}-\mathrm{Mg}^{2+} \tag{1}\\
& \text { luciferase.D-luciferyl-AMP }+\mathrm{O}_{2} \longrightarrow \text { luciferase }+\mathrm{AMP}+\mathrm{CO}_{2}+\text { oxyluciferin }+h v \tag{2}\\
& \text { luciferase }+ \text { fatty acid }+\mathrm{ATP}-\mathrm{Mg}^{2+} \rightleftharpoons \text { luciferase.fatty acyl-AMP }+\mathrm{PPi}-\mathrm{Mg}^{2+} \tag{3}\\
& \text { luciferase.fatty acyl-AMP }+\mathrm{CoA} \rightleftharpoons \text { fatty acyl-CoA }+\mathrm{AMP}+\text { luciferase } \tag{4}\\
& \text { luciferase.dehydroluciferyl-AMP + CoA } \longrightarrow \text { luciferase + AMP + luciferyl-CoA } \tag{5}
\end{align*}
$$

Scheme 20. Luciferase Catalyzed Reactions.

Common inhibitors that inhibit firefly luciferase activity are found to be substrates related compounds, intermediates or products of the luciferase catalyzed reaction and fatty acids. ${ }^{[155]}$ Substrates related compounds such as L-luciferin, dehydroluciferin, intermediates such as dehydroluciferyl-adenylate (L-AMP), and products such as pyrophosphate (PPi) and oxyluciferin
were found to inhibit bioluminescent light emission in a competitive or noncompetitive manner. ${ }^{[161-165]}$ However, coenzyme $\mathrm{A}(\mathrm{CoA})$ was found to prevent this inhibition by reacting with dehydroluciferyl-adenylate (L-AMP). ${ }^{[166]}$ CoA reaction with L-AMP results free luciferase and luciferyl-CoA (L-CoA) which is found to be a weaker inhibitor in the bioluminescence reaction. ${ }^{[160,166]}$ (Scheme 20, eq 5)

D-luciferin

L-luciferin

dehydroluciferin

dehydroluciferyl-AMP (L-AMP)

oxyluciferin

Figure 16. Structure of D-luciferin and Firefly Luciferase Inhibitors.

Nakagomi and coworkers have reported an aromatic carboxylic acid, F-53 which inhibits the enzymatic activity of firefly luciferase by covalently binding to a regulatory lysine residue (Lys529) via an amide bond formation. ${ }^{[167]}$ Based on experimental results, they proposed that the carboxylic acid of F-53 is first activated to its CoA-thioester derivative by luciferase via its acyl-CoA synthetase activity. ${ }^{[167]}$ This F-53-CoA derivative is proposed to inactivate luciferase via acylation of Lys-529 by an unknown cellular acetyltransferase. ${ }^{[167]}$ With knowledge of above mentioned results, our research efforts focused on synthesizing two analogous probes of F-53 possessing ortho 3-azidopropyl substituent on the phenyl ring with (242) and without (243) butyric acid group (Scheme 21). We hypothesized that compound 242 acts on luciferase by
competing for the binding site of the luciferin substrate which is involved in the light emission. Therefore, these two probe molecules will be used to study the mechanism of luciferase inhibition further for understanding the effects of carboxylic acid-containing drugs.

Scheme 21. Structure of F-53, 242 and 242A.

3.2 Synthetic Route and Discussions

Before the synthesis of compound 242, similar compounds $\mathbf{F - 5 3}$ and 242A were successfully made by Dr. Ai Ito in Research Foundation ITSUU Laboratory and Dr. Medha Gunaratna in Dr. Hua's Lab, respectively. With the general idea of the multi-step synthetic routes for F-53 and 242A, the synthesis of 242 was designed. However, due to the side chain on the phenyl ring, the synthesis of $\mathbf{2 4 2}$ becomes more complicated. Base on the retrosynthetic analysis, $\mathbf{2 4 2}$ can be disconnected into three parts, the isoindolinone, the aniline derivative and δ-side chain. (Figure 17) The final synthetic route to obtain 242 was shown in Scheme 22.

For the first part, O-toluic acid, 243 in conc. sulfuric acid was treated with a solution of potassium nitrate in conc. sulfuric acid following a reported procedure. ${ }^{[168]}$ (Scheme 22) In this reaction, potassium nitrate reacts with sulfuric acid to form nitric acid and potassium bisulfate. Sulfuric acid being a stronger acid than nitric acid facilitates generation of NO^{2+} in situ. Importantly, to avoid the formation of di-nitrated product, potassium nitrate in conc. sulfuric
acid should be added dropwise to keep the nitronium ion concentration low and the reaction should be carried out at $0{ }^{\circ} \mathrm{C}$ to slow down the reaction. During workup, since mixing concentrated sulfuric acid with water gives off much heat, reaction mixture should be added to ice rather than water. The resulting product was a mixture of 2-methyl-5-nitrobenzoic acid, 244 (85%) and 2-methyl-3-nitrobenzoic acid (15\%). The compound can be purified by recrystallization through 2:1 ether: dichloromethane.

Since both products are very polar and they both have very similar Rf values, the mixture was directly treated with thionyl chloride in methanol. ${ }^{[169]}$ Reaction mixture was refluxed to give a mixture of corresponding methyl esters 245 and its isomer in a quantitative yield. Resultant compound, $\mathbf{2 4 5}$ was able to purify using hexane via recrystallization. Benzylic bromination of compound 245 using N-bromosuccinimide and a radical initiator, benzoyl peroxide afforded compound 246, ${ }^{[168]}$ as a key precursor for 242.

The para-side chain synthesis was start from 3-butyn-1-ol (247). Because of the active hydroxyl group, TBS protection of alcohol was needed. With the presence of imidazole as a base in methylene chloride, TBSCl was added into 247 to yield $\mathbf{2 4 8}$. ${ }^{[170]}$

2-Amino-5-iodobenzoric acid (249), as a cheap amino acid, was used as the substrate for the aniline derivative part of 242. Firstly, the carboxylic acid was reduced by LiAlH_{4} in THF to give corresponding alcohol 250. The coupling of $\mathbf{2 5 0}$ with $\mathbf{2 4 6}$ in EtOH at reflux temperature for 24 h resulted its condensation product 251. ${ }^{[167]}$ Low temperature and less reaction times resulted uncyclized product. From the appearance of uncyclized by-product, the amino group attack Br with a $\mathrm{S}_{\mathrm{N}} 2$ reaction was much faster than the amidation. The isolated uncyclized product was cyclized again in reflux ethanol to give 251 . At the same time, the alcohol on ortho position was also attacked the Br to give ether type product in $\sim 10 \%$ yield.

Figure 17. Synthons and Synthetic Equivalents of 242.

The connection between 251 and 248 was constructed by Sonogashira Reaction, coupling the benzyl iodide and C-C triple bond. The Suzuki Coupling was tried with both pinacol-borane and catechol-borane, the alkenylboron was not easy to make and yield of the reaction was not consistence (32-68\% yield). Therefore, a milder route, Sonogashira Coupling was carried out with the catalysis of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and cuprous iodide as a co-catalyst in trimethylamine as solvent. The reaction was needed to be done in a dry box and gave only desired organic product $\mathbf{2 5 2}$ in a quantitative yield.

(To be continued)

Scheme 22. The Synthetic Route for Compound 242.

Compound 252 was oxidized by PCC at room temperature in dry methylene chloride and gave quantitative yield of corresponding aldehyde 253. The work up process was the key to the reaction since large amount of sticky PCC may cover the product and make a lower yield. After the filter through Celite, the sonication of Celite in methylene chloride was necessary, even though partial PCC was dissolve back into the solution. The adding of molecular sieve into the reaction was also helpful to avoid the sticky PCC. Compound 253 was finally purified by chromatography column.

With the optimized Horner-Wadsworth-Emmons reaction, 253 was reacted with stabilized phosphorus ylide (phosphonate carbanion) and leaded to 254 with E-selectivity. Sodium Hydride was used to make the phosphorus ylide with triethylphosphonoacetate. ${ }^{[171]}$ The product $\mathbf{2 5 4}$ was hydrogenated with the catalysis of Pd / C to reduce $\mathrm{C}-\mathrm{C}$ double bond, and $\mathrm{C}-\mathrm{C}$ triple bond and NO_{2} group at the same time. Reductive methylation of aryl amino group of compound 255 was achieved using formaldehyde and sodium cyanoborohydride by reductive amination to obtain N, N-dimethyl product 256, followed with the reduction of ester group to alcohol with DIBAl-H with 95% yield.

Compound 257 was protected with MOMCl with DIPEA as an amine and remove TBS protecting group with TBAF in THF for the preparation of functionalization on para-side chain.

The terminal alcohol was oxidized to carboxylic acid (260) with two steps, (1) oxidation to aldehyde with IBX/DMSO and (2) oxidation to carboxylic acid with oxone. ${ }^{[172]}$ To avoid the mesylation of the carboxylic acid, the methyl ester was made with $\mathrm{HCl} / \mathrm{MeOH}$. At the same time, MOM was removed in the same reaction to give 261. The hydroxyl group of compound 261 was mesylated using $\mathrm{MsCl} / \mathrm{Et}_{3} \mathrm{~N}$ and followed by the azidation with sodium azide to give compound 263 in a quantitative yield. Finally, the methyl ester was hydrolysis with LiOH and yield the final product 242.

3.3 Future Work

Both probe molecules 242 and 243 were sent to Dr. Madoka Nakagomi's lab for biology studies. They will be used for identifying target protein(s) in the firefly luciferase inhibition through click chemistry. Probe molecule $\mathbf{2 4 2}$ consists of three elements which are important in the activity-based protein profiling studies, (1) a reactive carboxylic group that can covalently reacts with a residue in the active site of the target enzyme (2) a spacer for selectivity and (3) an azide group that can undergo $\mathrm{Cu}(\mathrm{I})$-catalyzed [3+2] dipolar cycloaddition with an alkyne bearing a fluorescent detection tag. ${ }^{[173-175]}$ Probe molecule 243, which does not have a butyric acid group will be used as the negative control.

3.4 Synthetic Experimental Procedures

3.4.1 General

${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR spectra $(100 \mathrm{MHz})$ were measured from a solution in CDCl_{3} unless otherwise mentioned. The chemical shift data for each signal on ${ }^{1} \mathrm{H}$ NMR are given in units of δ relative to TMS $(\delta=0)$ or $\mathrm{CHCl}_{3}(\delta=7.26)$. For ${ }^{13} \mathrm{C}$ NMR spectra, the chemical shifts are recorded relative to $\mathrm{CDCl}_{3}(\delta=77.0)$. Low-resolution mass spectra were
taken from an API 2000-triple quadrupole ESI-MS/MS mass spectrometer. High-resolution mass spectra were obtained using a Waters LCT Premier time of flight mass spectrometer. IR spectra were measured directly in solid form from Agilent Cary 630 FTIR. Chemicals were purchased from Fisher Scientific Co., Aldrich Chemical Co., Chem-Impex International, and VWR International.

3.4.2 Representative Synthesis

2-Methyl-5-nitrobenzoic acid (244) (BH12-021)

244
To a solution of $\mathbf{2 4 3}(15 \mathrm{~g}, 110.17 \mathrm{mmol})$ in conc. sulfuric acid $(90 \mathrm{~mL})$, a solution of potassium nitrate ($15 \mathrm{~g}, 143.22 \mathrm{mmol}$) in conc. sulfuric acid $(90 \mathrm{~mL})$ was added dropwise over 1 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was added to a 100 g of ice chips and stirred vigorously until all ice melted. The resulting precipitate was re-dissolved in diethyl ether. The ether layer was washed with water and dried with anhydrous sodium sulfate. The solution was concentrated under vacuum to obtain $18.62 \mathrm{~g}(93.2 \%$ yield) of a mixture of compound 244 (85%) and 2-methyl-3-nitrobenzoic acid (15\%) as a white solid. The compound can be purified by recrystallization through 2:1 ether: dichloromethane. ${ }^{1} \mathrm{H} \mathrm{NMR}^{[168]} \quad \delta \mathrm{ppm} 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 166.7,146.8,145.2,132.5,131.2$, 126.1, 125.2, 20.9.

2-Methyl-5-nitrobenzoic acid methyl ester (245). (BH12-022)

To a mixture of 244 (85%) and 2-methyl-3-nitrobenzoic acid (15%) ($9.05 \mathrm{~g}, 50 \mathrm{mmol}$) in methanol (120 mL), thionyl chloride ($7.26 \mathrm{~mL}, 100 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and it was allowed to reflux for 4 h at $70^{\circ} \mathrm{C}$. The solution was concentrated under vacuum, then re-dissolved in ethyl acetate (150 mL). A solution of saturated sodium bicarbonate (70 mL) was added to adjust the pH to 8 . The product was extracted from the aqueous layer using ethyl acetate twice. The combined organic layer was washed with brine (70 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and recrystallized with hexane to obtain 8.3 g (99% yield based on 244) of compound 245 as a white solid; mp. 66~67 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NRR}^{[176]} \quad \delta \mathrm{ppm} 8.78(\mathrm{~d}, J=2.73 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=2.54,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $8.20 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 165.8,147.8,145.9,132.7,130.4$, 126.0, 125.6, 52.3, 21.8.

Methyl 2-(bromomethyl)-5-nitrobenzoate (246) (BH12-023)

246
A mixture of 245 ($12.6 \mathrm{~g}, 40 \mathrm{mmol}$) and N-bromosuccinimide ($18.4 \mathrm{~g}, 44 \mathrm{mmol}$) in dichloroethane (200 mL), in the presence of a catalytic amount of benzoyl peroxide (780 mg) was refluxed for 15 h under argon. The reaction mixture was neutralized with saturated sodium bicarbonate and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (hexanes: ethyl acetate $=9: 1$) to obtain 10.90 g
(62.1% yield) of compound 246 as a white solid; mp. $77 \sim 78{ }^{\circ} \mathrm{C} ; \quad{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{[177]} \quad \delta 8.82(\mathrm{~d}, \mathrm{~J}=$ $1.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.40,1.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.59 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\quad \delta \mathrm{ppm} 165.0,147.4,146.1,133.0,130.3,126.9,126.4,53.0,29.3$.

3-(tert-Butyldimethylsiloxy)-1-butyne (248) (BH12-026)

248
To a solution of $247(2.8 \mathrm{~g}, 40 \mathrm{mmol})$ in 200 mL anhydrous methylene chloride, imidazole (5.8 g , $80 \mathrm{mmol})$ and $\mathrm{TBSCl}(9.68 \mathrm{~g}, 60 \mathrm{mmol})$ were added and stirred under argon at room temperature overnight. The reaction solution was washed with water $(2 \times 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrate under rotary evaporator and vacuum. The residue was purified by silica gel column chromatography (hexanes: ethyl acetate $=5: 1)$ to obtain $6.9 \mathrm{~g}(96.5 \%$ yield) of compound 248 as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}^{[178]} \quad \delta 3.74(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~m}$, $2 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 82.0,70.1,61.8,26.1,24.3,18.6$, -5.4.

(2-Amino-5-iodophenyl)methanol (250) (BH12-013)

250

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $3 \mathrm{~g}(11.4 \mathrm{mmol})$ of 2-amino-5-iodobenzoic acid (249) in 100 mL of dry THF, $0.44 \mathrm{~g}(11.4 \mathrm{mmol})$ of LiAlH_{4} was added in portion over 20 minutes and the reaction mixture was stirred at room temperature for 3 hours to give a yellow solution. Progress of the reaction is monitored by TLC until no starting material remains. To it, $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and 10% 212
aqueous NaOH solution (3 mL) were added to the solution, filtered to remove $\mathrm{Al}(\mathrm{OH})_{3}$ and washed with of ethyl acetate ($3 \times 50 \mathrm{~mL}$). The filtrate was concentrated and the residue was purified by silica gel column chromatography using a gradient mixture of hexane and diethyl ether as an eluent to give 1.96 g (70% yield) of the titled compound as a light yellow solid; mp . $181 \sim 183{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}{ }^{[179]} \delta 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.21 (broad, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 147.2,138.0,136.4,128.6,117.5,76.6,62.0$.

2-(2-(Hydroxymethyl)-4-iodophenyl)-6-nitroisoindolin-1-one (251) (BH12-024)

251
To a solution of $\mathbf{2 5 0}(4 \mathrm{~g}, 16 \mathrm{mmol})$ and $246(4.37 \mathrm{~g}, 16 \mathrm{mmol})$ in absolute ethanol (200 mL) under argon, dry pyridine ($1.64 \mathrm{~g}, 20.8 \mathrm{mmol}$) was added. The reaction mixture was refluxed at $80^{\circ} \mathrm{C}$ for 30 h . After cooling to room temperature, the reaction was neutralized with saturated sodium bicarbonate. The reaction mixture was extracted with ethyl acetate. The combined organic layer was washed with saturated sodium chloride (100 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1)$ to obtain $1.92 \mathrm{~g}(52 \%$ yield $)$ of compound 251 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=2.15,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ $(\mathrm{d}, J=8.59 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 166.7,151.8,148.6$, 139.2, 134.2, 130.9, 129.3, 128.1, 128.0, 126.4, 124.9, 119.8, 88.6, 61.2, 53.1. HRMS-ESI: m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{IN}_{2} \mathrm{O}_{4}$: 410.9842 found: 410.9839.

2-(4-(4-(tert-Butyldimethylsilyloxy)but-1-ynyl)-2-(hydroxymethyl)phenyl)-6-nitroisoindolin -1-one (252) (BH12-029)

252

To a yellow solution of $251(1.9 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 200 mL triethylamine, $\mathrm{CuI}(17.6 \mathrm{mg}, 0.09$ mmol) and bis(triphenylphosphine)palladium chloride ($64.9 \mathrm{mg}, 0.09 \mathrm{mmol}$) were added under nitrogen in a dry box. The reaction mixture was stirred under argon for 20 minutes and (but-3-ynyloxy)(tert-butyl)dimethylsilane (248) ($937 \mathrm{mg}, 5.097 \mathrm{mmol}$) was added into it to give a green solution. The solution was stirred under nitrogen at room temperature overnight, concentrated under vacuum, and re-dissolve in 100 mL of ethyl acetate and 50 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$) and the combined organic layer was washed with saturated sodium chloride $(50 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the residue was purified by silica gel column chromatography (hexanes: ethyl acetate $=1: 1$) to obtain 1.87 g (86.6% yield) of compound 252 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{dd}, J=2.15,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}) 7.60(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 166.4,153.2$, $140.3,137.2,135.6,133.1,129.8,128.1,127.3,125.4,123.0,120.8,118.1,116.0,82.4,63.6$, 61.2, 54.3, 27.6, 24.0, 19.0 (3C), $-5.1(2 \mathrm{C}) . \quad$ HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$: 467.2002 found: 467.2013.

5-(4-(tert-Butyldimethylsilyloxy)but-1-ynyl)-2-(6-nitro-1-oxoisoindolin-2-yl)benzaldehyde (253). (BH12-031)

253
To a solution of 252 ($1.9 \mathrm{~g}, 4.07 \mathrm{mmol}$) in 50 mL anhydrous methylene chloride under argon, activated $4 \AA$ molecular sieve (2 g) and pyridinium chlorochromate ($1.05 \mathrm{~g}, 4.88 \mathrm{mmol}$) were added and stirred at room temperature for 3 hours to give a dark green solution. The solution was filtered through Celite and washed with 100 mL of methylene chloride. The filtrate was concentrated under an evaporator and vacuum and purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1$) to obtain $1.82 \mathrm{~g}(96 \%$ yield $)$ of compound 253 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=2.15,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=4.0 \mathrm{~Hz} 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.60(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 195.0,162.1,153.1$, $141.9,139.6,139.2,132.1,131.4,128.6,120.3,118.6,117.6,114.2,102.6,88.2,81.2,61.8,60.4$, 26.0, 24.0, 18.8 (3C), -5.1 (2C). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}: 465.1846$ found: 465.1862.

Ethyl-3-(5-(4-(tert-butyldimethylsilyloxy)but-1-ynyl)-2-(6-nitro-1-oxoisoindolin-2-yl)phenyl

)acrylate (254) (BH12-033)

254

To a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of triethyl phosphonoacetate ($878 \mathrm{mg}, 3.92 \mathrm{mmol}$) in 30 mL anhydrous THF under argon, $\mathrm{NaH}(98 \mathrm{mg}, 3.92 \mathrm{mmol})$ was added in portion and the solution was stirred at
room temperature for 2 hours to give a colorless solution. To it, a solution of $253(1.82 \mathrm{~g}, 3.92$ mmol) in 30 mL THF was added via cannula and stirred under argon at room temperature for another 2 hours. The reaction was quenched by 2 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with 50 mL each of methylene chloride. The combined organic layer was washed with brine (20 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 2)$ to obtain $2.0 \mathrm{~g}(96 \%$ yield) of compound 254 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{dd}, J=2.15,8.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~s}$, $1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.23(\mathrm{q}, J=6.8$, $2 \mathrm{H}), 3.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 167.5,163.2,152.4,138.9,137.1,134.2,133.2,130.8,129.6,125.8$, $124.3,122.6,121.4,116.8,114.8,111.0,88.2,81.6,61.8,60.6,34.8,27.2,25.0,23.9,19.0$ (3C), $-5.0(2 \mathrm{C})$. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6}$ Si: 535.2264 found: 535.2259.

Ethyl-3-(2-(6-amino-1-oxoisoindolin-2-yl)-5-(4-(tert-butyldimethylsilyloxy)butyl)phenyl)pro panoate (255). (BH12-035)

To a solution of $254(2.0 \mathrm{~g}, 3.76 \mathrm{mmol})$ in 30 mL of ethyl acetate, 50 mg of 10% palladium/carbon was added and shake under 30 psi hydrogen gas overnight. The reaction mixture was filtered through Celite and concentrated under vacuum to give 1.91 g (99% yield) of compound 255 as a yellow oil. This molecule was used in the subsequent step without purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=6.8,2 \mathrm{H}), 3.64(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}$,

9H), $0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 168.0,165.0,147.6,138.4,136.1,131.4,130.6,128.4$, $128.0,127.2,124.0,119.6,116.2,109.8,63.0,61.2,34.0,31.2,29.9,28.6,27.4,26.6,25.4,24.8$, 18.0 (3C), -5.4 (2C). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: 511.2992$ found: 511.3001 .

Ethyl

3-(5-(4-(tert-butyldimethylsilyloxy)butyl)-2-(6-(dimethylamino)-1-oxoisoindolin-2-yl)phenyl

)propanoate (256). (BH12-045)

To a solution of $255(1.91 \mathrm{~g}, 3.76 \mathrm{mmol})$ in MeOH , formalin ($37 \% \mathrm{~W} / \mathrm{W}, 6.11 \mathrm{~g}, 37.6 \mathrm{mmol}$) and sodium cyanoborohydride $(1.42 \mathrm{~g}, 22.5 \mathrm{mmol})$ were added, and the solution was stirred for 24 h at room temperature. The reaction solution was neutralized with saturated sodium bicarbonate and extracted with ethyl acetate three times. The combined organic layer was washed with saturated sodium chloride (70 mL) and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1)$ to obtain $1.92 \mathrm{~g}(94.9 \%$ yield $)$ of compound 256 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=6.8,2 \mathrm{H}), 3.61(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.82(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 168.2,165.0,148.2,140.1,138.2,132.3,131.9$, $129.8,129.6,126.7,120.9,115.6,113.0,106.4,62.8,60.1,41.8(2 \mathrm{C}), 34.6,32.0,29.6,27.3,26.9$, 26.1, 25.8, 24.9, 18.0 (3C), -5.2 (2C). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}$: 539.3305 found: 539.3305 .

2-(4-(4-(tert-Butyldimethylsilyloxy)butyl)-2-(3-hydroxypropyl)phenyl)-6-(dimethylamino)is oindolin-1-one (257) (BH12-047)

To a cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 5 6}(1.92 \mathrm{~g}, 3.5 \mathrm{mmol})$ in 40 mL anhydrous THF under argon, 9 mL (9 mmol) of diisobutylaluminum hydride (1 M in toluene) solution was added dropwise. After adding, the reaction was stirred at $-30^{\circ} \mathrm{C}$ for 2 hours until no starting material remained, quenched with 2 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered and extracted the filtrate three times with ethyl acetate (60 mL each). The combined organic layer was washed with brine, dried over anhydrous sodium sulfate and concentrate under vacuum. The residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 2$) to obtain $1.68 \mathrm{~g}(95 \%$ yield $)$ of compound $\mathbf{2 5 7}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 4 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.69(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 168.8,149.8,139.1,136.5,131.6,129.0,128.7,128.2,127.9,126.5$, $122.2,116.0,105.1,63.8,60.1,53.8,50.4,39.8$ (2C), 37.5, 35.2, 28.4, 27.3, 26.2, 18.4 (3C), -5.1 (2C). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: 497.3199 found: 497.3221.

2-(4-(4-(tert-Butyldimethylsilyloxy)butyl)-2-(3-(methoxymethoxy)propyl)phenyl)-6-(dimeth

 ylamino)isoindolin-1-one (258) (BH12-051)

To a solution of $257(1.68 \mathrm{~g}, 3.38 \mathrm{mmol})$ in 100 mL anhydrous methylene chloride under argon, N, N-diisopropylethylamine $(1.09 \mathrm{~g}, 8.45 \mathrm{mmol})$ and chloromethyl methyl ether ($0.544 \mathrm{~g}, 6.76$ mmol) were added. The reaction was reflux for 12 hours, diluted with 100 mL methylene chloride, washed with 10% citric acid (50 mL), saturated NaHCO_{3} solution (50 mL), and brine (50 mL), dried over anhydrous sodium sulfate and concentrated under vacuum. The residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1$) to obtain 1.70 g (93% yield) of compound 258 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 4.57$ ($\mathrm{s}, 2 \mathrm{H}$), $3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.59(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.55(\mathrm{~m}, 6 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 168.7,149.7,139.1,136.5,131.9,129.1,128.8,128.3$, $127.9,126.5,122.2,116.1,105.1,99.9,63.8,62.1,60.6,53.8,50.4,39.8$ (2C), 35.1, 32.2, 28.4, 27.3, 26.2, 18.5 (3C), -4.9 (2C). HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{4}$ Si: 541.3462 found: 541.3459.

6-(Dimethylamino)-2-(4-(4-hydroxybutyl)-2-(3-(methoxymethoxy)propyl)phenyl)isoindolin-1-one (259). (BH12-055)

259
To a solution of $258(1.70 \mathrm{~g}, 3.18 \mathrm{mmol})$ in 20 mL THF under argon, 3.18 mL of 1 M tetra- n-butylammonium fluoride THF solution was added. The reaction was stirred under room temperature for 4 hours until no starting material remained, washed with water ($2 \times 20 \mathrm{~mL}$) and brine (20 mL), dried over anhydrous sodium sulfate and concentrated under vacuum to obtain 1.34 g (99% yield) of compound $\mathbf{2 5 9}$ as a yellow oil. This material was used in the subsequent step without further purification. ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.56(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 169.9,151.5,140.1,137.5,133.2,129.9,129.5,128.7,128.2,127.5,123.2,117.1,106.3$, 99.9, 63.8, 62.1, 53.8, 50.2, 41.0 (2C), 36.4, 35.1, 31.6, 28.8, 25.1. HRMS-ESI: m/z $[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}$: 427.2597 found: 427.2612.

4-(4-(6-(Dimethylamino)-1-oxoisoindolin-2-yl)-3-(3-(methoxymethoxy)propyl)phenyl)butan oic acid (260). (BH12-058)

To a solution of $\mathbf{2 5 9}(1.065 \mathrm{~g}, 2.5 \mathrm{mmol})$ in 20 mL DMSO under argon, IBX ($1.05 \mathrm{~g}, 3.75 \mathrm{mmol}$) was added and stirred at room temperature overnight. To it, 200 mL of ethyl acetate was added and washed with water ($3 \times 50 \mathrm{~mL}$). The organic layer was concentrated and the residue was re-dissolved with 30 mL of DMF. To it, oxone $(0.57 \mathrm{~g}, 3.75 \mathrm{mmol})$ was added and stirred for 6 hours. The solution was basified with 100 mL of saturated NaHCO_{3}, washed with 50 mL of methylene chloride, acidified $10 \% \mathrm{HCl}$ until $\mathrm{pH}=4$, and extracted with ethyl acetate $(4 \times 100$ $\mathrm{mL})$. The combined organic layer was washed with brine $(50 \mathrm{~mL})$, dried over anhydrous sodium sulfate, and concentrated under vacuum to obtain 0.711 g (64.6% yield) of compound 260 as a pale yellow solid. This material was used in the subsequent step without further purification. mp. $191 \sim 192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $3.97(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ $(\mathrm{m}, 2 \mathrm{H}) 1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 176.3,169.6,151.3,140.2,137.6,132.6,129.9,129.6$, $129.1,128.6,127.5,123.1,117.1,106.7,99.8,62.0,53.8,50.2,40.8$ (2C), 37.8, 33.2, 31.2, 27.0, 25.1. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}: 440.2311$ found: 440.2317.

Methyl-4-(4-(6-(dimethylamino)-1-oxoisoindolin-2-yl)-3-(3-hydroxypropyl)phenyl)butanoat

 e (261). (BH12-064)

To a solution of $260(0.711 \mathrm{~g}, 1.61 \mathrm{mmol})$ in 20 mL of $\mathrm{MeOH}, 2 \mathrm{~mL}$ of conc. HCl is added and stirred for 24 hours. To it, 50 mL of saturated NaHCO_{3} solution was added, and concentrated under vacuum to remove MeOH . The residue was extracted with ethyl acetate ($4 \times 50 \mathrm{~mL}$) and the combined organic layer was washed with brine (20 mL), dried over anhydrous sodium sulfate,
and concentrated under vacuum. The residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1$) to obtain $0.584 \mathrm{~g}(88 \%$ yield) of compound 261 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.99(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}) 1.54(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ ppm 174.8, 169.8, 151.1, 140.1, 137.6, 132.5, 129.9, 129.6, 129.2, 128.4, 127.5, 123.1, 117.1, 106.6, 61.4, 53.8, 51.2, 40.8 (2C), 37.8, 32.2, 31.8, 27.1, 25.1. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}: 411.2284$ found: 411.2279 .

Methyl-4-(4-(6-(dimethylamino)-1-oxoisoindolin-2-yl)-3-(3-(methylsulfonyloxy)propyl)phen yl)butanoate (262) (BH12-078)

262
To a mixture of $261(0.6 \mathrm{~g}, 1.467 \mathrm{mmol})$ and dry triethylamine ($306 \mu \mathrm{~L}, 2.19 \mathrm{mmol}$) in 20 mL of dry dichloromethane under argon, methanesulfonyl chloride ($0.251 \mathrm{~g}, 2.19 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 8 hours at room temperature, quenched with 5 mL of water, and extracted with methylene chloride ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1)$ to obtain $0.713 \mathrm{~g}(99 \%$ yield $)$ of compound 262 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR δ $7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H})$, $2.58(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}) 1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 174.8$, $169.8,151.2,140.1,137.6,132.4,130.2,129.6,128.6,128.2,127.5,123.0,117.1,106.4,68.2$,
$53.8,51.2,41.2$ (2C), 37.6, 32.2, 31.8, 31.4, 27.0, 25.3. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: 489.2059$ found: 489.2023 .

Methyl-4-(3-(3-azidopropyl)-4-(6-(dimethylamino)-1-oxoisoindolin-2-yl)phenyl)butanoate

 (263) (BH12-082)

263
To a solution of $262(0.713 \mathrm{~g}, 1.46 \mathrm{mmol})$ in 30 mL of dry DMF under argon, $\mathrm{NaN}_{3}(379 \mathrm{mg}$, 5.83 mmol) was added. The reaction mixture was stirred at room temperature for 18 hours. To it, NaHCO_{3} solution $(10 \mathrm{~mL})$ was added and extracted with methylene chloride ($3 \times 50 \mathrm{~mL}$). The combined organic layer was washed with brine (20 mL), dried over anhydrous sodium sulfate, and concentrated under vacuum. The residue was purified by silica gel column chromatography (hexanes:ethyl acetate $=1: 1$) to obtain $0.617 \mathrm{~g}(97.2 \%$ yield) of compound 263 as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\quad \delta 7.35-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.01(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~m}, 2 \mathrm{H}) 1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 176.2,169.9,151.6,140.8,138.1,134.6,132.8,131.1,130.6,130.2,129.8,126.0,115.2$, 105.0, 53.8, 53.4, 50.9, 40.6 (2C), 35.0, 32.4, 31.8, 29.3, 28.7. HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{3}: 436.2349$ found: 436.2361 .

4-(3-(3-Azidopropyl)-4-(6-(dimethylamino)-1-oxoisoindolin-2-yl)phenyl)butanoic acid (242).

(BH12-090)

To a solution of $263(0.617 \mathrm{~g}, 1.42 \mathrm{mmol})$ in 30 mL of $\mathrm{MeOH}, 2 \mathrm{~mL}$ of 10% aqueous LiOH solution was added and stirred at room temperature for 6 hours. The resulting solution was concentrated under vacuum to remove MeOH and washed with 50 mL of methylene chloride. The aqueous layer was acidified with 10% aqueous HCl until $\mathrm{pH}=4$, concentrated under vacuum and purified by a short column chromatography to obtain 0.532 g (89% yield) of compound 242 as a light yellow solid; mp. $\quad 183 \sim 186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.35-6.95(\mathrm{~m}, 6 \mathrm{H}), 4.62$ (s, 2H), $3.24(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H})$ $1.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta \mathrm{ppm} 178.2,169.1,150.6,139.2,137.6,133.4,129.8,129.2,128.7$, $128.3,127.6,124.3,117.5,106.4,53.6,50.9,40.8$ (2C), 35.0, 32.4, 31.8, 29.5, 28.9; HRMS-ESI: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3}: 422.2192$ found: 422.2187 .

Reference

1. Hao, B., M.J. Gunaratna, M. Zhang, S. Weerasekara, S.N. Seiwald, V.T. Nguyen, A. Meier, and D.H. Hua, Chiral-Substituted Poly-N-vinylpyrrolidinones and Bimetallic Nanoclusters in Catalytic Asymmetric Oxidation Reactions. Journal of the American Chemical Society, 2016. 138(51): p. 16839-16848.
2. Knolker, H.J., H. Goesmann, H. Hermann, D. Herzberg, and G. Rohde, Transition metal complexes in organic synthesis, part 49. Development of novel chiral catalysts for the asymmetric catalytic complexation of prochiral cyclohexa-1,3-dienes by the tricarbonyliron fragment - Mechanism of the asymmetric catalysis and involvement of a dinuclear iron cluster. Synlett, 1999(4): p. 421-425.
3. Hajos, Z.G. and D.R. Parrish, Asymmetric synthesis of bicyclic intermediates of natural product chemistry. The Journal of Organic Chemistry, 1974. 39(12): p. 1615-1621.
4. Schmid, A., J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, and B. Witholt, Industrial biocatalysis today and tomorrow. Nature, 2001. 409: p. 258.
5. List, B., Introduction: Organocatalysis. Chemical Reviews, 2007. 107(12): p. 5413-5415.
6. Swiegers, G.F., (Ed.), Mechanical Catalysis: Methods of Enzimatic, Homogeneous and Heterogeneous Catalysis, Wiley\&Sons, New Jersey, 2008.
7. Schmid, G., M. Baumle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski, Current and future applications of nanoclusters. Chemical Society Reviews, 1999. 28(3): p. 179-185.
8. Schmid, G., CLUSTERS AND COLLOIDS - BRIDGES BETWEEN MOLECULAR AND CONDENSED MATERIAL. Endeavour, 1990. 14(4): p. 172-178.
9. Demirer, G.S., A.C. Okur, and S. Kizilel, Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2015. 3(40): p. 7831-7849.
10. Hou, W., N.A. Dehm, and R.W.J. Scott, Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts. Journal of Catalysis, 2008. 253(1): p. 22-27.
11. Kanaoka, S., N. Yagi, Y. Fukuyama, S. Aoshima, H. Tsunoyama, T. Tsukuda, and H. Sakurai, Thermosensitive Gold Nanoclusters Stabilized by Well-Defined Vinyl Ether Star Polymers: Reusable and Durable Catalysts for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2007. 129(40): p. 12060-12061.
12. Sophiphun, O., J. Wittayakun, R.N. Dhital, S. Haesuwannakij, A. Murugadoss, and H. Sakurai, Gold/Palladium Bimetallic Alloy Nanoclusters Stabilized by Chitosan as Highly Efficient and Selective Catalysts for Homocoupling of Arylboronic Acid. Australian Journal of Chemistry, 2012. 65(9): p. 1238-1243.
13. Teraguchi, M., M. Ohtake, H. Inoue, A. Yoshida, T. Aoki, T. Kaneko, and K. Yamanaka, Preparation of chiral polystyrene monoliths by utilizing W/O emulsion polymerization and their optical resolution ability. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(11): p. 2348-2357.
14. Hohberger, C., K. Beckerle, and J. Okuda, Towards chiral polystyrene based materials: controlled polymerization of p-(2,2'-diphenylethyl)styrene. Polymer Chemistry, 2010. 1(4): p. 534.
15. Zhang, H., T. Watanabe, M. Okumura, M. Haruta, and N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nature Materials, 2011. 11: p. 49.
16. Miyamura, H. and S. Kobayashi, Tandem Oxidative Processes Catalyzed by Polymer-Incarcerated Multimetallic Nanoclusters with Molecular Oxygen. Accounts of Chemical Research, 2014. 47(4): p. 1054-1066.
17. Rodriguez, J., R.A. Campbell, and D.W. Goodman, The nature of metal-metal bonding at bimetallic interfaces. Surface Science, 1994. 307-309: p. 377-383.
18. Zhang, H., T. Watanabe, M. Okumura, M. Haruta, and N. Toshima, Catalytically highly active top gold atom on palladium nanocluster. Nat Mater, 2011. 11(1): p. 49-52.
19. Shi, J., X. Hu, J. Zhang, W. Tang, H. Li, X. Shen, and N. Saito, One-step facile synthesis of Pd nanoclusters supported on carbon and their electrochemical property. Progress in Natural Science: Materials International, 2014. 24(6): p. 593-598.
20. Qian, H. and R. Jin, Ambient Synthesis of Aul44(SR)60 Nanoclusters in Methanol. Chemistry of Materials, 2011. 23(8): p. 2209-2217.
21. Leadbeater, N.E. and M. Marco, Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis. Chemical Reviews, 2002. 102(10): p. 3217-3274.
22. Cohen, N.B., B. L.; Laurenzano, A. J., 2,3-O-Isopropylidene-D-erythronolactone. Org. Synth., 1984. 63.
23. Smrcina, M., P. Majer, E. Majerová, T.A. Guerassina, and M.A. Eissenstat, Facile stereoselective synthesis of γ-substituted γ-amino acids from the corresponding α-amino acids. Tetrahedron, 1997. 53(38): p. 12867-12874.
24. Kerr, M.S., J. Read de Alaniz, and T. Rovis, An Efficient Synthesis of Achiral and Chiral 1,2,4-Triazolium Salts: Bench Stable Precursors for N-Heterocyclic Carbenes. The Journal of Organic Chemistry, 2005. 70(14): p. 5725-5728.
25. Ward, B.D., H. Risler, K. Weitershaus, S. Bellemin-Laponnaz, H. Wadepohl, and L.H. Gade, 2-Aminopyrrolines: New Chiral Amidinate Ligands with a Rigid Well-Defined Molecular Structure and Their Coordination to TiIV. Inorganic Chemistry, 2006. 45(19): p. 7777-7787.
26. van Leeuwen, S.H., P.J.L.M. Quaedflieg, Q.B. Broxterman, Y. Milhajlovic, and R.M.J. Liskamp, The synthesis of amides and dipeptides from unprotected amino acids by a simultaneous protection-activation strategy using boron trifluoride diethyl etherate. Tetrahedron Letters, 2005. 46(4): p. 653-656.
27. Digenis, G.A., J.S. McClanahan, and P.-L. Chen, Synthesis of [2,3,4,5-14C]-1-vinyl-2-pyrrolidinone. Journal of Labelled Compounds and Radiopharmaceuticals, 1993. 33(1): p. 11-17.
28. Zhai, L., T. Shi, and H. Wang, Preparation of polyvinylpyrrodione microspheres by dispersion polymerization. Frontiers of Chemistry in China, 2009. 4(1): p. 83.
29. Flebbe, T., R. Hentschke, E. Hädicke, and C. Schade, Modeling of polyvinylpyrrolidone and polyvinylimidazole in aqueous solution. Macromolecular Theory and Simulations, 1998. 7(6): p. 567-577.
30. Hanessian, S., Sugar lactams. III. Synthesis of five-,six-, and seven-membered analogs. The Journal of Organic Chemistry, 1969. 34(3): p. 675-681.
31. Dirk Elend, M.F., J.; Pryde, D. , Synthesis of 5-O-benzyl-2-C-d-fluoromethyl-1,2,3-tri-O-acetyl-D-ribofuranose. ARKIVOC, 2006. 11: p. 114-127.
32. Ferrando, R., J. Jellinek, and R.L. Johnston, Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chemical Reviews, 2008. 108(3): p. 845-910.
33. Yao, H. and R. Kobayashi, Chiral monolayer-protected Au-Pd bimetallic nanoclusters: Effect of palladium doping on their chiroptical responses. Journal of Colloid and Interface Science, 2014. 419: p. 1-8.
34. Lu, J. and P.H. Toy, Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews, 2009. 109(2): p. 815-838.
35. Deng, D., Y. Jin, Y. Cheng, T. Qi, and F. Xiao, Copper Nanoparticles: Aqueous Phase Synthesis and Conductive Films Fabrication at Low Sintering Temperature. ACS Applied Materials \& Interfaces, 2013. 5(9): p. 3839-3846.
36. Murugadoss, A., K. Okumura, and H. Sakurai, Bimetallic AuPd Nanocluster Catalysts with Controlled Atomic Gold Distribution for Oxidative Dehydrogenation of Tetralin. The Journal of Physical Chemistry C, 2012. 116(51): p. 26776-26783.
37. Weir, M.G., M.R. Knecht, A.I. Frenkel, and R.M. Crooks, Structural Analysis of PdAu Dendrimer-Encapsulated Bimetallic Nanoparticles. Langmuir, 2010. 26(2): p. 1137-1146.
38. Poole, C.P.J.O., F. J., Introduction to Nanotechnology. 2003: John Wiley \& Sons: New Jersey.
39. Zielińska, S., E. Ortyl, R. Barille, and S. Kucharski, Preparation and characteristics of new chiral photochromic copolymers. Optical Materials, 2009. 32(1): p. 198-206.
40. Xu, Q., S. Kumar, S. Jin, H. Qian, M. Zhu, and R. Jin, Chiral 38-gold-atom nanoclusters: synthesis and chiroptical properties. Small, 2014. 10(5): p. 1008-14.
41. Ackermann, J., M. Matthes, and C. Tamm, Approaches to the Synthesis of Cytochalasans Part9. A versatile concept leading to all structural types of cytochalasans. Helvetica Chimica Acta, 1990. 73(1): p. 122-132.
42. Vanhessche, K., E. Van der Eycken, M. Vandewalle, and H. Röper, L-Ribulose: A novel chiral pool compound. Tetrahedron Letters, 1990. 31(16): p. 2337-2340.
43. Ankamwar, B., C. Damle, A. Ahmad, and M. Sastry, Biosynthesis of Gold and Silver Nanoparticles Using Emblica Officinalis Fruit Extract, Their Phase Transfer and Transmetallation in an Organic Solution. Vol. 5. 2005. 1665-71.
44. Nishimura, S., Y. Yakita, M. Katayama, K. Higashimine, and K. Ebitani, The role of negatively charged $A u$ states in aerobic oxidation of alcohols over hydrotalcite supported AuPd nanoclusters. Catalysis Science \& Technology, 2013. 3(2): p. 351-359.
45. Zhang, S., Y. Shao, H.-g. Liao, J. Liu, I.A. Aksay, G. Yin, and Y. Lin, Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 2011. 23(5): p. 1079-1081.
46. Wang, F., Y. Jiang, X. Wen, J. Xia, G. Sha, and R. Amal, Confined Au-Pd Ensembles in Mesoporous TiO2 Spheres for the Photocatalytic Oxidation of Acetaldehyde. ChemCatChem, 2013. 5(12): p. 3557-3561.
47. Dhital, R.N., C. Kamonsatikul, E. Somsook, K. Bobuatong, M. Ehara, S. Karanjit, and H. Sakurai, Low-Temperature Carbon-Chlorine Bond Activation by Bimetallic Gold/Palladium Alloy Nanoclusters: An Application to Ullmann Coupling. Journal of the American Chemical Society, 2012. 134(50): p. 20250-20253.
48. Dhital, R.N. and H. Sakurai, Anomalous Efficacy of Bimetallic Au/Pd Nanoclusters in CCl Bond Activation and Formal Metathesis-type $C-B$ Bond Activation at Room Temperature. Chemistry Letters, 2012. 41(6): p. 630-632.
49. Yoo, W.-J., H. Miyamura, and S. Kobayashi, Polymer-Incarcerated Gold-Palladium Nanoclusters with Boron on Carbon: A Mild and Efficient Catalyst for the Sequential Aerobic Oxidation-Michael Addition of 1,3-Dicarbonyl Compounds to Allylic Alcohols. Journal of the American Chemical Society, 2011. 133(9): p. 3095-3103.
50. Lee, C.K., B.S. Koo, Y.S. Lee, H.K. Cho, and K.J. Lee, Oxidation and bromodehydroxymethylation of benzylic alcohols using $\mathrm{NaBrO3/NaHSO} 3$ reagent. Bulletin of the Korean Chemical Society, 2002. 23(11): p. 1667-1670.
51. Menger, F.M. and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces. Tetrahedron Letters, 1981. 22(18): p. 1655-1656.
52. Lee, D.G. and U.A. Spitzer, Aqueous dichromate oxidation of primary alcohols. The Journal of Organic Chemistry, 1970. 35(10): p. 3589-3590.
53. Meng, S.-S., Y. Liang, K.-S. Cao, L. Zou, X.-B. Lin, H. Yang, K.N. Houk, and W.-H. Zheng, Chiral Phosphoric Acid Catalyzed Highly Enantioselective Desymmetrization of 2-Substituted and 2,2-Disubstituted 1,3-Diols via Oxidative Cleavage of Benzylidene Acetals. Journal of the American Chemical Society, 2014. 136(35): p. 12249-12252.
54. Moritani, J., Y. Hasegawa, Y. Kayaki, and T. Ikariya, Aerobic oxidative desymmetrization of meso-diols with bifunctional amidoiridium catalysts bearing chiral N-sulfonyldiamine ligands. Tetrahedron Letters, 2014. 55(6): p. 1188-1191.
55. Mandal, S.K., D.R. Jensen, J.S. Pugsley, and M.S. Sigman, Scope of Enantioselective Palladium(II)-Catalyzed Aerobic Alcohol Oxidations with (-)-Sparteine. The Journal of Organic Chemistry, 2003. 68(11): p. 4600-4603.
56. Jakka, K. and C.-G. Zhao, Highly Enantioselective CH Oxidation of vic-Diols with Shi's Oxazolidinone Dioxiranes. Organic Letters, 2006. 8(14): p. 3013-3015.
57. Lehtonen, A., R. Kivekäs, and R. Sillanpää, The separation of cis- and trans-1,3-cyclohexanediol isomers by copper complexation. Crystal structures of cis-1,3-cyclohexanediol and copper(II) chloride cis-1,3-cyclohexanediol complex. Polyhedron, 2002. 21(11): p. 1133-1138.
58. Kobayashi, S., P. Xu, T. Endo, M. Ueno, and T. Kitanosono, Chiral Copper(II)-Catalyzed Enantioselective Boron Conjugate Additions to α, β-Unsaturated Carbonyl Compounds in Water. Angewandte Chemie International Edition, 2012. 51(51): p. 12763-12766.
59. Chen, B.-S. and U. Hanefeld, Enantioselective preparation of (R) and (S)-3-hydroxycyclopentanone by kinetic resolution. Journal of Molecular Catalysis B: Enzymatic, 2013. 85-86: p. 239-242.
60. Lifchits, O., M. Mahlau, C.M. Reisinger, A. Lee, C. Farès, I. Polyak, G. Gopakumar, W. Thiel, and B. List, The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of α, β-Unsaturated Carbonyl Compounds with Hydrogen Peroxide. Journal of the American Chemical Society, 2013. 135(17): p. 6677-6693.
61. Zhang, J., T. Xu, and Z. Li, Enantioselective Biooxidation of Racemic trans-Cyclic Vicinal Diols: One-Pot Synthesis of Both Enantiopure (S,S)-Cyclic Vicinal Diols and (R)- α-Hydroxy Ketones. Advanced Synthesis \& Catalysis, 2013. 355(16): p. 3147-3153.
62. Liu, Y., R.-R. Li, and X.-B. Lu, Microstructure Analysis of Poly(cyclopentene carbonate)s at the Diad Level. Macromolecules, 2015. 48(19): p. 6941-6947.
63. Singh, G. and J. Aube, Synthesis of cyclic 1,3-diols as scaffolds for spatially directed libraries. Organic \& Biomolecular Chemistry, 2016. 14(18): p. 4299-4303.
64. Stahl, S.S., J.L. Thorman, R.C. Nelson, and M.A. Kozee, Oxygenation of Nitrogen-Coordinated Palladium(0): Synthetic, Structural, and Mechanistic Studies and Implications for Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2001. 123(29): p. 7188-7189.
65. Stahl, S.S., Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angewandte Chemie International Edition, 2004. 43(26): p. 3400-3420.
66. Talsi, E.P. and K.P. Bryliakov, Chemo- and stereoselective CH oxidations and epoxidations/cis-dihydroxylations with H2O2, catalyzed by non-heme iron and manganese complexes. Coordination Chemistry Reviews, 2012. 256(13): p. 1418-1434.
67. Boyd, D.R., N.D. Sharma, M.V. Berberian, M. Cleij, C. Hardacre, V. Ljubez, G. McConville, P.J. Stevenson, L.A. Kulakov, and C.C.R. Allen, Arene cis-Diol

Dehydrogenase-Catalysed Regio- and Stereoselective Oxidation of Arene-, Cycloalkaneand Cycloalkene-cis-diols to Yield Catechols and Chiral α-Ketols. Advanced Synthesis \& Catalysis, 2015. 357(8): p. 1881-1894.
68. Kihumbu, D., T. Stillger, W. Hummel, and A. Liese, Enzymatic synthesis of all stereoisomers of 1-phenylpropane-1,2-diol. Tetrahedron: Asymmetry, 2002. 13(10): p. 1069-1072.
69. Prévost, C., Sur un complexe iodo-argento-benzö̈que et son application à l'oxydation des combinaisons éthyléniques en α-glycols. Comptes Rendus, 1933. 196: p. 1129.
70. VanRheenen, V., R.C. Kelly, and D.Y. Cha, An improved catalytic OsO4 oxidation of olefins to cis-1,2-glycols using tertiary amine oxides as the oxidant. Tetrahedron Letters, 1976. 17(23): p. 1973-1976.
71. Woodward, R.B. and F.V. Brutcher, cis-Hydroxylation of a Synthetic Steroid Intermediate with Iodine, Silver Acetate and Wet Acetic Acid. Journal of the American Chemical Society, 1958. 80(1): p. 209-211.
72. Spivey, A.C., R. Hanson, N. Scorah, and S.J. Thorpe, Sharpless Asymmetric Dihydroxylation: Effect of Alkene Structure on Rates and Selectivity. Journal of Chemical Education, 1999. 76(5): p. 655.
73. Bataille, C.J.R. and T.J. Donohoe, Osmium-free direct syn-dihydroxylation of alkenes. Chemical Society Reviews, 2011. 40(1): p. 114-128.
74. Stoltz, B.M., Palladium Catalyzed Aerobic Dehydrogenation: From Alcohols to Indoles and Asymmetric Catalysis. Chemistry Letters, 2004. 33(4): p. 362-367.
75. Neisius, N.M. and B. Plietker, Diastereoselective Ru-Catalyzed Cross-Metathesis-Dihydroxylation Sequence. An Efficient Approach toward Enantiomerically Enriched syn-Diols. The Journal of Organic Chemistry, 2008. 73(8): p. 3218-3227.
76. de Boer, J.W., W.R. Browne, S.R. Harutyunyan, L. Bini, T.D. Tiemersma-Wegman, P.L. Alsters, R. Hage, and B.L. Feringa, Manganese catalysed asymmetric cis-dihydroxylation with H2O2. Chemical Communications, 2008(32): p. 3747-3749.
77. Zang, C., Y. Liu, Z.-J. Xu, C.-W. Tse, X. Guan, J. Wei, J.-S. Huang, and C.-M. Che, Highly Enantioselective Iron-Catalyzed cis-Dihydroxylation of Alkenes with Hydrogen Peroxide Oxidant via an FeIII-OOH Reactive Intermediate. Angewandte Chemie International Edition, 2016. 55(35): p. 10253-10257.
78. Becker, H., S.B. King, M. Taniguchi, K.P.M. Vanhessche, and K.B. Sharpless, New Ligands and Improved Enantioselectivities for the Asymmetric Dihydroxylation of Olefins. The Journal of Organic Chemistry, 1995. 60(13): p. 3940-3941.
79. Choudary, B.M., K. Jyothi, S. Madhi, and M. Lakshmi Kantam, Catalytic Asymmetric Dihydroxylation of Aliphatic Olefins with Reusable Resin-Osmium Tetroxide. Advanced Synthesis \& Catalysis, 2003. 345(11): p. 1190-1192.
80. Zeng, X.-P. and J. Zhou, Me2(CH2Cl)SiCN: Bifunctional Cyanating Reagent for the Synthesis of Tertiary Alcohols with a Chloromethyl Ketone Moiety via Ketone Cyanosilylation. Journal of the American Chemical Society, 2016. 138(28): p. 8730-8733.
81. Jin, Y.Y., Z.; Zhang, S.; Jiang, R.; Sun, X, Application of Recyclable Ligand [QN(OH)2]2PYDZ to Asymmetric Dihy-droxylation and Asymmetric Aminohydroxylation of Olefins. Chinese J. Org. Chem., 2007. 2007(27): p. 602.
82. Sengupta, S. and S. Mondal, A highly diastereoselective chiral pool based synthesis ofcis-andtrans- indan-1, 2-diols. Tetrahedron Letters, 1999. 40(17): p. 3469-3470.
83. Kumar, S., M. Javagal, P. Srinivas, and B. Kempaiah, Eco-friendly kinetic separation of trans-limonene and carvomenthene oxides. Vol. 126. 2014. 875-880.
84. Buisson, D., X. Baucherel, E. Levoirier, and S. Juge, Baker's yeast reduction of α-alkyl- α-hydroxy- β-keto esters1. Tetrahedron Letters, 2000. 41(9): p. 1389-1392.
85. Fujisawa, T., M. Watanabe, and T. Sato, Diastereoface-differentiating addition of organometallics toward chiral .ALPHA.-ketoenamines. Chemistry Letters, 1984: p. 2055-2058.
86. Ahrgren, L. and L. Sutin, Sharpless Asymmetric Dihydroxylation on an Industrial Scale. Organic Process Research \& Development, 1997. 1(6): p. 425-427.
87. Fuji, K., K. Tanaka, and H. Miyamoto, Asymmetric cis-dihydroxylation of olefins by utilizing chiral bispiperazine. Tetrahedron Letters, 1992. 33(28): p. 4021-4024.
88. Malla Reddy, S., M. Srinivasulu, Y. Venkat Reddy, M. Narasimhulu, and Y. Venkateswarlu, Catalytic asymmetric dihydroxylation of olefins using polysulfone-based novel microencapsulated osmium tetroxide. Tetrahedron Letters, 2006. 47(30): p. 5285-5288.
89. Vadivel, S.K., S. Vardarajan, R.I. Duclos, J.T. Wood, J. Guo, and A. Makriyannis, Conformationally constrained analogues of 2-arachidonoylglycerol. Bioorganic \& Medicinal Chemistry Letters, 2007. 17(21): p. 5959-5963.
90. Newhouse, T. and P.S. Baran, If C H Bonds Could Talk: Selective C H Bond Oxidation. Angewandte Chemie International Edition, 2011. 50(15): p. 3362-3374.
91. Powers, D.C., D.Y. Xiao, M.A.L. Geibel, and T. Ritter, On the Mechanism of Palladium-Catalyzed Aromatic $C-H$ Oxidation. Journal of the American Chemical Society, 2010. 132(41): p. 14530-14536.
92. Moriyama, K., M. Takemura, and H. Togo, Direct and Selective Benzylic Oxidation of Alkylarenes via C-H Abstraction Using Alkali Metal Bromides. Organic Letters, 2012. 14(9): p. 2414-2417.
93. Chen, M.S., N. Prabagaran, N.A. Labenz, and M.C. White, Serial Ligand Catalysis: A Highly Selective Allylic C-H Oxidation. Journal of the American Chemical Society, 2005. 127(19): p. 6970-6971.
94. Gormisky, P.E. and M.C. White, Catalyst-Controlled Aliphatic C-H Oxidations with a Predictive Model for Site-Selectivity. Journal of the American Chemical Society, 2013. 135(38): p. 14052-14055.
95. Osberger, T.J., D.C. Rogness, J.T. Kohrt, A.F. Stepan, and M.C. White, Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature, 2016. 537(7619): p. 214-219.
96. Canta, M., D. Font, L. Gómez, X. Ribas, and M. Costas, The Iron(II) Complex [Fe(CF3SO3)2(mcp)] as a Convenient, Readily Available Catalyst for the Selective Oxidation of Methylenic Sites in Alkanes. Advanced Synthesis \& Catalysis, 2014. 356(4): p. 818-830.
97. Boorman, T.C. and I. Larrosa, Gold-mediated C-H bond functionalisation. Chemical Society Reviews, 2011. 40(4): p. 1910-1925.
98. Gutekunst, W.R. and P.S. Baran, C-H functionalization logic in total synthesis. Chemical Society Reviews, 2011. 40(4): p. 1976-1991.
99. Lu, H. and X.P. Zhang, Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. Chemical Society Reviews, 2011. 40(4): p. 1899-1909.
100. Collet, F., C. Lescot, and P. Dauban, Catalytic C-H amination: the stereoselectivity issue. Chemical Society Reviews, 2011. 40(4): p. 1926-1936.
101. Santos Pisoni, D.d., J. Sobieski da Costa, D. Gamba, C.L. Petzhold, A. César de Amorim Borges, M.A. Ceschi, P. Lunardi, and C.A. Saraiva Gonçalves, Synthesis and AChE inhibitory activity of new chiral tetrahydroacridine analogues from terpenic cyclanones. European Journal of Medicinal Chemistry, 2010. 45(2): p. 526-535.
102. Hatano, M., S. Suzuki, and K. Ishihara, Highly Efficient Alkylation to Ketones and Aldimines with Grignard Reagents Catalyzed by Zinc(II) Chloride. Journal of the American Chemical Society, 2006. 128(31): p. 9998-9999.
103. Mizar, P. and T. Wirth, Flexible Stereoselective Functionalizations of Ketones through Umpolung with Hypervalent Iodine Reagents. Angewandte Chemie International Edition, 2014. 53(23): p. 5993-5997.
104. Kim, Y., H.K. Pak, Y.H. Rhee, and J. Park, Catalytic transformation of esters of 1,2-azido alcohols into [small alpha]-amido ketones. Chemical Communications, 2016. 52(39): p. 6549-6552.
105. Brenna, E., M. Crotti, F.G. Gatti, D. Monti, F. Parmeggiani, A. Pugliese, and F. Tentori, Biocatalytic synthesis of chiral cyclic [gamma]-oxoesters by sequential C-H hydroxylation, alcohol oxidation and alkene reduction. Green Chemistry, 2017. 19(21): p. 5122-5130.
106. Conde, A., L. Vilella, D. Balcells, M.M. Díaz-Requejo, A. Lledós, and P.J. Pérez, Introducing Copper as Catalyst for Oxidative Alkane Dehydrogenation. Journal of the American Chemical Society, 2013. 135(10): p. 3887-3896.
107. Pan, G.-H., R.-J. Song, and J.-H. Li, Radical-mediated synthesis of [gamma]-lactones by copper-catalyzed intermolecular carboesterification of alkenes with [small alphaJ-carbonyl alkyl bromides and H2O. Organic Chemistry Frontiers, 2018. 5(2): p. 179-183.
108. Caruano, J., G.G. Muccioli, and R. Robiette, Biologically active gamma-lactams: synthesis and natural sources. Org Biomol Chem, 2016. 14(43): p. 10134-10156.
109. Shu, C., M.-Q. Liu, S.-S. Wang, L. Li, and L.-W. Ye, Gold-Catalyzed Oxidative Cyclization of Chiral Homopropargyl Amides: Synthesis of Enantioenriched γ-Lactams. The Journal of Organic Chemistry, 2013. 78(7): p. 3292-3299.
110. Rhee, J.U. and M.J. Krische, Highly Enantioselective Reductive Cyclization of Acetylenic Aldehydes via Rhodium Catalyzed Asymmetric Hydrogenation. Journal of the American Chemical Society, 2006. 128(33): p. 10674-10675.
111. Schaus, S.E., J. Brånalt, and E.N. Jacobsen, Asymmetric Hetero-Diels-Alder Reactions Catalyzed by Chiral (Salen)Chromium(III) Complexes. The Journal of Organic Chemistry, 1998. 63(2): p. 403-405.
112. Wang, H., B. Dong, Y. Wang, J. Li, and Y. Shi, A Palladium-Catalyzed Regioselective Hydroesterification of Alkenylphenols to Lactones with Phenyl Formate as CO Source. Organic Letters, 2014. 16(1): p. 186-189.
113. Wilent, J. and K.S. Petersen, Enantioselective Desymmetrization of Diesters. The Journal of Organic Chemistry, 2014. 79(5): p. 2303-2307.
114. Sinai, Á., Á. Mészáros, T. Gáti, V. Kudar, A. Palló, and Z. Novák, Copper-Catalyzed Oxidative Ring Closure and Carboarylation of 2-Ethynylanilides. Organic Letters, 2013. 15(22): p. 5654-5657.
115. Weng, Y., H. Zhou, C. Sun, Y. Xie, and W. Su, Copper-Catalyzed Cyclization for Access to 6H-Chromeno[4,3-b]quinolin-6-ones Employing DMF as the Carbon Source. J Org Chem, 2017. 82(17): p. 9047-9053.
116. Aradi, K., P. Bombicz, and Z. Novak, Modular Copper-Catalyzed Synthesis of Chromeno[4,3-b]quinolines with the Utilization of Diaryliodonium Salts. J Org Chem, 2016. 81(3): p. 920-31.
117. Hu, T. and C. Li, Synthesis of Lactams via Copper-Catalyzed Intramolecular Vinylation of Amides. Organic Letters, 2005. 7(10): p. 2035-2038.
118. Kerrigan, N.J., P.C. Hutchison, T.D. Heightman, and D.J. Procter, Development of a solid-phase 'asymmetric resin-capture-release' process: application of an ephedrine chiral resin in an approach to [gamma]-butyrolactones. Organic \& Biomolecular Chemistry, 2004. 2(17): p. 2476-2482.
119. Theodore, L.J. and W.L. Nelson, Stereospecific synthesis of the enantiomers of verapamil and gallopamil. The Journal of Organic Chemistry, 1987. 52(7): p. 1309-1315.
120. Cordero, F.M., F. Pisaneschi, M. Salvati, S. Valenza, C. Faggi, and A. Brandi, Application of Mosher's method for absolute configuration assignment and resolution of 2-hydroxypyrrolizidinones. Chirality, 2005. 17(3): p. 149-153.
121. Vedejs, E., D.A. Engler, and J.E. Telschow, Transition-metal peroxide reactions. Synthesis of .alpha.-hydroxycarbonyl compounds from enolates. The Journal of Organic Chemistry, 1978. 43(2): p. 188-196.
122. Hartman, G.D. and L.M. Weinstock, Thiazoles from Ethyl Isocyanoacetate and Thiono Esters: Ethyl Thiazole-4-Carboxylate. Organic Syntheses, 2003.
123. Newhouse, T. and P.S. Baran, If C-H Bonds Could Talk - Selective $C-H$ Bond Oxidation. Angewandte Chemie (International ed. in English), 2011. 50(15): p. 3362-3374.
124. Stout, E.P., M.Y. Choi, J.E. Castro, and T.F. Molinski, Potent Fluorinated Agelastatin Analogues for Chronic Lymphocytic Leukemia: Design, Synthesis, and Pharmacokinetic Studies. Journal of Medicinal Chemistry, 2014. 57(12): p. 5085-5093.
125. He, J., L.G. Hamann, H.M.L. Davies, and R.E.J. Beckwith, Late-stage $C-H$ functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nature Communications, 2015. 6: p. 5943.
126. Gutiérrez-Bonet, Á., C. Remeur, J.K. Matsui, and G.A. Molander, Late-Stage $C-H$ Alkylation of Heterocycles and 1,4-Quinones via Oxidative Homolysis of 1,4-Dihydropyridines. Journal of the American Chemical Society, 2017. 139(35): p. 12251-12258.
127. Huang, X., T.M. Bergsten, and J.T. Groves, Manganese-Catalyzed Late-Stage Aliphatic C-H Azidation. Journal of the American Chemical Society, 2015. 137(16): p. 5300-5303.
128. Loskot, S.A., D.K. Romney, F.H. Arnold, and B.M. Stoltz, Enantioselective Total Synthesis of Nigelladine A via Late-Stage C-H Oxidation Enabled by an Engineered P450 Enzyme. Journal of the American Chemical Society, 2017. 139(30): p. 10196-10199.
129. Nanjo, T., E.C. de Lucca, and M.C. White, Remote, Late-Stage Oxidation of Aliphatic CH Bonds in Amide-Containing Molecules. Journal of the American Chemical Society, 2017. 139(41): p. 14586-14591.
130. Stang, E.M. and M. Christina White, Total synthesis and study of 6-deoxyerythronolide B by late-stage C-H oxidation. Nature Chemistry, 2009. 1: p. 547.
131. Shen, X.-C., Y.-P. Yang, T.-T. Xiao, J. Peng, and X.-D. Liu, Protective effect of oxymatrine on myocardial fibrosis induced by acute myocardial infarction in rats involved in TGF- $\beta 1$-Smads signal pathway. Journal of Asian Natural Products Research, 2011. 13(3): p. 215-224.
132. GU, X., A. ZHANG, M. NI, and X. MAO, Sophocarpidine and oxymatrine derivatives and preparation method and application thereof, in CN106518873 (A). 2017: China.
133. Bai, G.Y., Wang, D.Q., Ye, C.H. et al., $1 H$ and $13 C$ Chemical Shifl Assignments and Stereochemistry
of Matrine and Oxymatrine Applied Magnetic Resonance, 2002. 23: p. 113-121.
134. Jana, S., M. Ghosh, M. Ambule, and S. Sen Gupta, Iron Complex Catalyzed Selective CH Bond Oxidation with Broad Substrate Scope. Organic Letters, 2017. 19(4): p. 746-749.
135. Chen, M.S. and M.C. White, Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation. Science, 2010. 327(5965): p. 566.
136. Choudhary, M.I., S.G. Musharraf, A. Sami, and R. Atta ur, Microbial Transformation of Sesquiterpenes, (-)-Ambrox® and (+)-Sclareolide. Helvetica Chimica Acta, 2004. 87(10): p. 2685-2694.
137. Kuhl, H., Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric, 2005. 8(sup1): p. 3-63.
138. See, Y.Y., A.T. Herrmann, Y. Aihara, and P.S. Baran, Scalable C-H Oxidation with Copper: Synthesis of Polyoxypregnanes. Journal of the American Chemical Society, 2015. 137(43): p. 13776-13779.
139. Schleyer, P.v.R., J.E. Williams, and K.R. Blanchard, Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. Journal of the American Chemical Society, 1970. 92(8): p. 2377-2386.
140. Fresno, N., R. Pérez-Fernández, C. Goicoechea, I. Alkorta, A. Fernández-Carvajal, R. de la Torre-Martínez, S. Quirce, A. Ferrer-Montiel, M.I. Martín, P. Goya, and J. Elguero, Adamantyl Analogues of Paracetamol as Potent Analgesic Drugs via Inhibition of TRPA1. PLOS ONE, 2014. 9(12): p. e113841.
141. Duhamel, N., D. Martin, R. Larcher, B. Fedrizzi, and D. Barker, Convenient synthesis of deuterium labelled sesquiterpenes. Tetrahedron Letters, 2016. 57(40): p. 4496-4499.
142. Arrington, K.J., C.B. Murray, E.C. Smith, H. Marand, and J.B. Matson, Precision Polyketones by Ring-Opening Metathesis Polymerization: Effects of Regular and Irregular Ketone Spacing. Macromolecules, 2016. 49(10): p. 3655-3662.
143. Xi, X., T. Chen, J.-S. Zhang, and L.-B. Han, Efficient and selective hydrogenation of C-O bonds with a simple sodium formate catalyzed by nickel. Chemical Communications, 2018. 54(12): p. 1521-1524.
144. Kricka, L.J. and G.H.G. Thorpe, Chemiluminescent and bioluminescent methods in Analytical Chemistry. A review. Analyst, 1983. 108(1292): p. 1274-1296.
145. Thorne, N., D.S. Auld, and J. Inglese, Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Current Opinion in Chemical Biology, 2010. 14(3): p. 315-324.
146. Auld, D.S., N.T. Southall, A. Jadhav, R.L. Johnson, D.J. Diller, A. Simeonov, C.P. Austin, and J. Inglese, Characterization of chemical libraries for luciferase inhibitory activity. Journal of medicinal chemistry, 2008. 51(8): p. 2372-2386.
147. Thorne, N., M. Shen, W.A. Lea, A. Simeonov, S. Lovell, D.S. Auld, and J. Inglese, Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic
evaluation of chemotypes, and suggested use as a reporter. Chemistry \& biology, 2012. 19(8): p. 1060-1072.
148. Fan, F. and K.V. Wood, Bioluminescent assays for high-throughput screening. Assay and drug development technologies, 2007. 5(1): p. 127-136.
149. Braeuning, A., Firefly luciferase inhibition: a widely neglected problem. Archives of toxicology, 2015. 89(1): p. 141-142.
150. Auld, D.S., N. Thorne, D.-T. Nguyen, and J. Inglese, A specific mechanism for nonspecific activation in reporter-gene assays. 2008, ACS Publications.
151. Thompson, J.F., L.S. Hayes, and D.B. Lloyd, Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene, 1991. 103(2): p. 171-177.
152. Conti, E., N.P. Franks, and P. Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure, 1996. 4(3): p. 287-298.
153. Branchini, B.R., M.H. Murtiashaw, R.A. Magyar, and S.M. Anderson, The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase. Biochemistry, 2000. 39(18): p. 5433-5440.
154. Franks, N., A. Jenkins, E. Conti, W. Lieb, and P. Brick, Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophysical journal, 1998. 75(5): p. 2205-2211.
155. Leitão, J.M. and J.C.E. da Silva, Firefly luciferase inhibition. Journal of Photochemistry and Photobiology B: Biology, 2010. 101(1): p. 1-8.
156. Suzuki, H., Y. Kawarabayasi, J. Kondo, T. Abe, K. Nishikawa, S. Kimura, T. Hashimoto, and T. Yamamoto, Structure and regulation of rat long-chain acyl-CoA synthetase. Journal of Biological Chemistry, 1990. 265(15): p. 8681-8685.
157. Oba, Y., M. Ojika, and S. Inouye, Firefly luciferase is a bifunctional enzyme: ATP dependent monooxygenase and a long chain fatty acyl - CoA synthetase. FEBS letters, 2003. 540(1-3): p. 251-254.
158. Inouye, S., Firefly luciferase: an adenylate-forming enzyme for multicatalytic functions. Cellular and molecular life sciences, 2010. 67(3): p. 387-404.
159. Marques, S.M. and J.C. Esteves da Silva, Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB life, 2009. 61(1): p. 6-17.
160. Matsuki, H., A. Suzuki, H. Kamaya, and I. Ueda, Specific and non-specific binding of long-chain fatty acids to firefly luciferase: cutoff at octanoate. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999. 1426(1): p. 143-150.
161. Airth, R., W. Rhodes, and W. McElroy, The function of coenzyme A in luminescence. Biochimica et biophysica acta, 1958. 27: p. 519-532.
162. McElroy, W., J. Hastings, J. Coulombre, and V. Sonnenfeld, The mechanism of action of pyrophosphate in firefly luminescence. Archives of biochemistry and biophysics, 1953. 46(2): p. 399-416.
163. Nakamura, M., S. Maki, Y. Amano, Y. Ohkita, K. Niwa, T. Hirano, Y. Ohmiya, and H. Niwa, Firefly luciferase exhibits bimodal action depending on the luciferin chirality. Biochemical and biophysical research communications, 2005. 331(2): p. 471-475.
164. Lemasters, J.J. and C.R. Hackenbrock, Kinetics of product inhibition during firefly luciferase luminescence. Biochemistry, 1977. 16(3): p. 445-447.
165. da Silva, L.P. and J.C.E. da Silva, Kinetics of inhibition of firefly luciferase by dehydroluciferyl-coenzyme A, dehydroluciferin and L-luciferin. Photochemical \& Photobiological Sciences, 2011. 10(6): p. 1039-1045.
166. Fontes, R., A. Dukhovich, A. Sillero, and M.A.G. Sillero, Synthesis of dehydroluciferin by firefly luciferase: effect of dehydroluciferin, coenzyme A and nucleoside triphosphates on the luminescent reaction. Biochemical and biophysical research communications, 1997. 237(2): p. 445-450.
167. Nakagomi, M., N. Fujimaki, A. Ito, T. Toda, H. Fukasawa, K. Shudo, and R. Tomita, A Novel Aromatic Carboxylic Acid Inactivates Luciferase by Acylation of an Enzymatically Active Regulatory Lysine Residue. PloS one, 2013. 8(9): p. e75445.
168. Gobbi, S., A. Cavalli, M. Negri, K.E. Schewe, F. Belluti, L. Piazzi, R.W. Hartmann, M. Recanatini, and A. Bisi, Imidazolylmethylbenzophenones as highly potent aromatase inhibitors. Journal of medicinal chemistry, 2007. 50(15): p. 3420-3422.
169. Ghosh, A.K., J. Takayama, Y. Aubin, K. Ratia, R. Chaudhuri, Y. Baez, K. Sleeman, M. Coughlin, D.B. Nichols, and D.C. Mulhearn, Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndrome- Coronavirus Papain-Like Protease. Journal of medicinal chemistry, 2009. 52(16): p. 5228-5240.
170. Corey, E.J. and A. Venkateswarlu, Protection of hydroxyl groups as tert-butyldimethylsilyl derivatives. Journal of the American Chemical Society, 1972. 94(17): p. 6190-6191.
171. Claridge, T.D.W., S.G. Davies, J.A. Lee, R.L. Nicholson, P.M. Roberts, A.J. Russell, A.D. Smith, and S.M. Toms, Highly (E)-Selective Wadsworth-Emmons Reactions Promoted by Methylmagnesium Bromide. Organic Letters, 2008. 10(23): p. 5437-5440.
172. Travis, B.R., M. Sivakumar, G.O. Hollist, and B. Borhan, Facile Oxidation of Aldehydes to Acids and Esters with Oxone. Organic Letters, 2003. 5(7): p. 1031-1034.
173. Speers, A.E. and B.F. Cravatt, Profiling enzyme activities in vivo using click chemistry methods. Chemistry \& biology, 2004. 11(4): p. 535-546.
174. Kolb, H.C. and K.B. Sharpless, The growing impact of click chemistry on drug discovery. Drug discovery today, 2003. 8(24): p. 1128-1137.
175. Li, L. and Z. Zhang, Development and applications of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules, 2016. 21(10): p. 1393.
176. Ghosh, A.K., J. Takayama, Y. Aubin, K. Ratia, R. Chaudhuri, Y. Baez, K. Sleeman, M. Coughlin, D.B. Nichols, D.C. Mulhearn, B.S. Prabhakar, S.C. Baker, M.E. Johnson, and
A.D. Mesecar, Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Protease. Journal of Medicinal Chemistry, 2009. 52(16): p. 5228-5240.
177. Saint-Louis, C.J., R.N. Shavnore, C.D.C. McClinton, J.A. Wilson, L.L. Magill, B.M. Brown, R.W. Lamb, C.E. Webster, A.K. Schrock, and M.T. Huggins, Synthesis, computational, and spectroscopic analysis of tunable highly fluorescent $B N-1,2$-azaborine derivatives containing the $N-B O H$ moiety. Organic \& Biomolecular Chemistry, 2017. 15(48): p. 10172-10183.
178. Vedachalam, S., N. Murugesh, P. Chakraborty, R. Karvembu, and X.-W. Liu, NHC catalyzed enantioselective Coates-Claisen rearrangement: a rapid access to the dihydropyran core for oleuropein based secoiridoids. New Journal of Chemistry, 2018. 42(3): p. 1832-1839.
179. Sabbatini, P., P. Wellendorph, S. Høg, M.H.F. Pedersen, H. Bräuner-Osborne, L. Martiny, B. Frølund, and R.P. Clausen, Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled γ-Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity γ-Hydroxybutyric Acid Binding Sites. Journal of Medicinal Chemistry, 2010. 53(17): p. 6506-6510.

Appendix A. ${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$ NMR and Mass Spectrum

3

4

10

10

11

11

15

15

18

19

20

21

21

37A

39A

40A

40A

(S)-41

(R, R)-46A

(R,R)-46A

(R, R) -47 A

(R, R) -47 A

รั
以上ルいいうにううううjuj

(S)-49

(S)-49

（S）－49A

(S)-50

(S)-50

(S)-50A
(S)-50A

56

56

60

60

61

61

(1S,2R)-67

$(1 S, 2 R)-67$

(4S,5R)-76

$(1 S, 2 R)-81$

(S)-87

(R)-101

$\stackrel{\text { ®. }}{\stackrel{\text { ® }}{\sim}}$

$\underbrace{2}_{(1 S, 2 R)-115}$

(S)-121

(S)-126

(S)-132

134

(S)-201

(S)-209

(S)-213

232

240

250

251

