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Abstract
Networks are ubiquitous in today’s interlinked world, allowing various types of flow along

with their links, for instance, rumor, knowledge, norms (social networks), electricity (power grid),

money (financial networks), goods (trade networks), and infectious pathogens (disease networks).

In particular, network epidemic models offer analytical and numerical platforms to quantify and

forecast the transmission of a pathogen. In this context, a network is a structure of nodes and

links, where nodes can represent individuals, locations, or groups, and links can represent physical

contacts between individuals, movement flows between locations, or interaction between groups.

Studying infectious disease dispersal with network epidemic models is a powerful application of

network science.

An extremely challenging aspect of studying infectious pathogen dispersal is the insufficient

knowledge of the underlying network or unknown epidemic model parameters. Sometimes net-

works are unattainable because of data privacy, lack of data integrity, missing data, or lack of

higher resource requirements. This dissertation provides a guideline to study epidemic processes

on a network from limited available data.

In the USA, no mandatory livestock regulatory system exists because of a cultural preference

for privacy. This dissertation proposes a general algorithm to develop a livestock movement net-

work from the limited available data to fill this gap. In this network, nodes represent livestock

subpopulations, and links represent livestock directional movements between subpopulations. Net-

work centrality measures are beneficial to understand the contact pattern of a movement network

and can assist in detecting the superspreader nodes, which play a critical role in the movement

flows and disease transmission. Understanding the role of superspreaders in a movement network

is useful for policymakers to control disease outbreaks efficiently. This is possible because the

network centrality analysis in the livestock movement network reveals small-world phenomena in

the US livestock industry.



Individual-based network models are becoming popular due to their capability to integrate

heterogeneous social mixing. However, individual contact networks are not available because

of privacy concerns. This dissertation offers an age-specific multilayer individual-based contact

network developed from demographic data and Google mobility data. Combining this network

with an epidemic model led to costs and benefits of contact tracing being investigated as a key

mitigation strategy in the COVID-19 transmission. Then, an approximate Bayesian computation

based on a sequential Monte Carlo sampling (ABC-SMC) method allowed network models to

estimate the disease propagation rate from the COVID-19 incidence data. The ABC-SMC method

is ideal for parameter estimation and model selection of a complex system when the likelihood

function is intractable or computationally expensive to evaluate. This work provides a general,

flexible, and complete framework to study an epidemic process from data at the individual level.

Some individual contact networks have an enormous set of nodes/agents; however, individual-

based stochastic epidemic modeling, like the generalized epidemic modeling framework (GEMF),

over those vast networks is computationally expensive and time-consuming. This dissertation pro-

poses a group-based continuous-time Markov epidemic model framework to reduce the computa-

tional time of the individual-based framework (GEMF) by reducing the state-space in the Markov

chain. The number of states in the individual-based Markov model is MN (where M is the number

of compartments, and N is the number of nodes), and it increases exponentially with the number of

nodes N. By partitioning the nodes into C disjointed groups, the group-based approach reduces the

state-space to
[∏C

i=1

(
Ni+M−1

M−1

)]
, which is already polynomial in N for a constant number of groups

and quasi-polynomial in N for a logarithmic number of groups; i.e., C = O(log N). Here, Ni rep-

resents the number of nodes in a group i and i = 1, 2, ...,C. The simulation results reveal that the

accuracy of the group-based approach depends on the network structures and grouping approaches.

In summary, this dissertation enhances the current knowledge of network epidemic models

both in application and theory; therefore, it can serve as a foundation work of follow-on efforts

related to the network epidemic modeling over large networks.
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Abstract
Networks are ubiquitous in today’s interlinked world, allowing various types of flow along

with their links, for instance, rumor, knowledge, norms (social networks), electricity (power grid),

money (financial networks), goods (trade networks), and infectious pathogens (disease networks).

In particular, network epidemic models offer analytical and numerical platforms to quantify and

forecast the transmission of a pathogen. In this context, a network is a structure of nodes and

links, where nodes can represent individuals, locations, or groups, and links can represent physical

contacts between individuals, movement flows between locations, or interaction between groups.

Studying infectious disease dispersal with network epidemic models is a powerful application of

network science.

An extremely challenging aspect of studying infectious pathogen dispersal is the insufficient

knowledge of the underlying network or unknown epidemic model parameters. Sometimes net-

works are unattainable because of data privacy, lack of data integrity, missing data, or lack of

higher resource requirements. This dissertation provides a guideline to study epidemic processes

on a network from limited available data.

In the USA, no mandatory livestock regulatory system exists because of a cultural preference

for privacy. This dissertation proposes a general algorithm to develop a livestock movement net-

work from the limited available data to fill this gap. In this network, nodes represent livestock

subpopulations, and links represent livestock directional movements between subpopulations. Net-

work centrality measures are beneficial to understand the contact pattern of a movement network

and can assist in detecting the superspreader nodes, which play a critical role in the movement

flows and disease transmission. Understanding the role of superspreaders in a movement network

is useful for policymakers to control disease outbreaks efficiently. This is possible because the

network centrality analysis in the livestock movement network reveals small-world phenomena in

the US livestock industry.



Individual-based network models are becoming popular due to their capability to integrate

heterogeneous social mixing. However, individual contact networks are not available because

of privacy concerns. This dissertation offers an age-specific multilayer individual-based contact

network developed from demographic data and Google mobility data. Combining this network

with an epidemic model led to costs and benefits of contact tracing being investigated as a key

mitigation strategy in the COVID-19 transmission. Then, an approximate Bayesian computation

based on a sequential Monte Carlo sampling (ABC-SMC) method allowed network models to

estimate the disease propagation rate from the COVID-19 incidence data. The ABC-SMC method

is ideal for parameter estimation and model selection of a complex system when the likelihood

function is intractable or computationally expensive to evaluate. This work provides a general,

flexible, and complete framework to study an epidemic process from data at the individual level.

Some individual contact networks have an enormous set of nodes/agents; however, individual-

based stochastic epidemic modeling, like the generalized epidemic modeling framework (GEMF),

over those vast networks is computationally expensive and time-consuming. This dissertation pro-

poses a group-based continuous-time Markov epidemic model framework to reduce the computa-

tional time of the individual-based framework (GEMF) by reducing the state-space in the Markov

chain. The number of states in the individual-based Markov model is MN (where M is the number

of compartments, and N is the number of nodes), and it increases exponentially with the number of

nodes N. By partitioning the nodes into C disjointed groups, the group-based approach reduces the

state-space to
[∏C

i=1

(
Ni+M−1

M−1

)]
, which is already polynomial in N for a constant number of groups

and quasi-polynomial in N for a logarithmic number of groups; i.e., C = O(log N). Here, Ni rep-

resents the number of nodes in a group i and i = 1, 2, ...,C. The simulation results reveal that the

accuracy of the group-based approach depends on the network structures and grouping approaches.

In summary, this dissertation enhances the current knowledge of network epidemic models

both in application and theory; therefore, it can serve as a foundation work of follow-on efforts

related to the network epidemic modeling over large networks.
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Chapter 1

Introduction

1.1 Background

Networks have the ability to represent the structure and function of various physical, social, envi-

ronmental, and technological systems. A network-based epidemic model can describe a dynamic

process such as information dissemination, cultural norms, or viruses throughout a network [6, 7].

Understanding the epidemic processes on networks allows us to assess risks, plan for effective

control measures, and identify superspreaders. Modeling and analysis of an epidemic process on a

network consist of four basic steps:

1. Inference of the network for interacting agents of a system from the data

2. Definition of a compartmental epidemic model to describe the state of a node from the dis-

ease dynamics

3. Estimation of the disease model parameters from the incidence data or experiments

4. Decisions concerning a modeling approach

1.1.1 Network estimation

Regarding real-world epidemic phenomena, the exact network structure is unknown to the re-

searchers; therefore, inferring the network structure from the limited data is crucial. A network of
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a system depends on the purpose of the research; for example, in a livestock movement network,

nodes can be individual farms, whereas links or edges represent livestock movement between two

farms. Then again, nodes can be individual animals, and edges represent direct contact between

two animals. Estimation of a network has many challenges: for example, lack of data integrity,

maintenance of data anonymity, and identification of missing links or data. In the literature, re-

searchers often infer the network for an epidemic modeling from the disease incidence data or

knowledge of the underlying system [8–12].

1.1.2 Compartmental epidemic model

To represent the incidence, transmission, and persistence of infectious disease, defining a proper re-

alistic epidemic model is important. Therefore, compartmental epidemic models have been widely

used in the study of epidemic processes [7, 13]. In a compartmental epidemic model, the popula-

tion distributes into different compartments; for example, members can be susceptible, infected, or

recovered.

Moreover, compartmental models can incorporate various disease dynamics. Some dynamics

follow the susceptible-infected-susceptible (SIS) [14, 15] or susceptible-infected-recovered (SIR)

[13, 16, 17] compartmental model, while some need more complex compartmental models. In the

SIS model, a susceptible node transition to infected based on the infection rate, and an infected

node becomes susceptible with a given recovery rate. Therefore, in the SIS model, a node can

become infected and susceptible several times because there is no immunity, whereas, in the SIR

model, a susceptible node may become infected then recover and be removed from becoming

susceptible again. SIS and SIR models are the basis of most other more complicated disease

models [6].

A model should have an appropriate balance between accuracy and complexity for optimal

usefulness [7]. Accuracy is the ability to reproduce the observed data, adding all the relevant

factors of the disease dynamics. However, too many factors or compartments increase model

complexity, which makes model optimization difficult. In addition, too many factors can make the

model vulnerable to overfitting [11, 18].
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1.1.3 Parameter estimation

In a compartmental epidemic model, a node can move from one compartment to another com-

partment via a transition rate, which is defined as a parameter of an epidemic model [7, 13]. The

transition rate can be fixed, or temporal [6]. Estimation of a transition rate is possible from in-

cidence data or laboratory experiments. In the network epidemic modeling, transition rates are

characterized by two types: nodal transition and edge-based transition [1, 19]. A nodal transition

of a node depends on the current state or compartment of the node. An edge transition of a node

depends on the current state of the node and the state of its neighboring nodes. Each edge transi-

tion has an influencer compartment that is the compartment of the neighboring nodes or state of

the neighboring nodes, which affects the edge transition. For example, in a susceptible-infected-

susceptible epidemic model, the susceptible-to-infected edge transition of a susceptible node is

caused by its infected neighboring nodes. Therefore, the infected compartment is the influencer

compartment for this edge transition. Both nodal transition and edge-based transition rates are

possible to estimate by fitting a mathematical model to incidence or prevalence data [20–22].

1.1.4 Network epidemic modeling approaches

Researchers have developed several tools to model epidemic processes on networks depending on

the research questions and resources; some are very detail-oriented, and some are not [6, 14, 23–

27]. In this section, we will discuss three relevant epidemic modeling approaches.

In the individual-based approach [1, 14, 16, 23], nodes are at the individual level where links

represent the connection between two individuals. The individual-based approach preserves the

full description of a network, which contains detailed information about the exact neighborhood.

The metapopulation method [25–27] is another approach to model epidemic processes. In

this model, nodes are not individual entities; rather, a node is an entity or a place where multi-

ple individuals can be located. Therefore, a node represents a subpopulation. The movement of

individuals establishes links between two nodes or subpopulations. The metapopulation model

considers that individuals mix homogeneously in a node and diffuse from one node to another with
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a fixed mobility rate. For this reason, the metapopulation model loses all the information inside a

subpopulation.

The group-based approach [19, 28] provides a balance between the individual-based approach

and the metapopulation approach. In the group-based approach, nodes are divided into several

disjoint partitions, where a group represents a subnetwork. The group-based approach preserves

certain network properties inside a group.

Figure 1.1: A summary of three different epidemic modeling approaches to model susceptible-
infected-recovered (SIR) epidemic process on a network; (a) Individual-based approach: each
node represents each individual, (b) Metapopulation approach: each node represents a collection
of individuals, and (c) Group-based approach: nodes are divided into three disjoint partitions, each
group represents a subnetwork.

Stochasticity is an essential feature of real-world epidemic phenomena. If it is possible to re-

run a real-world epidemic phenomenon, we will not get an identical set of the infected population.

Continuous-time Markov processes can describe stochastic epidemic processes on networks in

these three epidemic approaches.

1.2 Research motivation

Modeling and simulation are convenient when the resource requirements for data collection and

experimental studies are prohibitively high or unattainable. Since epidemic modeling is usually

used to understand and predict an infectious disease transmission, understanding the epidemic
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process can help policymakers plan effective disease control measures while forecasts can guide

experts during tough policy decisions [7].

A network is a useful structure in the study of any spreading phenomenon. Moreover, esti-

mating movement networks from limited data is an important step to model an epidemic process.

For example, in the livestock industry, animal movement is one of the major causes of disease dis-

persal among farms. Thus, a livestock movement network can increase the feasibility of planning

effective mitigation strategies that can reduce the risk of disease dispersal. Although in Europe

several well-established animal tracking systems are in play, the US has no comprehensive manda-

tory livestock tracking system because of a cultural preference for privacy and competition among

producers [8]. To support the researchers modeling livestock diseases, we propose a framework to

develop a farm-level directed weighted movement network (V, E,W) from the publicly available

inventory and sales data. The term V denotes the set of farms, E represents the set of links or

connections among individual farms, and W denotes the weight of each link. Links or connec-

tions among farms represent livestock movement. The weight of a link represents the volume of

movement occurring from one farm to another. In this research, we extend the work of Schumm

et al. [29], where Schumm et al. [29] have developed a convex optimization problem to identify

the cattle county-level movement probabilities from the USDA-NASS data by using the maximum

entropy approach. We propose a novel algorithm to develop a farm-level movement network from

the county-level movement probabilities. We also adapt the model of Schumm et al. [29] for

another livestock industry, swine, which has different population structures and data.

One of the important tasks of epidemic models is to uncover basic epidemiological characteris-

tics of a pathogen by using statistical data analysis. An epidemic model can also provide a means

of understanding the effectiveness of a potential control strategy. Accordingly, we have devel-

oped an individual-level multilayer heterogeneous network model to find the disease transmission

parameters of COVID-19 and to understand the effectiveness of contact tracing in the reopening

phase of the USA. The COVID-19 disease is caused by severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) and has created a global health emergency. COVID-19 has affected the

lives of billions of people from 2019-2021. To enable prediction of and ultimately policy based

on pathogen transmission, individual-based contact-network models are a powerful tool to model
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COVID-19 transmission due to its person-to-person transmission nature. The individual-based ap-

proach provides the flexibility to represent the heterogeneous social mixing in a community. It also

allows us to include a mitigation strategy in the model at the individual level, such as contact trac-

ing. To demonstrate, we have adapted approximate Bayesian computation based on a sequential

Monte Carlo Sampling (ABC-SMC) scheme [30–35] for network modeling to estimate the disease

parameters from Riley County, Kansas incidence data.

In a network with N nodes, the total number of states in the individual-based Markov chain

for a M compartmental epidemic model is MN [14]. The individual-based continuous-time MN

state Markov model is exact, allowing us to understand the local dynamics of an epidemic. This

approach is also more flexible in terms of the initial conditions. However, a drawback of the

individual-based approach is longer computational time. To reduce the computational time of the

individual-based approach, sometimes researchers scale their population by considering several

individuals or a group as a single individual node [11, 36, 37]. This type of scaling can alter the ac-

tual system, and estimation of the dynamics can be misleading. This dissertation proposes a group-

based general epidemic modeling framework (GroupGEM) [19] to reduce the computational time

of the individual-based framework (GEMF) [1] while retaining its advantages. The GroupGEM

reduces the state-space of the individual-based Markov process from MN to
[∏C

i=1

(
Ni+M−1

M−1

)]
for a

partition with C disjoint groups in a network with N nodes, where, Ni represents the number of

nodes in a group i, and i = 1, 2, ...,C. Fig 1.2 and 1.3 represent state-space of the individual-based

and group-based Markov model for a network with four nodes for an SIS epidemic model.

1.3 Results overview

This dissertation presents a general guideline to model dispersal phenomena on a network from

limited available data. The dispersal of rumors, computer viruses, social behavior, and cultural

norms can be modeled as an epidemic process. In light of the opportunities, this dissertation will

provide guidelines to the researchers of various fields to model stochastic dispersal incidences.

At first, this dissertation develops a general framework to estimate movement in networks from

inventory and sales data, flexible enough to apply to other systems, for example, trade networks.
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Figure 1.2: State diagram of an individual-based Markov model for a susceptible-infected-
susceptible (SIS) epidemic process. The network has four nodes; therefore, the individual-based
network model has 16 (or 24) states.

We also provide remarks on the generated network based on network centrality measures [38]. Fu-

ture researchers can use the generated network information to study infectious disease transmission

in the livestock industry.

This dissertation infers an age-specific individual-based contact network from demographic

data and Google mobility data to model COVID-19 transmission. However, this approach is useful

to model any dispersal phenomena that is related to direct contacts. By developing a risk assess-

ment framework, we provide a platform to investigate the costs and benefits of a control measure at

the individual level. The ABC-SMC method is adapted for network models to estimate unknown

parameters and network models from incidence data. ABC-SMC is a computational method of

Bayesian statistics that combines a particle filtering method with summary statistics. Thus, this
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Figure 1.3: State diagram of a group-based Markov model for a susceptible-infected-
susceptible (SIS) epidemic process. The network has four nodes, which are divided into two
disjoint groups; therefore, the group-based network model has 9 states instead of 16.

method is ideal for a stochastic complex model where the likelihood function is intractable or

computationally expensive to evaluate.

Finally, we develop a computationally efficient analytical group-based network tool to under-

stand the local dynamics of epidemic processes over very large networks. This work contributes

positively to society in understanding how to prevent large-scale catastrophes, including outbreaks

of infectious diseases, the propagation of computer viruses, and cascading failure in power-grids.

Besides all these opportunities, this research also develops a new package for stochastic numerical

simulations.

1.4 Contributions

Below is a summary of the major contributions of this dissertation:
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• Develops a convex optimization problem to estimate swine movement probabilities at the

county level from comprehensive anonymous inventory and sales data published by the

United States Department of Agriculture - National Agriculture Statistics Service database

by using the maximum entropy approach.

• Proposes a novel algorithm to develop a directed weighted network at the farm level from

the county level movement probabilities.

• Investigates the benefits and costs of contact tracing related to COVID-19 transmission in

the reopening process of the USA.

• Infers a general individual-based contact network capable of representing the heterogeneous

social mixing and age-structure from demographic data.

• Implements contact tracing in a two-layer network model, which comprises the contact net-

work in the first-layer and the tracing network in the second-layer.

• Adapts approximate Bayesian computation based on sequential Monte Carlo sampling (ABC-

SMC) approach for individual-based network model.

• Estimates unknown model parameters from time-series COVID-19 incidence data.

• Proposes a network-based epidemic modeling framework, group-based general epidemic

modeling (GroupGEM) framework, to reduce the computational time of individual-based

framework (GEMF) while retaining its advantages.

• Develops a continuous-time Markov model for the GroupGEM framework and derives cor-

responding Kolmogorov equations.

• Implements two different mean-field approximations of the GroupGEM framework to reduce

the state-space size further: 1) inter-group mean-field approximation, 2) intra- and inter-

group mean-field approximation.

• Extends the GroupGEM framework to multilayer networks.
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1.5 Dissertation organization

This dissertation is divided into four significant chapters (in addition to this introduction), which

deal with modeling epidemic processes on a network. Each chapter is further subdivided into

methods, applications, simulation results, and discussions.

Chapter 2 introduces an approach to estimate a movement network from limited available data

by using a maximum entropy approach with application in the swine industry. To enable un-

derstanding of the movement network, it uses network centrality measures. The analysis of this

network has found evidence of small-world phenomena. Our study suggests that the swine industry

in the USA may be vulnerable to infectious disease outbreaks because of the small-world structure

of its movement network.

Chapter 3 investigates the benefits and costs of contact tracing in the COVID-19 transmis-

sion in the reopening process of a rural college town in the USA. This chapter has developed

an individual-based 2-layer contact network model capable of representing the heterogeneous age-

specific social mixing. We have used a SEICR (susceptible-exposed-infected-confirmed- removed)

epidemic model to emulate COVID-19 transmission. To estimate the unknown parameters from

the time-series COVID-19 incidence cases in Riley County, Kansas, we have developed approxi-

mate Bayesian computation based on the sequential Monte Carlo Sampling (ABC-SMC) method.

Another example of the ABC-SMC method for the West Nile Virus (WNV) is presented in Ap-

pendix A. In this research, we investigate the optimum traced percentage for different movement

levels. Our simulation finds that the quarantined susceptible people increase with the percentage

of traced contacts; however, after a certain number of traced contacts, the number of quarantined

susceptible people starts to decrease with the increase in the percentage of traced contacts for any

cases [39].

We have developed a general group-based epidemic modeling framework: GroupGEM in

Chapter 4, a continuous-time Markov model. This generalization covers any compartmental epi-

demic models, any static networks (e.g., directed, undirected, weighted), and any disjointed net-

work partitions. The GroupGEM framework has lower computational complexity and faster sim-

ulation time than the general individual-based GEMF framework because of the reduced-state
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space size. In this chapter, we derive the corresponding Kolmogorov differential equations for the

GroupGEM framework. We also propose two mean-field approximation approaches of this frame-

work to reduce the state-space size further. Finally, we have extended the GroupGEM to multilayer

networks. We also provide simulation results to investigate the accuracy of the group-based frame-

works compared to the individual-based framework in synthetic networks and empirical networks

[19].

Closing remarks with future directions on this research are reported in Chapter 5.
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Chapter 2

Estimation of swine movement network at

farm-level in the USA from the Census of

Agriculture data1

Swine movement networks among farms/operations are an important source of information to

understand and prevent the diseases transmission, nearly nonexistent in the United States. An

understanding of the movement networks can help the policymakers in planning effective disease

control measures. The objectives of this work are: 1) estimate swine movement probabilities at

the county level from comprehensive anonymous inventory and sales data published by the United

States Department of Agriculture - National Agriculture Statistics Service database, 2) develop a

network based on those estimated probabilities, and 3) analyze that network using network sci-

ence metrics. First, we use a probabilistic approach based on the maximum information entropy

method to estimate the movement probabilities among different swine populations. Then, we cre-

ate a swine movement network using the estimated probabilities for the counties of the central

agricultural district of Iowa. The analysis of this network has found evidence of the small-world

phenomenon. Our study suggests that the US swine industry may be vulnerable to infectious dis-

ease outbreaks because of the small-world structure of its movement network. Our system is easily

1This chapter is a slightly modified version of our published article [12], Copyright©2019, Scientific Reports.
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adaptable to estimate movement networks for other sets of data, farm animal production systems,

and geographic regions.

2.1 Background

Livestock are often moved between facilities to reduce costs and improve productivity. There is an

old adage, "Livestock follow the grain". Even now this aphorism seems true, as shipping animals is

less expensive than shipping grains, which are required for animals to attain their slaughter weights.

The corn-belt region (Iowa, Missouri, Illinois, Indiana, and Ohio states) is the largest market for

feeder pigs [40] because they are the largest producers of two major sources of hog rations (corn

and soybeans). Although movements in the livestock industry can reduce the cost of production,

movements have a major role in the risk of pathogens spread. Movement of swine among farms

is one of the major pathways for the spread of several diseases (e.g., Porcine reproductive and

respiratory syndrome-PRRS, Porcine epidemic diarrhea-PED etc.) in the United States (US) swine

industry [41, 42]. Knowledge of livestock movement can be useful in the control of pathogen

transmission. In Europe, there are several well-established animal tracking systems. However,

similar programs are yet to be mandated for the US. In the US, a comprehensive livestock tracking

system has not been implemented because of a cultural preference for privacy and competition

between producers [8]. The United State Department of Agriculture (USDA) collects movement

information when livestock shipments cross state boundaries. There is no program that collects

movement information at the county- or farm-level.

In the prior literature, several models have been developed to understand swine movement in

different regions of the US [8–10]. However, all of them used confidential incomplete datasets,

which are not publicly accessible, and also which are not inclusive of the whole US. Yadav et al.

[10] developed a model to understand classical swine fever outbreak-related outcomes in Indiana.

They used data from USAHerds (US Animal Health Emergency Reporting and Diagnostic Sys-

tem), where import-export activities, location of import origin, receiving swine premises, shipment

size and shipment date are listed. However, only 22% of the states participates in the USAHerds

program. Another research group predicted movement networks of the swine industry for some
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counties of Minnesota using a machine learning approach [9]. They used confidential survey data

from two counties to train their model. The objective of our research is to understand the swine

movement network in the US from publicly available data. A network is a useful structure in the

study of any spreading phenomena, where farm-level animal movement networks are used as a key

component in the area of pathogen spreading [43, 44].

In this work, we estimate the swine movement probabilities between counties based on pub-

lished inventory and sales data from the USDA Census of Agriculture. We develop a convex opti-

mization problem with some linear constraints for the US swine industry. To solve this problem,

we adapt the cattle movement model from Schumm et al. [29] for the swine population. In partic-

ular, we maximize the entropy of the distributions of the objective function (Eq. 2.1). Maximum

information entropy methods have been used in various research fields [45–47]. The maximum

entropy principle states that the best way to approximate the unknown distribution that satisfies all

the constraints will have the maximum entropy [48].

We propose a novel algorithm to develop a farm-level swine movement network using the es-

timated swine movement probabilities. In this network, nodes (or vertices) represent swine-farms

and directed links (or edges or connections) represent directional swine movements between the

farms. Network realizations from the interactions among the elements of different dynamic sys-

tems can be seen several times in the literature; for example, weighted network for worldwide air

transportation[49], network for collaboration among scientists [49], network to understand com-

plex intercellular interactions [50], and network to represent interplay among different physiolog-

ical systems [51–54]. To understand the generated swine movement network, we use network

centrality measures. They have been used often in the literature to understand the livestock move-

ment patterns [55–57]. The network centrality measures can assist in detection of the important

farms, which can control the movement flows in the network. This information can be useful

to plan effective mitigation strategies to reduce an epidemic size. In the literature, researchers

have used targeted vaccination, or quarantine, or culling of important agents to control epidemics

[58, 59]. The network centrality measure also can help us to understand the movement pattern.

From the analysis of the developed swine movement network, we find a trace of the small world

phenomenon and the presence of hubs in the US swine movement network.
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First, we develop a convex optimization problem to estimate swine movement probabilities.

Next, we propose an algorithm to develop a network based on those probabilities, where nodes or

vertices are farms or operations and edges among them represent swine movement. Finally, we

analyze the network using different network analysis metrics.

2.2 Data

We have collected the hog inventory, sales, slaughter, and dead/lost pig data from the United

States Department of Agriculture National Agricultural Statistics Service (USDA-NASS) [60].

The USDA-NASS conducts a census every five years, which compiles a uniform, comprehensive

agricultural data set for each county of the entire US. We used the data from the 2012 Census of

Agriculture, as the census of 2017 is not published fully at the time of this research. For each

county, two sets of data are available: 1) inventory and 2) sales. In both types, pigs are grouped

into seven classes based on operation/farm size. These groups are: size1 (1-24 pigs), size2 (25-49

pigs), size3 (50-99 pigs), size4 (100-199 pigs), size5 (200-499 pigs), size6 (500-999 pigs), and

size7 (more than 1000 pigs). For each size group, data for the number of operations and the num-

ber of pigs are available. However, several data points are not published to maintain anonymity; we

estimate those to develop the network model. The study time of this research is the year 2012. We

have assumed that the inventory sizes are constant throughout the year because of the resolution

limitation of the available data. Another set of missing data are the geographic farm locations; we

use geographical county centroids to measure the distances among counties.

We estimate the swine movement probabilities among sub-populations for the State of Iowa,

where a sub-population is denoted as the swine population in a size group in a county. Iowa

has the largest swine inventory (31.43%) in the US [61]. In the list of America’s top 100 pig

farming counties, 42 counties are from Iowa alone[62]. It is also the most vulnerable state for the

introduction of classical swine fever and African swine fever viruses due to legal import of live

swine [63]. Iowa has 99 counties in total, the number of swine sub-populations in our optimization

problem is 99 × 7.
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2.3 Swine movement probability estimation

To estimate the pig movement probabilities in a week among different sub-populations, we use a

convex optimization problem. This convex optimization problem consists of two steps: 1) estima-

tion of the non-disclosed data points in the inventory and sales data and 2) estimation of movement

probabilities among different sub-populations.

To estimate non-disclosed points in the inventory data, we formulate an entropy function. By

maximizing this function, we estimate the data points with minimum assumptions [64]. This pro-

cess is detailed in Schumm et al[29]. In step 2, we construct a convex optimization problem,

which includes a series of linear constraints. The purpose of this problem is to maximize the en-

tropy of the distributions of the objective function, the distributions of the objective function for a

sub-population are presented in Fig A.2. The maximum entropy is a well-known method of statis-

tical inference, which has been used in diverse research fields including ecology, thermodynamics,

economics, forensics, language processing, astronomy, image processing etc. [47, 65, 66]. This

method produces the least biased predictions while maintaining prior knowledge constraints.

In the convex optimization problem, there are C counties and each county has I size groups.

A pig from a sub-population can be moved to a sub-population in the state, or moved outside of

the state, or not moved at all, or slaughtered, or lost. Therefore, a pig in a sub-population has

five movement options, which construct the distributions of the objective function We define the

objective function of this estimation problem as,

max{Entropy} = max{−
∑
x∈C

∑
i∈I

∑
y∈C

∑
j∈I

md
i, j,dist(x,y) ∗ log(md

i, j,dist(x,y)) −
∑
x∈C

∑
i∈I

osd
x,i ∗ log(osd

x,i)

−
∑
x∈C

∑
i∈I

rnd
x,i ∗ log(rnd

x,i) −
∑
x∈C

∑
i∈I

sld
x,i ∗ log(sld

x,i) −
∑
x∈C

∑
i∈I

ltd
x,i ∗ log(ltd

x,i)}

(2.1)

The objective function of this problem is to maximize the Entropy. We estimate the movement

probabilities md
i, j,dist(x,y), which represents the movement probability from sub-population (x, i) to

sub-population (y, j) in a week. A sub-population (x, i) is the swine population in the size group i in
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the county x. The index variable x and i are used for the originating sub-population, x = 1, 2, 3...C

and i = 1, 2, ...I. Again, y and j are the index variable for the receiving sub-populations (y, j). The

superscript d marks the decision parameters. The parameter osd
x,i represents movement probability

from sub-population (x, i) to outside of the state in a week, rnd
x,i is the probability to remain or

not-moved in the sub-population (x, i) in a week, sld
x,i is the probability of pigs being slaughtered

for meat from sub-population (x, i) in a week, and ltd
x,i is the probability of pigs being dead or lost

in sub-population (x, i) in a week. We divide the distance between counties into five classes: 1)

distance ∈ [0, 20), 2) distance ∈ [20, 100), 3) distance ∈ [100, 200), 4) distance ∈ [200, 400), and 5)

distance ∈ [400,Dmax]. Dmax is the maximum distance between two counties. dist(x, y) represents

the distance class for the distance between county x and y. We divide the distances between all

pairs of counties in that way to group them into discrete distance groups. This problem is subject to

several linear constraints, which we construct from probability rules, sales data, swine population

conservation etc..

Figure 2.1: The movement flows of a sub-population (x, i). Solid black lines represent the out-
going flows from the sub-population, dotted red lines represent the incoming flows into the sub-
population, and the blue solid line represents the possibility to stay or not moved. Solid lines (black
and blue) form the distributions of the objective function. The probability of each movement are
shown with the arrows.

As a pig can move (from the sub-population (x, i) to a sub-population in the state, or outside of
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the state, or slaughtered, or death) or it could stay in the sub-population, therefore the summation

of these possibilities is equal to one. From the rule of the probability, we can get the following

constraint for any sub-population (x, i),

∑
y∈C

∑
j∈I

md
i, j,dist(x,y) + osd

x,i + rnd
x,i + sld

x,i + ltd
x,i = 1 ∀(x, i) (2.2)

The probabilities in Eq 2.2 are considered in the objective function.

There are three types of sales in the system, 1) sales for the movement from sub-population

(x, i) to the all sub-populations in the state, 2) sales for the movement to the outside of the state,

and 3) sales for slaughter. Constraint for the sales or movement from any county x is,

∑
i∈I

∑
y∈C

∑
j∈I

Ivr
x,i ∗ md

i, j,dist(x,y) +
∑
i∈I

Ivr
x,i ∗ sld

x,i +
∑
i∈I

Ivr
x,i ∗ osd

x,i + ET sales
x =

S alesr
x

scaled
∀x (2.3)

The superscript r indicates published data. The parameter Ivr
x,i is the swine inventory in the sub-

population (x, i), and S alesr
x represents the total sales from county x in a year. The parameter

scaled is used to convert the timescale, this parameter allows us to convert the timescale from

yearly to weekly basis. ET sales
x is the error term for the constraint 2.3.

The constraint for the slaughtered swine is,

∑
x∈C

∑
i∈I

Ivr
x,i ∗ sld

x,i + ET sl =
TotalS laughteredr

scaled
(2.4)

The term TotalS laughteredr represents the total number of slaughtered in a year in the system,

and ET sl is the error term for slaughtered data.

The constraint for the sales to the outside of the state is;

∑
x∈C

∑
i∈I

Ivr
x,i ∗ osd

x,i + ET out =
TotalOutshipmentr

scaled
(2.5)

The term TotalOutshipmentr is the total sales to the outside of the state in a year, and ET out is the

error term for outshipment.
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The constraint for the inshipments from the outside of the state is;

∑
x∈C

∑
i∈I

Ivr
x,i ∗ isd

x,i + ET in =
TotalInshipmentr

scaled
(2.6)

The parameter isd
x,i indicates the inshipment probability in a week from outside of the state to the

sub-population (x, i), TotalInshipmentr is the inshipment from outside in a year in the system, and

ET in is the error term for inshipment.

The constraint for the death or lost is,

∑
x∈C

∑
i∈I

Ivr
x,i ∗ ltd

x,i + ET lt =
TotalLostr

scaled
(2.7)

The term TotalLostr represents the total number of death or lost in a year from the system, and

ET lt is the error term for this constraint.

We assume that the population or inventory size of a sub-population remain constant throughout

the year. Therefore, in a sub-population, the summation of the outgoing flows from the sub-

population (solid black lines in Fig A.2) is equal to the summation of the incoming flows into

the sub-population (dotted red lines in Fig A.2). Constraints for the population conservation are,

Ivr
x,i ∗ [

∑
y∈C

∑
j∈I

md
i, j,dist(x,y)] + Ivr

x,i ∗ sld
x,i + Ivr

x,i ∗ ltd
x,i + Ivr

x,i ∗ osd
x,i

=
∑
y∈C

∑
j∈I

Ivr
y, j ∗ md

j,i,dist(y,x) + Ivd
x,i,b ∗ btd

x,i + Ivr
x,i ∗ isd

x,i + ET pop
x,i ∀(x, i)

(2.8)

Here, Ivd
x,i,b represents the breeding population, btd

x,i is the probability of birth in the sub-population

(x, i) in a week, and ET pop
x,i is the error term. The left side of the Eq. 2.8 is the summation of the

outgoing flows from sub-population (x, i) and the right side is the summation of the incoming flows

into the sub-population (x, i). The range for btd
x,i is (7×9)/115−(7×12)/112 week−1, as time period

for gestation is 112-115 days and average litter rate is 9-12 [61]. The range for sld
x,i was chosen

based on the lifespan of market pigs in the US, which is about 25 to 28 weeks.
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Constraint for the errors is,

∑
x∈C

|ET sales
x | + |ET sl| + |ET in| + |ET out| + ET lt +

∑
x∈C

∑
i∈I

|ET pop
x,i | ≤ Rc ∗ TotalPopulationr (2.9)

The left side of Eq. 2.9 represents the summation of all the errors in the optimization problem.

Here, Rc is a proportional constant, and TotalPopulationr is the total swine population in the

system. The inequality (Eq. 2.9) states that the total error in the convex optimization problem

should be less than equal to a fraction Rc of the TotalPopulationr. The value of Rc is calculated by

using trial and error with an objective to minimize the total error.

Convex cost function (Eq. 2.1) and constraints (Eq. 2.2-2.9) constitute our optimization linear

problem. The objective of this estimation problem is to maximize the entropy of the distributions of

the objective function of all sub-populations. The performance of entropy measures is sensitive to

different factors [67]. Maximum entropy methods can predict accurately given a prior knowledge.

However, maximum entropy methods can perform poorly if the prior knowledge is insufficient or

inaccurate or contains biases [68]. In our estimation problem, published USDA-NASS data are

used as the prior knowledge, and the data was sufficient to solve the formulated convex optimiza-

tion problem. Maximum entropy methods can also perform poorly if the system changes very

rapidly [68], which is not our case.

2.4 Network development

We develop a network using the movement parameters which are obtained using the maximum

entropy optimization. The network development is done in two stages: 1) setup of the population

in each farm and 2) setup of the movement links between farms.

In order to generate the network, first, we need the farm-level estimates of the pig population.

The USDA-NASS data only provide the number of farms in a size range and the number of total

pigs in that range in a county. Recorded data on the number of pigs in a farm are generally not

available in the US (with the exception of a few counties). To allocate the pig population, we

generate random numbers for every farm in a size group i within a county x with the following
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constraints:

a) The random numbers fall in the range of the corresponding group i.

b) The sum of all generated numbers is equal to the total number of pigs in that sub-population

(x, i).

The procedure to establish the movement links between farms is inspired by the random net-

work model [69]. Our movement network for pig farms is represented as (V, E,W). The term V

denotes the set of nodes, the term E represents the set of links or connections among individual

nodes, and W denotes the weight of each link. To generate the movement network among farms,

we use the following procedures:

Step 1 For each pig p1 in a sub-population (x, i), we generate a random number rand from the

uniform distribution U(0, 1) for sub-population (y, j), y = 1, 2, 3, .....C, and j = 1, 2, 3, ....I.

Here, C is the number of counties in the system and I is the number of size groups.

Step 2 If rand <= md
i, j,dist(x,y), a link is created from pig p1 to another pig p2. Pig p2 is picked

randomly from the sub-population (y, j).

Step 3 If there is no link from the parent farm f1 of pig p1 to the parent farm f2 of pig p2, we

create a link f link from f1 to f2. Otherwise, if a link already exists, we increase its weight

by 1.

Step 4 For each sub-population (x, i), we repeat Steps 1-3.

This process produces a directed weighted network at the farm-level. Links or connections

among farms represent swine movement. The weight of a link represents the volume of movements

occurring from one farm to another.

2.5 Network analysis

To capture the particular features of the developed network, we compute the following network

analysis metrics: node strength, betweenness, eigenvector, clustering coefficient, and average
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shortest path [24, 38, 69]. Centrality measures can help us determine the most important or central

nodes in a network.

The node strength-centrality measure is the strength of the nodes or sum of the weights of

the edges connected to it [70]. In a directed network, the nodes have two types of vertex-strength

centralities: 1) in-strength InS , and 2) out-strength OuS .

InS (k) =
∑

l∈NB(k)

wlk (2.10)

OuS (k) =
∑

l∈NB(k)

wkl (2.11)

Here, wlk is the connection strength of the edge/link from node l to node k, NB(k) is the set of the

neighbors of node k. Vertex strength can be illuminating in the investigation of epidemic processes.

A high in-strength node has a high risk of receiving an infection. On the other hand, a high out-

strength node is influential over the network, as such a node can infect many more nodes.

The betweenness centrality measure suggests which nodes are important in the connection

flow or act as bridges in the network. Betweenness centrality of a node measures how many short-

est paths between different pairs of nodes go through that particular node. The shortest path be-

tween two nodes is the path with the fewest number of connections. Nodes with high betweenness

centrality have high control over movement flow (here, concerning flow of swine) in the network.

Removal of such nodes can effectively reduce connectivity in the network. Knowledge of these

nodes can be useful in controlling outbreaks [71]. Let, pst be the number of shortest paths from

s ∈ N to t ∈ N. We denote, pst(k) to be the number of shortest paths from s to t, that includes node

k somewhere in between. The betweenness centrality of a node k is defined [72] as:

B(k) =
∑

s,k,t∈N

pst(k)
pst

(2.12)

Eigenvector centrality is an extension of the degree/strength centrality. In the eigenvector

centrality measure, the centrality of a node is proportional to the sum of the centralities of its
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neighbors.

e(k) = λ−1
1 ∗

∑
l∈NB(k)

e(l) (2.13)

Here, e(k) is the eigenvector centrality of the node k, and λ1 is the largest eigenvalue of the ad-

jacency matrix [akl] of the network. Eigenvector centrality of a node can be large if either it has

many neighbors or it has important neighbors. Nodes with high eigenvector centralities have high

probabilities of becoming infected [16, 73].

The clustering coefficient measures local group cohesiveness. The clustering coefficient Cc(k)

for a node k is the ratio of the number of edges among the neighbors of k and the maximum

possible number of such edges (for the fully-connected network formed by the neighbors of node

k). If neighboring nodes of node k has ck connections among them then clustering coefficient can

be defined as [24]:

Cc(k) =
ck

|NB(k)|(|NB(k)| − 1)/2
(2.14)

The average shortest path is the average of the shortest path length between all pairs of nodes

in the network.

2.6 Farm-level movement network for Iowa

2.6.1 Movement probability estimation

In this research, we solve a convex optimization problem to estimate the swine movement probabil-

ities by using the maximum entropy approach for Iowa. We utilized the AIMMS modeling system

[74] of Paragon Decision Technology to solve this convex optimization problem. The time-scale

of our estimation problem is weekly, which we controlled it by using scaled = 52weeks/year.

The boundary of error limit in our system is 5.45% of total swine population in Iowa (Rc=5.45%).

The estimated probabilities are given in Table 2.1. This table shows swine movement probabilities

between size groups for five different distance ranges. The highest movement probability is from

size7 to size7 sub-population when the distance between them is less than 20km. We divide seven

size groups into three categories; size: 1-3(small farms), 4-5(medium farms), and 6-7(large farms).

23



From Table 2.1, we can notice that the movement probabilities from large farms to small farms are

small and vice versa.

2.6.2 Network description

We generate a swine movement network for the central agricultural district of Iowa. It has 12

counties: Boone, Dallas, Grundy, Hamilton, Hardin, Jasper, Marshall, Polk, Poweshiek, Story,

Tama, and Webster. The total number of farms in those 12 counties is 641, while the net pig

population is 2,600,888, which is 12.71% of the total pig population in Iowa. Grundy, Hamilton,

Hardin, Jasper, Marshall, and Webster Counties are within the America’s top 100 pork producer

counties. Among these, Hardin County is in the 9th position. The descriptions of pig inventories

for the above-mentioned counties are provided in the supplementary material Dataset 1.

For these 12 counties, we have developed a movement network (V, E,W), which is shown in

Fig 2.2. This network is a realization based on the movement probabilities from Table 2.1. For the

network, |V | = 641 and |E| = 22, 461, the description of the nodes, and the adjacency list for this

network is provided in the supplementary material Dataset 2 and 3. In Fig 2.2, this network has

seven types of nodes representing the seven size groups. A description of size groups is presented

in Table A.1. The largest group is the size7, contains 393 nodes which are presented by light blue.

There are 17484 edges among the nodes of this group (67.41% of total edges).

2.6.3 Network analysis

The clustering coefficient of the full network is 0.363, the diameter of the network is 7, and the

average shortest path length is 2.598. A summary of various centrality measures for the network

is provided in Table 2.3. Node-strength, betweenness, eigenvector and clustering coefficient cen-

trality for seven size groups are presented here. In-strength, out-strength, betweenness, and eigen-

vector centralities were calculated from the overall network. Clustering coefficients in Table 2.3

were calculated for networks of the same size group (any node and its neighbors are in the same

size group). We used the open source package Gephi to visualize and analyze the network [75].

For visualization, we used the Fruchterman Reingold layout [76].
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Table 2.1: Estimated swine movement probabilities mi, j,dist(x,y) × 103 from maximum entropy ap-
proach.

Destination
Size1 Size2 Size3 Size4 Size5 Size6 Size7

Distance < 20km
size1 1.4899 1.3587 1.3890 1.4007 1.4543 1.4641 1.5083
size2 1.3989 1.5080 1.3755 1.4129 1.4393 1.4611 1.5112
size3 1.2826 1.1726 1.8054 1.4979 1.5580 1.6066 1.6264

Source size4 1.0582 1.1064 1.4199 2.3913 1.7695 1.9519 2.1038
size5 0 0 0 1.7460 7.1795 6.0844 5.3446
size6 0 0 0 2.5308 8.7793 14.3449 8.8213
size7 0 0 0 0 0 0 11.7828

20km < Distance < 100km
size1 1.3334 1.3028 1.3834 1.4076 1.4403 1.4511 1.4972
size2 1.3373 1.2961 1.3767 1.4114 1.4375 1.4463 1.4987
size3 1.2407 1.1528 1.3516 1.4039 1.5402 1.5589 1.6340

Source size4 1.0077 0.7768 1.2906 1.3337 1.7005 1.7403 1.9707
size5 0 0 0 0.5768 2.4553 3.4121 4.4916
size6 0 0 0 0 2.0213 4.0961 6.3753
size7 0 0 0 0 0 0 0

100km < Distance < 200km
size1 1.3211 1.2904 1.3840 1.3943 1.4421 1.4449 1.5056
size2 1.3261 1.3009 1.3899 1.3914 1.4372 1.4392 1.4987
size3 1.2350 1.1626 1.3534 1.3966 1.4823 1.5003 1.6312

Source size4 0.9633 0.7990 1.3194 1.3922 1.6203 1.6701 1.9975
size5 0 0 0 0.2870 2.0726 2.2576 4.5535
size6 0 0 0 0 0.7503 1.2075 6.5958
size7 0 0 0 0 0 0 0

200km < Distance < 400km
size1 1.3092 1.2929 1.3708 1.3906 1.4435 1.4587 1.5156
size2 1.3101 1.2912 1.3705 1.3919 1.4453 1.4608 1.5130
size3 1.1890 1.1582 1.3361 1.3725 1.4957 1.5190 1.6690

Source size4 0.9148 0.8430 1.2363 1.3534 1.6271 1.6868 2.0233
size5 0 0 0 0.0996 1.9382 2.2667 4.8693
size6 0 0 0 0 0.1753 0.7087 7.3607
size7 0 0 0 0 0 0 0

Distance > 400km
size1 1.2644 1.2818 1.3040 1.4093 1.4522 1.5169 1.5613
size2 1.2915 1.2876 1.3032 1.4002 1.4492 1.5108 1.5422
size3 1.1489 1.1554 1.1864 1.4614 1.4731 1.6829 1.7441

Source size4 0.9891 0.8387 0.9770 1.4179 1.6056 1.9855 2.0836
size5 0 0 0 0.1091 0.8917 3.9986 4.4802
size6 0 0 0 0 0 3.3953 5.4755
size7 0 0 0 0 0 0 0.0019
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Figure 2.2: Movement network for the pig population at the farm-level. Different colors repre-
sent different size groups. Farms are divided into 7 size groups, size: 1-3(small farms), 4-5(medium
farms), and 6-7(large farms).

From the node-strength centrality measures, we observe that the average node-strength is pos-

itively correlated with the size groups. Larger size groups have higher average node-strengths.

Consequently, size7 has the highest average node-strength (Table 2.3). The node-strength distribu-

tion is provided in Fig A.7. In the network, only a few nodes have high strength and most of the
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Table 2.2: A summary of the size groups in the network.

Group No. of nodes % of the total
nodes

No. of edges in a
group

% of the total
edges

size1 89 13.88% 15 0.07%
size2 10 1.56% 2 0.01%
size3 13 2.03% 9 0.04%
size4 20 3.12% 50 0.22%
size5 56 8.74% 678 3.02%
size6 60 9.36% 1666 7.42%
size7 393 61.31% 12506 55.68%

nodes have low strength. This characteristic is similar to the power-law distribution. The range of

in-strength is 0 − 1426. About 90.95% of the total nodes have in-strengths less than 285, which

is merely the first 20% of the in-strength range. The range for out-strength is 0 − 1372. About

91.11% of the total nodes have out-strengths less than 274, which is within the first 20% of the

range of out-strength values. The correlation coefficient between in-strength and out-strength is

0.9523, which is an indication of strong correlation.

Figure 2.3: Node strength distribution of the directed network. (a) in-strength, (b) out-strength

The betweenness centrality is positively correlated with size groups until group6, after which

27



Table 2.3: A summary of centrality measures for different size groups in the network.

Size1 Size2 Size3 Size4 Size5 Size6 Size7
In-strength
mean 1.292 4.700 6.846 16.050 44.304 63.400 151.891
median 1.000 4.000 5.000 15.000 31.500 44.000 100.000

(95% CI) (0.902,
1.683)

(2.620,
6.780)

( 4.214,
9.478)

(11.781,
20.319)

(33.070,
55.537)

(48.566,
78.234)

(135.376,
168.406)

range (0, 8) (1, 9) (1, 17) (5, 42) (12, 267) (18, 347) (11,
1426)

Out-strength
mean 1.214 4.500 11.385 22.200 55.054 138.450 140.461

median 1.000 3.500 9.000 18.500 53.000 109.5000 90.000

(95% CI) (0.935,
1.491)

(1.613,
7.386)

(6.746,
16.023)

(16.830,
27.569)

(48.889,
61.217)

(123.497,
153.403)

(122.477,
154.444)

range (0, 5) (0, 14) (2, 26) (10, 50) (21, 118) (66, 282) (7, 1372)

Betweenness
mean 36.140 386.258 858.157 1531.4 814.294 2390.600 244.137

median 0 86.087 905.169 1289.900 661.0194 2026.000 132.247

(95% CI) (10.639,
61.642)

(4.551,
767.964)

(413.300,
1303.000)

(1127.400,
1935.300)

(634.840,
993.748)

(1738.500,
3042.600)

(183.130,
305.143)

range (0,
699.662)

(0,
1237.000)

(14.605,
2388.400)

(228.138,
3189.900)

(48.185,
2715.600)

(324.236,
15229.000

)

(0.256,
9932.100)

Eigenvector
mean .00086 0.0032 0.0058 0.0326 0.1072 0.1522 0.2381

median .00035 0.0030 0.0038 0.0279 0.0854 0.1263 0.1690

(95% CI) (0.0006,
0.0012)

(0.0020,
0.0044)

(0.0033,
0.0083)

(0.0235,
0.0417)

(0.0899,
0.1245)

(0.1225,
0.1819)

(0.2174,
0.2588)

range (0,
0.0061)

(0.0011,
0.0064)

( .00043,
0.0141)

(0.0100,
0.0726)

(0.0281,
0.3391)

(0.0493,
0.6565)

(0.0328,
1)

Clustering coefficient
mean 0 0 0 0.124 0.264 0.449 0.755

28



farms in the group7 have lower betweenness. The farms in group6 have the highest average be-

tweenness. The distribution of betweenness centrality measure is given in Fig A.8. Most of the

farms have low betweenness. Few farms act as hubs in the network which have high betweenness.

The range for betweenness is 0-15229. We divide the nodes into three groups, 1) low-betweenness

(0-50), 2) medium-betweenness (51-500), and 3) high-betweenness (> 500). These three groups

contain 183, 302, and 156 nodes respectively. These three groups are illustrated in Fig 2.5. In

the low-betweenness group majority of the nodes are from small size groups, in the medium-

betweenness group most of the nodes are from group7, and in the high-betweenness group, most

of the nodes are from group6.

Figure 2.4: Betweenness distribution of the network.

The mean eigenvector centrality is positively correlated with the size groups. Larger size

groups have higher eigenvector centralities (Table 2.3). We have divided the nodes (farms) into

three groups: 1) low-eigenvector central nodes (0-0.1), 2) medium-eigenvector central nodes (0.11-

0.3), and 3) high-eigenvector central nodes (0.31-1). The low-eigenvector central group consists

of 298 nodes, the medium group consists of 233 nodes, and the high group contains the rest of the

nodes. The network for different eigenvector groups is presented in Fig 2.6. Clustering coefficient
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Figure 2.5: Node groups according to betweenness. a) nodes with low-betweenness, b) nodes
with medium-betweenness, and c) nodes with high-betweenness. The connections among visible
nodes are presented here.
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for group size 7 is 0.755, which is quite high. The nodes from this group form several clusters,

which are quite visible in Fig 2.2 and Fig 2.6.

In the network, the importance of links is another useful topic to study [52]. From the link

strength or weight distribution, we can see that the majority of the links have a low weight however

very few links have high weight (Fig 2.7). A link with high-weight represents a high volume swine

movement. For a susceptible farm, an infected neighbor connected by a high-strength-link is riskier

than an infected neighbor connected by a low-strength-link.

2.7 Summary

In this study, we have three objectives: 1) we compute optimal estimates swine movement prob-

abilities among counties from the aggregated data of USDA-NASS, 2) we develop a realization

of the network from the estimated probabilities, and 3) we analyze the developed network with

different network analysis metrics.

Animal movement has been one of the major causes of diseases propagation among farms

for several outbreaks in the US swine industry. A better understanding of the swine movement

network can increase the feasibility of planning effective mitigation strategies that can reduce the

risk of disease dispersal. There is no mandatory animal movement tracking system in the US due to

the industry preference for privacy in the swine business. We have estimated the movements among

different swine sub-populations using a convex optimization problem, have formulated according

to the USDA-NASS data. The discrepancy from our optimization problem is about 5.45% of the

total swine population, which is slightly higher than that of a similar work on cattle movement

probability estimation [29] due to a greater amount of data available for cattle. Our estimation can

be improved if more data are available. The additional data that would improve the results most

is the type of swine operations (for example, nursery, farrow-to-feeder, farrow-to-wean, farrow-to-

finish, finish only etc.) at the county level. The USDA-NASS department can collect and publish

this information in future reports, as this additional data would not hamper the anonymity of the

Census of Agriculture yet greatly improve movement estimations.

The network development algorithm can provide us a realization of the network from the esti-
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Figure 2.6: Node groups according to eigenvector centrality, a) low-eigenvector central nodes,
b) medium-eigenvector central nodes, and c) high-eigenvector central nodes. The connections
among visible nodes are presented here.
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Figure 2.7: Link-strength or connection-weight distribution of the network. Log-log scale has
used for better visualization.

mated movement probabilities. The generated swine movement network was well connected with

a giant component containing 95.94% of the farms. The implication of this high connectivity is

that the swine industry may be vulnerable to infectious diseases. All the disconnected farms were

smaller farms (inventory size less than 100) where most of them produce meat for their own con-

sumption (60.5% of all small swine farms) [77]. In addition to that, most of these small farms are

engaged in all of the phases of swine production (farrow-to-finish producers) [78]. On the other

hand, larger farms have more connections among them. One possible reason could be that most

of the large farms are specialized in a single production phase to increase productivity [79, 80].

Consequently, pig shipments are very frequent among them.

We use centrality measures to understand the characteristics of the movement network. From

the analysis of the node-strength centrality measure, we notice that many nodes in the network

have low node-strength however very few nodes have high node-strength, who work as hubs in the

network. The node-strength distribution of the network is similar to that of scale-free networks

(Fig A.7). Compared to a random network, epidemics can disperse faster in a scale-free network.
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In addition to that, scale-free networks have lower epidemic threshold than comparable random

networks [81]. This information could be useful because targeted vaccination/node-removal is

more effective in scale-free structures than random vaccination [82]. The vaccination, or culling,

or quarantine of the hubs (farms with high node-strength) can be crucial to control an epidemic.

If we analyze the average shortest path length and the clustering coefficient of the overall net-

work, we see evidence of the small-world phenomenon in the network. The average path length

was similar and clustering coefficient was more than six times larger compared to the similar prop-

erties of the equivalent Erdos-Renyi random network [83], which satisfy the sufficient conditions

for small-world properties of the network [84]. The US swine movement network structure is quite

vulnerable to any disease propagation because of its small-world nature. This result is similar to

other studies as well [55–57]. This network has high local clustering. Size7 group (larger op-

erations: headcount is more than 1000) has the highest amount of local clustering (Fig 2.2 and

Fig 2.6). Therefore, large operations are highly interconnected, making them more vulnerable to

outbreaks. Moreover, the structure of the US swine industry has been changing over several years.

The number of large operations is increasing, where most of them specialize in one particular phase

of production. These changes are increasing the risk for disease outbreaks in the swine industry.

The correlation between in-strength (incoming movements) and out-strength (outgoing move-

ments) is strong. The nodes with high out-strength values also have high in-strength values. This

is an important indicator as the nodes with a high risk of receiving infection are also highly capable

of transmitting them.

Although the group size7 (largest operations) has the highest values of node-strength, clustering

coefficient, and eigenvector centralities it is not necessarily highest in terms of the betweenness

centrality measure. We found that group size6 has the highest betweenness centrality values (Table

2.3). The groups size4 and size5 also show high betweenness. The above-mentioned properties

indicate that the group size7 forms various clusters in the network, where the operations are highly

connected. The operations of medium size, however, maintain the connectivity among the clusters

of the largest group. Hence, these medium size operations play a key role in the system. During an

epidemic, it is possible to use these high betweenness farms to disconnect the movement network

and confine the disease in a smaller part of the network.
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We make several assumptions to simplify our model as all necessary data are not available.

We assume that the inventory size of the operations is constant on a year-to-year basis. We also

consider that movement flows are the same throughout the year because of the resolution limitation

of the available data. However, movement flows can be different from one season to another season.

The movement flows also can be sensitive to other factors, for example, production technology,

business strategy, and food availability. However, we do not have specific knowledge about these

factors at this point and inclusion of too many unknown factors increases the complexity and

uncertainty of the estimation problem given the limited data. Our estimation steps can be easily

adapted by adding more constraints when more data are available.

One immediate use of this network could be the investigation of the stochastic epidemic pro-

cesses [1, 11, 85–87]. This kind of study can help us understand the underlying mechanisms and

threshold conditions of epidemic processes for various swine diseases including porcine reproduc-

tive and respiratory syndrome (PRRS), classical swine fever (CSF), African swine fever (ASF) and

many more.

In summary, we present a maximum entropy approach to estimate the swine movement net-

work from aggregated anonymous census data. This method can be used to estimate movement

probabilities of other farm animals too for various locations.

2.8 Data availability

The dataset used to perform this research is available from https://quickstats.nass.usda.gov/. The

authors are willing to provide further details upon request.
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Chapter 3

Contact tracing evaluation for COVID-19

transmission in the different movement

levels of a rural college town in the USA1

Contact tracing can play a key role in controlling human-to-human transmission of a highly con-

tagious disease such as COVID-19. We investigate the benefits and costs of contact tracing in the

COVID-19 transmission. We estimate two unknown epidemic model parameters (basic reproduc-

tive number R0 and confirmed rate δ2) using confirmed case data. We model contact tracing in a

two-layer network model. The two-layer network comprises the contact network in the first layer

and the tracing network in the second layer. In terms of benefits, simulation results show that

increasing the fraction of traced contacts decreases the size of the epidemic. For example, trac-

ing 25% of the contacts is enough for any reopening scenario to reduce the number of confirmed

cases by half. Considering the act of quarantining susceptible households as the contact tracing

cost, we have observed an interesting phenomenon. The number of quarantined susceptible peo-

ple increases with tracing because each individual confirmed case is mentioning more contacts.

However, after reaching a maximum point, the number of quarantined susceptible people starts to

decrease with the increase of tracing because the increment of the mentioned contacts is balanced

1This chapter is a slightly modified version of our published article [39], Copyright©2021, Scientific Reports.
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by a reduced number of confirmed cases. This research aims to assess the effectiveness of contact

tracing for the containment of COVID-19 transmission in the different movement levels of a rural

college town in the USA. Our research model is designed to be flexible and can be used in other

geographic locations.

3.1 Background

COVID-19 has affected the lives of billions of people in 2019-2020. The COVID-19 disease is

caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has caused a global

health emergency. The world health organization (WHO) declared it a Public Health Emergency

of International Concern on January 30, 2020 [88]. The number of confirmed reported cases by

SARS-CoV-2 has been rising. On May 31, 2020, worldwide there were 5, 939, 234 laboratory-

confirmed cases with 367, 255 deaths [89].

Many countries issued a pandemic lockdown to slow down the COVID-19 transmission. In the

United States, a "Stay-At-Home" order was issued in many states. However, those pandemic

lockdowns have a massive impact on the economy. All the States of the USA started reopening

gradually from early May. Understanding the impact of mitigation strategies on the spreading dy-

namic of COVID-19 during the reopening phase of the USA is essential. In this work, we assess

the impact of contact tracing using an individual-based network model under four reopening sce-

narios: 25% reopening, 50% reopening, 75% reopening, and 100% reopening (no restriction).

Individual-based contact-network models are a powerful tool to model COVID-19 dispersal due to

COVID-19’s person-to-person transmission nature. In this work, we develop an individual-based

network model for a college town, Manhattan, KS, where households represent nodes of the net-

work. We select Manhattan, KS, as our study area since it is a typical college town in a rural region

of Kansas, the home of Kansas State University. There are 20, 439 occupied households in Man-

hattan, KS, according to census 2018 [90]. The connections between two individual households

represent the contact probabilities between the members of the households. To develop the contact

network, we consider age-stratification and use Google COVID-19 community mobility reports

[91]. The individual-based approach provides the flexibility to observe the local dynamic at the
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individual level. It also allows us to include a mitigation strategy in the model at the individual

level, such as contact tracing.

Designing an epidemic model for COVID-19 is challenging, as many epidemic features of the dis-

ease are yet to be investigated, such as, for example, the transmission rate, the pre-symptomatic

transmission rate, and the percentage of the asymptomatic population. These uncertain charac-

teristics make epidemic modeling challenging as the outcomes of the model are sensitive to the

assumption made on the uncertainties. Therefore, we use a simple epidemic model with five com-

partments –susceptible-exposed-infected-confirmed-removed (SEICR)– capable of imitating the

COVID-19 transmission and flexible enough to cope with new information. This model has only

two unknown parameters: the basic reproductive number R0 and the confirmed case rate or report-

ing rate δ2. An analytical/numerical approach to the computation of R0 can be found in Barril et

al. [92] and Breda et al.[93], respectively. We use COVID-19 cases from March 25, 2020, to May

4, 2020, in Manhattan, KS as data, and estimate the unknown parameters. We use this period to

estimate R0 as there was no reopening in Manhattan, KS; therefore, the contact network was the

same through the whole time. The other parameters are taken from the literature. In the COVID-19

transmission, there are pre-symptomatic and asymptomatic cases that may not show any sign of

illness [94]. Besides, there is a strong possibility that infected cases not detected exist. In our epi-

demic model, we have considered those unreported cases. We assume that a confirmed COVID-19

patient cannot transmit the disease anymore except in his/her household.

Since a vaccine is not available at the time of this writing in May 2020 for COVID-19, contact

tracing is a key mitigation strategy to control the COVID-19 transmission. Contact tracing is a

mitigation strategy that aims at identifying people who may have come into contact with a patient.

This mitigation strategy prevents further transmission by quarantine of exposed people. The public

health personnel have used contact tracing as a tool to control disease dispersal for a long time [95].

We implement two approaches of the contact tracing strategy through a two-layer network model

with two modified SEICR epidemic models. In the first contact tracing approach, we consider all

the traced contacts of a confirmed case will be quarantined, which follows the CDC contact trac-

ing guidance for COVID-19 (October 21, 2020) [95]. In the second contact tracing approach, we

consider only the tested positive traced contacts of a confirmed case will be isolated. We propose
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two quarantine approach to compare their effectiveness. This research finds that quarantine all the

traced contacts is always effective than quarantine only test positive traced contacts. The feasibil-

ity of contact tracing to control COVID-19 transmission was analyzed using a branching process

stochastic simulation for three basic reproductive numbers R0 = 1.5, 2.5, and 3.5 [96]. The authors

find that sufficient contact tracing with quarantine can control a new outbreak of COVID-19. They

mostly focus on the question of how much contacts need to be traced to control an epidemic for the

three levels of basic reproductive number. However, this article neither explored the effectiveness

of contact tracing for a specific location nor investigated the cost of contact tracing.

In this research, we develop an individual-based network framework to assess the impact of contact-

tracing in the reopening process in a college town of Kansas. To analyze the cost of contact-tracing

represented by the number of quarantined susceptible people, we develop a contact network and

estimate the basic reproductive number R0 and confirmed rate (infected to laboratory-confirmed

transition) from observed confirmed case data in Manhattan, KS. We use our individual-based net-

work model and the estimated parameters to run simulations of COVID-19 transmission. We use

our framework to understand the COVID-19 propagation and assess the contact-tracing strategy in

the different reopening situations.

Summarizing, the main contributions of this chapter are the following:

• A novel individual-level network-based epidemic model to assess the impact of contact trac-

ing

• A thorough investigation of costs and benefits of contact-tracing in the reopening process in

a college town of Kansas

The individual-based network model represents the heterogeneity in people mixing. Our individual-

based network epidemic model is general and flexible to estimate and model contact-tracing for

COVID-19 in any location. It also can model other diseases that have a similar transmission mech-

anism like COVID-19.
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3.2 Data

The study area of this research is a college town in the rural region of the USA: Manhattan, KS. We

use two data sets to develop our model. The first dataset contains the sociodemographic informa-

tion from the census 2018, and the second dataset contains the COVID-19 incidence data. We also

use Google COVID-19 community mobility reports [91] to reflect the "Stay-At-Home" situation.

3.3 Individual-based contact network model

We use demographic data to develop an individual-based contact network model capable of repre-

senting the heterogeneous social mixing. Our network has N nodes and L links. In this network,

each node represents one occupied household, a link between two households represents the con-

tact probability between members of these households. The system has a total population of p

individuals, distributed randomly into the N occupied households according to five social charac-

teristics: age, average household sizes, family households, couple, living-alone [90]. We maintain

the average household sizes, number of family households, number of couples, and number of

living-alone households. Besides, a person under 18 years old is always assigned to a house with

at least one adult person. To develop this network, we consider five age-ranges: under 18, 18− 24,

25 − 34, 35 − 59, and over 60. Each age-range has pi people, where i ∈ {1, 2, 3, 4, 5}. This model

considers large shared living spaces (for example, dorms) as a set of households with 4-8 students

in each household.

After assigning the people, an age-specific network is developed for each age range and a random

mixing network for all ages. Then a combination of the six networks provides the full network. A

full network represents a contact network for a typical situation. The configuration network model

[97] is used to develop age-specific networks and the random mixing network. The system has N

occupied households and p people. The steps to develop an age-specific network are:

Step 1: For each person j (here, j ∈ 1, 2, ..., p), contacts c j is assigned from a Gaussian distribution

N(µ, σ2). The mean µ of the Gaussian distributions are taken from the average number of

daily contacts per person in each age-range [98–100]. The average daily contacts per person
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are given in Table 3.1. For an under 18-year-old person, the number of contacts is assigned

randomly from theN(13.91, 6.95) distribution. For a person in 18−24 years age, the number

of contacts is assigned randomly from the N(21.25, 10.62) distribution. For a person in

25 − 34 years age, the number of contacts is assigned randomly from the N(21.3, 10.65)

distribution. For a person in 35 − 59 years age, the number of contacts is assigned from

the N(20.912, 10.46) distribution. For an over 60-year-old person, the number of contacts is

assigned randomly from the N(10.7, 5.35) distribution. In the random-mixing-network, the

number of contacts is assigned randomly from the N(2, 1) distribution for a person j. The

Gaussian or normal distribution is the distribution of real numbers; therefore, the number

from the N(µ, σ2) distribution is rounded to the closest integer.

Step 2: For each person j, contacts for its belonging household k is assigned by (c j − hk − 1). Here,

c j is the number of contacts for a person j, hk is the household size or number of people of

the household k, person j lives in the household k, j = 1, 2, 3......p, and k = 1, 2, 3......N.

Step 3: From the mixing patterns of different age-ranges, people have a strong tendency to meet peo-

ple with their same age range (more than 80%) [98–100]. Therefore, We keep the maximum

number of contacts among the same age ranges and a small percentage for the other age

ranges. The percentage of contacts in the same age-specific-network for each age-range is

given in Table 3.1. Degree dki of a node k in the age-specific network i is s% of (c j − hk − 1),

here, s% of average daily contacts of a person happens with the people of his same age-range.

Step 4: After assigning degree, dki for N nodes or households, The configuration network model

[97] creates half-edges for each node, then chooses two nodes randomly and connect their

half-edges to form a full edge [97].

The population and network characteristics for the five age-specific networks for Manhattan, KS

are given in Table 3.1. According to census 2018, Manhattan, KS has p = 55, 489 people and

N = 20, 439 occupied households [90].

Adjacency matrix for the full network A f is a summation of six adjacency matrices: A f =
∑5

i=1 Ai +

Ar. Here, Ai is the adjacency matrix for the age-specific network i, and Ar is the adjacency ma-
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Table 3.1: Properties of the Age-specific-networks of the Manhattan, KS.

Age-range under 18 18-24 25-34 35-59 over 60

population 8074 20378 9887 10581 6567

average daily contacts per
person [98]

13.91 21.25 21.3 20.91 10.7

average daily contacts with
non-household members per
person

12.00 20.00 19.98 19.00 7.05

% of neighbors in the same
age-specific networks [99]

85.63 90.48 90.29 84.95 71.43

number of edges in the age-
specific networks

40466 187723 88806 90835 16511

trix for the random mixing network. Age-specific networks and the random mixing network are

unweighted and undirected. However, the full network is weighted and undirected. The full

network for Manhattan (KS) has 445, 350 edges. The average node degree for an individual

household in the full-network is 43.647, and for an individual person is 16.0518 (which is con-

sistent with [98]). The degree distribution is presented in Fig. 3.1. The networks are available at

https://doi.org/10.7910/DVN/3IM82E.

The full network is a contact network in the normal situation; we modify it to represent the

contact network in the pandemic lockdown; we name it limited network. Manhattan, KS, is the

home of Kansas State University. Most of the people living in Manhattan, KS, are closely re-

lated to Kansas State University, which halted its in-person activities from early March 2020 to

August 17, 2020. Besides, Manhattan, KS was under the "Stay-At-Home" order from March 27,

2020, to May 4, 2020 [101]. To represent this unusual situation, we modify the full network to a

limited network version. As the educational institute was closed, we randomly reduce 90% links

from the age-specific networks for the age-ranges under 18 and 18 − 24. The Google COVID-

19 community mobility reports provide a percentage of movement changes in different places
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Figure 3.1: Degree distribution of the full network. In the network, households are at the node
level. The network has 20, 439 nodes and 445, 350 edges. The average degree of this network is
43.647. The maximum degree in the network is 227.

(for example, workplaces, recreational areas, parks) [91]. We reduced 40% links randomly from

the age-specific networks for 25 − 34, and 35 − 59 age-ranges for the movement changes in the

workplaces [91]. The number of links in the limited network is 155, 762. The limited network is

available at https://doi.org/10.7910/DVN/3IM82E.

3.4 Epidemic model

We design a susceptible-exposed-infected-confirmed-removed (SEICR) epidemic scheme to sim-

ulate the COVID-19 transmission (Fig. 3.2). This model has five compartments: susceptible S ,

exposed E, infected I, confirmed C, and removed R. A susceptible node is a node that is not in-

fected yet. An exposed node is a node infected by the disease, but the viremia level is deficient

that it cannot infect other nodes. An infected node is infectious, and it can infect other nodes. In

this model, an infected node can be symptomatic, asymptomatic, or presymptomatic. A confirmed

node is a laboratory-confirmed COVID-19 case. A removed node can be recovered or dead. The

SEICR model has five transitions, which are divided into two categories: edge-based (S → E),
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and nodal (E → I; I → C; C → R; I → R) transitions [1, 19].

An edge-based transition of a node depends on the state of its contacting nodes or neighbors in

the contact network with its own state. A nodal transition of a node only depends on the own

state. Each edge-based transition has an influencer compartment. A transition from susceptible to

exposed (S → E) of a susceptible node depends on the infected neighbors of that node. Therefore

it is an edge-based transition, and the infected compartment is the influencer compartment of this

transition. In this work, we are using the term ‘neighbors of a node k’ for the nodes, which have the

shortest path length 1 from the node k. The transition rate of the susceptible to exposed (S → E)

transition of a node k is β1

N∑
l

Ac(k, l)Il, here, β1 is the transmission rate from one infected node to

one susceptible node, Ac is the adjacency matrix of the contact network, if l node is infected then

Il = 1 otherwise Il = 0, and
N∑
l

Ac(k, l)Il is the number of infected neighbors of the node k. The tran-

sition rate for the transition exposed to infected (E → I) is δ1. The confirmed rate of an infected

person is δ2. We consider that a laboratory-confirmed case will be isolated and cannot transmit

the disease outside of his household anymore. The unknown COVID-19 cases will move from

infected to removed with a rate δ
′

2. We add another transition C → R with rate δ1, this transition

does not have any significance in the disease transmission. All the transition rates are exponen-

tially distributed with a constant average value (Table 4.2). A detail of the SEICR epidemic model

is stated in Table 4.2.

Figure 3.2: Node transition diagram of the susceptible-exposed-infected-confirmed (SEICR)
epidemic model. This model has five compartments: susceptible (S ), exposed (E), infected (I),
confirmed (C), and removed (R) compartments. The SEICR model has five transitions (presented
by solid lines): S → E (edge-based), E → I (nodal), I → C (nodal), C → R (nodal), and I → R
(nodal). The infected (I) compartment is the influencer compartment of the edge-based S → E
transition. The dashed line presents the influence of the I compartment on the S → E transition.
We estimate R0 and δ2 transition rate from data. We deduce β1 from R0.
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Table 3.2: Description of the susceptible-exposed-infected-confirmed (SEICR) epidemic model.

States type transition average transition rate
(days−1)

influencer source

S (Susceptible)
E (Exposed)
I (Infected)
C (Confirmed)

Edge-
based

S → E β1

N∑
l

Ac(k, l)Il here, β1 =

R0δ2
〈d〉〈w〉 ; 〈d〉 = average de-
gree; 〈w〉 = average weight

Neighbors
in state I

R0 is esti-
mated

nodal E → I δ1 = 1
3 - [102,

103]
I → C δ2 = 1

4.56 - estimated
C → R δ1 = 1

3 - model
I → R δ

′

2 = 0.66δ2 - [104]

3.4.1 Parameter estimation for the SEICR epidemic model

The SEICR model has two unknown parameters: basic reproductive number R0, and confirmed

or reporting rate δ2. To estimate the R0 and δ2, we have used confirmed cases in Riley County

(Kansas) from March 25, 2020 to May 4, 2020. In this period, Kansas State University was closed,

and "Stay-At-Home" order was there. It is reasonable to use this time period to estimate R0 as there

was no reopening and the mobility was the same throughout the period in Manhattan, KS. For the

simulation of this period, a limited network is used, which is a modified version of the Full network

to simulate the particular situation under the "Stay-At-Home" order. We use approximate Bayesian

computation based on sequential Monte Carlo sampling (ABS-SMC) approach to estimate R0 and

δ2 [11, 30]. The algorithm is in Appendix A. Other parameters (δ1 [102, 103], and δ
′

2 [104]) are

taken from the literature.

The estimated value for R0 is 0.55 (95% confidence interval: 0.522 − 0.564) and for reporting rate

δ2 is 1
4.79day−1 (95% confidence interval: 1

4.89 −
1

4.74day−1). These estimated values are specific for

Manhattan, KS for the time from March 25, 2020 to May 4, 2020. The R0 for different reopening

scenarios is presented in the supplementary Fig. S1. We consider that some people will develop

severe symptoms, and they will be reported as a confirmed case of COVID-19 sooner. However,

some people will produce deficient symptoms, and may they will be tested later. Therefore, the

estimated confirmed rate is an average of all possibilities.

A sensitivity analysis for R0 and reporting time on the mean-squared error between confirmed cases
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data and simulated results is presented in Fig. 3.3.

Figure 3.3: A sensitivity analysis. Mean-squared error (mse) between the time series of the total
confirmed cases (or cumulative new cases per day) of March 25, 2020 to May 4, 2020 and simu-
lated results for a different combination of basic reproductive number and average reporting time
(in days). The light-colored boxes represent more mse than dark-colored boxes. The color boxes
with number “1” means that mse≤ 3, number “2” means that 3 <mse ≤ 10, number “3” means
that 10 <mse ≤ 50, number “4” means that 50 <mse ≤ 100,number “5” means that 100 <mse
≤ 500,number “6” means that 500 <mse ≤ 1000,number “7” means that 1000 <mse. More than
80% times epidemic dies out in the combinations of the black squares, and confirmed cases are
less than 10. The minimum error combination is showing by the red circle. We estimate R0 = 0.55
and average reporting time= 4.79 days.

3.4.2 Simulation for four different reopening scenarios

We simulate the total confirmed cases (or cumulative new cases per day) for eight months: from

May to December using the SEICR epidemic model with the estimated parameters. To simulate,

we assume that there is no change except reopening from pandemic lockdown. We are presenting

four reopening situations: "Stay-At-Home" is still there or no reopening, 25% reopening, 50%

reopening, and 75% reopening. Kansas has started to reopen step by step after May 4, 2020. We

use the limited network to simulate from March 25, 2020 to May 4, 2020; then, we change the

network concerning the reopening situation. For example, in a 25% reopening situation, 25% of
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the reduced movement will start again; to model it, we add 25% missing links randomly (which are

present in the full network but not in the limited network). We preserve the states of each node at

May 4, 2020 in the network then use it as the initial condition for the simulation for the reopening

situation (from May 4, 2020 to July 1, 2020). Fig. 3.4 is showing the medians (solid lines) and

interquartile ranges (shaded regions) of the total confirmed cases of the 1000 stochastic realizations

of the four reopening scenarios. The zoom-in window in Fig. 3.4 shows the time period when data

was used to estimate the parameters of the epidemic model.

Figure 3.4: Total confirmed cases with time in the four reopening scenarios after ’stay at
home’ order lifted on May 4, 2020. Solid lines represent the median, and shaded regions repre-
sent interquartile range of the 1000 stochastic realizations. The blue circles in the zoom-in window
present the total confirmed case data of the COVID-19 in Manhattan (Kansas) for the time period
from March 25, 2020 to May 4, 2020. We have used this time period to estimate the basic repro-
ductive number and the average confirmed time. The red stars are the total confirmed case data of
the COVID-19 in Manhattan (Kansas) after May 5, 2020.
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3.4.3 Stochastic simulation

To do the simulation, we use GEMFsim; it is a stochastic simulator for the generalized epidemic

modeling framework (GEMF), which was developed by the Network Science and Engineering

(NetSE) group at Kansas State University [105]. The GEMFsim is a continuous-time, individual-

based, numerical simulator for the GEMF-based processes [1]. The network and epidemic model

is the input of the GEMFsim, and the time dynamic of each node state is the output. In GEMF, the

joint state of all nodes follows a Markov process that arises from node-level transition. A node can

change its state by moving from one compartment to another compartment through a transition.

One assumption of the GEMF system is, all the events or transitions are independent Poisson

processes with a constant rate; this assumption leads the system to a continuous-time Markov

process. Initially, the simulation starts by setting two infected nodes randomly. The stochastic

simulator GEMFsim is based on the Gillespie algorithm. The Gillespie algorithm can produce a

statistically correct trajectory of a continuous-time Markov process.

3.5 Contact tracing

Contact tracing is a key mitigation strategy to control the COVID-19 propagation. To implement

contact tracing, we modify the basic SEICR epidemic model and propose a two-layer network

model. In the implementation of the contact tracing, we follow the CDC’s guidance for contact

tracing [95].

3.5.1 Two-layer individual-based network model

This work implements contact tracing in a two-layer network model: the contact network is in

the first layer, and the tracing network is in the second layer (Fig. 3.5). We will call the first

layer as the contact-layer and second layer as the tracing-layer in the rest of the chapter. In the

t%-tracing-layer, t% of links of each node in the contact-layer are preserved randomly. To form a

t%-tracing-layer, at first, we generate a random number r from U(0, 1) for each link from a node

i; then keep the link in the tracing-layer if r ≤ 0.01t. A 50% tracing-layer is presented in Fig.
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3.5. Although the contact-layer is an undirected network, however, the tracing-layer is a directed

network. In the directed tracing-layer, a neighboring node of a node i has a distance one from node

i. The neighbors of a confirmed (C) node in the tracing-layer will be tested and quarantined.

Figure 3.5: Two-layer network model: contact-layer NC, and tracing-layer Nt. In this example,
50% of contacts of each node is traced. For example, node 4 has four neighbors in the contact-
layer (2, 3, 5, 8); however, two neighbors in the tracing-layer (2, 8). Node 7 has three neighbors
in the contact-layer (6, 5, 8); however, two neighbors in the tracing-layer (6, 5). Node 8 has three
neighbors in the contact-layer (4, 5, 7); however, one neighbor in the tracing-layer (4).

3.5.2 Epidemic scheme for contact tracing

For the contact tracing mitigation strategy, we consider two approaches for quarantine: I) all the

neighbors of a confirmed case in the tracing-layer will be quarantined, and II) only infected neigh-

bors of a confirmed case in the tracing-layer will be isolated. For the case I, we propose the SEICQ1

epidemic model, and for case II, we propose the SEICQ2 epidemic model. The SEICQ1 model

has eight compartments: susceptible (S ), exposed (E), infected (I), confirmed (C), quarantined-

susceptible (QS ), quarantined-exposed (QE), quarantined-infected (QI), and removed (R). The

SEICQ2 model has six compartments: susceptible (S ), exposed (E), infected (I), confirmed (C),
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quarantined-infected (QI), and removed (R). The transitions S → E, E → I, I → C, and I → R

are the same as the base SEICR model.

In the SEICQ1 model, neighbors (susceptible, exposed, and infected) of a confirmed node in

Figure 3.6: Node transition diagrams. a) SEICQ1 epidemic model, b) SEICQ2 epidemic model.
The solid lines represent the node-level transitions, and the dashed lines represent the influence of
the influencer compartment on an edge-based transition.

the tracing-layer will be tested and quarantined. In the SEICQ1 model, susceptible, exposed, in-

fected neighbors in the tracing-layer of a confirmed case will go to the quarantined-susceptible

QS , quarantined-exposed QE, and quarantined-infected QI states with rate β2. The susceptible to

quarantined-susceptible (S → QS ), exposed to quarantined-exposed (E → QE), and infected to

quarantined-infected (I → QI) transitions are edge-based transitions and confirmed compartment

is the influencer of these transitions. A COVID-19 positive neighbor of a confirmed node will
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go to the confirmed state immediately with δ3 rate, QI → C is a nodal transition. We model the

transition rates β2 and δ3 are much higher than the rate for the transition C → R to ensure that the

neighbors of a confirmed node in the tracing-layer will move to the quarantined or confirmed state

before the C → R event happens. For the simulation, we take β2 = δ3 = 50δ1. The SEICQ1 model

is presented in Fig. 3.6a. A description of the 11 transitions of the SEICQ1 model is given in Table

3.3.

In the SEICQ2 model, neighbors of a confirmed node in the tracing-layer will be tested, and only

infected neighbors will go to the quarantined-infected (QI) state immediately with the rate β2. The

node transition diagram of the SEICQ2 model is given in Fig. 3.6b. A description of the seven

transitions of the SEICQ2 model is given in Table 3.4.

Table 3.3: Description of the SEICQ1 epidemic model.

States type transition transition rate (days−1) inducer source

S (Susceptible)
E (Exposed)
I (Infected)
C (Confirmed)
QS (Quarantined-
Susceptible)
QE(Quarantined-
Exposed)
QI(Quarantined-
Infected)
R (Removed)

edge-
based

S → E β1

N∑
l

Ac(k, l)Il here, β1 =

R0δ2
〈d〉〈w〉 ; 〈d〉 = average degree;
〈w〉 = average weight

Neighbors of state
I in the contact-
layer

R0 is esti-
mated

S → QS
β2

∑
l

At(k, l)Cl here, β2 >> δ1,

we take β2 = 50δ1

Neighbors of
state C in the
tracing-layer

E → QE model

I → QI

nodal

E → I
δ1 = 1

3 [102, 103]
QE → QI -

C → R δ1 = 1
3 - model

I → C δ2 = 1
4.56 - estimated

I → R δ
′

2 = 0.66δ2 - [104]

QI → C δ3 >> δ1, we take δ3 = 50δ1 - model

QS → S δ4 = 1
14 - [95]

.
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Table 3.4: Description of the SEICQ2 epidemic model.

States type transitiontransition rate (days−1) inducer source

S (Susceptible)
E (Exposed)
I (Infected)
C (Confirmed)
QI(Quarantined-
Infected)
R (Removed)

edge-
based

S →

E
β1

N∑
l

Ac(k, l)Il here, β1 =

R0δ2
〈d〉〈w〉 ; 〈d〉 = average degree;
〈w〉 = average weight

Neighbors of
state I in the
contact-layer

R0 is esti-
mated

I →

QI

β2
∑
l

At(k, l)Cl here, β2 >>

δ1, we take β2 = 50δ1

Neighbors of
state C in the
tracing-layer

model

nodal

E → I δ1 = 1
3 [102, 103]

C → R δ1 = 1
3 - model

I → C δ2 = 1
4.56 - estimated

I → R δ
′

2 = 0.66δ2 - [104]

QI →

C
δ3 >> δ1, we take δ3 = 50δ1 - model

3.5.3 Impact of contact tracing

Contact tracing can minimize the effect of the reopening process and control the COVID-19 trans-

mission. We apply contact tracing after May 4, 2020 in Manhattan, KS. The simulation plot of

total confirmed cases on December 31, 2020 is presented in Fig. 3.7 for four reopening scenarios

: 25% reopening, 50% reopening, 75% reopening, and 100% reopening for the different levels of

contact tracing. The solid lines in Fig. 3.7 represent the median, and shaded regions represent the

interquartile range of the 1000 stochastic realizations for the SEICQ1 and SEICQ2 model.

The difference between SEICQ1 and SEICQ2 is that SEICQ1 quarantines susceptible, exposed,

and infected neighbors of a confirmed case in the tracing-layer; however, SEICQ2 isolates only the

infected neighbors of a confirmed case in the tracing-layer. The SEICQ1 model is always more

efficient than the SEICQ2 model to control the COVID-19 propagation. However, both approaches

can reduce the number of confirmed cases, even in the 100% reopening situation. For any reopen-
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(a) (b)

(c) (d)

Figure 3.7: Impact of contact tracing. Total reported cases in eight months after ’Stay-At-Home
order’ lifted for different movement restrictions scenarios. Contact tracing is applied after May
4, 2020. This figure is showing the median (solid lines) and interquartile range (shaded regions)
value of 1000 stochastic realizations.

ing situations, tracing more than 55% of the contacts in the SEICQ1 can reduce the median of the

1000 stochastic realizations of the confirmed cases more than 90%, and in the SEICQ2 can reduce

the median of the 1000 stochastic realizations of the confirmed cases more than 66% on December

31, 2020, with compare to no-contact-tracing (SEICR model) (Table 3.5).

The SEICQ1 model can reduce the reported cases further compared to SEICQ2 for the same

amount of contact tracing (Fig. 3.7). However, the SEICQ1 model has a drawback; it quarantines

susceptible persons. The number of total quarantined susceptible households in the simulation time

period for different amounts of traced contacts for the SEICQ1 model is presented in Fig. 3.8 and
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Table 3.5: Percentage of reduction of the total confirmed cases in eight months after May 4, 2020,
in the four reopening scenarios for the two contact tracing mitigation approaches.

Traced
contacts

Percentage of reduction in the total confirmed cases
SEICQ1 SEICQ2

25% re-
opening

50% re-
opening

75% re-
opening

100%
reopen-
ing

25% re-
opening

50% re-
opening

75% re-
opening

100%
reopen-
ing

5% 55.38 25.90 25.06 24.52 25.70 11.36 10.28 9.10
10% 71.37 43.50 35.87 33.5 48.54 22.84 18.20 16.40
15% 77.73 58.7 45.91 42.39 61.14 33.44 25.14 22.08
20% 84.60 72.60 55.49 42.39 72.64 44.24 32.21 27.90
25% 87.35 83.14 64.26 58.98 79.51 55.01 38.80 33.14
30% 89.52 90.67 72.37 65.90 83.47 66.36 45.47 38.39
35% 90.65 95.29 79.45 72.43 85.74 76.46 51.99 43.80
40% 91.67 97.26 85.16 78.28 86.90 85.00 58.76 49.40
45% 92.20 97.86 89.82 84.19 88.23 91.34 65.36 55.11
50% 92.49 98.02 93.18 88.74 88.75 95.62 72.36 60.97
55% 92.48 98.27 95.73 94.19 89.54 97.25 79.28 66.80
60% 92.41 98.22 96.87 96.60 89.17 97.96 86.59 72.75

Table 3.6. The quarantined susceptible households increase with the increase of tracing; however,

after tracing a certain percentage (tp%) of contacts, the quarantined susceptible households start to

decrease with the increase of tracing (Fig. 3.8). If we consider quarantined susceptible households

are the cost of SEICQ1 model, then it is cost-effective to trace contacts of the confirmed cases more

than tp%; which is 10% for 25% reopening, 10% for 50% reopening, 20% for 75% reopening, and

25% for 100% reopening (Table 3.6). The reason for decreasing the number of quarantined house-

holds with the increasing of contact-tracing after the tp% is the smaller number of infected cases.

Although each confirmed case will give a long list of possible contacts, this effect will be balanced

out by a decreasing number of the confirmed cases (supplementary Fig. S2-S5).

3.6 Summary

This research studies contact tracing as a key mitigation strategy to control the COVID-19 trans-

mission in the reopening process of a college town in the rural region of the USA. Therefore, we
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(c) (d)

Figure 3.8: The total number of quarantined susceptible households in eight months after May
4, 2020, for the SEICQ1 epidemic model for the four reopening scenarios with different tracing
levels. This figure is showing the median (solid lines) and interquartile range (shaded regions) of
1000 stochastic realizations.
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Table 3.6: Total quarantined susceptible households in eight months after May 4, 2020, in the
SEICQ1 epidemic model for the four reopening scenarios.

Traced
contacts

SEICQ1
25% reopening 50% reopening 75% reopening 100% reopening

Total
con-
firmed
cases
(me-
dian)

Total
quar-
antined
Sus-
ceptible
house-
holds
(me-
dian)

Total
con-
firmed
cases
(me-
dian)

Total
quar-
antined
Sus-
ceptible
house-
holds
(me-
dian)

Total
con-
firmed
cases
(me-
dian)

Total
quar-
antined
Sus-
ceptible
house-
holds
(me-
dian)

Total
con-
firmed
cases
(me-
dian)

Total
quar-
antined
Sus-
ceptible
house-
holds
(me-
dian)

5% 1141 941 10039 4278 15005 6796 18048 8727
10% 732 1086 7653 5997 12840 11329 15899 15486
15% 569 1052 5594 5231 10829 13515 13775 19706
20% 393 1051 3712 4582 8911 15071 11740 23355
25% 323 978 2284 3401 7156 14919 9807 25150
30% 268 911 1263 2124 5531 12120 8151 25122
35% 239 840 638 1053 4113 8938 6589 22120
40% 213 800 370 748 2970 5791 5193 18069
45% 199 765 290 667 2039 3050 3780 12883
50% 192 757 267 659 1365 998 2693 8052
55% 192 772 233 622 853 872 1386 2870
60% 194 784 241 650 625 856 813 1037
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propose a general framework to develop an individual-based contact network epidemic model to

estimate parameters and implement contact tracing. This model is used to estimate the basic re-

productive number (R0) and confirmed rate (δ2) in Manhattan, KS, for the COVID-19 propagation.

The outcomes of this research are valuable to understand the effectiveness of the contact-tracing

strategy in the different scenarios of the COVID-19 transmission. Furthermore, this framework is

generic enough to use any locations and for other diseases as well.

The individual-based network model represents the heterogeneous mixing nature of a population.

To investigate transmission at the individual level, we develop an individual-based contact network

model where households are presented by network nodes. The contact network is a combination

of five age-specific networks and one random-mixing network; this approach allows us to change

an age-specific network according to any change in the society (for example, summer break, pan-

demic lockdown). The pandemic lockdown reduces the contacts mostly among the people who are

students. Therefore, age-specific networks for under 18 and 18-24 are changed mostly. Pandemic

lockdown also affects people in 25-34, 35-59 age-ranges. We propose a ‘full network’ to represent

the usual situation; then, we modify the age-specific networks of the full network according to

Google COVID-19 community mobility reports [91] to represent pandemic lockdown . The mod-

ified network is the limited network, a reduced version of the full network. The average degree of

the full network is 43.647 for Manhattan, KS which means that each household has probable direct

connections with an average of 43.647 households. The full network is connected and provides an

approximation of the contact network at the household level, which is useful for doing the simula-

tion anonymously.

We propose a susceptible-exposed-infected-confirmed-removed (SEICR) epidemic model in the

limited network to simulate COVID-19 transmission from March 25, 2020 to May 4, 2020. We

estimate the unknown parameters of the SEICR model for the Manhattan, KS, using approximate

Bayesian computation based on sequential Monte Carlo sampling. We use confirmed cases as an

observed data set. Designing an optimal epidemic model to simulate epidemic processes is es-

sential. However, it is challenging to design an epidemic model for COVID-19 transmission with

limited knowledge; understanding the COVID-19 transmission needs more investigation. Con-

cerning the unclear role of immunity, we assume that the immunity of a recovered COVID-19
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patient is not going to fade in the short period analyzed in our simulations. In addition, we assume

that a tested positive person is responsible enough to stay in isolation. However, it is important to

keep the model simple, since the data available to estimate parameters is limited. Therefore, we

propose a simple but dynamic and flexible epidemic model to simulate COVID-19 transmission,

which has only two unknown parameters. The model can easily cope with additional information

that may be available in the future.

The estimated basic reproductive number is much smaller in Manhattan, KS (estimated R0 = 0.55)

because of the ‘Stay at home’ order. In Manhattan, 51% of people have age below 24 years, who

get a chance to stay at home because of the online curriculum in educational institutions. How-

ever, the basic reproductive number will change when educational institutes start their in-person

curriculum (in the 100% reopening, the deduced R0 is 2.0301). There are 301 college towns in

the USA [106], which have a similar population structure like Manhattan, KS. A practical contact

tracing approach can help to control the epidemic in those college towns.

We implement contact tracing using a two-layer network model. We assess the impact of con-

tact tracing in the four reopening scenarios: 25% reopening, 50% reopening, 75% reopening, and

100% reopening (or no restrictions). Reopening without vaccination is challenging. It is essential

to access the efficacy of the contact tracing in the reopening path. Our investigation indicates that

more than 50% contact tracing can control the COVID-19 transmission even in the 100% reopen-

ing situation. The number of quarantined susceptible people increases with the increase of traced

contacts, however after a certain amount of tracing (tp%), the number of quarantined susceptible

people decreases with the increases of the traced contacts. We consider that quarantined suscep-

tible people represent the cost of SEICQ1 contact tracing model. Therefore, it is cost-effective to

trace more than tp% contacts of a confirmed case. Our research finds that tp increases with the

increase in mobility (Table 3).

Our investigation indicates that a sufficient amount of contact tracing can reduce the COVID-19

transmission in the reopening process of a location. At first, the quarantined susceptible people

increase with the percentage of traced contacts, however after a certain amount of traced contacts,

the quarantined susceptible people start to decrease with the increase in the percentage of traced

contacts.
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3.7 Data availability

The dataset and code used to perform this research is available from https://doi.org/10.

7910/DVN/3IM82E. The authors are willing to provide further details upon request.
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Chapter 4

Group-based general epidemic modeling for

spreading processes on networks:

GroupGEM1

We develop a group-based continuous-time Markov general epidemic modeling (GroupGEM)

framework for any compartmental epidemic model (e.g., susceptible-infected-susceptible, susceptible-

infected-recovered, susceptible-exposed-infected-recovered). Here, a group consists of a collec-

tion of individual nodes of a network. This model can be used to understand the critical dynamic

characteristics of a stochastic epidemic spreading over large complex networks while being infor-

mative about the state of groups. Aggregating nodes by groups, the state-space becomes smaller

than the one of individual-based approach at the cost of an aggregation error, which is bounded

by the well-known isoperimetric inequality. We also develop a mean-field approximation of this

framework to reduce the state-space size further. Finally, we extend the GroupGEM to multilayer

networks. Individual-based frameworks are in general not computationally efficient. However, the

individual-based approach is essential when the objective is to study the local dynamics at the indi-

vidual level. Therefore, we propose a group-based framework to reduce the computational time of

the Individual-based generalized epidemic modeling framework (GEMF) but retain its advantages.

1This chapter is a slightly modified version of our published article [19], Copyright©2021, IEEE Transactions on
Network Science and Engineering.

60



4.1 Background

Epidemic spreading processes over complex networks is an essential topic for different research

fields such as epidemiology, social science, and computer science [6, 24, 69, 107]. Theoretical

models of stochastic epidemic spreading processes over a network can reveal important dynamic

characteristics of an epidemic. The spread of computer viruses, information, opinions, rumors,

knowledge, products, or any spreading process in a network of interactive agents can be modeled

as an epidemic process. All the above spreading processes follow some common patterns.

Compartmental models are widely used in the study of epidemics. In a compartmental model,

individuals/agents can be in different compartments. The set of compartments can be different for

different models. Widely used compartments in the literature are susceptible, infected, recovered,

immune, and latent [69]. The compartments can be different for different research areas or scenar-

ios. An individual can move from one compartment to another. In this research, we assume that

this event is an independent Poisson process with a constant rate; this assumption leads the system

to a continuous-time Markov process.

Some complex networks have a large set of nodes/agents, and epidemic modeling over those

very large networks is computationally expensive and time-consuming. To address this issue,

researchers have proposed several impactful models; Volz’s probability generating function (PGF)

model [108], Miller’s edge-based compartmental (EBC) model [109], and Lindquist’s effective

degree model [110]. Those models are computationally efficient. However, those models can only

provide information about the aggregate dynamics of an epidemic. In addition, most of those mod-

els are specific to a certain epidemic model on a specific category of networks [108–111]. The

individual-based approach can allow us to understand the local dynamics of an epidemic. The

individual-based approach is also more flexible in terms of the initial conditions. Sahneh et al.

proposed a generalized epidemic modeling framework (GEMF) for the individual-based approach

[1]. However, a drawback of the individual-based approach is computational time. To reduce the

computational time of the individual-based approach, sometimes researchers scale their population

by considering several individuals or a group as a single individual node [11, 36, 37]. This type

of scaling can alter the actual system, and estimation of the dynamics can be misleading. In this
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chapter, we propose a group-based model to reduce the computational time of the individual-based

framework (GEMF) while retaining its advantages.

Grouping or partitioning of the nodes of a network can be user-defined, deterministic from data,

or random. A group-state can tell us the summary of its nodes states and provide the local dynam-

ics at the group-level. A group-based framework is useful to find out the dynamics of any static

network such as communication, trade, social, biological, livestock, or power-grid networks. In

this new era, because of the improvement of digital technology, different types of communication

among humans are popular. As a result, a vast number of people are connected to form very large

networks. These networks can influence public opinion, which is very impactful in the field of

politics, economy, business, and others. A group-based framework can be useful to understand the

different dynamics of these very large networks. It can also help us find out the impact of a group

on the dynamics of the system. For example, it can assist in understanding the influence of the

opinion of a social group in a political event such as an election. The group-based approach can

be useful as well in modeling co-evolution spreading. In this big data age, it is possible to develop

realistic data-driven co-evolution spreading networks [112], and it is crucial to have tools to handle

them.

The heterogeneous mean-field method (HMF) [113, 114] and the N-intertwined mean-field method

(NIMFA) [14, 115] (also called the quenched mean-field (QMF), or individual-based mean-field

(IBMF) method [6]) are two well-established approximation methods for analysis of dynamical

processes on complex heterogeneous networks. They are two particular cases of the group-based

unified mean-field framework (UMFF), which was first proposed by Devriendt et al. for the

susceptible-infected-susceptible epidemic model [28]. In this article, we generalize the model of

Devriendt et al. and develop a group-based continuous-time Markov epidemic modeling (GroupGEM)

framework. The group-based approach has fewer degrees of freedom than NIMFA. Although

HMF also has this property, UMFF has more flexibility to choose groups. The heterogeneous

mean-field method (HMF) is a degree-based approach, and nodes of the same degree are assumed

statistically equivalent, which is not the only case for UMFF. Several models were developed to

improve HMF and IBMF approximations. The dynamical message-passing (DMP) model and

pair-quenched mean-field model were developed to improve the individual-based mean-field ap-
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proximation. However, HMF, IBMF, and DMP models cannot capture network topology and dy-

namical correlations together [116]. The pair quenched-mean-field (pQMF) model considers the

dynamical correlation between connected nodes by using pair approximation, and its equations

can be obtained by higher-order group-based UMFF equations, presented in detail in ref. [28].

The accuracy of all mean-field models is affected by a moment-closure approximation. We de-

velop a group-based continuous-time Markov epidemic modeling (GroupGEM) framework, which

does not contain a moment-closure approximation. Then, we propose mean-field equations of this

framework (GroupGEM mean-field) to further reduce the system-dimension, which now includes

a moment-closure approximation.

In this chapter, we develop a continuous-time Markov model for the general group-based network

model framework. This generalization covers any compartmental epidemic models, any static

networks (e.g., directed, undirected, weighted), and any disjoint network partitions. Generaliza-

tions of a model can increase its flexibility, compatibility, and applicability. Different dynamics

can be modeled with different compartmental models. In epidemiology, some disease dynam-

ics can be modeled by the susceptible-infected-susceptible (SIS) or susceptible-infected-recovered

(SIR) compartmental model, while some needed more complex compartmental models. A general

framework can offer more flexibility to researchers to model epidemic processes on a network.

The general group-based GroupGEM framework has lower computational complexity and faster

simulation time in comparison with the general individual-based GEMF framework because of the

reduced-state space size.

This chapter is organized as follows: the related knowledge of the work is reviewed in section 4.2

and 4.3. In section 4.4, we propose a continuous-time Markov process for a general group-based

epidemic modeling framework (GroupGEM). Then we provide the mean-field approximation for

this framework (GroupGEM mean-field) in section 4.5. We also provide some simulation results to

compare between individual-based and group-based framework in synthetic networks and empir-

ical networks. In section 4.6, we provide the multilayer extension of the GroupGEM framework.

Last, we provide future directions (section 4.7) and concluding remarks on our work (section 4.8).
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4.2 Compartmental epidemic models

Compartmental models can describe epidemic processes on a network G(N, E) [7]. Here, N is

the number of nodes, and E is the set of edges in the network G. In this chapter, we present a

group-based framework for any compartmental epidemic model. We consider two types of transi-

tions between compartments: 1) nodal transitions, and 2) edge transitions [1]. A nodal transition

of a node depends on the current state of the node. An edge transition of a node depends on the

current state of the node and the state of neighboring nodes. Each edge transition has an influencer

compartment that is the compartment of the neighboring nodes or state of the neighboring nodes,

which affect the edge transition. For example, in a susceptible-infected-susceptible epidemic, the

susceptible-to-infected edge transition of a susceptible node is caused by its infected neighboring

nodes. Therefore, the infected compartment is the influencer compartment for this edge transition.

Even though our focus is on the group-based approach, these node-level transitions are still rele-

vant. The change of a group-state occurs because of these node-level transitions. We call these

transitions are events when an event (nodal or edge transition) happens on a node of a group, the

group-state changes.

Prevalent epidemic compartmental models are:

4.2.1 Susceptible-infected-susceptible (SIS)

This model has two compartments, m ∈ {1, 2}: susceptible (m = 1) and infected (m = 2). A

node in the network can be susceptible or infected. There are two types of transitions in this

model: one is edge transition (susceptible-to-infected), and another is a nodal transition (infected-

to-susceptible). A susceptible-to-infected transition of a node depends on the infected neighbors of

that node. The infected compartment is the influencer compartment for the transition susceptible-

to-infected. In GroupGEM, each group will have two types of nodes: susceptible and infected.

The group-state will tell how many nodes are in each compartment. Let a group be in a state with

S susceptible nodes and I infected nodes. If one infected node changes its compartment to the

susceptible compartment, the group-state will change to a new state where it has S + 1 susceptible

nodes and I − 1 infected nodes.
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4.2.2 Susceptible-infected-recovered (SIR)

This model has three compartments, m ∈ {1, 2, 3}: susceptible (m = 1), infected (m = 2), and recov-

ered (m = 3). Recovered nodes acquire immunity and cannot be infected anymore. Each group can

have these three types of nodes. There are also two types of transitions in this model: susceptible-

to-infected (edge transition) and infected-to-recovered (nodal transition). In GroupGEM, each

group will have three types of nodes: susceptible, infected, and recovered.

4.2.3 Susceptible-exposed-infected-recovered (SEIR)

The SEIR model is a variation of the SIR model. This model has four compartments, m ∈

{1, 2, 3, 4}: susceptible (m = 1), exposed (m = 2), infected (m = 3), and recovered (m = 4).

An exposed node is infected but not yet infectious. There are three types of transitions in this epi-

demic model: susceptible-to-exposed (edge transition), exposed-to-infected (nodal transition), and

infected-to-recovered (nodal transition). For this model, the infected compartment is the influencer

compartment for the susceptible-to-exposed edge transition.

These are basic, widely used epidemic compartmental models. A compartmental model can

have any number of compartments and any number of transitions. Compartment number and type

can be different in the scenario of rumor spreading or computer virus spreading.

4.3 Generalized epidemic modeling framework (GEMF) [1]

The GEMF is an individual-based continuous-time Markov epidemic modeling framework. A

continuous-time Markov chain can model an epidemic process on a network when each transition

between compartments is an independent Poisson process with a constant transition rate [117].

The assumption of the independent Poisson process makes the system memoryless.

In the individual-based GEMF process, nodes are at the individual level. Each node has a fixed

number of possible states. The state of a node in a network for an M compartmental epidemic

model at time t is defined as ni(t) ∈ 1, 2, 3, . . . ,M. In an SIS epidemic process, if a node move

from compartment 2 to compartment 1 in a ∆t time by a nodal transition with rate δ, then waiting
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time for this transition in GEMF is exponentially distributed with rate δ. So,

Pr[ni(t + ∆t) = 1|ni(t) = 2] = δ∆t + o(∆t) (4.1)

Here, o(∆t) is a function of higher-order terms of ∆t.

For an edge transition of node i from compartment 1 to 2 with a transition rate β, when the node

has one infected neighbor, the infection process for the node i is

Pr[ni(t + ∆t) = 2|ni(t) = 1] = β∆t + o(∆t) (4.2)

An infective link can transmit the disease with a constant rate β. In a network of N nodes, the

individual-based continuous time Markov model GEMF has MN possible states for an M compart-

mental epidemic model [1].

In the following section, we present a group-based continuous-time Markov process epidemic

modeling on a network. All symbols and their definitions to develop this model are given in Table

4.1.

4.4 A group-based general epidemic modeling framework: GroupGEM

The first step to develop the group-based framework is to form the group-based adjacency matrix

from the individual-based adjacency matrix, which describes the connections at the group-levels.

A network consists of N nodes, which are divided into C disjoint non-empty groups. So

N = N1 +N2 + ....... +NC (4.3)

Here,Ni represents the number of nodes in a group i and i = 1, 2, ...,C. The adjacency matrix A of

the network G is a N × N matrix, where each element is a binary number,
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Table 4.1: Notation of parameters

Symbol Definition

N number of nodes

m index variable for compartments

M number of compartments in the epidemic model

t time

ni state of the node i

C no. of groups

Li j no. of links from group i to group j

Ni no. of nodes in group i

A adjacency matrix (dimensions are N × N)

Ag group-based adjacency matrix (dimensions are C ×C)

Vi group-state matrix of a group i

m→ n transitions of a node from compartment m to n

k → l transitions of a group from group-state k to l

xi,m no. of nodes in the compartment m in a group i

x j,r no. of nodes in the influencer compartment r in a group j.

r is the influencer compartment for the edge transition m→ n

gi group-state of a group i

G network-state

⊗ kronecker product

θi group transition rate matrix for a group i

∆i,δq transition-specific matrix for group i for a nodal

transition δq

∆i,βq transition-specific matrix for group i for an edge

transition βq

qn no. of nodal transitions

qe no. of edge transitions

Q network-state transition matrix

ρi fraction of the nodes in each compartment in group i

L no. of layers in the multilayer network

Agl group-based adjacency matrix for a layer l in the multilayer network
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A(i, j) =


1; if node i is connected with j by a link

0; otherwise
(4.4)

The group-based adjacency matrixAg of the networkG for a C disjoint partitions is a C×C matrix.

An element of the matrixAg(i, j) represents the links from group i to group j,

Ag(i, j) =
no. of links from group i to group j

NiN j
=

Li j

NiN j
(4.5)

Here, Li j indicates the number of links from group i to group j.

Li j = uiAuT
j (4.6)

Where, ui is a 1 × N vector, if kth node is in group i, then ui(k) = 1 otherwise ui(k) = 0.

The group-based adjacency matrixAg is a symmetric matrix for an undirected network. Diagonal

elements of theAg matrix are Lii
(Ni)2 , where Lii = uiAuT

i , so diag(Ag) ≥ 0. For the bipartite networks,

diag(Ag) = 0. If C == N, thenAg = A. An example of a network with two groups is presented in

Fig 4.1. The Ag matrix for this example is


L11
N1N1

L12
N1N2

L21
N2N1

L22
N2N2

. The value of the Ag for the undirected

network in Fig 4.1(a) is


2
4

3
6

3
6

4
9

 and for the directed network in Fig 4.1(b) is


1
4

2
6

1
6

2
9

.
4.4.1 Group-state

The group-based model does not contain information about each node-state but includes the state

of each group. The group-state gi(t) of a group i is a summary of its nodes state at time t. It reports

how many nodes in the group i are in which compartments.

From the stars and bars combinatorics problem [118], the number of possible group-states of a

group with Ni nodes for an M compartmental epidemic model is
(
Ni+M−1

M−1

)
. The stars and bars

combinatorics problem tells us the number of possible ways to putNi indistinguishable nodes into

M distinguishable compartments.
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(a)

(b)

Figure 4.1: A network with N = 5 nodes, which are divided into two groups, C = 2; (a)
undirected network, and (b) directed network.

Definition 1. (group-state matrix) The group-state matrix Vi contains all the possible group-state

of the group i. Each row of the Vi matrix represents each possible combination. The Vi of a group

i is a
(
Ni+M−1

M−1

)
× M matrix. Each row of the group-state matrix Vi is

[xi,1, xi,2, xi,3........xi,M] (4.7)

Here, xi,m represents the number of nodes in the compartment m in the group i, also 0 ≤ xi,1, xi,2, xi,3....xi,M ≤

Ni and
∑m=M

m=1 xi,m = Ni.

For example, Ni = 2,M = 3, and number of possible group-state is
(
Ni+M−1

M−1

)
= 6. Possible

states for this case are
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Dividers and nodes︷         ︸︸         ︷

| | ∗ ∗

| ∗ | ∗

| ∗ ∗ |

∗ | | ∗

∗ | ∗ |

∗ ∗ | |



Vi︷     ︸︸     ︷

0 0 2

0 1 1

0 2 0

1 0 1

1 1 0

2 0 0



(4.8)

Here, | represents a divider, and ∗ represents a node. Two dividers can divide the nodes into three

compartments. The left matrix represents a chart of dividers and nodes. In each row, nodes on the

left side of the first divider are in the first compartment, nodes between the first divider and the

second divider are in the second compartment, and nodes on the right side of the second divider

are in the third compartment. Each row represents a possible group-state. The first row represents

that the first compartment has zero nodes, the second compartment has zero nodes, and the third

compartment has two nodes. So, xi,1 = 0, xi,2 = 0, and xi,3 = 2. The right matrix presents the

group-state matrix Vi, where the first column is the number of nodes in the first compartment xi,1,

the second column is the number of nodes in the second compartment xi,2, and the third column is

the number of nodes in the third compartment xi,3.

Definition 2. (group-state indicator vector) The group-state indicator vector ek
i indicates that the

group i is in the kth possible state, ek
i is a

(
Ni+M−1

M−1

)
×1 vector. If the group i is in the kth possible state

(details of the kth possible state is in the kth row of the group-state matrix Vi), then the kth element

of ek
i is 1, and all the other elements are 0.

We propose the pattern in expression (4.8) to organize the dividers and nodes. This pattern al-

lows us to find the summary of nodes state of a group from the state indicator vector. If gi(t) = ek
i ,

then the group i is in the kth possible state at time t. The group-state gi(t) is a vector with
(
Ni+M−1

M−1

)
elements where all elements are zero except one element corresponding to the group-state.
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4.4.2 Network-state

Network-state G(t) is the joint-state of all groups at a time t. The network-state G(t) can be defined

as

G(t) = g1(t) ⊗ g2(t) ⊗ .......... ⊗ gC(t) (4.9)

Here, ⊗ represents the Kronecker product, which allows one-hot encoding to store the state space

and the infinitesimal generator matrix of the Markov chain [119, 120]. The dimensions of the

joint-state vector G(t) are
[∏C

i=1

(
Ni+M−1

M−1

)]
× 1. In G(t), all elements are zero except one element

corresponding to the network-state.

The disease propagation process of an M compartmental epidemic model in the network with N

nodes forms a continuous time Markov process. The number of states in the Markov chain or the

number of possible network-state in the group-based framework is
∏C

i=1

(
Ni+M−1

M−1

)
.

The number of states in the group-based Markov model is less than or equal to the number of

states in the individual-based Markov model. Therefore,
∏C

i=1

(
Ni+M−1

M−1

)
≤ MN . If C = N, then∏C

i=1

(
Ni+M−1

M−1

)
= MN which leads the group-based approach to the individual-based approach.

From the network-state G(t), it is possible to infer each group-state gi(t) in the following way

gi(t) =

(
1T
(N1+M−1

M−1 )×1
⊗ · · · ⊗ I(Ni+M−1

M−1 )×(Ni+M−1
M−1 ) ⊗ · · · ⊗ 1T

(NC+M−1
M−1 )×1

)
G(t) (4.10)

4.4.3 Group-level transitions

All events or transitions are modeled here as independent Poisson processes; therefore, waiting

times for events are exponentially distributed. Hence, the system has the memoryless property. An

event or transition in a group changes the network-state, which is the state transition in the Markov

chain. Transitions in the group-state are also two types: 1) nodal transition, and 2) edge transition.

Nodal transition

This transition depends only on the state of a group. It does not depend on the state of its neigh-

boring groups. If a nodal transition from compartment m to compartment n happens in a node of
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group i with a rate δq that means a node in group i moves from compartment m to n. Therefore,

the group will change its state for this nodal transition from group-state k to l with the rate xi,mδq.

If group-state k has xi,m nodes in compartment m and xi,n nodes in compartment n, then group-

state l has xi,m − 1 nodes in compartment m and xi,n + 1 nodes in compartment n. An example

of the group-level transition of a group i for an infected-to-susceptible nodal transition in the SIS

epidemic model is presented in Fig 4.2b.

(a)

(b)

Figure 4.2: An infected-to-susceptible nodal transition in the SIS epidemic model. The arrow
lines indicate the transition. (a) Node-level transition: an infected node in the group i moves from
infected to susceptible compartment with δ rate, (b) group-level transition: group i moves from
group state k to l with xi,Iδ rate for the infected-to-susceptible nodal transition of a node in the
group i. Group state k has xi,S susceptible nodes and xi,I infected nodes. Group state l has xi,S + 1
susceptible nodes and xi,I − 1 infected nodes. This figure only presents transition for an infected-
to-susceptible nodal transition; the other possible transitions are not visible here.

Edge transition and an approximation

An edge transition of a “group” i depends on its own state and the state of its neighboring groups.

An edge transition of a “node” in a group i depends on its neighboring nodes, which are distributed

in different groups. As an example, the susceptible-to-infected edge transition in a group i happens

if a susceptible node in group i is in contact with at least one infected node. However, the group-

level framework does not contain information about which node is in which compartment. Also,

the group-level adjacency matrix cannot tell about the exact neighbors of a node. Therefore, the

edge transition at the group-level needs an approximation at the network-level.
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The rate of an edge transition (m → n) depends on the number of edges from the nodes of com-

partment m to the nodes of influencer compartment r for that edge transition. Let X be the set of

nodes that are in compartment m in group i, and Y is the set of nodes that are in compartment r in

the group j. Now, LXY is the number of edges between X and Y. The red dotted lines in Fig 4.3

represent LXY, where m is the susceptible compartment, n is the infected compartment, and r is the

infected compartment in the SIS dynamic (here, n = r). The infection rate in group i for the group j

is proportional to LXY (red dotted links in the Fig 4.3). The group-level aggregation keeps the track

(a) (b)

Figure 4.3: A graphical explanation of the topological approximation. A network with two
groups is presented for a two compartmental epidemic model (susceptible-infected-susceptible
SIS). The green nodes are in the compartment m, and the red nodes are in the influencer compart-
ment r. The m compartment is the susceptible compartment, and the influencer r compartment
is the infected compartment. The red dotted edges represent the edges from susceptible nodes in
group i to infected nodes in group j (LXY in Eq. 4.12 is the number of such red dotted edges).
Sub-figure (a), and (b) are two possible combination of infected nodes in group j. Here, Li, j = 7,
Ni = 5, N j = 6, xi,m = 3, x j,r = 2. Therefore, Ag(i, j)xi,mx j,r = 1.4. In the sub-figure (a), LXY = 3,
and in the sub-figure (b), LXY = 0. The infection rate in group i for group j is proportional to
Ag(i, j)xi,mx j,r in the group-based approach. Therefore, Ag(i, j)xi,mx j,r approximates the expected
of the different possible combinations.
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of number of node in each compartment in a group and number of edges between two groups. For

the edge-based transition, the group-level aggregation needs an topological approximation, which

is defined as [28]

LXY ≈ Ag(i, j)xi,mx j,r (4.11)

Here,Ag(i, j) =
Li j

NiN j
; Li j is the number of edges between group i and j; xi,m is the number of nodes

in the compartment m in group i; and x j,r is the number of nodes in the influencer compartment r

in group j.

It is possible to give a bound on the topological approximation from the discrete isoperimetric

inequality 2 (Eq. 24 in [28]). Suppose that a network has N nodes which are divided into C disjoint

subsets. The discrete isoperimetric inequality [28, 121] for the number of links LXY with the first

endpoint in subset X and the second endpoint in subset Y is

|LXY − Ag(i, j)xi,mx j,r| ≤
θ

N

√
xi,m(N − xi,m)x j,r(N − x j,r) (4.12)

Here, θ is θ ∈ R and |d − σi| ≤ θ for i , 0. d is the average node degree, σi are the eigenvalues of

the Laplacian matrix of the network for 1 ≤ i < N.

There are other ways to give tighter bounds on this approximation derived from the Max-Cut prob-

lem and the expander mixing lemma [122].

An edge transition of a node depends on its neighborhood. However, the group-based adjacency

matrix does not contain information about the exact neighborhood of a node. Therefore, this

group-based model requires a topological approximation (Eq. 4.11), which is bounded by the

isoperimetric inequality (Eq. 4.12). The Szemerédi’s regularity lemma [123] may give an intuition

for which partitions in a network the topological approximation will be less erroneous. This regu-

larity lemma is a powerful tool in the extremal graph theory. According to this lemma, the nodes in

a large enough network can be grouped into a bounded number of groups so that the edges between

different groups behave almost randomly.

2Isoperimetric inequality is an ancient Greek problem. The isoperimetric inequality is a geometric problem -
finding the closed curve among all the possible curves of a given perimeter, which encloses the maximum area [28,
121].
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4.4.4 Evolution of the network-state

The evolution of the network-state G(t) follows a continuous-time Markov process. The network-

state is the joint-state of all group-states. In the group-based framework, groups are interacting

entities, which are jointly Markovian and form a collective system.

In the individual-based approach, each node is different concerning its connections with the neigh-

boring set of nodes; however, each node has the same set of possible states. In the group-based ap-

proach, each group is also different concerning its connections with the neighboring set of groups;

however, this approach has another complexity that each group can have different sets of pos-

sible group-states corresponding to their sizes. For example, in an SIS epidemic, each node in

the individual-based approach has two possible states: susceptible and infected. However, in the

group-based approach, each group has a different number of possible states dependent on their size

(number of nodes in that group); the number of possible states in a bigger group is larger than in

a smaller group. Therefore, the group-based Markovian process has another level of complexity

beyond the individual-based one.

Transition Rate

The group-state of a group changes when a node in the group changes its compartment. Waiting

time for any event or transition in the network is stochastically independent.

Definition 3. (Transition-specific Matrix) A transition-specific matrix of a group i for a transition

m → n indicates the group-state changes for the transition m → n. Transition-specific matrices

are group specific and transition specific. Transition-specific matrices are two types: 1) nodal

transition-specific matrix ∆i,δq , and 2) edge transition-specific matrix ∆i,βq . If a node moves from m

compartment to n compartment for the q-type nodal transition and the group-state changes from k
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to l, then the elements of ∆δqi can be defined as

∆i,δq(I,J) =



δqVi(k,m) if I = k and J = l

−δqVi(k,m) if I = k and J = k

0 otherwise

(4.13)

Here, I and J are index variables for the matrix ∆i,δq . The definition of ∆i,βq is the same as Eq.

4.13.

If an epidemic model has qn nodal transitions and qe edge transitions, then the framework has

qn + qe transition-specific matrices for a group i. For example, in the SIR epidemic model qn = 1

and qe = 1; in the SEIR epidemic model qn = 2, and qe = 1.

Definition 4. (Group Transition Rate Matrix) The group transition rate matrix θi of a group i

stores all the possible transitions rate of the group i. The θi(k, l) element of the group transition

rate matrix will store the transition rate from group-state k to l of a group i. If a group has
(
Ni+M−1

M−1

)
possible states then the dimensions of the group transition rate matrix are

(
Ni+M−1

M−1

)
×

(
Ni+M−1

M−1

)
.

If an epidemic model has qn types of nodal transitions and qe types of edge transitions, then an

element of the group transition rate matrix θi(k, l) has qn + qe parts. This element represents the

transition from state k to l, and each part corresponds to each transition. A part of θi(k, l) for a q

type nodal transition will be

(el
i)

T ∆T
i,δq

ek
i (4.14)

Now, let us consider a q-type edge transition from compartment m to n for the influencer compart-

ment r with the rate βq, which depends on the r compartmental neighboring nodes. The group-state

transition rate of a group i for the edge transition βq is

βq

j=C∑
j=1

xi,mAg(i, j)x j,r (4.15)
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Here, xi,m is the number of nodes in the m compartment in the group i and xi,m = (Vi(:,m))T gi(t).

Now, we can define the part of θi(k, l) for this edge transition as,

(el
i)

T
C∑

j=1

{Ag(i, j)x j,r}∆
T
i,βq

ek
i (4.16)

Therefore, an element of the group transition rate matrix θi is

θi(k, l) =

qn∑
q=1

(el
i)

T ∆T
i,δq

ek
i +

qe∑
q=1

(el
i)

T (
C∑

j=1

Ag(i, j)x j,r)∆T
i,βq

ek
i (4.17)

Here, θi(k, l) represents the rate for the group transition from state k to l. The Eq. (4.17) has two

parts; the first is for all types of nodal transitions, and the second is for all kinds of edge transitions.

The group transition rate matrix θi is group-specific; different groups will have different θi matrices.

Group-based Markov process

The evolution of the network-state G(t) is a continuous-time Markov process, where actual Markov

states are the possible network-states. This process is fully characterized by systems of differential

equations named as the Kolmogorov differential equations for a given initial condition. The proce-

dure to derive the Kolmogorov differential equations for a Markov chain from one-state transition

rates is described in ref. [124, 125].

Theorem 1. The Kolmogorov differential equations describe the dynamics of the underlying group-

based continuous-time Markov process for an epidemic process in a network with N nodes, which

are divided into C disjoint subsets. The Kolmogorov differential equations for the group-based

framework are
d
dt

E[G] = QT E[G] (4.18)

Eq. (4.18) is the time evolution of the network-state. Here, Q is the infinitesimal generator of

the underlying Markov process (computed in the Appendix B.1). This closed set of differential

77



equations can fully characterize the network-state. Dimensions of the Q are
[∏C

i=1

(
Ni+M−1

M−1

)]
×[∏C

i=1

(
Ni+M−1

M−1

)]
.

Proof. If a network is in the G(t) state at time t, then the evolution of the network-state tells us

the network-state after ∆t time G(t + ∆t). To obtain G(t + ∆t), we first derive the expression for

the state of group i at time (t + ∆t), given that the network is in the G(t) state at time t, which is

Pr[gi(t + ∆t) = el
i|gi(t) = ek

i ,G(t)]. This expression indicates the probability of a transition of group

i from state k to l in time interval (t, t + ∆t].

The transition from group-state k to l is an independent Poisson process, which occurs in (t, t + ∆t]

time interval. Therefore,

Pr[gi(t + ∆t) = el
i|gi(t) = ek

i ,G(t)] = θi(k, l)∆t + o(∆t) (4.19)

Eq. (4.19) will be used to derive the time evolution of the network-state. The group transition rate

matrix θi gives us a description of the group-level transition.

The expected value of a group-state in the next time step, when the network is in the G(t) state, can

be obtained from Eq. (4.17) and (4.19),

E[gi(t + ∆t)|G(t)] =

qn∑
q=1

∆T
i,δq

gi(t)∆t +

qe∑
q=1

(
C∑

j=1

Ag(i, j)x j,r)∆T
i,βq

gi(t)∆t + gi(t) + o(∆t) (4.20)

Now, considering the expected value of both sides in Eq. (4.20),

E[E[gi(t + ∆t)|G(t)]] = E[gi(t + ∆t)] =

qn∑
q=1

∆T
i,δq

E[gi(t)]∆t

+

qe∑
q=1

∆T
i,βq

E[hi(t)gi(t)]∆t + E[gi(t)] + E[o(∆t)] (4.21)

In Eq. (4.21), the expression for hi(t) is

hi(t) =

C∑
j=1

Ag(i, j)x j,r (4.22)
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Here, compartment r is the influencer compartment for the qth edge transition.

After rearranging the Eq. (4.21) as follows:

E[gi(t + ∆t)] − E[gi(t)]
∆t

=

qn∑
q=1

∆T
i,δq

E[gi(t)] +

qe∑
q=1

∆T
i,βq

E[hi(t)gi(t)] +
E[o(∆t)]

∆t
(4.23)

Let ∆t → 0, so the Eq. (4.23) will become,

d
dt

E[gi(t)] =

qn∑
q=1

∆T
i,δq

E[gi(t)] +

qe∑
q=1

∆T
i,βq

E[hi(t)gi(t)] (4.24)

The rest of the proof is given in Appendix B.1. �

The network-state evolution in the group-based structure is a multidimensional birth-death pro-

cess, a particular case of the continuous-time Markov process. Numerical simulation of the collec-

tive network system is useful in understanding the system dynamics.

Remark. By partitioning the population into C groups, we go from MN states to
( N

C +M−1
M−1

)C
states,

which is already polynomial in N for a constant number of groups and quasi-polynomial in N for

a logarithmic number of group, i.e., C = O(log N).

4.5 Mean-field approximations of the GroupGEM

It is possible to reduce the state-space size of the continuous-time Markov model of the group-

based approach (Eq. 4.18) by using closure approximations techniques. In this chapter, we pro-

pose two levels of first-order moment closure approximation to further reduce the state space size:

1) inter-group mean-field approximation, 2) intra- and inter-group mean-field approximation.

4.5.1 Inter-group mean-field approximation

In the inter-group mean-field approximation, we assume states of a group are uncorrelated with

other groups, which gives us the joint probability distribution of states within groups.
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Theorem 2. The inter-group first-order mean-field approximation reduces the state space size of

the group-based Markov model to
∑C

i=1

(
Ni+M−1

M−1

)
. The inter-group mean-field equation of the group-

based framework is

d
dt

E[gi(t)] =

qn∑
q=1

∆T
i,δq

E[gi(t)] +

qe∑
q=1

( C∑
j=1

Ag(i, j)(Vg
j (:, r))T E[g j(t)]

)
∆T

i,βq
E[gi(t)] (4.25)

Proof. The Eq. (4.24) and (4.18) contain higher-order moment terms E[hi(t)gi(t)]. This framework

has assumed that states of individual groups are independent random variables and invoke moment-

closure approximation for those higher-order moments. This approximation allows us to assume

the covariance between two random variable hi(t) and gi(t) is zero. From the first moment-closure

approximation we can write,

Cov[hi(t)gi(t)] ≈ 0 (4.26)

⇒ E[hi(t)gi(t)] ≈ E[hi(t)]E[gi(t)] ≈

C∑
j=1

Ag(i, j)(V j(:, r))T E[g j(t)]E[gi(t)] (4.27)

�

4.5.2 Intra- and inter-group mean-field approximation

The intra- and inter-group mean-field approximation assumes uncorrelation within and across the

groups. If a node in a group i moves its compartment from m to n with a rate of δq, then the

population in the corresponding compartments will change in the group i (Fig 4.2). The nodal

transition matrix Φδq for the intra- and inter-group mean-field represents a nodal transition from

compartment m to n with rate δq. It has dimensions M×M, where Φδq(m,m) = −δq, Φδq(m, n) = δq,

and otherwise zero. This matrix has the form of a Laplacian matrix. An edge transition matrix Φβq

has similar structure.
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Theorem 3. The intra- and inter-group mean-field equation for the group-based framework is,

d
dt

E[Xi] =

qn∑
q=1

ΦT
δq

E[Xi] +

qe∑
q=1

( C∑
j=1

Ag(i, j)E[X j,r]
)
ΦT
βq

E[Xi] (4.28)

Here, Xi = [xi,1, xi,2, xi,3........, xi,M]T .

The intra- and inter-group first-order mean-field approximation provides marginal state probabil-

ities of each group yielding only MC equations, which is independent of the network size N for a

constant number of groups C.

Proof. Appendix B.2. �

If the fraction of nodes in each compartment in group i is ρi = E[Xi]
Ni

, where ρi = [ρi,1, ρi,2....., ρi,M]T

and
∑M

m=1 ρi,m = 1, then Eq. (4.28) can be written as

ρ̇i =

qn∑
q=1

ΦT
δq
ρi +

qe∑
q=1

( C∑
j=1

Li j

Ni
ρ j,r

)
ΦT
βq
ρi (4.29)

Group-based intra- and inter-group mean-field equations for SIS, SIR, and SEIR epidemic models

are given in Appendix B.3.

4.5.3 Numerical experiments

We perform a numerical study to evaluate the performance of the group-based approach. We com-

pare the simulation results of the intra- and inter-group mean-field equations with the exact Markov

process of the individual-based approach, which does not have any approximation errors. We in-

vestigate the global and local dynamics of the Barabási-Albert (N = 10000,m = 40) scale-free

random network, Erdös-Rényi (N = 10000, p = 0.01) random network, and two empirical net-

works. We also propose four different ways to group the nodes and investigate their performance.
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Simulations on synthetic networks

The simulation results on a Barabási-Albert (N = 10000,m = 40) random network for an SIS

(β = 0.0167 and δ = 1), and an SIR (β = 0.0167 and δ = 1) epidemic model are presented in Fig

4.4, 4.5, 4.6 and 4.7. The number of edges and average node degrees of this network are 399157

and 79.83, respectively. As an initial condition, we have started the epidemic by setting the first

0.2% of nodes as infected nodes.

The sub-figure (a) in Fig 4.4, and 4.6 represents the normalized population in different compart-

(a) (b)

(c) (d)

Figure 4.4: Global dynamics of an SIS epidemic in a Barabási-Albert network (N =

10000,m = 40); a) stochastic numerical simulation of the individual-based continuous-time ex-
act Markov model GEMF, solid lines represent the average of the 1000 simulations and shaded
areas represent the region of the stochastic simulations; b) group-based: C = 100,N1 = N2 =

..... = NC = 100, simulation time = 0.151s; c) group-based: C = 50,N1 = N2 = ..... = NC = 200,
simulation time = 0.049s; and d) merging of all sub-plots a-c.
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ments of stochastic numerical simulations of the individual-based continuous-time exact Markov

model GEMF. The simulation result of intra- and inter-group mean-field group-based framework

is presented in sub-figure (b), and (c). In the sub-figure (b), nodes are divided into 100 groups

sequentially, while each group has 100 nodes. Similarly, nodes are divided into 50 groups in the

sub-figure (c), while each group has 200 nodes. Sub-figure (d) is presenting the merging of sub-

plots (a)-(c).

The GroupGEM framework allows us to do the local dynamic analysis at the group-level. We

present the local dynamic analyses in Fig 4.5 and 4.7. To see the local dynamics, we choose a par-

tition, where nodes are divided into 100 groups sequentially (Fig 4.4(b), and 4.6(b)). At t = 0, first

20 nodes are infected, which are belongs to group 1. Fig 4.5(a) is presenting normalized infected

populations in groups 1, 7, and 63 in the SIS epidemic model. We have picked group 7 and 63

randomly. Fig 4.7(a) presents normalized infected populations in groups 1, 15, and 92 in the SIR

epidemic model. We average the state of all nodes of a group of the individual based stochastic

simulations to compare the dynamic of a group with the group-based approach. Different groups

have different levels of infected populations, which are also other than the global infected popu-

lation. The GroupGEM is informative at the group-level for an epidemic. Fig 4.5(b) and 4.7(b)

present the histogram of the absolute error for all groups at a fixed time.

A comparison of simulation time between the individual-based and group-based approaches of Fig

4.4 and 4.6 is given in Table 4.2. The computational environment was the same for each case. From

Fig 4.4(d) and 4.6(d), the group-based approaches can produce similar dynamics as the individual-

based approaches in SIS and SIR disease models in a Barabási-Albert network. From Table 4.2, the

simulation time for group-based methods is less than the simulation time for the individual-based

approaches. A similar investigation on an Erdös-Rényi random network is provided in Appendix

B.4.

Simulations on empirical networks

We use GroupGEM intra- and inter-group mean-field approach to simulate susceptible-infected-

susceptible (SIS) epidemic model (β = 0.25, δ = 1, first 20 nodes are infected at t = 0) on two
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(a) (b)

Figure 4.5: Local dynamics at the group level for the case in sub-figure 4.4(b). Simulations
on a Barabási-Albert network (N = 10000,m = 40) (SIS epidemic model: β = 0.25, δ = 1, node:
1− 20 were infected at t = 0). a) Time dynamics of the normalized infected population of group 1,
7, and 63. Solid lines represent the mean of stochastic individual-based simulation (average the dy-
namic of nodes of a group to compare), and shaded regions represent 1000 stochastic simulations.
Solid lines with markers represent the output from the intra- and inter-group mean-field model. b)
Histogram of absolute error of the normalized infected population of all groups at t = 8. Here,
x-axis is the absolute error of the intra- and inter-group mean-field model compares to the mean of
the stochastic individual-based simulations, and y-axis is the no. of the groups or frequency.

empirical social networks. The first network was generated from email communication between

members of a large European research institution [2]. This network has 1005 nodes, and 25571

edges. The clustering coefficient of this network is 0.4. We divide this network into 56 groups,

which reduces the simulation time more than 11 times compared to individual-based mean-field

and more than 300 times compared to stochastic simulations (200 realizations). The output of the

group-based approach can provide information about the group-states of this 56 group.

The second network was generated from links between users of Slashdot (a technology-related

news website). It has 82168 nodes and 948464 edges [2]. We divide the nodes of this Slashdot

network into 11914 groups. The group-based approach reduces simulation time more than 50 times

compared to individual-based mean-field and more than 1100 compared to stochastic simulations

(200 realizations). At any time t, the group-based model can provide the summary of nodes state

of 11914 groups. We compare our results with an average of 200 stochastic simulations in Fig 4.8.

The networks and the groupings are given in our publicly shared supporting dataset (http://ieee-
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(a) (b)

(c) (d)

Figure 4.6: Global dynamics of an SIR epidemic in a Barabási-Albert network (N =

10000,m = 40); a) stochastic numerical simulation of the individual-based continuous-time exact
Markov model GEMF, solid lines represent the average of the 1000 simulations and shaded areas
represent the region of the stochastic simulations; b) group-based: C = 100,N1 = N2 = ..... =

NC = 100, simulation time = 0.0.088s; c) group-based: C = 50,N1 = N2 = ..... = NC = 200,
simulation time = 0.042s; and d) merging of all sub-plots a-c.

dataport.org/2182).

The group-based GroupGEM framework allows us to do the local dynamic analysis at the group

level. The GroupGEM framework gives the flexibility to start the epidemic from specific nodes.

Local dynamic analysis for the email-Eu-core network [2] is presented in Fig. 4.9. At t= 0, node:

1 − 20 are infected and they are belongs to group 1. To see the time dynamics of the infected

population at the group-level, we pick group 5 and 30 randomly (Fig. 4.9(a)). We use the average

of the state of all nodes of a group of the individual based stochastic simulations to compare
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(a) (b)

Figure 4.7: Local dynamics at the group level for the case in sub-figure 4.6(b). Simulations on
a Barabási-Albert network (N = 10000,m = 40) (SIR epidemic model: β = 0.25, δ = 1, node:
1 − 20 were infected at t = 0). a) Time dynamics of the normalized infected population of group
1, 15, and 92. Solid lines represent the mean of stochastic individual-based simulation (average
the dynamic of nodes of a group to compare), and shaded regions represent 1000 stochastic sim-
ulations. Solid lines with markers represent the output from the intra- and inter-group mean-field
model. b) Histogram of absolute error of the normalized recovered population of all groups at
t = 12. Here, x-axis is the absolute error of the intra- and inter-group mean-field model compares
to the mean of the stochastic individual-based simulations, and y-axis is the no. of the groups or
frequency.

the dynamic of a group with the group-based approach. The network and grouping of nodes are

uploaded as a supplementary file in the IEEE data port (http://ieee-dataport.org/2182).

Grouping approaches

We investigate four conventional and intuitive heuristic ways to group the nodes: 1) random, 2)

degree-based, 3) community, and 4) k-partite. In a random grouping, we randomly divide the

nodes into different groups. In a degree-based grouping, nodes are grouped according to their

degree. Nodes in a group have the same degree. The community grouping approach is only appli-

cable to the networks which have community structure. In the community structure, nodes have

more connections inside the communities than between communities. In a community grouping,

we divide the nodes according to their community. The nodes of a group are from the same com-
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Table 4.2: A comparison of simulation time between individual-based and group-based ap-
proaches.

case No. of
Groups

simulation
time

SIS SIR SEIR

Individual-based stochastic
GEMF (1000 realizations)

- 3140s 448s 895s

Individual-based mean-field - 62.409s 12.183s 15.264s

group-based mean-field 100 0.151s 0.088s 0.147s

group-based mean-field 50 0.049s 0.042s 0.066s

group-based mean-field 10 0.016s 0.018s 0.019s

munity. In the k-partite grouping, we select groups in a way that a group does not have any internal

connections. To choose a k-partite partition, we use a solution of the graph coloring problem

[126].

We apply these four heuristic ways in four different networks: a) Barabási-Albert (BA) scale-

free (N = 10000,m = 40) random network, b) Erdös-Rényi (ER) (N = 10000, p = 0.01)

random network, c) stochastic-block model (SBM) (N = 10000, pi = 0.05, po = 0.0001) net-

work, and d) email-Eu-core empirical network [2]. The first three synthetic networks have the

same average node degree. Barabási-Albert (BA) and Erdös-Rényi (ER) network do not form

any community structure; therefore, we do not inspect community grouping in these networks.

We use a community grouping in the stochastic-block network and the email-Eu-core empiri-

cal network. This Stochastic-block network has 10 communities and sizes of the communities

are 2000, 1000, 500, 600, 100, 2000, 300, 2000, 100, and 1400. The email-Eu-core network has 42

communities, which are defined from data [2].

Fig 4.10 presents the simulation results for the four heuristic grouping approaches. Fig 4.10 has

a double y-axis: the left y-axis shows the simulation times, and the right y-axis presents the ab-

solute error of the intra- and inter-group mean-field model. We calculate the absolute error of the

metastable [14] infected population in the susceptible-infected-susceptible (SIS) epidemic process

(β = 0.0167 and δ = 1) by using individual-based exact continuous-time Markov model GEMF as
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(a) (b)

Figure 4.8: Simulations on empirical networks for an SIS epidemic (β = 0.25, δ = 1, node: 1-
20 were infected at t = 0). Solid lines represent the mean of stochastic individual-based simulation
(average the dynamic of nodes of a group to compare), and shaded regions represent 200 stochastic
simulations. Solid lines with markers represent the output from the intra- and inter-group mean-
field model. (a) email-Eu-core network, (b) Slashdot social network, February 2009.

the benchmark. Our investigation indicates that simulation time decreases, and absolute error in-

creases in every case with the increase of average group size, as increases of the average group size

reduces the number of groups. From the investigation of absolute errors, we find that random, and

k-partite approaches are more erroneous than the community and degree-based methods for the

BA, and SBM network. The grouping error for the community method is close to zero in the SB

and email-Eu-core network. Random grouping can not perform well in terms of accuracy in any

of the networks. Absolute error for the ER network is almost zero for any grouping approaches;

therefore, we do not present it in Fig 4.10.

The group-based GroupGEM framework is a solution with reduced computational time. However,

because of topological and moment-closure approximation, results can deviate from the exact pro-

cess. Even though this is not in the scope of this research, from previous research work, the mean-

field SIS model is less accurate in sparse graphs [1]. Accuracy of the mean-field models is also

sensitive to the network structure. The mean-field model can follow the exact process very closely

when the size of the network is very large [127]. Extensive numerical simulation of GroupGEM in

different scenarios concerning different network structures, initial conditions, and group sizes can
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(a) (b)

Figure 4.9: Local dynamics at the group level. Simulations on the email-Eu-core network [2]
(SIS epidemic model: β = 0.25, δ = 1, node: 1 − 20 were infected at t = 0). a) Time dynamics
of the normalized infected population of group 1, 5, and 30. Solid lines represent the mean of
stochastic individual-based simulation (average the dynamic of nodes of a group to compare), and
shaded regions represent 1000 stochastic simulations. Solid lines with markers represent the output
from the intra- and inter-group mean-field model. b) Histogram of absolute error of the normalized
infected population of all groups at t = 6. Here, x-axis is the absolute error of the intra- and inter-
group mean-field model compares to the mean of the stochastic individual-based simulations, and
y-axis is the no. of the groups or frequency.

be a valuable research topic for future analysis.

4.6 Multilayer extension of the GroupGEM

In the real world, a contact network among interacting agents can have a complex structure, where

the nature of the connection between two agents can be of multiple types. For example, in the

rumor-spreading network, two people can be connected via Facebook or they can be connected

via Twitter. To represents these complex structures, researchers are using multilayer networks

[128, 129], where each layer represents each type of connection. If a social network has three

types of connections: direct connection, Facebook connection, and Twitter connection, then a

three-layer network can be used to represent this network where each layer corresponds to each

type of connections. In a disease-spreading network, if a disease disperses through direct contact

and by air, then a two-layer network will represent the network more precisely; one layer is for
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(a) (b)

(c)

Figure 4.10: Analysis of simulation time and absolute error for different grouping methods.
a) Barabási-Albert (BA) scale-free random network, b) stochastic-block model (SBM) network,
and c) email-Eu-core empirical network.

direct contact and another layer for air transmission.

In the group-based structure, nodes and groups will be maintained in each layer; however, the con-

nection among them will be different for different layers. An example of a group-based multilayer

network, presented in Fig 4.11, has three layers. Groups are the same for each layer; however,

connections are different for each layer. In particular, green lines form the link of layer-1, red lines

form the link of layer-2, and purple lines form the link of layer-3.
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Figure 4.11: Example of a multilayer network that has three layers. The nodes are divided into
three groups.

If the network has L layers, then the Eq. (4.24) can be modified as

d
dt

E[gi(t)] =

qn∑
q=1

∆T
i,δq

E[gi(t)] +

qe∑
q=1

( L∑
l=1

∆T
i,βql

E[hil(t)gi(t)]
)

(4.30)

Here, the matrix for edge transition ∆i,βql is layer-specific, and hil(t) =
∑C

j=1 Agl
i j X j,r. The transition

rate for edge transition can different for different layers. Also, the mean field equation, Eq. (4.28),

can be modified for the multilayer network as

d
dt

E[Xi] =

qn∑
q=1

ΦT
δq

E[Xi] +

qe∑
q=1

( L∑
l=1

( C∑
j=1

Agl
i j E[X j,r]

)
ΦT
βql

)
E[Xi] (4.31)
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Only the parts for edge transition in Eq. (4.24) and (4.28) are needed to be modified for the

multilayer extension, as nodal transitions are independent of the network structure. The Eq. (4.29)-

C.3) can be rewritten in this similar manners as Eq. (4.31).

4.7 Future directions

In this chapter, we propose a continuous-time Markov model for the general group-based epidemic

modeling (GroupGEM) framework for any compartmental model. Extensive performance analysis

of the group-based approach in different types of networks with different initial conditions can be

an exciting future step for this research. The group-based continuous-time Markov GroupGEM

model contains a topological approximation, which is bounded by the isoperimetric inequality.

However, we do not have any general guidelines for node grouping into optimal partitions. The

Szemerédi’s regularity lemma [123] may provide an insight to find a division where the group-

based framework is expected to be accurate. A similar accuracy analysis for the SIS group-based

model is described in [28]. Intuitively, if we increase the group number or decrease the group size,

we will get a better division concerning accuracy. However, we cannot claim it in general.

In this research, we explore the simulation time and accuracy of the four conventional and intuitive

heuristic ways to group the nodes: 1) random, 2) degree-based, 3) community, and 4) k-partite.

However, there are many other ways that a practitioner can divide the nodes into groups. Therefore,

choosing the optimal partition in terms of accuracy and simulation time for a specific network

needs more investigation. We leave that question open for future works.

Time-varying networks can model a system more realistically but computationally expensive to

handle. The researches in [130, 131] have extended the individual-based disease dispersal model

[14] to consider the time-varying networks. The group-based approach can open up a possibility

to reduce the computational complexity of the individual-based time-varying disease dispersal

models by reducing the state space size in the Markov process.
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4.8 Summary

In this chapter, we propose a general group-based epidemic modeling (GroupGEM) framework

capable of representing any compartmental model in any multilayer networks. We assume a net-

work consists of N interacting agents, which are divided into several groups. Each node can be in

one of the M states. The state of a group consists of the states of its nodes. A stochastic transition

of a group is caused by a stochastic transition of the state of a node. We assume each stochastic

transition event is an independent Poisson process with a constant rate.

We develop a continuous-time Markov model for the group-based approach that has
∏C

i=1

(
Ni+M−1

M−1

)
possible states. This model is a multidimensional birth-death process. Possible states in the

Markov chain of GroupGEM are fewer than or equal to possible states in the Markov chain of

the individual-based approach, which are MN . Therefore, GroupGEM has reduced-computational

complexity and requires less simulation time with compare to the individual-based framework

(GEMF).

The group-based process lies on an approximation based on the isoperimetric inequality. We fur-

ther reduced the number of states by using a moment-closure approximation. The N-intertwined

mean-field approximation (NIMFA) method [14, 115] and the heterogeneous mean-field method

(HMF) [113, 114] are two well-known methods of the moment-closure approximation, which are

two particular cases of the group-based mean-field method. The number of nonlinear differential

equations for the intra- and inter-group mean-field approximation of the group-based approach is

MC. Then, we present some simulation results of the GroupGEM intra- and inter-group (within-

and across-group) mean-field model in synthetic networks and empirical networks. For each

case, we find that simulation time reduces with the reduction of the number of groups. Finally,

we provide an extension of our model for multilayer networks. This extension is important to

model the dynamics of the coevolution spreading phenomena, which are seen frequently in the

real world. From the coevolution of several phenomena (e.g., social distancing, propagation of

disease-related information in social media, and competing viruses spreading), the estimated dy-

namics of the collective system can be erroneous if we only model one phenomenon and ignore

others [112, 132, 133].
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The GroupGEM mean-field framework lies in two approximations: topological approximation and

moment-closure approximation. The topological approximation is for the underlying network, and

the error for this approximation can be bounded by isoperimetric inequality. On the other hand,

for the moment-closure approximation, we only know that for the C = N grouping, the moment-

closure approximation is the upper bound of the exact process. However, we do not have exact

knowledge about the error bound for the moment-closure approximation. Accuracy of the mean-

field model has been explained in [14], [1](section V).

The group-based approach allows us to scale the network and reduce computational time. It is

possible to obtain the disease dynamics of an epidemic model in a large complex network by using

GroupGEM when aggregated dynamics of groups of nodes are the focus of interest.
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Chapter 5

Conclusion

5.1 Dissertation summary

This dissertation studies the modeling and analysis of epidemic processes over networks from data.

Not only do we propose novel algorithms to infer realistic networks from limited data, but also we

introduce a new computationally efficient tool to study and simulate stochastic epidemic processes

over large networks.

One important element of an epidemic network model is the estimation of the network struc-

ture from data. This dissertation provides three approaches to estimate network structure from

data: (1) estimates of a movement network from inventory and sales data (Chapter 2), (2) se-

lection of the best suitable network from the incidence data (Appendix A), and (3) development

of an age-specific contact network from demographic data and Google community mobility re-

ports (Chapter 3). In the first approach, we solve a convex optimization problem by using the

maximum entropy method. Then, we propose a novel algorithm to develop a higher resolution

network from the lower resolution movement probabilities. The network analysis algorithms in

the generated network find evidence of small-world phenomena in the US swine industry. This

research also indicates what types of additional data the USDA-NASS department can collect to

improve the movement estimation while retaining the data anonymity. In the second approach,

we propose several realistic network models and select the one best supported from the incidence
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data by developing the approximate Bayesian computation based on a sequential Monte Carlo

sampling (ABC-SMC) method for network models. In the third approach, we develop an age-

specific, individual-based contact network using a configuration network model approach from

demographic data and Google mobility data. The generated contact network represents heteroge-

neous social mixing at the individual level.

Network epidemic models require disease transmission parameters, which are disease and

location-specific. Chapter 3 provides a guideline to estimate unknown epidemic model parameters

from incidence data using the ABC-SMC method for network models. We use this ABC-SMC

scheme in our developed individual-based disease management framework to uncover the disease

parameters of the COVID-19 transmission. Our framework is realistic and flexible enough to

add more parameters or variables depending on the data availability. We use this disease manage-

ment framework to understand the costs and benefits of contact tracing in COVID-19 transmission,

specifically for the reopening phase in a small college town. Our investigation indicates that a suf-

ficient amount of contact tracing can reduce the impact of COVID-19 dispersal in that reopening

process. At first, the number of quarantined susceptible people increases with the percentage of

traced contacts; however, after a certain amount of traced contacts (for example, t%), the number

of quarantined susceptible people starts to decrease with the increase in the percentage of traced

contacts. Therefore, it is cost-effective to trace more than t% contacts of a confirmed case. This

research investigates the optimum traced percentage for different movement levels.

Finally, we develop a general group-based epidemic modeling (GroupGEM) framework to

reduce the computational time of the individual-based framework in Chapter 4. Our research

proposes three levels of approximation to the original individual-based continuous-time Markov

model that finds equations of varying lower complexity compared to that of the exact Markov

equations that involve MN states (where M is the number of compartments and N is the number of

nodes):

1. Purely topological reduction can be obtained by partitioning nodes into groups. This finds

exact Markov equations that provide fully joint probability distribution within (intra) and

across (inter) groups. Partitioning the population into C groups reduces the state-space from
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MN states to
∏C

i=1

(
Ni+M−1

M−1

)
states, which is already polynomial in N for a constant number of

groups and quasi-polynomial in N for a logarithmic number of groups, i.e., C = O(log N),

2. Inter-group mean-field approximation, where we assume states of each group are uncorre-

lated with other groups. This will give us the joint probability distribution of states within

groups. This second level of approximation reduces the state space size to
∑C

i=1

(
Ni+M−1

M−1

)
,

which is polynomial in N even with a logarithmic or linear number of groups,

3. Intra- and inter-group mean-field approximation, which gives marginal state probabilities of

each group yielding only C(M − 1) equations, which is independent of the network size N

for constant C and that linearly grows with a number of groups.

The simulation results find that computational time reduces with the increase in average group size.

The computational time vs. average group size plots have a knee point; computational time reduces

with high speed until this knee point (Figure 4.10). A curve visibly bends in a knee point from high

slope to low slope, or vice versa [134]. Our research also finds that a group-based approach can

reduce the simulation time without compromising the accuracy for specific selections of groups.

5.2 Future research directions

The immediate future step of the group-based continuous-time Markov GroupGEM framework is

extensive performance analysis of different types of networks with different initial conditions. The

GroupGEM model contains a topological approximation, which is bounded by the isoperimetric

inequality. However, we do not have any general guidelines for node grouping into optimal parti-

tions. The Szemerédis regularity lemma [123] may provide insight into finding a division where

the group-based framework is expected to be accurate. A similar accuracy analysis for the SIS

group-based model is described in [28]. Intuitively, if we increase the group number or decrease

the group size, we will get a better division concerning accuracy. However, we cannot claim it

in general. This research explores the simulation time and accuracy of the four conventional and

intuitive heuristic ways to group the nodes: 1) random, 2) degree-based, 3) community, and 4)

k-partite. However, there are many other ways that a practitioner can divide the nodes into groups.
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Therefore, choosing the optimal partition in terms of accuracy and simulation time for a specific

network needs more investigation.

Concerning the estimation of the swine movement network, the accuracy of the estimation

will increase with the available data; however, increasing data availability while maintaining data

anonymity is challenging when designing a survey. Future work can focus on designing surveys

to collect additional data improving estimations without hampering the data anonymity. Another

use of the generated network in Chapter 2 could be the investigation of the stochastic pathogen

dispersal processes [1, 11, 85, 86]. This study can help us understand the underlying mechanisms

and threshold conditions of epidemic processes for various infectious livestock diseases.

Our age-specific disease management framework for COVID-19 in Chapter 3 leaves the door

open to investigate the best vaccination strategy. Our framework is flexible enough to incorporate

different vaccination schemes such as random mass vaccination, age-structured vaccination, and

targeted vaccination Keeling and Rohani [7]. We use the disease management framework in a

specific geographic region. Another interesting future application can be extending this framework

to different geographic regions with different population densities to determine a rule-of-thumb for

an optimum traced percentage that is valid across various locations.

In summary, modeling and analysis of epidemic processes over large networks from limited

data is a promising research track, with many challenges and possibilities both in application and

theory.
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Appendix A

Parameter estimation and model selection

of a spatiotemporal individual-based

network framework for West Nile virus by

using ABC-SMC method1

A.1 Spatiotemporal dynamics of West Nile virus

West Nile disease (WND) is a vector-borne zoonotic disease. This virus is the most common cause

of arboviral disease in the United States [135]. From 1999 to 2017, more than 48 thousand WNV

disease cases were reported to the Centers for Disease Control and Prevention (CDC), and more

than two thousands of these reported cases resulted in death [3]. The underlying pattern of the

West Nile virus (WNV) geographic spread across the United States is not completely clear, which

is a necessary step for continental or state level mitigation strategies to reduce WNV transmission.

WNV is maintained in an enzootic transmission cycle between competent mosquitoes and birds.

Although many bird species may be infected with WNV, the American robin is considered an

1Parts of this appendix are extracted and adapted from our published article [11], Copyright ©2019, PLOS Com-
putational Biology.
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important amplifier of WNV and maybe a driver of geographic spread because WNV-infected

American robins have low mortality and high viremia [136, 137]. Members of the Culex genus

of mosquito are the principal vectors of this virus in the United States [138]. Humans, horses,

and other mammals can be infected with WNV. However, these infections result in relatively low

virus titers (viremia); therefore, the infected animals and people are considered dead-end hosts (not

capable of infecting feeding mosquitoes). Therefore, they do not have any epidemiological impact

on WNV transmission or geographic spread [139].

Figure A.1: Transmission cycle of WNV.

In the literature, several mathematical models have been developed to understand the trans-

mission dynamics of WNV [7, 136, 140–142]. These models predict the threshold conditions for

WNV spreading in different scenarios. However, most of these models do not consider the spatial

dynamics of WNV. Space or geographic spread has a significant role in WNV disease dynam-

ics and modeling of WNV spatial spreading is complex because of the interactions of multiple

potential mosquito vectors, avian amplifiers, and mammalian hosts. Liu et al. [141] developed

a patchy model to analyze the spatial spreading of WNV, where patches are geographical space.

They assumed patches are identical, spatial dispersal of birds and mosquitoes are symmetric within

patches, and movement of birds and mosquitoes are only one-dimensional. According to this

investigation, long-range dispersal of infected bird populations determines the spatial spread of
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WNV, not the dispersal of infected mosquito populations. Other investigators proposed a reaction-

diffusion model [142], where they have spatially extended the non-spatial model of Wonham et

al. [140] to mathematically estimate the spread of WNV. Here, diffusion terms in the reaction-

diffusion partial differential equations represent vector mosquito and host bird population move-

ments. They identified traveling wave solutions in their model and calculated the rate of spatial

spread of infection. Durand et al. [143] developed a discrete time deterministic meta-population

model in order to analyze the circulation of WNV between Southern Europe and West Africa.

Another spatial model proposed by Maidana and Yang [144] used a system of partial differential

reaction-diffusion equations. They also calculated the speed of disease dissemination by investi-

gating the traveling wave solution of their model. They concluded, mosquito movements do not

play an important role in disease dissemination. In addition, they included vertical transmission

in their model and determined that vertical transmission is not an important factor for the spatial

spread of WNV.

Most WNV spread models are mathematical deterministic compartmental models. However WNV

spread is highly stochastic because of the demography and movement of hosts and vectors varies

between different locations. The major weaknesses of these models are the number and complex-

ity of the compartments required to account for the many host and vector populations. In turn, the

number of compartments increases the number of unknown parameters. Approximation of these

parameters in any biological system is very challenging and prone to estimation errors which can

create inaccuracies in the model outputs.

We developed an individual-based heterogeneous network framework to understand WNV geo-

graphic spread. To build the network framework, we used the American Robin population density

across the contiguous United States. The demographic characteristics of avian host populations

and vector populations are not homogenous geographically, so we used a heterogeneous network

framework. The transmission intensity of WNV depends on the abundance of WNV-infected vec-

tor mosquitoes in a given location. Mosquito population numbers fluctuate with local weather

and season throughout the year, therefore we used a temperature dependent transmission rate. Al-

though dead-end hosts cannot spread WNV to mosquitoes, we have quantified WNV case data

only for humans, which we used to estimate unknown parameters.
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To understand the WNV spatial distribution, we proposed distance dispersal kernels, which de-

scribes the probability of dispersal with respect to distances. In this framework, we proposed three

types of distance dispersal kernels: 1) exponential, 2) power-law, and 3) power-law biased by fly-

way. Then we compared the three distance kernels using approximate Bayesian computation based

on sequential Monte Carlo sampling (ABC-SMC) method [30–35]. After conducting an extensive

simulation for 2014-2016, we observed that an adapted fat-tailed or power-law kernel, which has

long-distance links in specified directions can best describe the WNV human case data [11]. We

tested this network framework for the best kernel with the human case data and found that simu-

lated results for more than 41 states of 49 states are consistent with the reported WNV cases. Our

results support previous work on WNV spreading [136], which also modeled WNV spreading with

migratory birds. We validate our work computationally from human incidence data. We proposed

several theoretical mitigation strategies to control WNV and calculated their estimated costs. From

the analysis of mitigation strategies, we suggest that potentially effective mitigation policies would

include the application of mitigation control in areas with active transmission and in immediate

neighboring states.

A.2 Data

The study area of this research was the contiguous United States where WNV is considered en-

demic. We modeled WNV case distributions for 2014-2016. We used three data sets each year to

develop our model. The first dataset contained the average monthly temperatures. Mosquito vector

abundance correlated with temperature. Temperature data was from the National Centers for En-

vironmental Information [4]. The second dataset contains American Robin population data from

eBird [5]. This is a database for bird abundance and distribution, which is formed by the Cornell

Lab of Ornithology and National Audubon Society. We used total observation of American Robin

in each state of the USA for each month. The robin data set was used to train the network model.

The American Robin is abundant throughout the United States and is a preferred food source for

many WNV-competent mosquito species [145]. Based on host feeding patterns of the Culex genus
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of mosquitoes, robins are the most common WNV amplifying host [146–148]. Other important

susceptible birds, such as American crow were not used because although they are an indicator

species (high crow mortality), they are unlikely to spread virus geographically as they are mostly

a residential species. In addition, as an indication of epidemic start point, we used WNV human

incidence data. Many species of birds have long-distance migration during the spring and fall.

Therefore the network does not focus on one long-distance migrating bird species but aggregates

all species along the known flyways. To estimate model parameters we used human case data for

WNV from CDC [3], which is the third dataset.

A.3 WNV epidemic model

To explore WNV long-distance spatial distribution in the USA, we used an individual-based het-

erogeneous network framework. In this framework, birds are on the individual level, a node repre-

sents an individual bird and connection between nodes is the possibility of virus dispersal from one

infected bird to another susceptible bird by mosquito vectors. Links or connections are formed by

movement of birds or movement of vectors. If there is no link between nodes then infected birds

and insects are not moving virus between nodes. All virus transmission occurs by local competent

vector mosquitoes. There is some evidence of bird-to-bird transmission, but it likely does not con-

tribute to or maintain outbreaks. We split the bird population into four compartments; susceptible,

exposed, infected, and recovered. Although, in the literature most mathematical models do not

consider the exposed avian class when modeling WNV [140, 144, 149, 150]. Birds transmit virus

to mosquitoes when a susceptible mosquito vector takes an infected blood meal, then the mosquito

becomes infectious after the extrinsic incubation period (EIP), or the time needed for the virus

to spreads from the mosquito mid gut to the salivary glands; usually this process takes 7 to 14

days [136, 151]. In addition, an infected bird can infect many mosquitoes simultaneously and also

an infected mosquito can bite many susceptible or infected birds. Therefore, there is some delay

in the system, to represent this delay we added the exposed class. We estimated exposed period

from data by using the approximate Bayesian computation with sequential Monte Carlo sampling

(ABC-SMC) method. After the exposed period, birds entered the infected compartment and an
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infected bird transitions to recovered after 4-5 days. To simulate this model, we used general-

ized epidemic mean-field (GEMF) framework developed by the Network Science and Engineering

(NetSE) group at Kansas State University [1]. In GEMF, each node stays in a different state and

the joint state of all nodes follows a Markov process [1, 152, 153]. The node level description of

this Markov process is:

Pr[xi(t + ∆t) = 1|xi(t) = 0, X(t)] = β(T )Yi∆t + o(∆t) (A.1)

Pr[xi(t + ∆t) = 2|xi(t) = 1, X(t)] = λ∆t + o(∆t) (A.2)

Pr[xi(t + ∆t) = 3|xi(t) = 2, X(t)] = δ∆t + o(∆t) (A.3)

Here, X(t) is the joint state of all individual nodes at time t. xi(t) is a node state, xi(t) = C

means node i is in C compartment at time t, C = 0, 1, 2, 3 corresponds to susceptible, exposed,

infected, and recovered compartment. Yi is the number of infected neighbors of node i, β(T ) is the

transmission rate from one infected bird to one susceptible bird, which is a function of temperature,

λ is the rate for exposed to infectious state, and finally, a node recovers from infectious state at a

rate δ.

Zoonotic spillover transmission

To model disease transmission from the bird population to human population, we added a zoonotic

spillover transmission compartment. We modeled occurrence of human cases as a Poisson process

[150, 154]. This part of the framework can be expressed as the following equation:

∆Ihns = Poisson(ηYns) (A.4)

In this equation, Ihns is number of infected human cases at n sub-network in s time steps, where

s = 1, 2, 3..... are the discrete time steps, Yns is infected bird population in sub-network n, and η

is a scaler quantity, accounts for the contact rate and probability of pathogen transmission from

bird to human. We calculated WNV spilling over to humans by using a Poisson random number
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generator.

Temporal transmission rate and environmental conditions

The transmission rate for WNV is sensitive to weather data as mosquito abundance depends on

the environmental conditions. Temperature, precipitation, landscape features, daylight conditions

etc. are environmental conditions, which has an impact on the transmission dynamics of WNV

[155]. In this research, we considered average monthly temperature data, optimal mosquito season

[156], and suitable temperature range for co-occurrence of WNV and competent mosquito species.

Temperature plays a very important role in the transmission dynamics of WNV because mosquito

longevity and EIP are sensitive to temperature. Mosquito longevity and EIP decrease with the

increase of temperature. However, there is no straightforward relationship of vectorial capacity for

WNV with temperature. If incubation period decreases more than longevity, then mosquitos will

be infective longer. However if longevity decreases more than incubation period, then mosquitos

will not be able to transmit the virus. We used information about rainfall in this research implicitly

through optical mosquito season. Optimal mosquito season of any location is estimated from

monthly average temperature and rainfall data for that location [156]. In this model, we used a

simple linear relation of transmission rate with temperature in a temperature window from 12◦C to

32◦C in the optimal mosquito season. Outside this window, transmission rate is very low. Suitable

temperature for co-occurrence of WNV and Culex pipiens is around 12◦ to 27◦C and for Culex

quinquefasciatus is 20◦C to 32◦C [156]. Survival rate to adult stage for Culex quinquefasciatus

is significantly high when temperature is in 20◦C to 30◦C [157]. For Culex tarsalis favorable

temperature for WNV development start after 14◦C [158], however larval survival reduced after

30◦C temperature [159]. To compute the transmission rate of any link from node a to node b, we

used temperature of the location of node b. Transmission rate for a location l is, βl(T ) = β◦(Tlm −

T◦); here, β◦ is the proportional constant, what we estimated by using ABC-SMC method, Tlm is

the average temperature for month m in location l and T◦ is the threshold temperature. Threshold

temperature for this model is 12◦C. As the temperature is space dependent, our transmission rate

also differs across the network. This individual-level heterogeneous network model gives us this
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flexibility to use different transmission rate at a time for different parts of the network.

A.4 Network framework

For the spatial dynamic characteristics of WNV transmission, we built a network framework, which

has 49 sub-networks one for each adjoining states of the contiguous United States plus the District

of Columbia. The number of nodes in each sub-network is proportional to the size of the avian

population in that state [5]. We considered the mosquito season June-October for the simulation

period. Although the mosquito season is not the same for all states, mosquitoes are active from

June to September in all of the states at these times [156].

The network for the avian population is (V, E). Here, V is the set of nodes, which is the union of

nodes of all sub-network, V = S N1 ∪ S N2 ∪ S N3 ∪ ........... ∪ S N49, here S Ni is a set of nodes

in the sub-network i and E is the set of links among individual nodes. To build sub-networks, we

used the total number of observations of American Robin for states per month in the simulation

time period. |S Ni| = max
m j=m1:m2

(OBS i
m j) ∗ S c + N0, here, OBS i

m j is the total number of observations

of American Robins in state i in month mj, N0 is the error term and N0 ∼ N(5, 2) for this model.

m1 is the first month after May and m2 is the last month before October when the average monthly

temperature is greater than T0. S c is the scaling constant.

In each sub-network, we assumed that nodes are connected through Erdos-Renyi (n,p) random

network topology [83]. In this network topology, we created links randomly among nodes with a

probability p. Here, n is the number of nodes in a sub-network and p is the probability to form

an edge. We set the probability p = R ∗ log(n)/n, here R is a constant (R ≥ 2), as this value

is more than the threshold value for the connectedness of an Erdos-Renyi graph [160], so nodes

of a sub-network are locally connected. We will refer these networks as a local network in the

subsequent sections of this appendix. To build connections among sub-networks, we considered

long-distance dispersal kernels [7, 161], which describe the probability of dispersal with respect

to distances. Dispersal kernels provide a simple model of dispersal to model dispersal events. For

long-distance events, we used three types of kernel models; 1) Exponential, 2) power-law, and 3)

power-law-flyway, which is a power-law kernel biased by flyway. The dispersal phenomenon in
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this work is not conserved because of long-distance movement of migratory birds and seasonality

within bird populations. Some long-distance migratory birds can disperse outside the contiguous

United States or outside the network nodes, which are discrete points. The connection probability

between two nodes does not represent the probability that a single dispersal event happens rather

it represents the probability of contact and subsequent pathogen transmission between them. A

simple caricature of the network is shown in Fig A.2. There are three sub-networks, A, B, and

C. The links, which formed local networks are shown by solid lines. These links are introduced

by Erdos-Renyi (n,p) network topology. Dashed lines are inter-links among sub-networks. These

links established by using long-distance dispersal kernels.

Figure A.2: A simple caricature of the avian contact network for susceptible-exposed-
infected-recovered (SEIR) epidemic model. Here, A, B, C are three sub-networks. Solid lines
represent intra-links in a sub-network and dashed lines represent inter-sub-network links.

Exponential distance kernel

In this distance kernel, connection probability among sub-networks will decrease exponentially

with distance. Probability to form a link is:

P(di j) = Ke ∗ exp(−Ke ∗ di j) (A.5)
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Here, di j is the distance between sub-network i and j, Ke is the shape parameter of exponential

distribution kernel. For distance between two states, we took the distance between their centroids.

The network with the exponential dispersal kernel was created as follows:

Step 1 Calculate the distance among sub-networks. di j is the distance between sub-network i

and j.

Step 2 Calculate P(di j), this is the probability to form a link between sub-network i and j.

Step 3 Generate a random number rand for each pair of nodes (a,b), where a ∈ i and b ∈ j.

Step 4 If rand < P(di j) then an undirected link will form between node a and b.

Inter-links among sub-networks, generated by exponential distance kernel are shown in Fig A.3.

Figure A.3: Inter-links among sub-networks for exponential distance kernel. Links are undi-
rected. Intra-links are not visible here. This is one realization of the stochastic networks, which is
rescaled by 0.1 for better visualization.

Power-law distance kernel

Power-Law, heavy-tailed, or fat-tailed distribution allows occasional long-range transmissions of

infection with frequent short-range transmissions. In this fat-tailed distance kernel, there is a
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greater chance of creating links over the same long-distances compared to the exponential ker-

nel. Power-law transmission kernel was used previously to model spatial dynamics of several

infectious diseases, for example, in plant epidemiology [162], in 2001 foot-and-mouth disease epi-

demic [161], and also, in human diseases [163]. In power-law connections [164], the probability of

connectivity among sub-networks will decrease with distance according to the following equation:

P(di j) = (Kpl − 1)/dmin ∗ (di j/dmin)−Kpl (A.6)

Here dmin is minimum distance among sub-networks and Kpl is the power-law parameter. The

process to build this network is similar to a network for exponential kernel with the only difference

being the calculation of P(di j). Inter-links among sub-networks for power-law distance kernel are

shown in Fig A.4.

Figure A.4: Inter-links among sub-networks for power-law distance kernel. Links are undi-
rected. Intra-links are not visible here. This is one realization of the stochastic networks, which is
rescaled by 0.1 for better visualization.
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Power-law distance kernel biased by flyway

To form this distance kernel, we included the migratory behavior of birds. Migratory birds can

spread pathogens during the migration periods [165, 166]. According to the United States Fish

and Wildlife Services and Flyway Councils, there are four flyways in the United States; the At-

lantic flyway (AF), the Mississippi flyway (MF), the Central flyway (CF), and the Pacific flyway

(PF) [167]. Although flyways overlap and the migratory patterns are very complex, these migratory

routes play a vital role in the long-distance spreading of WNV [168]. To build this distance kernel,

we considered two types of links among sub-networks; 1) links which are formed for residential or

short-distance migratory bird movements and 2) links which are formed for long-distance migra-

tory bird movements. For the first type of links, we used an estimated movement range of 500 km

[169], these connections are unrelated to flyways. For the second type of connections, we consid-

ered two migration periods; spring migration (April - June) and late summer/fall migration (July -

September) [153]; during the spring migration, we established long links from south to north and

in late summer/fall migration, the reverse. To establish any long link, we picked two sub-network

and establish a link if they were in the same flyway with probability P(di j) (Eq. A.6), these links

were directional and direction was imposed with respect to migratory period. Inter-links among

sub-networks for this kernel were shown in Fig A.5. The algorithm to create this network was:

Step 1 Calculate the distance among sub-networks. di j is the distance between sub-network i

and j.

Step 2 Calculate P(di j) using Eq. A.6, this is the probability to form a link between states i

and j.

Step 3 Generate a random number rand for each pair of nodes (a,b), where a ∈ i and b ∈ j.

Step 4 If rand < P(di j) and di j < 500km then an undirected link will form between node a

and b.

Step 5 If rand < P(di j) and di j > 500km and states i and j are in the same flyway then an

directed link will form between node a and b according to the migration period.
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Figure A.5: Inter-links among sub-networks for power-law distance kernel biased by flyway.
Gray links represent undirected links and orange links represent directed links (for spring migration
–northbound; for late summer/fall migration –southbound). Intra-links are not visible here. This is
one realization of the stochastic networks, which is rescaled by 0.1 for better visualization.

Temporal network behavior

Bird populations are not constant in any region, they change with time because of bird movement.

To consider this fact, this study adds a node property, namely, Activity. This property can hold

two values: 1 = Active and 0 = Inactive. In the entire network, only Active node can contribute

to the spreading of the WNV. By controlling this property, we varied the size of the active node

population in any sub-network with respect to the variation of the avian population in that region.

The length of the simulation each year was five months (June - October). Then, each month nodes

are activated randomly according to the total number of birds observed in that region in that month.
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A.5 ABC-SMC for parameter estimation and model compari-

son

In this framework, we adopted approximate Bayesian computation based on a sequential Monte

Carlo sampling (ABC-SMC) method for parameter estimation and model selection [30–35].

A.5.1 Parameter estimation

ABC-SMC is a computational method of Bayesian statistics that combines a particle filtering

method with summary statistics. This method is ideal for a stochastic complex model where likeli-

hood function is intractable or computationally expensive to evaluate. ABC estimates the posterior

distribution of parameters from data. Let, θ is a parameter vector to be estimated. The goal of the

ABC is to approximate the posterior distribution, Π(θ|d) ∝ f (d|θ)Π(θ), where prior distribution of

parameters Π(θ) are given and f (d|θ) is the likelihood of θ given the data d. This method samples

parameter values from their prior distribution through subsequent SMC rounds. Intermediate dis-

tribution of the parameter is Π(θ|dist(x, d) ≤ εi); i = 1, 2, ....P. The target posterior distribution is

Π(θ|dist(x, d) ≤ εP). Here, x is the simulated data set, dist is the distance function, ε is the tolerance

and P is the number of SMC rounds or the number of populations, where εP < ..... < ε2 < ε1 [170].

This is an adapted sequential importance sampling. In each SMC round, it uses perturbation ker-

nel to sample a parameter set. After each simulation of the model, the model output and data are

compared using some goodness-of-fit metrics. A parameter set is accepted if the distance between

the model output and data is less than the tolerance level. The accepted parameter set is a particle

and accepted particles form a population for that SMC round. We used two goodness-of-fit metric

or distance function in this research. The first goodness-of-fit metric is squared root of the sum

of squared error between observed incidence data and simulated incidence data for any proposed

parameter set. The first goodness-of-fit metric for this model is:

dist1(x, d) =

√√ w∑
i=1

s∑
j=1

(x(i, j) − d(i, j))2 (A.7)
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Here, x(i,j) is simulated incidence model data for i week and for j location. The second goodness-

of-fit metric is the absolute difference between the number of infected states from observed data

and simulated data, infected state defined as a state where at least one infected individual has

reported. The ABC-SMC algorithm, we adapted for this model from Toni et al. [30]. The steps for

approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) algorithm

for parameter estimation are [30–35]:

Step 1 Initialize tolerance ε for each SMC round, where εP < ..... < ε2 < ε1. Set Population

indicator, p=1.

Step 2 Particle indicator, n=1.

Step 3 Generate a particle (set of parameters),θn
p

(a). if p=1, sample from prior of parameters, π(θ);

(b). if p>1, sample the particle from previous population {θn
p−1} with weights Wp−1 and then

perturb the particle, θ
′

by using perturbation kernel, PKp to get θ
′′

.

(c). if π(θ
′′

) == 0, return to Step 3.

Step 4 Run the model R times with the new particle and compare the simulated weekly human

WNV incidence with observed weekly WNV incidence using the goodness-of- fit metric, We

calculated rp(θ
′′

) = (1/R) ∗
R∑

r=1
1(dist(x, d) < εp), if rp(θ

′′

) == 0 reject the particle; go back

to Step 3(a).

Step 5 Calculate the weight for the accepted particle,

(a). if p=1, Wn,p = rp(θ
′′

);

(b). if p>1, the weight is given by, Wn,p =
π(θi

p)∗rp(θ
′′

)
N∑

j=1
Wi,p−1PKp(θ j

p−1,θ
i
p)

.

Step 6 Repeat steps 3 - 5 until N= 1000 particles have been accepted.

Step 7 Normalize the weights. If p < P, set p= p+1, go to Step 2.
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We used this algorithm separately for estimating parameters for this three distance dispersal kernel

network models. As our models are an event based stochastic simulation, we simulated them 30

times with GEMF for each particle to get 30 realizations of the system. Then we take the average

of these realizations. As the average over the multiple runs of a stochastic system holds more

information than a single stochastic run.

A.5.2 Model comparison

In many areas, researchers deal with model selection. Bayesian theory is a comprehensive method

to make inference about models from data. Approximate Bayesian computation was used in many

research areas for model selection [171]. To compare among three distance kernels, this investi-

gation used ABC-SMC model selection framework [30, 172, 173]. For given data d, the marginal

posterior probability of model m is:

Pr(m|d) = Pr(d|m)Pr(m)/Pr(d) (A.8)

Here, Pr(d|m) is the marginal likelihood and Pr(m) is the prior probability of the model. We used

a uniform distribution for prior distribution of unknown parameters. For each model, we have four

unknown parameters; network parameter K (Ke is the network parameter for the exponential kernel

and Kpl is the network parameter for the both power-law kernels), constant for transmission rate

β0, transition rate from exposed to infectious state λ, and zoonotic transmission spillover rate η. In

each population, we took 1000 particles. We used Bayes factor to compare a model with another

model. For model mi and m j, Bayes factor [174] is,

Bi j =
Pr(mi|d)/Pr(m j|d)

Pr(mi)/Pr(m j)
, (A.9)

Here, Pr(mi) is the prior and Pr(mi|d) is the marginal posterior distribution of model mi. The Bayes

factor is a summary evidence in favor of one model over another supported by the data. If Bi j is in

range 1-3, we can conclude that summary of the evidence against m j in favor of mi is very weak.

If Bi j is in range 3-20, we can conclude that summary of the evidence against m j in favor of mi
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is positive [174]. The ABC-SMC model selection algorithm is very similar to the algorithm for

parameter estimation. Here, m is the model indicator, m ∈ 1, 2, .....,M, M is the number of model.

In this research, we had three network models (M = 3) to compare.

m = 1: exponential kernel network model,

m = 2: power-law kernel network model, and

m = 3: power-law kernel influenced by flyway network model.

In each population, the model selection algorithm starts by sampling the model parameter m from

the prior distribution Π(m). Then the algorithm proposes a new set of parameters (particle) from the

sets of parameters of the model m from the previous population. The Bayes factor was calculated

from the final population of m.

The steps for approximate Bayesian computation with sequential Monte Carlo sampling (ABC-

SMC) algorithm for model selection are [30–35]:

Step 1 Initialize tolerance for each SMC round εP < ..... < ε2 < ε1. Set Population indicator,

p=1.

Step 2 Particle indicator, n=1.

Step 3 Generate a particle

(a). if p=1, sample model parameter m and parameters for that model from prior, π(m, θ);

(b). if p>1, sample model m
′

with probability Prt−1(m
′

) and then perturb by perturbation

kernel PKmp, sample the particle from previous population {θ(m
′′

)p−1} with weights

Wp−1 and then perturb the particle θ
′

by using perturbation kernel to get θ
′′

.

(c). if π(m
′′

, θ
′′

) == 0, return to Step 3.

Step 4 Run the model m
′′

, R times with the new particle and compare the simulated weekly

human WNV incidence with observed weekly WNV incidence using the goodness-of- fit

metric, We calculated rp(θ
′′

) = (1/R)∗
R∑

r=1
1(dist(x, d) < εp), if rp(θ

′′

) == 0 reject the particle;

go back to Step 3.

Step 5 Calculate weight for the accepted particle, set (mn
p, θ

n
p) = (m

′′

, θ
′′

),
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(a). if p=1, Wn,p(mn
p, θ

n
p) = (1/R) ∗

R∑
r=1

1(dist(x, d) < εp); Here R is the number of replicate

simulation run for a fixed particle.

(b). if p>1, the weight is given by, Wn,p(mn
p, θ

n
p) =

π(mn
p,θ

n
p)∗(1/R)∗

R∑
r=1

1(dist(x,d)<εp)

N∑
j=1

Wi,p−1PKp(θ j
p−1,θ

i
p)

.

Step 6 Repeat steps 3 - 5 until N= 1000 particles have been accepted.

Step 7 Normalize the weights for every m. If p < P, set p= p+1, go to Step 3.

Although ABC-SMC is an accurate statistical tool for parameter estimation and model selec-

tion, however, the results of this method are sensitive to summary statistics [175]. For our case,

no summary statistics were required because we used the entire set of data and we compared the

simulated and observed dataset directly by using goodness-of-fit or distance metric. A full dataset

is sufficient to get the consistent result from approximate Bayesian Computation [176].

A.6 Mitigation strategies

The role of mosquito populations in WNV transmission is expressed by disease transmission rate

β. This framework used different transmission rates in different parts of the network corresponding

to the local mosquito abundance. Using this heterogeneous feature in the framework, we evaluated

theoretical mosquito population management measures to reduce the outbreak size or transmission

rates in the state level. Some states such as Kansas, do not have statewide mosquito surveillance

or management, but in these theoretical scenarios, it is assumed they can develop or benefit from

effective statewide mosquito management programs. The framework will simply estimate how

much the mosquito abundance is reduced or maintained based on the theoretical outcomes of co-

ordinated control. Furthermore, we realize mosquito control is generally conducted on a county

or municipal level, but the human case data is only available on a state level. Therefore the rec-

ommendations are for the lowest resolution of the data, which is state level but applies to counties

and municipalities as well. If vector management is increased in a sub-network, then transmission

rates will be changed by, βr =
β

RF , here βr is the reduced transmission rate and RF is the reduction

factor. Then management costs will be Cost = RF ∗ NS c, here NS c is the number of states where
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control measures were applied. We considered supplemental management measures with the ex-

isting management measures. We used two types of mitigation strategies across the United States,

1) dynamic infected place tracing strategy and 2) static ranked based strategy.

In the infected place tracing, we traced the infected states, then plan the mitigation strategies ac-

cording to them. For this type of mitigation strategies, we considered three cases; 1) case-1: only

infected: applied control only in the infected states; 2) case-2: infected & first neighbors: applied

control in the infected states with its first neighboring states (whose distance is less than 500km),

and 3) case-3: infected & first neighbors & second neighbors: applied control in the infected states

with its first neighboring states, and also with its second neighboring states (whose distance is in

500 − 1000km). For infected tracing control measure, we kept track of infected places monthly. If

S Ni sub-network is infected for month t, then control measures were applied for the month t + 1

based on these three cases.

In the static ranked based mitigation strategy, we ranked the states by different variables (for exam-

ple, temperature, size of the avian population etc.). For this strategy, we considered three cases; 1)

temp.: states ranked by temperature, 2) pop.: states ranked by avian population size, and 3) temp.

& pop.: states ranked by temperature and avian population size both, then we applied management

measures in the top 30% of the states.

A.7 Architecture of the framework

The ABC-SMC network model selection framework has five major units. The input unit deals with

the four sets of data: 1) geographic locations of the contagious United States, 2) American Robin

population data for each state, 3) state-level average monthly temperature, and 4) state-level WNV

weekly human incidence data. The sub-network generation unit generates a sub-network for each

state based on the American Robin population data. The ABC-SMC method estimates a new set of

parameters from the prior distribution and selects a network kernel model. The network generation

unit will create connections between sub-networks according to the selected network kernel model

(a. exponential kernel network model, b. power-law flyway kernel network model, and c. power-

law biased by flyway kernel network model). The selected network kernel model was simulated
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with the estimated parameters. We used Generalized Epidemic Modeling Framework (GEMF) for

simulation. The output of this block is the weekly WNV human cases, which have been used in

the ABC-SMC block to compare the simulated result with the actual observed human incidence

data.

Figure A.6: Architecture of the ABC-SMC network model selection framework.

A.8 Results

We developed a novel flexible individual based heterogeneous network framework to test three

WNV dispersal kernels across the contiguous United States based on human case data distributions.

We used this framework for the year 2014, 2015, and 1016. The results for network formulation,

parameter estimation, and dispersal kernels selection using Bayesian inference are given below for

the year 2015 and the results for other two years are given in the Moon et al. [11].

A.8.1 Network framework

In this spatial-temporal individual-based heterogeneous network framework, we used three dis-

tance kernel models. The fundamental basic WNV epidemic model is the same for all the three

network kernels. In the entire network, there are 49 sub-networks representing the 48 adjoining

contiguous states plus the District of Columbia. All sub-network nodes are locally connected. The
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topology of the local network is Erdos-Renyi. The total nodes for the year 2015 was |V | = 7657 and

the scaling constant is S c = 0.02. Here, E = El ∪ Edd; |El| is the number of total intra-links for all

local networks, which is around 167000-170000 and |Edd| is the number of total inter-links among

sub-networks. We started the epidemic from states with the highest human incidence prior to

June. We started the epidemic for the year 2015 by adding two infected nodes, one in sub-network

SN4 (California) and another in sub-network SN42 (Texas). Connections among sub-networks

are developed by distance dispersal kernels. Parameters for these kernels are estimated from the

ABC-SMC method.

A.8.2 ABC-SMC for parameter estimation and model comparison

Parameter estimation

ABC-SMC parameter estimation was applied to three dispersal kernel network models separately.

For each set of prior distributions, convergence to the posterior distribution was achieved after

13-15 SMC rounds. Convergence of the posterior distributions was monitored by visual inspec-

tion of the outputs from consecutive SMC rounds. The prior distribution for exponential network

parameter was, Ke ∼ U(0.1, 0.3), for power-law Kpl ∼ U(2, 4), for power-law biased by flyway

was Kpl ∼ U(2, 4). Prior distribution for constant of transmission rate β0, transition rate from ex-

posed to infectious λ, and human spillover rate η is same for three kernel models; β0 ∼ U(0, 15),

λ ∼ U(0.025, 10) and η ∼ U(0, 50). Perturbation kernels were also uniform, PK = αU(−1, 1), with

α = 0.5(maxθp−1 − minθp−1), here θp−1 is the set of a parameter values in the previous population.

We used weekly human case data for 49 locations, as observed data. The estimated parameters for

this three dispersal kernel network models for 2015 are presented in Table A.1.

Model comparison

ABC-SMC for model selection allows us to estimate posterior model distributions. We used this

algorithm to compare the three distance kernels. Prior distributions and perturbation kernels are the

same for both the model selection and the parameter estimation algorithm. Here we used one more

prior distribution for discrete model parameter; m ∼ U(1, 3). The tolerance vector for ABC-SMC
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Table A.1: Estimated parameters for the year 2015 from ABC-SMC parameter estima-
tio*Estimated using data from the Centers for Disease Control and Prevention (CDC) [3], the
National Centers for Environmental Information [4], and Clements et al. [5].

Parameter Exponential Power-law Power-law
biased by flyway

Source

Network Parameter, K
mean 0.1264 3.3844 2.3147

median 0.1216 3.3924 2.2690 Estimated*
(95% CI) (0.1235, 0.1294) (3.3329, 3.4260) (2.3030, 2.3264)

Constant for transmission rate, β0

mean 0.0439 day-1 0.2026 day-1 0.0059 day-1

median 0.0362 day-1 0.0526 day-1 0.0061 day-1 Estimated*
(95% CI) (0.0354, 0.0524

day-1)
(0.0574, 0.3478

day-1 )
(0.0058, 0.0059

day-1 )
Transition rate from exposed to infectious node, λ

mean 0.0884 day-1 0.1069 day-1 0.0721 day-1

median 0.0823 day-1 0.1059 day-1 0.0706 day-1 Estimated*
(95% CI) (0.0820, 0.0948

day-1)
(0.0940, 0.1197

day-1 )
(0.0718, 0.0724

day-1)
Bird Recovery rate, δ

range 0.2-0.25 day-1 0.2-0.25 day-1 0.2-0.25 day-1 [177]
Human spillover, η

mean 0.2175 day-1 0.2141 day-1 0.4558 day-1

median 0.2173 day-1 0.2154 day-1 0.4599 day-1 Estimated*
(95% CI) (0.2098, 0.2252

day-1)
(0.2071, 0.2210

day-1)
(0.4479, 0.4637

day-1)

model selection algorithm is, ε = {2200, 2000, 1800, 1600, 1400, 1200, 1100, 1000}. The target and

intermediate distributions of model parameters are shown in Fig A.7.

We calculated the Bayes factor from the marginal posterior distribution of m, which we took

from the final or last population. In the final population for 2015, exponential distance kernel

model (m = 1) was selected for 64 times, power-law distance kernel (m = 2) was selected for 95

times and power-law influenced by flyway distance kernel model (m = 3) was selected for 841

times. Bayes factor B3,1 = 841/64 = 13.1406, B3,2 = 841/95 = 8.8526. In the marginal posterior

distribution of three models, there is positive evidence in favor of power-law influenced by flyway

distance kernel when compared with other two models [30]. The distribution of parameters for

power-law influenced by flyway for 2015 are presented in Fig A.8.
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Figure A.7: Population of the marginal posterior distribution of the three models for the year
2015. Model-1 represents exponential kernel, model-2 represents power-law kernel, and model-3
represents power-law influenced by flyway kernel. Here, Population-8 is the approximation of the
final marginal posterior distribution of model parameter m and population 1-7 are intermediate
distributions. Population-0 is the discrete uniform prior distribution, which is not shown here.

A.8.3 Performance of the power-law-flyway network model

To test the performance of this framework, we used estimated parameters from Table A.1 for

power-law kernel influenced by flyway. We set the parameters value; Kpl = 2.3147, β0 = 0.0059day-1,

λ = 0.0721day-1, and δ = 0.2031day-1. The simulation period for the avian population model is

from week-23 to week-44. The output of avian population was used as the input of zoonotic

spillover compartment. Then we compared the output of zoonotic spillover compartment with hu-

man case data for week 24 to week 45. We considered a one-week lag between WNV incidence in

birds and WNV incidence in humans. In humans, WNV-infected individuals (approximately 20%)

develop a mild febrile illness after 3–6 days [178]. Peak of reporting of dead birds is one week

prior than the reporting peak of human incidence [179].

We compared the total yearly incidence of human WNV from this model with the state level

reported case data. The detail results are shown in [11]. For 2015, we found that the case data
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Figure A.8: Histograms of the approximated posteriors distribution of parameters for power-
law influenced by flyway kernel for the year 2015. a) Network Parameter K ; b) constant for
transmission rate β0; c) transition rate from exposed to infectious node λ, and d) human spillover
η.

for 42 of 49 locations were within the simulation results. The states where human cases were

different from the simulation results were over-reported states (Nevada) and under-reported states

(Louisiana, Mississippi, Nebraska, North Dakota, South Dakota, and Washington). The possible

reason for this mismatch are reporting error or overwintering of virus in birds or mosquitoes or

another bird species (not robins) is the key reservoir species for that state
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A.9 Summary

We proposed an individual-based heterogeneous network framework and tested three dispersal

kernels to understand the spatial spread patterns of WNV human case data across the contiguous

United States.

This framework requires fewer parameters and has more flexibility to represent the spatial-

temporal dynamics of WNV. Adding parameters can make the framework more realistic, for ex-

ample, more competent bird species, landscape features for habitat preferences of host and vector

species, daylight conditions [155], pathogen invasion from outside of USA, variable susceptibil-

ity among different hosts and vectors, WNV strain variability, mosquito and virus overwintering,

vertical transmission, human movement characteristics etc.. However, inclusion of too many fac-

tors increases model complexity which makes model optimization difficult given the availability

of limited observational data. On the other hand, a simple model may insufficient to represent

WNV spatial dynamics. Computational models need to be developed and parameters calculated

with sufficient detail to be biologically accurate if they are used to evaluate epidemic management

measures. However, for most biological systems, reliable parameter information is unknown. Un-

known parameters or inaccurate assumptions add uncertainty to the model. Our framework has

only four parameters to estimate (network Parameter K, transmission rate β, transition rate from

exposed to infectious state, λ, and human spillover, η). This framework has compartments only for

the avian population (susceptible, exposed, infected, and recovered), and is not species specific.

We reduced the compartments for vector population by implementing them implicitly through

transmission rate between infected nodes and susceptible nodes. The presented framework and

dispersal kernel network model has an intermediate complexity that approximate Bayesian com-

putation based on sequential Monte Carlo sampling (ABC-SMC) method successfully calibrated

and estimated the parameters with the available data. If more data becomes available, it is possible

to add them in this model for improved performance of the model.

Furthermore, this framework is flexible and therefore can represent various hosts and vectors

including with population seasonality, which plays an important role in WNV dynamics. For host

population seasonality, we added a node property Activity, this property allows us to control active
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host populations in the network in a specific time period. We added vector seasonality in this

framework with a temperature dependent transmission rate.

This framework proposed one exponential and two fat-tailed distance kernel models for long-

distance transmission of WNV with each model having increasing complexity and similarities to

natural avian movement. WNV spatial distribution is very complex because WNV can infect more

than 300 bird species, some of which are residential birds and short-distance migrators which

disperse less than 500 km distances (short connections) whereas some species are long-distance

migratory birds creating long connections. The long-distance migratory birds are the long-distance

dispersal (LDD) agents for WNV. Previous studies tried to analyze spreading of WNV using a trav-

eling wave with constant velocity, however, WNV spread more rapidly across the North America

than would be expected from the assumption of constant velocity traveling wave[180]. Likely

this is because traveling wave models unlike distance dispersal kernel models for WNV spread-

ing do not capture the long-distance migrating birds which can have various migratory ranges and

distances. Distance dispersal kernels have more flexibility to represent the different bird migra-

tion distances and can account for accelerating invasions. However, exponential kernels produce

short-connections and therefore like traveling waves are limited to constant expansion, unlike fat-

tailed power-law kernels which can generate accelerating invasions by creating the long-distance

connections from migratory birds [181]. However, a general fat-tailed power-law kernel makes

long-distance links in every direction which does not follow the incidence of WNV. Instead, a

power-law-flyway kernel can be used to produce the long connections in the direction of flyways

and short links in other directions. Bayesian inference was used to test which of the three kernel

models best described WNV distribution on the network for three most recent years (2014- 2016).

The power-law-flyway kernel best described the distribution of WNV cases because the long-range

WNV transmission was concentrated mainly along the migratory bird flyways. The general power-

law kernel overestimated the incidence data in some states because it was creating long-distance

links in all directions.

The performance for the power-law-flyway dispersal kernel model was evaluated for the three

most recent years (2014-2016) when WNV was endemic in the USA. The observed case data for

the 49 locations were within the range of the simulated results for 41 states for 2014, 42 states for

144



2015, and 45 states for 2016 [11]. For all three years, the simulated results were similar to the

observed data, except in Colorado, Louisiana, Mississippi, Nevada, Nebraska, North Dakota, and

Washington. Nevada was over-reported for 2015 and all others were under-reported. The power

law flyway dispersal kernel network model reported more WNV human incidence in Nevada than

reported cases, one possible reason for over-reporting cases in Nevada has rural areas, which tend

to under report human cases, whereas mosquito control districts and health departments, focused

in urban areas, must test birds and mosquitoes, which explains why CDC reported WNV infected

mosquitoes in 25% of counties in Nevada. The under-reported states had more human cases than

predicted by the model. Under-reporting by the power-law-flyway kernel network model is likely

because overwintering of the virus in some states (for example, Louisiana, Mississippi etc.), which

was not considered. The overwintering infected Culex mosquitoes can stay in hibernacula such as

sewers, houses, caves, and other warm areas in urban, suburban, and rural areas and initiate the

outbreak in the spring. Furthermore, there may be under-reporting of cases by the model if robins

are not the main reservoir species in a state, which would be predicted between gulf coast states

(Louisiana and Mississippi) and northern states such as North and South Dakota and Washington.

Stochastic simulations are useful tools to select the optimal future mitigation strategy after out-

breaks of invasive species and pathogens. The foot-and-mouth disease (FMD) epidemics in 2001

in the United Kingdom developed by Keeling et al. [59], and mitigation strategies for pandemic

influenza in the United States [58] are two well developed models with similarities to the current

model. These models explore possible control measures such as culling, vaccination etc. for FMD

[59], and vaccination, quarantine etc for influenza [58]. Most of these strategies can be examined

with the network framework however, avian culling or vaccination for WNV control is not fea-

sible. Vector control (or mosquito control) is a viable mitigation strategy for WNV, which is not

considered by the other two models (FMD and influenza). To be applicable to any pathogens and

inclusive of new mitigation methods, the mitigation strategies are non-specific and the predicted

effectiveness of the mitigation methods can be adjusted to other methods. In the planning of the

mitigation strategies, there is a trade-off between control measures effectiveness and their cost both

monetary and loss of life. A stochastic simulation tool can decide the optimal mitigation strategy

by dealing with this trade-off.
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Mitigation strategies for WNV were tested using the power-law-flyway dispersal kernel net-

work model. The mosquito management measures are not specific to larvae or adults, rather sim-

ply generally accepted best practices to reduce mosquito abundance for the purpose of reducing

pathogen transmission. The mitigation strategy analysis proposes supplemental measures in ad-

dition to the existing mosquito management in each state because the states had yearly reported

WNV cases despite the existing management methods. To reduce WNV spread, a theoretical policy

would be management in neighboring regions and not exclusively in the infected places. Although

this approach can cost more at the beginning of the epidemic season however at the end, it can

reduce total cost by decreasing the size of the epidemic. If management measures are applied only

in the infected states, it is not possible to control the epidemic because of long-distance migratory

birds. This is statewide management in a unified effort. We acknowledge that states do not conduct

mosquito management in this way, but to test the spillover it was necessary to do the simulation

in this way because only state-level data was available. The infected place tracing mitigation tech-

nique has been used to control other diseases (for example, FMD, influenza etc.), although their

host population and control measure means are different, however, the main concept behind the

mitigation techniques are similar. The findings from this research to control WNV epidemic can

be useful to select optimal mitigation strategies for other pathogens.

This research showed that the inclusion of directional long-distance dispersal of migratory birds

improves model representations of the spatial patterns of WNV spread in the United States. The

simulation of our framework in the context of long-distance directional dispersal suggested that

cooperation and communication can facilitate early treatment and reduced outbreak sizes because

of reduced WNV dispersal by American robins.
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Appendix B

Proofs and examples of chapter 4

B.1 Proof of theorem 1 and derivation of the Q

In this section, we present the derivation of the Q in Eq. (30). To do this, we derive the expression

for network-state G(t + ∆t) when G(t) is given. Here, ∆t is a very small time period when only one

event can occur. Let, the network-state at any time t be,

G(t) = gZ = gz1(t) ⊗ ........... ⊗ gzC(t) (B.1)

The network-state will change by the one transition in the group-state of group i,

E[G(t + ∆t)|G(t) = gZ] =

C∑
i=1

gz1(t) ⊗ ......... ⊗ E[gi(t + ∆t)|G(t) = gZ] ⊗ ... ⊗ gzC(t) (B.2)

The expression for the conditional expectation of a group E[gi(t + ∆t)|G(t) = gZ] can get from the

Eq. (25) as,

E[gi(t +∆t)|G(t) = gZ] =

qn∑
q=1

∆T
i,δq

gzi(t)∆t +

qe∑
q=1

( C∑
j=1

Ag(i, j)x j,r
)
∆T

i,βq
gzi(t)∆t +gzi(t)+o(∆t) (B.3)
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Now, from the definition of expectation and the law of total probability, we get the network-state

at t + ∆t time,

E(G(t + ∆t)) =
∑

Z

E[G(t + ∆t)|G(t) = gZ]Pr[G(t) = gZ] (B.4)

Here, the range of Z for the summation in Eq. (B.4) is 1 :
(
N1+M−1

M−1

)(
N2+M−1

M−1

)
....

(
NC+M−1

M−1

)
.

From Eq. (B.3) and (B.4),

E(G(t + ∆t)) =

qn∑
q=1

QT
δq

E[G(t)]∆t +

qe∑
q=1

QT
βq

E[G(t)]∆t + E[G(t)] + o(∆t) (B.5)

Here,

Qδq =

C∑
i=1

I(N1+M−1
M−1 )×(N1+M−1

M−1 ) ⊗ .... ⊗ ∆i,δq ⊗ ..... ⊗ I(NC+M−1
M−1 )×(NC+M−1

M−1 ) (B.6)

The Zth column of Qβq is,

Qβq(:,Z) =

C∑
i=1

gz1(t) ⊗ ..... ⊗
( C∑

j=1

Ag(i, j)x j,r

)
∆i,βqgzi(t) ⊗ .... ⊗ gzC(t) (B.7)

Let,

Q =

qn∑
q=1

Qδq +

qe∑
q=1

Qβq (B.8)

We will get differential equations for the underlying continuous-time Markov process for the

group-based approach from Eq. (B.5) by letting ∆t → 0,

d
dt

E[G] = QT E[G] (B.9)
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B.2 Proof of theorem 3

The first-order moment closure approximation inside a group allows us to consider that the nodes

in any two compartments in a group i are uncorrelated. Therefore, Cov[xi,mxi,n] ≈ 0. The epidemic

spreading process is not Markovian anymore. A set of M differential equations can describe the

time evolution of the expected value of the population of a group for an M compartmental epidemic

model. If a node of the group i move from compartment m to n with rate δq then the population of

the compartment m and n will change with rate δq. An M × M transition rate matrix contains the

transition rate between two compartments. The Eq. 4.28 has similarity with the individual-based

GEMF mean-field equation except the group-based part. Please check details in [1].

B.3 Intra- and inter-group mean-field equations for the SIS,

SIR, and SEIR epidemic models

B.3.1 Susceptible-infected-susceptible (SIS)

The SIS model [14] has two types of transitions; one an edge transition (susceptible-to-infected)

and the other a nodal transition (infected-to-susceptible). The infected compartment is the influ-

encer compartment for the edge transition. The mean-field equation for the group-based framework

of the SIS epidemic model can be written as

 ˙ρi,S

ρ̇i,I

 =

( C∑
j=1

Li j

Ni
ρ j,I

) −β β

0 0


T

︸    ︷︷    ︸
ΦT
β matrix

ρi,S

ρi,I

 +

0 0

δ −δ


T

︸    ︷︷    ︸
ΦT
δ matrix

ρi,S

ρi,I

 (B.10)

Here, ρi,S and ρi,I represent the fraction of susceptible and infected nodes in the group i and

ρi,S + ρi,I = 1 at any time t. The first and second parts in the Eq. (B.10) are for the edge transition

S → I (susceptible-to-infected) and nodal transition I → S (infected-to-susceptible), respectively.

The rate for edge transition is β and the rate for nodal transition is δ. This process has (2 − 1)C
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ordinary differential equations.

B.3.2 Susceptible-infected-recovered (SIR)

The SIR epidemic spreading has three compartments and two types of transitions, one an edge

transition (susceptible-to-infected) and the other a nodal transition (infected-to-recovered). The

infected compartment is the influencer compartment of the edge transition. The mean-field ap-

proximation of the susceptible-infected-recovered (SIR) epidemic model for the individual-based

framework is developed by Sharkey et al. [182]. Here, we present the equation for the group-based

framework as


˙ρi,S

ρ̇i,I

˙ρi,R

 =

( C∑
j=1

Li j

Ni
ρ j,I

)

−β β 0

0 0 0

0 0 0



T

︸         ︷︷         ︸
ΦT
β matrix


ρi,S

ρi,I

ρi,R

 +


0 0 0

0 −δ δ

0 0 0



T

︸         ︷︷         ︸
ΦT
δ matrix


ρi,S

ρi,I

ρi,R

 (B.11)

The first part of this equation is for the transition S → I and the second part is for the transition

I → R. The number of non linear differential equations for the mean-field approximation of the

SIR epidemic model for the group-based framework is (3−1)C as at any time t, ρi,S +ρi,I +ρi,R = 1.

B.3.3 Susceptible-exposed-infected-recovered (SEIR)

The SEIR epidemic model has four compartments and three transitions: susceptible-to-exposed,

exposed-to-infected, and infected-to-recovered. The first transition is the edge transition, where

the transition rate β is influenced by the number of infected nodes in the neighboring groups. The

other two transitions are nodal transitions with the rate δ1 (E → I) and δ2 (I → R), respectively.

150



The group-based mean-field equation for the SEIR epidemic is given below:



˙ρi,S

˙ρi,E

ρ̇i,I

˙ρi,R


=

( C∑
j=1

Li j

Ni
ρ j,I

)


−β β 0 0

0 0 0 0

0 0 0 0

0 0 0 0



T

︸              ︷︷              ︸
ΦT
β matrix



ρi,S

ρi,E

ρi,I

ρi,R



+



0 0 0 0

0 −δ1 δ1 0

0 0 0 0

0 0 0 0



T

︸                ︷︷                ︸
ΦT
δ1

matrix



ρi,S

ρi,E

ρi,I

ρi,R


+



0 0 0 0

0 0 0 0

0 0 −δ2 δ2

0 0 0 0



T

︸                ︷︷                ︸
ΦT
δ2

matrix



ρi,S

ρi,E

ρi,I

ρi,R


(B.12)

The first part of the Eq. (B.12) represents the edge transition S → E, the second part represents

the nodal transition E → I, and the last part represents the nodal transition I → R. The number

of nonlinear ordinary differential equations for this epidemic model is (4 − 1)C, as at any time t,

ρi,S + ρi,E + ρi,I + ρi,R = 1.

B.4 Simulation results in an Erdös-Rényi (ER) random net-

work

In this section, we compare the simulation results from the group-based approaches with the

individual-based approaches in the Erdös-Rényi (ER) random network. Stochastic numerical sim-

ulations of the exact continuous-time Markov process of the individual-based approach is the

benchmark of this comparison. In this section, we use a Erdös-Rényi (ER) network with (N =

10000, p = 0.01). The simulation results for SIS (β = 0.0167, δ = 1), and SIR (β = 0.0167, δ = 1)

epidemic spreading are presented in the Fig 4.4, and4.6, respectively. In Fig 4.4 and 4.6, sub-plot

(a) is presenting simulation results from numerical simulations of the continuous-time Markov
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process of the individual-based approach, sub-plot (b) is presenting simulation results from the

mean-field individual-based NIMFA model, sub-plots (c)-(e) is presenting simulation results from

the mean-field approximation of the group-based GgroupEM model, and sub-plot (f) is presenting

the merging of sub-plots (a)-(e). A comparison of simulation time between individual-based and

group-based approaches of Fig 4.4 and 4.6 is given in Table B.1.

Table B.1: Comparison of simulation time between individual-based and group-based approaches.

case No. of
Groups

simulation time

SIS SIR

Individual-based stochastic - 3060.6s 380.038s

Individual-based mean-field - 35.352s 17.582s

group-based mean-field 100 0.334s 0.149s

group-based mean-field 10 0.0123s 0.0168s

From Fig 4.4 and 4.6, the group-based approach can produce the similar dynamics as the

individual-based approach in SIS and SIR disease spreading in a Erdös-Rényi (ER) random net-

work. From Table B.1, the simulation time for group-based approaches is less than the simulation

time for the individual-based approaches.

B.5 An example of the group-based epidemic model

A network with N = 5 nodes. The nodes are divided into C = 2 groups. The first group hasN1 = 2

nodes and the second group has N2 = 3. For a susceptible-infected-susceptible (SIS) epidemic

process, the first group has
(
N1+M−1

M−1

)
= 3 states and the second group has

(
N2+M−1

M−1

)
= 4 states. The
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Time dynamics for an SIS epidemic in the Erdös-Rényi (ER) random network
(N = 10000, p = 0.01); a) Stochastic numerical simulation of the exact continuous-time Markov
process of the individual-based approach; solid lines represent the average of the 1000 simulations
and shaded areas represent the region of the stochastic simulations; b) Individual-based: N = C =

10000,N1 = N2 = ..... = NC = 1, simulation time = 35.352s; c) group-based: C = 100,N1 =

N2 = ..... = NC = 100, simulation time = 0.334s; d) group-based: C = 10,N1 = N2 = ..... =

NC = 200, simulation time = 0.153s; e) group-based: C = 10,N1 = N2 = ..... = NC = 1000,
simulation time = 0.0123s; and f) merging of all sub-plots a-e.
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(a) (b)

(c) (d)

(e) (f)

Figure B.2: Time dynamics for an SIR epidemic in the Erdös-Rényi (ER) random network
(N = 10000, p = 0.01); a) Stochastic numerical simulation of the exact continuous-time Markov
process of the individual-based approach; solid lines represent the average of the 200 simulations
and shaded areas represent the region of the stochastic simulations; b) Individual-based: N = C =

10000,N1 = N2 = ..... = NC = 1, simulation time = 17.582s; c) group-based: C = 100,N1 =

N2 = ..... = NC = 100, simulation time = 0.149s; d) group-based: C = 50,N1 = N2 = ..... =

NC = 200, simulation time = 0.091s; e) group-based: C = 10,N1 = N2 = ..... = NC = 1000,
simulation time = 0.0168s;and f) merging of all sub-plots a-e.
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description of the group-states are given below

group1 =



_ _ _ V1

| ∗ ∗ [0, 2]

∗ | ∗ [1, 1]

∗ ∗ 1 [2, 0]



group2 =



_ _ _ _ V2

| ∗ ∗ ∗ [0, 3]

∗ | ∗ ∗ [1, 2]

∗ ∗ | ∗ [2, 1]

∗ ∗ ∗ | [3, 0]



(B.13)

The SIS epidemic process has two compartments: susceptible and infected. One divider ’|’ can

divide nodes ’∗’ into two compartments. At first, we will present the steps to get Qδ1 for the nodal

transition infected-to-susceptible, then we will present the steps to get Qβ1 for the edge transition

susceptible-to-infected.

Here, the transition-specific matrix for group-1 and group-2 for the nodal transition from susceptible-

to-infected compartment will be

∆1,δ1 =


−2δ 2δ 0

0 −δ δ

0 0 0



∆2,δ1 =



−3δ 3δ 0 0

0 −2δ 2δ 0

0 0 −δ δ

0 0 0 0



(B.14)
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The definition of the transition-specific matrix is given in Eq. 4.13.

Qδ1 =



−5δ 3δ 0 0 2δ 0 0 0 0 0 0 0

0 −4δ 2δ 0 0 2δ 0 0 0 0 0 0

0 0 −3δ δ 0 0 2δ 0 0 0 0 0

0 0 0 −2δ 0 0 0 2δ 0 0 0 0

0 0 0 0 −4δ 3δ 0 0 δ 0 0 0

0 0 0 0 0 −3δ 2δ 0 0 δ 0 0

0 0 0 0 0 0 −2δ δ 0 0 δ 0

0 0 0 0 0 0 0 −δ 0 0 0 δ

0 0 0 0 0 0 0 0 −3δ 3δ 0 0

0 0 0 0 0 0 0 0 0 −2δ 2δ 0

0 0 0 0 0 0 0 0 0 0 −δ δ

0 0 0 0 0 0 0 0 0 0 0 0



(B.15)

The Qδ1 matrix can be obtained for this case from Eq. (B.6), which is presented in Eq (B.15).

Let the states of the groups at time t, be gz1(t) =


0

1

0

, and gz2(t) =



0

0

1

0


. Therefore, the group-state at

time t is G(t) =

[
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

]T

.

Now, the transition-specific matrix for the edge transition susceptible-to-infected with the rate β
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is

∆1,β1 =


0 0 0

β −β 0

0 2β −2β



∆2,β1 =



0 0 0 0

β −β 0 0

0 2β −2β 0

0 0 3β −3β



(B.16)

Now, the Qβ1 matrix for this case can be obtained from Eq. (B.7),

Qβ1(:,Z) = 

0

0

0

0

0

0

−2β
(∑2

j=1Ag(2, j)x j,2

)
− β

(∑2
j=1Ag(1, j)x j,2

)
3β

(∑2
j=1Ag(2, j)x j,2

)
0

0

2β
(∑2

j=1Ag(1, j)x j,2

)
0



(B.17)
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