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Abstract

Let An(S) be a coefficient free commutative cluster algebra over a field K. A cluster

automorphism is an element of Aut.KK(t1, · · · , tn) which leaves the set of all cluster vari-

ables, χS, invariant. In Chapter 2, the group of all such automorphisms is studied in terms

of the orbits of the symmetric group action on the set of all seeds of the field K(t1, · · · , tn).

In Chapter 3, we set up for a new class of non-commutative algebras that carry a non-

commutative cluster structure. This structure is related naturally to some hyperbolic al-

gebras such as, Weyl Algebras, classical and quantized universal enveloping algebras of sl2

and the quantum coordinate algebra of SL(2). The cluster structure gives rise to some com-

binatorial data, called cluster strings, which are used to introduce a class of representations

of Weyl algebras. Irreducible and indecomposable representations are also introduced from

the same data.

The last section of Chapter 3 is devoted to introduce a class of categories that carry a

hyperbolic cluster structure. Examples of these categories are the categories of representa-

tions of certain algebras such as Weyl algebras, the coordinate algebra of the Lie algebra

sl2, and the quantum coordinate algebra of SL(2).
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Introduction

Cluster algebras were invented by S. Fomin, and A. Zelevinsky [1, 15 ,16, 17, 34]. A clus-

ter algebra is a commutative algebra with a distinguished set of generators called cluster

variables and particular type of relations called mutations. A quantum version was intro-

duced in [10] and [2]. The original motivation was to create an algebraic framework to

study total positivity and dual canonical basis in coordinate rings of certain semi simple

algebraic groups. It was inspired by the discovery of a connection between total positivity

and canonical basis due to G. Lusztig, [24].

First chapter of the thesis serves as a theory preliminaries. First section contains an

axiomatic definition, first examples and some basic structural properties of cluster algebras.

Second section is devoted to give a brief introduction to the quantum version of cluster

algebras, first introduced in [10] and [2]. Section 3 provides one of the original motivating

examples, namely the cluster structure on the algebra of functions of double Bruhat Cells.

Along with the example, we provide a machinery of producing totally positive basis for the

double Bruhat, more details are in [1], [13]. Section 4 of Chapter 1 is where we explain a

relation between the cluster algebras and the root systems which highlighting the relation

between the cluster theory and the heart of the Lie theory.

The second chapter’s main topic is answering the question, what does it mean for two

cluster algebras to be isomorphic. Among different ways of defining the isomorphisms in this

case, is to consider the algebra isomorphisms that reserve the set of cluster variables, which

is considered to be the core of the algebra. Thus we define a cluster algebra isomorphism as

an K-algebra isomorphism φ : A(S) → A(S ′) such that φ(χS) = χS′ . This definition does

not require that φ should be compatible with mutations. One could also define a cluster

isomorphism as an algebra isomorphism sending clusters to clusters or require the mutation

relations to be preserved. Under certain conditions, these different definitions are equivalent,

(Corollary 2.2.4).
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In Chapter 2, we initiate the study of the cluster automorphisms of a commutative coef-

ficient free cluster algebra, An(S). The cluster automorphisms are the field automorphisms

that leave χS invariant, (Definition 2.1.1). It turned out that, under certain conditions,

leaving χS, invariant is equivalent to leaving the cluster structure, the set of all seeds of

An(S), invariant, (Theorem 2.2.3). The group of all such automorphisms is called the clus-

ter group of An(S). Our original motivation was to study the irreducible elements in any

cluster algebra through studying the cluster automorphisms. Despite we introduced and

studied the cluster automorphisms, we are still relatively far from this initial aim.

Also in the same chapter we study the action of the symmetric group on the set S,

of all seeds of the field F = K(t1, t2, . . . , tn). We show that in the simply-laced cluster

algebras, the orbits of such action are subsets of the orbits of the mutations group action

on S, (Theorem 2.1.4). However, the simply-laced hypothesis is necessary, (Example 2.1.5).

Every two seeds and a permutation group element define a field automorphism, which

we call an exchange automorphism. The subgroup of Aut.KF , generated by the set of all

exchange automorphisms, is called the exchange group of An(S).

The main result of the second chapter, is providing a description for the intersection of

the cluster group and the exchange group for any coefficient free cluster algebra satisfying

the Fomin-Zelevinsky positivity conjecture. The description is in terms of the orbits of the

symmetric group action on S and the cluster pattern data (Theorem 2.2.3).

Hyperbolic algebras were first introduced by A. Rosenberg in [30], and his motivation

was to find a ring theoretical framework to study the representation theory of some impor-

tant small algebras such as the first Heisenberg algebra, Weyl algebra, and the universal

enveloping algebra of the Lie algebra sl(2). A complete list of small algebras and their

representations theory using the hyperbolic algebra as the framework can be found in [30].

The relations on the hyperbolic algebras give raise to a non-commutative cluster struc-

ture, which is first introduced in Chapter 3 of this thesis. We were motivated by the rich

combinatorial structure comes with any cluster structure, to be used to reclassify the rep-
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resentations theory of hyperbolic algebras.

Chapter 3 works as a setting up for the cluster structure in the hyperbolic algebras, and

details are given for our two running examples Weyl algebra and the quantum coordinate

algebra of SL(2, k).

In the last decade, the age of the cluster algebras theory, the theory has witnessed a

remarkable growth due to the many links that have been discovered with a wide range of

subjects. Recently, D. Hernandez and B. Leclerc in [20] and [22], and Nakajima in [28] have

started using the rich cluster algebra structure to solve some classical representation theory

problems. Chapter 3 has to do with this trend. The main idea is, we show that a partial

relaxing of the commutativity relations of the frozen variables and cluster variables, extends

the theory to include some essential objects in representation theory, such as hyperbolic

algebras. We also, introduce and study non commutative seeds, that are different from the

quantum seeds introduced in [10], and [2]. We show that this type of seeds exists naturally

and the cluster algebras of these seeds are naturally related to some known hyperbolic alge-

bras. The non-commutativity is controlled by a ring (the ring of coefficients) automorphism

θ, and in the case of θ = id we get the Fomin and Zelevinsky cluster algebra.

Weyl algebras (algebras of differential operators with polynomial coefficients) among

others are one of the most important examples of hyperbolic algebras. They are essentially

relevant for the theory of infinite dimensional representations of Lie algebras. They appear as

primitive quotients of universal enveloping algebras of nilpotent Lie algebras, which reduces

the study of irreducible representations of nilpotent Lie algebras to study simple modules

over Weyl algebras. In the case of reductive Lie algebras, Weyl algebras also appear as

algebras of differential operators on (translations of) big Shubert cells. The algebra of

differential operator on the big Shubert cells is used to develop methods in non-commutative

geometry to reduce the study of the irreducible representations of reductive Lie algebras to

the study of simple modules over Weyl algebras. More generale hyperbolic algebras play a

similar role (via quantum D- modules on quantum flag varieties) for quantized enveloping

xi



algebras.

In the last section of Chapter 3, we introduce a class of categories that carry a hyperbolic

cluster structure. Examples of these categories are the categories of representations of Weyl

algebras, the coordinate algebra of the Lie algebra sl2, and the quantum coordinate algebra

of SL(2).

Notations: Through out the first two chapters, K is a field and F = K(G)(τ1, . . . τn)

is the field of rational functions in n independent (commutative) variables over the filed

of fractions K = K(G) of the group ring K[G], where G is a free abelian group, written

multiplicatively, generated by the elements f1, . . . , ft. We always denote (bij) for the square

matrix B, (cij) for C, etc., and [1, n] = {1, 2, . . . , n}.
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Chapter 1

Cluster Algebra Basics

1.1 Preliminaries

Most of the material of this section is based on [1] [2] [15] [16] [17] and [18].

Definitions 1.1.1. 1. A seed p of rank n in F is a pair (X̃, B̃) where

X̃ = {x1, . . . , xn, fn+1, . . . , fm} with m = n+t such that fn+1, . . . , fm generate the free

abelian group P and the elements of X = (x1, x2, . . . , xn) ∈ Fn form a transcendence

basis of F over the field of rational functions K = K(P), and B̃ = (̃bij) is an m ×

n integral matrix with rows labeled by the elements of X̃ and columns labeled by

elements of X with the following two conditions

• B̃ has full rank n

• The sub matrix B of B̃ formed from the first n rows is skew-symmetrizable, i.e.,

dibik = −dkbki for some positive integers di with i, k ∈ [1, n]. The matrix B is

called the exchange matrix of p.

The elements of fn+1, . . . , fm are called the frozen variables, elements of X are called

cluster variables and m = t+ n is called the size of p.

2. The diagram of the skew-symmetrizable matrix B = (bij) is the weighted directed
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graph, Γ(B), with set of vertices [1, n] such that there is an edge from i to j if and

only if bij > 0 and this edge is assigned the weight |bijbji|.

3. For a squire matrix B = (bij) with integer entries, the Cartan counterpart of B is

denoted by A(B) = (aij) where aij are given by

aij =


2, if i = k,

−|bij| if i 6= k.

(1.1.1)

Definition 1.1.2 (Seed mutation). For each fixed k ∈ {1, . . . , n}, and each given seed

(X̃, B̃) we define a new pair µk(X̃, B̃) = (X̃ ′, B̃′) by setting X ′ = (x′1, . . . , x
′
n) with

x′i =


xi, if i 6= k,

(
∏
bji>0 f

bji
j )(

∏
bji>0 x

bji
j )+(

∏
bji<0 f

−bji
j )(

∏
bji<0 x

−bji
j

xi)
, if i = k,

(1.1.2)

and B′ = (b′ij) with

b′ij =


−bij, if k ∈ {i, j},

bij +
|bik|bkj+bik|bkj |

2
, otherwise.

(1.1.3)

The operation µk is called a mutation in k−direction.

Remark 1.1.3. 1. One can see that µ2
k = 1 for all k ∈ [1, n], and {x1, . . . , xi−1, x

′
i, xi+1, · · · , xn}

is always a transcendence basis of F over K for all i ∈ [1, n], and B′ is skew-

symmetrizable. So (µk(X̃), µk(B̃)) is again a new seed.

2. The following relation is an equivalent relation on S, the set of all seeds in F .

∀p1, p2 ∈ S, p1 ∼ p1 if and only if p2 = µi1µi2 · · ·µiq(p1) (1.1.4)

for some sequence of mutations µi1 , µi2 , . . . , µiq , ij ∈ [1, n], j ∈ [1, q]

In this case µi1µi2 . . . µiq(p) is called mutation-equivalent to p.

2



Definition 1.1.4 (Distinguished seeds). A seed p = (X̃, B̃) is called a distinguished seed

if the exchange matrix B satisfies the following two conditions

•

bijbik ≥ 0, ∀ i, j, k ∈ [1, n], (1.1.5)

• the Cartan counterpart A(B) = (aij) is of finite type as a Cartan matrix.

Furthermore, the type of the seed p is determined by the Cartan-Killing type of A(B).

Definition 1.1.5 (Geometric cluster algebra). Fix p = (X̃, B̃) ∈ S. Let S denote the

mutation equivalence class of p, and XS be the set of all cluster variables in S, i.e., the union

of all clusters of S. The cluster algebra An(S) of rank n, associated to the initial geometric

seed p = (X̃, B̃) (of size m = n+ t) is defined to be the Z[P]−subalgebra of F generated by

XS that is

An(S) := Z[P][XS] ⊂ F (1.1.6)

Definition 1.1.6 (Cluster pattern and Cluster structure of An(S) [17]). 1. Let Tn =

(V,E) be the n-regular tree, where V is the set of vertices and E is the edges. The

cluster pattern Tn(S) of An(S) is define to be the triple (Tn, f, l) with f : V → S and

l : E → [1, n] are two maps such that for e ∈ E connecting v and v′ with l(e) = k, we

have µk(f(v)) = f(v′).

2. The cluster structure of An(S) is the n-regular graph with set of vertices S and edges

labeled by [1, n] such that if k ∈ [1, n] connecting v and v′, then µk(v) = v′.

Remark 1.1.7. One can see that, the cluster pattern and the cluster structure of An(S)

can be completely determined by any seed in S.

Definition 1.1.8. A cluster algebra An(S) is called of finite type if S is a finite set. Equiv-

alently if XS is a finite set.

3



The details for the following two theorems are available in [16].

Theorem 1.1.9. (Finite type classification). For a cluster algebra An(S), the following

are equivalent:

• An(S) is of finite type

• for every seed (X̃, B̃) in S, the entries of the exchange matrix B = (bij) satisfy the

inequalities |bijbji| ≤ 3, for all i, j ∈ [1, n]

• S contains a distinguished seed.

In such case, The cluster type of An(S) is the same as the Cartan-Killing type of the Cartan

counter part the distinguished seed.

Theorem 1.1.10. Every finite type Cartan matrix corresponds to one and only one, finite

type cluster algebra, up to a field automorphism that is restricted to algebra isomorphism.

Remark 1.1.11 ([34]). A seed p = (X̃, B̃) ∈ S, with X = (x1, x2, . . . , xn), is said to be

acyclic if there is a linear ordering of {1, 2, · · ·n} such that bij ≥ 0 for all i < j. In this case

An(S) is called an acyclic cluster algebra, and the following is satisfied

An(S) = Z[P][xk, x
′
k; k ∈ [1, n]], (1.1.7)

and An(S) is finitely generated as an algebra over Z[P].

Theorem 1.1.12. (Laurent Phenomenon ). The cluster algebra An(S) is contained in

the integral ring of Laurent polynomials Z[P][X±], for any cluster X, i.e.,

An(S) ⊂ Z[P][X±] = Z[P][x±1 , x
±
2 , . . . , x

±
n ]. (1.1.8)

More precisely, every non zero element, can be uniquely written as

y =
P (x1, x2, . . . , xn)

xα1
1 . . . xαnn

, (1.1.9)

4



where (α1, α2, . . . , αn) ∈ Zn, and P (x1, x2, . . . , xn) is in Z[P][x1, x2, . . . , xn], which is not

divisible by any cluster variables x1, x2, . . . , xn.

Conjecture 1.1.13. Fomin-Zelevinsky Positivity Conjecture. For any cluster algebra

An(S) if y is a cluster variable, then the polynomial P (x1, x2, . . . , xn) (appeared in (1.1.9))

has nonnegative integer coefficients.

The conjecture has been proved in many cases including classical type cluster algebras

[16], rank two affine cluster algebras as in [33], acyclic cluster algebra [14], cluster algebras

arising from spaces [27], and more.

Example 1.1.14. Cluster algebras coming from polygon triangulations. From the

above definition of cluster algebra, one can see that starting with a skew symmetrizable

matrix we can associate a transcendence basis to get a seed and use this seed to generate

a cluster algebra using mutations. So, having a method of generating skew symmetrizable

matrices is equivalent to having a method of generating cluster algebras. One way to gener-

ate skew symmetrizable matrices is to associate a matrix to each non crossing triangulations

of the polygon, as we see in the following.

Let T be a fixed triangulation of the (n + 3)-gone Pn. Label all the diagonals with

numbers starting with the internal diagonals, i.e., the labels of the internal diagonals are

from the set {1, . . . , n} and the edges take labels from {n+ 1, . . . , 2n+ 3}. Let B̃(T) = (bij)

be the adjacent matrix associated to the triangulation T. We define B̃(T)(bij) as follows;

it has exactly m = 2n + 3 rows and n columns, the rows are associated to all diagonals

(internals and edges) and the columns associates to diagonals only. So, every diagonal

encodes one cluster variable and the edges correspond to the frozen variables. Consider the

following triangulation of the hexagon, and the entries of B̃(T)(bij) in this case are given by

5



b̃ij :=


+1, if i and j share one vertex such that i following j clockwise ∠i

j,

0, if i and j do not show up in some triangle ,

−1, if i and j share one vertex such that i following j counterclockwise ∠j
i .

(1.1.10)

The above triangulation for the hexagon corresponds to the seed (X̃, B) where

X̃ = (x1, x2, x3, f4, f5, f6, f7, f8, f9) and the matrix B̃ given by

6



B =



0 −1 0

1 0 1

0 −1 0

1 0 0

−1 0 0

0 1 −1

0 0 1

0 0 −1

−1 1 0



. (1.1.11)

1.2 Quantum cluster algebra

All the material of this subsection are quoted from [2], [10]

Definition 1.2.1. Compatible pairs Let B̃ and X̃ be as in definition 1.1.1, and Λ = (λij)

be a skew symmetric m×m integral matrix with row and columns labeled by the elements

of X̃. The pair (Λ, B̃) is said to be a compatible pair if

m∑
k=1

bkjλki =


dj, if i = j,

0, if i 6= k

(1.2.1)

Definition 1.2.2. Based quantum tours, toric frames and quantum seeds.

1. Let L be a lattice of rank m, with skew symmetric bilinear form Λ : L× L→ Z. Let

q be a formal variable, and Z[q±
1
2 ] ⊂ Q(q

1
2 ) be the ring Laurent polynomials in q

1
2 .

The based quantum torus associated with L is the Z[q±
1
2 ]-algebra τ = τ(Λ) with a

Z[q±
1
2 ]-basis {Xe : e ∈ L} and multiplication given by

XeXf = q
Λ(e,f)

2 Xe+f , x0 = 1 and (xe)−1 = x−e, for e, f ∈ L. (1.2.2)

7



Let F be the skew-field of fractions of τ , then one can see that d 7→ d · 1−1 is an

embedding of τ in F.

2. A toric frame in F is a mapping M : Zm → F∗, given by M(c) = λ(Xγ(c)), for some λ

an F-automorphism, and γ : Zm → L is an isomorphism of lattices.

Note that the elements M(c) form a Z[q±
1
2 ]-basis of an isomorphic copy λ(τ) of the

based quantum torus τ .

3. A quantum seed is a pair (M, B̃), where M is a toric frame in F, and B̃ is an m× n

integral matrix with rows labeled by [1,m] and columns labeled by an n-element subset

ex of [1,m], such that (ΛM , B̃) is a compatible pair, where ΛM is the bilinear form

obtained from Λ by transferring the form Λ from L by the lattice isomorphism γ.

Definition 1.2.3. Let (M, B̃) be a quantum seed. We generate new quantum seeds by

applying mutations on (M, B̃) as follows. Fix k ∈ ex, and ε ∈ {−1, 1}. We define µk(M) =

M ′ : Zm → F∗ is given by; for the integral column vector c =


c1

...

cm

,

M ′(c) =

ck∑
p=0

(
ck
p

)
q
dk
2

M(Eεc+ εpbk), M ′(−c) = M ′(c)−1, (1.2.3)

where (
r

p

)
t

=
(tr − t−r) · · · (tr−p+1 − t−r+p−1)

(tp − t−p) · · · (t− t−1)
,

and Eε = (eij) is an m×m matrix given by

eij =


δij, if j 6= k,

−1, if i = j = k

max(0,−εbij) if i 6= j = k

,

and the vector bk is the k-th column of B̃. Mutation on B̃ is defined as before.

8



Definition 1.2.4. Let (M, B̃) be a quantum seed, and let X̃ = (x1 . . . , xm), where xi =

M(ei), {ei}n1 is a basis of Zm. The set of cluster variables of (M, B̃) is X = {xj; j ∈ ex}. Let

C = X̃ −X, and P′ be the free group generated by elements of C, written multiplicatively.

The quantum cluster algebra is defined to be the Z[q±
1
2 ][P′]-subalgebra of F generated by

all the cluster variables in every quantum seed that obtain from (M, B̃) by applying some

sequence of mutations.

1.3 Cluster algebras and total positivity

The classical theory of total positivity was started in the third decade of the the twentieth

century by many mathematicians among whom Gantmacher, Kerin, and Schoenberg and

they basically were studying the total positivity in the matrix groups. In [24] G. Lusztig

introduced the totally non-negative variety G≥0 and studied the structure of total non-

negative elements inside the unipotent radical N of a Borel subgroup B in any reductive

group G, he was motivated by his discovery of connections between total positivity and his

theory of canonical basis for quantum groups. In [1], and [13] A. Zelevinsky, S. Fomin, and

A. Berenstein provided the double Bruhat cells as a natural framework to study the total

positivity in any reductive group using the double Bruht decomposition of G into a disjoint

union of double Bruhat cells. In their study, they provided an algebraic framework for the

total positivity tests which are regular functions on the double Bruhat cells, this framework

is what they later called cluster algebras.

All results of this section are true for every reductive algebraic group. However, some

statements are written for matrix algebraic groups (subgroups of the general linear group

GLn(C)). Our running example is SLn(C).

Let g be a complex semisimple Lie algebra with a Cartan decomposition g = n−⊕h⊕n+

with respect to a set of Chevalley generators {ei},{hi}, and {fi}, i = 1, . . . , r, for n−, h, and

n+ respectively. Let Φ ⊂ h∗ be the root system of g with simple roots {α1, . . . , αr}. The
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Cartan matrix of the root system Φ is given by A = (aij) = (αi(hj)). Denote the weight

lattice by P = {a ∈ h∗ : a(hi) ∈ Z, i ∈ [1, r]}. The fundamental weights {ω1, . . . , ωr} given

by ωi(hj) = δij, form a Z-basis for P . Let G be the Lie group with Lie algebra g and N,N−

and H be closed subgroups of G with Lie algebras n, n− and h respectively. Every element

of H can be written as exp(h) for some h ∈ h, which gives rise to a multiplicative character

for the group H given by γ : H → C∗ where γ(exp(h)) = exp(γ(h)), h ∈ H.

Let B and B− be two opposite Borel subgroups of G with unipotent radicals N and N−

respectively, that is B = HN,B− = HN− and H = B ∩ B− be the maximal torus. The

Weyl group is defined by W = NormG(H)/H. W acts on H by w(h) = w−1hw which gives

rise to an action of the weyl group W on the weight lattice P as follows; For a ∈ H,w ∈ W

and γ ∈ P , w(γ)(a) = γ(w(a)) = γ(w−1aw). We identify W with the group of all linear

transformations of h∗ which is a Coxeter group generated by simple reflections s1, . . . , sr

where si : h∗ −→ h∗ with si(γ) = γ − γ(hi)αi, i = 1, . . . , r. A reduced word w ∈ W is

a sequence of indices i = (i1, . . . , im) of shortest possible length such that w = si1 · · · sim .

In this case we say the length of w is m and we write l(w) = m. Consider the two sets

of elements {s̄1, . . . , s̄r} and {¯̄s1, . . . , ¯̄sr} from G given by s̄i = exp(−ei) exp(fi) exp(−ei),

¯̄si = exp(ei) exp(−fi) exp(ei). These elements satisfy the following relations

1.

s̄is̄j s̄i · · · = s̄j s̄is̄j · · · (same equations are satisfied for ¯̄si) (1.3.1)

2.

si = s̄iH. (1.3.2)

Therefore for any w ∈ W we can introduce the elements w̄ ∈ NormG(H) with the equation

uv = ūv̄ whenever l(uv) = l(u) + l(v).

Let G0 = N−HN = {x ∈ G : x = x−x0x+ for some x− ∈ N−, x0 ∈ H, x+ ∈ N}. For a

fundamental weight ω and a regular function ∇ on G, if the restriction of ∇ on G0 given by

∇(x) = ω(x0), then we write ∇ = ∇ω.
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Definition 1.3.1. For u, v ∈ W and ωi a fundamental weight the generalized minor

4uωi,vωi is the regular function on G whose given on G by

4uωi,vωi (x) = ∇ωi(u−1xv̄). (1.3.3)

Remark 1.3.2. The action of the generalized minors on G does not depend on the particular

choice of the reduced word of u and v but depends on the weights uωi and vωi

Important special case. Let G = SLr+1 be the special linear subgroup of GLn. In

this case, B is the subgroup of G of upper triangle matrices, B− is the subgroup of of lower

triangle matrices and H is the subgroup of diagonal matrices, N is the subgroup of upper

triangle matrices with all diagonal entries equal one, and N− is the subgroup of lower triangle

matrices with diagonal entries are all ones.

A generalized minor on G is a regular function defined by sending each element x in G

to some determinant of a sub matrix of x, we denote the minors by 4I,J with I, J being

subsets of [1, n] such that I and J have same cardinality, where I refers to rows and J to

columns. So, for example the minor 4124,234 is the determinant of the sub matrix with rows

1, 2, 4 and columns 2, 3, 4.

The Weyl group of the the special linear group SLr+1 is identified with the symmetric

group Sr+1. For a fixed element σ ∈ Sr+1 the pair (i, j) ∈ [1, r+ 1]× [1, r+ 1] is said to be

an inversion of σ if i < j and σ(i) > σ(j). The length of σ is defined to be the number of

its inversions, and is denoted by l(σ).

The symmetric group Sn acts on the general linear group GLn as follows; a permutation

element σ acts on a matrix x by permuting the rows and the columns of x simultaneously.

Definition 1.3.3. Let G be a reductive group, and let H be the maximal torus of G. We

set H>0 := {a ∈ H : γ(a) is a positive real number,∀ weight γ ∈ P}. An element x of G is
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said to be totally non-negative if and only if x is an element of the multiplicative semigroup

G≥0 generated by H>0 ∪ {exp(tei), exp(tfi) : t is any positive real number, i ∈ [1, r]}

Definition 1.3.4. A matrix of real entries B is totally positive (resp., totally nonnegative)

if all its minors are positive (resp., nonnegative). We use the term TP for totally positive

and TNN for totally non-negative.

Remark 1.3.5. In [1] the above two definitions of total non-negativity coincides in the case

of G = SLn(C).

Definition 1.3.6. Let G be a subgroup of G. A subset ∆(G) of the algebra of regular

functions of G is said to be a total positivity test (resp., total non-non negativity test) for G

if and only if

x ∈ G is TP (resp., TNN) if and only if f(x) > 0 (resp., f(x) ≥ 0) ∀f ∈ ∆(G) (1.3.4)

Question 1.3.7. For a given subgroup (or subset) of group G, is there a machinery to

produce total positivity tests and what could be an algebraic frame work to study these

tests?

In fact, the answer for this question is positive in many cases even for some non matrix

groups, and it has to do with introducing the cluster algebras theory. In the following we

will provide such machinery for double Bruhat cells, as an example.

Question 1.3.8. Why should we care about the positivity in double Bruhat cells?

An answer for this question in the case of Gn, the general linear group, comes from the

following definition and theorem

Definition 1.3.9. For a Weyl group element u, the subsets BuB and B−uB− of G are

called the Bruhat cells with respect to B and B− respectively. For two elements of the Wyel

group u and v, the double Bruhat cell with respect to B and B− in G are given by

Gu,v = BuB ∩B−vB−. (1.3.5)
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In the case of GLn, the elements u and v would be permutations in r + 1 letters (r is the

dimension of h).

Theorem 1.3.10. Double Bruhat Cells description and Bruhat decompositions.

1. A matrix x ∈ BuB if and only if the following two conditions are satisfied

• 4u([1,i]),[1,i] 6= 0 for i ∈ [1, n− 1];

• 4u([1,i−1]∪{j}),[1,i] = 0 for all (i, j) such that 1 ≤ i < j ≤ n and u(i) < u(j).

2. The group G is the disjoint union of all double Bruhat cells, that is it has the following

Bruhat decompositions, with respect to B and B−:

G =
⋃
u∈W

BuB =
⋃
v∈W

B−vB−. (1.3.6)

Remark 1.3.11. The transpose map (−)T : GLn −→ GLn given by x 7→ xT provides us

with a similar description for the other Bruhat cell B−vB− as the one provided above for

BwB in the above theorem. Noticing that the transpose map sends BwB into Bw−1B and

each minor 4I,J to 4J,I .

Example 1.3.12. Let w0 be the longest element in W . Then Gw0,w0 is the open double

Bruhat cell given by:

Gw0,w0 = {x ∈ G;4wi,wowi(x) 6= 0,4wowi,wi(x) 6= 0, for all i ∈ [1, r]}. (1.3.7)

For instance, consider the following two examples

1. Let G = SL2. So, r = 1 and w0 is the transpose (12). The double Bruhat cell in this

case is given by

SL
(12),(12)
2 = {x ∈ SL2 : 41,2(x) 6= 0,42,1(x) 6= 0}.

13



2. Let G = SL3. Here, r = 2 and w0 = (13) the permutation that fixes 2 and permutes

1 and 3. Then, we have

SL
(13),(13)
2 = {x ∈ SL3 : 41,3(x) 6= 0,412,32(x) 6= 0,43,1(x) 6= 0,423,12(x) 6= 0}

Theorem 1.3.13. Double Bruhat cell Gu,v is isomorphic (as an algebraic variety) to a

Zarisky open subset of an affine space Cl(u)+l(v)+r, where r is the rank of G.

Definition 1.3.14. We define the totally positive part of Gu,v by setting

Gu,v
>0 = Gu,v ∩G≥0. (1.3.8)

Theorem 1.3.15. The totally positive part of the open double Bruhat cell is the totally

positive variety:

G>0 = Gw0,w0

>0 . (1.3.9)

So, studying the total positivity of G is reduced to studding the total positivity of the

double Bruhat cell at the longest element of W .

Definition 1.3.16. A Totally positive basis for Gu,v is a collection of regular functions

F = {f1, . . . , fm} ⊂ C[Gu,v] with the following properties:

1. The functions f1, . . . , fm are algebraically independent and generate the field of ratio-

nal functions C(Gu,v); in particular, m = r + l(u) + l(v).

2. The map (f1, . . . , fm) : Gu,v −→ Cm restricts to a biregular isomorphism U(F ) −→

(C6=0)m, where

U(F ) = {x ∈ Gu,v : fk(x) 6= 0 for all k ∈ [1,m]}. (1.3.10)

3. The map (f1, . . . , fm) : Gu,v −→ Cm restricts to an isomorphism Gu,v
>0 −→ Rm

>0
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Corollary 1.3.17. Property three in the previous theorem implies that every totally positive

basis of Gu,v is a totally positive test.

Theorem 1.3.18. Each reduced word i for (u, v) ∈ W ×W gives rise to a totally positive

basis Fi consisting of generalized minors for Gu,v given as follows:

Fi = {4γk,δk : k ∈ [1,m]}; (1.3.11)

here m = r + l(u) + l(v), and γk, δk ∈ P are defined as follows; i can be represented as

a sequence of indices (i1, . . . , im) from the set {−1, . . . ,−r, 1, . . . , r} such that ij = j for

j ∈ [1, r], and s−ir+1 · · · s−im = u, and sir+1 · · · sim = v, with the convention s−i = 1 for

i ∈ [1, r]. Now we have the assignments

γk = s−i1 · · · sikω|ik|, δk = sim · · · sik+1
ω|ik| (1.3.12)

Example 1.3.19. Let G = SL3(C), and let u = v = w0 = s1s2s1 = s2s1s2 be the order-

reversing permutation (the element of maximal length in the symmetric group W = S3).

Take i = (1, 2, 1, 2, 1,−1,−2,−1).

Then Fi = {41,3,412,23,41,2,412,12,41,1,42,1,423,12,43,1}. (The minors on the right-hand

side are listed in the natural order, i.e., f1 = 41,3, . . . , f8 = 43,1). One can see {f1, . . . , f8}

provides a total positivity test in SL3.

What are the relations between them and how they related to the structure of C[Gu,v]?.

This what we will discuss in the rest of this subsection.

Theorem 1.3.20. For every reduced word i for (u, v) ∈ W ×W , we associate an m × n

integral matrix B̃(i) = (bij), such that the following are true

1. The pair (Fi, B̃(i)) is a seed in the field of fractions C(Gu,v)

2. For every k an exchangeable index in [1,m], the mutation in the k-direction on the

totally positive test Fi given by µk(Fi) = Fi − {fk} ∩ {f ′k} ⊂ C[Gu,v], where
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f ′k =

∏
bik>0 f

bik
i +

∏
bik<0 f

−bik
i

fk
(1.3.13)

is again a totally positive basis for Gu,v.

Definition 1.3.21. For each reduced word i for (u, v) ∈ W ×W , here is how we build the

matrix B̃(i) in general.

First step: the directed graph Γ̃(i). Vertices of Γ̃(i) is the set I0 = {−1, . . . ,−r, 1, . . . , l(u)+

l(v)}. Arrows are defined based on the following rules; For k ∈ [1, r] ∪ [1, l(u) + l(v)], we

denote by k+ is the smallest index l such that k < l and |il| = |ik|; if |ik| 6= |il| for k <

l, then we set k+ = (u) + l(v) + 1. Two vertices k and l, with k < l are connected by an

edge if and only if either k or l (or both) are exchangeable plus one of the following three

conditions is satisfied

1. l = k+.

2. l < k+ < l+, a|ik|,|il| < 0, and ε(il) = ε(ik+).

3. l < l+ < k+, a|ik|,|il| < 0, and ε(il) = −ε(ik+).

The edges coming from condition (1) are called horizontal and those from conditions (2)

and (3) are called inclined. To determine the direction of any edge we follow the following

rule; A horizontal (resp., to inclined) edge between k and l is directed from k to l if and

only if ε(ik) = +1) (with respect to ε(il) = −1). The directed graph Γ̃(i) provides us with

the signs of B(i).

Second step: The entries of the matrix B̃(i). The rows of B̃(i) are labeled by the set

of indices I0 of Γ̃(i) and the columns are labeled by the set of i-exchangeable indices. An

entry bkl is determined by the following rules

1. bkl 6= 0 if and only if there is an edge of Γ̃(i) connecting k and l; bkl > 0 (respectively

to bkl < 0) if this edge is directed from k to l (respectively to from l to k);
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2. If k and l are connected by an edge of Γ̃(i), then

|bkl| =


1, if |ik| = |il| (k and l are connected by a horizontal edge),

−a|ik|,|il|, if |ik| 6= |il| (k and l are connected by a inclined edge).

(1.3.14)

Proposition 1.3.22. The matrix B̃ = B̃(i) has a full rank n. Its principal part B = B(i)

is skew-symmetrizable.

Remark 1.3.23. The matrix B̃ can be recovered from the reduced i as follows.

Let k ∈ −[1, r] ∪ [1, l(u) + l(v)] and l be an exchange vertex. Let p = max(k, l) and

q = min(k+, l+). Then

bkl =


−sgn(k − l)ε(ip), if p = q,

−sgn(k − l)ε(ip)a|ik|,|il|, if p < q and ε(ip)ε(iq)(k − l)(k= − l+) > 0.

0, otherwise.

(1.3.15)

Example 1.3.24. With the same data of example 1.3.19 we will introduce the matrix B̃(i)

for some choice of i. We have r = 2, u = v = w0. Then m = l(u) + l(v) + 2 = 8, and

n = 4. Let w0 = s1s2s1, where si, i = 1, 2, 3 are the simple reflections. For simplicity we

write sj as just j, so w0 = 121. The graph Γ̃(i) has exactly 8 vertices corresponding to

{−2,−1, 1, 2, 3, 4, 5, 6} which has indices (i−2, i−1, i−1, i−2, i−1, i1, i2, i1) in order, i.e., i−2 =

−2, i−1 = −1, etc. To find the set of exchangeable vertices, we need the following

− 2+ = 2,−1+ = 1, 1+ = 3, 2+ = 5, 3+ = 4, 4+ = 6, 5+ = 7, and 6+ = 7.

Then by definition the set of i−exchangeable vertices is {1, 2, 3, 4}, so n = 4. Based on the

rules of edges we must have two strips of horizontal edges one for the vertices {−2, 2, 5}
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and the other one is for the vertices {−1, 1, 3, 4, 6}. The inclined edges are between the

two stripes as follows; each of the following pairs of vertices are connected by an inclined

edge {−2, 1}, {2, 1}, {2, 3}, {2, 4}, and {5, 4}. The directions of the edges are determined as

follows form k to l if k < l. So, The graph Γ̃(i) for i = (1, 2, 1,−1,−2,−1) is as follows

·−2
// ·2

�� ''

·5oo

·−1
// ·1

``

// ·3

__

·4oo

__

·6oo

Figure 1.1. Γ̃(i).

The subgraph connecting the underlined vertices of Γ̃(i), the i-exchangeable vertices, corre-

sponding to the principle part B = B(i). One can see B is sign-skew-symmetric.

B̃(i) =



−1 1 0 0

1 0 0 0

0 −1 1 0

1 0 −1 1

−1 1 0 −1

0 −1 1 0

0 1 0 −1

0 0 0 1



. (1.3.16)

So, the picture is completed and we have the second half of the geometric seed Σ(i) =

(F (i), B̃(i)). Following the same order the elements given in example 1.2.2 for F (i), we can,

for simplicity, we write F (i) = {x−2, x−1, x1, x2, x3, x4, x5, x6}. The set of frozen variables

Fr = {x−2, x−1, x5, x6}, hence the set of cluster variables is F (i)−Fr = {x1, x2, x3, x4}. On

can see the sub matrix corresponding to the i-exchangeable vertices can be represented by

the quiver
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·1

��

·2oo

��
·3

??

·4oo

(1.3.17)

Applying mutation at vertex 3 we get;

·1 ·2

��
·3

OO

// ·4

(1.3.18)

which is an acyclic quiver. Then the cluster algebra Ai associated with the seed Σ(i) is

acyclic cluster algebra and hence it is finitely generated with set of generators

F (i) ∪ {x′1, x′2, x′3, x′4},

where x′1, x
′
2, x
′
3, x
′
4 are elements of the field of fractions of the double Bruhat cell Gw0,w0 .

The quiver (1.1.17) can be used to write the relations that determine the new variables

x′i, i = 1, 2, 3, 4, as follows

x1x
′
1 = x−1x2 + x−2x3

x2x
′
2 = x−2x3x5 + x1x4

x3x
′
3 = x1x4 + x2

x4x
′
4 = x2x6 + x3x5.

These relations coincide with the mutations of Σ(i) at the directions 1, 2, 3 and 4 respectively.

In the following for each double reduced word i of any two elements u and v of the Weyl

group W , we introduce a cluster of generalized minors that form with the matrix B(i) a

seed in the field C(G) which generates a cluster algebra that is isomorphic the coordinate

ring of the double Bruhat cell C[Gu,v].
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Consider the following notation introduced by A. Bernstein, S. Fomin and A. Zelevinsky in

[1]. For k ∈ [1, l(u) + l(v)] we denote

u≤k = u≤k(i) =
∏

l=1,...,k;ε(il)=−1

s|il|, (1.3.19)

v>k = u>k(i) =
∏

l=l(u)+l(v),...,k+1;ε(il)=+1

s|il|. (1.3.20)

Notice that; the index l in the first equation above is increasing and decreasing in the second

one. For k ∈ −[1, r] we have u≤k = e and v>k = v−1. For k ∈ −[1, r]∪ [1, l(u) + l(v)] we set

4(k, i) = 4u≤kω|ik|,v>kω|ik|
. (1.3.21)

The cluster is F (i) = {4u≤kω|ik|,v>kω|ik|
: k ∈ −[1, r] ∪ [1, l(u) + l(v)]}.

Remark 1.3.25. The above technique of obtaining the cluster F (i) is a deferent way to

obtain the TP-basis provided from theorem 1.1.33.

Example 1.3.26. We continue with our running example SL3 showing how to calculate

the cluster variables of the cluster F (i) using the above technique.

Here i = (−2,−1, 1, 2, 1,−1,−2,−1). So, by the above definition of u≤k and v>k we have

the following table:

k ik u v>k u≤kω|ik| v>kω|ik|

−2 −2 e w0 [12] [23]

−1 −1 e w0 [1] [3]

1 1 e s1s2 = (231) [1] [2]

2 2 e s1 = (12) [12] [12]

3 1 e e [1] [1]

4 −1 s1 = (12) e [2] [1]

5 −2 s1s2 = (231) e [23] [12]

6 −1 w0 = (13) e [3] [1]

(1.3.22)
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Using the above table the cluster variables are 412,23,41,3,41,2,412,12,41,1,42,1,423,12

and 43,1 with the frozen cluster variables {412,23,41,3,423,12,43,1}.

The details of the following theorem can be found in [1].

Theorem 1.3.27. Fix a reduced word i of a pair (u, v) ∈ W × W . Consider the field

FC = F⊗C. Let AiC = Ai ⊗C be the complexification of the cluster algebra associated to i.

The isomorphism of fields ϕ : FC −→ C(Gu,v) given by

ϕ(xk) = 4(k, i) for all k ∈ −[1, r] ∪ [1, l(u) + l(v)] (1.3.23)

restricts to an isomorphism of algebras AiC −→ C[Gu,v].

1.4 Cluster algebras and root systems

Definitions 1.4.1. 1. Cluster monomials and full cluster monomials. The mono-

mial m = zβ1

1 · · · zβnn , βi ∈ Z≥0, i ∈ [1, n] is a cluster monomial if and only if (z1, . . . , zn)

is a cluster in some seed in the cluster pattern. In the case of βi ∈ Z>0,∀i ∈ [1, n], the

monomial m is called a full cluster monomial.

2. Positive elements. An element y of the cluster algebra An is said to be a positive

element if it satisfies

y ∈
⋂

X∈SC

Z≥0[X±1].

Where SC is the set of all clusters of An and Z≥0[X±1] is the set of all Laurent poly-

nomials in the cluster variables from the cluster X, with positive integral coefficients.

3. indecomposable element. An indecomposable element in An is any element that

can not be written as a sum of two positive elements. (In some literatures they are

called atomic elements)
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4. Denominator vector with respect to a given cluster. From Laurent phe-

nomenon we have that every cluster variable y can be uniquely written as

y =
P (x1, . . . , xn)

xd1 · · ·xdn
(1.4.1)

where P (x1, . . . , xn) ∈ Z[x1, . . . , xn] which is not divisible by any cluster variable

x1 . . . xn. We denote δ(y) = (d1, . . . , dn), and call the integer vector δ(y) the denom-

inator vector of y with respect to the cluster X = (x1, . . . , xn). For instance, the

elements of X have denominator vectors δX(xj) = −ej , δX(x′j) = ej, j ∈ [1, n],

where e1, ..., en are the standard basis vectors in Zn. One can see that the map y 7→ δ(y)

has the following valuation property δX(yz) = δX(y) + δX(z).

Let p = (X,B) be a distinguished seed with Cartan matrix A = A(B) and Φ be the root

system associated to A , and let Q be the root lattice generated by Φ. We identify Q with

Zn using the basis Λ = {α1, ..., αn} of simple roots in Φ. Let Φ>0 be the set of all positive

roots associated to Λ.

Theorem 1.4.2. [16, 34].

1. Let p = (X,B) be a distinguished seed. Then the denominator vector δX , provides a

bijection between the set of the cluster variables χ and the set

Φ≥−1 = Φ>0 ∪ (−Λ) (1.4.2)

of almost positive roots.

This parametrization also gives a bijection between the set of all cluster monomials

and the root lattice Q = Zn.

2. For any α = c1α1 + . . . + cnαn ∈ Φ≥−1, there is a unique cluster variable x[α] such

that
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x[α] =
Pα(x1, . . . , xn)

xc11 · · ·xcnn
. (1.4.3)

Where Pα is a polynomial in x1, ..., xn with nonzero constant term; furthermore, any

cluster variable is of this form.

Remark 1.4.3. Fomin-Zelevinsky positivity conjecture is equivalent to say ”every cluster

variable is a positive element”.
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Chapter 2

Cluster Automorphisms

In this chapter we introduce and study the notion of cluster automorphisms in coefficient

free cluster algebras. We study them in terms of the orbits of the symmetric group action

on the set of all seeds.

2.1 Cluster groups

Definition 2.1.1. Let AutK(F) be the automorphism group of F over K. An automor-

phism ϕ ∈ AutK(F) is called a cluster isomorphism of cluster algebras An(S) and Bn(S ′)

over F , if ϕ sends every cluster variable in An(S) to a cluster variable in Bn(S ′).

In particular, φ ∈ AutK(F) is called a cluster automorphism of An(S), if it leaves XS

invariant.

The subgroup of AutK(F) of all cluster automorphisms of An(S) is called the cluster

group of An(S) and is denoted by Cn(S).

Remarks 2.1.2. 1. One can see that any cluster automorphism of a cluster algebra

An(S) is an algebra automorphism of An(S) over K, i.e. Cn(S) is a subgroup of

AutKAn(S), where AutKAn(S) denotes the automorphism group of the algebra An(S)

over K.

2. If ψ : An(S)→ Bn(S ′) is a cluster isomorphism, then ψ induces a group isomorphism

24



between Cn(S), and Cn(S ′). To see this fact, we define the group isomorphism by

π : Cn(S) → Cn(S ′), given by φ 7→ ϕ, where ϕ(y) = ψ(φ(ψ−1(y))) for y a cluster

variable in Bn(S ′). A routine check shows that π is a group isomorphism.

Let σ ∈ Sn (a symmetric group element), and T = (t1, t2, . . . , tn) ∈ F such that

{t1, t2, . . . , tn} is a transcendence basis of F over K. Let σT be a linear automorphism

of F over K given as follows; For f = f(t1, t2, . . . tn) ∈ F

σT (f) := f(tσ(1), tσ(2), . . . tσ(n)). (2.1.1)

Using σT , we will introduce an action of the symmetric group Sn on the set S of all

seeds of F .

Definition 2.1.3. Let X = (x1, x2, . . . xn) be a fixed cluster, and let σ ∈ Σn. For any

seed p = (Y,B) ∈ S, where Y = (y1, y2 . . . yn), and B = (bij). The Laurent Phenomenon

(Theorem 1.1.12) guarantees that yi = yi(x1, x2, . . . xn) ∈ Z[x±1 , x
±
2 , . . . x

±
n ] (i.e. yi is a

Laurent polynomial in {x1, x2, . . . xn}, for each i ∈ [1, n]). We define σX(p), as follows;

σX(p) := (σX(Y ), σ(B)), (2.1.2)

where σX(Y ) = (σX(y1), σX(y2), . . . , σX(yn)), σ(B) := (bσ(i)σ(j)) and σX(yi), for i ∈ [1, n], is

as defined in (2.1.1). We write σ(p) instead of σX(p) if there is no chance of confusion.

Before stating the next theorem, we need to develop some notations.

For a seed p = (Y,B), the neighborhood of a cluster variable yi is defined to be the subset

of {y1, y2, · · · , yn} of the cluster variables yj, with bij 6= 0, and is denoted by Np(yi). For

every integral skew-symmetric matrix, B = (bij), we assign a quiver QB. We define QB =

(Q1B, Q2B, hd, tl), where Q1B denotes the vertices, Q2B denotes the arrows, and hd and tl

refer to the head and tail maps respectively. We set Q1B to be the set {1, . . . , n} and for

the arrows, there is a number of arrows equals bij from i to j if and only if bij > 0.

The mutation operation of the matrix B can be translated to that on the associated

quiver. Let µk(QB) denote the mutation at k of QB. First, all the arrows incident to k in QB
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are reversed in µk(QB). Second, for each pair (a, b) of arrows in QB with hd(a) = tl(b) = k

in QB, add an arrow b̄a with tl(b̄a) = tl(a) and hd(b̄a) = hd(b). Last step, remove a number

of arrows from i to j equals the number of arrows from j to i added from the second step.

In other words, remove all the two cycles between i and j.

Theorem 2.1.4. Let p = (X,B) be a simply-laced seed in F , i.e., bij ∈ {0,−1, 1},∀i, j ∈

[1, n]. Then for any σ ∈ Sn, σX(p) is mutation-equivalent to p.

Proof. Let i, j ∈ {1, 2, . . . , n} such that xj ∈ Np(xi). We will prove that σ(X,B) is mutation-

equivalent to (X,B), for every transposition σ ∈ Sn, that sends every k ∈ {1, 2, . . . , n} to

itself except i and j. More precisely

σ(X,B) = µjµiµjµiµj((X,B)) = µiµjµiµjµi((X,B)). (2.1.3)

The statement of the theorem is a direct consequence of (2.1.3), since the symmetric group

is generated by transpositions.

Sketch of proof of identities (2.1.3): Note that, each simply-laced sign skew symmetric

matrix must be skew symmetric. So, it is associated to a quiver, which reduces the proof of

(2.1.3) to be on (X,QB) instead.

In the following we provide a proof for the identity (2.1.3) in some cases as examples. The

proof of all other cases follow similarly:

(i) Seeds of An type

26



We provide a proof for A3-type, a general An-type case is quite similar,

((x1, x2, x3), ·1 → ·2 → ·3)
µ1⇒ ((

x2 + 1

x1

, x2, x3), ·1 ← ·2 → ·3)

µ2⇒ ((
x2 + 1

x1

,
x2x3 + x3 + x1

x1x2

, x3), ·1 → ·2 ← ·3)

µ1⇒ ((
x3 + x1

x2

,
x2x3 + x3 + x1

x1x2

, x3), ·1 ← ·2 ← ·3)

µ2⇒ ((
x3 + x1

x2

, x1, x3), ·1

��

·3oo

·2

?? )

µ1⇒ ((x2, x1, x3), ·2 → ·1 → ·3)

(ii) For the exchange inside the n-cycles

We prove it for A3−type, a general n-cycle is quite similar:

((x1, x2, x3), ·1

��

// ·3

·2

?? )
µ1⇒ ((

x2x3 + 1

x1

, x2, x3), ·1 ·3oo

·2

OO ?? )

µ2⇒ ((
x2x3 + 1

x1

,
x3(x2x3 + 1) + x1

x1x2

, x3), ·2 ·1oo

·3

OO ?? )

µ1⇒ ((
x3 + x1

x2

,
x3(x2x3 + 1) + x1

x1x2

, x3), ·2

��

·32oo

·1

?? )

µ2⇒ ((
x3 + x1

x2

, x1, x3), ·2 2 // ·3

��
·1

OO )

µ1⇒ ((x2, x1, x3), ·2

��

// ·3

·1

?? ).

(remark that; the number 2 written over the arrows from 3 to 2 and from 2 to 3 in third

and fourth steps respectively, refers to double arrows).
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(iii) Exchange of external vertex with adjacent one which is a vertex in an n-cycle

We provide calculations for n = 4 case.

((x1, x2, x3, x4), ·1 // ·2

~~ ��
·3 ·4oo

)
µ1⇒ ((

x2 + 1

x1

, x2, x3, x4), ·1 ·2oo

~~ ��
·3 ·4oo

)

µ2⇒ ((
x2 + 1

x1

,
(x2 + 1)x3x4 + x1

x1x2

, x3, x4), ·1 // ·2

·3

>>

·4oo

OO )

µ1⇒ ((
x2x4 + x1

x2

,
(x2 + 1)x3x4 + x1

x1x2

, x3, x4), ·1 ·2oo

·3

>>

·4oo

OO )

µ2⇒ ((
x2x4 + x1

x2

, x1, x3, x4), ·1 // ·2

~~ ��
·3

OO

·4

``

oo

)

µ1⇒ ((x2, x1, x3, x4), ·2 // ·1

~~ ��
·3 ·4oo

).

Connected cycles and different quivers shapes are similar.

For non simply-laced type seeds, the above result is not necessarily true, we provide the

following counter example.

Example 2.1.5. Consider the seed (X,B), where

B = (bij) =


0 +2 0

−2 0 +1

0 −1 0

.

In the following, we show that there is no sequence of mutations µi1µi2 . . . µik , such that

σ12(B) = µi1µi2 . . . µik(B), where
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σ12(B) =


0 −2 +1

+2 0 0

−1 0 0

.

If we could show that, there is no sequence of mutations that sends the entry b23 to zero,

we will be done. We do this by showing that every sequence of mutations sends b23 to an

odd number. First we show by induction on the length of the sequence of mutations that,

any sequence of mutations sends b13 and b12 to even numbers.

For a single element sequences: one can see that, only µ2 and µ3 may change b13 and b12

respectively: that is µ2 and µ3 send b13 and b12 to 2 respectively.

Now, assume that every sequence of mutations of length k sends b13 and b12 to an even

number, and let µik+1
µik . . . µi1 be a sequence of length k + 1. So, if

µik . . . µi1((bij)) = (b′ij), (2.1.4)

then b′23 = 2d for some integer number d. Now we have

µik+1
(b′13) = b′13 +

b′12|b′23|+ b′23|b′12|
2

= b′13 + d|b′23|+ |d|b′23

= b′13 + d


±2b23, if b23d > 0,

0, if b23d < 0.

Since b′13 is an even number then µik+1
(b′13) must be an even too. This shows that any

sequence of mutations will send b13 to an even number. In a similar way one can show that

any sequence of mutation sends b12 to an even number.

Secondly, we show that every sequence of mutations sends |b23| to an odd number. We

show this by induction on the number of occurrences of µ1 in the sequence. Note that any

sequence not containing µ1 will not change |b23|.
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Sequences contains only one copy of µ1: Without loss of generality, let µi1µi2 . . . µik

be a sequence of mutations such that µik = µ1, and µij 6= µ1, ∀j ∈ [1, k]. This becomes

clear by considering that the possible change in |b23| appears only after applying µ1, and

there is no change in |b23| due to µ2 or µ3. Then using same notation as in (2.1.4), we have

b′23 = ±1 +
b′21|b′13|+ |b′21|b′13

2
. (2.1.5)

However b′21 and b′13 are both even numbers, so
b′21|b′13|+|b′21|b′13

2
must be even, and b′23 is an

odd number.

Sequences contains more than one copy of µ1: Assume that any sequence of

mutations, with µ1 repeated k− times sends b23 to an odd number.

Let µit , µi2 . . . µi1 be a sequence of mutations containing µ1, k + 1−times, then we can

assume that µit = µ1. Let

µit . . . µi1((bij)) = (b′′ij), and µit−1 . . . µi1((bij)) = (b′ij), (2.1.6)

then one can see that b′23 is an odd number and b′12 and b′13 are both even numbers. Then,

b′′23 = b′23 +
b′21|b′13|+ b′13|b′21|

2
(2.1.7)

is a sum of an odd and even numbers, b′′23 is an odd number. 2

Definition 2.1.3 gives rise to an equivalence relation on S, as we will see in the following

definition.

Definition 2.1.6. Let B = (bij) and B′ = (b′ij) be any two sign skew symmetric inte-

gral matrices, and σ be an element of Sn. Then we say that B and B′ are σ-similar if

b′ij = bσ(i),σ(j), where ε ∈ {−1,+1}.
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Now we define an equivalence relation ∼ on S. Let p = (X,B) and p′ = (Y,B′) be two

seeds. Then

p ∼ p′ if and only if B and B′ are σ − similar for some permutation σ. (2.1.8)

This yields an equivalence relation on S with the equivalence class of p denoted by [p] and

the equivalence class of B denoted by 〈B〉. (Note, ∼ defines an equivalence relation on the

set of all sign skew-symmetric integral n× n matrices, for all n ∈ Z≥0)

Lemma 2.1.7. Let p = (X,B), p′ = (Y,B′) ∈ S and σ ∈ Sn. Let Tpp′,σ ∈ Aut.K(F ) be

induced by xi 7→ yσ(i). Then,

B and B′ are σ− similar if and only if Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)), ∀i ∈ [1, n]. (2.1.9)

In particular, p ∼ p′ if and only if for some permutation σ, Tpp′,σ sends µi(X) to µσ(i)(Y ).

Proof. ⇒) Assume that B and B′ are two σ- similar seeds. Then B′ = ε(σ(B)). So, if

B = (bij) and B′ = (b′ij), then b′ij = εbσ(i)σ(j), where ε ∈ {+1,−1}. Then we have

Tpp′,σ(µi(xi)) = Tpp′,σ

(∏
bji>0

x
bji
j +

∏
bji<0 x

−bji
j

xi

)

=

∏
bji>0 y

bji
σ(j) +

∏
bji<0 y

−bji
σ(j)

yσ(i)

=

∏
bji>0 y

εb′
σ(j)σ(i)

σ(j) +
∏

bji<0 y
−εb′

σ(j)σ(i)

σ(j)

yσ(i)

=


∏
b′
σ(j)σ(i)

>0 y
b′
σ(j)σ(i)
σ(j)

+
∏
b′
σ(j)σ(i)

<0 y
−b′
σ(j)σ(i)

σ(j)

yσ(i)
, if ε = 1,

∏
b′
σ(j)σ(i)

<0 y
−b′
σ(j)σ(i)

σ(j)
+
∏
b′
σ(j)σ(i)

>0 y
b′
σ(j)σ(i)
σ(i)

yσ(i)
, if ε = −1.

= µσ(i)(yσ(i))

⇐) Suppose that p and p′ are not σ-similar, then B′ 6= ±σ(B), i.e. (b′ij) 6= ±(bσ(i)σ(j)). Then

there is i1, n] such that b′ij0 6= ±bσ(i)σ(j0), for some j0 ∈ [1, n]. Now, we have
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Tpp′,σ(µi(xi)) = Tpp′,σ

(∏
bij>0

x
bij
j +

∏
bik<0 x

−bik
k

xi

)

= Tpp′,σ

∏bij>0,j 6=j0
x
bij
j · x

bij0
j0

+
∏

bik<0 x
−bik
k

xi


=

∏
bij>0,j 6=j0

y
bij
σ(j) · y

bij0
σ(j0) +

∏
bik<0 y

−bik
σ(k)

yσ(i)

=


∏
bij>0,j 6=j0

y
bij
σ(j)
·y
bij0
σ(j0)

+
∏
bik<0 y

−bik
σ(k)

yσ(i)
, if bij0 > 0,∏

bij>0,
y
bij
σ(j)

+
∏
bik<0,j 6=j0

y
−bik
σ(k)

·y
bij0
σ(j0)

yσ(i)
, if bij0 < 0

6= µσ(i)(yσ(i)).

Last line is due to the fact that, y
bij0
σ(j0) appears in µσ(i)(yσ(i)) with a different exponent. The

last part of the statement is straightforward.

Theorem 2.1.8. Let p = (X,B) and p′ = (Y,B′) be any two σ-similar seeds. Then for any

sequence of mutations µik , µik−1
, . . . , µi1, the following statements are true:

(1) µikµik−1
. . . µi1(X,B) and µσ(ik)µσ(ik−1) . . . µσ(i1)(Y,B

′) are σ- similar,

(2) Tpp′,σ(µikµik−1
. . . µi1(X)) = µσ(ik)µσ(ik−1) . . . µσ(i1)(Y ), where Tpp′,σ is as defined in Lemma

2.1.7.

Proof. Part (1) follows as a simple corollary of the identity

σ(µk(B)) = µσ(k)(σ(B)), ∀k ∈ [1, n]. (2.1.10)

One can see that; the (σ(i), σ(j)) entry of σ(µk(B)) is b′ij. Now, the entry (σ(i), σ(j))

of σ(B) is bij. So, applying mutation in the direction σ(k) on σ(B) will result that

the entry (σ(i), σ(j)) will change to
−bij, σ(k) ∈ {σ(i), σ(j)}

bσ(i)σ(j) +
bσ(i)σ(k)|bσ(k)σ(j)|+|bσ(i)σ(k)|bσ(k)σ(j)

2
, otherwise.
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Noticing that; k ∈ {i, j} if and only if σ(k) ∈ {σ(i), σ(j)} Therefore the entries of

σ(µk(B)) coincides with the entries of µσ(k)(σ(B)).

For the second part; let µikµik−1
. . . µi1 be a sequence of mutations, pi1ik = µikµik−1

. . . µi1(p),

and p′σ(i1)σ(ik) = µσ(ik)µσ(ik−1) . . . µσ(i1)(p
′), for j ∈ [1, k]. Part (1) tells us that pi1ik−1

and p′σ(i1)σ(ik−1) are σ-similar. Then Lemma 2.1.7 implies that

Tpi1ikp
′
σ(i1)σ(ik)

,σ(µik(µik−1
. . . µi1(X))) = µiσ(k)

(µiσ(k−1)
. . . µσ(i1)(Y )). (2.1.11)

So, it remains to show that

Tpi1ikp
′
σ(i1)σ(ik)

,σ(µik(µik−1
. . . µi1(X))) = Tpp′,σ(µik(µik−1

. . . µi1(X)). (2.1.12)

To get to this, let q = (Z,D), and q′ = (T,C) be any two σ-similar seeds, and let

q1 = µi(Z,D) = (Z ′, D′), q′1 = µσ(i)(T,C) = (T ′, C ′). Where Z = (z1, z2, . . . , zn), and

T = (t1, t2, . . . , tn). Next we show that

Tq1q′1,σ(µkµi(Z)) = Tqq′,σ(µkµi(Z)). (2.1.13)

Let zj be a cluster variable in Z, then for j 6= i. Then, both of Tq1q′1,σ, and Tqq′,σ leave

zj unchanged. Now, let j = i, and we have

Tq1q′1,σ(µi(zi)) = Tq1q′1,σ

(∏
dij>0

z
dij
j +

∏
dik<0 z

−dik
k

zi

)

=

∏
dij>0

t
dij
σ(j) +

∏
dik<0 t

−dik
σ(k)

Tp1p′1,σ
(zi)

.

However,
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Tq1q′1,σ(µi(zi)) = µσ(i)(tσ(i))

=

∏
cij>0

t
cij
σ(j) +

∏
cik<0 t

−cik
σ(k)

tσ(i)

=

∏
dij>0

t
εdij
σ(j) +

∏
dik<0 t

−εdik
σ(k)

tσ(i)

.

Hence, Tp1p′1,σ
(zi) = tσ(i). This shows that Tq1q′1,σ, and Tqq′,σ have the same action on

every cluster variable in Z, and since cluster variables from the µkµi(Z) are integral

laurent polynomials of cluster variables from Z, this gives (2.1.14).

For equation (2.1.13) we use induction on the length of the mutation sequence. Assume

that equation (2.1.13) is true for any sequence of mutation of length less than or equal

k − 1. Now we have

Tpi1ikp
′
i1ik

,σ(µikµik−1
. . . µi1(X)) = Tpi1ik−2

p′i1ik−2
,σ(µikµik−1

. . . µi1(X))

= Tpp′,σ(µikµik−1
. . . µi1(X)),

where the first equality is by identity (2.1.14), and the second is by the induction

hypotheses.

Theorem 2.1.9. Let An(S) be a cluster algebra, and (X,B) be a self σ-similar seed in S

for some σ ∈ Σn. Then, σX is a cluster automorphism.

Proof. Let y ∈ XS. Then there exists a sequence of mutations µi1 , . . . , µik such that for some

cluster variable xi in X, we have y = µi1µi2 . . . µik(xi). So for some sequence of mutations

µi1µi2 . . . µik , we apply this sequence of mutation to X.
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We are left to show,

σX(y) = µσ(i1)µσ(i2) · · ·µσ(ik)(xσ(i)). (2.1.14)

From Theorem 2.1.7 (1), µi2µi3 . . . µit((X,B)) and µσ(i2)µσ(i3) · · ·µσ(it)((X,B)), are σ-similar

∀t ∈ [1, k]. Theorem 2.1.7 (2) implies that equation (2.1.15) is correct.

Example 2.1.10. Let An(S) be a cluster algebra of An−type. Then, Cn(S) is a non trivial

group.

To see that, fix an initial seed (X,B) such that B = (bij) where either bij ≥ 0,∀i > j or

bij ≤ 0,∀i > j, such seed always exists in any cluster algebra of An− type . The following

permutation is a cluster automorphism with symmetric group action defined, with respect to

the initial cluster X;

τX =


(1 2k + 1)X(2 2k)X . . . (k k + 2)X , if n = 2k + 1,

(1 2k)X(2 2k − 1)X . . . (k k + 1)X , if n = 2k.

(2.1.15)

Now one can see that (X,B) is self σ-similar.

2.2 Exchange groups

Every path in the cluster pattern defines a field automorphism, which we codify in the fol-

lowing definition. In this section, we study the intersection of the group generated by all

such automorphisms and the cluster group.

Definitions 2.2.1. Let p = (X,B) and p′ = (Y,B′) be any two vertices in the cluster

patern Tn(S) of An(S). For any σ ∈ Sn, the field automorphism Tpp′,σ : F → F induced

by xi 7→ yσ(i) is called an exchange automorphism.
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The subgroup of Aut.K(F) generated by the set of all exchange automorphisms is called

the exchange group of An(S) and is denoted by m̃n(S).

Remark 2.2.2. Let An(S) be a simply laced cluster algebra, and fix an initial seed p =

(X,B). Then, every symmetric group element can be seen as a field automorphism, (as in

the paragraph proceeding definition (2.1.3)), taking T = X. From Theorem 2.1.4, every

symmetric group element (in the above sense) corresponds to a path in the cluster patern

of An(S). So, the symmetric group elements can be seen as exchange automorphisms.

Before we state the main results of this section we sharpen the notations of the neigh-

bors and monomials of the cluster variables. Let xi0 be a cluster variable in p = (X,B).

The set of neighbors of xi0 at the seed p, denoted by Np(xi0) is defined to be, Np(xi0) :=

Np,+(xi0) ∪ Np,−(xi0), where Np,+(xi0) = {xi; bi0i > 0} and Np,−(xi0) = {xi; bi0i < 0}.

Define mp,+(xi0), and mp,−(xi0) respectively. Where, mp,+(xi0) =
∏

xi∈Np,+(xi0 ) x
bii0
i , and

mp,−(xi0) =
∏

xi∈Np,−(xi0 ) x
−bii0
i and call them the positive and negative monomials of the

cluster variable xi0 . We denote fp,xi0 = mp,+(xi0) +mp,−(xi0), one can see that fp,xi0 is not

divisible by xi,∀i ∈ [1, n].

The following theorem provides a description for Cn(S), through m̃n(S) and the equiv-

alent classes of ∼. In the proof of the theorem, we assume that the positivity conjecture,

Conjecture 1.1.13, is satisfied. However, a proof without the positivity conjecture, can be

written in finite type cluster algebras of rank two.

Theorem 2.2.3. Assume that An(S) satisfies the positivity conjecture. Let p = (X,B) and

p′ = (Y,B′) be any two vertices in the cluster pattern of An(S). Then, for a fixed symmetric

group element σ, the following are equivalent

1. Tpp′,σ is a cluster automorphism,

2. p and p′ are σ- similar,
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3. Tpp′,σ permutes the clusters. Furthermore for any seed q = (Z,D), we have;

Tpp′,σ(Z) ∈ {Y ; (Y,M) ∈ [q]}. (2.2.1)

Proof. ⇒(2). Assume that Tpp′,σ is a cluster automorphism. From Lemma 2.1.7, to show p

and p′ are σ-similar, it is enough to show that, Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)), ∀i ∈ [1, n].

Let z = Tpp′,σ(µi(xi)), and ξ = µσ(i)(yσ(i)) where X = (x1, x2, . . . , xn), and Y =

(y1, y2, . . . , yn). Then, we have

z =
Tpp′,σ(fp,x)

yσ(i)

, and ξ =
fp′,yσ(i)

yσ(i)

. (2.2.2)

Both Tpp′,σ(fp,x) and fp′,yσ(i)
are polynomials in Z[yσ(1), · · · , yσ(i−1), yσ(i+1), . . . , yσ(n)], and are

not divisible by yσ(j), for all j in [1, n]. Now, suppose that z is a cluster variable. Then, by

Laurent phenomenon, z can be written uniquely as;

z =
P (yσ(1), yσ(2), . . . , yσ(i−1), ξ, yσ(i+1), . . . , yσ(n))

yα1

σ(1) . . . y
αi−1

σ(i−1)ξ
αiy

αi+1

σ(i+1) . . . y
αn
σ(n)

, (2.2.3)

where P (yσ(1), yσ(2), . . . , yσ(i−1), ξ, yσ(i+1), . . . , yσ(n)) is a polynomial with integers coefficients.

Which is not divisible by any of the following yσ(1),yσ(2), . . ., yσ(i−1), ξ,yσ(i+1), . . . , yσ(n−1) and

yσ(n), and (α1, α2, . . . , αn) ∈ Zn. Comparing z from (2.2.2) and (2.2.3), we have

Tpp′,σ(fp,x) . . . y
α1

σ(1) . . . y
αi−1

σ(i−1) . . . ξ
αi . . . y

αi+1

σ(i+1) . . . y
αn
σ(n) = P · yσ(i). (2.2.4)

Since, fp,x is not divisible by any cluster variable xi, for any i ∈ [1, n]. Then Tpp′,σ(fp,x) is not

divisible by yi,∀i ∈ [1, n]. More precisely Tpp′,σ(fp,x) is a sum of two monomials in variables

from the cluster Y , with positive exponents. Therefore, αj = 0 for all j ∈ [1, n]− {i}, and

i = −1. Hence, (2.2.4) can be simplified as

Tpp′,σ(fp,x) = P · fp′,yσ(i)
. (2.2.5)
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Now we have that fp′,yσ(i)
is also a sum of two monomials in variables from the cluster Y ,

with positive exponents. However, P is a polynomial with positive integers coefficients, and

not divisible by any cluster variable from Y ′ = µσ(i)(Y ). Then it must be either a sum of at

least two monomials in variables from Y ′, or it is a positive integer. Equation (2.2.5) says

that, the first option for P is impossible because Tpp′,σ(fp,x) and fp′,yσ(i)
sums of exactly two

monomials, so P must be an integer. Because the coefficients of Tpp′,σ(fp,x) and fp′,yσ(i)
are

all ones, which must be exactly 1.

Hence,

Tpp′,σ(fp,x) = fp′,yσ(i)
. (2.2.6)

Therefore,

Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)),∀i ∈ [1, n]. (2.2.7)

Now, lemma 2.1.6 implies p and p′ are σ-similar.

(2)⇒ (3). Let Z = (z1, z2, . . . , zn) be the cluster of the seed (Z,D). Then there is a

sequence of mutations µi1µi2 . . . µik such that

(Z,D) = µi1µi2 . . . µik(X,B)

Since (X,B), and (Y,B′) are σ-similar then, Theorem 2.1.7 part 1 implies that µi2 . . . µik(X,B)

and µσ(i2) . . . µσ(ik)(Y,B
′) are σ-similar too.

But, from Theorem 2.1.7 part 2, we have,

Tpp′,σ(µi1(µi2 . . . µik(X))) = µσ(i1)µσ(i2) . . . µσ(ik)(Y ),

and since the right hand side is a cluster and the left hand side is only Tpp′,σ(Z), then Tpp′,σ

sends Z to a cluster. So, Tpp′,σ(Z) permutes the clusters. For the belonging (3.1), is imme-
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diate from the above argument.

(3)⇒(1) Permuting the clusters implies leaving χS invariant, because every cluster variable

is contained in some cluster.

The following is a corollary of the proof of Theorem 2.2.3, and is actually the general-

ization of the statement of the same theorem, to the level of cluster isomorphism.

Corollary 2.2.4. Let An(S), and An(S ′) be any two cluster algebras over F . If p =

(X,B) ∈ S, p′ = (Y,B′) ∈ S ′, and σ ∈ Sn. Then the following are equivalent

1. the field automorphism φpp′,σ : F → F , given by xi 7→ yσ(i) is a cluster isomorphism

from An(S) onto An(S ′),

2. p and p′ are σ-similar,

3. φpp′,σ sends every cluster in SC onto a cluster in S ′C. In particular, two cluster alge-

bras are cluster isomorphic if and only if they contain two σ-similar seeds for some

permutation σ.

Proof. Follow the proof of Theorem 2.2.3, mutatis mutandis.

Corollary 2.2.5. If An(S) is a cluster algebra of simply-laced type then Cn(S) 6= 1.

Proof. This follow from Theorem 2.1.4 and Theorem 2.2.3.

We remark that, the converse of Theorem 2.2.5 is not necessarily true. Consider the the

cluster algebra given in Example 2.1.5, and let σ be the transpose (23). A routine check

shows that, (23) corresponds to the sequence of mutations µ2µ3µ2µ3µ2. Then Theorem 2.1.4

implies that the transposition (23) is a cluster automorphism, while the cluster algebra is

not simply-laced.
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Conjecture 2.2.6. The set of all cluster variables χS can be complectly determined by [p]

as follows

χS =
⋃
{Y ; (Y,M) ∈ [p]}, (2.2.8)

In the following we calculate the cluster and exchange groups for some cluster algebras

of low ranks.

Example 2.2.7 (Cluster and exchange groups of rank 1). In this case F = K(t), and

A1(S) = Z[x±1]. So the cluster group and the exchange groups are the same and they equal

to the subgroup of Aut.K(F) generated by the automorphism T1 : K(x) → K(x) induced

by x 7→ 1
x

and then

m̃(S)) = C1(S) ∼= 〈

 0 1

1 0

〉 < PGL2(K).

Example 2.2.8 (Cluster groups of rank 2, C2(S)). In this case F = K(x1, x2), and

applying the mutations on the initial seed

p = {(x1, x2),

 0 m

−n 0

}
leads to the following recursive relation for the cluster variables of A(S)(m,n)

xt−1xt+1 =

 xmt + 1, if t is odd ,

xnt + 1, otherwise.
(2.2.9)

Thus, the cluster algebra A(S)(m,n) corresponding to p is the subalgebra of F = K(x1, x2)

generated by {xt; t ∈ Z}, however, since p is acyclic seed thenA(S)(m.n) = Z[x0, x1, x2, x3] ⊂

K(x1, x2).

Theorem 2.2.9 ([34]). The sequence (2.2.9) of the cluster variables {xt}t∈Z in A(S)(m.n)

is periodic if and only if mn ≤ 3, and is of period 5 (resp., 6, 8) if mn = 1 (resp., 2, 3).
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In the following, let C2(m,n) denote the cluster group associated to A(S)(m,n).

Lemma 2.2.10. There is a cluster isomorphism between the cluster algebra A2(S)(m,n)

and A2(S)(n,m).

Proof. Let (x1, x2) and (y1, y2) be initial clusters for A2(S)(m,n) and A2(S)(n,m) respec-

tively. Consider the following cluster isomorphism

σ12 : A2(S)(m,n)→ A2(S)(n,m)

given by:

x1 7→ y2 and x2 7→ y1,

one can see that this automorphism induces a one to one correspondence between the sets

of all clusters of A2(S)(m,n) and A2(S)(n,m).

Corollary 2.2.11. C2(m,n) ∼= C2(n,m).

Proof. From the previous lemma, and Remarks 2.2.2(2).

Example 2.2.12 (The cluster and exchange groups of A(S)(1, 1)). In this case, we

have exactly 5 cluster variables which, in terms of the initial cluster variables (x1, x2) are

{x1, x2,
x1 + 1

x2

,
x2 + 1

x1

,
1 + x1 + x2

x1x2

},

and the following unordered pairs as clusters

(x1, x2), (x1,
x1 + 1

x2

), (
x2 + 1

x1

, x2), (
x2 + 1

x1

,
1 + x1 + x2

x1x2

), (
1 + x1 + x2

x1x2

,
x1 + 1

x2

).

So, C2(1, 1) is the subgroup of Aut.KF(x1, x2) generated by the following involuting auto-

morphisms T1, and T2 where, T1 is induced by

x1 7→
x2 + 1

x1

, and x2 7→ x2, (2.2.10)
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and T2

x1 7→ x1 and x2 7→
x1 + 1

x2

, (2.2.11)

To show that these are generators. Consider the automorphism η induced by, x1 7→ x1+1
x2

and x2 7→ x2 then we have

η((x1,
x1 + 1

x2

)) = (η(x1), η(
x1 + 1

x2

)) = (
x1 + 1

x2

,
x1 + x2 + 1

x2
2

)

but x1+x2+1
x2

2
is not a cluster variable, so the automorphism η cannot be a cluster automor-

phism. In a complete similar way we can argue all other possible choices. Therefore,

C2(1, 1) = 〈T1, T2〉 < Aut.KK(x1, x2).

Also, we can see that

C2(1, 1) = m̃2(S), ∀ seed p ∈ S, and ∀ d ∈ [1, 5].

Remark 2.2.13.

C2(1, 1) = {T1, T2|T 2
1 = T 2

2 = 1, (T1T2)10 = 1}.

Example 2.2.14 (The cluster group C2(2, 1)). .

We have exactly 6 different cluster variables, which are

{x1, x2,
x2 + 1

x1

,
(x2 + 1)2 + x2

1

x2
1x2

,
x2

1 + x2 + 1

x1x2

,
x2

1 + 1

x1

} (2.2.12)

and the following unordered pairs as the set of clusters

(x1, x2), (x2+1
x1

, x2), (x2+1
x1

,
(x2+1)2+x2

1

x2
1x2

), (
x2

1+x2+1

x1x2
,

(x2+1)2+x2
1

x2
1x2

), (
x2

1+x2+1

x1x2
,
x2

1+1

x1
).

Notice that, the cluster variables x1 and x2 are not symmetrical as in A(S)(1, 1), which

implies that the symmetric group element σ12 is not a cluster automorphism i.e. is not an

element of C2(2, 1), and hence the generators are only T1 as defined in (2.2.10), together

with automorphism T2 ∈ AutKK(x1, x2) which is induced by
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x1 7→ x1 and x2 7→
x2

1 + 1

x2

. (2.2.13)

Then we have

C2(2, 1) = m̃2(S) = 〈T1, T2〉 < AutKK(x1, x2), ∀ seed p ∈ S, and ∀ d. (2.2.14)

Remark 2.2.15. C2(2, 1) is a Coexter group with the following presentation

C2(2, 1) = {T1, T2| T 2
1 = T 2

2 = 1, (T1T2)3 = 1}.

Example 2.2.16 (The cluster group C2(3, 1)). .

We have exactly 8 different cluster variables. In a similar way of calculating C2(2, 1), one

can see C2(3, 1) is generated by T1 as defined in (2.2.10) and T2, induced by

x1 7→ x1 and x2 7→
x3

1 + 1

x2

, (2.2.15)

and we have

C2(3, 1) = m̃2(S) = 〈T1, T2〉 < AutKK(x1, x2), ∀ p ∈ S, and ∀ d. (2.2.16)

Remark 2.2.17. C2(3, 1) is a Coexter group with the following presentation

C2(2, 1) = {T1, T2| T 2
1 = T 2

2 = 1, (T1T2)4 = 1}.
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Chapter 3

Hyperbolic Cluster Algebras

In this chapter we set up for a class of non-commutative algebras with cluster structure which

are generated by isomorphic copies of hyperbolic algebras. The first section is devoted to

introducing the notion of the hyperbolic seeds and to generalize the cluster automorphisms

to the hyperbolic seeds. In the second section we use the cluster structure to build in-

decomposable and irreducible representations for the associated hyperbolic algebra using

combinatorial data called cluster strings. In the last section we introduce a ctategorification

for the cluster structure in the Weyl algebra case.

3.1 Hyperbolic algebras

Definition 3.1.1 (Hyperbolic Algebra [30, 31]). Fix a commutative ring R. Let θ =

{θ1, . . . , θn} be a set of ring automorphisms of R, and {ξ1, . . . , ξn} be a fixed set of elements

of R. The hyperbolic algebra of rank n, denoted by R(θ, ξ, n), is defined to be the ring

generated by R and x1, . . . , xn, y1, . . . , yn with the commutation relations:

xir = θi(r)xi and yir = θ−1
i (r)yi, for any i ∈ [1, n], and for any r ∈ R, (3.1.1)

xiyi = ξi,∀i ∈ [1, n] xiyj = yjxi, xixj = xjxi, yiyj = yjyi ∀i 6= j. (3.1.2)

We warn the reader that xiyi 6= yixi in general.
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Example 3.1.2. Let An be the Weyl algebra generated by 2n variables x1, . . . , xn, y1 . . . , yn

over a field K and the relations

xiyi = yixi + 1, ∀i ∈ {1, . . . , n} and xixj = xjxi, yiyj = yjyi for i 6= j. (3.1.3)

Let ξi = yixi, R = K[ξ1, . . . , ξn], and θi : R → R, induced by ξi 7→ ξi + 1, ξj 7→ ξj, j 6= i.

One can see that An = R(θ, ξ, n) is a hyperbolic algebra of rank n.

Example 3.1.3 ([30, 31]). The coordinate algebra A(SLq(2, k)) of algebraic quantum

group SLq(2, k) is the K-algebra generated by x, y, u, and v subject to the following relations

qux = xu, qvx = xv, qyu = uy, qyv = vy, uv = vu, q ∈ K∗ (3.1.4)

xy = quv + 1, and yx = q−1uv + 1. (3.1.5)

A(SLq(2, k)) = R(ξ, θ, 1) is a hyperbolic algebra of rank 1, with R = K[u, v] is the algebra

of polynomials in u, v and θ ∈ Aut.(R) being given by θ(f(u, v)) = f(qu, qv) for any

polynomial f(u, v), and ξ = 1 + q−1uv.

3.2 Hyperbolic cluster algebras

3.2.1 Generalized and hyperbolic seeds

Let P be a finitely generated free abelian group, written multiplicatively, with set of gen-

erators F =
⋃n
i=1 Fi, where Fi = {fi1, . . . , fimi} and Fi ∩ Fj = ∅ for i 6= j ∈ [1, n], and let

m =
∑n

i=1 mi. Denote the group ring of P over K by R = K[P]. Let D be an Ore domain

contains R such that there are t1, . . . , tn ∈ D so that {tα1
1 , . . . , t

α1
n ; (α1, . . . , αn) ∈ Zn} form

a basis for D as a left R-module.

Let D denote the set of right fractions ab−1 with a, b ∈ D, and b 6= 0; two such fractions

ab−1 and cd−1 are identified if af = cg and bf = dg for some non-zero f, g ∈ D. The ring D
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is embedded into D via d 7→ d·1−1. The addition and multiplication in D extend to D so that

D becomes a division ring. (Indeed, we can define ab−1+cd−1 = (ae+cf)g−1 where non-zero

elements e, f , and g of D are chosen so that be = df = g; similarly, ab−1 · cd−1 = ae · (df)−1,

where non-zero e, f ∈ D are chosen so that cf = be). In such case we say D is the division

ring of fractions of D. More details about Ore domains are in [29] and [2].

Definition 3.2.1. Generalized Seeds. A generalized seed i of rank n in D is the triple

(F,X,Γ), where

• F is as described above, which is called the set of frozen variables.

• X = (x1, . . . , xn) ∈ Dn such that there is an R−linear automorphism on D that fixes

the frozen variables and sends ti to xσ(i), for each i ∈ [1, n] and for some permutation

σ. Elements of {x1, . . . , xn} are called cluster variables and

X̃ := {f11, . . . , f1m1 , . . . , fn1, . . . , fnmn , x1, . . . , xn}

is called a cluster.

• Γ is an oriented graph with set of vertices I := IF ∪ IX = [1, k], where k = m + n,

with no 2-cycles nor loops. Let v : X̃ → I be a one-to-one correspondence map, where

v(f) ∈ IF for every frozen variable f , and v(xi) ∈ IX for every cluster variable xi ∈ X.

We need the following combinatorial data before introducing the generalized seed muta-

tion. Let i = (F,X,Γ) be a generalized seed, and L be the lattice Zk, where k = m+n. For

k ∈ [1, n] we associate two vectors of L to the vertex v(xk) of Γ as follows, the first vector

−→rik = (r11, . . . , r1m1 , r21, . . . , r2m2 , . . . , rn1, . . . , rnmn , l1, . . . , lk−1,−1, lk+1, . . . , ln),

where rij is the number of arrows in Γ directed from the vertex v(fij) toward v(xk), and for

i 6= k, li is the number of arrows from the vertex v(xi) toward v(xk), and we have −1 at the

place of lk. The second vector is

←−rik = (r′11, . . . , r
′
1m1

, r′21, . . . , r
′
2m2

, . . . , r′n1, . . . , r
′
nmn , l

′
1, . . . , l

′
k−1,−1, l′k+1, . . . , l

′
n),
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which encodes the number of arrows targeting other vertices from v(xk), i.e each component

of ←−rik is the number of arrows with source as v(xk) and target as the corresponding vertex,

except for the component corresponding to the vertex v(xk), we have −1. This defines a

map, r : X → I → Zk × Zk, given by xk 7→ (−→rik,
←−rik). Each of these two vectors defines a

map from X̃ to Z≥−1, given by

−→rik(t) =


rij, if t = fij,

−1, if t = xk

lj if t = xj, j 6= k.

For a cluster X̃, we consider the following two maps MR
C ,M

L
C : L→ D given as follows,

for a vector a = (a11, . . . , am11, a12, . . . , am22, . . . , a1n, . . . , amnn, b1, . . . , . . . , bn) ∈ L, we assign

the following two monomials

MR
C (a) = ta11

11 · · · t
am11

m11 · ta12
12 · · · t

am22

m22 · · · ta1n
1n · · · tamnnmnn · x

b1
1 · · ·xbnn , (3.2.1)

ML
C (a) = xb11 · · ·xbnn · t

a11
11 · · · t

am11

m11 · ta12
12 · · · t

am22

m22 · · · ta1n
1n · · · tamnnmnn . (3.2.2)

In the following we skip the word generalized if there is no confusion.

Definition 3.2.2. Let i = (F,X,Γ) be a seed of rank n in D. At each cluster vari-

able (non-frozen) xk we can obtain two new triples µRk (i) = (F ′, µRk (X),Γ′) and µLk (i) =

(F ′, µLk (X),Γ′) from i, by applying the following steps;

• F ′ = F ,

• µRk (X) = (x1, . . . , xk−1, x
′
k, xk+1, . . . , xn), where

x′k = MR
C (−→rik) +MR

C (←−rik), (3.2.3)

and µLk (X) = (x1, . . . , xk−1, x
`
k, xk+1, . . . , xn), where

x`k = ML
C (−→rik) +ML

C (←−rik). (3.2.4)
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• Γ′ is obtained from Γ by applying the same rules of quiver mutations given in Chapter

2 in the paragraph preceding Theorem 2.1.4.

• µRk and µLk are called right and left mutations in the k-direction respectively.

µRk (i) and µLk (i) obtained in the above way are said to be obtained from i by applying right

and left mutations in the k-direction respectively.

Remark 3.2.3. This definition of mutations on oriented, no loos, and 2-cycles graphs is

equivalent to the definition of mutations on skew-symmetric matrices corresponding to such

graphs, definition 1.1.2.

In the following we will try to explore some of the commutation relations of the elements

of X̃ that are invariant under mutations for some particular seeds.

Notations: For a seed i = (F,X,Γ) and k ∈ [1, n]. The following notations will be used

in the rest of this chapter

• i′ = µRk (i), (resp., i` = µLk (i)).

• For X ′ = (x′1, . . . , x
′
n), where

x′j =

{
xj, if j 6= k,

MR
C (−→ri k) +MR

C (←−ri k), if j = k.
(3.2.5)

(resp., X` = (x`1, . . . , x
`
n)).

• The mutation of i at k gives rise to two R-linear D automorphisms, TR
ii′

and TL
ii

,̀

where TR
ii′

: D → D is induced by

TRii′(t) = t, ∀t ∈ R and TRii′(xj) := x′j, ∀j ∈ [1, n] (3.2.6)

(resp., to TL
ii

(̀xj) := x`j,∀j ∈ [1, n]). TR
ii′

and TL
ii` are called right and left mutation

automorphisms respectively.

• For a seed i the neighborhood of a cluster variable xk is defined to be the subset of X̃

corresponding to the non-zero components of −→ri k or ←−ri k and is denoted by Ni(xk). In
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other words, Ni(xk) := Ni,+(xk) ∪ Ni,−(xk), where Ni,+(xk) = {x ∈ X̃;−→rik(x) > 0}

and Ni,−(xk) = {x ∈ X̃;←−rik(x) > 0}. In particular, Let F k
i,+ = Fk ∩ Ni,+(xk), and

F k
i,− = Fk ∩Ni,−(xk).

Definition 3.2.4 (Hyperbolic Seeds). The quadruple (F,X,Γ, ϕ) is called a Hyperbolic

seed of rank n in D, if it satisfies the following conditions

1. the triple (F,X,Γ) is a generalized seed of rank n in D satisfying

Ni(xk) = Fk, ∀k ∈ [1, n]. (3.2.7)

2. X consists of a commutative set of rational functions such that xi commutes with

elements of Fj for j 6= i.

3. ϕ is an R-linear automorphism of D satisfies the following equations

faxi = ϕa(xi)f
a,∀f ∈ Fi,∀i ∈ [1, n], a ∈ Z≥0. (3.2.8)

The above equations induce the following equations

xif
a = faϕ−a(xi),∀f ∈ Fi,∀i ∈ [1, n], a ∈ Z≥0. (3.2.9)

Furthermore, (F,X,Γ, ϕ) is said to be weak hyperbolic seed if the condition (3.2.7) above

is replaced by the condition

Ni(xk) ∩Ni(xi) ∩ Fk = ∅,∀i, ∀k ∈ [1, n]. (3.2.10)

Lemma 3.2.5. Let i = (F,X,Γ, ϕ) be a hyperbolic seed in D. Then, the following are true

1. The ring D is an Ore domain.

2. For any sequence of right mutations (resp., to left) µRi1µ
R
i2
. . . µRiq , we have µRi1µ

R
i2
. . . µRiq(i)

(resp., to µLi1µ
L
i2
. . . µLiq(i)) is again a hyperbolic seed.
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3.

µRk µ
L
k (i) = µLkµ

R
k (i) = i, ∀k ∈ [1, n]. (3.2.11)

More precisely Tii′(Ti′i(xk)) = Ti′i(Tii′(xk)) = xk.

Proof. Condition 2 in definition 3.2.4 and the commutation relations (3.2.8) make part 1

immediate.

We prove part 2 for µRk (i), (resp., µLk (i)) and the proof for an arbitrary sequence of

right (resp., to left) mutations is by induction on the length of the sequence. First, the

commutativity of the elements of {x1, . . . , xk−1, x
′
k, xk+1, . . . , xn}, is obvious by conditions

(1) and (2) in the definition of the hyperbolic seeds. The same for the commutativity of x′k

and the elements of Fj for j 6= k. To finish the proof, it is enough to show that there is an

R-linear automorphism ϕ′ (resp., ϕ`) of D satisfies 3.2.8 (resp., µLk (i)). Let ϕ′ = Tii′ϕTi′i.

We have

fijx
′
j = Tii′(fijxj)

= Tii′(ϕ(xjfij))

= Tii′ϕTi′i(x′jfij)

= ϕ′(x′jfij)

= ϕ′(x′j)fij.

This finishes the proof of part (2).

For the part 3, one can see that µRk µ
L
k and µLkµ

R
k act like the identity on both of F and

Γ, since the right and left mutations act like Fomin-Zelevinsky mutation on F and Γ, and

Fomin-Zelevinsky mutation is involutive.

In the following we show that µRk µ
L
k (X) = X, and µLkµ

R
k (X) = X is quite similar. Let

i` = µLk (F,X,Γ), and (i`)′ = µRk µ
L
k (F,X,Γ).
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We have µLk,i(xk) = x`k = x−1
k (M̂C(−→ri k) + M̂C(←−ri k)), where M̂C(−→ri k) = xkMC(−→ri k) and

M̂C(←−ri k) = xkMC(←−ri k). By definition of mutation on Γ, one has −→ri k =←−rì k and ←−ri k = −→rì k.

Then condition 3.2.7, and commutation relations 3.2.8 guarantee M̂C(−→ri k) = M̂C(←−rì k) and

M̂C(←−ri k) = M̂C(−→rì k). Hence

µRì (x`k) = (M̂C(−→rì k) + M̂C(←−rì k)((x`k)−1)

= (M̂C(−→ri k) + M̂C(←−ri k)((x`k)−1)

= xk.

Finally, for the automorphism (ϕ`)′ of the seed µRk µ
L
k (i). From the proof of part (2), we

have (ϕ`)′ = Tì(ì)′TiìϕTìiT(ì)′ì = TìiTiìϕTìiTiì = idFϕidF = ϕ.

To see that Tii′(Ti′i(xk)) = xk.

One has Tii′(Ti′i(xk)) = Tii′(px
−1
k ) = p(x′k)

−1 = p(px−1
k )−1 = xk, where p is the

polynomial MC(−→rì k) +MC(←−rì k) ∈ R.

Definition 3.2.6 (The Cluster sets and (right and left) Cluster patterns). 1. Let

i be a seed (or a hyperbolic seed) an element y ∈ D, is said to be a right cluster element

(resp., to a left cluster element) of i if y is a cluster variable in some seed j, where j

can be obtained from i by applying some sequence of right mutations (resp., to left

mutations). The set of all right cluster elements of i (resp., to cluster left) is called

the the right cluster set (resp., to the left cluster set ) of i, and is denoted by χR(i)

(resp., to χL(i) ). The set of all right and left cluster elements of i is called the cluster

set of i and is denoted by χ(i). So χ(i) = χR(i)∪ χL(i). Elements of χ(i) are called

cluster variables of i or simply cluster variables.

2. Let i be a hyperbolic seed. The cluster pattern T(i) of i is a directed graph built in the

following way; label an initial vertex with i, and from i we generate arrows as follows,

every k ∈ [1, n] corresponds to two arrows going out from i one for right mutation in

k-direction and the other one is for the left mutation in same direction, each arrow is
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targeting a new hyperbolic seed, which is generated by the indicated mutation applied

to i. Now repeat the process to the new vertices.

3. Right (resp., to left) cluster pattern is defined in same way with the restriction, every

k ∈ [1, n] corresponds to only one arrow which is the right mutation at k (resp., to left

mutation) and is denoted by TR(i) (resp., to TL(i)).

Open Problems 3.2.7. Given a (resp., to weak) hyperbolic seed i = (F,X,Γ, ϕ)

• What are necessary and sufficient conditions on Γ and ϕ that guarantee χ(i) to be a

finite set. Same question can be raised for right and left cluster sets.

• What are necessary and sufficient conditions on Γ and ϕ that guarantee T(i) (resp.,

to TR(i) and TL(i)) to be a finite graph or a periodic graph.

In the following we will provide some sufficient conditions for cluster patterns to contain

cycles.

Definition 3.2.8. A seed i is said to be a well-connected seed, if there are n nonnegative

integers a1, . . . , an, such that

∑
fik∈Fki,+

−→ri k(fik) =
∑

fik∈Fki,−

←−ri k(fik) = ak, ∀k ∈ [1, n]. (3.2.12)

In this case the n-tuples fi = (a1, . . . , an) ∈ Zn≥0 is called the frozen rank of i.

Through the rest of the thesis, any statement contains µk without the superscript R

or L, is true for right and left mutations µRk and µLk respectively. However, the proofs are

written for right mutations and for left mutations the proofs are quite similar in most of the

cases.

Proposition 3.2.9. The mutation in any direction of a hyperbolic well-connected seed is

again well-connected, and the frozen rank is invariant under the mutation.
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Proof. Immediate from the definitions of well-connected seeds and the definition of mutation.

Theorem 3.2.10. Let i = (F,X,Γ, ϕ) be a well-connected weak hyperbolic seed with ϕ a

finite order automorphism. Then µk is invertible on i for each k ∈ [1, n]. More precisely,

there is a non negative integer r such that

(µRk )2r((F,X,Γ)) = (µLk )2r((F,X,Γ)) = (F,X,Γ). (3.2.13)

The proof of the theorem is a consequence of the following lemma.

Lemma 3.2.11. Let i = (F,X,Γ, ϕ) be a well-connected weak hyperbolic seed. Then for

every cluster variable xk, we have

(µRi,k)
2(xk) = ϕak(xk) for some nonnegative integer ak. (3.2.14)

(µLi,k)
2(xk) = ϕ−ak(xk) for some nonnegative integer ak. (3.2.15)

Proof. We start with proving 3.2.13. Let

−→ri k = (r11, · · · , rm11, r12, · · · , rm22, · · · , r1n, · · · , rmnn, l1, · · · , lk−1,−1, lk+1, · · · , ln).

and

←−ri k = (r′11, · · · , r′m11, r
′
12, · · · , r′m22, · · · , r′1n, · · · , r′mnn, l

′
1, · · · , l′k−1,−1, l′k+1, · · · , l′n).

Then by definition of MC(−→ri k) and MC(←−ri k) and the commutativity of the elements of

X one can see MC(−→ri k) and MC(−→ri k) can be written as follows

MC(−→ri k) = M̂C(−→ri k)x−1
k and MC(←−ri k) = M̂C(←−ri k)x−1

k .

Where

M̂C(−→ri k) = tr11
11 · · · t

rm11

m11 · tr12
12 · · · t

rm22

m22 · · · tr1n1n · · · trmnnmnn · x
l1
1 · · ·x

lk−1

k−1 · x
lk+1

k+1 · · · x
ln
n ,
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and

M̂C(←−ri k) = t
r′11
11 · · · t

r′m11

m11 · t
r′12
12 · · · t

r′m22

m22 · · · t
r′1n
1n · · · t

r′mnn
mnn · x

l′1
1 · · · x

l′k−1

k−1 · x
l′k+1

k+1 · · · l
′
n.

If C ′ is the cluster of the seed i′ = µRk (i), then by the definition of mutation on Γ, we have

−→ri k = ←−ri′k, and ←−ri k = −→ri′k. Hence, M̂C(−→ri k) = M̂C′(
←−ri′k), and M̂C′(

−→ri′k) = M̂C(←−ri k). Then

one has

(µRi,k)
2(xk) = µRi′,k((M̂C(−→ri k) + M̂C(←−ri k))x−1

k )

= (M̂C′(
−→ri′k) + M̂C′(

←−ri′k))xk(M̂C(−→ri k) + M̂C(←−ri k))−1

= (M̂C(−→ri k) + M̂C(←−ri k))xk(M̂C(−→ri k) + M̂C(←−ri k))−1.

Since i is a well-connected seed, then there is a positive integer ak such that

∑
fik∈Fki,+

−→ri k(fik) =
∑

fik∈Fki,−

←−ri k(fik) = ak.

In the case of ak = 0, we have no thing to prove. Assume it is nonzero, then, using condition

2 of definition 3.2.4 one can see

(M̂C(−→ri k) + M̂C(←−ri k))xk = ϕak(xk)(M̂C(−→ri k) + M̂C(←−ri k)).

This finishes the proof of equations 3.2.13. The proof of 3.2.14 is quite similar except for

using the commutation relations 3.2.9 instead of 3.2.8 in the step before the last one.

Proof of theorem 3.2.10. We prove it for right mutations and the case of left mutation

is quite similar. Assume that i = (F,X,Γ, ϕ) is as in the statement of theorem and ϕr = idD

for some non negative integer r. By definition of mutations on the cluster variables, the

mutation in the k-direction leaves every cluster variable with no change except for xk.

Therefore the following sequence of repeated mutations in the k-direction (µRk )2r will leave

every cluster variable, other than xk unchanged, and for xk, the lemma tells us

(µRk )2r(xk) = ϕrak(xk) = xk. (3.2.16)
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Also, one can see (µRk )2(Γ) = Γ. Then, (µRk )2r(Γ) = Γ.

2

Example 3.2.12. The simplest nontrivial well-connected hyperbolic seed. Consider

the hyperbolic well-connected seed i = (F,X,Γ, ϕ) where F = {f11, f12}, X = {x}, and Γ

is the following graph

·11 ·1oo ·12
oo ,

and let ϕ be a R-linear automorphism of D satisfying the conditions 3.2.8. Here If = {11, 12}

and Ia = {1}, and the frozen rank is (1). This seed produces the following the cluster set

χ(i) = {x, (f11 + f12)x−1, x−1(f11 + f12), ϕk(x), (f11 + f12)ϕ−k(x), ϕ−k(x)(f11 + f12); k ∈ Z}.

One can see that χ(i) is a finite set if and only if ϕ is of finite order.

Example 3.2.13. The simplest non well-connected hyperbolic seed. Consider the

hyperbolic well-connected seed i = (F,X,Γ, ϕ) where F = {f}, X = {x}, Γ is the following

graph

·11 ·1oo ,

and let ϕ be a R-linear automorphism of D satisfying the conditions 3.2.8. Here If = {11}

and Ia = {1}. We have the following infinite cluster set;

χ(i) = {x, (1+f)k+1x−1(1+f)−k, (1+f)kx(1+f)−k, (1+f)−kx−1(1+f)k+1, (1+f)−kx−1(1+

f)k, k ∈ Z}. In this case, this seed has no frozen rank, and so condition 3.2.11 is not satisfied.

So even if ϕ is of finite order we still have an infinite cluster sets. In the subsection 3.2.3,

we will see how this seed is related to first Weyl algebra.

3.2.2 The groups of cluster automorphisms

Definition 3.2.14. An R-linear automorphism φ of D is called a cluster automorphism of

a seed i if it leaves the cluster set χ(i) invariant as a whole set. The group of all such
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automorphisms is called the group of Cluster automorphisms of i and is denoted by H[i].

Right and left cluster automorphisms groups denoted by HR[i] and HL[i] respectively can

be defined in the same way by replacing the cluster set of i by right and left cluster sets

respectively.

Open Problems 3.2.15. For a given (hyperbolic) seed i = (F,X,Γ, ϕ) describe the group

of all cluster automorphisms of i (resp., to right and left cluster automorphisms).

The following proposition and theorem provide a big class of cluster automorphisms of

some seeds.

Proposition 3.2.16. If i = (F,X,Γ, ϕ) is a well-connected weak hyperbolic seed then ϕ

gives rise to an infinite set of cluster automorphisms of i.

Proof. Fix a well-connected hyperbolic seed i = (F,X,Γ, ϕ). For every l ∈ Z we define an

R-linear φl automorphism on D induced by

φl(t) = t, ∀t ∈ R and φl(xk) = ϕlak(xk), ∀k ∈ [1, n], (3.2.17)

where (a1, . . . , ak, . . . , an) is the frozen rank of i.

In the following, we prove that φl is a cluster automorphism for every l ∈ Z.

First, for nonnegative integers. Let l = 1. Lemma 3.2.12 tells us that, the action of this

automorphism on the cluster variables of i is identified with the action of the sequence of

the mutation automorphisms
∏k=n

k=1 (µRk )2, which corresponds to the sequence of mutations∏k=n
k=1 (µRk )2. So, φ1 sends every cluster variable in X̃ to a cluster element of i which is a

cluster variable in the seed
∏k=n

k=1 (µRk )2(i). By definition of φ1, one can see it does depend

only on the frozen rank of i which is invariant under mutation, thanks to proposition 3.2.9.

Now, let x be any cluster element of the seed i, then it is a cluster variable in some seed

j, which can be obtain from i by applying some sequence of mutations say µRi1 . . . µ
R
id

. Then
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from lemma 3.2.12, we must have φ1(x) is a cluster variable in the seed
∏k=n

k=1 (µRk )2(j) =∏k=n
k=1 (µR)2µRi1 . . . µ

R
id

(i), i.e., it is a cluster element of i, and this proves it for l = 1.

For l ≥ 2, one can see that, the action of φl on the elements of X̃ is the same as the

action of (
∏k=n

k=1 (µRk )2)l. Then, following the same argument as above we can see that φl(x)

sends every element in X̃ to a cluster variable in the seed (
∏k=n

k=1 (µRk )2))l(i), and the case of

an arbitrary cluster element x is the same as l = 1 with the obvious changes.

Second, the case of l is a negative integer is similar, with using the left mutations rather

than the right mutation, i.e., the superscript R will be replaced by L when it makes sense,

and use the equations 3.2.14 instead of equations 3.2.15.

Remark 3.2.17. Let Sn be the set of all seeds of rank n in D, which share the same set

of frozen variables F and �n be the set of all the graphs of the elements of Sn with set of

vertices I = F ∪ [1, n]. Let Sn be the symmetric group in n letters. We have, Sn acts on

�n as follows, for Γ ∈ �n and σ be a permutation in Sn, σ(Γ) is obtained from Γ simply by

permuting the vertices of Γ.

Lemma 3.2.18. Let Γ be a graph as defined in 3.2.1. Then for any sequence of mutations

µik , µik−1
, . . . , µi1, we have

σ(µikµik−1
. . . µi1(Γ)) = µσ(ik)µσ(ik−1) . . . µσ(i1)(σ(Γ)), ∀σ ∈ Sn. (3.2.18)

Proof. Part (1) of theorem 2.1.7.

Theorem 3.2.19. Let i = (F,X,Γ) and i′ = (F,X ′,Γ′) be two elements of Sn, such that

Γ′ = σ(Γ), for some permutation σ ∈ Sn. Then the automorphism Tii′,σ, induced by

Tii′,σ(t) = t,∀t ∈ R, and Tii′,σ(xi) = x′σ(i), is a cluster automorphism of i. (The theorem

can be phrased for left mutations as well)

Proof. The proof will be broken into three steps.

Step one:

Tii′(µik(xk)) = µi′σ(k)
(x′σ(k)), ∀k ∈ [1, n]. (3.2.19)

57



Since Γ′ = σ(Γ), one can see −→ri k = −→ri′σ(k) and ←−ri k =←−ri′σ(k).

Then

Tii′,σ(µik(xk)) = Tii′,σ((MC(−→ri k) +MC(←−ri k))

= MC(−→ri′σ(k)) +MC(←−ri′σ(k))

= µi′σ(k)
(x′σ(k)).

Second step: In this step we show,

Tµi(i)µσ(i)(i),σ(µµi(i)k(µii(xi))) = Tii′,σ(µµi(i)k(µii(xi))), ∀i, k ∈ [1, n]. (3.2.20)

For k 6= i, we have µµi(i)k(µii(xi)) = µii(xi), then

Tµi(i)µσ(i)(i),σ(µµi(i)k(µii(xi))) = Tµi(i)µσ(i)(i),σ((MC(−→ri i) +MC(←−ri i))

= MC(−→ri σ(i)) +MC(←−ri σ(i))

= Tii′,σ(µµi(i)k((xi)))

= Tii′,σ(µµi(i)k(µii(xi))).

Third step: For any cluster element y ∈ χ(i), Tii′,σ(µik(y)) ∈ χ(i).

y must be a cluster variable in some seed. Then, j = µikµik−1
. . . µi1(i) = (F, Y,Υ) for some

sequence of mutations. Lemma 3.2.18 implies

Tji′,σ(Y ) = µσ(ik)(µσ(ik−1) . . . µσ(i1)(X
′)), (3.2.21)

which means Tji′,σ(y) is a cluster variable in j′ = µσ(ik)µσ(ik−1) . . . µσ(i1)(i
′), where j′ =

µσ(ik)µσ(ik−1) . . . µσ(i1)(i
′). From 3.2.19, 3.2.20 and induction on the length of mutations

sequence, one can deduce

Tji′,σ(Y ) = Tii′,σ(Y ). (3.2.22)
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Remark 3.2.20. The group of all Cluster automorphisms is invariant under mutation.

More precisely, for any seed i, the following equation is satisfied

H[i] = H[µj1(i)] = . . . = H[µj1µj2 . . . µjn(i)] . . . = . . . . (3.2.23)

However, the equation is not satisfied for right and left cluster groups, and even the inclusion

is not guaranteed.

3.2.3 Hyperbolic cluster algebra

Definition 3.2.21. A quadrable h = (R, X,Γ, θ) is said to be a hyperbolic feed (weak

hyperbolic feed) in D, if

• R is a commutative sub-ring of D.

• X = (x1, . . . , xn) ∈ Dn such that the division ring of fractions of the ring R[X] is an

R-automorphic copy of D.

• Γ as in the definition 3.2.1. satisfying the condition (3.2.7) (resp., to (3.2.10)).

• θ = (θ1, . . . , θn) is an n-tuple of commutative ring automorphisms of R satisfies

x±1
i r = θ±1

i (r)x±1
i , ∀i ∈ [1, n], ∀r ∈ R. (3.2.24)

Definition 3.2.22. Mutations in hyperbolic feeds is defined in same way as in the case of

hyperbolic seeds, with the obvious change by leaving the commutative ring R invariant.

One can notice that, if h = (F,X,Γ, ϕ) is a hyperbolic seed then taking R = Z[P] as

defined in 3.2.1, we may have a hyperbolic feed with the same data of i if there is an

R-automorphisms {θi}ni=1 satisfies equations (3.2.24).

Definition 3.2.23. The Hyperbolic Cluster Algebra. For a hyperbolic feed h =

(R, X,Γ, θ) (resp., to a hyperbolic seed i = (F,X,Γ, ϕ)), the hyperbolic cluster algebra
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H(h) (resp., H(i)) is defined to be the R-subalgebra (resp., R-subalgebra, R = Z[P], P is

the free abelian group generated by elements of F ) of D generated by the cluster set χ(h)

(resp., to χ(i)).

Remark 3.2.24. Let h = (R, X,Γ, θ) is a hyperbolic feed (resp., to i = (F,X,Γ, ϕ) is

a hyperbolic seed) with θ = idR (resp., to ϕ = idD), relaxing the conditions (3.2.7) and

(3.2.10). Then the hyperbolic cluster algebra H(h) (resp., to H(i)) coincides with the geo-

metric Fomin-Zelevinsky (commutative) cluster algebra associated to the seed p = (X̃,Γ),

where X̃ = F ∪X and in this case D is a (commutative) field.

Theorem 3.2.25. Let h = (R, X,Γ, θ) be a hyperbolic feed of rank n with X = (x1, . . . , xn)

and ξk = x′kxk (resp., ξk = xkx
`
k) then the following are true:

1. R(i) := R(ξ, θ−1, n) is a hyperbolic algebra of rank n (resp., to R(ξ, θ, n)).

2. µRk (i) (resp., µLk (i)) is again a hyperbolic feed.

3. Right and left mutations on feeds define isomorphisms between hyperbolic algebras from

part (1).

4. There is an isomorphism ψ : R(i) −→ R[x±1 , . . . , x
±
n ], where R[x±1 , . . . , x

±
n ] is the ring

of Laurent polynomials in x1, . . . , xn, with coefficients from R . More precisely, every

element z of R(i) can be written uniquely as linear combinations of cluster monomials

of the initial cluster X.

5. Let R = Z[P], then we have

H(i) = R(i). (3.2.25)

Proof. To prove first part, since Ni(xk) ⊂ R for all k ∈ [1, n], then x′kxk = ξk ∈ R (resp.,

to xkx
`
k). For r ∈ R. Then we have, xkr = θk(r)xk,∀k ∈ [1, n] since i is a hyperbolic feed.

Also, we have
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x′kr = ξx−1
k r = ξθ−1

k (r)x−1
k = θ−1

k (r)ξx−1
i = θ−1

k (r)x′k.

Other commutation relations of the hyperbolic algebra structure are immediate from the

commutation relations of the hyperbolic feeds and feed mutations, (left mutation case is

quite similar).

Part (2), let µRk (i) = (R,X ′,Γ, θ). By the definition of mutation on Γ it is easy to see

that; since Ni(xk) ⊂ R for all k ∈ [1, n] then NµRk (i)(x
′
k) ⊂ R for all k ∈ [1, n], (resp., to

left mutation on i), which means x′kxk = ξk ∈ R (resp., to xkx
`
k). We have

x′′kr = ξkxkξ
−1r = ξkxkrξ

−1 = ξ−1
k θk(r)xkξ = θk(r)ξkxkξ

−1 = θk(r)x
′′,

and

x′′−1
k r = ξkx

−1
k ξ−1

k r = ξkx
−1
k rξ−1

k = θ−1
k (r)ξkx

−1
k ξ−1

k = θ−1
k (r)x′′.

Also, since Ni(xk)∪Ni(xk)∪R is an empty set for every i ∈ [1, n], then xi commutes with

ξk for i 6= k, and hence

x′kxi = ξkx
−1
k xi = ξkxix

−1
k = xiξkx

−1
k = xix

′
k,∀i ∈ [1, n].

This finishes the proof of part (2).

To prove part (3), consider the R-linear automorphism on D, denoted by TR
ii′,k

: D → D,

and induced by, xk 7→ x′k, and xi 7→ xi, ∀i 6= k ∈ [1, n]. The restriction of this automorphism

on R(i) induces the following algebra isomorphism T̂R
ii′

: R(i) → R(i′), given by r 7→

r,∀r ∈ R, and xk 7→ ξx−1
k = x′k,∀k ∈ [1, n]. which implies x′k 7→ ξkxkξ

−1
k = x′′k. Finally,

it is easy to see that the hyperbolic commutation relations (3.1.1) and (3.1.2) are invariant

under T̂R
ii′

.(the argument for TL
ii′,k

and T̂L
ii′

is quite similar).

For part (4), By definition 3.1.1 and part (1) above, we have R(i) is generated by R and

x1, . . . , xn and x′1, . . . , x
′
n, with relations (3.1.1) and (3.1.2) replacing yi’s with x′i’s. Let m
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be any monomial in x1, . . . , xn and x′1, . . . , x
′
n, first part of relations (3.1.2) can be used to

remove every possible sub monomials of the form xix
′
i and replace them with ξi. So, m

can be written as a monomial from the following direct sum of non-commutative rings of

polynomials

D = R1[x1]⊕ x−1
1 R1[x−1

1 ]⊕ (⊕ni=2xiRi[xi]⊕ x−1
i Ri[x−1

i ]), (3.2.26)

where Ri = R[x±1 . . . , x
±
i−1, x

±
i+1 . . . , x

±
n ]. The ring D inherits the multiplication and the

relations of R(i). Finally, consider the map ψ that sends every monomial from R(i) to

itself after applying the relations (3.1.1) whenever possible. One can see that ψ is an

isomorphism.

For for part (5), we have H(i) is generated over R by the cluster elements of i, and a

random cluster element h can be written as h = g1x
±1
k g2, where g1 and g2 are elements of

R, thanks to the condition Ni(xk) ⊂ R, and xk is an initial cluster variable. Since, g2 ∈ R

then g2 =
∑j=t

j=1 njf
αj
j , where αj, nj ∈ Z. Then

h = g1x
±1
k

j=t∑
j=1

njf
αj
j

= g1

j=t∑
j=1

nj(θ(fj))
±αjx±k ∈ R(i).

Which means H(i) ⊆ R(i), and the other direction is obvious.

Corollary 3.2.26. 1. Every hyperbolic cluster algebra, comes from a hyperbolic feed (resp.,

to a hyperbolic seed) satisfies the conditions of theorem 3.2.26, is a hyperbolic algebra

in the sense of definition 3.1.1.

2. Deeper interpretations for for part (3) of theorem 3.2.26;

(a) every vertex of the cluster pattern of a hyperbolic feed i gives raise to a hyperbolic
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algebra, the collection of all such hyperbolic algebras forms a scheme of hyperbolic

algebras glued by the homomorphisms T̂R
ii′

.

(b) From representation theory point of view, the homomorphism T̂R
ii′

induces a func-

tor on the category of representations of the hyperbolic algebra H(i), replacing the

action of xi’s by the action of x′i’s. In the special case of Weyl algebra An, T̂R
ii′

as a functor on the category of representations of the weyl algebra An, exchanges

the action of the deferential operators with the multiplication by the corresponding

indeterminant.

(c) T̂R
ii′

coincides with the the canonical anti-automorphism mentioned in [30] page 62,

which is plays an essential role in describing the representation theory of hyperbolic

algebras.

3. The hyperbolic algebra of rank 1, R(i) is isomorphic to R[x]⊕ x−1R[x−1].

3.3 Examples

3.3.1 The Weyl algebra

Example 3.3.1. Let An be the Weyl algebra of 2n variables x1, . . . , xn, y1 . . . , yn satisfying

the relations (3.1.3). Consider the following seed i = (F, Y,Γ), where Y = (y1, . . . , yn) with

F = {ξi| ξi = yixi, 1 ≤ i ≤ n} is the set of frozen variables, with Fi = {ξi} and Γ is the

graph

·1 ·2 ·3 . . . ·n−1 ·n

·1′

OO

// ·2′

OO

// ·3′

OO

// . . . ·n−1′

OO

// ·n′

OO , (3.3.1)

where [1, n] corresponds to the elements of Y , and [1′, n′] corresponds to the elements of F .

Let P be the free abelian group generated by the elements of F and written multiplicatively.

The hyperbolic cluster algebra H(i) corresponding to An is the Z[P]-subalgebra of the

63



division ring of fractions D of the ring K[P][Y ], (we could take D to be the field of fractions

of An) generated by the cluster set of the hyperbolic seed i = (F, Y,Γ, ϕ), where ϕ is a

Z[P]-linear automorphism of D induced by ϕ(xi) = yixiy
−1
i and ϕ(yi) = ξiyiξ

−1
i . One can

see that ϕ is an infinite order automorphism satisfying (3.2.8) and (3.2.9), and i is not a

well-connected seed. In the following we will see that its cluster set is infinite.

A hyperbolic feed associated to An.

Consider the following assignments; R := K[ξ1, . . . , ξn] and θ = (θ1, . . . , θn) where

θi : R → R given by θi(ξj) =


ξi + 1, if i = j,

ξj, if i 6= j.

.

These choices make h = (R, Y,Γ, θ) a hyperbolic feed in D. This hyperbolic feed satisfies

all the conditions of theorem 3.2.26, then the mutation on the feed h provides us with an

infinite class of Weyl algebras connected (glued) by algebra homomorphisms induced by

mutations.

The cluster set of the seed i, χ(i): Since µRik(yk) = (ξk + 1)y−1
k = xk, k ∈ [1, n], we have

(y1, . . . , yk−1, yk, yk+1 . . . , yn)
µRk⇒ (y1, . . . , yk−1, (ξk + 1)y−1

k , yk+1 . . . , yn)

= (y1, . . . , yk−1, xk, yk+1 . . . , yn)

µLk⇒ (y1, . . . , yk−1, yk, yk+1 . . . , yn).

Then, the right mutations in the directions 1, 2, . . . , n cover all the generators of the Weyl

algebra An, which means the fact

An ↪→ H(h) = R(h). (3.3.2)

Notice: The same phenomenon occurs if we start with i = (F,X,Γ) with X = (x1, . . . , xn)

and apply left mutations rather than right mutations.

Yet, the mixed sequence mutations µLkµ
R
k and µRk µ

L
k act like identity on every seed (feed)
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in the cluster pattern of h, but the cluster set of i is an infinite set because the unmixed

mutations sequences never reproduce the seed (feed) i again, as we will see in the following

(y1, . . . , yk−1, yk, yk+1 . . . , yn)
µLk⇒ (y1, . . . , yk−1, y

−1
k (ξk + 1), yk+1 . . . , yn)

µLk⇒ (y1, . . . , yk−1, (ξk + 1)−1yk(ξk + 1), yk+1 . . . , yn)

µLk⇒ (y1, . . . , yk−1, (ξk + 1)−1y−1
k (ξk + 1)2, yk+1 . . . , yn)

µLk⇒ (y1, . . . , yk−1, (ξk + 1)−2yk(ξk + 1)+2, yk+1 . . . , yn)

. . .

µLk⇒ (y1, . . . , yk−1, (ξk + 1)−jy−1
k (ξk + 1)j+1, yk+1 . . . , yn)

µLk⇒ (y1, . . . , yk−1, (ξk + 1)−(j+1)yk(ξk + 1)+j+1, yk+1 . . . , yn)

. . . ,

and

(x1, . . . , xk−1, xk, xk+1 . . . , xn)
µRk⇒ (x1, . . . , xk−1, (ξk + 1)x−1

k , xk+1 . . . , xn)

µRk⇒ (x1, . . . , xk−1, (ξk + 1)xk(ξk + 1)−1, xk+1 . . . , xn)

µRk⇒ (x1, . . . , xk−1, (ξk + 1)2x−1
k (ξk + 1)−1, xk+1 . . . , xn)

µRk⇒ (x1, . . . , xk−1, (ξk + 1)+2xk(ξk + 1)−2, xk+1 . . . , xn)

. . .

µRk⇒ (x1, . . . , xk−1, (ξk + 1)j+1x−1
k (ξk + 1)−j, xk+1 . . . , xn)

µRk⇒ (x1, . . . , xk−1, (ξk + 1)j+1xk(ξk + 1)−(j+1), xk+1 . . . , xn)

. . . .

Also, since Ni(xk) does not contain any non frozen initial cluster variable, for every k ∈

[1, n], one can see that µRk µ
R
i and µRi µ

R
k (resp., to µLkµ

L
i and µLi µ

L
k ) act in the same way on

any seed (feed) in the cluster pattern of i. Therefor the cluster set of i can be restricted
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only to the following elements

χ(i) = {y1, . . . , yn, (ξk + 1)−j−1y−1
k (ξk + 1)+j, (ξk + 1)−jyk(ξk + 1)+j; j ∈ N, k ∈ [1, n]}⋃

{(ξk + 1)j+1y−1
k (ξk + 1)−j, (ξk + 1)+jyk(ξk + 1)−j; j ∈ N, k ∈ [1, n]}

= {x1, . . . , xn, (ξk + 1)j+1x−1
k (ξk + 1)−j, (ξk + 1)+jxk(ξk + 1)−j; j ∈ N, k ∈ [1, n]}⋃

{(ξk + 1)−jx−1
k (ξk + 1)j+1, (ξk + 1)−jxk(ξk + 1)+j; j ∈ N, k ∈ [1, n]}

The cluster patterns of the first Weyl algebra A1.

Let A1 = K < x, y > /(xy − ξ − 1), where ξ = yx, consider the following seed i =

(R, y, ·1 // ·1′ ), where R = Z[P], P = {yn;n ∈ Z} the free group generated by y, written

multiplicatively . We have the following cluster patterns for this case

• T(i)

. . .
L
//
y−3· R //Roo

y−2· R //
L
oo

y−1· R //
L
oo y=y0·

L
//

L
oo y1·Roo R // y2·

L
oo R // y3·

L
oo R // . . .

L
oo (3.3.3)

(here ·
L
oo is left mutation and · R // is right mutation). Which can be encoded by

the following equations

yk+1yk = ykyk+1 + 1, for k ∈ 2Z, (3.3.4)

ykyk+1 = yk+1yk + 1, for k ∈ 2Z + 1. (3.3.5)

These equations are equivalent to say that, each arrow from the cluster pattern corresponds

to a copy of the first Weyl algebra, denoted by Ak1 = K〈yk, yk+1〉, k ∈ Z and mutations

define algebra maps between these Weyl algebras, given by Tk : Ak1 → Ak+1
1 , yk 7→ yk+1 for

k ∈ Z≥0, and Tk : Ak1 → Ak+1
1 , yk 7→ yk−1 for k ∈ Z<0.

Remark 3.3.2. Fomin-Zelevinsky finite type classification [16] does not work in

this case. In the case of the first Weyl algebra A1 = K < x, y > /(xy − yx = 1)

with the seed i = (ξ = yx, y, ·1 // ·1′ ) here i is of A1-type as a cluster algebra based

on Fomin-Zelevinsky finite type classification however χ(i) is an infinite set, which means

Fomin-Zelevinsky finite type classification does not work in this case.
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3.3.2 The coordinate algebra of SLq(2, k).

Recall definition 3.1.1. Consider the following hyperbolic feed h = (R, x,Γ, θ), where R =

K[u, v] and θ : R → R given by θ(f(u, v)) = f(qu, qv) and Γ is given by

·1′ ·2′

·1

OO >> (3.3.6)

Consider the set of frozen variables F given by F = {qu, v}. In this case we deform the

mutation (right and left) as follows, mutation of q is q−1, i.e., for example µ1(quv + 1) =

q−1uv + 1.

Remark that; h satisfies the conditions of theorem 3.2.26 and the conditions of the well-

connected seeds.

One can see the right mutation on h will produce the following new feed h′ = (R, y,Γ′, θ),

since

µR1 (x) = (q−1uv + 1)x−1 = ξx−1 = y. (3.3.7)

and Γ′ is as follows

·1′

��

·2′

~~
·1

(3.3.8)

Applying left mutation on h′ produces the original seed h. Also, we have,

A(SLq(2, k)) ↪→ R(h) = H(h) (3.3.9)

The cluster set of h: Let ζ = quv + 1. We have

χ(h) = {x, ζjxξ−j, ξj+1x−1ζ−j−1, j ∈ N}
⋃
{y, ξjyζ−j, ζj+1y−1ξ−j−1, j ∈ N}.
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3.4 Irreducible representation arising from the cluster

graphs of Weyl algebras.

In the following we introduce a family of indecomposable and irreducible representations for

the Weyl algebra An arising from its cluster pattern. We speculate the same representations

can be introduced for any hyperbolic algebra with a hyperbolic cluster structure.

Definition 3.4.1. Let h = (F, Y,Γ, θ) be the hyperbolic feed of rank n, introduced in

example 3.3.1. In addition to the n-th Weyl Algebra An, we have the following algebras

related to h.

• The Hyperbolic cluster algebra H(h).

• The algebra B = K(y1, . . . , yn)[y′1, . . . , y
′
n], the algebra of polynomials in the first gen-

eration cluster variables µRi (yi) = y′i, i ∈ [1, n], (resp., to µRi (yi) = y′i, i ∈ [1, n]), with

coefficients from the field of fractions of the initial cluster variables.

• The algebra B = K(ξ1, . . . , ξn)[χ(h)] the algebra of polynomials in the cluster set of h

with coefficients from the field of fractions of the frozen variables.

Remark 3.4.2. We have the following inclusions

B←↩ An ↪→ H(h) ↪→ B, (3.4.1)

i.e., The hyperbolic cluster algebra is an intermediate algebra between the n-th Weyl Algebra

and the algebra B.

Motivations: The representation theory of the the three algebras An and the algebras B,

and B are closely related, see for example [3].

Definition 3.4.3. Space of Representations Vn. Let h = (F, Y,Γ, θ) be a hyperbolic

feed (resp., to seed) of rank n. A cluster monomial of h is a monomial formed from cluster
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elements that are showing up (at least once) as cluster variables in some feed in the cluster

pattern of h. To visualize it, the monomial m = zβ1

1 · · · zβnn , βi ∈ Z≥0, i ∈ [1, n] is a cluster

monomial if (z1, . . . , zn) is the cluster of some feed in the cluster pattern of h. In case of

βi ∈ Z>0,∀i ∈ [1, n], m is called a full cluster monomial.

The space of representations Vn is defined to be the K(ξ1, . . . , ξn)-left span by the set of

all cluster monomials of h.

Lemma 3.4.4. For any hyperbolic feed h (resp., to hyperbolic seed), the space of represen-

tations Vn is independent of h, and depends only on T(h) the cluster pattern of h.

Proof. The statement of the lemma is equivalent to say that any two hyperbolic feeds

(seeds) in the cluster pattern of h have the same cluster pattern. To see this fact; let f be

any hyperbolic feed in T(h). Then, f can be obtained from h by applying some sequence of

mutations, without lose of generality we may assume it is a sequence of right mutations only

say µRi1 . . . µ
R
it . But part 3 of lemma 3.2.6 tells us that we can obtain h from f by applying

the (same length) sequence of left mutations µLit . . . µ
L
i1

which finishes the proof. However, we

may realize this fact by recalling that any two vertices in the cluster pattern are connected

by two oppositely directed pathes.

Remark 3.4.5. In the case of h is the hyperbolic feed associated to the Weyl algebra or the

coordinate algebra of SLq(2, K), the situation is easier since in this case a cluster monomial

is any monomial formed from any set of cluster elements. In order to see this fact we need

to recall the following two, easy to prove, combinatorial proposition.

Proposition 3.4.6. If h is the hyperbolic feed associated to the Weyl algebra or the coordi-

nate algebra of SLq(2, K), then the following are true

1. For any set of n (or less) different cluster elements, not including two elements produced

from the same initial cluster variable, there is at least one seed in the cluster pattern

of h which contains all of them.
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2. For z1 and z2 any two cluster elements produced from the same initial cluster variable,

then we have two cases for their product;

• if z2 can be obtained from z1 by applying sequence of mutations of odd length, then

z1z2 ∈ K(ξ1, . . . , ξn).

• if z2 can be obtained from z1 by applying sequence of mutations of even length, then

z1z2 can be written as gz2
1, for some g ∈ K(ξ1, . . . , ξn).

A left action of the algebras An, B, and B on Vn.

Consider the following notations; let Y = (y1, . . . , yn) be the initial cluster, for t ∈ Z≥0, yi,t

denotes the cluster element obtained from the initial cluster variable yi by applying one of

the following sequence of mutations (µRi )t if t ≥ 0 or (µLi )t if t < 0.

Using the above notation, a typical element of Vn can be written as a sum of monomials

like the following monomial

v = f(ξ1, . . . , ξn)yβ1

1,m1
· · · yβnn,mn , (3.4.2)

where f(ξ1, . . . , ξn) ∈ R, and (β1, . . . , βn) ∈ Zn≥0, and (m1, . . . ,mn) ∈ Zn.

A left action on the general term v is defined as follows

yi(v) = f(ξ1, . . . , ξi−1, θ
−1
i (ξi), . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,mi−1y

βi+1

i+1,mi+1
· · · yβnn,mn . (3.4.3)

xi(v) = θi(ξi)f(ξ1, . . . , ξi−1, θi(ξi), . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,mi+1y

βi+1

i+1,mi+1
· · · yβnn,mn . (3.4.4)

Lemma 3.4.7. 1. The action of xi and yi is invertible. In particular, the action is com-

patible with mutations, and hence is defined for all cluster elements, and the action of

xi can be recovered from the action of yi, for every i.

2. Vn is a left An, B, and B module with the action induced by the action of the initial

clusters yi, defined above.
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Proof. 1. If y−1
i and x−1

i denote the inverses of yi and xi respectively, then we have y−1
i

acts like θ−1(ξi)xi, and x−1
i acts like ξ−1

i yi. For the rest of the statement is an immediate

calculations recalling that µi(yi) = (1 + ξ)y−1
i = xi.

2. The action is consistent with relations (3.1.3). One can see (xiyi − yixi)(v) can be

written as follows

= xi(f(ξ1, . . . , ξi−1, θ
−1
i (ξi), ξi+1, . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,mi+1y

βi+1

i+1,mi−1 · · · yβnn,mn)

− yi(θi(ξi)f(ξ1, . . . , ξi−1, θi(ξi), ξi+1, . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,mi+1y

βi+1

i+1,mi+1 · · · yβnn,mn)

= θi(ξ)f(ξ1, . . . , ξi−1, θ
−1
i (θ(ξi)), ξi+1, . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,miy

βi+1

i+1,mi+1 · · · yβnn,mn)

− θi(θ
−1
i (ξi))f(ξ1, . . . , ξi−1, θi(θ

−1(ξi)), . . . , ξn)yβ1

1,m1
· · · yβi−1

i−1,mi−1
yβii,miy

βi+1

i+1,mi+1 · · · yβnn,mn)

= (θi(ξi)− ξi)v

= v.

In a similar way, one gets (xiyj − yjxi)(v) = 0, for i 6= j.

Example 3.4.8. Consider the hyperbolic feed (seed) i introduced in example 3.1.1. The

i-th branch of the cluster pattern T(i) is as follows;

· //
(y1,m1 ,...,yi,mi−1,··· ,yn,mn )

· R //oo
(y1,m1 ,...,yi,mi ,··· ,yn,mn )

· R //
L
oo

(y1,m1 ,...,yi,mi+1,··· ,yn,mn )
· //

L
oo ·oo .

(3.4.5)

Here, right mutations go to the right direction and left go to left. For sake of simplicity,

we skipped labeling each vertex by the whole seed data and kept only the cluster variables,

since the other data are all invariant under right and left mutations in the i-the direction.

In this case, Vn is the left K(ξ1, . . . , ξn)-linear span generated by the following set

{yβ1

1,m1
· · · yβnn,mn| for m = (m1, . . . ,mn) ∈ Zn, and β = (β1, . . . , βn) ∈ Zn≥0}. (3.4.6)
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3.4.1 Cluster strings and the string submodules of Vn.

Before introducing the cluster strings we need to develop some notations. For b ∈ Z, we

have

θb(−) =



b−times︷ ︸︸ ︷
θ(θ(. . . θ(−))), if b > 0,

idR, if b = 0,
b−times︷ ︸︸ ︷

θ−1(θ−1(. . . θ−1(−))), if b < 0.

Consider the following two sets of monomials in elements from the set {θb(ξ); b ∈ Z}

M+(ξ) := {1, θt(ξ±1)θt+1(ξ±1) · · · θt+q(ξ±1)|q, t ∈ Z≥0},

M−(ξ) := {1, θt(ξ±1)θt+1(ξ±1) · · · θt+q(ξ±1)|q + t, t ∈ Z≤0}.

Now we are ready to introduce one more set of monomials, M(ξ)

M(ξ) := {m1m2|m1 ∈M+(ξ) and m2 ∈M−(ξ)}. (3.4.7)

Let R be any one of the following rings K[ξ1, . . . , ξn], K(ξ1, . . . , ξn) or K[P], and A be

any of the algebras An, B or B. Let E = {ξ±1
1 , . . . , ξ±1

n }. The set of all monomials formed

form the elements of E is denoted by M(E).

Fix a natural number l ∈ N and a 1-1 map σ : [1, l]→ Zn≥0 × Zn. Let β = (β1, . . . , βl) ∈

(Zn)l, and m = (m1, . . . ,ml) ∈ (Zn≥0)l be such that σ(j) = (σ1(j), σ2(j)) = (βj,mj), where

σ1(j) = βj = (βj1, . . . , βjn) and σ2(j) = mj = (mj1, . . . ,mjn), j ∈ [1, l].

For t = (t1, . . . , tn) ∈ Zn and h ∈ R, we introduce one more important subset of R

a(t, h) := {eα1 · · ·αnh(θt11 (ξ1), . . . , θtnn (ξn))| αi ∈M(ξi), e ∈M(E), i ∈ [1, n]}. (3.4.8)

Definition 3.4.9. Cluster strings of base l. Every non-negative integer l, f = (f1, . . . , fl) ∈

Rl, and a 1− 1 map σ : [1, l]→ Zn≥0 ×Zn corresponds to a cluster string, defined as follows

Sl(σ, f) := {
l∑

j=1

gjy
β1j

1,mj1+tj1
· · · yβnjn,mjn+tjn| tj = (tj1, . . . , tjn) ∈ Zn, gj ∈ a(tj, fj), j ∈ [1, l]}.

(3.4.9)
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Example 3.4.10. A cluster string of base 2. Let l = 2, σ1(1) = (1, 0), σ1(2) = (1, 2),

σ2(1) = (1, 1), σ2(2) = (0, 1), and f = (ξ2
1 + ξ2, ξ2ξ1), we have for t = (t1, t2)

a(t, ξ2
1 + ξt22 ) = {eα1α2(θ2t1

1 (ξ1) + θ(ξ2))| αi ∈M(ξi), e ∈M(E), i ∈ [1, 2]},

and

a(t, ξ1ξ2) = {eα1α2θ
t1
1 (ξ1)θt2(ξ2)| αi ∈M(ξi), e ∈M(E), i ∈ [1, 2]}.

With the above data we have

S2(σ, f) = {g1y1,1+t11 +g2y1,0+t21y
2
2,1+t22

|g1 ∈ a(t, ξ2
1 +ξt22 ), g2 ∈ a(t, ξ1ξ2), tij ∈ Z, i, j ∈ [1, 2]}.

Definition 3.4.11. Let Sl(σ, f) be a cluster string. The sub module of Vn generated by

Sl(σ, f) is called a string submodule of base l associated to Sl(σ, f). This submodule is

denoted by Wl(σ, f) and called a string submodule if there is no possibility of confusion.

Remark 3.4.12. Each element of Vn gives rise to a cluster string and hence a submodule

of Vn. To see that; every element v of Vn can be written as follows

f1(ξ1, . . . , ξn)yβ11

1,m11
· · · yβn1

n,m1n
+ . . .+ fl(ξ1, . . . , ξn)yβ1l

1,ml1
· · · yβnln,mln

.

Where f1, . . . , fl are elements of R, and a 1−1 map σ : [1, l]→ Zn
≥0×Zn can be defined such

that σ(j) = (σ1(j), σ2(j)), where σ1(j) = (β1j, . . . , βnj) and σ2(j) = (m1j, . . . ,mnj), j ∈ [1, l].

Consider the cluster string Sl(σ, f), with f = (f1, . . . , fl). This cluster string is denoted by

S(v) and the submodule of Vn generated by S(v) denoted by W (v).

The following lemma provides some basic properties of the cluster strings.

Lemma 3.4.13. 1. The cluster strings are invariant under the action of every monomial

formed from elements of the set E = E ∪ {x1, . . . , xn, y1, . . . , yn}, and we can recover
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any cluster string from any of its element. In particular for any cluster string Sl(f, σ)

and for any v ∈ Sl(f, σ)

M(E)v = {
l∑

j=1

gjy
β1j

1,mj1+t1
· · · yβnjn,mjn+tn| t = (t1, . . . , tn) ∈ Zn, gj ∈ a(t, fj)} ⊂ Sl(f, σ).

(3.4.10)

WhereM(E) is the set of all monomials formed from the elements of the set E. Hence,

for any string submodule Wl(f, σ) we have

Wl(f, σ) =
∑

copies of Sl(f, σ). (3.4.11)

2. l 6= l′, then Sl(σ, f) 6= Sl′(σ
′, f).

3. For σ = σ′, then Sl(σ, g) = Sl(σ, f), if and only if g ∈ am(t, f), for some t ∈ Zn.

4. Let g = (g1, . . . , gn) with gi ∈ am(f, ti) for some ti ∈ Zn. Then Sl(σ
′, g) = Sl(σ, f) if

and only if σ′(j) = σ(j) + (0, qj)∀j ∈ [1, l] for some qj ∈ Zl.

Proof. 1. To see that the action of any element of M(E) on any element of Sl(σ, f) is

again an element of Sl(σ, f).

We have xi sends fj(ξ1, . . . , ξn)y
β1j

1,m11
· · · yβnjn,mn1 to

θ(ξi)(fj(ξ1, . . . , ξi−1, θi(ξ), ξi+1, . . . , ξn)y
βj1
1,mj1

· · · yβji−1

i,mji−1
y
βji
i,(mji)+1y

βji+1

i,mji+1
· · · yβjnn,mjn

.

While yi sends it to

fj(ξ1, . . . , ξi−1, θ
−1
i (ξ), ξi+1, . . . , ξn)y

βj1
1,mj1

· · · yβji−1

i,mji−1
y
βji
i,(mji)−1y

βji+1

i,mji+1
· · · yβjnn,mjn

.

Which means non of the base l, f nor the map σ are changed under the action of

x1, . . . , xn or y1, . . . , yn. Then they keep every cluster string invariant, and hence same

for every monomial formed from the set E . The same change will occur in each term of

the l-terms of every element of Sl(f, σ), which justify (3.4.10).
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Now, a random element of A is a linear combination of elements of M(E) with coeffi-

cients from the filed K. Remark that in the case of A = B, the inverses of xi and yi

still keep the cluster strings invariant, we refer to part one of lemma 3.4.7. Therefore,

any element of A will send any element of Sl(σ, f) into a sum of elements each of them

is an element of Sl(f, σ), which proves that Wl(σ, f) is entirely included in a sum of

copies of Sl(σ, f) and obviously any sum of copies of Sl(σ, f) is included in Wl(σ, f)

which finishes the proof of (3.4.11).

2. This is immediate if we recall that the maps σ and σ′ are 1− 1.

3. (⇒) Obvious.

(⇐) if g ∈ a(t, f) for some t = (t1, . . . , tn) ∈ Zn, then there are αi ∈ M(ξi), and

e ∈ M(E) such that g = eα1 · · ·αnf(θt11 (ξ1), . . . , θtnn (ξn)). Remarking that elements of

M(ξ) are invertible for any choice of R, then Sl(f, σ) ⊆ Sl(g, σ), and the other inclusion

is direct.

4. (⇒). It is easy to see that, if σ′1(j) = σ1(j),∀j ∈ [1, l], then σ′ = σ + (0, qj) for some

qj ∈ Zn.

Assume that σ′(j0) 6= σ(j0) + (0, qj) for some j0 ∈ [1, l] and for every qj ∈ Zn.

Then σ′1(j) 6= σ1(j). Then, the element
∑l

j=1 gjy
β1j

1,mj1+tj1
· · · yβnjn,mjn+tjn , with σ′1(j) =

(β1j, . . . , βnj), is an element of Sl(σ
′, g) but is not an element of Sl(σ, f).

(⇐) Immediate.

Lemma 3.4.14. For the cluster strings Sl(σ, f) with σ : [1, l] → Zn>0 × Zn, i.e., all the

cluster monomials are full. The following are true.

1. Every submodule of Vn is generated by a set of cluster strings

2. Any two proper submodules of a string submodule Wl(σ, f) have non-zero intersection.

In particular Wl(σ, f) is indecomposable module, however it is not necessarily to be
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irreducible.

3. If Wl(σ, f) is a string module with base l, then for any w ∈ Wl(σ, f) the string S(w) is

of base equals a multiple of l.

4. there is a bijection between the set of all cyclic submodules of Vn and the set of all string

submodules.

Proof. 1. We first notice that from parts 2 and 3 of lemma 3.4.13 and proof of part 8 of

this lemma, we conclude that every two cluster strings are either identical or have zero

intersection. So we can introduce the following equivalence relation

s ∼ s′ if and only if s and s′ belong to the same string module. (3.4.12)

Let W be any submodule of Vn. Let W ∗ = W/ ∼. Then we have the following identity

W = ⊕w∈W ∗W (w). (3.4.13)

2. Let W1 and W2 be any two proper submodules of Wl(σ, f). Then, there are two non

zero elements wi ∈ Wi for i = 1, 2. The above arguments guarantee that S(w1) and

S(w2) are of bases l1 and l2 respectively, such that they are multiples of l, and not equal

to l, as we will see in the proof of part 7. WLOG assume l1 < l2, and li = dil, i = 1, 2,

for some di and d2 natural numbers. Let l′ be the least common multiple of l1 and l2.

So, l′ = nili, for some ni ∈ N, i = 1, 2. Consider the element

w′ =
l′∑
i=1

si,where si ∈ S(v).

Here we show w′ ∈ W (w1) ∩W (w2):

Write

w1 =

l1∑
b=1

l∑
j=1

e
(b)
j α

(b)
1j · · ·α

(b)
nj f

(b)
j y

β1j

1,mj1+t
(b)
j1

· · · yβnj
n,mjn+t

(b)
jn

. (3.4.14)

We have e
(b)
j ∈M(E), α

(b)
ij ∈M(ξi) , and f

(b)
j = fj(θ

t
(b)
j1

1 (ξ1), . . . , θ
t
(b)
jn
n (ξn)), ∀i ∈ [1, n].
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Following remark 3.4.12, we can introduce the cluster string associated to w1 as fol-

lows; Let σ(b)(j) = (βj, t
b
j), where βj = (β1j, . . . , βnj), and tbj = (tb1j, . . . , t

b
nj). Let

σ̂ : [1, l1] → Zn>0 × Zn>0, given by σ̂(j) = σb(j) for j ∈ [(b − 1)l, bl], b ∈ [1, d1], and

f̃ = (f 1
1 , . . . , f

1
n, . . . , f

b
1 , . . . , f

b
n, . . . , f

d1
1 , . . . , fd1

n ) ∈ Rl1 .

Writing w′ in the same way we can see that

w′ ∈
d1n1∑
i=1

copies of S(w) ⊂
n1∑
i=1

copies of S(w1).

In a quite similar way we can show w′ ∈
∑n1

i=1 copies of S(w2).

But we have
∑n1

i=1 copies of S(wi) ⊂ W (wi), i = 1, 2. Which means

w′ ∈ W (w1) ∩W (w2). (3.4.15)

3. The base of every cluster string contained in Wl(σ, f) is a multiple of l.

To see that; let w be an element of Wl(σ, f). Then w = av for some a ∈ A and

v ∈ Sl(σ, f). Here, a can be written as
∑d

i=1 kiei, where ki ∈ K∗, and ei ∈ M(E),∀i ∈

[1, n] ( e1, . . . , ed are different monomials). Each of ei, as we saw above, does not

change the superscripts of the monomials of v, however it change the second subscripts

simultaneously with the coefficients, such that the action’s output is still an element of

Sl(σ, f). Also, since σ : [1, l]→ Zn
>0×Zn i.e., βij >,∀i ∈ [1, n], j ∈ [1, l]. This condition

guarantees that each term of v is a product of a coefficient from the ring R times a

full cluster monomial. So, the action of any element of M(E) must change every term

of v. Hence, in deed w =
∑d

i=1 si, where si is an element of Sl(σ, f), for all i ∈ [1, d].

Therefore, the element w = av is a sum of dl-different terms where each term belongs

to a copy of Sl(σ, f). Consider the cluster string S(w) associated to w. One can see

W (w) is of base dl and every cluster string contained in W consists of elements of W

i.e., every cluster string contained in W is of the form W (w) which is of base equals a
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multiple of l.

4. Let W be a cyclic module generated by w. Then W (w) ⊆ W . To see the other direction.

We have every v ∈ W is an element of a sum of copies of the cluster string S(w) which

is a subset of W (w). So the bijection is defined to send W to S(w).

Now let Sl(σ, f) be a cluster string. Fix a generic element w of Sl(σ, f). One can

see S(w) = Sl(σ, f). So, Sl(σ, f) is sent back to W (w). Remark that, the above

argument shows that, every element of Sl(σ, f) can replace w, i.e., S(w) = S(w′) for

every w′ ∈ Sl(σ, f).

Corollary 3.4.15. 1. For every two elements w and w′ of the string module Wl(σ, f). If

w =
∑d

i=1 si and w′ =
∑d

i=1 s
′
i, where si and s′i are elements of Sl(σ, f), for all i ∈ [1, d],

then S(w) = S(w′) and W (w) = W (w′), (immediate from the definition of cluster

strings and the above arguments).

2. For any string module Wl(σ, f), every cyclic module is of the form Wdl(σ̂, f̂), where

d ∈ Z≥0, σ̂ : [1, dl] −→ Zn>0 × Zn with σ̂ = (σ̂1, σ̂2), and

σ̂1(j) = (β(j−il)1, . . . , β(j−il)n), j ∈ [(il + 1, (i+ 1)l], i ∈ [o, d− 1],

σ̂2(j) = (t
(b)
j1 , . . . , t

(b)
jn ) ∈ Zn,∀j ∈ [1, dl]

and f̂ = (f 1
1 , . . . , f

1
n, . . . , f

b
1 , . . . , f

b
n, . . . , f

dl
1 , . . . , f

dl
n ),

where f
(b)
j = fj(θ

t
(b)
j1

1 (ξ1), . . . , θ
t
(b)
jn
n (ξn)), ∀j ∈ [1, l], b ∈ [1, d].

(Horizontal) Infinite base Cluster strings. Let Ṽn be the ring of all infinite series

formed by the set of all cluster monomials over the ring R. The action defined in (3.4.3)

and (3.4.4) can be extended to Ṽn. Now fix β = (β1, . . . , βn) ∈ Z>0. Consider the following

element

w(β) =
∑

t=(t1,...,tn)∈Zn
yβ1

1,m1+t1
· · · yβnn,mn+tn . (3.4.16)

Denote the cluster string of w(β) by S(β) and the string submodule by W (β).
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Theorem 3.4.16. For every β ∈ Zn>0, W (β) is an irreducible B module.

Proof. One can see the following

yiw(β) = w(β) and xiw(β) = θi(ξ)w(β), ∀i ∈ [1, n]. (3.4.17)

Therefore, for any b ∈ B, we have bw(β) = f(x1, . . . , ξn)w(β), for some f ∈ K(ξ1, . . . , ξn).

Then Bw(β) = K(ξ1, . . . , ξn)w(β). i.e., W (β) is in fact a one dimensional vector space.

Then it is an irreducible B module.

3.5 Hyperbolic category

Definition 3.5.1. Hyperbolic category. Let A be an additive category with an n tuple

of auto-equivalences θ = (θ1, . . . , θn) and an n-tuple of endomorphisms ξ = (ξ1, . . . , ξn) of

the identical functor of A. The hyperbolic category of rank n on A is denoted by A{θ, ξ}

and is defined as follows:

The objects are the triples (γ,M, η) where M is an object of A and γ = (γ1, . . . , γn) and

η = (η1, . . . , ηn) are two n-tuples of A-morphisms, given by

γi : M −→ θi(M) and ηi : θi(M) −→M, i ∈ [1, n],

where

ηi ◦ γi = ξiM and γi ◦ ηi = ξiθi(M), ∀i ∈ [1, n]. (3.5.1)

The morphisms from (γ,M, η) to (γ′,M ′, η′) are the n-tuples f = (f1, . . . , fn) of elements

of Mor.A(M,M ′) which make the following diagrams commutative

M

fi
��

γi // θi(M)

θi(fi)

��

ηi //M

fi
��

M ′ γ′i // θi(M
′)

η′i //M ′

,

for i ∈ [1, n].
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Example 3.5.2. Let R be an associative ring with φ an R-automorphism, and z a central

element of R, such that, R{φ, z} is a hyperbolic algebra of rank 1 in the two indeterminate x

and y. Let A = R−mod (the category of R-modules). The category H of R{φ, z}-modules

is equivalent to a hyperbolic category A{θ, ξ} which is defined as; θ : A −→ A induced by

the R-automorphism φ and for M ∈ objets of A, ξM : M −→ M is given by ξ(m) := zm.

Objects of A{θ, ξ} are the triples (x,M, y) where M is an object in A, x : M −→ θ(M)

given by x(m) = xm and y : θ(M) −→M given by y(m) = ym.

3.6 Hyperbolic cluster category

Definition 3.6.1. Categorical Seed . Let H be a category. A categorical seed of rank n

in H is the following data S = (θ, ξ, C) where

1. θ = (θ1, . . . , θn) is an n-tuple of auto-equivalences in H.

2. ξ = (ξ1, . . . , ξn) is an n-tuples of endomorphisms of the identical functor of H.

3. C is the following category;

Objects are the pairs (M, η), where M is an object in H and η = (η1, . . . , ηn) is an

n-tuple of invertible elements of Mor.H(θ(M),M) satisfy the following

ηi ◦ ξi,θi(θjk ...θj1 (M)) = ξi,θjk ...θj1 (M) ◦ ηi, i, jk, . . . , j1 ∈ [1, n]. (3.6.1)

Morphisms are f ∈ Mor.C, ((M, η), (M ′, η′)) ⊂ Mor.H(M,M ′) such that the following

diagram is commutative for every i ∈ [1, n]

θi(M)

θi(fi)

��

ηi //M

fi
��

θi(M
′)

η′i //M ′

. (3.6.2)

Furthermore, if {θi; i ∈ [1, n]} and {ξi; i ∈ [1, n]} are two sets of commutative functors,

then S is called a categorical hyperbolic seed.
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Example 3.6.2. Let R{φ, z} be a hyperbolic algebra of rank n in the the indeterminates x =

{x1, . . . , xn} and y = {y1, . . . , yn}, with φ = {φ1, . . . , φn} ⊂ Aut.(R) and z = {z1, . . . , zn} ⊂

Z(R) (center of R) and let A = S−1R[y±1
1 , . . . , y±1

n ], where S = {zi, φi(zi); i ∈ [1, n]}. Let

A = A − mod, and R = ϕ∗(A), where ϕ∗ : A −→ R − mod, the functor that sends each

object in A to itself as an R-module forgetting the rest of the A-action. Let S = (θ, ξ, C)

where θ = (θ1, . . . , θn) is an n-tuple of R-auto equivalences where θi : R −→ R is induced

by φi, and ξ = (ξ1, . . . , ξn) is an n-tuple of endomorphisms of the identity functor of R,

given by ξiW : W −→ W where ξiW (w) = zi · w, i ∈ [1, n], for any object W in R.

Objects of C are pairs (M, y), where M is an object of R, and y = (y1, . . . , yn),

where yi : θi(M) −→ M , yi(m) = yi · m for i ∈ [1, n] and morphisms of C are given

by Mor.C((M, y), (M ′, y)) = Mor.A(M,M ′).

In the following we will show S = (θ, ξ, C) is a categorical hyperbolic seed in R. The

commutativity of {θi}ni=1 is due to the commutativity of {φi}ni=1, ad the commutativity of

{ξi}n1 is because {z1, . . . , zn} ⊂ Z(R). To prove 3.2, for t ∈ θjk . . . θj1(M) we have

yiξi,θi(θjk ...θj1 (M))(t) = yi(φi(zi)t)

= yiφi(zi)t

= ziyit

= ξiθjk ...θj1 (M))(yi(t)).

Equations 3.6.1 are consequences of the equations yiθi(r) = ryi for any r ∈ R.

Before introducing the categorical mutations we need to introduce the following mor-

phisms;

1.

ξk,W : W −→ W, ξk,W (w) = zk · w.
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2.

ξθk,W : W −→ W, ξθk,W (w) = θk(zk) · w.

3.

ξθk,W : W −→ W, ξθk,W (w) = θk(zk) · w.

4.

ξk̂,W : W −→ W, ξk̂,W (w) = z−1
k · w.

One can see that the following identity is satisfied

ξk̂,W ◦ ξk,W = ξk,W ◦ ξk̂,W = idW , ∀k ∈ [1, n],∀ W ∈ objects of R.

Definition 3.6.3. Let S = (θ, ξ, C) be a categorical seed of rank n in H.

• Right Categorical Mutations. The right categorical mutation on S in the k-direction

is defined as follows µRk (S) = (θ̂−1
(k), ξ, C

(k,1)
R ), where θ̂−1

(k) = (θ1, . . . , θ
−1
k , . . . , θn) and C(k,1)

R is a

category with objects are pairs (θk(M), ξk,θk(M) ◦ η−1
k ), and morphisms are given by

Mor.C(k,1)
R

((θk(M), ξθk(M) ◦ η−1
k ), (θk(M

′), ξθk(M ′) ◦ η
′−1
k )) := θk(Mor.C((M, η), (M ′, η′))).

(3.6.3)

Second generation seeds Applying mutation on the same direction one more time gives

us µRk (µRk (S)) = (θ, ξ, C(k,2)
R ), where the objects of C(k,2)

R are the pairs (M, ξθk,M ◦ηk ◦ ξk̂,θ(M)).

So, the right mutation rules are the following:

1. ξ is frozen.

2. θ is altered by replacing it by θ̂(k).

3. C(k,t) with objects are the pairs (W, ν(k,t)), where ν(k,t) = (ν1, . . . , νk), is replaced by

C(k,t+1). where its objects are given by
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objects of C
(k,t+1)
R =



(θk(W ), ν(k,t+1)),with

ν(k,t+1) = (ν1, . . . , νk−1, ξθk(M) ◦ ν−1
k , νk+1, . . . , νn), if t is even,

(W, ν(k,t+1)),with

ν(k,t+1) = (ν1, . . . , νk−1, ξθk,M ◦ ν−1
k , νk+1, . . . , νn), if t is odd.

(3.6.4)

• Left Categorical Mutations. the left mutation rules for ξ and θ are the same as

in the right mutations, and for C
(k,t)
L with objects are the pairs (W, ν(k,t)), where ν(k,t) =

(ν1, . . . , νk), is replaced by C
(k,t+1)
L where its objects are given by

objects of C
(k,t+1)
L =



(θk(W ), ν(k,t+1)),with

ν(k,t+1) = (ν1, . . . , νk−1, ν
−1
k ◦ ξk,M , νk+1, . . . , νn), if t is even,

(W, ν(k,t+1)),with

ν(k,t+1) = (ν1, . . . , νk−1, ξk̂,M ◦ νk ◦ ξk,θ(M), νk+1, . . . , νn), if t is odd.

(3.6.5)

The morphisms of C
(k,t+1)
L is defined the same way as the the morphisms of C

(k,t+1)
R .

Lemma 3.6.4. Let S = (θ, ξ, C) be a categorical hyperbolic seed of rank n in A. Then the

following are true

1. µRj1 . . . µ
R
jt(S) is a categorical hyperbolic seed for any sequence of right mutations µRj1 . . . µ

R
jt

(resp., to µLj1 . . . µ
L
jt(S))

2. µRk µ
L
k (S) = µLkµ

R
k (S) = S, for every k ∈ [1, n]

3. The categorical seed S together with the categorical seeds µR1 (S), . . . , µRn (S) give raise to

a hyperbolic category (respect., to µL1 (S), . . . , µLn(S)).
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Proof. For first part, we prove it for right mutations and for the left mutations is similar with

the obvious changes. The proof is divided into into three steps; first notice that µR1 , . . . , µ
R
n

are commutative on S, this statement is a consequence of the identity µRi µ
R
j (S) = µRj µ

R
i (S),

which is due to the commutativity of the following sets {ξi}ni=1, {θi}ni=1, and {yi}ni=1. This

remark reduces the proof into proving it only for the case ji = . . . = jt = k for some

k ∈ [1, n]. In the following we show part (1) for sequences of length one and two, and for

the sequences of any odd or even length the proof is quite similar.

Secondly, we show that µRk (S) is again a categorical seed. One can see that θ̂−1
(k) still

commutative.

Diagram (3.6.2) tells us that (θk(f) ◦ η−1
k )(m) = (η

′−1
k ◦ f)(m), ∀m ∈ M . Then we have

the following consecutive identities are satisfied

ξk · (θk(f) ◦ η−1
k )(m) = ξk · (η

′−1
k ◦ f)(m)

ξk · (θk(f)(η−1
k (m)) = ξk · (η

′−1
k (f(m))

θk(f)(ξk,θk(M)η
−1
k (m) = ξk,θk(M ′)(η

′−1
k (f(m)))

θk(f) ◦ (ξk,θk(M)η
−1
k ) = (ξk,θk(M ′) ◦ η

′−1
k ) ◦ f.

The last one says the following diagram is commutative

θk(M)

θk(f)
��

M
ξkθ(M)◦η−1

koo

f

��
θk(M

′) M ′

ξkθ(M′)◦η
′−1
k

oo

, (3.6.6)

which is equivalent to the commutativity of the following diagram

θk(M)

θk(f)

��

θ−1
k (θk(M))

ξk,θ(M)◦η−1
koo

θ−1(θk(f))
��

θk(M
′) θ−1

k (θk(M
′))

ξkθk(M′)◦η
′−1
k

oo

. (3.6.7)
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To prove (3.6.1) we have; for i 6= k no thing to prove. Now, let i = k

(ξk,θk(θjt ...θj1 (M)) ◦ η−1
k ) ◦ ξk,θ−1

k (θjt ...θj1 (θk(M))) = (ξk,θk(θjt ...θj1 (M)) ◦ η−1
k ) ◦ ξk,θjt ...θj1 (M)

= ξk,θk(θjt ...θj1 (M)) ◦ ξk,θk(θjt ...θj1 (M)) ◦ η−1
k

= ξk,θjt ...θj1θk(M) ◦ (ξk,θk(θjt ...θj1 (M)) ◦ η−1
k ).

The commutativity of θ̂−1
(k) is used for the first and the last equations and (3.6.2) for η−1

k for

the second. This finishes the proof for sequences of right mutations of length one.

Finally,the right mutations of length two, Altering µRk (S) by mutation in K-direction,

we get µRk µ
R
k (S) = (θ, ξ, C(k,2)), where objects of C(k,2) are given by the pairs (M, ξk,M ◦ (ηk ◦

ξk̂,θk(M))). In the following we show that (θ, ξ, C(k,2)) is a categorical hyperbolic seed.

First, we show (3.6.2) replacing ηk by ξθk,M ◦ (ηk ◦ ξk̂,θk(M))

(ξθk,M ′ ◦ (ηk ◦ ξk̂,θk(M ′))) ◦ ξk,θ(M ′) = ξθk,M ′ ◦ ηk

= ξθk,M ′ ◦ ηk ◦ ξk,θ(M ′) ◦ ξk̂,θk(M ′)

= ξθk,M ′ ◦ ξk,M ′ ◦ ηk ◦ ξk̂,θk(M ′)

= ξk,M ′ ◦ (ξθk,M ′ ◦ (ηk ◦ ξk̂,θk(M ′))).

For diagram (3.6.2), we have

f ◦ (ξθk,M ′ ◦ (ηk ◦ ξk̂,θk(M ′))) = ξθk,M ′ ◦ f ◦ (ηk ◦ ξk̂,θk(M ′))

= ξθk,M ′ ◦ η′k ◦ θk(f) ◦ ξk̂,θk(M ′)

= (ξθk,M ′ ◦ η′k ◦ ξk̂,θk(M ′)) ◦ θk(f).

To prove second part, the only thing need to be checked here is that; the categories µRk (µLk (C))

and µLk (µRk (C)) are equivalent. Actually, one can see that the category C will be reproduced

by applying µRk µ
L
k or µLkµ

R
k . which is straightforward to prove.

Here we prove part three for S and µR1 (S), . . . , µRn (S). Let S = (θ, ξ, C) be a categorical
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seed and consider the categorical seeds µRk (S), k ∈ [1, n]. We introduce the following full

subcategory C̃ of C with objects are the triples (γ,M, η), where γ = (γ1, . . . , γn) with

γk = ξk,θk(M) ◦ η−1
k , and M is an object of C. The conditions of the hyperbolic category are

immediate.

Theorem 3.6.5. Every categorical seed in H is equivalent to one of the categories R[yi, i ∈

[1, n]]−mod or R[xi, i ∈ [1, n]]−mod.

Proof. Straightforward.
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Chapter 4

Conclusion

The thesis consists of two main parts, first part comes in the first two chapters, and the

second part is chapter three. First part has to do with Fomin-Zelevinsky (commutative)

cluster algebras. In the second part we introduce a noncommutative cluster structure,

namely hyperbolic cluster algebra.

First chapter provides the reader with a short course on the basic notions and the

original motivations of the theory.

In the second chapter we introduce the group of the cluster automorphisms. The

main result of the chapter is giving three equivalent conditions describing the intersection

of the group of automorphism with the group of the field automorphisms which are induced

by mutations, (the exchange automorphisms). The theorem is proved for cluster algebras

satisfying the Fomin-Zelevinsky positivity conjecture. An open question comes out of this

chapter is; whether the positivity conjecture is a necessary condition for Theorem 2.2.3.

In Chapter 3 we introduce a non-commutative cluster structure on some hyperbolic

algebras. This class of algebras is studied and we provide some results on the cluster auto-

morphisms in this case. The cluster structure is been used to introduce representations for

Weyl algebras, similar representations can be defined for other hyperbolic algebras as well.
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Indecomposable and irreducible representations are described inside these representations.

Fomin-Zelevinsky finite type classification fails in this case. An open problem is to find

sufficient conditions for a hyperbolic cluster structure to be of finite type.

The last section of Chapter 3 is devoted to introduce a categorical version of the

hyperbolic cluster structure for the Weyl algebra case.
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