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Abstract 

  

My thesis is divided into two parts. The first part is focused on studies of N-heterocyclic 

carbene (NHC) palladium(IV) intermediates, which are involved in oxidative addition mediated 

C-C, and C-O bond formation processes as well as in C-Cl bond forming reactions via a 

reductive elimination process. Bis-NHC-Pd(II) complexes have been reported as effective 

catalysts to mediate direct conversion of methane into methanol. However, a H-D exchange 

study revealed that the bis-NHC-Pd(II) complexes are not the active species responsible for the 

C-H bond activation reaction. This unexpected result implies that the high oxidation state bis-

NHC-Pd(IV) species may be the real catalyst! The oxidative addition of methyl iodide to the bis-

NHC-Pd(II)-Me2 complex led to the successful observation of the formation of a transient 

trimethyl bis-NHC-Pd(IV) intermediate by both 1H-NMR and 13C-NMR spectroscopy. Different 

oxidants such as O2, PhI(OAc)2, PhI(OTFA)2 and Cl2 reacted with the bis-NHC-Pd(II)-Me2 

complex, and competitive C-C and C-O bond formations, as well as C-C and C-Cl bond 

formations were observed. Dioxygen triggered C-C bond formation under dry condition and both 

C-C and C-O bond formation in the presence of H2O gave strong indications that the bis-NHC-

Pd(II)-Me2 complex can be oxidized to a bis-NHC-Pd(IV) intermediate by dioxygen. The 

reaction between the hypervalent iodine regents PhI(OAc)2 and PhI(OTFA)2 and the bis-NHC-

Pd(II)-Me2 complex gave only reductive elimination products. Therefore, this system can act as a 

model system, which is able to providing valuable information of the product forming 

(functionalization) step of the C-H bond activation system. The reaction between chlorine and 

the bis-NHC-Pd(II)-Me2 complex resulted in a relatively stable bis-NHC-Pd(IV)-Cl 4 complex, 

which was characterized by 1H-NMR spectroscopy and mass spectroscopy. The structure of bis-

NHC-Pd(IV)-Cl4 was unambiguously established by X-ray crystallography.  

The second part of this thesis describes the synthesis of functionalized bimagnetic 

core/shell iron/iron oxide nanoparticles for the treatment of cancer. Biocompatible dopamine-

oligoethylene glycol functionalized bimagnetic core/shell Fe/Fe3O4 nanoparticles were prepared 

via ligand exchange, and purified by repeated dispersion/magneto-precipitation cycles. A 

porphyrin (TCPP) has been tethered to the stealth nanoparticles to enhance their uptake by tumor 

cells and (neural) stem cells. The stealth nanoparticles have been delivered in a mouse model to 

tumor sites intravenously by using the EPR (enhanced permeation and retention) effect. 



 

 

Magnetic hyperthermia proved to be very effective against B16-F10 mouse melanomas in 

Charles River black mice. After hyperthermia, the nanoparticles have shown a significant effect 

on the growth of tumor (up to 78% growth inhibition).  
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Abstract 

My thesis is divided into two parts. The first part is focused on studies of N-heterocyclic 

carbene (NHC) palladium(IV) intermediates, which are involved in oxidative addition mediated 

C-C, and C-O bond formation processes as well as in C-Cl bond forming reactions via a 

reductive elimination process. Bis-NHC-Pd(II) complexes have been reported as effective 

catalysts to mediate direct conversion of methane into methanol. However, a H-D exchange 

study revealed that the bis-NHC-Pd(II) complexes are not the active species responsible for the 

C-H bond activation reaction. This unexpected result implies that the high oxidation state bis-

NHC-Pd(IV) species may be the real catalyst! The oxidative addition of methyl iodide to the bis-

NHC-Pd(II)-Me2 complex led to the successful observation of the formation of a transient 

trimethyl bis-NHC-Pd(IV) intermediate by both 1H-NMR and 13C-NMR spectroscopy. Different 

oxidants such as O2, PhI(OAc)2, PhI(OTFA)2 and Cl2 reacted with the bis-NHC-Pd(II)-Me2 

complex, and competitive C-C and C-O bond formations, as well as C-C and C-Cl bond 

formations were observed. Dioxygen triggered C-C bond formation under dry condition and both 

C-C and C-O bond formation in the presence of H2O gave strong indications that the bis-NHC-

Pd(II)-Me2 complex can be oxidized to a bis-NHC-Pd(IV) intermediate by dioxygen. The 

reaction between the hypervalent iodine regents PhI(OAc)2 and PhI(OTFA)2 and the bis-NHC-

Pd(II)-Me2 complex gave only reductive elimination products. Therefore, this system can act as a 

model system, which is able to providing valuable information of the product forming 

(functionalization) step of the C-H bond activation system. The reaction between chlorine and 

the bis-NHC-Pd(II)-Me2 complex resulted in a relatively stable bis-NHC-Pd(IV)-Cl 4 complex, 

which was characterized by 1H-NMR spectroscopy and mass spectroscopy. The structure of bis-

NHC-Pd(IV)-Cl4 was unambiguously established by X-ray crystallography.  

The second part of this thesis describes the synthesis of functionalized bimagnetic 

core/shell iron/iron oxide nanoparticles for the treatment of cancer. Biocompatible dopamine-

oligoethylene glycol functionalized bimagnetic core/shell Fe/Fe3O4 nanoparticles were prepared 

via ligand exchange, and purified by repeated dispersion/magneto-precipitation cycles. A 

porphyrin (TCPP) has been tethered to the stealth nanoparticles to enhance their uptake by tumor 

cells and (neural) stem cells. The stealth nanoparticles have been delivered in a mouse model to 

tumor sites intravenously by using the EPR (enhanced permeation and retention) effect. 



 

 

Magnetic hyperthermia proved to be very effective against B16-F10 mouse melanomas in 

Charles River black mice. After hyperthermia, the nanoparticles have shown a significant effect 

on the growth of tumor (up to 78% growth inhibition).  
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Chapter 1  Introduction  

 

1.1 What is C-H bond activation? 

 

             C-H bond activation is often referred to as one of the “Holy Grails” in chemistry.1 It is 

my understanding of the concept of the “Holy Grail” in Western culture has been used for 

centuries to describe a highly prestigious, but rather elusive goal. In the chemical context of this 

work carbon-hydrogen bond activation can be defined as cleavage of the σ-C-H bond and further 

reaction without the requirement of overcoming large activation energies. This concept is 

described in an article by A. E. Shilov: What is the activation of an ordinary σ-bond? It is 

reasonable to propose that to activate an σ-bond, such as a C-H bond is to increase the reactivity 

of this bond towards a reagent. As a consequence, the bond is capable of splitting to produce two 

“particles” in place of one initial species. In many cases, this rupture of a saturated bond is 

actually a consequence of its activation, and it would be more correct to refer specifically to the 

“splitting of the C-H bond in these situations.”2 

           The main result of “activation” of a C-H bond is the replacement of a strong bond 

(thermodynamically stable) with a weaker (thermodynamically less stable) bond. These weaker 

bonds permit the further functionalization of molecules much more easily than C-H bonds. 

           What is the rationale behind the research on C-H-bond activation? Aliphatic hydrocarbons 

are ubiquitous in nature, but their lack of chemical reactivity in defined reactions (other than 

combustion, cracking and the generation of synthesis gas)3 has prevented their direct conversion 

into valuable chemical products. Therefore, strong motivation for my research has been derived 

from the prospect that C-H activation could enable the conversion of cheap and abundant alkanes 

into valuable functionalized organic compounds. 

What are the principle challenges of C-H bond activation? As already pointed out, the C-

H bond energies are usually high and the bond energies of the new bonds that are formed in 

place of the C-H bond are always lower as is demonstrated in Table 1.1.4 This causes the severe 

problem that it is difficult to control selectivity of the C-H bond activation reaction: the 

functionalized products are usually more reactive than the starting materials, so the initially 

formed reaction products will rather act as reaction intermediate and will be further reacted 
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instead of the starting materials, because that is thermodynamically much easier! Only especially 

designed catalytic systems do not allow further reactions after the first step has taken place. The 

strategy to design such a catalyst is to lower the activation barrier for the first steps, the breaking 

of the C-H bond and the formation of the new C-X-bond, but to significantly increase the 

activation barrier for all further reactions. To date, only a few catalytic systems can provide these 

very special reaction conditions.  

 

Table 1.1 Representative C-H bond dissociation energies4 

 

Bond type Bond dissociation energy (kcal/mol) 

H-CH3 105 

H-CH2R 98-101 

H-CHR2 95-99 

H-R3 93-95 

H-CH=CH2 104-111 

H-CH2CH=CH2 86 

H-C CH  132-133 

H-CH2-C CH 89 

H-C6H5 111-113 

H-CH2C6H5 88-90 

H-CH2OH 94-96 

H-C(=O)R 86-88 

H-CH2C(=O)R 92-98 

H-CH2CO2H 97-99 
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1.2 Transition Metal Mediated Aromatic C-H Bond Activation 

 

 In the middle of 1960s, it was demonstrated that transition metal complexes are capable 

of inserting into aromatic C-H bonds through the participation of the π orbitals.  In 1965, Chatt 

and Davidson reported that the di-(1,2-bisdimethylphosphinoethane)ruthenium(0) complex 

[Ru(0)(dmpe)2] 1.2 was generated by reduction of trans-dichlorodi-(1,2-

bisdimethylphosphinoethane)ruthenium(II) complex [Ru(II)(dmpe)2Cl2] 1.1. One C-H bond of 

naphthalene was activated by the Ru(0)(dmpe)2 complex 1.2 to form the cis-hydrido-(2-

naphthyl)di-(1,2-bisdimethylphosphinoethane)ruthenium(II) complex [Ru(II)H(2-

C10H7)(dmpe)2] 1.3 (Figure 1.1).5 This is the first reported example of “C-H bond activation” of 

an aromatic hydrocarbon by a transition metal complex. 
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Figure 1.1 Ru(0)(dmpe)2 complex mediated C-H bond activation of naphthalene.5 

 

          In 1967, Garnett and Hodges reported the incorporation of deuterium in benzene and 

benzene derivatives mediated by Na2PtCl4 in a D2O/CD3CO2D mixture.6 It was found that the 

degree of exchange is not markedly influenced by the electronic character of the substituents, 

which implies the H-D exchange process is not acid catalyzed. The authors proposed that the 

benzene coordinated to platinum to form a π-complex intermediate, then the H-D exchange may 

either go through reversible rearrangement of the π-bonded complex to a six-coordinated hydrido 

complex or a reversible electrophilic displacement of a proton from the π-bonded complex 

(Figure 1.2).7 
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Figure 1.2 Proposed mechanisms for the platinum(II) mediated aromatic H-D exchange.7  

    

1.3 Transition Metal Mediated Alkane C-H Bond Activation      

           

           Alkanes are the major constituents of natural gas and petroleum. The inertness of alkanes 

toward other reagents is reflected by their other name, ‘paraffin’, which means not enough 

affinity. This chemical inertness arises from constituent of atoms of alkanes all being held 

together by strong and localized C-C and C-H bonds, so that the molecules have no empty 

orbitals of low energy or filled orbitals of high energy that could participate in chemical 

reactions.2,8 

         Despite this inertness of alkanes, it has been demonstrated in the early 1980s that 

organotransition-metal complexes are capable of inserting into alkane C-H bonds. In 1982, 

Bergman’s group reported that when dihydrido-trimethylphospino-

pentamethylcyclopentadienyliridium(III) complex [(Me5C5)(H)2(Me3P)Ir(III)] 1.4 was irradiated 

by UV light in alkanes such as cyclohexane and neopentane, oxidative addition of C-H bond of 

alkanes on the rirdium center was observed.9 The authors suggested that these reaction proceed 

by loss of H2 from complex 1.4 to form the coordinatively unsaturated trimethylphospino-

pentamethylcyclopentadienyliridium(I) species (Me5C5)(Me3P)Ir(I) 1.5 (Figure 1.3). When the 
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reaction was carried out in a 50:50 mixture of cyclohexane and neopentane, the products of 

hydridocyclohexanotrimethylphospino-pentamethylcyclopentadienyliridium(III) complex 1.6 

and hydridoneopentanotrimethylphospino-pentamethylcyclopentadienyliridium(III) complex 1.7 

were formed in a 0.88 ratio, indicating insertion favors a primary over secondary C-H bond. 
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- H2

Ir PMe3

Ir

Me3P

H
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1.4 1.5
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Figure 1.3 Iridium complex 1.4 mediated C-H bond activation of alkanes.9 

 

            Consistent results were reported by Graham that irradiation of 

dicarbonylpentamethylcyclopentadienyliridium(I) complex [(Me5C5)(CO)2Ir(I)] 1.8  by UV light 

in cyclohexane and neopentane leaded to the oxidative addition of C-H bond of the alkanes to the 

iridium center (Figure 1.4). 10 

UV
irridiation

- CO
Ir CO

Ir

OC

H

Ir

OC

H

Ir

OC CO

1.8

 

Figure 1.4 Iridium complex 1.8 mediated C-H bond activation of alkanes.10 
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           In 1983, Jones reported that when dihydrido-trimethylphospino-

pentamethylcyclopentadienylrhodium(III) complex [(Me5C5)(H)2(Me3P)Rh(III)] 1.9 was 

irridated by UV light in liquid propane at -55 oC, the oxidative addition of one terminal propane 

C-H bond to rhodium complex 1.9 occurred to form the hydrido-(1-propano)-trimethylphospino-

pentamethylcyclopentadienylrhodium(III) complex [(Me5C5)(H)(1-C3H7)(Me3P)Rh(III)] 1.10 

(Figure 1.5).11 All these results showed that the inertness of alkanes had been overestimated to 

some extent. They can react with certain organotransition-metal complexes facilely under 

relatively mild conditions. 

Rh

Me3P H

H

UV
irridiation
-55 oC

Rh

Me3P

H

1.9 1.10

 

Figure 1.5 Rhodium complex 1.9 mediated C-H bond activation of propane.11 

 

           

1.4 Transition Metal Catalyzed Methane Oxidation 

 

        Methane and ethane constitute over 95% of the natural gas; however, the utilization of 

methane is limited by the fact that most of the world’s established natural gas resource locations 

are remote, in sites where there is little or no local demand. Exploitation of such a resource is 

impeded by the high cost of both gas transportation and the current methods for converting 

hydrocarbon gas into more readily transportable liquid. The available conversion methods are 

highly energy consuming, involving production of synthesis gas (carbon monoxide and 

hydrogen) from methane and water at high temperature and under moderate pressure, followed 

by conversion to desired products (Figure 1.6).12 

CH4   +   H2O CO   +   3H2
850 oC

10-20 atm
Ni catalyst

CO   +   2H2 CH3OH
250 oC

50-100 atm  

Figure 1.6 Syn-gas method to convert methane to methanol.12 
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           Several transition metal complexes that catalyze direct oxidation of methane to methanol 

derivatives are discussed in the following section.  

 

1.4.1 The Shilov System 

 

In 1969, Shilov and co-workers reported that 2.5 mol% deuterium incorporation was 

found for methane by heating in a solution of 30% CH3COOD and 30% HCl in D2O at 100 oC 

for 6 hours in the presence of K2PtCl4.
13 Without catalyst, this reaction is known to be possible 

only at a temperature about 1000 oC. More than 26 mol% deuterium incorporation into ethane 

was achieved after 9 hours at 150 oC in the same system. This was the first reported homogenous 

system to activate σ-C-H bonds in an alkane. 

 

In 1972, Shilov and coworkers observed the formation of oxidized alkane products by 

addition of H2[PtCl6] into solutions of K2[PtCl4] in D2O/CH3COOD (Figure 1.7).14 It was found 

that the Pt(II) salt is the catalyst but stoichiometric amounts of K2[PtCl6], which acts as the 

oxidant are required for catalytic reaction to occur. 

 

CH4 + [PtCl 6]2- + H2O (Cl-)
[PtCl 4]2-

120 oC
CH3OH (CH3Cl) + [PtCl 4]2- + 2HCl

 

Figure 1.7 Pt(II) mediated methane oxidation.14  

 

In 1983, the Shilov group proposed a three-step mechanism for the alkane oxidation cycle 

(Figure 1.8).15 In the first step the alkane C-H bond is activated by Pt(II) to generate an 

alkylplatinum(II) intermediate. In the second step the alkylplatinum(II) intermediate is oxidized 

by [PtCl6]
2- to form an alkylplatinum(IV) species. In the third step the functionalized product is 

liberated and the Pt center is reduced back to Pt(II) either by reductive elimination from the 

Pt(IV) species or nucleophilic attack at the Pt-C bond by an external nuclephile (H2O or Cl-).  
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Pt II + RCH2-H Pt II

CH2R
+ H+

PtIV
CH2R

PtIV

PtII
H2O

Cl-

RCH2OH + H+

RCH2Cl

i

iiiii

 

Figure 1.8 Proposed mechanism for the methane oxidation in Shilov System.15 

 

Despite the impracticality of using an expensive platinum compound as a stoichiometric 

oxidant, the Shilov system remains to date one of few catalytic systems that accomplish selective 

alkane functionalization under mild conditions. This catalytic system has received considerable 

attention from several research groups and convincing experimental results have been obtained 

to identify the features of each individual reaction step.16 

 

In the product forming step, two different mechanisms have been postulated: a 

nucleophilic (SN2) pathway and a concerted reductive elimination pathway (Figure 1.9).16 

 

Pt
Cl Cl

Cl Cl

CH2R

Cl

Pt
Cl Cl

Cl Cl

RH2C

Cl

2

(a) (b)

 

Figure 1.9 Proposed SN2 pathway (a) and concerted pathway (b) in the product forming step.16 

 

The Bercaw group provided the most definitive supporting evidence for the SN2 type 

reaction in the products forming step. erythro- and threo-[PtCl5CHDCHDOH]2- were produced 

by oxidation of isotope-labeled Zeise’s salt [PtCl3(trans-and cis-CHD=CHD)]- with [PtCl6]
2- in 

water. Treatment of the erythro isomer 1.11 with chloride gave primarily threo-ClCHDCHDOH 

1.12 (3JHH = 6 Hz), upon conversion to 2,3-dideuterioethylene oxide 1.13, 85±5% of the cis-
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isomer was obtained (Figure 1.10). Opposite results were produced when starting with the threo-

isomer. This sequence clearly showed the inversion of stereochemistry in the product forming 

step, which is consistent with a SN2 mechanism.17,18 

 

 

 

PtII

D H

DH

OH

H D
PtIV

HD
[PtCl 6]2-

H2O, H+

erythro

HO

H

D

PtIV

HD

Cl-

-PtII

OH

D H

D H

Cl
threo

NaOH

-HCl

O
H H
D D

1.11

1.121.13
 

Figure 1.10 Evidence for the SN2 pathway in the product forming step for the Shilov System.17 

 

 

 

Another important aspect of the mechanism is the oxidation of the alkylplatinum(II) 

intermediate to alkylplatinum(IV). Two possible mechanisms have been considered: inner-sphere 

two-electron transfer from RPt(II) to Pt(IV) or alkyl transfer from RPt(II) to Pt(IV) (Figure 1.11). 

If the former mechanism prevails, then it is possible to circumvent the usage of expensive 

platinum(IV) as oxidant, whereas the later demands the presence of platinum(IV).  
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Pt
Cl Cl
Cl Cl

Cl

Pt
Cl R
Cl Cl

Cl

2

2

Pt
Cl R
Cl Cl

Cl

Cl

2

+ [PtCl 4] 2

Pt
Cl Cl
Cl Cl

Cl

PtII R

-Pt II

Pt
Cl Cl
Cl Cl

Cl

R

2

 

Figure 1.11 Two possible pathways for oxidation of the alkylpalladium(II) intermediate by 

[PtCl6]
2-.19 

 

Oxidation of Zeise’s salt by [PtCl6]
2- was used as a mechanistic model experiment to 

distinguish between these two possible oxidation pathways.19 It was found that in the course of 

oxidation of Zeise’s salt, an alkylplatinium(II) intermediate is formed. When isotopically labeled 

Na2[
195PtCl6] was used as oxidant, the 1H-NMR spectrum of the product showed the expected 

intensity of 195Pt satellites for the Pt-CH2CH2OH peak (33% of the total peak area, equal to the 

natural abundance of the 195Pt) (Figure 1.12). This experiment clearly indicated that the oxidation 

of R-Pt(II) intermediate by [PtCl6]
2- proceeds by electron transfer, not alkyl transfer. 

 

Cl3Pt II
CH2

CH2

H2O, -H
[Cl3PtIICH2CH2OH]2- [195PtCl6]2-

[Cl5PtIVCH2CH2OH]2-

+
[195PtCl4]2-

 

 

Figure 1.12 Oxidation of Zeise’s salt by [PtCl6]
2-.18 

 

Based on these important results, the Bercaw group addressed “there is accordingly no 

inherent mechanistic reason why Pt(IV) could not be replace by another suitable oxidant, as 

long as it is capable of oxidizing the alkylplatinum(II) intermediate to alkylplatinum(IV) without 

fully oxidizing [PtClx(H2O)4-x]
2-x to Pt(IV).”18 A lot of efforts have been directed to find a 
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replacement oxidant that is less expensive than [PtCl6]
2- or a method to regenerate [PtCl6]

2-. A 

list of oxidants including SO3, Cl2, H2O2, O2/heteropolyacids and O2/Cu(II) were investigated to 

carry out this transformation, but only little success was obtained.20-24 The reaction was also 

investigated under electrochemical conditions with catalytic amount of Pt(II), only a limited 

number of turnover was achieved.25 

Two different of mechanisms have been considered in the C-H bond activation step of the 

Shilov system. 1) The C-H bond is cleaved by oxidative addition to Pt(II) yielding an 

alkyl(hydrido)platinum(IV) complex and then deprotonated. 2) The C-H bond is broken by 

deprotonation of an intermediate Pt(II)-alkane σ-adduct (Figure 1.13).26 

 

 

Pt

Pt
R

Pt

H

H

R

+ B

+ B

Pt
R

Pt
R

+   RH

+   BH

+   BH

 

Figure 1.13 Two possible pathways for alkane C-H bond activation by Pt(II).25 

 

Because it is difficult to study the C-H bond activation directly, protonolysis of 

alkylplatium complexes which is the microscopic reverse of methane oxidation was studied to 

gain the mechanistic information.26 Labinger and Bercaw examined the reaction between 

methylchlorotetramethylethylenediamineplatinum(II) complex (tmeda)PtMeCl 1.14 and HCl, the 

oxidative addition product hydrydomethyldichlorotetramethylethylenediamineplatinum(IV) 

intermediate [(tmeda)PtMeHCl2] 1.15 was detected at -78oC, and at -60 oC, the Pt(IV) 1.15 

undergoes reductive elimination to give methane and dichlorotetramethylethylene-

diamineplatinum(II) complex [(tmeda)PtCl2] 1.16 as products (Figure 1.14). 
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PtII
N CH3

N Cl
PtIV

N CH3

N Cl
+    HCl

CD2Cl2
Et2O-d10

-78 oC

H

Cl

PtII
N Cl

N Cl
+   CH4

-60 oC

1.14 1.15 1.16

 

Figure 1.14 Oxidative addition of HCl to (tmeda)Pt(II)(CH3)Cl complex.26 

 

When CH3OD was used as solvent, deuterium exchange into the coordinated methyl 

groups was observed at -40 oC. The multiple deuterium incorporation into methane suggested the 

reversible formation of Pt(II)-alkane σ adduct (Figure 1.15). 

 

Pt II
N CH3

N CH3

PtIV
N CH3

N CH3
+    HCl

CD2Cl2
CH3OD

-78 oC

D

Cl

PtII
N CH3-nDn

N CH3-nDn

-40 oC

D

Cl

Pt II
N Cl

N Cl
2CH3-nDn  +

25 oC

Pt II
N CH3

N
CH3

D

PtIV
N CH3

N CH2D

H

 

Figure 1.15 Possible pathway for multiple deuterium incorporation into methane.25 

 

These experimental results implicated that both a Pt(II)-alkane σ-adduct and a 

alkylhydridoplatinum(IV) species can be the intermediates of the C-H bond activation reaction. 

 

Different ligands supported Pt complexes were used as catalysts to study the elementary 

steps that constitute the oxidation of alkanes to alcohols. Four individual steps have been 

established in one or more cases during platinum-catalyzed C-H activation reactions: 1) 

electrophilic C-H bond activation of alkane at Pt(II),27 2) oxidation of alkyl Pt(II) to alkyl 

Pt(IV),27 3) nucleophilic cleavage R-Pt bond to form ROH and 4) ligand exchange to regenerate 

the original catalyst (Figure 1.16).16b The current challenge is to find a complex which can 

accomplish all four steps efficiently and in concert.   
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PtII
L X
L Y

+    RX PtII
L R
L Y

+    HX

PtII
L R
L Y

+   1/2O2
H2O

PtIV
L R
L Y

OH

OH

+    HX

PtIV
L R
L Y

OH

OH

+    H2O PtII
L OH
L Y

+    ROH    +    H2O

PtII
L OH
L Y

+    HX PtII
L X
L Y

+    H2O

Overall:     RH    +    1/2O 2 ROH  

Figure 1.16 Four individual steps of the platinum catalyzed C-H bond activation.15b 

 

1.4.2 The Catalytica System 

 

In 1998, R. A. Periana and coworkers in Catalytica Advanced Technology Inc. reported 

that in fuming sulfuric acid, methane could be selectively converted to methyl bisulfate catalyzed 

by dichloro(η2-{2,2’-bipyrimidine})platinum(II) complex [(bpym)PtCl2] at 220 oC (Figure 1.17). 

Impressively, a 72% one-pass yield at 81% selectivity, based on methane, was achieved.20  

 

CH4  +  2 H2SO4

(bpym)PtCl 2
CH3OSO3H  +  2 H2O  +  SO2

N N

N N

Pt

Cl

Cl

Structure of (bpym)PtCl 2  

Figure 1.17 (bpym)PtCl2 catalyzed methane oxidation in concentrated sulfuric acid.19a 

 

A remarkable feature of the methane oxidation system is that the system is catalytic in Pt 

complex and utilizes SO3 as oxidant.  The functionalized product methyl bisulfate can be 
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hydrolyzed to methanol, and in principle the SO2 formed during the reaction can be re-oxidized 

by O2 to SO3 (Figure 1.18). All these characteristics make this system potentially practical. 

 

CH4  +  H2SO4  +  SO3 CH3OSO3H  +  H2O  +  SO2

CH3OSO3H  +  H2O CH3OH  +  H2SO4

SO2  +  1/2 O2 SO3

CH4  +  1/2 O2 CH3OHnet  

 

Figure 1.18 Process scheme for the net oxidation of methane to methanol.19a 

 

The bipyrimidine ligand possesses high affinity for Pt(II). It is found that loss of the bpym 

ligand from the Pt center is reversible even under strong acidic and oxidizing conditions. 

Platinum metal can be dissolved in hot 96% H2SO4 in the presence of bpym ligand to produce a 

homogenous solution of (bpym)Pt(HSO4)2. This “self-assembling” function prevents the 

deposition of insoluble (PtCl2)n during the reaction process and increases the catalyst’s lifetime. 

Under the strong acidic reaction condition, the ligand may become protonated. Protonation will 

withdraw electron density from the platinum through the σ-bonding framework of the bidiazine 

ligand thereby enhancing its electrophilicity. 

 

When the reaction was carried out in D2SO4 below 150 oC, multiple H/D exchange can be 

observed with gas-phase methane, suggesting the involvement of σ-methane intermediate, but no 

H/D exchange into the methyl group of methyl bisulfate is observed when methyl bisulfate is 

added in the catalytic system. This is because of the strong electron withdrawing effect of the 

bisulfate group, which inhabits the electrophilic reaction between the platinum complex and the 

C-H bond of the methyl bisulfate. The deactivating effect of the bisulfate group is of crucial 

importance in that it not only leads to desired selectivity, but also prevents undesired over-

oxidation to CO2. 

 

It is believed that under the strong acidic conditions, the catalyst (bpym)PtCl2 undergoes 

ligand exchange to form a cationic [(bpym)PtCl(Sol)]+ species 1.17 (Sol = H2SO4). Dissociation 
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of the solvent ligand will lead to a highly electrophilic, coordinatively unsaturated 14-electron T-

shaped [(bpym)PtCl]+ species which can coordinate with methane to form a Pt(II) σ-methane 

intermediate 1.18. A three-step catalytic cycle was proposed for the methane oxidation reaction: 

in the first step, C-H bond activation of methane occurs from the Pt(II) σ-methane intermediate 

1.18 either by oxidative cleavage, with deprotonation  from a platinum(IV) methyl hydride, or by 

electrophilic substitution, with loss of proton from Pt(II) σ-methane intermediate 1.18 to form 

the (bpym)Pt(II)(CH3)Cl species 1.19; in the second step, the (bpym)Pt(II)(CH3)Cl species 1.19 

is oxidized to (bpym)Pt(IV)(CH3)Cl(OSO3H)2 species 1.20 by SO3; in the third step, 

functionalized product methyl bisulfate is released and the catalyst is regenerated (Figure 1.19). 
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Figure 1.19 Proposed mechanism for the methane oxidation for the Catalytica System.20b 
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With regard to yields, selectivity and catalyst turnover numbers, the Catalytica system 

achieved the best results for catalytic methane oxidation and it made the most significant 

advance in Shilov type chemistry. However, there are some drawbacks in this system. Firstly, 

this system needs concentrated sulfuric acid as reaction media which is highly corrosive and 

difficult to handle. Secondly, methyl bisulfate, the product of the methane oxidation, is of little 

direct use and need to be converted to more useful compound, such as methanol. The hydrolysis 

of methyl bisulfate will lead to undesired diluted sulfuric acid as side product. Its concentration 

requires a lot of energy due to the high dilution entropy and the enthalpy of water-binding by 

sulfuric acid.8 

 

1.4.3 The NHC-Pd System by Strassner 

 

In 2002, Strassner and co-workers reported the catalytic conversion of methane to methyl 

trifluoroacetate by using N-heterocyclic carbene (NHC) palladium(II) complexes as catalysts 

(Figure 1.20).29 The reactions were carried out in a mixture of trifluoroacetic acid and 

trifluoroacetic acid anhydride at a methane pressure of 20-30 bar at 80-100 oC, and with 

potassium peroxodisulfate as an oxidant. Under optimized condition, a TON (turnover number) 

of 30 relative to NHC-Pd catalyst was reached.  

 

N

Pd

N

N

N
R

R

X

X

1.21a:  R = t-Bu, X = Br
1.21b:  R = t-Bu, X = I
1.21c:  R = Me,   X = Br
1.21d:  R = Me,   X = I

CH4  +  CF3COOH CH3OOCCF3

K2S2O8 2KHSO4  

Figure 1.20 NHC-Pd(II) complexes catalyzed methane oxidation.29 

 



 

17 

 

It was found that the counterions of the NHC-Pd complexes played an important role in 

the catalytic process (Table 1.2). In contrast to their bromide analogs (entry 1 and entry 3), the 

iodide complexes of the palladium N-heterocyclic carbene catalysts were totally inactive (entry 2 

and entry 4).  

 

Table 1.2 catalytic conversion of methane into methanol.29  

Entry Catalyst Yield[a] [%] 

1 1.21a 519 

2 1.21b 0 

3 1.21c 980 

4 1.21d 0 

5 1.21c 3000[b] 

[a] By GC analysis, relative to palladium. T = 80 oC, t = 24 h, p(CH4) = 20 bar. 

[b] By GC analysis, relative to palladium. T = 90 oC, t = 14 h, p(CH4) = 30 bar. 

 

As a possible reaction pathway was proposed that the first step of the reaction is the 

replacement of the anions by trifluoroacetic acid (Figure 1.21), followed by coordination of the 

methane, electrophilic substitution, oxidation and reductive elimination of CF3COOCH3. At the 

beginning the authors thought that the initial halogen exchange with trifluoroacetate might make 

the difference. However, DFT calculations showed that the energy difference between the 

trifluoroacetate exchange with bromide and iodide ligands is only 5.6 kcal/mol (Table 1.3). This 

value is too small to explain the inactivity of the NHC-Pd-I2 catalysts. Another possible reason is 

that the basicity of iodide is lower than that of bromide, which makes it difficult to protonate the 

halide ligand off to create a free coordination site, therefore iodine takes up the coordination site 

for methane.30 
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Figure 1.21 Stepwise replacement of halogen with trifluoroacetate.30 

 

 

Table 1.3 B3LYP/6-311+G(d,p) calculated free energies (kcal/mol) for the replacement of 

halogen ligands by trifluoroacetic acid.30 

Halogen First replacement Second replacement Overall reaction 

F -2.8 +1.2 -1.6 

Cl +11.1 +3.5 +14.7 

Br +14.1 +6.3 +20.4 

I +16.8 +9.2 +26.0 

 

 

This novel NHC-Pd catalyzed methane oxidation system has the following advantages: 

first of all, the reaction can be carried out under much milder conditions compared to the 

Catalytica System. Secondly, potassium peroxodisulfate can be used as an oxidant, which is 

much cheaper than platinum(IV) salt which is required as an oxidant in the Shilov system. 

Thirdly, the methane oxidation product of this NHC-Pd(II) catalyzed C-H bond activation 

process is a methyl trifluoroacetate ester, which can easily be removed from the reaction mixture 

by distillation and hydrolyzed to produce methanol. The recovered acid and remaining methane 

can be transferred back to the reaction system. Therefore, it is possible to run it as a cyclic 

process. The strong electron withdraw trifluoroacetate group also can protect the product from 

over-oxidation. Last but not the least, the NHC-Pd complexes exhibited extraordinary thermal 

stability in the presence of strong oxidant in strong acidic medium. This character makes them 

ideal candidate catalysts for C-H bond activation reactions, because the strong acid can be used 
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to protect the methane oxidation product against over-oxidation by forming an ester, and the 

strong oxidants are almost a necessity for catalytic C-H bond activation reactions. 

Surprisingly, there are no further mechanistic studies over this promising C-H bond 

activation system.   

 

1.5 Research Goals 

 

As it has been discussed, the bis-NHC-Pd(II) complexes catalyzed methane oxidation 

system is one of the only a few reported catalytic systems that can directly convert methane to 

methanol derivatives.  To further improve this unique catalytic system, a better understanding of 

the details of the reaction mechanism is required. Consequently, the goals of the first part of my 

thesis was to gain mechanistic insight of the bis-NHC-Pd(II) complex-catalyzed methane 

oxidation process. My research has mainly focused on: 1) Synthesis of bis-NHC-Pd(II) 

complexes; 2) Testing these NHC-Pd(II) complexes in C-H bond activation reactions; 3) 

Studying the oxidative addition and reductive elimination pathways from the bis-NHC ligand 

stabilized palladium species.  

Because the reaction conditions are relatively mild, and the catalysts, bis-NHC-Pd 

complexes are well established, it is possible to monitor the reaction by means of 1H-NMR and 
13C-NMR spectroscopy. We expect to isolate or observe key intermediates of the C-H bond 

activation reaction, through which determine the active catalyst. Furthermore, by investigating 

the features of the oxidative addition to the bis-NHC-Pd species and reductive elimination from 

the bis-NHC-Pd species, valuable information related to the C-H bond activation and following 

functionaliztion is expected.  
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Chapter 2 NHC-Pd Complexes-mediated Aryl C-H Bond Activation 

Study 

2.1  Possible Reaction Pathways of the NHC-Pd Catalyzed Methane Oxidation 

Reaction. 

           It must be noted again that the discussion of the reaction mechanism in the original paper 

by T. Strassner was not specific.1,2 In relation to the previous discussed “Shilov System”3 and the 

“Catalytica System”,4 at least three distinctly different reaction pathways should be taken into 

consideration.  

          The first pathway can be described as the Pd(II)-Pd(0)-Pd(II) cycle: In the first step a 

cationic [NHC-Pd(II)-(OOCCF3)]
+ species is generated after ligand-exchange. C-H bond 

activation occurs at a cationic Pd(II) center to form the NHC-Pd(II)-Me-(OOCCF3) complex. In 

the second step, the product is then released either by direct reductive elimination or external 

(SN2 type)-nucleophilic attack. In the third step, the catalyst is regenerated by oxidation of NHC-

Pd(0) to NHC-Pd(II) to complete the catalytic cycle (Figure 2.1).  

 

N

Pd

N

N

N
CH3

CH3

X

X

CF3COOH

N

Pd

N

N

N
CH3

CH3

OOCCF3

OOCCF3 N

Pd

N

N

N
CH3

CH3

OOCCF3

CF3

HO

O
N

Pd

N

N

N
CH3

CH3

O

O

CF3

N

Pd

N

N

N
CH3

CH3

OOCCF3

CH3N

Pd

N

N

N
CH3

CH3

CF3

HO

O

OH

CF3O

X

CH4

CF3COOCH3

oxidant i

ii

iii

 

Figure 2.1 Possible methane oxidation pathway I for the Strassner System. 
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          The second possible pathway is similar to the “Shilov system”: In the first step, after 

ligand exchange, methane C-H bond activation occurs at a cationic Pd(II) center to form a NHC-

Pd(II)-Me-(OOCCF3) species. In the second step, the NHC-Pd(II)-Me-(OOCCF3) species  is 

oxidized to NHC-Pd(IV)-Me-(OOCCF3)-Y2, (where Y = OOCCF3 or OSO3H); In the third step, 

the product is released from the NHC-Pd(IV) center and palladium catalyst is regenerated 

(Figure 2.2).  
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Figure 2.2 Possible methane oxidation pathway II for the Strassner System. 

 

          The third pathway differs from pathways one and two: In the first step, the catalyst is 

oxidized to a NHC-Pd(IV)-(OOCCF3)2-Y2 species (Y = OSO3H or OOCCF3); In the second step, 

a cationic NHC-Pd(IV) species is generated by ligand dissociation; In the third step, C-H bond 

activation occurs at the Pd(IV) center to generate a NHC-Pd(IV)-Me species. In the fourth step 
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of this reaction cycle, the product is released from the Pd(IV) center and Pd(II) species is 

regenerated; In the final step, NHC-Pd(II)-(OOCCF3)2 is reformed after ligand exchange. (Figure 

2.3) 
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Figure 2.3 Possible methane oxidation pathway III for the Strassner System. 

 

2.2 NHC-Pd Complex Mediated Aryl H-D Exchange  

 

H-D exchange is usually used as a diagnostic proof that the C-H bond activation has 

occurred.5,6,7 I have started my studies of this system by testing whether the NHC-Pd(II) 

complexes can initiate H-D exchange.  

 

2.2.1 Synthesis of NHC-Pd(II) Complexes 

 

The NHC-Pd(II) complexes were synthesized according to literature reported 

methods.8,9,10 The bis-imidazolium dibromide salt 2.1 was obtained by refluxing 1-

methylimidazole and dibromomethane in toluene for 12 hours with 73.3% yield.8  Treatment of 

the bis-imidazolium dibromide salt 2.1 with Pd(OAc)2 in DMSO at elevated temperature leads to 

the formation of the palladium complex bis-NHC-Pd(II)-Br2 2.2 with 78% yield.9 Bis-NHC-Pd-
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(OOCCF3)2 2.3a and bis-NHC-Pd-(OOCCH3)2 2.3b were synthesized by abstraction of the 

bromide with AgOOCCF3 and AgOOCCH3 respectively (Figure 2.4).2 
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Figure 2.4 Synthesis of bis-NHC-Pd(II) complexes. 

 

2.2.2 H-D Exchange Study  

 

            At the beginning, H-D exchange was carried out using NHC-Pd-Br2 as catalyst, toluene 

as substrate and deuterated trifluoroacetic acid as solvent. Toluene was chosen as a substrate 

because, firstly, compared to methane, it is much easier to study by NMR spectroscopy; 

secondly, it provides the opportunity to evaluate whether the catalyst has the ability to 

differentiate aromatic C-H bond from benzylic C-H bond in the course of C-H bond activation.  

           The bis-NHC-Pd(II)-Br2 complex 2.2 and toluene (mole ratio of 1/4) were added to 0.70 

mL of deuterated trifluoroacetic acid in a J-Young NMR tube. The reaction system was degassed 

by three consecutive freeze-pump and thaw cycles and then protected under N2. The NMR tube 

was put in an 80 oC oil bath and the H-D exchange process was monitored by 1H-NMR 

spectroscopy. It was found that the H-D exchange happened at both the para and ortho positions 

of toluene. No deuterium incorporation into the meta position and the methyl group of toluene 

was detected. After heating at 80 oC for 20 hours, 60.1% para-H and 39.2% ortho-H were 
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substituted with deuterium (Figure 2.5). A control experiment was carried out under same 

conditions except without adding bis-NHC-Pd-Br2 complex 2.2 as catalyst. No deuterium 

incorporation into the aromatic ring and methyl group was discerned. 
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Figure 2.5 Stacked 1H-NMR of the bis-NHC-Pd(II)-Br2 mediated toluene H-D exchange 

reaction in CF3COOD (expended aromatic area, the spectrum was recorded every 5 hours).  

 

          It is my working hypothesis that the aromatic H-D exchange process, as mediated by the 

bis-NHC-Pd(II)-Br2 complex, proceeds according pathways described in Figure 2.6. In the first 

step, a cationic species [bis-NHC-Pd-(OOCCF3)]
+ 2.4 is generated after ligand exchange (Br vs 

OOCCF3) in the acidic medium. In the second step, toluene coordinates to the cationic Pd center 

by its π-system to form an intermediate 2.5. In the third step, C-H bond activation occurs either 

by deprotonation of bis-NHC-Pd(II) σ-intermediate 2.6 or deprotonation from oxidative addition 

type bis-NHC-Pd(IV)-hydrido intermediate 2.7 to form aryl bis-NHC-Pd(II) 2.8. In the fourth 

step, deuterated toluene is released either by direct deuteration of the C-Pd bond of intermediate 
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2.8 or deuteration of the Pd-center to form a bis-NHC-Pd(IV) species 2.9, and consecutive 

reductive elimination of deuterated toluene leads then to bis-NHC-Pd(II).  
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Figure 2.6 Possible pathways for the bis-NHC-Pd(II)-Br2 complex mediated aromatic H-D 

exchange reaction. 

 

A question in need to be answered is the apparent selectivity of the bis-NHC-Pd-Br2 

complex mediated aromatic H-D exchange process. If the proposed mechanism is valid, there 

should be deuterium incorporation into the meta position of toluene, because it is more 
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accessible to the Pd center than the ortho position when steric effect is taken into consideration. 

However, no deuterium incorporation into the meta position was observed.  

Another possible pathway is the acid catalyzed H-D exchange. After ligand exchange, 

small amount of DBr (pKa = -9) was introduced into the reaction system; the strong acid could 

act as a catalyst to promote the H-D exchange reaction. In this pathway, the para and ortho 

positions of toluene are more prone to H-D exchange because they are the more electron-rich 

sites.  To gain more insight into the mechanism, the bis-NHC-Pd-(OOCCF3)2 complex 2.3a was 

synthesized and used as catalyst to mediate the H-D exchange reaction. Under the same 

conditions, no deuterium incorporation into toluene was observed. This result gave strong 

supportive evidence that the earlier H-D exchange was catalyzed by acid.  

When para-xylene was used as substrate instead of toluene, H-D exchange happened at 

the same rate in the presence or absence of the bis-NHC-Pd-(OOCCF3)2 complex at 80 oC. It is 

reasonable to explain that para-xylene is more electron rich than toluene, so the trifluoroacetic 

acid itself is strong enough to catalyze the H-D exchange process (pKa value of CF3COOH is -

0.25). The difference between the electron negativity of toluene and p-xylene was demonstrated 

in a research paper by R. G. Pearson10, in which the absolute electron negativity of toluene and 

p-xylene were calculated to be 3.9 and 3.7 respectively.    

In applying these results, I came to the conclusion that the aromatic H-D exchange in 

deuterated trifluoroacetic acid is an acid catalyzed process. The bis-NHC-Pd(II)-(OOCCF3)2 

complex and its dissociated cationic form [bis-NHC-Pd(II)-OOCCF3]
+ may not be the 

catalytically active species in the C-H bond activation of hydrocarbons! Under the strong 

oxidation condition of the Strassner’s system, one can speculate that high oxidation state 

palladium species such as [NHC-Pd(IV)-(OOCCF3)4-x]
x+ may form and then can act as the real 

catalyst in the methane C-H bond activation process.  

Soon after this finding in 2005,11 Peter Chen reported a method to prepare the cationic 

[bis-NHC-Pd(II)-(OOCCF3)]
+ species by treating NHC-Pd(II)-(OOCCF3)2 with p-

toluenesulfonic acid in methylene chloride. This species was isolated and tested for C-H bond 

activation of benzene in CF3COOD.12 Even after heating at 120 oC for 24 hours, no deuterium 

incorporation into benzene was observed (Figure 2.7). This result provided further evidence that 

the bis-NHC-Pd(II) is not the active species to mediate C-H bond activation. 
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Figure 2.7 Test of cationic bis-NHC-Pd(II) species for aromatic H-D exchange reaction.12 

 

2.3 Study of Bis-NHC-Pd(II) Mediated C-H Bond Activation in the Presence 

of Potassium Peroxodisulfate  

 

In the Strassner system, trifluoroacetic acid and trifluoroacetic acid anhydride (volume 

ratio of 6/1) were used as reaction medium, potassium peroxodisulfate was used as oxidant. The 

same reaction conditions were used to carry out the C-H bond activation of toluene using the bis-

NHC-Pd(II)-Br2 complex as catalyst. 5.0 mg of the bis-NHC-Pd(II)-Br2 complex was dissolved 

in 0.60 mL of deuterated trifluoroacetic acid in a J-Young NMR tube. Upon adding 0.10 mL of 

trifluoroacetic acid anhydride, all the peaks of the palladium complex were shifted up-field by 

more than 1 ppm. 20 mg of potassium peroxodisulfate was added to the NMR tube and the 

mixture was sonicated for 5 minutes, 1H-NMR spectra was recorded to monitor the reaction after 

the undissolved potassium peroxodisulfate suspension slowly precipitated to the bottom of the 

NMR tube. No reaction was observed. Subsequently 5.0 mg of toluene was added to the NMR 

tube by means of a GC syringe, and the NMR tube was again put in the sonicator at 50 oC.  The 

reaction was kept at 50 oC and monitored hourly by 1H-NMR. The toluene peaks disappeared 

slowly and new peaks corresponding to para-substituted toluene increased slowly. After 8 hours, 

all of the toluene was converted to the new species. In the course of the reaction, no change for 

the resonances of the catalyst was observed. The mass spectrum showed that the molecular 

weight of the para-substituted toluene was 172, which matches the molecular weight of p-

toluenesulfonic acid. This result was really surprising because C-H bond activation of toluene 
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was expected to happen under the oxidation conditions, similar to the methane oxidation to 

methyl trifluoro-acetate, p-methylphenyl trifluoro-acetate was expected to be the product of this 

reaction.  The absence of the expected product implied that there was no C-H bond activation 

happening! Even if C-H bond activation would have happened, the trifluoro-acetate group could 

not have been delivered to toluene.  

The formation of p-toluenesulfonic acid could be explained by a following hypothetical 

sequence: in the first step, potassium peroxodisulfate dissociates to form SO3H radical; in the 

second step, the radical react with toluene resulted in the p-toluenesulfonic acid as product 

(Figure 2.8).  
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Figure 2.8 The hypothetical sequence for the formation of p-toluenesulfonic acid. 

 

2.4 Discussion of the Experimental Findings 

 

The inertness of the bis-NHC-Pd(II) complexes towards aromatic C-H bond of toluene 

was completely unexpected. N-heterocyclic carbenes are electron rich σ-donor ligands. The 

strong electron donating effect was evidenced by the observed IR frequency of the NHC-metal-

CO complexes.13 For example, in the model Rh complex Rh(CO)Cl(L)2, the CO stretching 

frequencies are sensitive to the electron density of the metal. The stronger electron donating 

ligand will lead to a more electron rich metal center, which in turn enhances the metal to CO π-

backdonating effect. The metal to CO π-backdonating can weaken the bond strength of carbon 

monoxide because it increases the electron density of the anti-bonding orbital of carbon 

monoxide (Figure 2.9). The weakened bond will have a lower stretching frequency in the IR 

absorption. 
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Figure 2.9 Demostration of the π-backdonating effect.13 

 

From the data in Table 2.1, it can be seen that N-heterocyclic carbenes induce a 

significant higher electron density at the rhodium center than the standard phosphine ligands 

PMe3, PCy3, and PPh3. 

 

Table 2.1 C-O stretching frequencies of trans-RhL2(CO)Cl complexes.13 

Rh(CO)Cl(L)2 ν(CO) (cm)-1 

NN
Me Me

 

1924 

NN
Cy Cy

 

1929 

PCy3 1939 

PMe3 1957 

PPh3 1983 

 

Because the nitrogen atoms donate their lone pair electrons to the unoccupied p orbital of 

the carbene through a π-resonance interaction, the π-acceptor ability of N-heterocyclic carbene is 

negligible.14 

Referring to the Shilov system, C-H bond activation involves electrophilic displacement 

of a proton on the alkane by Pt(II). However, in the Strassner system, the palladium center is 

quite electron-rich, because it is bis-chelated to the strong electron-donating N-heterocyclic 

carbene ligands. Furthermore, this electon-richness of the metal center is enhanced by the fact 

that there is very little metal to ligand backbonding effect due to the poor π-acceptor ability of N-

heterocyclic carbene ligands. The lack of electrophilicity of the palladium center in the bis-NHC-

Pd(II) complexes might be the reason that they cannot mediate the C-H bond activation reaction.  

On the other hand, under oxidizing conditions, the strong electron donating NHC ligand favors 
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the formation of bis-NHC-Pd(IV) species. The bis-NHC-Pd(IV) species will be more 

electrophilic than the bis-NHC-Pd(II) species, and it could act as catalyst for the C-H bond 

activation of methane. 

 

2.5 Experimental  

 

2.5.1 Syntheis of 1, 1’-Dimethyl-3,3’-methylene-diimidazolium dibromide (2.1). 

        In a 30 mL sealable Schlenk flask 2.00 g (24.4 mmol) methyl imidazole and 2.12 g (12.2 

mmol) dibromomethane were dissolved in 10 mL THF and heated to 130 oC for 16 hours. After 

cooling to room temperature the resulting precipitate was filtered off and washed twice with 10 

mL THF. The product was dried under vacuum, yielding 3.32 g (73.3% ) of a white powder. 
1H-NMR (δH; 400 Hz, DMSO-d6): 3.91 (s, 6H, CH3), 6.78 (s, 2H, CH2), 7.82 (s, 2H, NCH), 8.11 

(s, 2H, NCH), 9.57 (s, 2H, NCHN).  

 

2.5.2 Synthesis of (1, 1’-Dimethyl-3,3’-methylene-diimidazoline-2,2’-diylidene) 

palladium(II)  dibromide  (2.2). 

       In a 50 mL sealable Schlenk flask 1.00 g (2.90 mmol) of 1, 1’-dimethyl-3,3’-methylene-

diimidazolium dibromide and 0.66 g (2.9 mmol) of Pd(OAc)2 were dissolved 20 mL DMSO. The 

reaction mixture was stirred at room temperature for 30 minutes and then at 50 oC for 4 hours, 

after which the reaction mixture was stirred at 90 oC for further 2 hours. DMSO was removed 

under vacuum at 80 oC to give a yellow solid, which was washed twice with 5 mL portions of 

dichloromethane to give the product as a pale yellow solid (1.00 g, 78%). 1H-NMR (δH; 400 Hz, 

DMSO-d6): 3.90 (s, 6H, CH3), 6.27 (s, 2H, CH2), 7.33 (s, 2H, NCH), 7.59 (s, 2H, NCH).  

 

2.5.3 Synthesis of (1, 1’-Dimethyl-3,3’-methylene-diimidazoline-2,2’-diylidene) 

palladium(II)  bis(trifluoroacetate)  (2.3a). 

       In a 20 mL sealable Schlenk flask 150 mg (0.34 mmol) of 1, 1’-Dimethyl-3,3’-methylene-

diimidazoline-2,2’-diylidene) palladium(II)  dibromide and 149 mg (0.68 mmol) silver 

trifluoroacetate were suspended in 5 mL acetonitrile and the reaction mixture was stirred at 60 oC 

for 8 hours. The solution was filtered off and the solvent was removed under vacuum to give a 
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white solid (0.12 g, 69.2%). 1H-NMR (δH; 400 Hz, DMSO-d6): 3.76 (s, 6H, CH3), 6.33 (s, 2H, 

CH2), 7.40 (s, 2H, NCH), 7.67 (s, 2H, NCH).  

 

2.5.4 Synthesis of (1, 1’-Dimethyl-3,3’-methylene-diimidazoline-2,2’-diylidene) 

palladium(II)  diacetate (2.3b). 

       1, 1’-Dimethyl-3,3’-methylene-diimidazoline-2,2’-diylidene) palladium(II)  diacetate was 

synthesized by abstract bromo ligands with silver acetate under same condition with the 

synthesis of bis(trifluoroacetate) palladium(II) complex. 1H-NMR (δH; 400 Hz, DMSO-d6): 1.74 

(s, 6H, CH3 of acetate), 3.75 (s, 6H, CH3), 6.20 (s, 2H, CH2), 7.27 (s, 2H, NCH), 7.55 (s, 2H, 

NCH).  

 

2.5.5 Bis-NHC-Pd-Br2 complex 2.2 mediated H-D toluene exchange  

       In a J-Young NMR tube, 10 mg 1, 1’-dimethyl-3,3’-methylene-diimidazoline-2,2’-

diylidene) palladium(II)  dibromide and 8.3 mg toluene (mole ratio 1:4) were dissolved in 0.7 

mL deuterated trifluoroacetic acid. The NMR tube was heated in an 80 oC oil bath and the H-D 

exchange reaction was monitored by 1H NMR spectroscopy at 25 oC every 2 hours. In the 1H- 

NMR spectrum the resonances of the bis-NHC-Pd(II)-Br2 complex showed as the following:  
1H-NMR (δH; 400 Hz, CF3COOD):  3.90 (s, 6H, CH3), 5.94 (d, 1H, J = 12.5 Hz, CH2), 6.56 (d, 

1H, J = 12.5 Hz, CH2), 6.87 (s, 2H, NCH), 7.25 (s, 2H, NCH). Resonances for toluene showed as 

following: 1H-NMR (δH; 400 Hz, CF3COOD): 2.24 (s, 3H, CH3), 7.03 (t, 1H, J = 7.42 Hz, p-H), 

7.09 (d, 2H, , J = 7.42 Hz, o-H), 7.14 (t, 2H, , J = 7.42 Hz, m-H). The reaction process was 

monitored by integrations of the three sets of resonance of the benzene ring using the NHC 

methyl group as an internal standard. (Detailed 1H-NMR spectrum was showed in Figure A. 5)   

 

2.5.6 Control experiment of toluene H-D exchange  

       The control experiment of toluene H-D exchange reaction was carried out by dissolving 8.3 

mg toluene in CF3COOD in a J-Young NMR tube and heated to 80 oC. The process of the H-D 

exchange reaction was monitored every 2 hours by 1H-NMR at room temperature. (Detailed 1H-

NMR spectrum was showed in Figure A. 6)   
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2.5.7 Bis-NHC-Pd-(OOCCF3)2 complex 2.3a mediated toluene H-D exchange  

       The bis-NHC-Pd(II)-(OOCCF3)2 mediated toluene H-D exchange reaction was carried out 

under same condition than described in section 2.5.5 except using bis-NHC-Pd(II)-(OOCCF3)2 as 

catalyst. 

 

2.5.8 Bis-NHC-Pd-(OOCCF3)2 complex 2.3a mediated p-xylene H-D exchange  

       10 mg bis-NHC-Pd(II)-(OOCCF3)2 complex and 7.8 mg p-xylene were dissolved in 0.7 mL 

CF3COOD in a J-Young NMR tube and heated to 80 oC. The H-D exchange reaction at room 

temperature was monitored every hour by 1H-NMR. (Detailed 1H-NMR spectrum was showed in 

Figure A. 7)   

 

2.5.9 Control experiment of p-xylene H-D exchange study 

        The control experiment was carried out under the same condition that described in 2.5.8 

except without adding of the bis-NHC-Pd(II)-(OOCCF3)2 as catalyst. (Detailed 1H-NMR 

spectrum was showed in Figure A. 8)   

 

2.5.10 Bis-NHC-Pd(II)-Br 2 complex 2.2 mediated C-H bond activation of toluene in the 

presence of potassium peroxodisulfate. 

       5.0 mg of the bis-NHC-Pd(II)-Br2 complex 2.2 was dissolved in 0.60 mL of deuterated 

trifluoroacetic acid in a J-Young NMR tube and to which 0.10 mL of trifluoroacetic acid 

anhydride was added by means of a syringe. 1H-NMR showed that all the peaks of the palladium 

complex were shifted up-field by more than 1 ppm. 20 mg of potassium peroxodisulfate was 

added to the NMR tube and the mixture was sonicated at 50 oC followed by adding 5 mg of 

toluene via a GC syringe.  The reaction was kept at 50 oC and monitored hourly by 1H-NMR. 

(Detailed 1H-NMR spectrum was showed in Figure A. 9)    
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Chapter 3 Study of NHC-Pd(IV) Species 

 

3.1  Introduction  

 

Although organoplatinum(IV) complexes1 have been know since 1907 and many 

organoplatinum complexes have been isolated and extensively studied,2,3,4,5 organopalladium(IV) 

complexes are still very rare.  

The first successful synthesis and isolation of Pd(IV) complexes was accomplished in 

1975, bidentate nitrogen-donor ligands stabilized organometallic Pd(IV) complexes 

Cl2(C6F5)2Pd(IV)(L-L) 3.2 were prepared by oxidative addition of chlorine to the corresponding 

bis(pentafluorophenyl)palladium(II) complexes,  (C6F5)2Pd(II)(L-L) 3.1, (L-L are en, bipy and 

phen) (Figure 3.1).6  

 

(C6F5)2Pd(II)(L-L)
Cl2 Cl2(C6F5)2Pd(IV)(L-L)

L-L = en, bipy, Phen

3.1 3.2

 

 

Figure 3.1 Oxidation of Pd(II) complexes to Pd(IV) complexes by chlorine.6 

 

In 1980, Stille reported the synthesis of the dimethyl (TRANSPHOS) palladium(II) 

complex 3.3.  (TRANSPHOS = 2,11-bis(diphenyl-phosphinomethyl)benzo[c]phenanthrene) 

Because the two methyl groups are in trans-position to each other, this complex would not 

undergo reductive elimination at 100 oC in DMSO-d6.
7 The addition of methyl iodide to 

dimethyl(TRANSPHOS)palladium(II) in DMSO-d6 solution at room temperature produced 

ethane! This result gave compelling evidence for the formation of a Pd(IV) intermediate 3.4 

(Figure 3.2).8 
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Figure 3.2 Reductive elimination of ethane from a Pd(IV) intermediate.8 

 

The Canty group reported the synthesis of Pd(IV) complexes 3.6 and 3.7 by oxidative 

addition of (O2CPh)2, (EPh)2 (E=S, Se) to bis-pyridine ligand stabilized palladium(II) dimethyl 

(bipy)Pd(II)(Me)2 complex 3.5 (Figure 3.3).9  

 

N

N
Pd

Me

Me

(PhE)2

E=S, Se

(PhCO2)2

O2CPh

O2CPh

N

N
Pd

Me

Me
N

N
Pd

Me

Me

EPh

EPh

3.53.6 3.7  

Figure 3.3 Bis-pyridine ligand stabilized Pd(IV) complexes formation.9 

 

           Tris(pyrazol-1-yl)borate ligand supported palladium(IV)cyclopentane complexes 3.9 and 

3.10 were obtained by oxidative addition of organohalides to diorganopalladium(II) complex 3.8 

(Figure 3.4).10 
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-X-
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          CH2=CHCH2I

3.83.9 3.10

 

Figure 3.4 Tris(pyrazol-1-yl)borate ligand supported palladium(IV)cyclopentane complexes 

formation.10 
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           In 2005, the Sanford group reported the synthesis of bis-(phenyl-pyridine) palladium(IV) 

bisbenzoate complexes 3.11(Figure 3.5).11 These Pd(IV) complexes were stabilized by two rigid 

cyclometalated pyridine ligands, and the electronic properties can be manipulated by the para-

substitution of the benzoate parts. These complexes enabled the first detailed mechanistic 

investigation of C-O bond-forming reductive elimination from a Pd(IV) metal center. 

 

N N
Pd

I
O2C(p-XC6H4)

O2C(p-XC6H4) N
Pd

O2C(p-XC6H4)

O2C(p-XC6H4)

N

- PhI

X = H, OMe, Me, OPh, F, Cl, Br, CF 3, CN, NO2
3.11

 

Figure 3.5 Phenylpyridine ligand supported Pd(IV) complexes formation.11 

 

           Inspired by all these examples of successful Pd(IV) research, Dr. Kraft and I had decided 

to direct our efforts to synthesize and characterize NHC-Pd(IV) species. Ideally we wanted to 

isolate the NHC-Pd(IV) species, study their reactivity towards C-H bonds, and further study the 

C-O, C-C bond forming reductive elimination from NHC-Pd(IV) species. 

 

3.2 Oxidation of Bis-NHC-Pd(II)-(OOCCH 3)2 and Bis-NHC-Pd(II)-

(OOCCF3)2 

 

Bis-NHC-Pd(II)-(OOCCF3)2 2.3a and bis-NHC-Pd(II)-(OOCCH3)2 2.3b were 

synthesized by treating bis-NHC-Pd(II)-Br2 2.2 with AgOOCCF3 and AgOOCCH3 respectively 

as have been described in Chaper 2. Compare with the bis-NHC-Pd(II)-Br2 complex 2.2, the 

NHC-Pd(II) di-acetate complexes are more soluble. For example, the bis-NHC-Pd(II)-Br2 

complex only can be dissolved in DMSO, DMF and trifluoroacetic acid, while the bis-NHC-

Pd(II) di-acetate complexes can be dissolved in much less polar solvents such as THF, 

acetonitrile and methylene chloride etc. Different oxidants such as PhI(OAc)2, PhI(OTFA)2 and 

benzolyperoxide(PhCO2)2 were used to oxidize the bis-NHC-Pd(II)-(OOCR)2 complexes 2.3a 

and 2.3b. Various solvents and different temperatures were surveyed, however, no reaction to the 
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bis-NHC-Pd(II)-(OOCR)2 was observed. It should be noted that the oxidants decayed over time. 

Therefore, the attempt to observe or isolate bis-NHC-Pd(IV)-tetracarboxyl species failed. 

 

3.3 Oxidation of bis-NHC-Pd(II)-Br 2 with Br 2 

 

             Another approach to obtain bis-NHC-Pd(IV)-tetracarboxyl species is by the reaction of 

bis-NHC-Pd(IV)-Br4 with silver carboxyl salt. It had been reported the bromine can be use as a 

oxidant to oxidized Pd(II) complexes to Pd(IV) complexes.10 The oxidation of bis-NHC-Pd(II)-

Br2 with bromine was carried out in acetonitrile. The bis-NHC-Pd(II)-Br2 complex is not soluble 

in acetonitrile, after adding one equivalent of bromine to the suspension of bis-NHC-Pd(II)-Br2 

in acetonitrile, a clear orange solution formed immediately.  When the same reaction was carried 

out in deuterated acetonitrile, 1H-NMR spectrum broadened substantially. After removing the 

solvent under vacuum, the obtained solid was re-dissolved in deuterated DMSO, interestingly, 

exactly the same 1H-NMR spectrum as of bis-NHC-Pd(II)-Br2 was obtained. It is our hypothesis 

that the change of the solubility could be due to the oxidation of NHC-Pd(II)-Br2 to NHC-

Pd(IV)-Br4, which undergoes ligand exchange with acetonitrile to form a more soluble solvent-

ligated cationic [NHC-Pd(IV)-Br3-(CH3CN)]+ species 3.12 (Figure 3.6)  However, this process 

appears to be reversible. When the solvent is removed under vacuum, the NHC-Pd(IV) species 

undergoes reductive elimination to form NHC-Pd(II) again. Four equivalents of AgOAc were 

added to convert the proposed bis-NHC-Pd(IV)-Br4 to bis-NHC-Pd(IV)-(OAc)4, but this reaction 

failed and no product suitable for NMR characterization was isolated. The attempt to obtain 

single crystals of bis-NHC-Pd(IV)-Br4 by slowly diffusion of ether into acetonitrile containing an 

excess of bromine and bis-NHC-Pd(II)-Br2 also failed. The precipitate obtained was a powder 

instead of crystals that could be analyzed by X-ray crystallography. The 1H-NMR spectrum of 

the powder showed the characteristic peaks of bis-NHC-Pd(II)-Br2 
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Figure 3.6 Proposed reversible reaction between bis-NHC-ligated Pd(II) and Pd(IV) 
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3.4 Synthesis of Tripodal NHC-Pd Complexes 

 

3.4.1 Examples of Pd(IV) Complexes that Are Stabilized with Tripod Ligands  

 

          In a study of the synthesis and characterization of ligand stabilized Pd(IV) complexes, A. 

J. Canty and coworkers found that in complexes containing the fac-Pd(Me)3 unit, tripodal 

nitrogen donor ligands result in more stable complexes than the related bidentate ligands;12 for 

example, the tri(pyrazo-1-yl)methane ligand stabilized palladium(IV) trimethyl complex 

[PdMe3{(pz)3CH}]I 3.14 is stable at room temperature, but the 2, 2’-bipyridyl ligand supported 

palladium(IV) complex PdIMe3(bpy) 3.13 requires storage at -20 oC to avoid reductive 

elimination of ethane to form PdIMe(bpy). It was also found that the stability of the Pd(IV) 

species increased with stronger donor ability of the ligands. For example, the ligands donor 

ability increases with order of pz<py<imi, complex 3.14 showed a trace of ethane in CDCl3 after 

4 hours at room temperature, but the complexes 3.15 and 3.16 could be heated at 60 oC for 1 

hour without any indication of decomposition (Figure 3.7). 

 

N

N
Pd

Me

Me

I

Me

Pd
Me

Me
N

N

Me

N
N

N
N

H

Pd
Me

Me
N

N

Me

N

N

H

N

Pd
Me

Me
N

N

Me

N

N

N

N H

I- I-

3.13                                   3.14                                          3.15                                         3.16  

Scheme 3.7 Stronger donor ligand stabilize Pd(IV) species better.12 

 

3.4.2 Tripod Ligand Design and Synthesis 

 

         Inspired by the successful preparation of tripod ligands stabilized Pd(IV) complexes, we 

want to design a tripod ligand which contains bis-chelating NHC-platforms with a pending arm. 

After oxidation of the Pd(II) to Pd(IV) complex, the coordination geometry changed from square 
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planar to octahedral. The side arm can lock up an axial site of Pd(IV) and stabilize the Pd(IV) 

complex. This concept is shown in Figure 3.8. 

 

 

Figure 3.8 Tripod ligand design. 

 

        Pyrimidine has been proved to be excellent ligand to bind to platinum even in strongly 

acidic media, as for instance in the Catalytica methane oxidation system.13 Moreover, pyrimidine 

is rather inert to oxidation, therefore it has a great advantage over other ligands such as alkyl- or 

aryl-phosphines, because ligand degradation in the presence of strong oxidants is far less likely. 

In consideration of the simplicity of the 1H-NMR spectrum, 4,6-dimethyl pyrimidine was chosen 

as the side arm ligand. The two methyl groups can be used as an indicator for coordination of 

pyrimidine to the Pd, because before coordination, the two methyl groups are in a symmetrical 

environment and only one peak will be expected in the 1H-NMR spectrum; after coordination, 

the two methyl groups are in a unsymmetrical environment, one close to the Pd and another 

away from the Pd, so two set of peaks will be expected in the 1H-NMR spectrum. 

        The tripod ligand was synthesized according to the Figure 3.9: In the first step, 2-bromo-

4,6-dimethyl pyrimidine was treated with BuLi in THF at -78 oC and then react with 1,3-

dichloroacetone.14 The α-chloro-epoxide 3.17 was obtained with a yield of 43.0%. In the second 

step, the α-chloro-epoxide 3.17 was treated with two equivalent of sodium imidazole salt in 

DMF to yield pyrimidine bis-imidazole alcohol 3.18 in 46.5% yield.15 In the third step, the 

hydroxyl group was protected with TIPS to produce 3.19.16 The introduction of the bulky TIPS 

group to the ligand will help the coordination of pyrimidine to the palladium center because it 

will force the pyrimidine ligand to be close to the palladium center. In the last step, the two 

imidazoles were methylated with MeI to yield the tripod pyrimidine bis-imidazolium ligand 3.20 

with a yield of 96.0%.  
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Figure 3.9 Synthesis of the tripodal ligand. 

 

3.4.3 Synthesis of Tripod bis-NHC-Pd(II) Complexes. 

 

        The aim of this work was the synthesis the tripod-bis-NHC-Pd(II)-Me2 complex 3.22. It was 

anticipated that oxidative addition of alkyl halides such as MeI and benzyl bromide to the 

complex 3.22 will lead to a cationic pyrimidine coordinated bis-NHC-Pd(IV)-(pym)-Me2-R 

species 3.23 (Figure 3.10). As already pointed out, the introduction of the pyrimidine side arm 

ligand can significantly increase the stability of the Pd(IV) species, so that we can isolate and 

characterize the tripodal Pd(IV) species 3.23 and furthermore study the reductive elimination 

pathway from the Pd(IV) species. 

        To our disappointment, it proved to be impossible, to synthesize the tips-protected-tripodal 

bis-NHC-Pd(II) complex 3.21. The classic Herrmann method17 was applied:, Pd(OAc)2 was used 

as base to deprotonate the 2-hydrogens of imdiazole at elevated temperature to generate the bis-

N-heterocyclic carbene in situ, which was expected to coordinate the Pd(II) to form bis-NHC-

Pd(II) complex. But unfortunately, once the heating was applied, the color of the solution turned 

from orange to black, a lot of black (apparently metallic) palladium appeared within two 

minutes. After removal of the palladium black by filtration, the filtrate was concentrated to 

dryness. The 1H-NMR spectrum was complicated and hard to interpret, most likely due to the 

presence of several products. One possible reason for the observed behavior is the presence of 
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the bulky TIPS group that makes it difficult for the two NHC ligands to coordinate to the 

palladium center, as previously expected. The two NHCs could have turned away from each 

other and coordinate to palladium with another two units of the tripod ligand.  
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Figure 3.10 Proposed approach to tripodal ligand stabilized Pd(IV) species. 

 

          The “less congested” ligand 3.24 was used to react with Pd(OAc)2
 in the same manner, and 

although a lot of palladium black precipitated out, we did obtain the tripodal-bis-NHC-Pd(II)-I2  

complex 3.25 after purification with column chromatography (using CHCl3/CH3OH = 20/1 

solvent mixture as mobile phase) with a 28% yield (Figure 3.11).   
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Figure 3.11 Synthesis of tripodal bis-NHC-Pd(II)-I2 complex 3.25. 
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          Single crystals were obtained by slowly diffusing of methanol into a diluted DMSO 

solution of the tripodal bis-NHC-Pd(II)-I2 complex 3.25. Subsequent X-ray analysis revealed 

complex 3.25 to be monomeric with the dicarbene ligand chelating to the palladium(II) center in 

a cis fashion with a boat-like conformation (from the Pd center) and a chair-like conformation 

(from side of the pyrimidine-unit and hydroxyl bonded tertiary carbon) being observed for the 

eight-membered C5N2Pd ring. The remaining two coordination sites of the distorted square-

planar coordinated palladium center are occupied by iodide anions. In addition, a H-bond is 

observed between the proton of the hydroxyl group and the oxygen of the DMSO solvent (Figure 

3.12).  Selected bond lengths and bond angles are listed in Table 3.1. 

 

 

 

               

                                      a                                                    b 

 

Figure 3.12 X-ray structure of complex 3.25 (a: Thermal ellipsoid plot drawn at the 50% 

probability level; b: The hydrogen atoms are omitted for clarity reasons). 
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Table 3.1 Selected bond lengths and bond angles of the tripod-bis-NHC-Pd(II)-I2 complex 3.25. 

 Length (Å)  Angle (deg) 

Pd(1)-C(22)  1.968(2) C(22)-Pd(1)-C(12) 82.54(9) 

Pd(1)-C(12)  1.977(2) C(22)-Pd(1)-I(2) 170.32(6) 

Pd(1)-I(2)  2.6530(2) C(12)-Pd(1)-I(2) 87.83(6) 

Pd(1)-I(1)  2.6622(3) C(22)-Pd(1)-I(1) 90.98(6) 

N(11)-C(12)  1.352(3) C(12)-Pd(1)-I(1) 173.27(6) 

N(11)-C(15)  1.388(3) I(2)-Pd(1)-I(1) 98.612(8) 

N(11)-C(31)  1.457(3) C(12)-N(11)-C(15) 110.39(18) 

C(12)-N(13)  1.343(3) C(12)-N(11)-C(31) 125.48(18) 

N(13)-C(14)  1.381(3) C(15)-N(11)-C(31) 124.13(18) 

N(13)-C(16)  1.457(3) N(13)-C(12)-N(11) 105.56(18) 

C(14)-C(15)  1.345(3) N(13)-C(12)-Pd(1) 126.90(15) 

N(21)-C(22)  1.358(3) N(11)-C(12)-Pd(1) 127.36(16) 

N(21)-C(25)  1.388(3) C(12)-N(13)-C(14) 110.39(18) 

N(21)-C(33)  1.465(3) C(12)-N(13)-C(16) 124.92(19) 

C(22)-N(23)  1.348(3) C(14)-N(13)-C(16) 124.68(19) 

N(23)-C(24)  1.380(3) C(15)-C(14)-N(13) 107.4(2) 

N(23)-C(26)  1.468(3) C(15)-C(14)-H(14) 126.3 

C(24)-C(25)  1.351(3) N(13)-C(14)-H(14) 126.3 

C(31)-C(32)  

C(32)-O(32) 

C(32)-C(42) 

C(32)-C(33) 

1.544(3) 

1.415(3) 

1.532(3) 

1.537(3) 

C(14)-C(15)-N(11) 

N(11)-C(31)-C(32) 

C(42)-C(32)-C(31) 

O(32)-C(32)-C(42) 

O(32)-C(32)-C(31) 

O(32)-C(32)-C(33) 

106.30(19) 

113.57(17) 

107.47(17) 

109.64(17) 

108.97(18) 

109.75(17) 

 

 

       Different oxidants such as PhI(OAc)2 and PhI(OTFA)2, bromine and chlorine were used to 

react with the tripod-bis-NHC-Pd(II)-I2 complex 3.25, but no Pd(IV) species was observed. The 

hypervalent-iodine reagent gave no reaction, and the bromine and chlorine cause all the 1H-NMR 

resonances of the Pd(II) complex became very broad and could not be resolved.   
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3.5 Discussion of the Experimental Findings 

 

          Although the goal to observe or isolate NHC-ligand stabilized Pd(IV) species was not 

achieved, valuable information was obtained from this study. First of all, from literature reported 

methods, almost all the isolated Pd(IV) species are stabilized with bidentate or tridentate ligands, 

furthermore, most of them contain strong σ-donating alkyl ligands such as methyl ligand. The N-

heterocyclic carbene ligand is strong electron-donating ligand which should be able to stabilize 

high oxidation state palladium species. The reaction between bis-NHC-Pd(II)-Br2 and bromine 

provided very promising sign of formation of Pd(IV) species. The newly designed tripod ligand 

3.20 which contained bis-NHC and pyrimidine side arm was synthesized successfully, but the 

synthesis of the palladium complex with this ligand failed, mostly due to the steric effect of the 

bulky TIPS group. The oxidation of complex 3.25 was not successful. All these information 

implied that in order to stabilized palladium(IV) species, more electron-donating ligands such as 

methyl group should be introduced to the palladium center. 

 

 

3.6  Experimental 

 

3.6.1 Synthesis of the α-chloro-epoxide 3.17 

       In a 50 mL Schlenk flask, 1.08 g (5.77 mmol) of 2-bromo-4,6-dimethylpyrimidine was 

dissolved in 25 mL dry THF and cooled to -78 oC in a dry ice-acetone bath. 3.6 mL 1.6 M n-

butyl-lithium  (5.77 mmol) hexane solution was added and the reaction mixture was stirred for 5 

minutes, to which a solution of 0.74 g (5.77 mmol) of 1,3-dichloroacetone in 4 mL THF was 

added dropwise under the protection of continuous nitrogen flow. The reaction mixture was 

stirred at -78 oC for 20 minutes. Then the cooling bath was removed and the temperature was 

slowly raised to 0 oC. The solvent was removed in high vacuum using a  liquid nitrogen trap. 100 

mL hexane was added to the residue, which as stirred for 5 minutes, 10 mL KOH-saturated 

methanol solution was added; a dark oil formed immediately. The hexane phase was transferred 

to a separatory funnel and washed three times with 15 mL of water and once with 15 mL of 

brine. After drying with anhydrous MgSO4, the solvent was removed in vacuum to give 0.49 g 

(43%) of a clear oil as product. 1H-NMR (δH; 400 Hz, CD3Cl): 2.49 (s, 6H, CH3), 3.25 (d, 1H, J 
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= 5.86 Hz, ClCH2), 3.49 (d, 1H, J = 5.86 Hz, ClCH2), 4.29 (s, 2H, OCH), 6.97 (s, 1H, aromatic 

H). 13C-NMR (δH; 400 Hz, CD3Cl): 23.97, 45.32, 53.84, 59.42, 119.30, 163.80, 167.16. 

 

3.6.2 Synthesis of the bis-imidazole alcohol 3.18 

       To a solution of 222 mg α-chloro-epoxide 3.17 (1.12 mmol) in 5 mL DMF, 222 mg (2.46 

mmol) of sodium imidazole salt was added and the reaction mixture was stirred at room 

temperature for 8 hours. A brown solution formed and the TLC showed that all of the epoxide 

was consumed. After removal of DMF in vacuum, the residue was dissolved in 15 mL methylene 

chloride, to which, 1.5 mL 2N HCl ether solution was added. A brown precipitate formed 

immediately. The precipitate was collected by filtration and then re-dissolved in 10 mL water 

and washed three times with 3 mL of methylene chloride. 5 mL saturated NaHCO3 solution was 

added, and the water phase was extracted three times with 10 mL of methylene chloride. The 

combined organic phase was dried with anhydrous MgSO4, and then the solvent was removed to 

give 155 mg (46.5%) white solid as product. 1H-NMR (δH; 400 Hz, CD3Cl): 2.40 (s, 6H, CH3), 

4.24 (d, 2H, J = 14.05 Hz, NCH2), 4.55 (d, 2H, J = 13.66 Hz, NCH2), 5.36(s, 1H, OH), 6.71 (s, 

2H, NCH), 6.84 (s, 2H, NCH), 6.88 (s, 1H, aromatic H), 7.23 (s, 2H, NHN).  13C-NMR (δH; 400 

Hz, CD3Cl): 23.67, 53.43, 119.10, 120.13, 128.59, 137.99, 165.35, 167.12. 

 

3.6.3 Tips-protection of hydroxyl group to form 3.19 

      4 mg (0.17 mmol) NaH was added to a solution of 50 mg (0.17 mml) pyrimidine-bis-

imidazole 3.18 in 5 mL dry THF and stirred at room temperature for 10 minutes, to which 33 mg 

(0.17 mmol) of triisopropylsilyl chloride was added. The reaction mixture was stirred at room 

temperature for 16 hours. After removal of the solid by filtration, THF was evaporated under 

reduced pressure. 26.7 mg (35%) product was obtained after purification with column 

chromatography (mobile phase: CHCl3/CH3OH = 20/1).  1H-NMR (δH; 400 Hz, CD3Cl): 0.93-

1.00 (broad multiplet, 21H, tips CH3 and CH), 2.51 (s, 6H, CH3), 4.49 (d, 2H, J = 14.34 Hz, 

NCH2), 4.62 (d, 2H, J = 14.34 Hz, NCH2), 6.72 (s, 2H, NCH), 6.99 (s, 2H, NCH), 7.05 (s, 1H, 

aromatic H), 7.30 (s, 2H, NHN). 
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3.6.4 Tips-protected bis-imidazolium diiodide 3.20 

       To a solution of 20 mg (0.044 mmol) tips-protected pyrimidine-bis-imidazole 3.19 in 5 mL 

of DMSO, 31 mg (0.22 mmol) MeI was added and the reaction mixture was stirred at room 

temperature for 24 hours. The DMSO solvent was removed under reduced pressure to yield 

31mg (96%) white solid as product. 1H-NMR (δH; 400 Hz, DMSO-d6): 0.90-0.92 (d, 18H, tips 

CH3), 1.02-1.11 (broad multiplet, 3H, tips-CH), 2.45 (s, 6H, CH3), 3.85 (s, 6H, NCH3), 4.79-4.87 

(dd, 4H, J = 14.05 Hz, NCH2), 7.39 (s, 2H, NCH), 7.40 (s, 1H, aromatic H), 7.68 (s, 2H, NCH), 

8.88 (s, 2H, NHN). 

 

3.6.5 Synthesis of tripod-bis-imidazolium diiodide 3.24 

       To a solution of 50 mg (0.17 mmol) pyrimidine-bis-imidazole 3.18 in 8 mL acetonitrile, 238 

mg (1.7 mmol) of MeI was added and the reaction mixture was stirred at room temperature for 

10 hours. Upon removal of the solvent under reduced pressure, 92 mg (95%) of product was 

obtained as a white solid. 1H-NMR (δH; 400 Hz, DMSO-d6): 2.46 (s, 6H, CH3), 3.83 (s, 6H, 

NCH3), 4.56 (d, 2H, J = 14.05 Hz, NCH2), 4.76 (d, 2H, J = 14.05 Hz, NCH2), 6.32 (s, 1H, OH), 

7.32 (s, 1H, aromatic H), 7.38 (s, 2H, NCH), 7.61 (s, 2H, NCH), 8.96 (s, 2H, NHN).  13C-NMR 

(δH; 400 Hz, CD3Cl): 23.67, 53.43, 119.10, 120.13, 128.59, 137.99, 165.35, 167.12. 

 

3.6.6 Synthesis of tripod-bis-NHC-Pd(II)-I 2 complex 3.25 

       To a solution of 90 mg (0.15 mmol) ligand 3.24 in 4 mL DMSO, 35 mg (0.15 mmol) of 

Pd(OAc)2 was added and the reaction mixture was stirred at room temperature for 2 hours, the 

color of the solution changed from dark red to slightly red during this period of time. The 

reaction mixture was further stirred at 60 oC for 5 hours and then at 90 oC for 2 hours. A black 

precipitate was formed during that time. The solvent was removed under reduced pressure at 80 
oC and the residue was purified by column chromatography (mobile phase:  CHCl3/CH3OH = 

20/1 solvent mixture) to give 30 mg (28%) product as a white solid. 1H-NMR (δH; 400 Hz, 

DMSO-d6): 2.55 (s, 6H, CH3), 3.87 (s, 6H, NCH3), 4.21 (d, 2H, J = 14.29 Hz, NCH2), 5.35 (d, 

2H, J = 14.29 Hz, NCH2), 5.96 (s, 1H, OH), 7.25 (s, 4H, NCH), 7.37 (s, 1H, aromatic H). 
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Chapter 4 Direct Observation of Trimethyl Bis-NHC-Pd(IV) Species 

 

4.1 The Principle of Microscopic Reversibility 

 

In a reversible reaction, the mechanism in one direction is exactly the reverse of the 

mechanism in the other direction. This is called the principle of Microscopic Reversibility 

(Figure 4.1).1 To understand the mechanism of C-H bond activation, it is desirable to have the 

opportunity to directly observing the oxidative addition of a C-H bond to isolable metal 

complexes. But this is normally impossible, because the oxidative addition products M(R)(H) are 

thermodynamically unstable, compared to the reactants. However, important mechanistic 

information can be obtained from the thermodynamically favorable reductive elimination 

reaction from the metal complex, which is the microscopic reverse of the C-H bond activation.2 

Therefore, bis-NHC-Pd-(Me)2 complexes were synthesized to study the reductive elimination 

behavior of these complexes under oxidative conditions. Our aim was to isolate or/and observe 

the intermediates of the reaction by monitoring the reaction at various temperatures via 1H-NMR 

and 13C-NMR spectroscopy. Based on the principle of Microscopic Reversibility, valuable 

mechanistic information could be obtained with respect to the C-C and C-X (X=O, Cl) bond 

forming process which may involve high-oxidation state Pd(IV) intermediates.  

 

 

 

Figure 4.1 Energy diagram of a reversible reaction (a: reductive elimination; b: oxidative 

addition).1 
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4.2 Synthesis of a Bis-NHC-Pd-Me2 Complex 

 

The synthesis of a bis-NHC-Pd-Me2 complex 4.1 was first attempted by treating bis-

NHC-Pd-Br2 complex 2.2 (synthesis of this complex was described in Chapter 2) with MeLi in 

THF at -78 oC (Figure 4.2).3  The palladium complex 2.2 was not soluble in THF at the 

beginning of the reaction. A clear solution formed once the reaction was completed.  But the 

removal of LiBr from the reaction mixture was problematic. It was found that traces of water are 

capable of totally destroying the bis-NHC-Pd(II)-Me2 complex 4.1, resulting in a black 

precipitate. If the bis-NHC-Pd(II)-Me2 complex was exposed to air for 30 minutes, a black 

precipitate was formed as well. Based on this observation, it is my working hypothesis that 

oxygen can trigger the reductive elimination of ethane from bis-NHC-Pd(II)-Me2 complex. 
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Figure 4.2 Synthesis of bis-NHC-Pd(II)-Me2 complex using MeLi. 

 

To eliminate the side effect caused by oxygen and water, the reaction was carried out in a 

nitrogen filled glove-box. The Grignard reagent MeMgBr was used instead of MeLi to introduce 

methyl groups to the palladium by a transmetallation reaction (Figure 4.3).4 It was found that the 

reaction was completed after 1 hour at room temperature. Again the removal of MgBr2 caused 

some concerns in the beginning, because it is very soluble in THF and can form an adduct with 

THF, and if it is not completely separated from the bis-NHC-Pd(II)-Me2 complex, rather large 

THF peaks will show up in the 1H-NMR spectrum even after the sample had been dried under 

high vacuum for 24 hours. After numerous failures to isolate pure bis-NHC-Pd(II)-Me2 complex,  

it was found that 1,4-dioxane is the perfect solvent to use to separate the MgBr2 salt from the bis-

NHC-Pd-Me2 complex. Furthermore, the MeMgBr reagent will undergo transmetallation by 

itself in 1,4-dioxane to form Me2Mg and MgBr2, which are both not soluble in 1,4 dioxane. This 

special effect of 1,4-dioxane make it possible to obtain pure bis-NHC-Pd-Me2 complex even 
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when the reaction was carried out with excess of Grignard reagent. After the reaction was 

completed in 1 hour, THF solvent was removed in vacuum.  Pre-dried 1,4-dioxane was added to 

the residue solid and stirred at room temperature for 5 min, then the white solid was separated by 

filtering through a short pad of pre-dried celite. The filtrate was concentrated in vacuum, and 

pure bis-NHC-Pd(II)-Me2 complex was obtained with a 90% yield.  
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Figure 4.3 Synthesis of bis-NHC-Pd(II)-Me2 complex using MeMgBr. 

4.3 Oxidative Addition of MeI to Bis-NHC-Pd-Me2 Complex 

 

Inspired by the successful examples of observation, isolation and characterization of 

Pd(IV) complexes by oxidative addition of MeI to the dimethyl Pd(II) complexes,3a,5,6 the 

investigation of oxidative addition of MeI to bis-NHC-Pd(II)-Me2 complex was carried out. 8.0 

mg of the bis-NHC-Pd(II)-Me2 complex 4.1 was added to a J-Young NMR tube and 0.60 mL 

pre-dried deuterated THF-d8 was added by vacuum transfer. The 1H-NMR spectrum showed the 

characteristic up-field resonance of the palladium coordinated methyl groups at -0.32 ppm.3a 

After cooling the sample to -70 oC, 2 equivalents of MeI in 0.1 mL THF-d8 stock solution were 

added. The sample was carefully shaken to disperse the MeI thoroughly at -70 oC and then 

quickly inserted into a pre-cooled NMR probe (-70 oC). The reaction process was monitored by 

NMR at various temperatures.  

Both the oxidative addition and the reductive elimination products were observed when 

the temperature was raised to -50 oC. The oxidative addition of MeI to the bis-NHC-Pd-Me2 

complex resulted in a trimethyl bis-NHC-Pd(IV) species as intermediate. Even though the 

amount of this intermediate was very small, all its resonances could be clearly assigned. The two 

singlet peaks appeared at 1.17 ppm and 1.29 ppm with the integration ratio of 2 to 1, 

corresponding to the equatorial methyl groups and axial methyl group on the Pd(IV) species; and 

the singlet peak at 4.01 ppm was corresponding to the methyl groups on the NHC ligand; and the 
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two peaks at 7.11 ppm and 7.33 ppm were corresponding to 4-,5-protons of the imidazole ring; 

the CH2-bridge signal was not apparent. It is very likely that it was concealed under the CH2-

bridge signals of the starting material and/or the reductive elimination product. From the 

integration of the 1H-NMR spectrum, the amount of this intermediate bis-NHC-Pd(IV)-Me3 

species kept almost constant as long as there was some of the starting material bis-NHC-Pd-Me2 

complex left. The decrease of the intensity of the bis-NHC-Pd(II)-Me2 signals (characteristic 

peak for the Pd-Me2 at -0.30 ppm) was accompanied by the increase of the intensity of the 

reductive elimination products bis-NHC-Pd(II)-Me-I (characteristic peak for the Pd-Me-I at 0.28 

ppm) and ethane (0.84 ppm).  The reaction was completed in 1 hour at -50 oC and the clean 

NHC-Pd(II)-Me-I complex was formed. The stacked 1H-NMR spectrum along the reaction 

process at -50 oC was demonstrated in Figure 4.4, and the time interval between two spectra is 10 

min. 
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Figure 4.4 Stacked 1H-NMR spectra recorded during the reaction process between bis-NHC-

Pd(II)-(CH3)2 complex 4.1 and MeI at -50 oC in 10 min intervals.  
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Based on the information obtained from the VT 1H-NMR study, a reasonable reaction 

pathway can be drawn as described in Figure 4.5. In the first step of the reaction, oxidative 

addition of MeI to the bis-NHC-Pd(II)-(CH3)2 complex 4.1 yield either a neutral (species 4.2) or 

cationic (species 4.3) trimethyl bis-NHC-Pd(IV) intermediate. In the second step, reductive 

elimination occurs from the Pd(IV) intermediate to form ethane and bis-NHC-Pd(II)-Me-I 

complex 4.4.  
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Figure 4.5 Proposed reaction pathway between bis-NHC-Pd(II)-(CH3)2 complex 4.1 and MeI. 

 

4.4 Oxidative Addition of 13CH3I to Bis-NHC-Pd-Me2 Complex  

 

To further prove the presence of a trimethyl bis-NHC-Pd(IV) species during the oxidative 

addition of MeI to the bis-NHC-Pd(II)-Me2 complex 4.1, 13C labeled methyl iodide was used. 

The oxidative addition reaction between 13CH3I and bis-NHC-Pd(II)-Me2 was initiated at -70 oC 

and slowly warmed up to -50 oC within 20 minutes. To preserve the intermediate, the 

temperature was re-cooled to -70 oC and the intermediate was characterized by 13C-NMR 

spectroscopy. Five major peaks were observed in the 13C-NMR spectrum: the most intense peak 

at -23.16 ppm was assigned to 13CH3I,  the peak at -8.97 ppm was assigned to the unsymmetrical 

bis-NHC-Pd(II)-13CH3-I complex produced after the reductive elimination of ethane from the 

intermediate trimethyl bis-NHC-Pd(IV) species; the peak at 7.46 ppm was assigned to the 

reductive elimination product 13CH3CH3; the two peaks at 12.03 ppm and 16.97 ppm were 

tentatively assigned to the 13C labeled methyl group of the trimethyl bis-NHC-Pd-13CH3(CH3)2 



 

58 

 

intermediates, one for the methyl group in axial position and the other for the methyl group in 

equatorial position, though it is not clear which signal belong to which methyl group. It need to 

be mention that there was a tiny peak at 13.42 ppm which could not be assigned, but when the 
13C-NMR was run with C-H coupling, this tiny peak did not show any coupling pattern. 

Therefore, it is assigned to a 13C- labeled impurity. The temperature was slowly brought to -50 
oC, and the two peaks at 12.03 ppm and 16.97 ppm disappeared after 40 minutes at -50 oC. The 

two peaks assigned to Pd-13CH3-I and 13CH3CH3 preserved, and an increase in the intensity of 

these two peaks was observed. Due to the change of temperature, a up-field shift (7.46 ppm to 

7.20 ppm for 13CH3CH3 and -8.97 ppm to -9.40 ppm for bis-NHC-Pd(II)-13CH3-I) of these two 

peaks was observed. The stacked 13C-NMR spectra, which were recorded during the process of 

this reaction is shown in Figure 4.6. 
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Figure 4.6 Stacked 13C-NMR of the reaction between bis-NHC-Pd(II)-Me2 complex and 13CH3I 

(blue: After 20 minutes reaction at -50 oC, 13C-NMR recorded at -70 oC; green: After 20 minutes 

reaction at -50 oC, 13C-NMR recorded at -70 oC with carbon-hydrogen coupling; black: After 60 

minutes reaction at -50 oC, 13C-NMR recorded at -50 oC). 
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In the 1H-NMR spectrum, a mixture of CH3CH3 (major peak at 0.84 ppm) and 13CH3CH3 

(two triplet satellites at 0.69 ppm and 0.99 ppm with JC-H coupling constant of 119.2 Hz) as well 

as bis-NHC-Pd(II)-(CH3)-I (major peak at 0.31 ppm) and bis-NHC-Pd(II)-(13CH3)-I (two singlet 

satellites at 0.15 ppm and 0.47 ppm with JC-H coupling constant of 128.2 Hz) were clearly 

observed (Figure 4.7). The results obtained from this experiment provided more supportive 

information for the formation of the transient trimethyl bis-NHC-Pd(IV) intermediate produced 

from the oxidative addition of MeI to bis-NHC-Pd(II)-Me2 complex. 
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Figure 4.7 1H-NMR for the products after reductive elimination form the Pd(IV) species. 
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4.5 Mechanistic Discussion of the Oxidative Addition of MeI to the Bis-

NHC-Pd(II)-Me 2 Complex and the Reductive Elimination from the 

Trimethyl Bis-NHC-Pd(IV) Species 

 

4.5.1 Pathway for the Oxidative Addition 

 

          It has been established that the oxidative addition of MeI to square planar d8
 complexes 

follows a SN2 mechanism. For example, oxidative addition of MeI to bpy-Pt(II)-Me2 complex 

4.5 at -40 oC in CD3CN resulted in a cationic species 4.6, upon warming, cationic species 4.6 

decayed to a pure neutral complex 4.7 (Figure 4.8). The initial oxidative addition was shown to 

be trans by using CD3I as reagent and the scrambling of CH3 and CD3 groups occurred faster for 

the cationic species 4.6 than for neutral complex 4.7.7 
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Figure 4.8 Oxidation of bpy-Pt(II)-Me2 complex with methyl iodide.7 

 

           The same reaction was performed for the palladium analog bpy-Pd(II)-Me2 complex 4.8.8 

The neutral complex 4.9 and the cationic species 4.10 were obtained with a ratio of 3:1. When 

the temperature was increased, the NMR-resonances of the methyl groups in the cationic species 

4.10 became broad and coalesced at -5 oC, but the bpy resonance for the cationic species 4.10 

and all the resonances for the neutral bpy-Pd-Me3-I complex 4.9 remained sharp. This result 

indicated that intramolecular methyl groups scrambling occurred in the cationic species 4.10, but 

not in the neutral complex 4.9 (Figure 4.9).  
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Figure 4.9 Oxidation of bpy-Pd(II)-Me2 complex with methyl iodide.8 

 

Kinetic studies of both [PdMe2(bpy)] and [PtMe2(bpy)] in the presence of excess MeI 

were carried out by Canty’s group using UV-kinetics.8 Both of these two oxidative addition 

reactions followed second-order kinetics, (first- order for each reagent). The large negative ∆S≠ 

values that have been determined in these experiments strongly supported the assumption of SN2 

mechanism for the oxidative addition in both cases (Table 4.1).  

 

Table 4.1 Second-order rate constants for oxidative addition of MeI to [MMe2(bpy)] in acetone 

(table redraw from reference 8 without permission).8 

M T, oC k2, L mol-1s-1 Ea, kJ mol-1 ∆S≠ (20 oC) 

J K -1mol-1 

Pd 3.0 1.75 ± 0.05   

Pd 10.3 2.25 ± 0.06   

Pd 20.0 3.23 ± 0.08   

Pd 30.0 4.65 ± 0.10 25.3 ± 0.6 -148 ± 2 

Pt -7.5 14 ± 1   

Pt 3.6 22 ± 1   

Pt 20 40 ± 1 24.9 ± 0.1 -129 ± 1 

 

 

It is our mechanistic paradigm that the oxidative addition of MeI to the bis-NHC-Pd(II)-

Me2 complex also follows the SN2 mechanism. Only one intermediate was observed in the course 

of the reaction at -50 oC, and so far we could not determine whether it is a neutral bis-NHC-
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Pd(IV)-Me3-I complex or a cationic [bis-NHC-Pd(IV)-Me3-THF]+I- species. But, according to 

the finding described in the literature, the most likely intermediate is a cationic species. Our 

argument is, when 13CH3I was used as a reagent, two distinct resonances for the axial and 

equatorial methyl groups of the bis-NHC-Pd(IV)-Me3 species were observed in the 13C-NMR 

spectrum, which indicated that the intramolecular scrambling of 13CH3 and CH3 had occurred 

even at -50 oC. Based on the results obtained by Puddephatt and Canty, the methyl groups 

scrambling occurred faster in the cationic [(byp)PtMe3] species7 and only in the cationic 

[(bpy)PdMe3] species.8 Therefore, it is straightforward to conclude that the observed 

intermediate is the cationic [bis-NHC-Pd(IV)-Me3-THF]+ species.   

 

4.5.2 Pathway for Reductive Elimination 

            The reductive elimination from a five-coordinated cationic d6 complex has been well 

studied.3a,9 In 2005, the Goldberg group synthesized a series of cationic trimethylpyridinebis-

(diphenylphosphinoethane)platinum(IV) { fac-[(dppe)Pt(IV)Me3(4-NC5H4X)][OTf]} complexes, 

in which 4-NC5H4X are uncharged 4-substituted pyridine derivates(X=NH2, Me, Ph, and CN). 

The dependence of the reductive elimination of ethane on the electronic properties of the 

platinum-bound nitrogen donor was studied.10 It was found that the reaction is considerably 

faster for more electron-withdrawing substituents than for electron-donating substituents. In the 

Hammett plot showed in Figure 4.10, a positive ρ-value of 1.9 was obtained, indicating that the 

electron-withdrawing groups decrease the donor ability of the pyridine, thus facilitating the 

release of the pyridine ligands. This favors the formation of penta-coordinated intermediates. 

 

 

Figure 4.10 Hammett plot for electronic effects on reductive elimination (Figure taken from 

reference 10 without permission).10 
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             These results support the proposed reaction mechanism for the reductive elimination 

reaction. The reductive elimination of ethane proceeds by a two step pathway: in the first step, 

the reversible dissociation of the pyridine derivative occurs from the cationic complex to 

generate a five-coordinated Pt(IV) intermediate; in the second step, irreversible and therefore,  

rate-determining elimination of ethane occurs  from the penta-coordinate Pt(IV) intermediate 

(Figure 4.11).   

 

Pt
P Me

P Me

Me

pyr

Pt
P Me

P Me

Me

+   pyr
k1

k-1

Pt
P Me

P

+  MeMe
fast

+ pyrPt
P Me

P pyr  

Figure 4.11 Proposed reaction mechanism for the reductive elimination reaction.10 

 
          On the basis of these literature findings, we propose that the reductive elimination of 

ethane from the [bis-NHC-Pd(IV)-Me3-THF]+ proceeds via a penta-coordinated Pd(IV) species. 

Because THF is a very weak coordinate solvent, it can easily dissociate from the six-fold-

coordinated [bis-NHC-Pd(IV)-Me3-THF]+ intermediate to form a penta-coordinated [bis-NHC-

Pd(IV)-Me3]
+ species. In fact, the reductive elimination of ethane in THF-d8 is so fast that only a 

very small amount of transient [bis-NHC-Pd(IV)-Me3-THF]+ intermediate was observed in the 
1H-NMR spectrum at -50 oC, and it disappeared as soon as the bis-NHC-Pd(II)-Me2 was 

consumed. To further verify our proposed mechanism of the reductive elimination, the oxidative 

addition of 13CH3I to bis-NHC-Pd(II)-Me2 complex in the presence of 10 equivalent of DMAP 

was carried out. A stacked 13C-NMR spectrum is showed in Figure 4.12. Two new resonances 

for the axial and equatorial methyl groups of the [bis-NHC-Pd(IV)-Me3] intermediate were 

observed at 8.73 ppm and 17.50 ppm in the 13C-NMR spectrum at -50 oC. It is worth mentioning 

that there is a large up-field shift for the axial methyl resonance compared with that of the 

reaction without addition of DMAP (8.73 ppm to 12.03 ppm). The dramatic change in chemical 

shift reflected the change of the chemical environment for the axial methyl group in the [bis-
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NHC-Pd(IV)-Me3]
+ intermediate, which is a good indication that DMAP coordinated to the 

palladium center to form a [bis-NHC-Pd(IV)-Me3-DMAP]+I- intermediate. The reductive 

elimination of ethane from this Pd(IV) intermediate was very slow at -50 oC, but when the 

temperature was raised to -30 oC, the reaction finished in one hour. In the 13C-NMR, a resonance 

at -2.86 ppm for the mono-methyl Pd(II) species resulting from the reductive elimination 

reaction was observed. There is a dramatic down-field shift compared to that of the reaction 

without addition of DMAP (-9.40 ppm). It is our working hypothesis that instead of a neutral 

Pd(II) complex, a cationic [bis-NHC-Pd(II)-Me-DMAP]+ species has formed after the reductive 

elimination. 
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Figure 4.12 Stacked 13C-NMR of the reaction between bis-NHC-Pd(II)-Me2 and 13CH3I in the 

presence of DMAP (blue: reaction at -50 oC for 20 min; green: reaction at -30 oC for 20 minutes; 

gray: reaction at -30 oC for 40 minutes; black: reaction at -30 oC for 60 minutes) 
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4.6 Experimental 

 

4.6.1 Synthesis of bis-NHC-Pd(II)-(CH 3)2 complex 4.1 

         In a nitrogen filled glove-box, 1.2 mL 0.50 M MeMgBr ether solution was added to a 

suspension of 120 mg bis-NHC-Pd(II)-Br2 complex 2.2 in 10 mL dry THF. The reaction mixture 

was stirred at room temperature for 1 hour, a clear colorless solution formed. After removal of 

the solvent under reduced pressure, 5 mL pre-dried 1,4-dioxane was added to the solid residue 

and stirred at room temperature for 5 min. The undissolved white solid was removed by filtering 

through a short pad of dry celite and the filter-cake was washed with 1 mL portion of dry THF 

for three times. The filtrate was concentrated to dryness. 76.3 mg (90.2% yield) product was 

obtained as a white solid. 1H-NMR (δH; 400 Hz, THF-d8): -0.32 (s, 6H, Pd-CH3), 3.72 (s, 6H, N-

CH3), 5.92 (d, 1H, J = 12.82 Hz, N-CH2), 6.08 (d, 1H, J = 12.82 Hz, N-CH2), 7.06 (d, 2H, J = 

1.83 Hz, N-CH), 7.27 (d, 2H, J = 1.83 Hz, N-CH).  

 

4.6.2 VT-NMR study of the reaction between bis-NHC-Pd(II)-(CH 3)2 complex 4.1 and CH3I 

         8.0 mg (0.025 mmol) bis-NHC-Pd(II)-Me2 complex was dissolved in 0.60 mL pre-dried 

THF-d8 in a J-Young NMR tube, after cooling to -70 oC,  2 equivalents of MeI in 0.10 mL THF-

d8 stock solution were added by means of a syringe under nitrogen protection. The NMR tube 

was carefully shaken to disperse the MeI thoroughly in the sample at -70 oC, and then quickly 

inserted into a pre-cooled NMR probe (-70 oC). The reaction process was carefully monitored by 
1H-NMR at various temperatures. (The detailed NMR spectrum of the intermediate is shown in 

the appendix A.17). 

 

4.6.3 VT-NMR study of the reaction between bis-NHC-Pd(II)-(CH 3)2 and 13CH3I 

         8.0 mg (0.025 mmol) bis-NHC-Pd(II)-Me2 complex was dissolved in 0.60 mL pre-dried 

THF-d8 in a J-Young NMR tube, after cooling to -70 oC,  2 equivalents of 13C labeled MeI in 

0.10 mL THF-d8 stock solution were added by means of a syringe under nitrogen protection. The 

NMR tube was carefully shaken to disperse the MeI thoroughly in the sample at -70 oC, and then 

quickly inserted into a pre-cooled -70 oC NMR probe. The reaction process was carefully 

monitored by 13C-NMR at various temperatures.  
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4.6.4 VT-NMR study of the reaction between bis-NHC-Pd(II)-(CH 3)2 and 13CH3I in the 

presence of DMAP 

         8.0 mg (0.025 mmol) bis-NHC-Pd(II)-Me2 complex was dissolved in 0.50 mL pre-dried 

THF-d8 in a J-Young NMR tube, after cooling to -70 oC,  2 equivalents of 13C labeled MeI in 

0.10 mL THF-d8 stock solution and 10 equivalents of DMAP in 0.10 mL THF-d8 stock solution 

were added by means of a syringe under nitrogen protection. The NMR tube was carefully 

shaken to disperse the MeI thoroughly in the sample at -70 oC, and then quickly inserted into a 

pre-cooled -70 oC NMR probe. The reaction process was carefully monitored by 13C-NMR at 

various temperatures.  
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Chapter 5 Dioxygen Triggered C-C Bond Formation and C-O Bond 

Formation from the Bis-NHC-Pd(II)-Me 2 Complex 

 

5.1 Introduction 

 

From a practical standpoint, dioxygen is undoubtedly the most attractive reagent for 

hydro-carbon oxidation reactions.1 The most notable example is the Wacker process which has 

been used in industry for than 40 years to oxidize ethylene to acetaldehyde, using PdCl2 and 

CuCl2 as catalysts and dioxygen as oxidant to regenerate the catalysts (Figure 5.1).2,3,4 

 

CH2=CH2     +     1/2 O2 CH3CHO
PdCl 2/CuCl2

HCl/H2O  

Figure 5.1 Wacker process.2 

 

            Stoichiometric reaction between dioxygen and well-defined platinum and palladium 

complexes were reported by different research groups.5,6,7,8,9  

5.1.1 Examples of Reaction between Dioxygen and Pt(II) Complexes 

 

Goldberg and Bercaw reported the oxidation of dimethylplatinum(II) complexes with 

dioxygen in 1998.5 It was found that in methanol, di-nitrogen based ligands (bpy, phen and 

tmeda) stabilized (N-N)Pt(II)(CH3)2 complexes 5.1 can be oxidized to (N-

N)Pt(IV)(OCH3)(OH)(Me)2 complexes 5.2, and 0.5 equivalent of molecular O2 was consumed 

per atom of platinum(II).  The resulting Pt(IV) complexes were stable at room temperature and 

no reductive elimination of ethane was observed (Figure 5.2).  

 

Pt
N CH3

N CH3
Pt

N CH3

N CH3

OH

OCH3

+   1/2 O2   +   CH3OH

NN
= bpy, phen, and tmeda

5.1 5.2

 

Figure 5.2 Oxidation of Pt(II) complexes to Pt(IV) complexes by dioxygen.5 
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Further mechanistic studies carried out in Bercaw’s group revealed that the oxidation of 

(tmeda)Pd(II)(CH3)2 to (tmeda)Pt(IV)(OH)(OCH3)(CH3)2 by dioxygen in methanol proceeds via 

a two-step mechanism. In the first step, (tmeda)Pt(CH3)2 reacts with dioxygen to yield a 

hydroperoxoplatinum(IV) intermediate (tmeda)Pt(OOH)(OCH3)(CH3)2 5.3. In the second step, 

the intermediate (tmeda)Pt(OOH)(OCH3)(CH3)2 reacts with a second equivalent of 

(tmeda)Pt(II)(CH3)2 to yield 2 equivalents of (tmeda)Pt(II)(OCH3)(OH)(CH3)2 as final product 

(Figure 5.3).6 

 

Pt
N CH3

N CH3
Pt

N CH3

N CH3

OOH

OCH3

+   O2   +   CH3OH

NN
=  tmeda

Pt
N CH3

N CH3

OOH

OCH3

Pt
N CH3

N CH3

+ Pt
N CH3

N CH3

OH

OCH3

2

5.3
5.1

5.3 5.1 5.2

CH3OH

 

Figure 5.3 A two-step mechanism for the oxidation (tmeda)Pd(II)Me2 to 

(tmeda)Pt(IV)Me2(OH)(OCH3) by dioxygen.6  

 

          The authors proposed that the interaction of dioxygen with (N-N)Pt(II)(CH3)2 complexes 

resulted in ether η1- or η2- (N-N)Pt(IV)(CH3)2 dioxygen complexes 5.4 and 5.5. Protonation of 

the dimethylplatinum(IV) dioxygen complex gave the intermediate 

(tmeda)Pt(OOH)(OCH3)(CH3)2 species 5.3 (Figure 5.4). It is noteworthy that the strong σ-

donating methyl ligands of the dimethylplatinum(II) complex  showed  a pronounced effect on 

the reactivity towards dioxygen, whereas (tmeda)Pt(CH3)2 is readily oxidized by dioxygen, no 

oxidation takes place with (tmeda)Pt(CH3)Cl, (tmeda)PtCl2 or (tmeda)Pt(C6H5)2. 
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Figure 5.4 Proposed two pathways for the interaction of dioxygen with Pt(II) complexes.6 

 

5.1.2 Examples of Reaction between Dioxygen and Pd(0), Pd(II) complexes. 

 

In 2004, Stahl’s group reported the synthesis of the η2-peroxo (IMes)2Pd(O2) complex 5.7 

by the reaction of (IMes)2Pd(0) complex 5.6 with dioxygen at -78 oC in toluene.7 This complex 

was fully characterized by 1H-, 13C-NMR spectroscopy and IR spectroscopy. The structure of 

this complex was definitely established by X-ray crystallography. The hydroperoxopalladium(II) 

complex 5.8 was formed rapidly when one equivalent of acetic acid was added to a toluene 

solution of complex 5.7 at room temperature (Figure 5.5). 

 

IMes =
N N

Pd0

IMes

IMes

+ O2
toluene

-78 oC
PdII

IMes

IMes

O

O

Pd
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O

O toluene Pd

IMes

IMes

O

O
H

OAcHOAc
PdII

IMes

IMes

AcO OOH

5.6 5.7

5.85.7

 

Figure 5.5 The oxidation of (IMes)2Pd(0) with dioxygen to form η2-peroxo (IMes)2Pd(O2) 

complex, and protonation of this complex to form the hydroperoxopalladium(II) complex.7  
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Further studies revealed that the hydroperoxopalladium(II) complex 5.8 could also be 

prepared by dioxygen insertion into a Pd(II)-hydride species 5.9, which was quantitatively 

generated by the reaction of one equivalent of acetic acid with (IMes)2Pd(0) complex 5.6 (Figure 

5.6).8 

 

PdII

IMes

IMes

AcO HPd0

IMes

IMes

HOAc O2 Pd II

IMes

IMes

AcO OOH

5.95.6 5.8  

Figure 5.6 Dioxygen insertion into a Pd-H bond.8 

 

One of the possible mechanisms for the reaction of dioxygen with a Pd(II)-hydride to 

produce a Pd(II)-hydroperoxide was proposed by Stahl et al, as Pd(IV)-peroxo pathway (Figure 

5.7). In the first step, oxidative addition of dioxygen to the Pd(II) center can yield an η
2-peroxo-

Pd(IV) intermediate 5.10. In the second step, reductive elimination of an O-H bond from the η2-

peroxo-Pd(IV) intermediate can lead to the hydroperoxide product. The authors argued that the 

access to Pd(IV) oxidation state could be facilitated by the presence of strong electron-donating 

NHC ligands.9 

 

PdII
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AcO O
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AcO OOH
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Figure 5.7 One of the proposed pathways for the dioxygen insertion into Pd-H bond.9 

 

5.2 Synthesis of 1,1’-Di(n-butyl)-3,3’-Methylene-4-Diimidazolin-2,2’-Diylidene 

Palladium(II) Dimethyl Complex 

 

I have found that the bis-NHC-Pd(II)-Br2 complex 2.2 can be dissolved in only polar 

solvents such as DMSO and DMF. The bis-NHC-Pd(II)-Me2 complex 4.1 can be dissolved in 

THF, but the solubility of the bis-NHC(Me)2-Pd(II)-Me-I complex 4.4 resulted from the 
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reductive elimination of ethane is not good in THF, and with the progress of the reaction, this 

species precipitates out from the solution. To improve the solubility, a n-butyl side chain was 

introduced to the bis-NHC ligand.  1-n-butyl imidazole 5.11 was obtained with over 90% yield 

by treating imidazole with excess of KOH powder in THF first, and then with n-BuBr.  The bis-

imidazolium salt 5.12 was obtained with 78% yield by heating neat 1-n-butyl-imidazole and 

dibromomethane at 130 oC for 24 hours in a sealed tube. The bis-NHC-Pd(II)-Br2 complex 5.13 

was synthesized according literature reported method with 83% yield.10 This complex is soluble 

in THF, CH3CN, and slightly soluble in CHCl3 and CH2Cl2. The bis-NHC-Pd(II)-Me2 complex 

5.14 was synthesized by the reaction of the bis-NHC-Pd(II)-Br2 5.13 with MeMgBr in THF with 

82.1% yield, and it is soluble in THF, CH3CN, CH2Cl2. The synthesis of the bis-NHC-Pd(II)-

Me2 complex 5.14 is outlined in Figure 5.8. 

 

N N

NN

n-Bu n-Bu

N NH

1) KOH powder
     THF

2) n-BuBr N N n-Bu

CH2Br2

2Br

Pd(OAc) 2

DMSO

N N

NN

n-Bu n-Bu

Pd
Br Br

MeMgBr

N N

NN

n-Bu n-Bu

Pd

Me Me
THF

90 oC

5.11 5.12

5.13 5.14  

Figure 5.8 Synthesis of the bis-NHC-Pd(II)-Me2 complex 5.14. 

5.3 Oxygen Triggered C-C Bond Formation 

 

In a nitrogen filled glovebox, 10 mg bis-NHC-Pd(II)-Me2 complex 5.14 was dissolved in 

0.6 mL pre-dried CD3CN in a J-Young NMR tube. After degassing the sample by three 

consecutive freeze, pump and-thaw cycles, 1 atm. of pre-dried O2 was introduced into the NMR 

tube at -20 oC. After carefully shaking in the cooling bath, the NMR tube was inserted in a NMR 

probe, which was pre-cooled to -20 oC. The reaction was monitored by 1H-NMR at various 

temperatures. It was found that at -20 oC, the dimethylpalladium complex is stable in the 

presence of O2. When the temperature was raised to 20 oC, the integration of the resonance for 
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the methyl groups on the palladium center at -0.32 ppm started to decrease, and simultaneously, 

all the 1H-NMR resonances for the ligand become broad. The reaction was completed within 2 

hours, and a lot of white precipitate was formed in the NMR tube, and the ethane resonance, 

which was masked by the resonance of the methyl group of the n-butyl side chain appeared at 

0.85 ppm.  Then the solvent was removed under vacuum. The residue in the NMR tube was re-

dissolved in pre-dried DMSO and a small amount of palladium black was filtered off.  1H-NMR 

showed that a symmetric bis-NHC-Pd species had formed. To avoid the masking effect of the 

ethane resonance by the butyl side chain, a separated reaction was carried out using bis-NHC-

Pd(II)-Me2 complex 4.1 as starting material. 8 mg of complex 4.1 was dissolved in dry 0.6 mL 

dry THF-d8 in a J-Young NMR tube and treated with dry dioxygen. The 1H-NMR clearly 

showed that upon reaction, the palladium containing species precipitated out and only ethane 

could be observed in the spectrum as a reductive elimination product. 

 

Although no intermediate was observed by 1H-NMR spectroscopy during the reaction, 

the reductive elimination of ethane gave strong indication that a η2-peroxo bis-NHC-Pd(IV)-

(CH3)2-(O2) intermediate 5.15 had formed via oxidation of bis-NHC-Pd(II)-(CH3)2 complex 5.14 

with dioxygen. The combination of the chelated strong electron-donating bis-N-heterocyclic-

carbene ligand with the strong σ-donating methyl ligand could indeed facilitate the formation of 

the Pd(IV) species. The reductive elimination of ethane from this Pd(IV) species resulted in a η
2-

peroxo bis-NHC-Pd(II)-(O2) complex 5.16 (Figure 5.9). 
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Figure 5.9 Proposed pathway for the reaction between the Pd(II) dimethyl complex 5.14 and 

dioxygen. 
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5.4 Oxygen Triggered C-C Bond Formation and C-O Bond Formation in the 

Presence of Water 

 

In a nitrogen filled glove-box, 10 mg bis-NHC-Pd(II)-Me2 complex 5.14 was dissolved in 

0.60 mL pre-dried CD3CN in a J-Young NMR tube. After degassed for three consecutive freeze, 

pump and-thaw cycles, the sample was cooled down to -20 oC. 0.05 mL CD3CN which contained 

1% of water (H2O) was added under the protection of nitrogen (1 equivalent of H2O relative to 

the palladium dimethyl complex). Then, 1 atm. of pre-dried O2 was introduced into the NMR 

tube at -20 oC, and the sample was carefully swirled in the cooling bath. The NMR tube was 

inserted into a pre-cooled NMR probe (-20 oC) and the reaction was monitored at various 

temperatures. It was found that at 20 oC, the bis-NHC-Pd(II)-Me2 complex 5.14 slowly 

decomposed and a proton resonance for methanol at 3.26 ppm appeared. During the reaction, 

two new up-field shifted methyl group resonances were observed at -0.23 ppm and -0.12 ppm, 

and with the progress of the reaction, these two peaks slowly disappeared. This observation gave 

strong indication that transient methylpalladium(IV) intermediates had formed during the 

reaction. The reaction was completed within 40 minutes, and by the end of the reaction, all the 

resonances for the bis-NHC ligand became broad, and the ethane resonance, which was masked 

by the resonance of the methyl group of the n-butyl side-chain appeared at 0.85 ppm. A small 

amount of methane at 0.20 ppm was also observed due to the protonation of the methyl groups 

on the palladium by water. The stacked 1H-NMR spectrum is showed in Figure 5.10. A lot of 

black precipitate (metallic palladium) was formed in the NMR tube upon the completion of the 

reaction. After removing CD3CN under vacuum, 0.80 mL DMSO-d6 was added to the residue 

and palladium black was filtered off. The 1H-NMR of the residue was too complicated to be 

resolved.      
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Figure 5.10 Stacked 1H-NMR spectrum for the reaction between the palladium(II) dimethyl 

complex 5.14 with dioxygen in the presence of H2O. 

 

  To further verify the formation of methanol and ethane, the 13C labeled bis-NHC-Pd(II)-

(13CH3)2 complex was synthesized by reacting the bis-NHC-Pd(II)-Br2 complex 5.13 with 
13CH3MgI. In the 1H-NMR spectrum, two up-field shifted resonances at -0.47 ppm and -0.17 

ppm for the palladium coordinated methyl groups were observed. Although these two peaks look 

like two singlets, they are actually belonging to a doublet with a characteristicly large 13C-H 

coupling constant (123.64 Hz), (detailed 1H-NMR showed in appendix). After treating with O2 

and H2O under the same conditions as in the previous experiment, this complex decomposed 

slowly and a doublet for 13CH3OH between 3.08 ppm and 3.43 ppm with 13C-H coupling 

constant of 139.42 Hz (Figure 5.11) together with a doublet for 13CH3
13CH3 between 0.70 ppm 

and 1.00 ppm with 13C-H coupling constant of 121.56 Hz (Figure 5.12) were observed. The 

result from this experiment clearly showed that both C-O bond and C-C bond formation occurred 

during the reaction of bis-NHC-Pd(II)-(CH3)2 complex 5.14 with dioxygen in the presence of 

water.  
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Figure 5.11 Expanded methanol region for the reaction between the bis-NHC-Pd(II)-(13CH3)2 

complex and dioxygen in the presence of H2O. 
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Figure 5.12 Expanded ethane region for the reaction between the bis-NHC-Pd(II)-(13CH3)2 

complex and dioxygen in the presence of H2O.  
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              There are at least two reaction pathways as described in Figure 5.13 that should be taken 

into consideration. In the first pathway, dioxygen reacts with palladium(II) dimethyl complex 

5.14 to form a η2-peroxo bis-NHC-Pd(IV)-(CH3)2-(O2) intermediate 5.15, from which, the ethane 

formation goes through a intramolecular C-C bond forming reductive elimination process, and 

similar to the Shilov system, the methanol formation goes through a SN2 type external water 

attacking of the methyl group of the Pd(IV) intermediate process to produce complex 5.17 as 

product. In the second pathway, protonation of the η
2-peroxo bis-NHC-Pd(IV)-(CH3)2-(O2) 

intermediate 5.15 leads to the formation of bis-NHC-Pd(IV)-(OH)-(OOH)-(CH3)2 intermediate 

5.18, and from which, competitive C-O and C-C reductive elimination occurs to form methanol 

and ethane as well as palladium(II) complexes 5.19 and 5.17. 
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Figure 5.13 Two proposed pathways for the reaction between the palladium(II) dimethyl 

complex 5.14 with dioxygen in the presence of H2O. 

 

This experiment provided unprecedented supportive information that with the facilitation 

of strong electron-donating ligands, such as N-herterocyclic carbenes and strong σ-donating 

methyl ligands, high oxidation stated of Pd(IV) can be achieved by using dioxygen as an oxidant. 

Furthermore, both C-C bond and C-O bond formation, possibly involving reductive elimination 
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from this Pd(IV) species or SN2 type external attacking of methyl groups bonded to the Pd(IV) 

species were observed. To understand this intriguing system in more detail, careful mechanistic 

studies have to be carried out in the future.  

 

5.5 Experimental 

 

5.5.1 Synthesis of n-butyl imidazole 5.11. 

        To a solution of 6.8 g imidazole in 50 mL dry THF, 30 g KOH powder was added. After 

stirring at room temperature for 3 hours, the excess KOH was removed by filtration. 13.6 g n-

butylbromide was added to the filtrate and the reaction mixture was stirred at room temperature 

for another 12 hours. The solvent was removed under reduced pressure. 11.6 g (93.5%) product 

was obtained as clear oil after removing the white precipitate (KBr) by filtration. 1H-NMR (δH; 

400 Hz, DMSO-d6): 0.88 (t, 3H,), 1.20 (sextet, 2H), 1.67 (quintet, 2H), 3.94 (t, 2H), 6.87 (t, 1H), 

7.15 (t, 1H), 7.60 (s, 1H). 

 

5.5.2 Synthesis of 1,1’-di-n-butyl-3,3’-methylenediimidazolium dibromide 5.12. 

          2.0 g n-butylimidazole and 1.70 g dibromomethane were stirred in a sealed tube at 130 oC 

for 24 hours. The produced solid was washed with hexane and dried under high vacuum. 2.70 g 

(78%) white powder was obtained.  1H-NMR (δH; 400 Hz, CDCl3): 0.98 (t, 6H,), 1.39 (sextet, 

4H), 1.95 (quintet, 4H), 4.27 (t, 4H), 7.51 (t, 2H), 7.58 (s, 2H), 9.26 (t, 2H), 11.14 (s, 2H). 

 

5.5.3 Synthesis of (1,1’-di-n-butyl-3,3’-methylenediimidazoline-2,2’-diylidene)palladium(II) 

dibromide 5.13. 

       A stirred DMSO solution (5 mL) of 1,1’-di-n-butyl-3,3’-methylenediimidazolium dibromide 

(188 mg) and Pd(OAc)2 (100 mg) was heated at 50 oC for 4 hours, after which the solution was 

refluxed for another 20 minutes, the solvent was removed under high vacuum at 80 oC, after 

washing the residue with cold methylene chloride, 195 mg (83%) product was obtained as a pale 

yellow powder. 1H-NMR (δH; 400 Hz, DMSO-d6): 0.88 (t, 6H,), 1.19 (sextet, 4H), 1.75 (quintet, 

2H), 4.03 (m, 2H), 4.83 (broad singlet, 2H), 6.28 (s, 2H), 7.39 (s, 2H), 7.59 (s, 2H). 13C-NMR 

(δH; 200 Hz, DMSO-d6): 13.44, 19.06, 32.54, 49.97, 62.52, 121.28, 121.97. 
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5.5.4 Synthesis of (1,1’-di-n-butyl-3,3’-methylenediimidazoline-2,2’-diylidene)palladium(II) 

dimethyl 5.14. 

        To a THF solution (10 mL) of (1,1’-di-n-butyl-3,3’-methylenediimidazoline-2,2’-

diylidene)palladium(II) dibromide (53.0 mg), 0.40 mL 0.5 M MeMgBr ether solution was added 

and the reaction mixture was stirred at room temperature for 1 hour. Solvents were removed 

under reduced pressure. 5 mL of pre-dried 1,4-dioxane was added to the residue and stirred at 

room temperature for 5 minutes. The white solid was removed by filtering through a short pad of 

dry celite, and the filtrated was concentrated to dryness in high vacuum. 32.3 mg (82.1%) 

product was obtained as a white solid. 1H-NMR (δH; 400 Hz, CD3CN): -0.32 (s, 6H), 0.90 (t, 

6H,), 1.24 (sextet, 4H), 1.72 (quintet, 2H), 4.02 (m, 2H), 4.23 (m, 2H), 5.77 (d, 1H), 5.99 (d, 

1H), 6.92 (d, 2H), 7.14 (d, 2H). 

 

5.5.5 Synthesis of (1,1’-di-n-butyl-3,3’-methylenediimidazoline-2,2’-diylidene)palladium(II) 

di(13C-methyl) 5.14’. 

        This compound was synthesized by the same procedure as in 5.5.4 except using 13C-labeled 
13CH3MgI (which was prepared by reacting 13CH3I with Mg in ether). A product was isolated as 

a white solid with a 76% yield. 1H-NMR (δH; 400 Hz, CD3CN): between-0.47 and -0.16 (d, JC-H 

= 123.37 Hz, 6H), 0.90 (t, 6H,), 1.24 (sextet, 4H), 1.72 (quintet, 2H), 4.02 (m, 2H), 4.23 (m, 2H), 

5.77 (d, 1H), 5.99 (d, 1H), 6.92 (d, 2H), 7.14 (d, 2H). 

 

5.5.6 Reaction between bis-NHC-Pd(II)-Me 2 complex 5.14 and O2 

       In a nitrogen filled glovebox, 10 mg bis-NHC(Bu)2-Pd(II)-Me2 complex 5.14 was dissolved 

in 0.6 mL pre-dried CD3CN in a J-Young NMR tube. After degassing the sample by three 

consecutive freeze, pump and-thaw cycles, 1 atm. of pre-dried O2 was introduced into the NMR 

tube at -20 oC. After carefully shaking in the cooling bath, the NMR tube was inserted in a NMR 

probe, which was pre-cooled to -20 oC. The reaction was monitored by 1H-NMR at various 

temperatures. 

 

5.5.7 Reaction between bis-NHC-Pd(II)-Me 2 complex 5.14 and O2 in the presence of H2O 

         In a nitrogen filled glove-box, 10 mg bis-NHC-Pd(II)-Me2 complex 5.14 was dissolved in 

0.60 mL pre-dried CD3CN in a J-Young NMR tube. After degassed for three consecutive freeze, 
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pump and-thaw cycles, the sample was cooled down to -20 oC. 0.05 mL CD3CN which contained 

1% of H2O was added under the protection of nitrogen (1 equivalent of H2O relative to the 

palladium dimethyl complex). Then, 1 atm. of pre-dried O2 was introduced into the NMR tube at 

-20 oC, and the sample was carefully swirled in the cooling bath. The NMR tube was inserted 

into a pre-cooled NMR probe (-20 oC) and the reaction was monitored at various temperatures. 
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Chapter 6 PhI(OAc)2 and PhI(OTFA)2 Triggered C-C Bond 

and C-O Bond Formation from Bis-NHC-Pd(II)-(CH 3)2 

Complex 

6.1 Introduction 

Hypervalent iodine reagent such as PhIO, PhI=NTs, PhICl2 and PhI(OAc)2
1 have been 

applied to stoichimetrically react with Pd-aryl complexes. These reactions generally result in 

clean and high yielding functionlization/cleavage of the Pd-C bond. Detailed mechanistic study 

revealed that, in many cases, these transformation proceed via Pd(IV) intermediates.2 

The reaction between PhIO and cyclometalated Pd(II) complex leaded to the insertion of 

an oxygen atom into the Pd-C bond (Figure 6.1).3,4  Similarly, the reaction between PhI=NTs and 

cyclmetalated Pd(II) complex resulted in the insertion of NTs into the Pd-C bond (Figure 6.2).5 It 

was proposed that both these two transformations involved Pd(IV) intermediates such as Pd(IV)-

oxo species 6.1 and Pd(IV)-imido species 6.5 resulted from oxidation of the Pd(II) complexes 

with hypervalent iodine reagents, and the collapse of the intermediates to afford the insertion 

products. 

N
N SMe

PdII
Cl

N
N SMe

PdIV
Cl

O

N
N SMe

Pd II
ClO(C6F5I=O)n

-C6F5I

6.1 6.2 6.3
 

Figure 6.1 O insertion into a PdII-C bond with (C6F5I=O)n.
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Figure 6.2 Double amination of palladacycle 6.4.5 
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         The chlorination of Pd(II)-C bonds with PhICl2 is another transformation that has been 

extensively explored, and there are strong evidences showed that the chlorination reactions 

proceed via C-Cl bond forming reductive elimination from Pd(IV) intermediates. For example, 

the reaction between pincer Pd(II) complex 6.7 and PhICl2 afforded a Pd(IV) intermediate 6.8,6 

which can be characterized by 1H-NMR spectroscopy at room temperature. This species 

decomposed over several minutes to give the C-Cl bond forming product 6.9 (Figure 6.3).   
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Figure 6.3 Oxidation of PdII to PdIV with PhICl2.
6 

 

         The Sanford group demonstrated the stable palladium(IV) carboxylate complex 

(phpy)2Pd(IV)(O2CPh)2 [phpy = 2-phenylpyridine] 6.11 can be isolated by the reaction of 

(phpy)2Pd(II) 6.10 with PhI(O2CPh)2. Upon heating to 60 oC, this complex underwent clean C-O 

bond forming reductive elimination to yield the oxygenated product (Figure 6.4). The 

mechanistic study showed this process occurred from a five-coordinate intermediate resulted 

from pre-dissociation of one arm of the phenylpyridine ligand.7 
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Figure 6.4 Oxidation of PdII to PdIV with PhI(O2CPh)2.
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6.2 PhI(OAc)2 Triggered C-C Bond Formation from Bis-NHC-Pd(II)-(CH 3)2 

Complex 

          In a nitrogen filled glove-box, 5 mg bis-NHC-Pd(II)-(CH3)2 complex 5.14 was dissolved in 

0.60 mL pre-dried CD3CN in a J-Young NMR tube. After degassing by three consecutive freeze, 

pump and-thaw cycles, the sample was cooled to -40 oC. A solution of one equivalent of 

PhI(OAc)2 in 0.10 mL dry CD3CN was added via a syringe under the protection of nitrogen. The 

NMR tube was carefully swirled in the cooling bath and quickly inserted into a pre-cooled NMR 

probe (-40 oC). The reaction was monitored at various temperatures. At -40 oC, only the C-C 

reductive elimination product ethane was observed (0.85 ppm). Stacked 1H-NMR spectrum for 

this reaction is showed in Figure 6.5. With the progress of the reaction, the resonances for the 

bis-NHC-Pd species became broad due to the lower solubility of the complex at lower 

temperature. Upon warming up to 25 oC, resonances for a symmetrical bis-NHC-Pd species 

appeared, which have been identified as bis-NHC-Pd-(OAc)2 by comparing with a standard 

sample obtained by reaction of bis-NHC-Pd-Br2 with AgOAc.  
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Figure 6.5 Stacked 1H-NMR spectrum for the reaction between bis-NHC-Pd(II)-(CH3)2 complex 

5.14 and PhI(OAc)2. 
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       Based on this reaction result, it is our working hypothesis that the bis-NHC-Pd(II)-(CH3)2 

complex 5.14 was oxidized by PhI(OAc)2 to form a bis-NHC-Pd(IV)-(CH3)2-(OAc)2 

intermediate 6.12, followed by C-C reductive elimination to give ethane and bis-NHC-Pd(II)-

(OAc)2 6.13 as products (Figure 6.6). 
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Figure 6.6 Proposed reaction pathway between bis-NHC-Pd(II)-Me2 and PhI(OAc)2. 

 

6.3 PhI(OTFA)2 Triggered C-C Bond and C-O Bond Formation from Bis-

NHC-Pd(II)-(CH 3)2 Complex 

         Compared with PhI(OAc)2, PhI(OTFA)2 exhibits better solubility in common organic 

solvents. Therefore, Dr. Kraft and I have decided to investigate the reaction between 

PhI(OTFA)2 and bis-NHC-Pd(II)-(CH3)2.  

         In a nitrogen filled glove-box, 10 mg bis-NHC-Pd(II)-(CH3)2 complex 5.14 was dissolved 

in 0.60 mL pre-dried CD3CN in a J-Young NMR tube. After degassing by three consecutive 

freeze, pump and-thaw cycles, the sample was cooled to -40 oC. A solution of one equivalent of 

PhI(OTFA)2 in 0.10 mL dry CD3CN was added via a syringe under the protection of nitrogen. 

The NMR tube was carefully swirled in the cooling bath and quickly inserted into a pre-cooled  

NMR probe (-40 oC). The reaction was monitored at various temperatures. It was found that at -

40 oC, both C-C and C-O reductive elimination products ethane (0.85 ppm) and methyl trifluoro-

acetate (3.95 ppm) were observed. The reaction was completed within 5 minutes. The resonance 

at 0.11 ppm was assigned to the methyl group of the unsymmetrical bis-NHC-Pd(II)-CH3-

(OTFA) resulted from the C-O reductive elimination reaction.  The dioxane residue was used as 

an internal standard to calculate the relative rate of the C-C vs C-O reductive elimination. In the 

original sample before adding oxidant, the integration of the dioxane (3.60 ppm) was 0.95 when 

the methyl resonance (-0.32 ppm) was set to 6. Keeping the integration of dioxane at 0.95 after 
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the reaction, the integration of the methyl of bis-NHC-Pd-(CH3)-(OTFA) was found to be 1.45. 

This result showed that the relative rate of the C-C vs C-O reductive elimination is 1/1 under this 

reaction condition. 

            1H-NMR also showed that the bis-NHC-Pd(II)-(CH3)-(OTFA) species is stable at room 

temperature, as soon as a solution of 0.50 equivalent of PdI(OTFA)2 in CD3CN was added, it 

was quickly converted to bis-NHC-Pd(II)-(OTFA)2 and gave one equivalent of CH3OOCCF3. A 

stacked 1H-NMR spectrum for the reaction between bis-NHC-Pd(II)-(CH3)2 and PhI(OTFA)2 is 

showed in Figure 6.7. 
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Figure 6.7 Stacked 1H-NMR spectrum for the reaction between bis-NHC-Pd(II)-(CH3)2 and 

PhI(OTFA)2. (blue: bis-NHC-Pd(II)-(CH3)2 at -40 oC; green: adding 1 equivalent of PhI(OTFA)2 

at -40 oC for 5 minutes; black: after adding 0.50 equivalent of PhI(OTFA)2 at room temperature). 

 

            In order to confirm the formation of both ethane and methyl trifluoroacetate, the 13C 

labeled dimethylpalladium(II) complex bis-NHC-Pd(II)-(13CH3)2 was synthesized and used as 

starting material to react with PhI(OTFA)2. At – 40 oC, the 1H-NMR clearly showed the 

disappearance of the doublet between -0.52 ppm and -0.22 ppm with the large 13C-H coupling 

constant of 123.69 Hz, which was assigned to the methyl groups of the dimethylpalladium(II) 

complex. Three sets of doublets were observed after the reaction at -40 oC: The one between -

0.11 ppm and 0.21 ppm with 13C-H coupling constant of 128.03 Hz was assigned to the methyl 

group of the unsymmetrical bis-NHC-Pd(II)-(13CH3)-(OTFA) complex; the one between 0.67 

ppm and 0.97 ppm with 13C-H coupling constant of 120.50 Hz was assigned to the 13C labeled 
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ethane; and the one between 3.72 ppm and 4.10 ppm with 13C-H coupling constant of 152.50 Hz 

was assigned to the 13C labeled methyl group of methyl trifluoroacetate. A stacked 1H-NMR 

spectrum for the reaction between bis-NHC-Pd(II)-(13CH3)2 complex and PhI(OTFA)2 is showed 

in Figure 6.8. In the 13C-NMR, the starting material 13C labeled dimethylpalladium(II) complex 

5.14 showed one peak at -5.34 ppm. After the reaction at -40 oC, the peak at -5.34 ppm 

disappeared and three new peaks showed up. The peak at -7.06 ppm was assigned to the 13C 

labeled methyl group of the bis-NHC-Pd(II)-(13CH3)-(OTFA); the peak at 7.06 was assigned to 
13CH3

13CH3; and the peak at 55.68 ppm was assigned to the 13C labeled methyl group of methyl 

trifluoroacetate. A stacked 13C-NMR spectrum for the reaction between bis-NHC-Pd(II)-(13CH3)2 

complex and PhI(OTFA)2 is showed in Figure 6.9.The results from his experiment provided 

solid evidence that both C-C and C-O bond formed in the reaction between bis-NHC-Pd(II)-

(CH3)2 and PhI(OTFA)2. 
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Figure 6.8 Stacked 1H-NMR spectrum for the reaction between bis-NHC-Pd(II)-(13CH3)2 

complex and PhI(OTFA)2. (blue: bis-NHC-Pd(II)-(13CH3)2 at -40 oC; green: adding 1 equivalent 

of PhI(OTFA)2 at -40 oC for 5 minutes; black: after adding 0.20 equivalent of PhI(OTFA)2 at 

room temperature). 
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Figure 6.9 Stacked 13C-NMR spectrum for the reaction between bis-NHC-Pd(II)-(13CH3)2 

complex and PhI(OTFA)2. (blue: bis-NHC-Pd(II)-(13CH3)2 at -40 oC; black: adding 1 equivalent 

of PhI(OTFA)2 at -40 oC for 5 minutes). 

 

6.4 Mechanistic Discussion of the PhI(OAc)2 Triggered C-C Bond Formation 

vs PhI(OTFA)2 Triggered C-C and C-O Bond Formation. 

 

For the process of C-C bond formation in both cases, it is our working hypothesis that a 

bis-NHC-Pd(IV)-(CH3)2-(OOCR)2 intermediate is formed by oxidation of bis-NHC-Pd-(CH3)2 

with hypervalent iodine regents PhI(OOCR)2. C-C bond forming reductive elimination from this 

intermediate releases ethane and generates bis-NHC-Pd(II)-(OOCR)2 complexes (Figure 6.10). 
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Figure 6.10 Proposed pathway for the C-C bond formation process. 

 

         For the C-O bond formation during the reaction between PhI(OTFA)2 and bis-NHC-Pd(II)-

(CH3)2, at least two reaction pathways should be taken into consideration. In the first pathway, 

C-O bond formation does not involve a palladium(IV) intermediate. Methyl trifluoroacetate 

could be formed from the direct attack of the palladium coordinated methyl groups by the OTFA 

anion, which has been previously dissociated from PhI(OTFA)2 in solution (Figure 6.11) 
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Figure 6.11 Proposed C-O bond formation pathway via external attack. 

 

        In the second pathway, the transient bis-NHC-Pd(IV)-(CH3)2-(OTFA)2 intermediate 6.15 

undergoes competitive C-C bond forming and C-O bond forming reductive elimination to yield 

ethane and methyl trifluoroacetate as well as palladium(II) complexes 6.14 and 6.16 (Figure 

6.12). Similar mechanisms had beed proposed by A. J. Canty.8 
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Figure 6.12 Proposed C-O bond formation pathway via reductive elimination from Pd(IV) 

species. 

 

          The first pathway can be easily ruled out. 1H-NMR showed that the rate of dissociation of 

the OAc anion from PhI(OAc)2 is comparable with the rate of dissociation of the OTFA anion 

from PhI(OTFA)2 in CD3CN. If the C-O bond formation is from an external attack of the acetate 

anion, the OAc anion will lead to a more facile C-O bond formation than the OTFA anion, 

because it is more electron rich. The absence of methyl acetate suggested that the C-O bond 

formation is not following this pathway. Experimental support was obtained by treating 13C 

labeled bis-NHC-Pd(II)-(13CH3)2 complex 5.14’ with one equivalent of 

diisopropylethylammoinum trifluoroacetate salt in CD3CN at -40 oC. It was found that in the 

presence of free OTFA anion, there was no formation of methyl trifluoroacetate. Only methane 

and bis-NHC-Pd(II)-(13CH3)-(OTFA) complex 6.16’ were observed, due to the selective 

protonation of one methyl group from the bis-NHC-Pd(II)-(13CH3)2 complex.  After warming up 

to room temperature, one equivalent of PhI(OTFA)2 was added to the NMR tube, the bis-NHC-

Pd(II)-(13CH3)-(OTFA) complex 6.16’ was quickly consumed and methyl trifluoroacetate was 

formed. A stacked 1H-NMR spectrum for the reaction between the bis-NHC-Pd(II)-(13CH3)2 

complex and diisopropylethylammoinum trifluoroacetate salt and further reaction of the bis-

NHC-Pd(II)-(13CH3)-OTFA with PhI(OTFA)2 is showed in Figure 6.13. 
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Figure 6.13 Stacked 1H-NMR spectrum for the reaction between bis-NHC-Pd(II)-(13CH3)2 

complex and diisopropylethylammoinum trifluoroacetate salt, and the further reaction with 

PhI(OTFA)2. (blue: bis-NHC-Pd(II)-(13CH3)2 at -40 oC; green: adding 1 equivalent of 

diisopropylethylammoinum trifluoroacetate salt at -40 oC for 5 minutes; black: after adding 1.0 

equivalent of PhI(OTFA)2 at room temperature). 

 

           This experiment provided strong supportive information that the C-O bond formation is 

not from the external attack of the methyl groups of bis-NHC-Pd(II)-(CH3)2 complex by the 

OTFA anion. Therefore, it is far more likely that a palladium(IV) intermediate had been involved 

in the C-O bond formation process (Figure 6.14). 
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Figure 6.14 Protonation of bis-NHC-Pd(II)-(CH3)2 and further oxidative addition triggered C-O 

reductive elimination. 
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        One question in need to be answered is: Why there is no C-O bond formation when 

PhI(OAc)2 was used as oxidant?  One possible reason for our finding is that OAc is a stronger 

donor ligand than OTFA, because the electron-withdrawing CF3 group makes OTFA a less 

electron-donating ligand. OAc binds stronger to the palladium center than OTFA, and it does not 

undergo C-O reductive elimination. Ideally, we would like to synthesize the bis-NHC-Pd(II)-

(CH3)-(OAc) complex and treat it with PhI(OTFA)2 as oxidant. If the assumption we have made 

is correct, then only CH3OOCCF3 should be expected as reaction product. We have attempted 

several ways to synthesize the bis-NHC-Pd(II)-(CH3)-(OAc) complex, including the protonation 

of the dimethylpalladium(II) complex with HOAc at low temperature, and abstraction of the 

iodine ligand from bis-NHC-Pd(II)-(CH3)-I with AgOAc,  but unfortunately, we could not 

observe the formation of this complex. The protonation led to the complete release of methyl 

groups and the AgOAc method resulted in the decomposition of the bis-NHC-Pd(II)-CH3-I 

complex to palladium black.  

         When the bis-NHC-Pd(II)-(CH3)2 complex was treated with one equivalent of para-

chlorophenol at -20 oC in CD3CN, a clean mono-methylpalladium(II) complex bis-NHC-Pd(II)-

(CH3)-(4-Cl-C6H4O) 6.17 (methyl resonance at -0.08 ppm), as well as methane (resonance at 

0.20 ppm) have formed. Upon adding one equivalent of PhI(OTFA)2,  a resonance at 3.95 ppm 

assigned to methyl trifluoroacetate appeared immediately, and no formation of the hypothetical 

methyl ether (4-Cl-PhOCH3) was observed during the reaction (Figure 6.15). A stacked 1H-NMR 

spectrum of these two reactions is showed in Figure 6.16. Compared with OTFA, para-

chlorophenoxido ligand was attached stronger to the palladium center. The result from this 

experiment showed that only weaker ligand can undergo C-O bond forming reductive 

elimination from a Pd(IV) center. This finding supports our mechanistic hypothetic explaining of 

the absence of C-O bond formation when PhI(OAc)2 was used as oxidant to react with bis-NHC-

Pd(II)-(CH3)2 complex. 
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Figure 6.15 Protonation of the bis-NHC-Pd(II)-(CH3)2 complex with p-chlorophenol and the 

further oxidation of the bis-NHC-Pd(II)-(CH3)-(p-Cl-C6H4) with PhI(OTFA)2. 
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Figure 6.16 Stacked 1H-NMR spectrum of the protonation of the bis-NHC-Pd(II)-(CH3)2 

complex with p-chlorophenol and the further oxidation with PhI(OTFA)2. (blue: bis-NHC-

Pd(II)-(CH3)2 at -20 oC; green: After adding one equivalent of p-chlorophenol for 2 minutes at -

20 oC; gray: after adding one equivalent of PhI(OTFA)2 for 1 minute at room temperature; black: 

after adding one equivalent of PhI(OTFA)2 for 5 minutes at room temperature). 
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6.5 Experimental 

 

6.5.1 The reaction between PhI(OAc)2 and bis-NHC-Pd(II)-(CH 3)2 complex 5.14. 

          In a nitrogen filled glove-box, 5 mg bis-NHC(Bu)2-Pd(II)-Me2 complex was dissolved in 

0.60 mL pre-dried CD3CN in a J-Young NMR tube. After degassing by three consecutive freeze, 

pump and-thaw cycles, the sample was cooled to -40 oC. A solution of one equivalent of 

PhI(OAc)2 in 0.10 mL dry CD3CN was added via a syringe under the protection of nitrogen. The 

NMR tube was carefully swirled in the cooling bath and quickly inserted into a pre-cooled NMR 

probe (-40 oC). The reaction was monitored at various temperatures. 

 

6.5.2 The reaction between PhI(OTFA)2 and bis-NHC-Pd(II)-(CH 3)2 complex 5.14. 

          In a nitrogen filled glove-box, 10 mg bis-NHC-Pd(II)-Me2 complex was dissolved in 0.60 

mL pre-dried CD3CN in a J-Young NMR tube. After degassing by three consecutive freeze, 

pump and-thaw cycles, the sample was cooled to -40 oC. A solution of one equivalent of 

PhI(OTFA)2 in 0.10 mL dry CD3CN was added via a syringe under the protection of nitrogen. 

The NMR tube was carefully swirled in the cooling bath and quickly inserted into a pre-cooled  

NMR probe (-40 oC). The reaction was monitored by 1H-NMR at various temperatures. Because 

of the formation of both bis-NHC-Pd(II)-(OTFA)2 and bis-NHC-Pd(II)-(CH3)-(OTFA), it is 

difficult to assign peaks for each species. The new peak at 0.11 ppm is assigned to the methyl 

coordinated to the palladium center in the bis-NHC-Pd(II)-(CH3)-(OTFA) complex. And the 

imidazole backbone show the characteristic unsymmetrical structure.    

 

6.5.3 Mono-protonation of bis-NHC-Pd(II)-(CH 3)2 complex with 

diisopropylethylammoinum trifluoroacetate salt and further reaction with 

PhI(OTFA) 2 

         In a nitrogen filled glove-box, 10 mg bis-NHC-Pd(II)-Me2 complex was dissolved in 0.50 

mL pre-dried CD3CN in a J-Young NMR tube. After degassing by three consecutive freeze, 

pump and-thaw cycles, the sample was cooled to -40 oC. A solution of one equivalent of 

diisopropylethylammoinum trifluoroacetate salt in 0.10 mL dry CD3CN was added via a syringe 

under the protection of nitrogen. The NMR tube was carefully swirled in the cooling bath and 

quickly inserted into a pre-cooled NMR probe (-40 oC). The reaction was monitored by 1H-NMR 
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at various temperatures. The starting material 5.14 was consumed immediately and methane and 

bis-NHC-Pd(II)-(CH3)-(OTFA) were produced. After warming up to room temperature, a 

solution of one equivalent of PhI(OTFA)2 in 0.10 mL dry CD3CN was added via a syringe under 

the protection of nitrogen, and the reaction was monitored by 1H-NMR. The bis-NHC-Pd(II)-

(CH3)-(OTFA) was consumed immediately, and the formation of methyl trifluoroacetate was 

observed. 

 

6.5.4 Mono-protonation of bis-NHC-Pd(II)-(CH 3)2 complex to form bis-NHC-Pd(II)-

(CH3)-(4-Cl-C6H4O) complex. 

     10 mg bis-NHC-Pd(II)-(CH3)2 complex was dissolved in 0.50 mL CD3CN, cooled to -20 oC, 1 

equivalent of p-chloro-phenol in 0.10 mL of CD3CN was added by means of syringe under the 

protection of nitrogen. 1H-NMR showed the formation of bis-NHC-Pd(II)-(CH3)-(4-Cl-C6H4O) 

in 5 minutes. 1H-NMR (δH; 400 Hz, CD3CN): -0.08 (s, 3H, Pd-CH3), 0.82 (t, 3H, CH3), 0.95 (t, 

3H, CH3), 1.12 (m, 2H, CH2), 1.28 (m, 2H, CH2), 1.60 (m, 2H, CH2), 1.80 (m, 2H, CH2), 3.79 

(m, 1H, CH2), 3.99 (m, 1H, CH2), 4.32 (m, 2H, CH2), 5.86 (d, 1H, CH2 bridge), 6.18 (d, 1H, CH2 

bridge), 6.66 (d, 2H, aromatic), 6.79 (d, 2H, aromatic), 6.85 (d, 1H, imidazole backbone), 7.02 

(d, 1H, imidazole backbone), 7.13 (d, 1H, imidazole backbone), 7.22(d, 1H, imidazole 

backbone). 

 

6.5.5 The reaction between PhI(OTFA)2 and bis-NHC-Pd(II)-(CH 3)-(4-Cl-C6H4O) 

complex. 

      One equivalent of PhI(OTFA)2 in 0.10 mL CD3CN was added to the NMR tube which 

contains bis-NHC-Pd(II)-(CH3)-(4-Cl-C6H4O) complex (from the previous step) at room 

temperature. The C-O bond formation was observed.  
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Chapter 7 Chlorine Triggered C-C Bond Formation Vs C-Cl 

Bond Formation from Bis-NHC-Pd(II)-Me 2 Complex 

 

7.1 Introduction 

 

Although all the oxidation of the bis-NHC-Pd(II)-(CH3)2 complex chemistry I had carried 

out implied the formation of Pd(IV) species, up to now, I have not obtained a isolable bis-NHC 

ligand supported Pd(IV) species! I have tried the oxidation reaction of bis-NHC-Pd(II)-Br2 with 

bromine, as has been showed in chapter 2. The result, although not conclusive, implied that a 

bis-NHC-Pd(IV)-Br4 species had formed, which could not be isolated or characterized, because it 

readily released bromine to re-form bis-NHC-Pd(II)-Br2 complex.  

It was found that the very first several isolated Pd(IV) complexes were obtained by 

oxidative addition of chlorine to the di-nitrogen ligands supported Pd(II) complexes (Figure 

7.1).1,2  

(C6F5)2Pd(II)(L-L)
Cl2 Cl2(C6F5)2Pd(IV)(L-L)

L-L = en, bipy, Phen

7.1 7.2

 

Figure 7.1 Chlorine oxidation of bidentate ligands supported Pd(II) to Pd(IV).1 

           

          In 1993, G. van Koten and co-workers reported the isolation of a stable palladium(IV) 

complex 7.4 by oxidative addition of chlorine to a terdentate CNN’ ligand supported 

palladium(II) complex 7.3 (Figure 7.2).3 
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Figure 7.2 Chlorine oxidation of terdentate ligand supported Pd(II) to Pd(IV).3 
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Inspired by these results, Dr. Kraft and I had decided to investigate using chlorine as an 

oxidant to react with the bis-NHC-Pd(II)-(CH3)2 complex. 

 

7.2 Chlorine Triggered C-C Bond and C-Cl Bond Formation at Lower 

Temperature. 

 

10.0 mg bis-NHC-Pd(II)-(CH3)2 complex was dissolved in 0.60 mL dry CD3CN in a J-

Young NMR tube, and after degassing by three consecutive freeze, pump and-thaw cycles,1 atm. 

of chlorine gas was introduced into the NMR tube at -40 oC, and the reaction was monitored by 
1H-NMR spectroscopy at -40 oC. The resonance for ethane (0.85 ppm) and the resonance for 

methyl chloride (3.03 ppm) showed up right after addition of chlorine in the 1H-NMR spectrum. 

Three new singlet peaks also appeared: the two peaks at 2.24 ppm and 2.27 ppm were tentatively 

assigned for the equatorial and axial methyl groups of bis-NHC-Pd(IV)-(CH3)2-Cl2 intermediate 

7.5., and the one at -0.02 was assigned to the methyl group of bis-NHC-Pd(II)-(CH3)-Cl complex 

7.6. It was found that the starting material bis-NHC-Pd(II)-(CH3)2 complex was consumed in 30 

minutes at -40 oC, and the resonances for the bis-NHC-Pd(IV)-(CH3)2-Cl2 intermediate 

disappeared within 5 minutes after the depletion of the dimethylpalladium(II) complex 5.14. The 

bis-NHC-Pd(II)-(CH3)-Cl complex 7.6 was consumed in 20 minutes at -40 oC after the 

disappearance of the dimethylpalladium(II) complex 5.14. The reaction process was recorded in 

a stacked 1H-NMR spectrum in Figure 7.3. Using solvent residue dioxane as an internal standard, 

the integrations showed that ethane and methyl chloride formed with a ratio of 2/1 (assuming all 

the palladium coordinated methyl groups were converted to either ethane or methyl chloride). 

After completion of reaction, at least two bis-NHC-Pd species could be observed in the 1H-NMR 

spectrum, and some white precipitation formed in the NMR tube. 
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Figure 7.3 Stacked 1H-NMR spectrum (expended area to show the methyl chloride and ethane) 

of the reaction between the bis-NHC-Pd(II)-(CH3)2 complex 5.14 and chlorine gas at -40 oC. 

(blue: bis-NHC-Pd(II)-(CH3)2 at -40 oC; the green and balck spectrum were recorded after 

adding chlorine gas with 10 minutes intervals; the pink spectrum was recorded after adding 

chlorine gas for 50 minutes). 

 

7.3 Chlorine Triggered C-C Bond and C-Cl Bond Formation at Room 

Temperature. 

           In order to figure out the identity of the final products, the reaction has been diluted in 

order to avoid the occurrence of precipitation. 3.0 mg bis-NHC-Pd(II)-(CH3)2 complex was 

dissolved in 0.60 mL dry CD3CN in a J-Young NMR tube, and after degassing by three 

consecutive freeze, pump and-thaw cycles, 1 atm. of chlorine gas was introduced into the NMR 

tube at room temperature and the reaction was monitored by 1H-NMR spectroscopy. It was 

found that the starting material was consumed immediately, and no intermediates were observed. 

Both methyl chloride and ethane were produced, and two palladium complexes were present in 

the spectrum. One of the species disappeared after 5 minutes and the other one remained there 
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until to the end. The quickly disappearing species could be the bis-NHC-Pd(II)-Cl2 complex 7.7, 

which was oxidized by chlorine gas to bis-NHC-Pd(IV)-Cl4 complex 7.9 (Figure 7.4).        
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Figure 7.4 Stacked 1H-NMR spectrum of the reaction between the bis-NHC-Pd(II)-(CH3)2 

complex and chlorine gas at 25 oC. (blue: bis-NHC-Pd(II)-(CH3)2 at 25 oC; green: right after the 

addition of chlorine; the other two spectrum were recorded after adding chlorine gas with 5 

minutes intervals). 

 

7.4 Mass Spectroscopy Characterization of the Final Product 

            A drop of solution taken from the NMR tube was used to carry out a Mass spectroscopy 

characterization. When applying the electrospray ionization method,4 a tiny M+H+ ion was 

observed at 507.1 for the bis-NHC-Pd(IV)-Cl4 complex, and the fragmentation ion was observed 

at 471.3 corresponding to [bis-NHC-Pd(IV)-Cl3]
+ with major intensity (Figure 7.5). Because the 

natural abundance of 37Cl is 32.5% that of 35Cl, the [M-Cl]+ (471.3, 100.0%), [M-Cl+2]+ (473.2, 

84.9%), [M-Cl+4]+ (475.2, 79.8%), and [M-Cl+6]+ (477.2, 26.1%) isotope peaks clearly 
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demonstrate that the fragmentation ion contains three chlorine atoms.  Further fragmentation 

leads to the formation of [M-2Cl+H]+ ion at 437.1, [M-3Cl]+ ion at 401.2, and [M-4Cl+H]+ at 

367.3. 

 

 

Figure 7.5 ESI+ Mass spectroscopy of the bis-NHC-Pd(IV)-Cl4. 

 

 

7.5 Discussion of The Mechanism of the Reaction between the Bis-NHC-

Pd(II)-(CH 3)2 Complex and Chlorine. 

 

               Based on the results obtained from the previous two experiments, we were able to 

proposed a mechanism for the Cl2 triggered C-C bond and C-Cl bond formation from the bis-

NHC-Pd(II)-(CH3)2 complex. In the first step, the diemthylpalladium(II) complex 5.14 was 

oxidized to a bis-NHC-Pd(IV)-(CH3)2-Cl2 intermediate 7.5. In the second step, both C-C bond 

and C-Cl bond formation by reductive elimination occurs within the Pd(IV) intermediate. The C-
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Cl reductive elimination yields methyl chloride and bis-NHC-Pd(II)-(CH3)-Cl complex 7.6 as 

reaction products, and the C-C reductive elimination yields ethane and the bis-NHC-Pd(II)-Cl2 

complex 7.7 as reaction products. In the third step, the bis-NHC-Pd(II)-(CH3)-Cl complex 7.6 is 

oxidized by chlorine to the bis-NHC-Pd(IV)-(CH3)-Cl3 intermediate 7.8, from which C-Cl 

reductive elimination occurs again to form methyl chloride and the bis-NHC-Pd(II)-Cl2 complex. 

In the fourth step, the bis-NHC-Pd(II)-Cl2 complex is oxidized to the bis-NHC-Pd(IV)-Cl4 

complex 7.9. (Figure 7.6) 
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Figure 7.6 Proposed pathway for the reaction between the bis-NHC-Pd(II)-(CH3)2 complex and 

chlorine gas. 

 

 

7.6 The Stability of the Bis-NHC-Pd(IV)-Cl 4 in Solution. 

 

          The solubility of the formed bis-NHC-Pd(IV)-Cl4 complex 7.9 is very low in CD3CN, after 

2 hours at room temperature, most of the complex precipitated out of solution. CD3CN was 
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carefully removed through a long syringe needle, and after drying in high vacuum, the residue 

was dissolved in 0.60 mL DMF-d7. Both bis-NHC-Pd(IV)-Cl4 (7.9) and bis-NHC-Pd(II)-Cl2 

(7.7) were observed in the 1H-NMR. After 2 hours at room temperature, the resonances for the 

Pd(IV) species completely disappeared, while the resonances for the bis-NHC-Pd(II)-Cl2 

remained unchanged. Using a solvent impurity (THF from the glove-box “vapor”) as internal 

standard, the peak positions and the integrations clearly indicated that all of the Pd(IV) species 

was eventually converted to the Pd(II) species (Figure 7.7). When 1 atm. of chlorine gas was 

bubbled through the solution for 10 seconds, the 1H-NMR spectrum showed that all of the bis-

NHC-Pd(II)-Cl2 complex has been converted to the bis-NHC-Pd(IV)-Cl4 complex (Figure 7.8).  
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Figure 7.7 The bis-NHC-Pd(IV)-Cl4 complex was reduced back to the bis-NHC-Pd(II)-Cl2 

complex in the absence of chlorine. 

 



 

106 

 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0
Chemical Shift (ppm)

-0.5

0

0.5

1.0
N

or
m

al
iz

ed
 In

te
ns

ity

 

Figure 7.8 The bis-NHC-Pd(II)-Cl2 complex was oxidized back to the bis-NHC-Pd(IV)-Cl4 

complex in the presence of chlorine. 

 

 

            From this experiment, we can clearly see that the bis-NHC-Pd(IV)-Cl4 complex is not 

stable in DMF solution at room temperature. It can slowly dissociate chlorine gas and form the 

bis-NHC-Pd(II)-Cl2 complex. But in the presence of excess chlorine gas, the bis-NHC-Pd(II)-Cl2 

complex can be re-oxidize back to the bis-NHC-Pd(IV)-Cl4 complex (Figure 7.9). 
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Figure 7.9 Reversible reaction between bis-NHC-ligand supported Pd(II) complex and Pd(IV) 

complex. 
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7.7 Crystal Structure of a Isolated Bis-NHC-Pd(IV)-Cl 4 Complex 

 

Finally, single crystals of a bis-NHC-Pd(IV)-Cl4 complex 7.9’ were obtained by slow 

vapor diffusion of CH2Cl2 into a solution of bis-NHC-Pd(II)-Br2 complex in DMF in a chlorine 

atmosphere (Figure 7.10).  This work was achieved by Scott Mccall, a talented undergraduate 

student who was working in Dr. Kraft’s research lab in 2008. The crystal structure showed that 

the bis-NHC-Pd(IV)-Cl4 complex to be monomeric with the dicarbene ligand chelating to the 

palladium(IV) center in a cis fashion with a boat-like conformation being observed for the six-

membered C3N2Pd ring. The remaining four coordination sites of the distorted octahedral 

coordinated palladium center are occupied by chloride anions.  Figure 7.11 showed the discrete 

molecule structure. Selected bond lengths and bond angles are listed in Table 7.1. 
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Figure 7.10 Formation of single crystals of a bis-NHC-Pd(IV)-Cl4 complex.  

 

 

                                 a                                                              b                                       

Figure 7.11 X-ray structure of the bis-NHC-Pd(IV)-Cl4 complex (a: Thermal ellipsoid plot 

drawn at the 50% probability level; b: The boat conformation of the six-membered ring). 
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Table 7.1 Selected bond length and bond angle of the bis-NHC-Pd(IV)-Cl4 complex 

 Length (Å)  Angle (deg) 

Pd(1)-C(22)  

Pd(1)-C(32) 

2.019(4) 

2.015(4) 

C(32)-Pd(1)-Cl(4) 

C(32)-Pd(1)-C(22) 

89.76(11) 

85.80(15) 

Pd(1)-Cl(4)  2.3081(9) C(22)-Pd(1)-Cl(4) 89.08(11) 

Pd(1)-Cl(3)  2.3189(9) C(32)-Pd(1)-Cl(3) 88.29(11) 

Pd(1)-Cl(1)  2.3769(10) C(22)-Pd(1)-Cl(3) 91.33(10) 

Pd(1)-Cl(2)  2.3813(9) Cl(4)-Pd(1)-Cl(3) 177.97(3) 

C(11)-N(31)  1.448(5) C(32)-Pd(1)-Cl(1) 94.14(11) 

C(11)-N(21)  1.456(5) C(22)-Pd(1)-Cl(1) 179.08(11) 

N(21)-C(22)  1.345(5) Cl(4)-Pd(1)-Cl(1) 91.83(4) 

N(21)-C(25)  1.376(5) Cl(3)-Pd(1)-Cl(1) 87.76(3) 

C(22)-N(23)  1.341(5) C(32)-Pd(1)-Cl(2) 177.36(11) 

N(23)-C(24)  1.391(5) C(22)-Pd(1)-Cl(2) 92.64(10) 

N(23)-C(26)  1.463(5) Cl(4)-Pd(1)-Cl(2) 92.35(3) 

C(24)-C(25)  1.343(6) Cl(3)-Pd(1)-Cl(2) 89.62(3) 

N(31)-C(32)  1.350(5) Cl(1)-Pd(1)-Cl(2) 87.39(3) 

N(31)-C(35)  1.385(5) N(31)-C(11)-N(21) 109.3(3) 

C(32)-N(33)  1.341(5) C(22)-N(21)-C(25) 110.7(3) 

N(33)-C(34)  1.391(5) C(22)-N(21)-C(11) 125.6(3) 

N(33)-C(36)  1.469(5) C(25)-N(21)-C(11) 123.7(3) 

C(34)-C(35)  1.337(6) N(23)-C(22)-N(21) 105.9(3) 

   N(23)-C(22)-Pd(1) 131.6(3) 

  N(21)-C(22)-Pd(1) 122.5(3) 

  C(22)-N(23)-C(24) 109.7(3) 

  C(22)-N(23)-C(26) 130.2(3) 

  C(24)-N(23)-C(26) 120.1(3) 

 

          A Pd(IV) complex with which the comparison can be made is the [Pd(IV)(bipy)Cl4] 

complex, which was obtained by oxidative addition of chlorine to the [Pd(II)(bipy)Cl2] 

complex.5 The crystal structure is shown in Figure 7.12. It was reported that Pd-Cl bond lengths 

fall in the range 2.289-2.310 Å in [Pd(IV)(bipy)Cl4], and the mutually trans chlorines have 

significantly longer bonds to Pd (2.302-2.310 Å) than the chlorine atoms trans to nitrogen 
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(2.289-2.290 Å). In contrast to the [Pd(IV)(bipy)Cl4] complex, the mutually trans chlorines have 

significantly shorter bonds to Pd (2.3081-2.3189 Å) than the chlorine atoms trans to the NHC 

ligand (2.3769-2.3813 Å) in the bis-NHC-Pd(IV)-Cl4 complex. The bond length difference in these 

two Pd(IV) complexes clearly demonstrated that the NHC ligand possesses much stronger trans 

influence than the bipy ligand.6 

 

 

Figure 7.12 Discrete molecule of [Pd(IV)(bipy)Cl4] excluding H atoms and with 40% 

probability thermal ellipsoids. (Structure copied from reference 5 without permission).5 

 

7.8 Experimental 

 

      3.0 mg bis-NHC-Pd(II)-(CH3)2 complex was dissolved in 0.60 mL dry CD3CN in a J-Young 

NMR tube, and after degassing by three consecutive freeze, pump and-thaw cycles, 1 atm. of 

chlorine gas was introduced into the NMR tube at room temperature and the reaction was 

monitored by 1H-NMR spectroscopy. The starting material was consumed immediately. Both 

CH3Cl and CH3CH3 were produced. The 1H-NMR showed the resonance for the bis-NHC-

Pd(IV)-Cl4 complex 7.9. 1H NMR (δH; 400 Hz, CD3CN): 0.95-0.98 (t, 6H, J = 7.32Hz, CH3 of 

butyl side chain), 1.38-1.48 (broad multiplet, 4H, CH2 of butyl side chain), 1.76-1.85 (broad 

multiplet, 4H, CH2 of butyl side chain), 4.59-4.67 (broad multiplet, 2H, NCH2 of butyl side 

chain), 4.92-4.99 (broad multiplet, 2H, NCH2 of butyl side chain), 6.19-6.22 (d, 1H, J = 13.11 

Hz, NCH2), 7.04-7.08 (d, 1H, J = 13.11 Hz, NCH2), 7.41 (d, 2H, J = 2.13 Hz, NCH), 7.52 (d, 

2H, J = 2.13 Hz, NCH). 
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Chapter 8 Conclusion and Future Work of the Bis-NHC-Pd(IV) 

Studies 

 

This work was initiated by the interest of the mechanism of the bis-NHC-Pd(II) species 

mediated C-H bond activation system. Surprisingly, the H-D exchange study showed that the 

bis-NHC-Pd(II) complex was not the active catalyst for the methane oxidation system! This 

unexpected result directed the remainder of my work on the pathway to study the bis-NHC-

Pd(IV) chemistry.  The oxidative addition of methyl iodide to the bis-NHC-Pd(II)-Me2 complex 

led to the successful observation of the formation of a transient [bis-NHC-Pd(IV)-Me3] 

intermediate by both 1H-NMR and 13C-NMR spectroscopy. Dioxygen triggered C-C bond 

formation and dioxygen triggered C-C and C-O bond formation in the presence of H2O has 

provided a strong indication that the bis-NHC-Pd(II)-Me2 complex can be oxidized to a bis-

NHC-Pd(IV) intermediate by dioxygen. The reaction between the hypervalent iodine regents and 

bis-NHC-Pd(II)-Me2 complex gave selectively reductive elimination products, which can act as a 

model system that is able to provide valuable information of the product forming 

(functionalization) step of the C-H bond activation system. The reaction between chlorine and 

the bis-NHC-Pd(II)-Me2 complex resulted in a relatively stable bis-NHC-Pd(IV)-Cl4 complex, 

which was characterized by 1H-NMR spectroscopy and mass spectroscopy. The structure of the 

bis-NHC-Pd(IV)-Cl4 was definitely established by X-ray crystallography (single crystals were 

obtained by Scott Mccall).  

In the future, the reaction between dioxygen and the bis-NHC-Pd(II)-Me2 complex 

deserves a more detailed study. The mechanisms of the palladium-catalyzed selective aerobic 

oxidation of organic molecules have been proposed to proceed via a Pd(II)/Pd(0) catalytic cycle, 

in which Pd(II) mediates substrate oxidation and Pd(0) is re-oxidized by dioxygen.1,2,3,4 The 

finding that it is possible that Pd(II) can be oxidized to Pd(IV) by dioxygen may lead to a new 

insight into the mechanism of the palladium-catalyzed aerobic oxidation reactions. There is no 

doubt the reactivity of the isolated bis-NHC-Pd(IV)-Cl4 complex toward C-H bonds should be 

carefully studied. The preliminary stability study indicated that this Pd(IV) species 

stoichiometrically releases chlorine gas in solution and slowly goes back to the Pd(II) species. 

This particular character of the Pd(IV) species makes it a potential chlorine storage reagent. 
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Chapter 9 Synthesis of Functionalized Bimagnetic Core/Shell 

Fe/Fe3O4 Nanoparticles for the Treatment of Cancer 
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9.1  Introduction 

 

     The application of hyperthermia in cancer treatment has been recently attracted a lot of 

attention, because it has a lot of synergy with classic treatment techniques, such as chemotherapy. 

In hyperthermia (also called thermal therapy or thermotherapy), body tissue is exposed to high 

temperatures (currently up to 45°C). Cancerous tissue has been shown to be more susceptible to 

heat damage than healthy tissue.1 It is also of importance that hyperthermia is known to trigger 

the biosynthesis and consequent release of heat shock proteins from the cancer cells, which can 

stimulate the immuno-response to cancer. Several methods of hyperthermia are currently under 

study, including local, regional, and whole-body hyperthermia.2-5 

In local hyperthermia, heat is applied to a defined area, such as a tumor, using a variety of 

conceptionally different techniques (including microwave, radiofrequency, and ultrasound) that 

are capable of delivering energy to heat the tumor tissue.6 
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A/C-Magnetic hyperthermia7 makes use of nanoparticles that are being delivered to the 

tumor site either by using the enhanced permeation and retention effect (EPR or passive 

delivery) caused by rapid angiogenesis in the vicinity of the tumors,8,9 or by targeted delivery 

making use of attached antibodies (ABs) or AB-fragments, or of small attached molecules that 

can trigger receptors at the surface of tumor cells that facilitate their intake.8,10 

      Porphyrins are known to trigger highly selective uptake by the cancer cells, because they 

over-express porphyrin receptors in their cell membranes. They are in need of porphyrins as 

prosthetic groups in their elevated sugar-metabolism.11 The LDL-receptor (low-density-

lipoprotein), which is over-expressed in cancer cells, has the ability to take up porphyrins, either 

alone and/or by a simultaneous lipid uptake mechanism. The higher the hydrophobicity of a 

porphyrin, chlorin or bacteriochlorin, the easier can the uptake be facilitated by the LDL-

receptor.12 Besides their rapid uptake by cancer cells, porphyrins, as well as porphyrin-labeled 

nanoparticles, have a tendency to be taken up by stem cells as well.13 Therefore, they may enable 

killing cancer stem cells by hyperthermia treatment together with the fast growing tumor cells. 

This would be a significant advantage when compared to classic chemotherapy. 

      Several examples of the chemical attachment of porphyrins and related compounds to iron 

oxide nanoparticles exist in the literature.14-17 All of these references follow the approach of 

combining photodynamic therapy and hyperthermia. The potential of porphyrin-based 

fluorescence imaging of tumors and the use of iron oxide nanoparticles as MRI contrast agents 

has been discussed as well.18 Although the porphyrins were attached primarily as singlet oxygen 

photosensitizers, it must be noted that the targeting efficiency is very high and can exceed 50/1 

(cancer tissue/healthy tissue),19 which is significantly better than less than 10/1 for classic 

chemotherapy.20 

      Since the pioneering studies of Gordon et al. demonstrating induced intracellular 

hyperthermia using dextran magnetite nanoparticles in a high frequency magnetic field (such as 

100-500 kHz), the advantages of iron oxide based magnetic nanoparticles, such as negligible or 

low toxicity, biocompatibility, injectability into the blood stream, potentially high level 

accumulation in the target tumor, make them prime candidates for hyperthermia applications.21 

However, the specific absorption rates (SAR’s) of those early systems were low.  

Magnetic nanoparticles absorb the power of an AC magnetic field and transmit it to their 

surroundings, therefore providing heating (magnetic hyperthermia).22,23 The important factor for 
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magnetic heating experiments is the specific absorption rate or SAR, which is determined by 

SAR=C*∆T/∆t, where C is the specific heat capacity of the sample and T and t are the 

temperature and time, respectively. SAR is very sensitive to the material properties. While in 

multi-domain particles the dominant heating is hysteresis loss due to the movement of domain 

walls, it is not so in case of small particles. The two main contributing mechanisms of SAR in 

single domain magnetic nanoparticles are the Brownian (rotation of the entire nanoparticles)24 

and Néel (random flipping of the spin without rotation of the particle) relaxations.25 The 

transition between the two mechanisms occurs between 8-12nm for iron and iron oxides,8,26 but 

it also varies with frequency.27 

To date, the frequencies employed in A/C-hyperthermia (63-700 kHz), as well as the 

amplitudes (3-25 kA m-1) and nanoparticles concentrations vary considerably so that direct 

comparisons of the SAR’s (Specific Absorption Rate) of various magnetic nanoparticles are 

rather difficult.28 The state-of-the-art of A/C-magnetic hyperthermia using superparamagnetic 

and paramagnetic iron oxide (nano)particles has been recently summarized in several reviews. 
8,29,30  

Hergt et al. have demonstrated that the SAR of iron oxide nanoparticles (maghemite) can 

reach values up to more than 400 W g-1 at 410 kHz for particles featuring diameters of more than 

15nm, which follow Brownian relaxation.30 The experimentally SAR’s for iron oxide 

nanoparticles, which are below 8nm in diameter and follow Néel relaxation are much smaller 

(SAR < 20 W g-1). Only a few reports of iron(0) nanoparticles and iron/iron oxide core/shell 

nanoparticles for hyperthermia applications exists in the literature to date.31-34 These systems, 

although up to more than five times more efficient in their specific absorption rates34 and, 

therefore, in the heating of tumor tissue,35 suffer from rapid oxidation/biocorrosion in vivo. 

Furthermore, special preparation techniques are required for many of these systems, which make 

their mass production and handling under clinical conditions less likely.32, 34 

 

 

9.2  Research Goal 

      It was our aim to synthesize water-soluble stealth iron/iron oxide core/shell nanoparticles that 

should be sufficiently stable when injected into the bloodstream or directly into the tumor to 
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perform as efficient heat transmitters in A/C-hyperthermia experiments. These nanoparticles 

should feature an inorganic iron/ iron oxide core/shell structure that is smaller than 10nm to 

permit efficient uptake by cancer cells.8,36,37 Superparamagnetic iron possesses a higher magnetic 

moment and a higher saturation magnetization, which permits both lower concentrations and 

shorter A/C- heating times during the treatment of patients.38 Iron oxide shell could both 

protect the iron core from oxidation, and act as Magnetic Resonance Imaging (MRI) 

contrast reagent to permit the detection of cancer tissue. Dopamine-anchored tetraethylene 

glycol ligands should be bound to the iron oxide shell of the core/shell nanoparticles to provide 

further protection against biocorrosion caused by the aqueous environment39 and especially in 

the presence of thiol-containing proteins/peptides.40 The dopamine-anchored tetraethylene glycol 

ligands should also provide stealth-protection against rapid clearance of the nanoparticles by the 

reticuloendothelial system.7,8 Furthermore, porphyrin TCPP (tetracarboxyphenyl-porphyrin) as 

targeting ligand should be tethered to the dopamine-anchored tetraethylene glycol to permit 

active targeting of cancer cells.  

 

9.3  Surface Modification of the Fe/Fe3O4 Core/Shell Nanoparticles 

 

9.3.1 Synthesis of the Organic Ligands 

          The synthesis and characterization of the dopamine-anchored stealth-ligands is described 

in detail in the experimental section. In short, a protection-deprotection sequence of the primary 

aliphatic amine group and the phenolic OH-groups permitted the selective reaction of the amine-

group with succinic anhydride to generate carboxylic acid,41,42 which reacts with tetraethylene 

glycol to yield a dopamine-anchored tetraethylene glycol ligand I .43 The reaction sequence is 

summarized in Figure 9.1. 
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Figure 9.1 Synthesis of dopamine-anchored tetraethylene glycole ligand for the stabilization of 

Fe/Fe3O4-nanoparticles (t-Bu: tertiary butylate, Bn: benzyl, EDC: 1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide, DMAP: 4-Dimethyl-aminopyridine, DMF: 

Dimethylformamide).41,42 

 

          To enhance the solubility of the stealth-protected Fe/Fe3O4-nanoparticles, an Fmoc-

protected glycine-unit was connected to the dopamine-anchored tetraethylene glycol ligand via 

an ester bond by using EDC/DMAP.43 Both protection groups, Bn and Fmoc, were removed 

together by hydrogenation in the presence of catalytic amount of Pd/C and acetonitrile (Figure 

9.2).44 
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Figure 9.2 Synthesis of “glycine-tipped” dopamine-anchored tetraethylene glycol ligands for the 

stabilization of Fe/Fe3O4-nanoparticles (Bn: benzyl, EDC: 1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide, DMAP: 4-Dimethyl-aminopyridine, Fmoc: 

Fluorenylmethyloxycarbonyl-).43,44 

 

9.3.2 Tethering the Ligands on the Nanoparticles and Introduction of a TCPP Porphyrin as  

Targeting Tag 

          

The Fe/Fe3O4-nanoparticles were dispersed in THF by sonication and a mixture of 

dopamine-anchored tetraethylene glycol ligand and glycine-tipped tetraethylene glycol ligand 

(95/5; mol/mol) was added. The mixture was allowed to react for 60 min.42,45 The nanoparticles 

were then collected by using a strong magnet (0.5T). The excess ligands were removed by 

repeated washing of the nanoparticles with THF (up to 10 washing-magnetoprecipitation-re-

dispersion cycles). TCPP was co-dissolved in THF and tethered by an amide-bond to the amine-

function of the “glycine-tipped” tetraethylene glycol ligands. Since the amines of ligand (II) are 

not protonized in THF, they will react much faster in an EDC/NHS procedure.46 After sonication 
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for a designated time, the un-reacted porphyrin TCPP and coupling reagents were removed by 

repeated washing of the nanoparticles with THF (up to 10 washing-magnetoprecipitation-re-

dispersion cycles). The last three redispersion&washing procedures were performed in argon-

saturated PBS prior to physical characterization or use in hyperthermia experiments (Figure 9.3). 
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Figure 9.3 Synthesis of dopamine-anchored stealth nanoparticles using two ligands: dopamine-

anchored tetraethylene glycol (I) and “glycine-tipped” dopamine-anchored tetraethylene glycol 

(II). A molar ratio of 95 mol percent (I) and 5 mol percent (II) was used for the organic stealth 

layers of all Fe/Fe3O4 core/shell nanoparticles synthesized here. Mesotetrakis-4-

(carboxylphenyl)porphyrin was attached by using an EDC/NHS standard protocol in THF (EDC: 

1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide, NHS: N-Hydroxysuccinimide).45,46 
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9.4  Magnetic Heating of Nanoparticles 

          Iron/iron oxide nanoparticles with different iron core sizes and diameters were provided by 

NanoScale Corporation. After treating with a molar ratio of 95 mol percent ligand I and 5 mol 

percent ligand II, the solubility of these surface modified nanoparticles were measured; and the 

heating capability of different sized nanoparticles were evaluated by the hyperthermia apparatus 

developed by Dr. Chikan of KSU’s Chemistry Department (Table 9.1). The hyperthermia 

apparatus used here has a “heavy duty” induction heater converted to allow measurement of the 

temperature of a sample. In the setup, a remote fiber optic probe (Neoptix) is used to monitor the 

temperature change. The frequency is fixed (366 kHz), sine wave pattern); field amplitude is 5 

kA/m. The coil diameter is 1 inch, 4 turns continuously water cooled. As it can be seen in Table 

9.1, the nanoparticles with iron cores demonstrated a much better heating capacity than the iron 

oxide nanoparticle. Among all the nanoparticle samples, the one with 5.4±1.1 nm iron core and 

7.2±2.8 nm total diameter of the nanoparticle (sample #4) exhibited best heating effect, a specific 

absorption rate (SAR) of 63.9 was observed.  

 

Table 9.1 Experimental data including SAR values of nanoparticles synthesized by 

NanoScale/KSU: H: 5.0 kA m-1, frequency 366 kHz (sine wave pattern).a 

Nanoparticle 

Sample 

∆Tmax (
oC) Fe(0) Core 

Size (nm) 

Diameter of 

the inorganic 

NP (nm) 

Solubility in 

H2O (mg/ml) 

SAR 

(W/g (Fe)) 

Fe/Fe3O4  #1 18 2.1±0.4 5.5 ± 0.8 0.015 24.5 

Fe/Fe3O4  #2 25 4.1±1.3 6.2 ± 1.4 0.16 47.6 

Fe/Fe3O4  #3 23 5.3±1.2 7.0 ± 2.2 0.11 46.4 

Fe/Fe3O4  #4 34 5.4±1.1 7.2 ± 2.8 0.35 63.9 

Fe3O4  #5 5 / 7.5 ± 2.9 0.38 5.2 

 

a) conc: 0.050 mg mL-1 of organically coated stealth NPs (Fe-conc.: 0.0107-0.1150 mg mL-1, as 

determined by ICP-fluorescence detection.) 
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9.5  Light-Absorption and Emission Properties of Fe/Fe3O4 Core/Shell 

Nanoparticles Featuring Chemically Attached Porphyrin Units (TCPP) 

          The onset of the absorption&scattering peak of the nanoscopic Fe/Fe3O4 core/shell 

nanoparticles can be observed at approx. 320 nm. At higher wavelengths no UV/Vis 

absorption&scattering is observed. However, when meso-tetrakis(4-carboxyphenyl) porphyrin 

(TCPP) is chemically linked to the Fe/Fe3O4 core/shell nanoparticles, it dominates the UV/Vis-

absorption in the visible range. As it can be seen in Figure 9.4, the peak position of the Soret 

band (extremely intense near-ultraviolet band) are λ =417nm for TCPP. The absorption 

coefficients are 4.8 x 105 M-1 cm-1 for TCPP in principal agreement with the literature.47 It is 

noteworthy that chemical attachment to the bimagnetic Fe/Fe3O4 nanoparticles via a dopamine-

tetraethylene glycol bridge decreases the absorption coefficient of TCPP by approximately a 

factor of 2.1. Figure 4 shows the UV/Vis-spectra for two TCPP-doped nanoparticles, which both 

are based on core/shell nanoparticle sample #4 (see Table 9.1). We have determined the ratios of 

Fe/Fe3O4 to porphyrin are 1:5 and 1:1.2. 

 

Figure 9.4 UV/Vis-spectra of Fe/Fe3O4 core/shell nanoparticles (#4, see Table 1) containing 0, 

1.2 and 5 TCPP units per nanoparticle (statistical average) in 0.05M aqueous phosphate buffer 

(pH=7.2) 
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          The light emission behavior is shown in Figure 9.5: TCPP (non-metalated) and, tethered to 

the Fe/Fe3O4-NPs has two emission bands at λ1= 654nm, λ2= 718nm. The fluorescence quantum 

yield does not exceed a maximum of Φ=0.011 for the Fe/Fe3O4-bound porphyrins, which is 

approx. 20 times lower than in aqueous solution. Emission from the iron(0)-core is not 

detectable. 

 

Figure 9.5 Fluorescence emission of Fe/Fe3O4 core/shell nanoparticles (#4, see Table 1) 1.2 and 

5 TCPP units per nanoparticle (statistical average) in 0.05M aqueous phosphate buffer (pH=7.2); 

excitation wavelength: 400 nm. 

 

9.6  NMR-Measurement of T1 and T2-Relaxation Times 

          Aqueous dispersions of single, stabilized sub-20nm nanocrystals (hydrodynamic size) of 

iron oxides are classified as ultrasmall particles of iron-oxide (USPIO). Typically, these 

materials generate positive contrasts in T1-weighted images and negative contrasts in T2-

weighted images. Typical relaxivities r1 for aqueous USPIO dispersions are 10-20 mM-1 s-1 for 

T1-enhancement and r2 = approx. -100 mM-1s-1 for T2-decrease in clinical MRI fields of 60-100 

MHz (1.4 to 2.35 T). The relaxivities r1 and r2 are measures of the ability of the agent to 

enhance/decrease the longitudinal and transversal relaxation of the proton spins in the tissue.48 
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r1 =
T1,contrast

−1 − T1,water
−1

c(Fe)
 r2 =

T2,contrast
−1 − T2,water

−1

c(Fe)
 

c(Fe): mM, T1,T2: s 

 

          In 1996, Feridex®  (dextran coating) was introduced as the world's first organ-specific MR 

imaging agent for detecting and evaluating liver lesions associated with an alteration in the 

reticuloendothelial system (RES).49 Feridex® consists of a g-Fe2O3-core of 4-5nm in diameter 

and a dextran coating. The ratio r2/r1= -10.4 of Feridex® is an important benchmark, which has 

to be exceeded in any successful future development of simultaneous T1-positive and T2-negative 

MRI contrast agents. 

          We have determined the concentration dependence of the Fe/Fe3O4-nanoparticles 

(inorganic cores alone and after the stealth-layer has been attached) on the T1 and T2-relaxation 

behavior of 1H-spins in water employing KSU’s 400MHz NMR (Varian, field strength 9.4 T) 

using standard T1 and T2 pulse sequences. These are definitely high field conditions, which are 

usually off the maximum of proton relaxivity.50 Figure 9.6 indicates that the tetraethylene-glycol-

stabilized bimetallic nanoparticles increase the T1-relaxation time. As anticipated, the presence 

of the tetraethylene glycol layer does not hamper the magnetic effects of the nanoparticle on the 

surrounding H2O/D2O-mixture.50 This is a clear advantage of the Fe/Fe3O4-nanoparticles, 

compared with gadolinium-based contrast agents. The maximally observed increase of T1 is 16 

times, which is close to the best results reported in the literature.51 As Figure 9.7 shows, T2 is 

remarkably decreased (up to a factor of 57) when Fe/Fe3O4-nanoparticles are added. The 

observed significant decrease in T2, which is very promising with respect to the use of 

NanoScale’s bimetallic nanoparticles as MRI contrast agents, occurs due to the presence of the 

superparamagnetic iron(0)-cores in the nanoparticles.52 The increase of T2 at higher nanoparticle 

concentrations is again in agreement with the relevant literature.50-52 Note that sample #5, which 

was obtained by oxidation of sample #4 in air for 14 days prior to the attachment of the 

stabilizing dopamine-anchored stealth layer, shows a much smaller decrease of T2. For instance, 

at a concentration of 80 µg/mL, T2=1.24±0.22 s was measured for FexOy (composition very close 

to Fe2O3) compared to T2=0.072±0.005 s in the presence of stealth coated Fe/Fe3O4. The 

decrease of T2 to values that are significantly below 1 s at high field conditions can be regarded 
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as experimental proof of the existence of an Fe(0)-core, especially when considering that our 

Fe/Fe3O4-nanoparticles are below 10nm in diameter. 

 

Figure 9.6 T1-relaxation times of H2O/D2O (9/1) at 9.4T in dependence on the concentration of 

Fe/Fe3O4-NPs (#4, see Table 1). 

 

Figure 9.7 T2-relaxation times of H2O/D2O (9/1) at 9.4T in dependence on the concentration of 

NPs (Fe/Fe3O4: #4, FexOy: #5, see Table 1). 

 

          In a concentration range from 20 to 80 µg Fe per mL, NanoScale Corporation’s new 

materials achieved a maximal r1 = 150±20 mM s-1 and a r2 = (-)4300±250 mM s-1, r2/r1=-28, 

which is advantageous in T1-enhancement, T2-decrease and the ratio of r2/r1. The observed 
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increase of T2 and higher concentrations of Fe/Fe3O4-nanoparticles can be attributed to the 

formation of clusters of nanoparticles, which change the physical behavior from 

superparamagnetic to paramagnetic. 29,52 

 

9.7  Hyperthermia Experiments of Charles River Mice Featuring Impregnated 

B16-F10-Melanomas. 

          Surface modified core/shell nanoparticle sample #4 in Table 9.1 tethering TCPP (the ratio 

of Fe/Fe3O4 to porphyrin is 1:5) was chosen to carry out the hyperthermia experiment because 

these nanoparticles exhibited highest heating effect among all the samples. The nanoparticles 

were administrated to B16-F10 melanoma bearing mice either by intratumoral injection or 

intravenous injection. Tumors were exposed to alternating magnetic field (AMF), and the effects 

of magnetic hyperthermia were evaluated by measuring the tumor size and tumor weight after 

AMF exposure.  

 

9.7.1 Cytotoxicity of Magnetic Nanoparticles on B16-F10 cells.  

 

          Potential cytotoxic effects of MNPs were studied by incubating cells in differing 

concentrations of MNPs based on iron concentration. B16-F10 cells were incubated overnight 

with MNP amounts corresponding to 5, 10, 15, 20, and 25 µg/mL iron. After incubation, the 

medium was removed and the cells were washed twice with DMEM and cell numbers were 

counted with Trypan blue staining.  This method also allows counting non-viable cells since only 

they allow the blue stain into the cell.  All experiments were run in triplicate and repeated at least 

twice. B16-F10 cancer cell viability assessment in the presence of varying concentration of 

MNPs is shown in Figure 9.8. There was a dose-dependent cytotoxicity if the MNPs. A 

pronounced cytotoxic effect on B16-F10 cells was observed when the concentration of the iron 

exceeds 10 µg/mL. 
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Figure 9.8 In vitro cell viability of B16-F10’s cultured in medium containing increasing 

concentration of MNPs, as measured by iron concentration. *Statistically significant (p-value 

less than 0.05). 

 

9.7.2 Temperature Measurement on Mice 

        

          For all in vivo experiments, the mice were placed into the induction coil using a specially 

designed Teflon supporter so that tumors were located exactly in the region of the AMF 

possessing the highest field density. MNPs containing 100 µg of iron in 100 µl of distilled water 

were injected into the rear limb muscle of one mouse and the leg was then exposed to AMF for 

10 min. A fiber optical temperature probe was inserted intramuscularly at the injection site and 

the temperature increase was measured during AMF exposure. At the same time, the body 

temperature was monitored with a separate temperature probe. A temperature increase of 11 oC 

was observed at the MNPs injection site within 10 min of AMF exposure. There was no increase 

in core body temperature (Figure 9.9). These data demonstrate specific magnetic hyperthermia. 
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Figure 9.9 Temperature change at MNP injection site and in body core during AMF exposure, 

measure with a fiber optic temperature probe. 

 

9.7.3 Intratumoral Administration of MNPs with AMF Exposure 

          Ten female CB57 BL/6 mice were transplanted with 1 x 106 B16F10 melanoma cells 

suspended in PBS subcutaneously into each rear limb above the stifle.  120 µL of saline was 

injected into melanomas on the left leg of all mice and 120µL of 1mg Fe/mL MNP (120 µg iron) 

was injected into right leg tumors of all mice in three injections on day 4, 5, 6 (total of 360 µg 

iron) . Both left(saline) and right(MNP) leg tumors of half of the mice(5) were exposed to AMF 

for 10 minutes soon after injections and remaining five mice left and right leg tumors were not 

exposed. Based on this there were 4 groups. 

Group 1: Intratumoral saline injection, not exposed to AMF (left legs of first five mice). 

Group 2: Intratumoral injection of saline, exposed to AMF (left legs of remaining five mice). 

Group 3: Intumoral injecetion of MNPs, not exposed to AMF (right legs of first five mice). 

Group 4: Intratumoral injection of MNP, exposed to AMF (right legs of remaining five mice). 

          After three AMF exposures tumor sizes were measured by using a caliper on day 8 to 14, 

and tumor volume was calculated by using formula 0.5axb2 (a=longest diameter b= smaller 

diameter). The results were summarized in Figure 9.10. The tumors with administration of MNPs 

and exposure to AMF showed a significant reduction in tumor volume at 8, 9, 11 and 14 days 
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(p<0.1) compared to the saline treated groups. A decrease in size with only MNPs treatment 

(without AMF) relative to the saline controls was also noted; however, this decrease was not 

significant. Since earlier intramuscular injections and optical probe measurements revealed 

hyperthermia after AMF, the probable cause for tumor attenuation shown here is local 

hyperthermia.  

 

 

Figure 9.10 Effect on tumor burden of intratumoral injection of MNPs followed by alternating 

magnetic field (AFM) treatments. Graph depicting average tumor volumes over time of B16-F10 

tumor bearing mice which were later injected with either saline or MNP intratumorally and with 

or without AMF treatments. *Statistically significant (p-value less than 0.1). 

 

9.7.4 Intravenous Administration of MNPs with AMF Exposur e 

          0.35×106 B16-F10 melanoma cells were injected subcutaneously into the right legs of 27 

mice. Mice were randomly divided into three groups: 

Group I, IV injection of MNPs, no AMF treatment. 

Group II, IV injection of MNPs, with AMF treatment. 

Group III, IV injection of DMEM, no AMF treatment. 

          On day 6, 9 and 11 after tumor cell transplant, MNPs corresponding to 226 µg of iron were 

injected intravenously into each mouse in groups I and II. On the same day, DMEM was injected 

intravenously into group III. For group II, tumors were exposed to AMF for 10 min one day after 

each intravenous MNPs injection (total of three AMF treatments). Tumor sizes were measured 
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using a caliper on days 14 and 18, and tumor volume was calculated as described above. On day 

18, all mice were euthanized, tumors were excised, and tumor weights were measured. As can be 

seen in figure 9.11, a significant decrease in tumor weight (p<0.1) was observed in the 

intravenous MNPs+AMF group, and this attenuation of tumor weight was most likely due to the 

heat generated by MNPs in tumors. Some tumor weight decrease was also observed in the 

intravenous MNPs injection but without AMF treatment group.  

 

Figure 9.11 Effect of intravenous injection of MNPs and AMF on tumor weight. *Statistically 

significant (p-value less than 0.1) between control and IV MNPs+AMF groups. 

 

          A marked tumor volume decrease was observed for the mice with intravenous MNPs 

injection and AMF treatment; however, this decrease was not significant (Figure 9.12). 
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Figure 9.12 Tumor volume comparison of IV MNP+AMF experiment on day 14 and 18. 

 

          After AMF treatment, significant amounts of nanoparticles were found in the melanoma 

tumors (Figure 9.13A), indicating that the tethered porphyrin (TCPP) can act as a “bait” to 

facilitate the uptake of nanoparticles by tumor cells. Some nanoparticles were also found in lung 

and liver (Figure 9.13B and 9.13C). Despite this wild spread distribution of nanoparticles in vivo, 

no fatalities of mice due to the blocking of arteries or exposure to AMF were observed. 

 

Figure 9.13 Prussian blue staining of tumor section (picture A), lung section (picture B) and 

liver section (picture C) after in vivo experiment. 
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9.8 Conclusion 

          We have synthesized Fe/Fe3O4 core shell nanoparticles with an organic stealth coating and 

tethered porphyrin (TCPP) units. The NMR-measurement of T1 and T2-relaxation times showed 

a significant enhancement of T1 relaxation time and a remarkable decrease of T2 relaxation time 

with the increase of the nanoparticle concentration. These result implied that it is very promising 

with respect to use of this stealth nanoparticles as MRI contrast agents. The mice hyperthermia 

experiment indicates that the ligands modified nanoparticles administrated intravenously or 

intratumorally at low concentrations can significantly attenuate B16-F10 melanoma tumors in 

mice after repetitive short AMF exposure. These results demonstrated that the core/shell 

Fe/Fe3O4 nanoparticles possess high heating capacity in the alternating magnetic field, which 

permits the small dose and short treatment time during hyperthermia therapy. Furthermore, 

significant amount of nanoparticles were found in melanoma tumor when the nanoparticles were 

administrated intravenously, which indicate the porphyrin tethered on the nanoparticles can 

facilitate the uptake of nanoparticles by tumor cells.  

 

9.9 Experimental 

9.9.1. Synthesis of porphyrin (TCPP)53 

 

N

NH N

HN

COOH

COOH

COOH

HOOC

COOH

O H

N
H

+ HOAc

100-130 oC
1 h

4 4

 

      1.50 g 4-carboxybenzaldehyde was dissolved in 80 mL acetic acid. The solution was warmed 

to 100 oC and a solution of 0.67 g pyrrole in 10 mL acetic acid was added dropwise in 20 

minutes. Upon completion of addition, the solution was warmed up to 130 oC slowly and kept at 

130 oC for 1 hour. The mixture was cooled to 80 oC and 100 mL 95% ethanol was added and the 
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temperature was lowered to room temperature while stirring in 3 hours. Then the mixture was 

kept in at -15 oC for 24 hours. Purple solid was collected by vacuum filtration. The filter cake 

was washed with cold 50/50 ethanol/acetic acid (3×5mL) and dried under high vacuum (oil 

pump) overnight. 0.51g pure product was obtained (25.5% yield). 1H NMR (DMSO-d6) δ: -2.94 

(s, 2H); 8.35 (d, 8H); 8.39 (d, 8H); 8.86 (s, 8H); 13.31 (s, 4H). 13C NMR (DMSO-d6) δ: 119.31; 

127.90; 130.51; 134.44; 145.42; 167.46. MS-ESI+: m/z 791.2. Molecular weight calculated for 

790.2. 

 

9.9.2 Boc-protection of Dopamine.41 

 

HO

HO NH2.HCl

+ t-BuO-C-O-C-O t-Bu

O O
HO

HO N
H

O

Ot-Bu

9.1

Et3N

 

      A solution of dopamine (310 mg, 1.63 mmol) in methanol (8 mL) was stirred under N2 for 5 

minutes. TEA (1.8 mmol) was added followed by Boc-anhydride (393 mg, 1.8 mmol). The 

mixture was stirred under N2 for 12 hours and the solvent was removed under reduced pressure. 

The remaining residue was dissolved in 40 mL CH2Cl2 and washed with 1 N HCl (3×5 mL) and 

brine (5 mL). The organic layer was dried over anhydrous Na2SO4. After filtration, the organic 

phase was kept at -5 oC for 3 hours. A white precipitate came out as product 9.1 and collected by 

filtration. Overall yield is 85%. 1H NMR (DMSO-d6) δ: 1.73 (s, 9H); 2.48 (t, 2H); 3.02 (q, 2H); 

6.40 (d, 1H); 6.54 (s, 1H); 6.61 (d, 1H); 6.83 (t, 1H); 6.85 (s, 1H); 6.76 (s, 1H). 

 

9.9.3 Benzyl-protection of Boc-dopamine.42 
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      3.47 g Boc-protected dopamine 9.1 was dissolved in 100 mL DMF. 12.6 g K2CO3 was added 

and the system was protected under N2. 4.69 g (2 eq.) benzyl bromide was added drop wise. The 

mixture was stirred at room temperature for 24 hours without light. The solid was removed by 

filtering through a short pad of celite and the filter-cake was washed with ether (3×100 mL). The 

combined filtrate and washing solution were washed with ice-water (3×50 mL) and brine (15 

mL). The organic layer was dried over anhydrous Na2SO4 and concentrated to 150 mL. After 

setting at -5 oC for 5 hours, white precipitate came out as product 9.2 and was collected by 

vacuum filtration. (overall yield 90%). 1H NMR (CDCl3) δ: 1.45 (s, 9H); 2.70 (t, 2H); 3.31 (q, 

2H); 4.49 (s, 1H); 5.15 (d, 4H); 6.71 (d, 1H); 6.80 (s, 1H); 6.88 (d, 1H); 7.32 (t, 2H); 7.37 (t, 

4H); 7.45 (d, 4H). 

 

9.9.4 Deprotect of Boc-group.42 
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Bn

Bn

+    CF3COOH
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O NH2
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      4.3g Bn-Boc-dopamine 9.2 was dissolved in 150 mL 5% TFA CH2Cl2 solution and stirred at 

room temperature for 5 hours. The solvent was removed under vacuum and clear oil was 

obtained as product 9.3. (100% yield). 1H NMR (CDCl3) δ: 2.79 (t, 2H); 3.08 (m, 2H); 5.11 (s, 

4H); 6.68 (d, 1H); 6.75 (s, 1H); 6.90 (d, 1H); 7.32 (t, 2H); 7.35 (t, 4H); 7.42 (d, 4H). 13C NMR 

(CDCl3) δ: 32.90; 41.85; 71.50; 72.00; 115.60; 116.25; 122.30; 127.60; 127.85; 128.35; 128.45; 

128.63; 128.85; 136.70; 136.85; 148.45; 149.00; 160.88; 161.20; 161.58; 161.90. 
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9.9.5 Amide Formation.43 
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          1.43 g Bn-dopamine 9.3 and 0.43 g succinic anhydride (1/1 ratio) were dissolved in 6 mL 

pyridine. The solution was stirred at room temperature for 5 hours. The solvent was removed by 

co-evaporation with toluene (toluene 5×5 ml). White solid was obtained and washed with 

CH2Cl2 for 3 times. After drying under vacuum, 1.4 g product 9.4 was obtained. 75% yield. 1H 

NMR (DMSO-d6) δ: 2.29 (t, 2H); 2.42 (t, 2H); 2.60 (t, 2H); 3.21 (q, 2H); 5.09 (d, 4H); 6.71 (d, 

1H); 6.94 (s, 1H); 6.96 (d, 1H); 7.32 (t, 2H); 7.38 (d, 4H); 7.45 (t, 4H); 7.90 (t, 1H); 12.08 (s, 

1H). MS-ESI+: m/z 434.2. Molecular weight calculated for 433.5. 

 

9.9.6 Synthesis of ligand I.44 
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          0.964 g dopamine-based carboxylic acid 9.4 and 0.426g EDC (1/1 ratio) were dissolved in 

100 mL CH2Cl2 and stirred at room temperature for 10 minutes. 0.433 g tetraethylene glycol was 

added followed by 5 mg DMAP. After stirring for 12 hours at room temperature, the organic 



 

135 

 

phase was washed with 10% H3PO4 solution (3×10 mL), water (3×10 mL) and brine (10 mL). 

The organic phase was dried over anhydrous Mg2SO4. After removing the solvent under vacuum, 

the residue was loaded on column and eluted with 1/1 acetone/methylene chloride. 0.42 g ideal 

product 9.5 was obtained. (40% yield). 0.21 g side product 9.6 was isolated. 1H NMR for 9.5 

(CDCl3) δ: 2.39 (t, 2H); 2.57 (t, 1H); 2.70 (q, 4H); 3.44 (q, 2H); 3.60 (t, 2H); 3.65 (broad 12H); 

4.24 (t, 2H); 5.15 (d, 4H); 5.74 (t, 1H); 6.71 (d, 1H); 6.81 (s, 1H); 6.89 (d, 1H); 7.31 (t, 2H); 7.37 

(t, 4H); 7.46 (d, 4H). MS-ESI+: m/z 610.4. Molecular weight calculated for 609.3. 1H NMR for 

9.6 (CDCl3) δ: 2.37 (t, 4H); 2.67 (m, 8H); 3.42 (q, 4H); 3.63 (s, 8H); 3.67 (t, 4H); 4.22 (t, 4H); 

5.15 (d, 8H); 5.70 (t, 2H); 6.70 (d, 2H); 6.80 (s, 2H); 6.88 (d, 2H); 7.31 (t, 4H); 7.36 (t, 8H); 7.45 

(d, 8H). MS-ESI+: m/z 610.4. Molecular weight calculated for 609.3. 

 

De-protection of benzyl groups to produce ligand I.43 

 

O

O N
H

Bn

Bn

O

O

O
O

O
O

OH

HO

HO N
H

O

O

O
O

O
O

OH

H2

10% Pd/C
MeOH

9.5

Ligand I

 

      0.34 g Bn-dopamine-based tetraethylene glycol 9.5 was dissolved in 50 mL methanol. 77 mg 

Pd/C was added under N2. After evacuating three times, 1 atm. H2 was applied and the mixture 

was stirred for 24 hours at room temperature. The catalyst was removed by filtering through a 

short pad of celite. After removing solvent under vacuum, 0.23 g ligand I  was obtained as 

product. (100% yield). 1H NMR (DMSO-d6) δ: 2.33 (t, 2H); 2.48 (q, 2H); 3.15 (broad multiplet, 

4H); 3.41 (t, 2H); 3.49 (t, 2H); 3.51 (broad multiplet, 8H); 3.59 (t, 2H); 4.11 (t, 2H); 6.41 (d, 

1H); 6.55 (s, 1H); 6.61 (d, 1H). MS-ESI+: m/z 430.4. Molecular weight calculated for 429.4. 
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9.9.7 Synthesis of glycine-tiped ligand (ligand II). 44,45 

O

O

Bn

Bn N
H

O
O

O
O

OH

O

O

O
H
N

O

O

OH

+ EDC, DMAP

CH2Cl2, r.t.

O

O

Bn

Bn N
H

O
O

O
O

O

O

O

ON
H

O

O

H2, Pd/C

Cata. CH3CN
MeOH

HO

HO N
H

O
O

O
O

O

O

O

NH2

O

9.5

Ligand II
 

      Bn-protected dopamine tetraethylene glycol 9.5 was treated with 1 equv. of Fmoc-Glycine 

and 1.2 equiv. of EDC in the presence of catalytic amount of DMAP in methylene chloride. 

After stirring for 12 hours at room temperature, the organic phase was washed with 10% H3PO4 

solution (3×10 mL), water (3×10 mL) and brine (10 mL). The organic phase was dried over 

anhydrous Mg2SO4. After removing the solvent under vacuum, a white solid was obtained as 

pure product with 95% yield. The Bn and Fmoc groups were deprotected at the same time under 

the H2-Pd/C condition in the presence of catalytic amount of CH3CN. After removing the 

catalyst by filtration, solvent was removed under reduced pressure, clear oil together with some 

white solid formed. The white solid was removed by washing the mixture with hexane (3×5 

mL), after concentration, ligand II was obtained as clear oil with 85% yield. 1H NMR (DMSO-

d6) δ: 2.33 (t, 2H); 2.46 (q, 2H); 3.14 (q, 2H); 3.41 (t, 2H); 3.49 (t, 4H); 3.51 (broad multiplet, 

8H); 3.59 (t, 2H); 4.10 (t, 2H); 4.57 (t, 2H); 6.43 (d, 1H); 6.55 (s, 1H); 6.61 (d, 1H); 7.90 (t, 1H); 

8.62 (s, 1H); 8.73 (s, 1H). 13C NMR (DMSO-d6) δ: 28.95, 29.83, 34.73, 60.23, 63.32, 68.30, 

69.79, 72.37, 115.48, 115.95, 119.21, 130.22, 143.53, 145.06, 170.44, 172.47. 

 



 

137 

 

 

9.9.8 Modification of Fe/Fe3O4 nanoparticles with dopamine-based ligands I and II and 

introducing of porphyrin (TCPP). 45,46 
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          A typical example for preparing surface modified Fe/Fe3O4 nanoparticles featuring 5 

TCPP per nanoparticle is described here.  50 mg dopamine-based ligand I  and 3 mg dopamine-

based lagand II (mole ratio 95/5) were dissolved in 10 mL THF, 20 mg Fe/Fe3O4 nanoparticles 

(# 4 in Table 1) were added, after sonicating for 60 minutes, the nanoparticles were collected by 

a magnet. The solid was washed with 3 mL portion of THF for 10 washing-magntoprecipitation-

re-dispersion cycles. The surface modified nanoparticles were dispersed in 10 mL of THF, 1.5 
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mg porphyrin (TCPP), 1 mg NHS and 2 mg EDC were added to the suspension and sonicated for 

60 minutes. The nanoparticles were collected by a strong magnet and further washed with 3 mL 

portion of THF for 10 washing-magntoprecipitation-re-dispersion cycles. The solid was dried 

under vacuum. 17.6 mg nanoparticles were obtained. 
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Appendix A- 1H and 13C-NMR Data 

 

 

10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

6.002.032.011.99

H2O

DMSO

N
+

N

CH3

N
+

N

CH32 Br

 

Figure A.1 1H-NMR of 2.1(in DMSO-d6) 
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Figure A.2 1H-NMR of 2.2 (in DMSO-d6) 
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Figure A.3 1H-NMR of 2.3a (in DMSO-d6) 
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Figure A.4 1H-NMR of 2.3b (in DMSO-d6) 
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(b) 

Figure A.5 (a) Stacked 1H-NMR of 2.2 mediated toluene H-D exchange in CF3COOD; (b) 

Expended aromatic area (1H-NMR spectrum was recorded every 5 hours). 
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(b) 

Figure A.6 (a) Stacked 1H-NMR of control toluene H-D exchange in CF3COOD; (b) Expended 

aromatic area (1H-NMR spectrum was recorded every 5 hours). 
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Figure A.7  Stacked 1H-NMR of 2.3a mediated para-xylene H-D exchange in CF3COOD (1H-

NMR spectrum was recorded every 5 hours). 
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Figure A.8  Stacked 1H-NMR of control para-xylene H-D exchange in CF3COOD (1H-NMR 

spectrum was recorded every 5 hours). 
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                                                                         (b) 

Figure A.9 Stacked 1H-NMR of 2.2 mediated toluene C-H activation in CF3COOD in the 

presence of oxane. (a) 2.2 and oxane in a mixture of CF3COOD and trifluoroacetic anhydride; 

(b) Toluene was converted to p-toluenesulfonic acid. 
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(b) 

Figure A.10 (a) 1H-NMR and (b) 13C-NMR of 3.17 (in CDCl3) 
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(b) 

Figure A.11 (a) 1H-NMR and (b) 13C-NMR of 3.18 (in CDCl3) 
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Figure A.12  1H-NMR 3.19 (in CDCl3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

157 

 

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 In

te
ns

ity

16.905.076.123.712.481.55

NN

CH3 CH3

N

N
+

N
O

N
+

Si

CH3
CH3

CH3

CH3

CH3
CH3

CH3

CH3

 

Figure A.13  1H-NMR 3.20 (in DMSO-d6) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

158 

 

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

6.005.991.980.951.041.871.96

DMSO

8.
96 7.
61 7.
38

7.
32

6.
32

4.
77 4.

74 4.
58

4.
54

3.
83

3.
32

2.
46

2.
44

N

N

CH3

CH3

N
N

+

N

N
+

OHCH3

CH3

 

Figure A.14  1H-NMR 3.24 (in DMSO-d6) 
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Figure A.15  1H-NMR 3.25 (in DMSO-d6) 
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Figure A.16  1H-NMR 4.1 (in THF-d8) 
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Figure A.17a Stacked 1H-NMR spectrum of the reaction between palladium complex 4.1 and 

MeI at -50 oC. (NMR spectrum was recorded every 10 minutes in THF-d8) 
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Figure A.17b Stacked 1H-NMR spectrum of the reaction between palladium complex 4.1 and 

MeI at -50 oC; (NMR spectrum was recorded every 10 minutes in THF-d8, expended imidazole 

and methylene bridge area) 
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Figure A.17c Stacked 1H-NMR spectrum of the reaction between palladium complex 4.1 and 

MeI at -50 oC; (NMR spectrum was recorded every 10 minutes in THF-d8, expended N-methyl 

area) 
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Figure A.17d Stacked 1H-NMR spectrum of the reaction between palladium complex 4.1 and 

MeI at -50 oC; (NMR spectrum was recorded every 10 minutes in THF-d8, expended palladium 

coordinated methyl groups area) 
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Figure A.18 1H-NMR of 4.4 (Spectrum recorded after the completion of the reaction between 

palladium complex 4.1 and MeI) 
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Figure A.19 Stacked 13C-NMR spectrum of the reaction between palladium complex 4.1 and 
13CH3I (blue: After 20 minutes reaction at -50 oC, 13C-NMR recorded at -70 oC; green: After 20 

minutes reaction at -50 oC, 13C-NMR recorded at -70 oC with carbon-hydrogen coupling; black: 

After 60 minutes reaction at -50 oC, 13C-NMR recorded at -50 oC) 
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Figure A.20 1H-NMR for the products after the completion of the reaction between palladium 

complex 4.1 and 13CH3I 
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Figure A.21 Stacked 13C-NMR of the reaction between bis-NHC-Pd(II)-Me2 and 13CH3I in the 

presence of DMAP (blue: reaction at -50 oC for 20 min; green: reaction at -30 oC for 20 minutes; 

gray: reaction at -30 oC for 40 minutes; black: reaction at -30 oC for 60 minutes) 
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Figure A.22 1H-NMR of 5.11 
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Figure A.23 1H-NMR of 5.12 
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(b) 

Figure A.24 (a) 1H-NMR and (b) 13C-NMR of 5.13 
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Figure A.25  1H-NMR 5.14 
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Figure A.26  1H-NMR of 13C-labeled bis-NHC-Pd(II)-(13CH3)2 5.14’ 
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Figure A.27  13C-NMR of 13C-labeled bis-NHC-Pd(II)-(13CH3)2 5.14’ (32 scans) 

 

 

 

 

 

 

 

 

 

 

 

 



 

175 

 

8 7 6 5 4 3 2 1 0 -1
Chemical Shift (ppm)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

THF
THF

ethane

 

Figure A.28 Stacked 1H-NMR spectrum of the reaction between bis-NHC-Pd-Me2 (complex 

4.1) and dioxygen. (blue: complex 4.1 inTHF-d8; black: after addition of oxygen for 2 hours) 
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Figure A.29 The reaction between PhI(OTFA)2 and bis-NHC-Pd(II)-(CH3)2 5.14 to generate bis-

NHC-Pd(II)-(CH3)-(OTFA) and CH3OOCCF3 as well as bis-NHC-Pd(II)-(OTFA)2 and ethane. 
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(b) 

Figure A.30 (a) 1H-NMR of 6.17 (b) Expended aromatic area 

 



 

178 

 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
Chemical Shift (ppm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 In
te

ns
ity

6.004.153.071.581.480.870.751.23

dioxane

CH3Cl

CD3CN

CH3CH3

N

Pd
4-

N

N N

CH3 CH3

Cl
Cl

Cl

Cl

 

 

Figure A.31  1H-NMR of 7.9 (generated by the reaction between bis-NHC-Pd(II)-Me2 5.14 and 

chlorine) 
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Figure A.32  1H-NMR of porphyrin TCPP 
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Figure A.33  1H-NMR of 9.1 
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Figure A.34  1H-NMR of 9.2 
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Figure A.35  1H-NMR of 9.3 
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Figure A.35  1H-NMR of 9.4 
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Figure A.36  1H-NMR of 9.5 
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Figure A.37  1H-NMR of 9.6 
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Figure A.38  1H-NMR of ligand I 
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(b) 

Figure A.39  (a) 1H-NMR and (b) 13C-NMR of ligand II 
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Appendix B- Mass Spectroscopy Data 
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C15H24Cl3N4Pd
Exact Mass: 471.01

m/z: 473.01 (100.0%), 475.01 (68.3%), 471.01 (68.2%),  470.01 (43.2%), 469.01 (21.4%), 477.01 (20.9%) 

 

(a) 



 

187 

 

 

(b) 

Figure B.1 (a) ESI+ Mass spectroscopy of the bis-NHC-Pd(IV)-Cl4 7.9 with stepwise 

fragmentation. (b) Centroided Mass spectrum for [M-Cl] ion. 
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Figure B.2 ESI+ Mass spectroscopy of 9.4 
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Figure B.3 ESI+ Mass spectroscopy of 9.5 
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C20H31NO9
Exact Mass: 429.2

m/e: (M+H)+ 430.20,  (M+Na)+  452.20  

 

 

Figure B.4 ESI+ Mass spectroscopy of ligand I 
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Exact Mass: 790.21
m/e: (M+H)+ 791.21 )  

 

Figure B.5 ESI+ Mass spectroscopy of porphyrin TCPP 
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Appendix C- Crystal Data and Structure 

Refinements 
 

Table C.1  Crystal data and structure refinement for 3.25 

 
Empirical formula  C19 H28 I2 N6 O2 Pd S 

Formula weight  764.73 

Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 11.4450(6) Å α= 71.772(2)°. 

 b = 11.8474(6) Å β= 64.040(2)°. 

 c = 12.0978(6) Å γ = 62.941(2)°. 

Volume 1300.13(11) Å3 

Z 2 

Density (calculated) 1.953 g/cm3 

Absorption coefficient 3.195 mm-1 

F(000) 736 

Crystal size 0.26 x 0.24 x 0.06 mm3 

Theta range for data collection 2.23 to 32.58°. 

Index ranges -17<=h<=17, -16<=k<=17, -18<=l<=18 

Reflections collected 27872 

Independent reflections 9131 [R(int) = 0.0320] 

Completeness to theta = 32.58° 96.4 %  

Absorption correction None 

Max. and min. transmission 0.8314 and 0.4905 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9131 / 0 / 289 

Goodness-of-fit on F2 1.042 

Final R indices [I>2sigma(I)] R1 = 0.0279, wR2 = 0.0639 

R indices (all data) R1 = 0.0358, wR2 = 0.0675 

Largest diff. peak and hole 1.051 and -0.741 e.Å-3 
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Table C.2  Crystal data and structure refinement for 7.9’ 

Empirical formula  C21 H30 Cl14 N8 Pd2 

Formula weight  1103.63 

Temperature  120(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 7.6703(6) Å α= 90°. 

 b = 18.5451(11) Å β= 91.644(4)°. 

 c = 13.1767(8) Å γ = 90°. 

Volume 1873.6(2) Å3 

Z 2 

Density (calculated) 1.956 g/cm3 

Absorption coefficient 1.989 mm-1 

F(000) 1084 

Crystal size 0.25 x 0.05 x 0.05 mm3 

Theta range for data collection 2.20 to 32.03°. 

Index ranges -11<=h<=3, -27<=k<=24, -19<=l<=19 

Reflections collected 19678 

Independent reflections 5968 [R(int) = 0.0462] 

Completeness to theta = 30.00° 97.2 %  

Absorption correction None 

Max. and min. transmission 0.9071 and 0.6362 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5968 / 9 / 223 

Goodness-of-fit on F2 1.056 

Final R indices [I>2sigma(I)] R1 = 0.0465, wR2 = 0.1070 

R indices (all data) R1 = 0.0710, wR2 = 0.1172 

Largest diff. peak and hole 1.758 and -1.083 e.Å-3 

 

 

 

 

 

 


