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Abstract

Let A,(S) be a coefficient free commutative cluster algebra over a field K. A cluster
automorphism is an element of Aut.x K (ty,--- ,t,) which leaves the set of all cluster vari-
ables, g, invariant. In Chapter 2, the group of all such automorphisms is studied in terms
of the orbits of the symmetric group action on the set of all seeds of the field K (tq,--- ,t,).

In Chapter 3, we set up for a new class of non-commutative algebras that carry a non-
commutative cluster structure. This structure is related naturally to some hyperbolic al-
gebras such as, Weyl Algebras, classical and quantized universal enveloping algebras of sl
and the quantum coordinate algebra of SL(2). The cluster structure gives rise to some com-
binatorial data, called cluster strings, which are used to introduce a class of representations
of Weyl algebras. Irreducible and indecomposable representations are also introduced from
the same data.

The last section of Chapter 3 is devoted to introduce a class of categories that carry a
hyperbolic cluster structure. Examples of these categories are the categories of representa-
tions of certain algebras such as Weyl algebras, the coordinate algebra of the Lie algebra

sly, and the quantum coordinate algebra of SL(2).
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Introduction

Cluster algebras were invented by S. Fomin, and A. Zelevinsky [1, 15 ,16, 17, 34]. A clus-
ter algebra is a commutative algebra with a distinguished set of generators called cluster
variables and particular type of relations called mutations. A quantum version was intro-
duced in [10] and [2]. The original motivation was to create an algebraic framework to
study total positivity and dual canonical basis in coordinate rings of certain semi simple
algebraic groups. It was inspired by the discovery of a connection between total positivity
and canonical basis due to G. Lusztig, [24].

First chapter of the thesis serves as a theory preliminaries. First section contains an
axiomatic definition, first examples and some basic structural properties of cluster algebras.
Second section is devoted to give a brief introduction to the quantum version of cluster
algebras, first introduced in [10] and [2]. Section 3 provides one of the original motivating
examples, namely the cluster structure on the algebra of functions of double Bruhat Cells.
Along with the example, we provide a machinery of producing totally positive basis for the
double Bruhat, more details are in [1], [13]. Section 4 of Chapter 1 is where we explain a
relation between the cluster algebras and the root systems which highlighting the relation
between the cluster theory and the heart of the Lie theory.

The second chapter’s main topic is answering the question, what does it mean for two
cluster algebras to be isomorphic. Among different ways of defining the isomorphisms in this
case, is to consider the algebra isomorphisms that reserve the set of cluster variables, which
is considered to be the core of the algebra. Thus we define a cluster algebra isomorphism as
an K-algebra isomorphism ¢ : A(S) — A(S’) such that ¢(xs) = xs. This definition does
not require that ¢ should be compatible with mutations. One could also define a cluster
isomorphism as an algebra isomorphism sending clusters to clusters or require the mutation
relations to be preserved. Under certain conditions, these different definitions are equivalent,

(Corollary 2.2.4).
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In Chapter 2, we initiate the study of the cluster automorphisms of a commutative coef-
ficient free cluster algebra, A, (.5). The cluster automorphisms are the field automorphisms
that leave xg invariant, (Definition 2.1.1). It turned out that, under certain conditions,
leaving g, invariant is equivalent to leaving the cluster structure, the set of all seeds of
A, (5), invariant, (Theorem 2.2.3). The group of all such automorphisms is called the clus-
ter group of A,(S). Our original motivation was to study the irreducible elements in any
cluster algebra through studying the cluster automorphisms. Despite we introduced and
studied the cluster automorphisms, we are still relatively far from this initial aim.

Also in the same chapter we study the action of the symmetric group on the set S,
of all seeds of the field F = K(ty,ts,...,t,). We show that in the simply-laced cluster
algebras, the orbits of such action are subsets of the orbits of the mutations group action
on S, (Theorem 2.1.4). However, the simply-laced hypothesis is necessary, (Example 2.1.5).

Every two seeds and a permutation group element define a field automorphism, which
we call an exchange automorphism. The subgroup of Aut.xF, generated by the set of all
exchange automorphisms, is called the exchange group of A, (S).

The main result of the second chapter, is providing a description for the intersection of
the cluster group and the exchange group for any coefficient free cluster algebra satisfying
the Fomin-Zelevinsky positivity conjecture. The description is in terms of the orbits of the
symmetric group action on S and the cluster pattern data (Theorem 2.2.3).

Hyperbolic algebras were first introduced by A. Rosenberg in [30], and his motivation
was to find a ring theoretical framework to study the representation theory of some impor-
tant small algebras such as the first Heisenberg algebra, Weyl algebra, and the universal
enveloping algebra of the Lie algebra sl(2). A complete list of small algebras and their
representations theory using the hyperbolic algebra as the framework can be found in [30].

The relations on the hyperbolic algebras give raise to a non-commutative cluster struc-
ture, which is first introduced in Chapter 3 of this thesis. We were motivated by the rich

combinatorial structure comes with any cluster structure, to be used to reclassify the rep-



resentations theory of hyperbolic algebras.

Chapter 3 works as a setting up for the cluster structure in the hyperbolic algebras, and
details are given for our two running examples Weyl algebra and the quantum coordinate
algebra of SL(2, k).

In the last decade, the age of the cluster algebras theory, the theory has witnessed a
remarkable growth due to the many links that have been discovered with a wide range of
subjects. Recently, D. Hernandez and B. Leclerc in [20] and [22], and Nakajima in [28] have
started using the rich cluster algebra structure to solve some classical representation theory
problems. Chapter 3 has to do with this trend. The main idea is, we show that a partial
relaxing of the commutativity relations of the frozen variables and cluster variables, extends
the theory to include some essential objects in representation theory, such as hyperbolic
algebras. We also, introduce and study non commutative seeds, that are different from the
quantum seeds introduced in [10], and [2]. We show that this type of seeds exists naturally
and the cluster algebras of these seeds are naturally related to some known hyperbolic alge-
bras. The non-commutativity is controlled by a ring (the ring of coefficients) automorphism
0, and in the case of § = id we get the Fomin and Zelevinsky cluster algebra.

Weyl algebras (algebras of differential operators with polynomial coefficients) among
others are one of the most important examples of hyperbolic algebras. They are essentially
relevant for the theory of infinite dimensional representations of Lie algebras. They appear as
primitive quotients of universal enveloping algebras of nilpotent Lie algebras, which reduces
the study of irreducible representations of nilpotent Lie algebras to study simple modules
over Weyl algebras. In the case of reductive Lie algebras, Weyl algebras also appear as
algebras of differential operators on (translations of) big Shubert cells. The algebra of
differential operator on the big Shubert cells is used to develop methods in non-commutative
geometry to reduce the study of the irreducible representations of reductive Lie algebras to
the study of simple modules over Weyl algebras. More generale hyperbolic algebras play a

similar role (via quantum D- modules on quantum flag varieties) for quantized enveloping
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algebras.

In the last section of Chapter 3, we introduce a class of categories that carry a hyperbolic

cluster structure. Examples of these categories are the categories of representations of Weyl
algebras, the coordinate algebra of the Lie algebra sls, and the quantum coordinate algebra
of SL(2).
Notations: Through out the first two chapters, K is a field and F = K(G)(m,...7,)
is the field of rational functions in n independent (commutative) variables over the filed
of fractions K = K(G) of the group ring K[G], where G is a free abelian group, written
multiplicatively, generated by the elements fi, ..., f,. We always denote (b;;) for the square
matrix B, (¢;;) for C, etc., and [1,n] ={1,2,...,n}.
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Chapter 1

Cluster Algebra Basics

1.1 Preliminaries
Most of the material of this section is based on [1] [2] [15] [16] [17] and [18].

Definitions 1.1.1. 1. A seed p of rank n in F is a pair (X, B) where
X = {x1,. .. %0, fosts -5 fn} With m = n+t such that f,,1,..., f,, generate the free
abelian group P and the elements of X = (z1,zs,...,2,) € F" form a transcendence
basis of F over the field of rational functions K = K (P), and B = (EZJ) is an m x
n integral matrix with rows labeled by the elements of X and columns labeled by

elements of X with the following two conditions

e B has full rank n

e The sub matrix B of B formed from the first n rows is skew-symmetrizable, i.e.,
d;by, = —diby; for some positive integers d; with i,k € [1,n]. The matrix B is

called the exchange matrix of p.

The elements of f,.1,..., fin are called the frozen variables, elements of X are called

cluster variables and m =t + n is called the size of p.

2. The diagram of the skew-symmetrizable matrix B = (b;;) is the weighted directed



graph, I'(B), with set of vertices [1,n] such that there is an edge from i to j if and

only if b;; > 0 and this edge is assigned the weight |b;;b;;|.

3. For a squire matrix B = (b;;) with integer entries, the Cartan counterpart of B is

denoted by A(B) = (a;;) where a;; are given by

2, if i =k,

“lby| it # k.
Definition 1.1.2 (Seed mutation). For each fixed k € {1,...,n}, and each given seed
(X, B) we define a new pair (X, B) = (X', B') by setting X’ = («, ..., ) with

, Ty, lf'l ;é k,
x’b = b]L b]L 7b]L 71;]L (1.1.2)
(Hbji>0 fj )(Hbji>0 Z; )+(Hbji<0 fj )(Hbﬁ<o T ifi=Fk

z4) )

and B’ = (bj;) with

Y —by;, if k€ {i,j}, (1.13)
= 1.
bij + WLW, otherwise.

The operation y is called a mutation in £—direction.

Remark 1.1.3. 1. One cansee that p = 1forallk € [1,n], and {x1,...,x; 1,2}, i1, -

is always a transcendence basis of F over K for all i € [1,n], and B’ is skew-

symmetrizable. So (ur(X), ur(B)) is again a new seed.

2. The following relation is an equivalent relation on S, the set of all seeds in F.

Vpi,p2 €S, p1~pr if and only if py = g, iy - - - s, (p1) (1.1.4)

for some sequence of mutations p;,, fli,, - - -, i, % € [1,n],j € [1,4]

In this case f;, i, - - - i, (p) is called mutation-equivalent to p.
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Definition 1.1.4 (Distinguished seeds). A seed p = (X, B) is called a distinguished seed

if the exchange matrix B satisfies the following two conditions

bz]bzk Z 0, \4 ’i,j,k’ € [1,71], (115)
o the Cartan counterpart A(B) = (a;;) is of finite type as a Cartan matrix.
Furthermore, the type of the seed p is determined by the Cartan-Killing type of A(B).

Definition 1.1.5 (Geometric cluster algebra). Fix p = (X, B) € S. Let S denote the
mutation equivalence class of p, and Xs be the set of all cluster variables in S, i.e., the union
of all clusters of S. The cluster algebra A,,(.S) of rank n, associated to the initial geometric
seed p = (X, B) (of size m = n +t) is defined to be the Z[P]—subalgebra of F generated by
Xg that is

A, (S) :=Z[P|[Xs] C F (1.1.6)

Definition 1.1.6 (Cluster pattern and Cluster structure of A,(S) [17]). 1. LetT, =
(V, E) be the n-regular tree, where V is the set of vertices and F is the edges. The
cluster pattern T, (S) of A,(S) is define to be the triple (T,, f,1) with f:V — S and

[ E — [1,n] are two maps such that for e € E connecting v and v" with I(e) = k, we

have i (f(v)) = f(v").

2. The cluster structure of A,,(S) is the n-regular graph with set of vertices S and edges

/

labeled by [1,n] such that if k& € [1,n] connecting v and v’, then u(v) = v’

Remark 1.1.7. One can see that, the cluster pattern and the cluster structure of A4, (5)

can be completely determined by any seed in S.

Definition 1.1.8. A cluster algebra A, (S) is called of finite type if S is a finite set. Equiv-

alently if X is a finite set.



The details for the following two theorems are available in [16].

Theorem 1.1.9. (Finite type classification). For a cluster algebra A, (S), the following

are equivalent:
o A,(S) is of finite type

o for every seed ()?,E) in S, the entries of the exchange matrix B = (b;;) satisfy the

inequalities |b;;b;;| <3, for alli,j € [1,n]
e S contains a distinguished seed.

In such case, The cluster type of A, (S) is the same as the Cartan-Killing type of the Cartan

counter part the distinguished seed.

Theorem 1.1.10. Every finite type Cartan matriz corresponds to one and only one, finite

type cluster algebra, up to a field automorphism that is restricted to algebra isomorphism.

Remark 1.1.11 ([34]). A seed p = (X,B) € S, with X = (2,2, ...,2,), is said to be
acyclic if there is a linear ordering of {1,2,---n} such that b;; > 0 for all ¢ < j. In this case

A, (9) is called an acyclic cluster algebra, and the following is satisfied

A (S) = Z[P||xg, x); k € [1,n]], (1.1.7)
and A,,(S) is finitely generated as an algebra over Z[P].

Theorem 1.1.12. (Laurent Phenomenon ). The cluster algebra A,(S) is contained in
the integral ring of Laurent polynomials Z[P|[X*], for any cluster X, i.e.,
A, (S) C ZIP|[XTF] = Z[P|[a5, 25, . .., 2] (1.1.8)

More precisely, every non zero element, can be uniquely written as

P(zy,x9,...,2,)

_ 1.1.9
Y AR el ( )
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where (a1, ag,...,ap) € Z", and P(x1,xq,...,2,) is in Z[P|[xy, za, ..., x,], which is not

diwmsible by any cluster variables x1,xo, ..., xy.

Conjecture 1.1.13. Fomin-Zelevinsky Positivity Conjecture. For any cluster algebra
A, (S) if y is a cluster variable, then the polynomial P(z1, s, ..., 2,) (appeared in (1.1.9))
has nonnegative integer coefficients.

The conjecture has been proved in many cases including classical type cluster algebras
[16], rank two affine cluster algebras as in [33], acyclic cluster algebra [14], cluster algebras

arising from spaces [27], and more.

Example 1.1.14. Cluster algebras coming from polygon triangulations. From the
above definition of cluster algebra, one can see that starting with a skew symmetrizable
matrix we can associate a transcendence basis to get a seed and use this seed to generate
a cluster algebra using mutations. So, having a method of generating skew symmetrizable
matrices is equivalent to having a method of generating cluster algebras. One way to gener-
ate skew symmetrizable matrices is to associate a matrix to each non crossing triangulations
of the polygon, as we see in the following.

Let T be a fixed triangulation of the (n + 3)-gone P,,. Label all the diagonals with
numbers starting with the internal diagonals, i.e., the labels of the internal diagonals are
from the set {1,...,n} and the edges take labels from {n+1,...,2n+3}. Let B(T) = (bij)
be the adjacent matrix associated to the triangulation T. We define B (T)(b;;) as follows;
it has exactly m = 2n + 3 rows and n columns, the rows are associated to all diagonals
(internals and edges) and the columns associates to diagonals only. So, every diagonal
encodes one cluster variable and the edges correspond to the frozen variables. Consider the

following triangulation of the hexagon, and the entries of B (T)(bi;) in this case are given by



+1, if 7 and j share one vertex such that ¢ following j clockwise 4»,

bij == 40, if 7+ and j do not show up in some triangle , (1.1.10)

—1, if ¢ and j share one vertex such that ¢ following j counterclockwise 4

The above triangulation for the hexagon corresponds to the seed ()? , B) where

X = (21,22, 3, fa, f5, f6, f7. fs, fo) and the matrix B given by



0 -1 0
1 0 1
0 -1 0
1 0 0
B=]1 -1 0 0 : (1.1.11)
0 1 -1
0 0 1
0O 0 -1
-1 1 0

1.2 Quantum cluster algebra

All the material of this subsection are quoted from [2], [10]

Definition 1.2.1. Compatible pairs Let B and X be as in definition 1.1.1, and A = (\;;)
be a skew symmetric m X m integral matrix with row and columns labeled by the elements

of X. The pair (A, B) is said to be a compatible pair if

m d;, ifi=jy,
Z brj ki = (1.2.1)
k=1 0, ifi#k
Definition 1.2.2. Based quantum tours, toric frames and quantum seeds.
1. Let L be a lattice of rank m, with skew symmetric bilinear form A : L x L — Z. Let
q be a formal variable, and Z[qi%] C Q(q%) be the ring Laurent polynomials in q%.
The based quantum torus associated with L is the Z[¢*2]-algebra 7 = 7(A) with a

Z[q*2]-basis {X¢ : e € L} and multiplication given by

A(e

xXex! = ¢ # x| 20 =1 and ()t =a7¢ for e f€L. (1.2.2)

7



Let F be the skew-field of fractions of 7, then one can see that d — d - 17! is an

embedding of 7 in F.

2. A toric frame in F is a mapping M : Z™ — F*, given by M(c) = A\(X7?), for some X

an F-automorphism, and v : Z™ — L is an isomorphism of lattices.

Note that the elements M(c) form a Z[g*2]-basis of an isomorphic copy A(7) of the

based quantum torus 7.

3. A quantum seed is a pair (M, E), where M is a toric frame in [, and Bisanm x n

integral matrix with rows labeled by [1, m] and columns labeled by an n-element subset

ex of [1,m], such that (A, E) is a compatible pair, where A,; is the bilinear form

obtained from A by transferring the form A from L by the lattice isomorphism .

Definition 1.2.3. Let (M, E) be a quantum seed. We generate new quantum seeds by

applying mutations on (M, E) as follows. Fix k € ex, and € € {—1,1}. We define (M) =

&1

M': Z™ — F* is given by; for the integral column vector ¢ = : ,

Cm

/ _ S Ck k / oA a—1

W@ =3 (F) , MEer ), M- =)
qT

where

(r) () (g e

(P —t=P)--- (t—t71) ’

€ij = § —1, iti=j==k>

mazx (0, —eb;;) ifi#j=k

\

and the vector b* is the k-th column of B. Mutation on B is defined as before.

(1.2.3)



Definition 1.2.4. Let (M, E) be a quantum seed, and let X = (x1...,2y), where x; =
M (e;), {e;}7 is a basis of Z™. The set of cluster variables of (M, B) is X = {z;;7 € ex}. Let
C=X-X , and [P’ be the free group generated by elements of C', written multiplicatively.
The quantum cluster algebra is defined to be the Z[qi%][]}’” |-subalgebra of F generated by
all the cluster variables in every quantum seed that obtain from (M, E) by applying some

sequence of mutations.

1.3 Cluster algebras and total positivity

The classical theory of total positivity was started in the third decade of the the twentieth
century by many mathematicians among whom Gantmacher, Kerin, and Schoenberg and
they basically were studying the total positivity in the matrix groups. In [24] G. Lusztig
introduced the totally non-negative variety G>¢ and studied the structure of total non-
negative elements inside the unipotent radical N of a Borel subgroup B in any reductive
group G, he was motivated by his discovery of connections between total positivity and his
theory of canonical basis for quantum groups. In [1], and [13] A. Zelevinsky, S. Fomin, and
A. Berenstein provided the double Bruhat cells as a natural framework to study the total
positivity in any reductive group using the double Bruht decomposition of G into a disjoint
union of double Bruhat cells. In their study, they provided an algebraic framework for the
total positivity tests which are regular functions on the double Bruhat cells, this framework
is what they later called cluster algebras.

All results of this section are true for every reductive algebraic group. However, some
statements are written for matrix algebraic groups (subgroups of the general linear group
GL,(C)). Our running example is SL,(C).

Let g be a complex semisimple Lie algebra with a Cartan decomposition g =n_®&HEn,
with respect to a set of Chevalley generators {e;},{h;}, and {f;},i=1,...,r, forn_, b, and

n, respectively. Let ® C bh* be the root system of g with simple roots {aq,...,a.}. The



Cartan matrix of the root system @ is given by A = (a;;) = (a;(h;)). Denote the weight
lattice by P = {a € b* : a(h;) € Z,i € [1,r]}. The fundamental weights {wy,...,w,} given
by wi(h;) = d;;, form a Z-basis for P. Let G be the Lie group with Lie algebra g and N, N_
and H be closed subgroups of G with Lie algebras n,n_ and b respectively. Every element
of H can be written as exp(h) for some h € b, which gives rise to a multiplicative character

for the group H given by v : H — C* where y(exp(h)) = exp(v(h)),h € H.

Let B and B_ be two opposite Borel subgroups of G with unipotent radicals N and N_
respectively, that is B = HN,B_. = HN_ and H = B N B_ be the maximal torus. The
Weyl group is defined by W = Normg(H)/H. W acts on H by w(h) = w™'hw which gives
rise to an action of the weyl group W on the weight lattice P as follows; For a € Hyw € W
and v € P, w(y)(a) = v(w(a)) = y(w taw). We identify W with the group of all linear
transformations of h* which is a Coxeter group generated by simple reflections sq, ..., s,
where s; @ b* — b* with s;(y) = v — v(hi)ag, i = 1,...,r. A reduced word w € W is
a sequence of indices i = (iy,...,4,) of shortest possible length such that w = s;, ---s;, .
In this case we say the length of w is m and we write [(w) = m. Consider the two sets
of elements {5y,...,5,} and {5;,...,5,} from G given by §; = exp(—e;) exp(f;) exp(—e;),

5; = exp(e;) exp(—fi) exp(e;). These elements satisfy the following relations

1.

5,55, -+ = 35;5,5;--- (same equations are satisfied for s;) (1.3.1)

Therefore for any w € W we can introduce the elements w € Normg(H) with the equation
uv = uv whenever [(uv) = I(u) + I(v).

Let Go = N_.HN = {x € G: x = x_xqxy for some x_ € N_ xg € H,x, € N}. For a
fundamental weight w and a regular function V on G, if the restriction of V on Gy given by

V(x) = w(zp), then we write V = V¥.

10



Definition 1.3.1. For u,v € W and w; a fundamental weight the generalized minor

Ay, ww; 18 the regular function on G whose given on G by
P o, () = V¥ (u-120). (1.3.3)
Remark 1.3.2. The action of the generalized minors on G does not depend on the particular

choice of the reduced word of v and v but depends on the weights uw; and vw;

Important special case. Let G = SL,;; be the special linear subgroup of GL,. In
this case, B is the subgroup of G of upper triangle matrices, B_ is the subgroup of of lower
triangle matrices and H is the subgroup of diagonal matrices, /N is the subgroup of upper
triangle matrices with all diagonal entries equal one, and N_ is the subgroup of lower triangle
matrices with diagonal entries are all ones.

A generalized minor on G is a regular function defined by sending each element x in G
to some determinant of a sub matrix of x, we denote the minors by A; ; with I, J being
subsets of [1,n] such that I and J have same cardinality, where I refers to rows and J to
columns. So, for example the minor Ajs4 934 is the determinant of the sub matrix with rows

1,2,4 and columns 2, 3, 4.

The Weyl group of the the special linear group SL,.; is identified with the symmetric
group &,4. For a fixed element o € &, the pair (i,7) € [1,7 + 1] x [1,7+ 1] is said to be
an inversion of ¢ if i < j and o(i) > o(j). The length of o is defined to be the number of

its inversions, and is denoted by (o).

The symmetric group &,, acts on the general linear group G L,, as follows; a permutation

element o acts on a matrix by permuting the rows and the columns of x simultaneously.

Definition 1.3.3. Let GG be a reductive group, and let H be the maximal torus of G. We

set Hvg :={a € H : y(a) is a positive real number,V weight v € P}. An element z of G is
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said to be totally non-negative if and only if x is an element of the multiplicative semigroup

G>o generated by H-o U {exp(te;),exp(tf;) : t is any positive real number,i € [1,r]}

Definition 1.3.4. A matrix of real entries B is totally positive (resp., totally nonnegative)
if all its minors are positive (resp., nonnegative). We use the term TP for totally positive

and TNN for totally non-negative.

Remark 1.3.5. In [1] the above two definitions of total non-negativity coincides in the case

of G = SL,(C).

Definition 1.3.6. Let G be a subgroup of G. A subset A(G) of the algebra of regular
functions of G is said to be a total positivity test (resp., total non-non negativity test) for G

if and only if
z € G is TP (resp., TNN) if and only if f(z) > 0 (resp., f(x) > 0) Vf € A(G) (1.3.4)

Question 1.3.7. For a given subgroup (or subset) of group G, is there a machinery to
produce total positivity tests and what could be an algebraic frame work to study these

tests?

In fact, the answer for this question is positive in many cases even for some non matrix
groups, and it has to do with introducing the cluster algebras theory. In the following we

will provide such machinery for double Bruhat cells, as an example.

Question 1.3.8. Why should we care about the positivity in double Bruhat cells?

An answer for this question in the case of GG,,, the general linear group, comes from the

following definition and theorem

Definition 1.3.9. For a Weyl group element u, the subsets BuB and B_uB_ of G are
called the Bruhat cells with respect to B and B_ respectively. For two elements of the Wyel

group v and v, the double Bruhat cell with respect to B and B_ in G are given by

G*" = BuBN B_vB_. (1.3.5)
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In the case of GL,, the elements u and v would be permutations in r + 1 letters (r is the

dimension of b).
Theorem 1.3.10. Double Bruhat Cells description and Bruhat decompositions.
1. A matriz x € BuB if and only if the following two conditions are satisfied
o Ay #0 forie[l,n—1];
o Ayi-1ui)ng = 0 for all (i,7) such that 1 <i < j <n and u(i) < u(j).

2. The group G is the disjoint union of all double Bruhat cells, that is it has the following

Bruhat decompositions, with respect to B and B_:

G=|JBuB= ) BvB_. (1.3.6)

ueW veW
Remark 1.3.11. The transpose map (—)* : GL, — GL, given by z — 27 provides us
with a similar description for the other Bruhat cell B_vB_ as the one provided above for
BwB in the above theorem. Noticing that the transpose map sends BwB into Bw~'B and

each minor Ay ; to Ajy.

Example 1.3.12. Let wy be the longest element in W. Then G™"° is the open double

Bruhat cell given by:

G = {x € G5 Dw, wow; (T) # 0, Dpyu; ; () # 0, for all i € [1,7]}. (1.3.7)
For instance, consider the following two examples

1. Let G = SLy. So, r = 1 and wy is the transpose (12). The double Bruhat cell in this

case is given by

SLYMD = {4 € SLy: Da(a) # 0, Sy, (x) # 0}
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2. Let G = SL3. Here, r = 2 and wy = (13) the permutation that fixes 2 and permutes

1 and 3. Then, we have

SLI) — {0 € SLy: Ays(x) #0, Araga(x) # 0, Agy(x) # 0, Agg1a(x) # 0}

Theorem 1.3.13. Double Bruhat cell G*" is isomorphic (as an algebraic variety) to a

Zarisky open subset of an affine space CHOHWHT “where 1 is the rank of G.

Definition 1.3.14. We define the totally positive part of G*" by setting
Gi’g =G"" N GZO‘ (138)

Theorem 1.3.15. The totally positive part of the open double Bruhat cell is the totally

positive variety:

G = G, (1.3.9)

So, studying the total positivity of G is reduced to studding the total positivity of the

double Bruhat cell at the longest element of W.

Definition 1.3.16. A Totally positive basis for G*" is a collection of regular functions

F=A{fi,..., fm} C C[G*"] with the following properties:

1. The functions fi, ..., f,, are algebraically independent and generate the field of ratio-

nal functions C(G™"); in particular, m = r + l(u) + I(v).

2. The map (fi1,..., fm) : G»Y — C™ restricts to a biregular isomorphism U(F) —

(Cxo)™, where
UF)={xe G": fy(xr) #0 forall ke [l,m]}. (1.3.10)

3. The map (f1,..., fm) : G*" — C™ restricts to an isomorphism G¥; — RZ,
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Corollary 1.3.17. Property three in the previous theorem implies that every totally positive

basis of G** s a totally positive test.

Theorem 1.3.18. Fach reduced word i for (u,v) € W x W gives rise to a totally positive

basis F; consisting of generalized minors for G given as follows:

F={A, 5 :kell,m]}; (1.3.11)

here m = r + l(u) + l(v), and g, 0, € P are defined as follows; i can be represented as
a sequence of indices (iy,... 1) from the set {—1,...,—r,1,...,7r} such that i; = j for
jellr], and s, ---5_;, =u, and s; ., --8;, = v, with the convention s_; = 1 for

m m

i € [1,r]. Now we have the assignments

Ve = S—ip ** Si Wi Ok = Sip """ Sip 1 Wi (1.3.12)
Example 1.3.19. Let G = SL3(C), and let u = v = wy = $15251 = S25189 be the order-
reversing permutation (the element of maximal length in the symmetric group W = &3).
Take i = (1,2,1,2,1,—1,—2, —1).
Then F; = {13, D223, D12, Doz, D11, DNag, Nas o, Ngq}. (The minors on the right-hand
side are listed in the natural order, i.e., fi = Ay 3,..., fs = As1). One can see {f1,..., fs}
provides a total positivity test in SLs.
What are the relations between them and how they related to the structure of C[G*"]?.

This what we will discuss in the rest of this subsection.

Theorem 1.3.20. For every reduced word i for (u,v) € W x W, we associate an m x n

integral matriz B(i) = (by;), such that the following are true

1. The pair (F,, B()) is a seed in the field of fractions C(G™")

2. For every k an exchangeable index in [1,m], the mutation in the k-direction on the

totally positive test F; given by ux(Fi) = Fi — {fi} N {fi} € C[G™"], where

15



bik —bik
) i + . 7
k

1s again a totally positive basis for G*™".

Definition 1.3.21. For each reduced word i for (u,v) € W x W here is how we build the
matrix B(i) in general.

First step: the directed graph I'(i). Vertices of I'(i) is theset Iy = {—1,...,—r 1,...,1(u)+
[(v)}. Arrows are defined based on the following rules; For & € [1,7] U [1,1(u) + I(v)], we
denote by kT is the smallest index [ such that & < [ and |i)| = |i|; if |ig] # |is] for k <

[, then we set kT = (u) 4+ (v) + 1. Two vertices k and [, with k < [ are connected by an
edge if and only if either k or [ (or both) are exchangeable plus one of the following three

conditions is satisfied
1. l=Fk".
2. L <kt <% a5, <0, and (i) = e(ig+).
3. 1<t < kT au, ) <0, and (i) = —e(ig+).

The edges coming from condition (1) are called horizontal and those from conditions (2)
and (3) are called inclined. To determine the direction of any edge we follow the following
rule; A horizontal (resp., to inclined) edge between k and [ is directed from k to [ if and
only if £(i) = +1) (with respect to £(i;) = —1). The directed graph I'(i) provides us with
the signs of B(i).

Second step: The entries of the matrix B(i). The rows of B(i) are labeled by the set
of indices Iy of T'(i) and the columns are labeled by the set of i-exchangeable indices. An

entry by; is determined by the following rules

1. by # 0 if and only if there is an edge of I'(i) connecting k and I; by > 0 (respectively

to by < 0) if this edge is directed from k to [ (respectively to from [ to k);
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2. If k and [ are connected by an edge of I'(i), then

b 1, if |ix] = |&] (k and [ are connected by a horizontal edge),
b =
—aji | jal, i |ig] # |4 (K and [ are connected by a inclined edge).
(1.3.14)

Proposition 1.3.22. The matriz B = B(i) has a full rank n. Its principal part B = B(i)

18 skew-symmetrizable.

Remark 1.3.23. The matrix B can be recovered from the reduced i as follows.
Let k € —[1,7] U [1,{(u) + l(v)] and | be an exchange vertex. Let p = max(k,[) and
g = min(k*, ™). Then

(
—sgn(k — 1)e(iyp), if p=gq,
b = § —sgn(k — De(ip)au ), itp<gq and e(iy)e(iy)(k —1)(k= —1*) > 0. (1.3.15)
0, otherwise.
\

Example 1.3.24. With the same data of example 1.3.19 we will introduce the matrix B(i)
for some choice of i. We have r = 2, v = v = wy. Then m = l(u) + I(v) + 2 = 8, and
n = 4. Let wy = s18981, where s;,7 = 1,2,3 are the simple reflections. For simplicity we
write s; as just j, so wyp = 121. The graph f(t) has exactly 8 vertices corresponding to
{-2,-1,1,2,3,4,5,6} which has indices (i_,7_1,%_1,7 9,7 1,11,12,71) in order, i.e., i_y =

—2,1_1 = —1, etc. To find the set of exchangeable vertices, we need the following

—ot =92 1T =1,1"T=32"=53"=44"=65"=7, and 6" =7.

Then by definition the set of i—exchangeable vertices is {1,2, 3,4}, so n = 4. Based on the

rules of edges we must have two strips of horizontal edges one for the vertices {—2,2,5}
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and the other one is for the vertices {—1,1,3,4,6}. The inclined edges are between the
two stripes as follows; each of the following pairs of vertices are connected by an inclined
edge {—2,1},{2,1},{2,3},{2,4}, and {5,4}. The directions of the edges are determined as

follows form k to [ if k£ < [. So, The graph f(t) fori=(1,2,1,—1,—2,—1) is as follows

5 Figure 1.1. T(i).
NN

_2égh-
1

. . 'y 6
The subgraph connecting the underlined vertices of f(i), the i-exchangeable vertices, corre-

sponding to the principle part B = B(i). One can see B is sign-skew-symmetric.

11 0 0
1 0 0 0
0 -1 1 0
B() = S (1.3.16)
11 0 -1
0 -1 1 0
0 1 0 -1
0 0 0 1

So, the picture is completed and we have the second half of the geometric seed ¥(i) =
(F(i), B(i)). Following the same order the elements given in example 1.2.2 for F(i), we can,
for simplicity, we write F(i) = {x_o,2_1, 21, T2, x3, 24, T5, 6 }. The set of frozen variables
Fr={x_y9,x_1, 75,26}, hence the set of cluster variables is F'(i) — F'r = {x1, 22, x3,24}. On
can see the sub matrix corresponding to the i-exchangeable vertices can be represented by

the quiver
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(1.3.17)

N

Applying mutation at vertex 3 we get;

4 4 (1.3.18)

which is an acyclic quiver. Then the cluster algebra A; associated with the seed X(i) is

acyclic cluster algebra and hence it is finitely generated with set of generators

F(i) U {wy, 7, w3, 24},

where 2, x5, x5, o) are elements of the field of fractions of the double Bruhat cell G*"°.
The quiver (1.1.17) can be used to write the relations that determine the new variables

xh i =1,2,3,4, as follows

/

T1x7 = T_1T2 + X_2x3
Toly = T_oX3T5+ T1T4
T3Ty = T1T4+ To

T4Ty = ToTe + T3Ts.

These relations coincide with the mutations of (i) at the directions 1, 2, 3 and 4 respectively.

In the following for each double reduced word i of any two elements u and v of the Weyl
group W, we introduce a cluster of generalized minors that form with the matrix B(i) a

seed in the field C(G) which generates a cluster algebra that is isomorphic the coordinate

ring of the double Bruhat cell C[G*"].
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Consider the following notation introduced by A. Bernstein, S. Fomin and A. Zelevinsky in

[1]. For k € [1,1(u) + I(v)] we denote
uge=ugki) = [ s (1.3.19)

Vsg = usp(i) = 11 Sl (1.3.20)
I=l(u)+1l(v),....k+1;e(4)=7+1

Notice that; the index [ in the first equation above is increasing and decreasing in the second

one. For k € —[1,7] we have u<y = e and vs, = v !, For k € —[1,7]U[1,l(u) + [(v)] we set

Ak,i) = A (1.3.21)

U<k HV>EW iy | ”
The cluster is F/(1) = { Doy, ompwp, 2k € —[1, 7] U1, () +1(v)]}-

Remark 1.3.25. The above technique of obtaining the cluster F'(i) is a deferent way to

obtain the TP-basis provided from theorem 1.1.33.

Example 1.3.26. We continue with our running example SL3 showing how to calculate
the cluster variables of the cluster F'(i) using the above technique.
Herei=(-2,—1,1,2,1,—1,—2,—1). So, by the above definition of u<; and v-j we have

the following table:

koo u ek Ukl | Vsl
—2 -2 e wo [12] 23]
S B wy n B
11 ¢ sisy = (231)  [1] 2]
2 2 e s1=(12)  [12] [12] (1.3.22)
3 1 e e 1] 1]
4 -1 s =(12) e 2] 1]
5 —2 sisy = (231) e 23] [12]
6 —1 wy=(13) e 3] 1]
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USng the above table the cluster variables are A12723, AL?” ALQ, A12’12, Al,la AQ,I; A23712

and Ag}l with the frozen cluster variables {A12,237 Al’g, A23,127 Ai’),l}-
The details of the following theorem can be found in [1].

Theorem 1.3.27. Fiz a reduced word i of a pair (u,v) € W x W. Consider the field
Sc=3F®C. Let Ac = A; ® C be the complezification of the cluster algebra associated to i.

The isomorphism of fields ¢ : §¢ — C(G™") given by
o(x) = A(k,i) forall ke —[1,r]U[L,1(u) + l(v)] (1.3.23)

restricts to an isomorphism of algebras Aic — C[G™"].

1.4 Cluster algebras and root systems

Definitions 1.4.1. 1. Cluster monomaials and full cluster monomszals. The mono-
mial m = zlﬁ1 oo 2Bn By € Zso,i € [1,n] is a cluster monomial if and only if (zy, ..., 2,)

is a cluster in some seed in the cluster pattern. In the case of 3; € Z+o, Vi € [1,n], the

monomial m is called a full cluster monomaal.

2. Positive elements. An element y of the cluster algebra A, is said to be a positive

element if it satisfies

y € ﬂ ZZ()[Xil].

XeSe

Where S¢ is the set of all clusters of A,, and Zso[X*!] is the set of all Laurent poly-

nomials in the cluster variables from the cluster X, with positive integral coefficients.

3. indecomposable element. An indecomposable element in A,, is any element that
can not be written as a sum of two positive elements. (In some literatures they are

called atomic elements)
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4. Denominator vector with respect to a given cluster. From Laurent phe-

nomenon we have that every cluster variable y can be uniquely written as

P(xy,...,x,)

y=—n (1.4.1)

where P(zy,...,x,) € Zlxy,...,x,] which is not divisible by any cluster variable
x1...T,. We denote d(y) = (di,...,d,), and call the integer vector d(y) the denom-
inator vector of y with respect to the cluster X = (zy,...,x,). For instance, the
elements of X have denominator vectors ix(z;) = —e; , dx(z}) = e;,j € [1,n],
where ey, ..., e, are the standard basis vectors in Z". One can see that the map y — d(y)

has the following valuation property dx (yz) = 0x(y) + dx(2).

Let p = (X, B) be a distinguished seed with Cartan matrix A = A(B) and ® be the root
system associated to A , and let @) be the root lattice generated by ®. We identify @) with
Z" using the basis A = {ay, ..., a,,} of simple roots in ®. Let ®-q be the set of all positive

roots associated to A.
Theorem 1.4.2. [16, 34].

1. Let p = (X, B) be a distinguished seed. Then the denominator vector §x, provides a

bijection between the set of the cluster variables x and the set
q)z,l - (I)>0 U (-A) (142)

of almost positive roots.
This parametrization also gives a bijection between the set of all cluster monomials

and the root lattice Q) = 7.

2. For any a = cioq + ... + cpay, € Oy, there is a unique cluster variable x[a] such

that
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P.(x1,...,2,)

zlo) = (1.4.3)

Where P, is a polynomial in x4, ..., x, with nonzero constant term; furthermore, any

cluster variable is of this form.

Remark 1.4.3. Fomin-Zelevinsky positivity conjecture is equivalent to say "every cluster

variable is a positive element”.
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Chapter 2

Cluster Automorphisms

In this chapter we introduce and study the notion of cluster automorphisms in coefficient
free cluster algebras. We study them in terms of the orbits of the symmetric group action

on the set of all seeds.

2.1 Cluster groups

Definition 2.1.1. Let Autg(F) be the automorphism group of F over K. An automor-
phism ¢ € Autg(F) is called a cluster isomorphism of cluster algebras A,,(S) and B, (S")
over F, if ¢ sends every cluster variable in A,,(.S) to a cluster variable in B,(5").

In particular, ¢ € Autx(F) is called a cluster automorphism of A,(5), if it leaves X
invariant.

The subgroup of Auty(F) of all cluster automorphisms of A,,(S) is called the cluster
group of A, (S) and is denoted by C,,(5).

Remarks 2.1.2. 1. One can see that any cluster automorphism of a cluster algebra
A, (S) is an algebra automorphism of A,(S) over K, ie. C,(S) is a subgroup of
Aut g A, (S), where Aut i A, (S) denotes the automorphism group of the algebra A,,(S)

over K.

2. If ¢ : A, (S) — B, (9') is a cluster isomorphism, then ¢ induces a group isomorphism
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between C,(S5), and C,(S"). To see this fact, we define the group isomorphism by
7 Cn(S) — Cu(9"), given by ¢ — ¢, where p(y) = ¥(¢p(v"(y))) for y a cluster

variable in B,,(S’). A routine check shows that 7 is a group isomorphism.

Let 0 € &, (a symmetric group element), and T = (t,ts,...,t,) € F such that
{t1,ta,...,t,} is a transcendence basis of F over K. Let or be a linear automorphism

of F over K given as follows; For f = f(t1,ta,...t,) € F

or(f) == f(teq), to@), - - - tom))- (2.1.1)

Using o7, we will introduce an action of the symmetric group &,, on the set S of all

seeds of F.

Definition 2.1.3. Let X = (1, 9,...x,) be a fixed cluster, and let o € ¥,,. For any
seed p = (Y, B) € S, where Y = (y1,%2...y,), and B = (b;;). The Laurent Phenomenon
+

+ + . .
1. i = i 1, goeedin 5 g .C. i
(Theorem 1.1.12) guarantees that y vi(x1, o, ... xy) € ZlaT, x5 rr] (ie. y; is a

Laurent polynomial in {zy,xs,...x,}, for each i € [1,n]). We define ox(p), as follows;

ox(p) = (ox(Y),0(B)), (2.1.2)

where ox(Y) = (ox(y1), 0x(Y2),-- -, 0x(¥n)), 0(B) := (boi)o(j)) and ox(y;), for i € [1,n], is

as defined in (2.1.1). We write o(p) instead of ox(p) if there is no chance of confusion.

Before stating the next theorem, we need to develop some notations.
For a seed p = (Y, B), the neighborhood of a cluster variable y; is defined to be the subset
of {y1,y2, -+ ,yn} of the cluster variables y;, with b;; # 0, and is denoted by N,(y;). For
every integral skew-symmetric matrix, B = (b;;), we assign a quiver ). We define Qp =
(Q1B, Qap, hd, tl), where Q15 denotes the vertices, Qo5 denotes the arrows, and hd and tl
refer to the head and tail maps respectively. We set Q15 to be the set {1,...,n} and for
the arrows, there is a number of arrows equals b;; from ¢ to j if and only if b;; > 0.

The mutation operation of the matrix B can be translated to that on the associated

quiver. Let p(Qp) denote the mutation at k of Q. First, all the arrows incident to k in Qp
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are reversed in p(Qp). Second, for each pair (a,b) of arrows in Qp with hd(a) = ti(b) = k
in Qp, add an arrow ba with tl(ba) = tl(a) and hd(ba) = hd(b). Last step, remove a number
of arrows from ¢ to j equals the number of arrows from j to ¢ added from the second step.

In other words, remove all the two cycles between ¢ and j.

Theorem 2.1.4. Let p = (X, B) be a simply-laced seed in F, i.e., bj; € {0,—1,1},Vi,j €

[1,n]. Then for any o € &, ox(p) is mutation-equivalent to p.

Proof. Leti,7 € {1,2,...,n}such that z; € N,(z;). We will prove that (X, B) is mutation-
equivalent to (X, B), for every transposition o € &,,, that sends every k € {1,2,...,n} to

itself except ¢ and j. More precisely

o(X, B) = pjpppipes (X, B)) = papej i ps (X, B)). (2.1.3)

The statement of the theorem is a direct consequence of (2.1.3), since the symmetric group
is generated by transpositions.

Sketch of proof of identities (2.1.3): Note that, each simply-laced sign skew symmetric
matrix must be skew symmetric. So, it is associated to a quiver, which reduces the proof of
(2.1.3) to be on (X, @Qp) instead.

In the following we provide a proof for the identity (2.1.3) in some cases as examples. The

proof of all other cases follow similarly:

(i) Seeds of A, type
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We provide a proof for As-type, a general A, -type case is quite similar,

To + 1
(($1,$2,$3),'1—>'2—>'3) & (( 21‘ 7$2,x3),'1<—'2—>'3)
1
To+1 Zoxs+ 23+ 2
£ 2 ) 2 ? 17$3)7'1—>'2<—'3)
g T1T2
T3+ 1 Tox3+ 13+ T
Iy 3 1’ 2Z3 3 17333)’.1(_‘2(_‘3)
i) T1T2
T3+ T
g (( ,1’1,1‘3), < '3

1
R
2
S (w71, 73),70 = 1 — -3)
(ii) For the exchange inside the n-cycles

We prove it for A3—type, a general n-cycle is quite similar:

Toxg + 1
-3 % ((Lax27x3)7 '1*'3)

. %

2

((xla T2, .%'3),

1 1
1z ((mxg—l— ’$3($2$3+ >+$1,x3), 1)

€ T1T2 T/

1
1y ((x3+x17m3(w2$3+ )+x17x3)7 <2 g)

X2 T1T2 l/

(remark that; the number 2 written over the arrows from 3 to 2 and from 2 to 3 in third

and fourth steps respectively, refers to double arrows).
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(iii) Exchange of external vertex with adjacent one which is a vertex in an n-cycle

We provide calculations for n = 4 case.

To+1
((1’1,1'2,1133,274), 1 ) ) % (( 23: ,I2,$3,$4), TS 2 )
e | /|
g~y g~y

1 1
% ((xz—i_ 7<x2+ )x3x4+xlax3ax4)7 ‘1 > 2 )

X X1T2 / T

3= 4

1
% ((ZE25E4+1‘1, (ZL‘Q‘I— )$3$4+l‘1,x3’x4)7 . .2 )

X2 T1X2 / T

B4
2

‘4

1 ((!E2$4+CE1 )

,x17$3,x4), i
N | X

g~
% ((.[L‘Q,.Tl,$3,l’4), | )

/|

34

Connected cycles and different quivers shapes are similar. O

For non simply-laced type seeds, the above result is not necessarily true, we provide the

following counter example.

Example 2.1.5. Consider the seed (X, B), where

0 +2 0
B = (by) 2 0 +1
0 -1 0

In the following, we show that there is no sequence of mutations i, ft;, . . . ft;, , such that
UIQ(B) = My Mg - - - MZk(B)u where
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0 -2 41
o2(B)=1 +2 0 0
-1 0 0
If we could show that, there is no sequence of mutations that sends the entry b3 to zero,
we will be done. We do this by showing that every sequence of mutations sends bs3 to an
odd number. First we show by induction on the length of the sequence of mutations that,
any sequence of mutations sends b3 and bys to even numbers.
For a single element sequences: one can see that, only us and p3 may change b3 and by
respectively: that is o and pg send by3 and b5 to 2 respectively.
Now, assume that every sequence of mutations of length k sends b3 and b5 to an even

number, and let p;, 1, ... i, be a sequence of length £ + 1. So, if

i -+ i ((035)) = (b), (2.1.4)

then b, = 2d for some integer number d. Now we have

Bl + blL b,
pin,, (M) = by + 12{ V3| : 3| b

bis + d|bys| + |d|bys

" y +2by3, if bazd > 0,
= O3+

0, if bysd < 0.

Since b}; is an even number then s, (bj3) must be an even too. This shows that any
sequence of mutations will send b3 to an even number. In a similar way one can show that
any sequence of mutation sends b5 to an even number.

Secondly, we show that every sequence of mutations sends |bes| to an odd number. We
show this by induction on the number of occurrences of p; in the sequence. Note that any

sequence not containing p; will not change |bas.
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Sequences contains only one copy of ;;: Without loss of generality, let p;, pti, - . . i,
be a sequence of mutations such that j; = 1, and p;; # p1, Vj € [1,k]. This becomes
clear by considering that the possible change in |by3| appears only after applying p, and

there is no change in |bes| due to ps or pg. Then using same notation as in (2.1.4), we have

b1 |01s] + ’blzllb/m'

by = £1
by = £1+ 5

(2.1.5)

bl |45 |+1b5, 1B :
w must be even, and by, is an

However b, and b5 are both even numbers, so
odd number.

Sequences contains more than one copy of p;: Assume that any sequence of
mutations, with p; repeated k— times sends by3 to an odd number.

Let p,, iy - - - p1i, be a sequence of mutations containing py, k + 1—times, then we can

assume that p;, = p;. Let

fig - - iy ((b3) = (b35), and pugy iy ((big) = (b;), (2.1.6)

then one can see that b5 is an odd number and b}, and b}, are both even numbers. Then,

U, [ha| + Di5|b |
2

by = bog + (2.1.7)

is a sum of an odd and even numbers, b3, is an odd number. O

Definition 2.1.3 gives rise to an equivalence relation on S, as we will see in the following

definition.

Definition 2.1.6. Let B = (b;) and B" = (b};) be any two sign skew symmetric inte-
gral matrices, and o be an element of &,. Then we say that B and B’ are o-similar if

b;j = bg(i)p(j), where € € {—1, +1}.
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Now we define an equivalence relation ~ on S. Let p = (X, B) and p' = (Y, B’) be two
seeds. Then

p~p if and only if B and B’ are ¢ — similar for some permutation o. (2.1.8)

This yields an equivalence relation on S with the equivalence class of p denoted by [p] and
the equivalence class of B denoted by (B). (Note, ~ defines an equivalence relation on the

set of all sign skew-symmetric integral n x n matrices, for all n € Zs)

Lemma 2.1.7. Let p = (X,B),p = (Y,B') € S and 0 € &,,. Let T,y , € Aut.x(F) be

induced by x; = Yo;). Then,
B and B' are o—similar if and only if Ty o(1i(2:)) = pto@)(Yow)), Vi€ [1,n]. (2.1.9)
In particular, p ~ p' if and only if for some permutation o, Tpy » sends p;(X) to piou)(Y).

Proof. =) Assume that B and B’ are two o- similar seeds. Then B’ = ¢(c(B)). So, if

B = (bj;) and B' = (b};), then b}; = €bs(s)s(j), Where € € {+1,—1}. Then we have

Hbjz‘>o X + Hbji<0 Lj )

Z;

Tpp’ﬂ(ﬂi(xi)) = Tpp’ﬂ(

I1y,,~0 Y0 % )+ 11,<0 yg(j

ya(z)
eb . .
a(j)o(i) ! ol
_ Hbji>0 Yo(5) + Hbﬂ<0 Yot
Yo (i)
Iy s0¥s( o<] 7O 41, oY ;(]‘;(J)U(z)
o (4)o(4) . a(j)o (i) ’ if€:1,
= o (i)
1_[bif( o (i) <0 yv(J(;(])U(l)‘*‘Hb/ >0 y[;z()J)cr(i) .
] ) lf € = _1
yo’( )
- 'U'U(i)(ya(i)>

<) Suppose that p and p’ are not o-similar, then B’ # +0(B), i.e. (b};) # £(bs(i)o(j))- Then

there is i1, n] such that bj; # Fbs(i)s(j), for some jo € [1,n]. Now, we have
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[, xj” +11,, 0T "
Tpp’,o(ﬂi@i)) = Ty ( = -

Ty
I1 2l gl 4 I1 x,
s bij>0,559 ©J Jo bir<0 7k
- pp’ o

Z;

bij bij —b;
Hb¢j>0,j¢jo yU(Jj) ' yU(JQO) - Hbz’k<0 yU(k§
Yo (i)

bij  bijg —big
Hbij>0,j¢j0 yﬂ(j>'y0(jo>+nbik <0 Yo (k)

, if bijo > 0,

_ Yo () \
- bij —bik ., Yido
o,io0 Yot b <0.5i0 Yo k) Yo (i) .
s if bijo <0
Yo (i)

7é Mo (4) (ya(i))'
Last line is due to the fact that, ygi(jj(.’o) appears in f,(;)(Yo(;)) with a different exponent. The
last part of the statement is straightforward. ]

Theorem 2.1.8. Let p = (X, B) and p' = (Y, B') be any two o-similar seeds. Then for any

sequence of mutations fi, , [, ;- - -, [, , the following statements are true:
(1) prigptin_y - - iy (X, B) and fo@p) fo(ip_y) - - - Ho@r) (Y, B') are o- similar,
(2) TPPCU(:U'ik/MkA iy (X)) = Hao (i) Ho(i—1) - - ~Na(i1)<y)7 where Ty o s as defined in Lemma

2.1.7.

Proof. Part (1) follows as a simple corollary of the identity
o(pr(B)) = poy(0(B)), Vk € [1,n]. (2.1.10)

One can see that; the (0(i), o(j)) entry of o(ux(B)) is b};. Now, the entry (o (i), o(j))
of o(B) is b;j. So, applying mutation in the direction o(k) on o(B) will result that
the entry (o(i),0(y)) will change to

—byj, o(k) € {o(i),o(j)}

bo‘io‘k|bo'k0'H‘Ibaioklbako"
])+ (i)o (k) ()(J)2 (B)o (k) ()(J),

bo(i)o( otherwise.
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Noticing that; k& € {i,7} if and only if o(k) € {o(i),0(j)} Therefore the entries of

o(ur(B)) coincides with the entries of ji,u)(0(B)).

For the second part; let ju;, p;, _, - . - f1i, be a sequence of mutations, p;;, = i, fi,_, - - - tir (D),

and pl ;o0 = Holin)Ho(ix_1) - - - Ho(iy) (P), for j € [1,k]. Part (1) tells us that p;,;, |

and p;(il)a(ikil) are o-similar. Then Lemma 2.1.7 implies that

Tpilikp;(il)(,(ik),tf(uik (Iu’ik—l i (X)) = Hig i) (:uig(k—n - 'MU(i1)<Y))' (2.1.11)

So, it remains to show that

Tpiyiy ! o (thiy, (i - 1y (X)) = T o (i (B - - - 1y (X)) (2.1.12)

o(i1)o(iy)’
To get to this, let ¢ = (Z, D), and ¢ = (T,C) be any two o-similar seeds, and let
@ =pi(Z,D)=(Z",D"), ¢, = pou(T,C) = (T",C"). Where Z = (21, 22, ..., 2,), and

T = (t1,ts,...,t,). Next we show that

Torgs.o (pi(2)) = Tog o (pefi(2))- (2.1.13)

Let z; be a cluster variable in Z, then for j # i. Then, both of T, , and Ty, leave

zj unchanged. Now, let j = 4, and we have

Zi

d;s _d.
1 T “d Z~”—|—||d. 0%k ik
qw’lv"(ﬂi('zi)) — taqo ( = ik <

di; _d,
Hdz‘j>0 tU(Jj) + Hdik<0 tcr(kk
T )

p1p),0 (2i)

However,
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quqi,o(ﬂi(zi)) = Ho() (ta(i))
R P e P )
- 20
= g, ZCZ] + 14,0 a(ed)lk
- 20 '
Hence, Tplp o(zi) = Ly(s)- This shows that quq o, and T,y , have the same action on

every cluster variable in Z, and since cluster variables from the pyu;(Z) are integral

laurent polynomials of cluster variables from Z, this gives (2.1.14).

For equation (2.1.13) we use induction on the length of the mutation sequence. Assume
that equation (2.1.13) is true for any sequence of mutation of length less than or equal

k — 1. Now we have

szllkplllk (:uik/vbikﬂ R (X)) = szlzk 2p111k . (Iuik/’l“ik—l - iy (X))
= Tpp’ya(”ik:uik—l iy (X)),

where the first equality is by identity (2.1.14), and the second is by the induction

hypotheses.

]

Theorem 2.1.9. Let A,(S) be a cluster algebra, and (X, B) be a self o-similar seed in S

for some o € ¥,,. Then, ox is a cluster automorphism.

Proof. Let y € Xg. Then there exists a sequence of mutations p;,, . . .

cluster variable z; in X, we have y =

iy Mg - -

iy Hig - - -

. l4i,,, we apply this sequence of mutation to X.
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We are left to show,

ox(y) = Ho(iy) Mo (ia) *° 'Mo(z’k)(mo(i))- (2.1.14)

From Theorem 2.1.7 (1), fi, thiy - - - s, (X, B)) and fio(iy) o (is) - - * Ho(ir) (X, B)), are o-similar
Vt € [1,k]. Theorem 2.1.7 (2) implies that equation (2.1.15) is correct.
U

Example 2.1.10. Let A, (S) be a cluster algebra of A,,—type. Then, C,,(S) is a non trivial
group.

To see that, fix an initial seed (X, B) such that B = (b;;) where either b;; > 0,Yi > j or
bij <0,VYi > j, such seed always exists in any cluster algebra of A,,— type . The following

permutation is a cluster automorphism with symmetric group action defined, with respect to

the initial cluster X ;

(1 2k+1)x(2 2k)x... (kK k+2)x, ifn=2k+1,
e = (2.1.15)

(1 2k)x(2 2k —1)x...(k k+1)x, ifn=2k

Now one can see that (X, B) is self o-similar.

2.2 Exchange groups

Every path in the cluster pattern defines a field automorphism, which we codify in the fol-
lowing definition. In this section, we study the intersection of the group gemerated by all

such automorphisms and the cluster group.

Definitions 2.2.1. Let p = (X, B) and p’ = (Y, B’) be any two vertices in the cluster
patern T, (S5) of A,(S). For any 0 € &,, the field automorphism T, , : F — F induced

by x; = ys(;) is called an exchange automorphism.
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The subgroup of Aut.x(F) generated by the set of all exchange automorphisms is called

the exchange group of A, (S) and is denoted by m,,(95).

Remark 2.2.2. Let A, (S5) be a simply laced cluster algebra, and fix an initial seed p =
(X, B). Then, every symmetric group element can be seen as a field automorphism, (as in
the paragraph proceeding definition (2.1.3)), taking 7" = X. From Theorem 2.1.4, every
symmetric group element (in the above sense) corresponds to a path in the cluster patern

of A,(S). So, the symmetric group elements can be seen as exchange automorphisms.

Before we state the main results of this section we sharpen the notations of the neigh-
bors and monomials of the cluster variables. Let x;, be a cluster variable in p = (X, B).
The set of neighbors of z;, at the seed p, denoted by N,(z;,) is defined to be, N,(z;,) :=
Ny (xiy) U Np (), where Ny, (zi,) = {xi;biyi > 0} and N, _(x;)) = {zi;0;0 < 0}.

b

Define m,, 4 (z;,), and m, _(z;,) respectively. Where, m, (z;,) = HmeNﬁ(IiO)xi”O

, and
mp (i) = [1,.e Ny () :):Z-_b“o and call them the positive and negative monomials of the

cluster variable x;,. We denote f, ., = my i (zi,) +myp,—(2i,), one can see that f,,, is not

divisible by z;, Vi € [1,n].

The following theorem provides a description for C,(S), through m,(S) and the equiv-
alent classes of ~. In the proof of the theorem, we assume that the positivity conjecture,
Conjecture 1.1.13, is satisfied. However, a proof without the positivity conjecture, can be

written in finite type cluster algebras of rank two.

Theorem 2.2.3. Assume that A,(S) satisfies the positivity conjecture. Let p = (X, B) and
p = (Y, B’) be any two vertices in the cluster pattern of A, (S). Then, for a fived symmetric

group element o, the following are equivalent
1. Ty » 18 a cluster automorphism,
2. p and p' are o- similar,
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3. T,y .o permutes the clusters. Furthermore for any seed ¢ = (Z, D), we have;
Towo(Z) €{Y; (Y, M) € [g]} (2.2.1)

Proof. =(2). Assume that T, , is a cluster automorphism. From Lemma 2.1.7, to show p
and p are o-similar, it is enough to show that, Tpy »(1:(2:)) = te()(Ye@)), Vi € [1,n)].

Let 2 = Topo(pi(zs)), and & = fio@)(Yo@)) where X = (z1,22,...,2,), and ¥ =
(Y1, Y2, - - -, Yn). Then, we have

Tpp/,ﬂ (fp,x)

7 = /=t and
Yo (i) Yo (i)

_ e (2.2.2)

Both Ty o (fp.) and o yosy are polynomials in ZlYo(t)s s Yolim1)s Yo(i+1)s - - - » Yo(m)], and are
not divisible by (), for all j in [1,n]. Now, suppose that z is a cluster variable. Then, by

Laurent phenomenon, z can be written uniquely as;

s = P(ya(1)7 Yo(2)s -+ - s Yo(i—1), ga Yo(it1)s - - - aya(n))
Q1 a ’

Yot) -+ Yot ) % Wo(ir1) - - - Yoim)

(2.2.3)

where P(Yo(1); Yo(2)s - - - > Yo(i=1)5 & Yo(it1)s - - - » Yo(n)) 1S @ polynomial with integers coeflicients.
Which is not divisible by any of the following v,(1),¥w(2), - - - Yo(i=1) §-Yoli+1)s - - - s Yo(n—1) and
Yo(n), and (aq, g, ..., a,) € Z". Comparing z from (2.2.2) and (2.2.3), we have

aq Qi1 §ai Q41 an

Top o (fo) - - Yoty - Yolio Yotz Yoty = L Yoli)- (2.2.4)

Since, f,., is not divisible by any cluster variable z;, for any ¢ € [1,n]. Then T}, ,(fp..) is not
divisible by v;, Vi € [1,n]. More precisely T}, »(fp) is a sum of two monomials in variables
from the cluster Y, with positive exponents. Therefore, o; = 0 for all j € [1,n| — {i}, and

i = —1. Hence, (2.2.4) can be simplified as

Tpp’,tf(fp,x) = P . fp/,yo(i)' (225)
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Now we have that fy, . is also a sum of two monomials in variables from the cluster Y,
with positive exponents. However, P is a polynomial with positive integers coefficients, and
not divisible by any cluster variable from Y’ = fi,(;(Y"). Then it must be either a sum of at
least two monomials in variables from Y’ or it is a positive integer. Equation (2.2.5) says
that, the first option for P is impossible because Ty +(fp2) and fyr .  sums of exactly two
monomials, so P must be an integer. Because the coefficients of Ty, »(fy.) and fyy ., are
all ones, which must be exactly 1.

Hence,

Tpp’,o(fp,x) = fp’ﬁya(iy (2.2.6)
Therefore,
Top o (i(:)) = Ho(i) (Yo, Vi € [1,n]. (2.2.7)

Now, lemma 2.1.6 implies p and p’ are o-similar.
(2)= (3). Let Z = (z1, 22,...,2,) be the cluster of the seed (Z, D). Then there is a

sequence of mutations fu;, ft;, - . . 4, such that

Since (X, B), and (Y, B') are o-similar then, Theorem 2.1.7 part 1 implies that j,, . .. p;, (X, B)
and fio(iy) - - - o) (Y, B') are o-similar too.

But, from Theorem 2.1.7 part 2, we have,

Tpp/,U(:uh (/’LZQ Ry (X))) = Mo (i) Ho(iz) - - MU(%)(Y)7

and since the right hand side is a cluster and the left hand side is only T, »(Z), then T}, ,

sends Z to a cluster. So, T}, »(Z) permutes the clusters. For the belonging (3.1), is imme-
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diate from the above argument.

(3)=(1) Permuting the clusters implies leaving yg invariant, because every cluster variable

is contained in some cluster. O

The following is a corollary of the proof of Theorem 2.2.3, and is actually the general-

ization of the statement of the same theorem, to the level of cluster isomorphism.
Corollary 2.2.4. Let A,(S), and A,(S") be any two cluster algebras over F. If p =
(X,B)e S, p=(Y,B) €S, and o0 € S,,. Then the following are equivalent

1. the field automorphism ¢py o, @ F' — F, given by x; = yo) 1s a cluster isomorphism

from A, (S) onto A,(S"),
2. p and p' are o-similar,

3. Gpp o Sends every cluster in Sc onto a cluster in S¢.. In particular, two cluster alge-
bras are cluster isomorphic if and only if they contain two o-similar seeds for some

permutation o.
Proof. Follow the proof of Theorem 2.2.3, mutatis mutandis. O]
Corollary 2.2.5. If A,(S) is a cluster algebra of simply-laced type then C,(S) # 1.
Proof. This follow from Theorem 2.1.4 and Theorem 2.2.3. O

We remark that, the converse of Theorem 2.2.5 is not necessarily true. Consider the the
cluster algebra given in Example 2.1.5, and let ¢ be the transpose (23). A routine check
shows that, (23) corresponds to the sequence of mutations popispiapispz. Then Theorem 2.1.4
implies that the transposition (23) is a cluster automorphism, while the cluster algebra is

not simply-laced.
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Conjecture 2.2.6. The set of all cluster variables xg can be complectly determined by [p]

as follows

vs = J(vs (v,00) € ), (2.2.8)

In the following we calculate the cluster and exchange groups for some cluster algebras

of low ranks.

Example 2.2.7 (Cluster and exchange groups of rank 1). In this case F = K(t), and
Ay (S) = Z[z*!]. So the cluster group and the exchange groups are the same and they equal
to the subgroup of Aut.x(F) generated by the automorphism 7 : K(z) — K(z) induced

by z — % and then
_ 01
7(S)) = C1(S) = { ) < PGLy(K).

Example 2.2.8 (Cluster groups of rank 2, C5(S)). In this case F = K(z1,22), and

applying the mutations on the initial seed

0 m

p:{(x17$2)7 }
—n 0

leads to the following recursive relation for the cluster variables of A(S)(m,n)

'+ 1, iftisodd,
T 1Tt41 = (229)
xy +1, otherwise.
Thus, the cluster algebra A(S)(m,n) corresponding to p is the subalgebra of F = K (1, x2)
generated by {x;;t € Z}, however, since p is acyclic seed then A(S)(m.n) = Zlxg, x1, x2, x3] C

K(l'l, xg).

Theorem 2.2.9 ([34]). The sequence (2.2.9) of the cluster variables {x;}iez in A(S)(m.n)

is periodic if and only if mn < 3, and is of period 5 (resp., 6, 8) if mn =1 (resp., 2, 3).
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In the following, let Cy(m,n) denote the cluster group associated to A(S)(m,n).

Lemma 2.2.10. There is a cluster isomorphism between the cluster algebra As(S)(m,n)

and Ay(S)(n,m).
Proof. Let (z1,x5) and (y1,y2) be initial clusters for As(S)(m,n) and Ay(S)(n, m) respec-
tively. Consider the following cluster isomorphism
012 - A?(S) (ma TL) — A?(S) (TL, m)
given by:
x1 =y  and x> Yy,

one can see that this automorphism induces a one to one correspondence between the sets

of all clusters of Ay(S)(m,n) and Ay(S)(n,m).

Corollary 2.2.11. Cy(m,n) = Cy(n,m).
Proof. From the previous lemma, and Remarks 2.2.2(2). O

Example 2.2.12 (The cluster and exchange groups of A(S)(1,1)). In this case, we

have exactly 5 cluster variables which, in terms of the initial cluster variables (z1,x9) are

Il—f—l $2+1 1+$1+1’2

{.1’1,.1'2, ) 3 3
) a1 T1T2

and the following unordered pairs as clusters

Z‘l—i—l SU2+1 £C2+1 1—|—.§E1+I‘2 1+QZ1+SE2 l’l—i—l
)a( 7372)’( ) )a( ) )

T2 x x X122 T1T2 X2

(£U1, 372), (3317

So, C5(1,1) is the subgroup of Aut.xF(x1,xs) generated by the following involuting auto-

morphisms 77, and T, where, T} is induced by

1
T = Tat ., and 9 > X9, (2.2.10)
T
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and T3

1
r—x; and 19— it , (2.2.11)
)

xr1+1
2

To show that these are generators. Consider the automorphism 7 induced by, x; —

and x5 — x5 then we have

.fl?l—i-l x1+;1:2+1

L2) = ()P = (L B

)

but %ﬁ“ is not a cluster variable, so the automorphism 7 cannot be a cluster automor-
2

phism. In a complete similar way we can argue all other possible choices. Therefore,
Co(1,1) = (T, Ty) < Aut. g K(x1, 23).
Also, we can see that
Cy(1,1) =ma(S), V seed pe S, and V d € [1,5].

Remark 2.2.13.
Co(1,1) ={T, B|T}Y = T3 = 1, (1 T»)"* = 1}.

Example 2.2.14 (The cluster group C5(2,1)). .
We have exactly 6 different cluster variables, which are
To+1 (za+1)2+2? 22 +20+1 2241
{1, xs, , . } (2.2.12)

) )
I T1T2 T1T2 I

and the following unordered pairs as the set of clusters

+1)% 43 I4ma+1 +1)%+a3 4w+l x4l
(1'1,372), (x?l_l,x ), (wi—fl’ (mx%iQ 961)7 <x1x19;22 ’ (xzx%iQ 961)7 (xlxlﬂ;i ’ Iil )

Notice that, the cluster variables x; and x are not symmetrical as in A(S)(1, 1), which
implies that the symmetric group element o5 is not a cluster automorphism i.e. is not an
element of C5(2,1), and hence the generators are only 7} as defined in (2.2.10), together

with automorphism T, € Aut g K (x1,x9) which is induced by
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3+ 1
i) .

ri—= 21 and x>

Then we have

02(27 1) = ﬁ”bg(S) = <T1,T2> < AutKK(ZEhfL’Q), YV seed pE S, and V d.

Remark 2.2.15. (3(2,1) is a Coexter group with the following presentation
Co(2,1) = {11, | T} =T3 = 1,(iT»)° = 1}.

Example 2.2.16 (The cluster group C5(3,1)). .

(2.2.13)

(2.2.14)

We have exactly 8 different cluster variables. In a similar way of calculating C5(2, 1), one

can see C(3,1) is generated by 77 as defined in (2.2.10) and 75, induced by

341
ri— 21 and 1z — ,
T2

and we have
02(3, 1) = ﬁlQ(S) = <T1,T2> < A'LLtKK(Z'l,l'Q), W pE S, and V d.
Remark 2.2.17. (5(3,1) is a Coexter group with the following presentation

Co(2,1) ={N), | T} =T3 =1,(iT»)" = 1}.
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Chapter 3

Hyperbolic Cluster Algebras

In this chapter we set up for a class of non-commutative algebras with cluster structure which
are generated by isomorphic copies of hyperbolic algebras. The first section is devoted to
introducing the notion of the hyperbolic seeds and to generalize the cluster automorphisms
to the hyperbolic seeds. In the second section we use the cluster structure to build in-
decomposable and irreducible representations for the associated hyperbolic algebra using
combinatorial data called cluster strings. In the last section we introduce a ctategorification

for the cluster structure in the Weyl algebra case.

3.1 Hyperbolic algebras

Definition 3.1.1 (Hyperbolic Algebra [30, 31]). Fix a commutative ring R. Let § =
{6y, ...,0,} be a set of ring automorphisms of R, and {&,...,&,} be a fixed set of elements
of R. The hyperbolic algebra of rank n, denoted by R(0,{,n), is defined to be the ring

generated by R and zy,...,%,,Y1,...,Yy, with the commutation relations:
zir = 0;(r)z; and ygr =0, (r)y;, for any i € [1,n], and for any 7 € R, (3.1.1)
T;Y; = ffHVZ - []_, n] ZEiyj = iji, Iil’j = ZEjZEZ', yzyj = y]yz VZ 7é ] (312)

We warn the reader that x;y; # y;x; in general.
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Example 3.1.2. Let A, be the Weyl algebra generated by 2n variables x1,..., T, y1 ..., Yn

over a field K and the relations
vy, =y +1, Vie{l,...,n} and z,x; = zx;, yiy; = y;u; for i # j. (3.1.3)

Let & = yiwy, R = K[&1,...,&,], and 0; : R — R, induced by & +— & + 1,& — &;,5 # 1.

One can see that A, = R(#,£,n) is a hyperbolic algebra of rank n.

Example 3.1.3 ([30, 31]). The coordinate algebra A(SL,(2,k)) of algebraic quantum

group SL,(2, k) is the K-algebra generated by z, y, u, and v subject to the following relations

qur = TU, QUT =TV, QYU =uyYy, qyYV=0vy, uv=ovu, q€ K* (3.1.4)

1

xy=quv+1, and yxr=q ‘uv+1. (3.1.5)

A(SL,(2,k)) = R(&,0,1) is a hyperbolic algebra of rank 1, with R = Klu,v] is the algebra
of polynomials in u,v and 0 € Aut.(R) being given by 0(f(u,v)) = f(qu,qv) for any

polynomial f(u,v), and £ =1+ ¢ luw.

3.2 Hyperbolic cluster algebras

3.2.1 Generalized and hyperbolic seeds

Let P be a finitely generated free abelian group, written multiplicatively, with set of gen-
erators F' = |, F;, where F; = {fu,..., fin,} and F; N F; = 0 for i # j € [1,n], and let
m = Y m;. Denote the group ring of P over K by R = K[P]. Let D be an Ore domain
contains R such that there are t1,...,t, € D so that {t{",...,t"; (,...,a,) € Z™} form
a basis for D as a left R-module.

Let D denote the set of right fractions ab™! with a,b € D, and b # 0; two such fractions

ab™! and cd! are identified if af = cg and bf = dg for some non-zero f,g € D. The ring D
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is embedded into D via d — d-1~!. The addition and multiplication in D extend to D so that
D becomes a division ring. (Indeed, we can define ab~!+cd™! = (ae+cf)g~! where non-zero
elements e, f , and g of D are chosen so that be = df = g; similarly, ab™'-cd~! = ae- (df) 7!,
where non-zero e, f € D are chosen so that ¢f = be). In such case we say D is the division

ring of fractions of D. More details about Ore domains are in [29] and [2].

Definition 3.2.1. Generalized Seeds. A generalized seed i of rank n in D is the triple
(F, X,T'), where

e F'is as described above, which is called the set of frozen variables.

e X = (x1,...,x,) € D" such that there is an R—linear automorphism on D that fixes
the frozen variables and sends t; to z,(;, for each i € [1,n] and for some permutation

o. Elements of {z1,...,x,} are called cluster variables and

X = {flla"'vflmp-"afnla"'7fnmn7$17"'7xn}

is called a cluster.

e [' is an oriented graph with set of vertices [ := Ip U Ix = [1, k], where k = m + n,
with no 2-cycles nor loops. Let v : X — I be a one-to-one correspondence map, where

v(f) € I for every frozen variable f, and v(z;) € Ix for every cluster variable z; € X.

We need the following combinatorial data before introducing the generalized seed muta-
tion. Let i = (F, X,T") be a generalized seed, and L be the lattice Zk, where k = m+n. For

k € [1,n] we associate two vectors of L to the vertex v(xy) of I' as follows, the first vector

—k __
7ﬁj_ - (r117"'>T1m1ar21a"'7r2m27"'77nn17"'7rnmnal17"'7lk717_17lk+17"'7ln)7

where r;; is the number of arrows in I' directed from the vertex v(fi;) toward v(zy), and for
i # k, l; is the number of arrows from the vertex v(x;) toward v(xy), and we have —1 at the

place of [. The second vector is
k / / ! ! / ! ! / / /
ﬁi = (P Py o1 - s Tommgs - s g -+ o5 T TR S B N & )

» 'nl> » i nmy?
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which encodes the number of arrows targeting other vertices from v(zy), i.e each component
of ﬁk is the number of arrows with source as v(zy) and target as the corresponding vertex,
except for the component corresponding to the vertex v(zy), we have —1. This defines a
map, r: X — [ — 7X x Zk, given by zp — (7“_1>k, ﬁk) Each of these two vectors defines a

map from X to Z>_y, given by

Tij; lf t = fij7
) =< -1, ift=m
l; ift=u;,j #k.
For a cluster X , we consider the following two maps M, M} : L — D given as follows,
for a vector a = (@11, .+, Qg1 @125 - -+ s Qmg2y -+« s Qlpy -+« s Gy D15+« 5 -+, b)) € L, we assign

the following two monomials

R __ 4011 Amyl  Lai2 Amgy2 ay a 1 b

MC(G) _tll ”'tmll ‘t12 “'tm22 tlnn tmﬂ:ﬁln * Ty '”xnn7 (321>
L _ b b ary Am1l a1z Amgo2 ai a

Mc(a) =o' a4 e by 7 g o EL e (3.2.2)

In the following we skip the word generalized if there is no confusion.

Definition 3.2.2. Let i = (F,X,I') be a seed of rank n in D. At each cluster vari-
able (non-frozen) z; we can obtain two new triples pf(i) = (F', pf(X),I") and pk(i) =

(F', pk(X),T") from i, by applying the following steps;

o ['=F,
o ulM(X) = (z1,...,041,T), Tps1,- .., Tn), Where
vk = MEG{Y) + ME(FT), (3.2.3)
and pF(X) = (x1,...,Tp_1, Ty, Ths1,- - -, Tpn), where
w), = ME(R) + ME(). (3.2.4)
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e [” is obtained from I' by applying the same rules of quiver mutations given in Chapter

2 in the paragraph preceding Theorem 2.1.4.
e uft and pl are called right and left mutations in the k-direction respectively.

pit(i) and pk (1) obtained in the above way are said to be obtained from i by applying right

and left mutations in the k-direction respectively.

Remark 3.2.3. This definition of mutations on oriented, no loos, and 2-cycles graphs is
equivalent to the definition of mutations on skew-symmetric matrices corresponding to such

graphs, definition 1.1.2.

In the following we will try to explore some of the commutation relations of the elements
of X that are invariant under mutations for some particular seeds.
Notations: For a seed 1 = (F, X,I') and k € [1,n]. The following notations will be used

in the rest of this chapter

o i’ = (i), (resp., i = pk(i)).

e For X' = («,...,2)), where
(3.2.5)

(resp., X = (zq,...,1,)).

e The mutation of i at k gives rise to two R-linear D automorphisms, TiRi’ and TiLi\’

where Tfi’ : D — D is induced by
T () =t, Vte R and T (x;) =}, Vj€[1,n] (3.2.6)

(resp., to TiLi\(asj) = 1;,Vj € [L,n]). Tf%, and TiLi‘ are called right and left mutation

automorphisms respectively.

e For a seed i the neighborhood of a cluster variable x;, is defined to be the subset of X

corresponding to the non-zero components of r—fk or ﬁk and is denoted by Nj (zx). In
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other words, Nj (zy) := Nj , (z1) U Nj _(wx), where Nj , (z1,) = {7 € X;7{%z) > 0}
and N () = {7 € X;#7%(z) > 0}. In particular, Let Fer = Fy, N Nj ,(vg), and
F:l:,, = Fk N vai(.%k)

Definition 3.2.4 (Hyperbolic Seeds). The quadruple (F, X, T, ¢) is called a Hyperbolic
seed of rank n in D, if it satisfies the following conditions

1. the triple (F, X, T") is a generalized seed of rank n in D satisfying

2. X consists of a commutative set of rational functions such that z; commutes with

elements of F} for j # 1.

3. @ is an R-linear automorphism of D satisfies the following equations

flaxy = @%(x) fO,Vf € Fi,Vi € [1,n],a € Z>o. (3.2.8)

The above equations induce the following equations

iL'Z'fa = faQO_a(l‘i)?va c Fl,VZ < [1, TL], a € Zzo. (329)

Furthermore, (F, X, T, ¢) is said to be weak hyperbolic seed if the condition (3.2.7) above

is replaced by the condition
Nl(a:k) N NI(LEZ) NE, = @,VZ,V]{? € [1771]. (3.2.10)

Lemma 3.2.5. Let i = (F, X, T, ) be a hyperbolic seed in D. Then, the following are true

1. The ring D is an Ore domain.

R R

2. For any sequence of right mutations (resp., to left) ,uiluf“;” .. .uﬁ, we have uilufg . .,ufj(i)

(resp., to pl pl .. ;qu(l)) is again a hyperbolic seed.
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et (i) = pep (i) =1, Yk € [1,n]. (3.2.11)

More precisely T ;/(Tyr4 (xr)) = T3 (Ty 1 (1)) = .

Proof. Condition 2 in definition 3.2.4 and the commutation relations (3.2.8) make part 1
immediate.

We prove part 2 for uff(i), (resp., uk(i)) and the proof for an arbitrary sequence of
right (resp., to left) mutations is by induction on the length of the sequence. First, the
commutativity of the elements of {z1,..., 251, 2}, Tkt1,...,2n}, is obvious by conditions
(1) and (2) in the definition of the hyperbolic seeds. The same for the commutativity of z,
and the elements of F} for j # k. To finish the proof, it is enough to show that there is an
R-linear automorphism ¢’ (resp., ¢) of D satisfies 3.2.8 (resp., pg (1)). Let ¢ =T 19Ty /5.
We have

fijzy = Tyi(fijzs)
= Tii(p(@;fiy))
= Tyy¢Ty5 (2 fis)
= (2} fiy)

= ¢ (@) fi-

This finishes the proof of part (2).

For the part 3, one can see that uf*ur and pluft act like the identity on both of F' and
I', since the right and left mutations act like Fomin-Zelevinsky mutation on F' and I', and
Fomin-Zelevinsky mutation is involutive.
In the following we show that pful(X) = X, and plpf(X) = X is quite similar. Let
= ub(F.X,T), and (1) = pfiuk(F, X,T)
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We have uf, (1x) = @), = 27 (M (72%) + Mc(F7%)), where Mo (77*) = 2, Mc(77*) and
]\//ATC(?_IIC) = 2, Mo (¥7%). By definition of mutation on T', one has /3% = #7% and 7% = 7%
Then condition 3.2.7, and commutation relations 3.2.8 guarantee ]\/I\C(r_l)’“) = ]\/JC(ﬁk) and

Mc(77%) = Mc(77%). Hence

pl(z) = (Mo(F%) + Me(Fe%) () ™)

Finally, for the automorphism (¢)’ of the seed pffuk(i). From the proof of part (2), we
have () = TroyTis 0Ty Tisyy = Tii T 0oThi Tiy = idgpidy = .

To see that T i/ (T4 (zr)) = x.

One has Tjy;/(Tyr5(z)) = Ty (') = p(a})™ = plpry')™" = x4, where p is the

polynomial M (77%) + Mc(F:*%) € R. O

Definition 3.2.6 (The Cluster sets and (right and left) Cluster patterns). 1. Let
i be a seed (or a hyperbolic seed) an element y € D, is said to be a right cluster element
(resp., to a left cluster element) of i if y is a cluster variable in some seed j, where j
can be obtained from i by applying some sequence of right mutations (resp., to left
mutations). The set of all right cluster elements of i (resp., to cluster left) is called
the the right cluster set (resp., to the left cluster set ) of i, and is denoted by x%(1i)
(resp., to x*(1i) ). The set of all right and left cluster elements of i is called the cluster
set of i and is denoted by x(i). So x(i) = x®(i) U x*(i). Elements of x(i) are called

cluster variables of i or simply cluster variables.

2. Let i be a hyperbolic seed. The cluster pattern T(1) of 1 is a directed graph built in the
following way; label an initial vertex with i, and from i we generate arrows as follows,
every k € [1,n] corresponds to two arrows going out from i one for right mutation in

k-direction and the other one is for the left mutation in same direction, each arrow is
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targeting a new hyperbolic seed, which is generated by the indicated mutation applied

to i. Now repeat the process to the new vertices.

3. Right (resp., to left) cluster pattern is defined in same way with the restriction, every
k € [1,n] corresponds to only one arrow which is the right mutation at k (resp., to left
mutation) and is denoted by T (i) (resp., to TL(1)).
Open Problems 3.2.7. Given a (resp., to weak) hyperbolic seed i = (F, X, T, )

e What are necessary and sufficient conditions on I'" and ¢ that guarantee x(i) to be a

finite set. Same question can be raised for right and left cluster sets.

e What are necessary and sufficient conditions on I" and ¢ that guarantee T(i) (resp.,

to T#(i) and T%(i)) to be a finite graph or a periodic graph.

In the following we will provide some sufficient conditions for cluster patterns to contain

cycles.

Definition 3.2.8. A seed i is said to be a well-connected seed, if there are n nonnegative

integers aq, ..., a,, such that
ST ) = Y () =an, Yk e[l n]. (3.2.12)
fikEF§+ fikGF;_
In this case the n-tuples f; = (ay,...,a,) € Z% is called the frozen rank of i.

Through the rest of the thesis, any statement contains pj without the superscript R
or L, is true for right and left mutations pff and uf respectively. However, the proofs are
written for right mutations and for left mutations the proofs are quite similar in most of the

cases.

Proposition 3.2.9. The mutation in any direction of a hyperbolic well-connected seed is

again well-connected, and the frozen rank is invariant under the mutation.

52



Proof. Immediate from the definitions of well-connected seeds and the definition of mutation.

]

Theorem 3.2.10. Let i = (F, X, I, ) be a well-connected weak hyperbolic seed with ¢ a
finite order automorphism. Then py, is invertible on i for each k € [1,n]. More precisely,

there is a mon negative integer r such that

() (F. X, 1)) = (u)* ((F, X,T)) = (F. X, T). (3.2.13)
The proof of the theorem is a consequence of the following lemma.

Lemma 3.2.11. Let i = (F, X,T',¢) be a well-connected weak hyperbolic seed. Then for

every cluster variable xy, we have

(,uikf(xk) = % (zg) for some nonnegative integer ay. (3.2.14)
(15 ) (@) = @ *(xy) for some nonnegative integer ay,. (3.2.15)

Proof. We start with proving 3.2.13. Let

—k __
riT = (Tlla"' sy Pma1, 712, 5 Tmg2, - s Tipy = armnnalla"' 7lk—17_1vlk+1a"' 7ln)
and
k __ / / / ! / / / / / /
ﬁr—i = (rt,,--- ST Ty Ty T T, Uy e Ly =1l ).

Then by definition of Mc(77%) and Mo (¥:1%) and the commutativity of the elements of

X one can see Mo (77%) and M¢(77%) can be written as follows

Mce(73%) = Mo (7%)z;t and  Me(F5%) = Mo (F9);

Where

AT (kY _ a1 Tmyl 4719 T'mg2 r1 r Il lk—1 lkt1 l
MC(Ti )_tll ...tmll .t12 ...tm22 ...tln”...tn’xlnn".l'l ..‘xkfl .l'k+1...x"
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and

—~ / / / / / /
kY _ 41 Tmgl 7o Tmg2 L Tmnn l U1 U1 /
Mc(ﬁ)—tn”'t R A S AR A LR Mot IR AR

mil mo2 n

If C" is the cluster of the seed i’ = pfi(i), then by the definition of mutation on T', we have
= 2%, and 71F = 7%, Hence, Mc(rl ) = ]\/[C/(ﬁk), and Mcl(ﬁk) = Mg(ﬁk) Then
one has
(W 2 @n) = pf (Me(T1*) + Me(F%)z )

o~

= (Mo (70%) + Mo (F7)) (Mo (77F) + Mo (F77)) !

—~

= (Me(71*) + Mo(F7%)) (Mo (77%) + Mo(F7) !

Since i is a well-connected seed, then there is a positive integer a; such that

Z fzk Z ﬁk fzk = Q.

i EFE Fk
flke is fzke i
In the case of a;, = 0, we have no thing to prove. Assume it is nonzero, then, using condition

2 of definition 3.2.4 one can see

(M%) + Mo(F7%))a, = o (04 (Mo(73%) + Mo(F%),
This finishes the proof of equations 3.2.13. The proof of 3.2.14 is quite similar except for

using the commutation relations 3.2.9 instead of 3.2.8 in the step before the last one. O]

Proof of theorem 3.2.10. We prove it for right mutations and the case of left mutation
is quite similar. Assume that i = (F, X, T, ¢) is as in the statement of theorem and ¢" = idp
for some non negative integer r. By definition of mutations on the cluster variables, the
mutation in the k-direction leaves every cluster variable with no change except for zy.
Therefore the following sequence of repeated mutations in the k-direction (uf)*" will leave

every cluster variable, other than x; unchanged, and for x;, the lemma tells us

()" (1) = " * (2x) = . (3.2.16)
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Also, one can see (uf)?(T') =T'. Then, (uff)?"(T) =T.

|

Example 3.2.12. The simplest nontrivial well-connected hyperbolic seed. Consider
the hyperbolic well-connected seed i = (F, X, T, p) where F' = {fi1, fi2}, X = {z}, and '
is the following graph

B E i T e P
and let ¢ be a R-linear automorphism of D satisfying the conditions 3.2.8. Here I; = {15, 15}

and I, = {1}, and the frozen rank is (1). This seed produces the following the cluster set

X(1) = A{z, (fu+ fio)e ™ 27 (fu + fr2), " (@), (fn + fr2)e " (2), 07" (2)(f11 + f12); k € Z}.

One can see that x (1) is a finite set if and only if ¢ is of finite order.

Example 3.2.13. The simplest non well-connected hyperbolic seed. Consider the
hyperbolic well-connected seed i = (F, X, T, ) where F' = {f}, X = {z}, I is the following
graph
1S

and let ¢ be a R-linear automorphism of D satisfying the conditions 3.2.8. Here Iy = {1,}
and I, = {1}. We have the following infinite cluster set;

X(1) = {z, A+ A+ )78 A4 N (14 1) A+ )7 27 (A4 )R (4 ) e 1+
f)*, k € Z}. In this case, this seed has no frozen rank, and so condition 3.2.11 is not satisfied.
So even if ¢ is of finite order we still have an infinite cluster sets. In the subsection 3.2.3,

we will see how this seed is related to first Weyl algebra.

3.2.2 The groups of cluster automorphisms

Definition 3.2.14. An R-linear automorphism ¢ of D is called a cluster automorphism of

a seed i if it leaves the cluster set x(i) invariant as a whole set. The group of all such
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automorphisms is called the group of Cluster automorphisms of i and is denoted by H|[i].
Right and left cluster automorphisms groups denoted by H*[i] and H”[i] respectively can
be defined in the same way by replacing the cluster set of i by right and left cluster sets

respectively.

Open Problems 3.2.15. For a given (hyperbolic) seed 1 = (F, X, T, ¢) describe the group

of all cluster automorphisms of i (resp., to right and left cluster automorphisms).

The following proposition and theorem provide a big class of cluster automorphisms of

some seeds.

Proposition 3.2.16. If i = (F, X,T', ) is a well-connected weak hyperbolic seed then ¢

gives rise to an infinite set of cluster automorphisms of 1.

Proof. Fix a well-connected hyperbolic seed i = (F, X, T, ¢). For every [ € Z we define an

R-linear ¢; automorphism on D induced by

¢i(t)=t, Vt€ R and ¢ (z) = @' (i), Vk € [1,n], (3.2.17)

where (ai,...,a,...,a,) is the frozen rank of i.

In the following, we prove that ¢; is a cluster automorphism for every [ € Z.

First, for nonnegative integers. Let [ = 1. Lemma 3.2.12 tells us that, the action of this
automorphism on the cluster variables of i is identified with the action of the sequence of

the mutation automorphisms sz(uf)2, which corresponds to the sequence of mutations

ij(uf)? So, ¢ sends every cluster variable in X to a cluster element of i which is a
cluster variable in the seed Hii?(ﬂf)z(l) By definition of ¢, one can see it does depend
only on the frozen rank of i which is invariant under mutation, thanks to proposition 3.2.9.

Now, let x be any cluster element of the seed i, then it is a cluster variable in some seed

j, which can be obtain from i by applying some sequence of mutations say 47 ... /*. Then
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from lemma 3.2.12, we must have ¢;(z) is a cluster variable in the seed [[;=r(uf)?(j) =

k=n

k=1 (1)

it pit (1), ie., it is a cluster element of i, and this proves it for [ = 1.

For [ > 2, one can see that, the action of ¢; on the elements of X is the same as the
action of (T[;=7(1f*)?).. Then, following the same argument as above we can see that ¢;(z)
sends every element in X to a cluster variable in the seed ( "= (uf)?) (1), and the case of
an arbitrary cluster element x is the same as [ = 1 with the obvious changes.

Second, the case of [ is a negative integer is similar, with using the left mutations rather

than the right mutation, i.e., the superscript R will be replaced by L when it makes sense,

and use the equations 3.2.14 instead of equations 3.2.15. O

Remark 3.2.17. Let S,, be the set of all seeds of rank n in D, which share the same set
of frozen variables F' and b,, be the set of all the graphs of the elements of S,, with set of
vertices I = F U [1,n]. Let &,, be the symmetric group in n letters. We have, &,, acts on
0, as follows, for I € v,, and ¢ be a permutation in &,,, o(I") is obtained from I' simply by

permuting the vertices of I'.

Lemma 3.2.18. Let I' be a graph as defined in 3.2.1. Then for any sequence of mutations

gy Mgy 5 -+ -5 Py, WE have
O (fig iy - - Hir (D)) = Ho(ig)Hotin_y) - - - Ho@i) (0(D)), Vo € G, (3.2.18)
Proof. Part (1) of theorem 2.1.7. O

Theorem 3.2.19. Let i = (F, X,T") and i’ = (F, X', T") be two elements of S,,, such that

[ = o(I'), for some permutation 0 € &,. Then the automorphism Tj; , induced by

Ty (O) =t,Vt € R, and Ty (i) = @), is a cluster automorphism of 1. (The theorem

can be phrased for left mutations as well)

Proof. The proof will be broken into three steps.

Step one:
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Since I'" = o(T'), one can see 73% = 777" and 7% = F5,00)

Then

Tiy (nip(en) = Tiyr (Mc(*) + Mo(5Y))

= Mo(r2"®) + Mo (F770)
Hi (k) (x;(k) ).

Second step: In this step we show,
Tui(i)ug(i)(i),d(:uui(i)k(/lii(‘ri))) = Tii’,a(ﬂm(i)k<:uii(Ii)))> Vi’ ke [17 TL] (3'2'20)

For k # 4, we have #m(i)k(ﬂii(%)) = pi;(;), then

—>i 7
T pnae (0.0 a0k (1136(20))) = Ty 0y 0.0 (Mo (T37) + M (771))

= Mc(7779) + Mo (F770)
= Tiyo(ppk((2:)))
= Tii/g(,Uui(i)k<,ufii(xi)>)'

Third step: For any cluster element y € x(1), 754, (#1,(¥)) € x(1).
y must be a cluster variable in some seed. Then, j = p;, i, _, ... pi, (1) = (F,Y,T) for some

sequence of mutations. Lemma 3.2.18 implies

TJ i/J(Y) = ,ug(ik)(,ug(ik_l) . ‘Na(i1)<X,))7 (3.2.21)

which means Tj i/’a(y) is a cluster variable in j" = fy() oy y) - - - Ho(in) (1), where j° =

Ho(ig)lolip_y) - - - Ho(iny (1), From 3.2.19, 3.2.20 and induction on the length of mutations

sequence, one can deduce

T3i 4

Y)=T

ii'e

(Y). (3.2.22)
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Remark 3.2.20. The group of all Cluster automorphisms is invariant under mutation.

More precisely, for any seed i, the following equation is satisfied

H[i) = Hpy, (1)] = ... = Hlpj pgy -y, (1)] oo = ... (3.2.23)

However, the equation is not satisfied for right and left cluster groups, and even the inclusion

is not guaranteed.

3.2.3 Hyperbolic cluster algebra

Definition 3.2.21. A quadrable h = (R, X,[',0) is said to be a hyperbolic feed (weak

hyperbolic feed) in D, if
e R is a commutative sub-ring of D.

o X = (z1,...,x,) € D" such that the division ring of fractions of the ring R[X] is an

R-automorphic copy of D.
e I' as in the definition 3.2.1. satisfying the condition (3.2.7) (resp., to (3.2.10)).

e 0 =(0,...,0,) is an n-tuple of commutative ring automorphisms of R satisfies

ot = 07 (r)at, Vie[l,n], VreR. (3.2.24)

Definition 3.2.22. Mutations in hyperbolic feeds is defined in same way as in the case of

hyperbolic seeds, with the obvious change by leaving the commutative ring R invariant.

One can notice that, if h = (F, X, I, ) is a hyperbolic seed then taking R = Z[P] as
defined in 3.2.1, we may have a hyperbolic feed with the same data of i if there is an

R-automorphisms {6;} , satisfies equations (3.2.24).

Definition 3.2.23. The Hyperbolic Cluster Algebra. For a hyperbolic feed h =

(R, X,T',0) (resp., to a hyperbolic seed i = (F, X,I',¢)), the hyperbolic cluster algebra
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H(h) (resp., H(i)) is defined to be the R-subalgebra (resp., R-subalgebra, R = Z[P], P is
the free abelian group generated by elements of F') of D generated by the cluster set y(h)

(resp., to x(1)).

Remark 3.2.24. Let h = (R, X,T',0) is a hyperbolic feed (resp., to 1 = (F, X, T, ) is
a hyperbolic seed) with 6 = idg (resp., to ¢ = idp), relaxing the conditions (3.2.7) and
(3.2.10). Then the hyperbolic cluster algebra H(h) (resp., to H(i)) coincides with the geo-
metric Fomin-Zelevinsky (commutative) cluster algebra associated to the seed p = ()? 1),

where X = F'U X and in this case D is a (commutative) field.
Theorem 3.2.25. Leth = (R, X, T',0) be a hyperbolic feed of rank n with X = (xq,...,2,)
and & = xhay, (resp., & = xpwy) then the following are true:

1. R(1) :==R(&,071,n) is a hyperbolic algebra of rank n (resp., to R(&,0,n)).

2. p(1) (resp., uk(i)) is again a hyperbolic feed.

3. Right and left mutations on feeds define isomorphisms between hyperbolic algebras from

part (1).
4. There is an isomorphism ¢ : R(i) — R[aT, ..., xt], where R[x5, ..., xF] is the ring
of Laurent polynomials in x4, ..., x,, with coefficients from R . More precisely, every

element z of R(1) can be written uniquely as linear combinations of cluster monomials

of the initial cluster X.
5. Let R = Z[P], then we have

H(i) = R(i). (3.2.25)

Proof. To prove first part, since Nj (zx) C R for all k € [1,n], then 2}z, = & € R (resp.,
to zpr,). For r € R. Then we have, x3r = 0x(r)xy, Vk € [1,n] since i is a hyperbolic feed.

Also, we have
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= éa;,:lr = §9,;1(7“)x,:1 = 9,;1(7“)555-’1 = Ogl(r)x;.

7

Other commutation relations of the hyperbolic algebra structure are immediate from the
commutation relations of the hyperbolic feeds and feed mutations, (left mutation case is
quite similar).

Part (2), let pf(i) = (R, X’,T,0). By the definition of mutation on I' it is easy to see
that; since N5 (zx) C R for all k£ € [1,n] then Nyr(iy(ay,) C R for all k € [1,7n], (resp., to

left mutation on i), which means z}x; = & € R (resp., to zxx,). We have

air = &l = Gapré Tt = & 0k (r)ml = 0, (r) ek = Oy (r)a”,

and

wp =G G = G rEt = 0 ()& 6 = 6 (r)a

Also, since Nj (zr) UNj (zx) UR is an empty set for every ¢ € [1,n], then x; commutes with

& for @ # k, and hence

1 1 _ .
zhr; = gy = Gyt = vyt = 1, Vi € [1,n).

This finishes the proof of part (2).

To prove part (3), consider the R-linear automorphism on D, denoted by Tfi’ L D — D,

and induced by, x — ), and x; — z;, Vi # k € [1,n]. The restriction of this automorphism
on R(i) induces the following algebra isomorphism T\iRi' : R(1) — R(i), given by r —
r,¥r € R, and z), — £x,' = x,,Vk € [1,n]. which implies 2} — &€ " = . Finally,
it is easy to see that the hyperbolic commutation relations (3.1.1) and (3.1.2) are invariant

under T2, (the argument for TX,, and TL., is quite similar).
ii ii’, ii

ik
For part (4), By definition 3.1.1 and part (1) above, we have R (1) is generated by R and

/

Z1,...,x, and o, ..., 2, with relations (3.1.1) and (3.1.2) replacing y;’s with z/’s. Let m
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be any monomial in xy,...,z, and 2}, ..., 2/, first part of relations (3.1.2) can be used to
remove every possible sub monomials of the form z;2; and replace them with &. So, m
can be written as a monomial from the following direct sum of non-commutative rings of

polynomials

D =TR'z] @7 Rz @ (2R [x)]) & 7 "Rz 1), (3.2.26)

where RY = R[z{ ...,z 27, ...,2F]. The ring D inherits the multiplication and the
relations of R(i). Finally, consider the map v that sends every monomial from R(i) to
itself after applying the relations (3.1.1) whenever possible. One can see that 1) is an
isomorphism.

For for part (5), we have H(i) is generated over R by the cluster elements of i, and a
random cluster element A can be written as h = glel g2, where g; and g, are elements of
R, thanks to the condition Nj(zx) C R, and zy is an initial cluster variable. Since, g € R
.

then g = j;tl njf;yj, where a;,n; € Z. Then

j=t
h = glel anfjaj
j=1
j=t
= g1 ) (0(f;) i € R(1).
j=1

Which means H (i) € R(i), and the other direction is obvious.

]

Corollary 3.2.26. 1. Every hyperbolic cluster algebra, comes from a hyperbolic feed (resp.,
to a hyperbolic seed) satisfies the conditions of theorem 3.2.26, is a hyperbolic algebra

i the sense of definition 3.1.1.
2. Deeper interpretations for for part (3) of theorem 3.2.26;

(a) every vertex of the cluster pattern of a hyperbolic feed i gives raise to a hyperbolic
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algebra, the collection of all such hyperbolic algebras forms a scheme of hyperbolic

algebras glued by the homomorphisms ffi"

(b) From representation theory point of view, the homomorphism fiRi/ imduces a func-
tor on the category of representations of the hyperbolic algebra H(i), replacing the
action of x;’s by the action of x}’s. In the special case of Weyl algebra A, T\iRi’
as a functor on the category of representations of the weyl algebra A,,, exchanges
the action of the deferential operators with the multiplication by the corresponding

ndeterminant.

(c) T\iRi’ coincides with the the canonical anti-automorphism mentioned in [30] page 62,
which is plays an essential role in describing the representation theory of hyperbolic

algebras.

3. The hyperbolic algebra of rank 1, R(1) is isomorphic to R[z] ® x~'R[z™!].

3.3 Examples

3.3.1 The Weyl algebra

Example 3.3.1. Let A, be the Weyl algebra of 2n variables x1,...,x,,y1 ..., y, satisfying
the relations (3.1.3). Consider the following seed i = (F,Y,T'), where Y = (y1,...,y,) with

F ={&| & = yiwi, 1 < i < n} is the set of frozen variables, with F; = {&} and T is the

graph
; Y W - (3.3.1)
'1/ '2/ '3/ P "n*l/ —_— ',n/

where [1,n] corresponds to the elements of Y, and [1’, /] corresponds to the elements of F'.
Let P be the free abelian group generated by the elements of F' and written multiplicatively.

The hyperbolic cluster algebra H(i) corresponding to A, is the Z[P]-subalgebra of the
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division ring of fractions D of the ring K[P|[Y], (we could take D to be the field of fractions
of A,) generated by the cluster set of the hyperbolic seed i = (F,Y,I', ), where ¢ is a
Z[P]-linear automorphism of D induced by ¢(z;) = yiz;y; * and o(y;) = &y ' One can
see that ¢ is an infinite order automorphism satisfying (3.2.8) and (3.2.9), and i is not a
well-connected seed. In the following we will see that its cluster set is infinite.

A hyperbolic feed associated to A,,.

Consider the following assignments; R := K[&1,...,&,] and 6 = (64, ...,0,) where

&1, ifi=j,
0, : R — R given by 6;(§;) =

&, ifi#]
These choices make h = (R,Y,T,0) a hyperbolic feed in D. This hyperbolic feed satisfies
all the conditions of theorem 3.2.26, then the mutation on the feed h provides us with an

infinite class of Weyl algebras connected (glued) by algebra homomorphisms induced by

mutations.

The cluster set of the seed i, x(i): Since uf () = (& + 1)y, ' = 7, k € [1,n], we have

[ -
(Y1 s Yhm s Ubs Ykt - -5 Un) = (W1, Ukt (S + D)Yp Yt - -+, Yn)

= (yla"wykfl;wk?yk«H---,yn)

U

(yla s Y1, Yk, YR+1 - - - >yn)

Then, the right mutations in the directions 1,2, ..., n cover all the generators of the Weyl

algebra A,,, which means the fact
A, — H() = R(h). (3.3.2)

Notice: The same phenomenon occurs if we start with 1 = (F, X, T') with X = (x1,...,z,)
and apply left mutations rather than right mutations.

Yet, the mixed sequence mutations plpuft and pfiul act like identity on every seed (feed)
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in the cluster pattern of h, but the cluster set of i is an infinite set because the unmixed

mutations sequences never reproduce the seed (feed) i again, as we will see in the following

™

I _
(yb e Ye—1, Yk Yyl - - - 7yn) (y17 e Y1, Y l(gk + 1)7yk+1 R 7yn)

s -
(yh ey Yk—1, (gk + 1) lyk‘(gk + 1>a Ye+1 - - - ayn>

pE 1

= v G+ D)y (G D Yk )

B -

:k> (yly ey Yk—1, (gk + 1) 2yk(§k + 1)+2)yk+1 cee 7yn>

Hg —j -1 j+1

= WU G+ D)y G+ D Yk 5 Un)

:k (yh ey Yk—1, (fk + 1) (j+1)yk(§k + 1)+]+1a Yk+1 - - - 7yn)

and
R
(:L‘h"':xk—l;m/mxk-i—l"-axn) £ (mla"'wrk—h(ék_’_l)x];17xk+1---axn)

b _

(1,1, G+ D& + D)7 2pgr -, 20)
R

£ (1, oy o1, (& + 1)2:U,;1(£k + 1) 2 2)

pft -

= (wy,.we, (G D) PG+ 1) Ty T)

oy GH+1,.—1 —j
(1,1, G+ 1) T2 (S + 1) mpg -, )

pi ; (i

= (21, e, (G DT (6, 1)U g y)

Also, since Nj(xy) does not contain any non frozen initial cluster variable, for every k €
[1,7n], one can see that pfult and pltult (vesp., to pFul and pFpk) act in the same way on

any seed (feed) in the cluster pattern of i. Therefor the cluster set of i can be restricted
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only to the following elements

X(@) = {y ot (G D)7 (G DT G+ D (G + 1) € NE € [1nl}

U {@&+ 17y G+ D77 (& + D Py + 175 e Nk e [1,n]}
= {zr, o w (G D e (G + 1) (G + 1) P& + 1) 75 € Nok € [1n]}
U {(& + D)2 (& + 177 (G + D) + 1755 e Nk e [1,n]}

The cluster patterns of the first Weyl algebra A;.

Let Ay = K < z,y > [J(zy — £ — 1), where £ = yx, consider the following seed i =

(R,y, 1— 11 ), where R = Z[P], P = {y™;n € Z} the free group generated by y, written

multiplicatively . We have the following cluster patterns for this case

e T(i)

R Y3 R Y2 R Y- R Y=% R YP R Y2 R Y3 R (333)
L L L L L L L L e

(here <——- is left mutation and .~ is right mutation). Which can be encoded by
the following equations

Yk+1Yk = Yryk+1 + 1, for k € 2Z, (3.3.4)
YkYkt1 = Yeo1ye + 1, for k €27+ 1. (3.3.5)

These equations are equivalent to say that, each arrow from the cluster pattern corresponds
to a copy of the first Weyl algebra, denoted by A} = K(yi,yr+1),k € Z and mutations
define algebra maps between these Weyl algebras, given by Tj, : A¥ — AM1 s 4y for

k € Zso, and Ty, : AY — AIfH, Yr — Yp_1 for k € Z .

Remark 3.3.2. Fomin-Zelevinsky finite type classification [16] does not work in
this case. In the case of the first Weyl algebra A, = K < z,y > /(zy — yx = 1)
with the seed i = (£ = yx,y, 1 — 11 ) here i is of A;-type as a cluster algebra based
on Fomin-Zelevinsky finite type classification however x(i) is an infinite set, which means

Fomin-Zelevinsky finite type classification does not work in this case.
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3.3.2 The coordinate algebra of SL,(2,k).
Recall definition 3.1.1. Consider the following hyperbolic feed h = (R, z,[',0), where R =

Klu,v] and 0 : R — R given by 0(f(u,v)) = f(qu,qv) and I" is given by

oy - (3.3.6)

Consider the set of frozen variables F' given by F' = {qu,v}. In this case we deform the

1

mutation (right and left) as follows, mutation of ¢ is ¢~ ', i.e., for example u(quv + 1) =

g tuv + 1.

Remark that; h satisfies the conditions of theorem 3.2.26 and the conditions of the well-
connected seeds.

One can see the right mutation on h will produce the following new feed b’ = (R, y,I",0),

since

pix) = (¢ lww + Dt =&t =y. (3.3.7)

and I is as follows

oy 0 (3.3.8)

Applying left mutation on h’ produces the original seed h. Also, we have,

A(SLy(2,k)) = R(n) = H(h) (3.3.9)

The cluster set of h: Let ( = quv + 1. We have

X(h) = {z, g™, & a7 177 j € NP Uy, &y¢, ¢y 16771, j e N
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3.4 Irreducible representation arising from the cluster

graphs of Weyl algebras.

In the following we introduce a family of indecomposable and irreducible representations for
the Weyl algebra A,, arising from its cluster pattern. We speculate the same representations

can be introduced for any hyperbolic algebra with a hyperbolic cluster structure.

Definition 3.4.1. Let h = (F,Y,I',0) be the hyperbolic feed of rank n, introduced in
example 3.3.1. In addition to the n-th Weyl Algebra A,,, we have the following algebras

related to h.
e The Hyperbolic cluster algebra #(h).

e The algebra B = K(y1,...,Yn)[¥},---,y,], the algebra of polynomials in the first gen-
eration cluster variables pff(y;) = y,i € [1,n], (resp., to uf(y;) = yl,i € [1,n]), with

coeflicients from the field of fractions of the initial cluster variables.

e The algebra B = K(&,...,&,)[x(h)] the algebra of polynomials in the cluster set of h

with coefficients from the field of fractions of the frozen variables.

Remark 3.4.2. We have the following inclusions
B+ A, = H(h) — B, (3.4.1)

i.e., The hyperbolic cluster algebra is an intermediate algebra between the n-th Weyl Algebra
and the algebra B.

Motivations: The representation theory of the the three algebras A, and the algebras B,

and B are closely related, see for example [3].

Definition 3.4.3. Space of Representations V,,. Let h = (F,Y,T',0) be a hyperbolic

feed (resp., to seed) of rank n. A cluster monomial of h is a monomial formed from cluster
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elements that are showing up (at least once) as cluster variables in some feed in the cluster

pattern of h. To visualize it, the monomial m = 2161 2P B € Zso,i € [1,n] is a cluster
monomial if (z1,...,2,) is the cluster of some feed in the cluster pattern of h. In case of

Bi € Zso, Vi € [1,n], m is called a full cluster monomial.
The space of representations V,, is defined to be the K (&, ..., &,)-left span by the set of

all cluster monomials of h.

Lemma 3.4.4. For any hyperbolic feed h (resp., to hyperbolic seed), the space of represen-

tations V,, is independent of h, and depends only on T(h) the cluster pattern of h.

Proof. The statement of the lemma is equivalent to say that any two hyperbolic feeds
(seeds) in the cluster pattern of h have the same cluster pattern. To see this fact; let £ be
any hyperbolic feed in T(h). Then, f can be obtained from h by applying some sequence of
mutations, without lose of generality we may assume it is a sequence of right mutations only
say uﬁ . .uﬁ. But part 3 of lemma 3.2.6 tells us that we can obtain h from f by applying
the (same length) sequence of left mutations ,u{; e uiLl which finishes the proof. However, we
may realize this fact by recalling that any two vertices in the cluster pattern are connected

by two oppositely directed pathes. O

Remark 3.4.5. In the case of h is the hyperbolic feed associated to the Weyl algebra or the
coordinate algebra of SL,(2, ), the situation is easier since in this case a cluster monomial
is any monomial formed from any set of cluster elements. In order to see this fact we need

to recall the following two, easy to prove, combinatorial proposition.

Proposition 3.4.6. If h is the hyperbolic feed associated to the Weyl algebra or the coordi-

nate algebra of SL,(2, K), then the following are true

1. For any set of n (or less) different cluster elements, not including two elements produced
from the same wnitial cluster variable, there is at least one seed in the cluster pattern

of h which contains all of them.
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2. For z1 and zo any two cluster elements produced from the same initial cluster variable,

then we have two cases for their product;

e if 2o can be obtained from z1 by applying sequence of mutations of odd length, then
Z122 € K(€17 s agn)

e if z5 can be obtained from z1 by applying sequence of mutations of even length, then

2129 can be written as gz3, for some g € K(&1,...,&,).

A left action of the algebras A,, %, and B on V,,.
Consider the following notations; let Y = (y1,...,y,) be the initial cluster, for ¢ € Z>, y;+
denotes the cluster element obtained from the initial cluster variable y; by applying one of
the following sequence of mutations (u)! if t > 0 or (uF)! if ¢ < 0.

Using the above notation, a typical element of V,, can be written as a sum of monomials

like the following monomial

v = f(gh s 7€n)ylﬁ’1qnl e ygfmn, (342)

where f(&1,...,&) € R, and (By,...,B,) € Z%, and (my, ..., m,) € Z".
A left action on the general term v is defined as follows

Ui(0) = F(Enr s G 07 (G, o € - U U U (3.403)

zi(v) = 0;(&) f (& &1, 00(&), - - ,fn)yffml s 'y;@i}}mi_lyf%i+1yiﬁﬂ}mi+l e ‘ygfmn- (3.4.4)

Lemma 3.4.7. 1. The action of x; and y; is invertible. In particular, the action is com-
patible with mutations, and hence is defined for all cluster elements, and the action of

x; can be recovered from the action of y;, for every i.

2.V, is aleft A,, 2B, and B module with the action induced by the action of the initial

clusters y;, defined above.
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Proof. 1. If y;! and ;' denote the inverses of y; and z; respectively, then we have y; *
acts like 071 (&;)x;, and x; ' acts like & 'y;. For the rest of the statement is an immediate
calculations recalling that p;(y;) = (1 + &)y; ' = ;.

2. The action is consistent with relations (3.1.3). One can see (x;y; — y;x;)(v) can be

written as follows

Bit1

= xi(f(&,- 56, 9;1(@‘)7 Sty - 7£n)y118,1ml i .y’iﬁiEjmi—lyfini+lyi+l,mi—l " ygnmn)

— yi(0(&) Fr e & 0i(&) it E) Y, 'yiﬁi_l,lmi,lyiéini—i-lyiﬂ—;j,lmﬁ-l ey )
= 0, f (&, &, 91-_1(9(51'))7 Sivls - ,fn)y’ﬁlml e yf_ilm_ly?myfﬁlmﬂ T ygnmn)
= G0 EDF s G (07 D) E) Y U e Ve U it Y
= (0:(&) — &)v

= .

In a similar way, one gets (z;y; — y;z;)(v) = 0, for i # j.

]

Example 3.4.8. Consider the hyperbolic feed (seed) i introduced in example 3.1.1. The

i-th branch of the cluster pattern T(1) is as follows;

(yl,mlwnayi,miflv""yn,mn) R R (yl’mlv'-"yi,miﬁ’lv""yn,mn)

L L

(yl,"ll 7~~~,yi,m¢ PR 7yn,mn)

(3.4.5)
Here, right mutations go to the right direction and left go to left. For sake of simplicity,
we skipped labeling each vertex by the whole seed data and kept only the cluster variables,
since the other data are all invariant under right and left mutations in the i-the direction.

In this case, V,, is the left K (&, ..., &,)-linear span generated by the following set

{yflml . yﬁ"mn| for m = (my,...,m,) € Z",and B = (B,...,Bn) € Z%,}. (3.4.6)
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3.4.1 Cluster strings and the string submodules of V,,.

Before introducing the cluster strings we need to develop some notations. For b € Z, we

have

( b—times
0(0(...0(-))), if b >0,
0°(—) = { idg, if b =0,
b—tJiIrLes
07107 (...07Y(—)), ifb<o.

Consider the following two sets of monomials in elements from the set {6°(£);b € Z}
M*(8) = {1, 0¥ () - 0" 1(&™) g, t € Lo},
M™(8) = {L, 0¥ (™) - 0™ )|g + £t € Z<o}
Now we are ready to introduce one more set of monomials, M ()
M(&) == {mymy|my € M*(§) and my € M~ (£)}. (3.4.7)

Let R be any one of the following rings K[(1,...,&,], K(&1,...,&,) or K[P], and A be
any of the algebras A,, B or B. Let E = {&, ..., &5}, The set of all monomials formed
form the elements of E' is denoted by M(E).

Fix a natural number / € N and a 1-1 map o : [1,1] = Z%; x Z". Let 8 = (B1,...,5) €
(™)', and m = (mq,...,my) € (Z%,)" be such that o(j) = (01(j), 02(j)) = (8, m;), where
o1(3) = B; = (Bj1, - - -, Bjn) and 02(j) = mj = (myj1,...,mjn),J € [1,1].

For t = (t1,...,t,) € Z" and h € R, we introduce one more important subset of R

a(t,h) == {eay - - a,h(07 (&), ..., 0 (€))| ci € M(&),e € M(E),i € [1,n]}.  (3.4.8)

Definition 3.4.9. Cluster strings of base [. Every non-negative integer [, f = (f1,..., fi) €

Rl,andal—1mapo:[1,]] — 7% x 7" corresponds to a cluster string, defined as follows

l
Blj ﬂnj n .
S0, ) =AUt Ynomsnstyel 1= (tits - i) € 27, g5 € a(ty, f5),5 € [1,1]}.
j=1
(3.4.9)
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Example 3.4.10. A cluster string of base 2. Let | = 2, 04(1) = (1,0),01(2) = (1,2),

02<1) = (17 1)702<2) = (Oa 1)7 and f = (5% + ’5275251)7 we have for ¢t = (t17t2>
a(t, & + &) = {eanaa (07" (&) + 0(&))| o € M(&),e € M(E),i € [1,2]},

and
a(t,&1&) = {earml (§1)0%(&)| a; € M(&),e € M(E),i € [1,2]}.
With the above data we have

Sa2(0, f) = {g1011500, + 92104120 Y5 1 1100 |01 € (L, E5+E32), 92 € a(t,&162), 155 € Z,i, 5 € [1,2]}.

Definition 3.4.11. Let S;(o, f) be a cluster string. The sub module of V,, generated by
Si(o, f) is called a string submodule of base [ associated to S;(c, f). This submodule is

denoted by W;(o, f) and called a string submodule if there is no possibility of confusion.

Remark 3.4.12. Each element of V,, gives rise to a cluster string and hence a submodule

of V,,. To see that; every element v of V,, can be written as follows

Al Gy eyl & Gy

Where fi,..., f are elements of R, and a 1—1map o : [1,]] = Z%;x Z" can be defined such

that o(j) = (01(J), 02(4)), where o1(j) = (B, - - -, Bny) and 02(j) = (maj, ..., mn;),J € [1,1].
Consider the cluster string Sj(o, f), with f = (f1,..., fi). This cluster string is denoted by

S(v) and the submodule of V,, generated by S(v) denoted by W (v).

The following lemma provides some basic properties of the cluster strings.

Lemma 3.4.13. 1. The cluster strings are invariant under the action of every monomial

formed from elements of the set € = EU{x1,...,Tn,Y1,--.,Yn}, and we can recover
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any cluster string from any of its element. In particular for any cluster string Si(f, o)

and for any v € S(f,0)

l
M(EYW = D98 mprsn* Ynimttn| 1= (b1 1) € 27 g5 € At £)} € Silf.0).
j=1
(3.4.10)
Where M(E) is the set of all monomials formed from the elements of the set £. Hence,

for any string submodule Wi(f, o) we have
Wi(f,o) = Z copies of Si(f, o). (3.4.11)

2. 141U, then Si(o, f) # Sp (o', f).
3. For o =d', then S)(0,9) = Si(o, f), if and only if g € a,(t, f), for some t € Z™.
4. Let g = (g1,...,9n) with g; € ay,,(f,t;) for some t; € Z". Then Si(o’,g) = Si(o, f) if

and only if o'(j) = o(j) + (0,q¢;)Vj € [1,1] for some q; € 7.

Proof. 1. To see that the action of any element of M(E) on any element of Sj(o, f) is

again an element of S;(a, f).

We have z; sends f;(&, ... ,§n)yf%u ---yg%m to

Bj Bji— Bji Bji in
O (f5(€0 s 6mts 0i() G o &)Wy Y Vi aYimsr ™ Ynnsn
While y; sends it to
- Bj Bji— Bji Bji n
f] (517 te 757:—1’ 07, 1(6)’ €Z+17 te 7£n)y1,]7}7,]‘1 e yi,;njilflyi7](mji)—]_yi,‘;’l’l<;“l+1 e yrﬁzfmjn

Which means non of the base [, f nor the map o are changed under the action of
X1y, Ty O Y1, ...,Yn. Then they keep every cluster string invariant, and hence same
for every monomial formed from the set £. The same change will occur in each term of

the [-terms of every element of S;(f, o), which justify (3.4.10).
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Now, a random element of A is a linear combination of elements of M(E) with coefhi-
cients from the filed K. Remark that in the case of A = B, the inverses of x; and y;
still keep the cluster strings invariant, we refer to part one of lemma 3.4.7. Therefore,
any element of A will send any element of Sj(c, f) into a sum of elements each of them
is an element of S;(f, o), which proves that W;(o, f) is entirely included in a sum of
copies of S)(o, f) and obviously any sum of copies of Si(c, f) is included in Wi(o, f)
which finishes the proof of (3.4.11).

2. This is immediate if we recall that the maps o and ¢’ are 1 — 1.

3. (=) Obvious.
(<) if g € a(t, f) for some t = (t1,...,t,) € Z™, then there are a; € M(;), and
e € M(E) such that g = ea; - - o, f(07 (&), . .., 0 (£,)). Remarking that elements of
M (€) are invertible for any choice of R, then Si(f,o) C S;(g,0), and the other inclusion
is direct.

4. (=). It is easy to see that, if 01(j) = 01(j),Vj € [1,]], then ¢’ = o + (0, ¢;) for some
q; € Z".
Assume that o'(jo) # o(jo) + (0,¢;) for some j, € [1,] and for every ¢; € Z".
Then o(j) # 01(j). Then, the element 22:1 gjyffrfljﬁtﬂ o -yﬁj’,gww with of(j) =
(B1j, - -, Bnj), is an element of S;(¢’, g) but is not an element of S;(c, f).
(<) Immediate.

O

Lemma 3.4.14. For the cluster strings Si(o, f) with o : [1,1] — Z%, x Z", i.e., all the

cluster monomaals are full. The following are true.
1. Every submodule of V,, is generated by a set of cluster strings
2. Any two proper submodules of a string submodule Wi(o, f) have non-zero intersection.

In particular Wi(o, f) is indecomposable module, however it is not necessarily to be
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rreducible.

3. If Wi(o, f) is a string module with base l, then for any w € Wi(o, f) the string S(w) is

of base equals a multiple of [.

4. there is a bijection between the set of all cyclic submodules of V,, and the set of all string

submodules.

Proof. 1. We first notice that from parts 2 and 3 of lemma 3.4.13 and proof of part 8 of
this lemma, we conclude that every two cluster strings are either identical or have zero

intersection. So we can introduce the following equivalence relation
s ~ s if and only if s and s’ belong to the same string module. (3.4.12)
Let W be any submodule of V,,. Let W* = W/ ~. Then we have the following identity
W = @pew-W(w). (3.4.13)

2. Let W, and Wy be any two proper submodules of W;(c, f). Then, there are two non
zero elements w; € W; for i = 1,2. The above arguments guarantee that S(w;) and
S(wsq) are of bases [ and [y respectively, such that they are multiples of I, and not equal
to [, as we will see in the proof of part 7. WLOG assume [y < Iy, and [; = d;l,7 = 1, 2,
for some d; and dy natural numbers. Let [’ be the least common multiple of [; and [.

So, I' = nyl;, for some n; € N, i = 1,2. Consider the element

l/
w' = Zsi,where s; € S(v).

i=1
Here we show w' € W (wy) N W (wy):
Write

l
b b b) (b ; n
w1 = Z €§' )agj) T O‘Ezj)fj( )yﬁla . 'y’B ’ ) (3.4.14)

e
1,m]~1+t§1) n,mjnth].n

b b
(®) i

)
We have el € M(E), ol € M(&) , and f& = £, (&1),..., 03" (€.)), Vi € [1,n].
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Following remark 3.4.12, we can introduce the cluster string associated to w; as fol-

lows; Let o®(j) = (B;,t ) where 5; = (Bij,...,0n;), and t?- = (¢ tb

Tjr--ostni). Let

6 [1,l4] = 27, x Z7, given by 6(j) = o°(j) for j € [(b— 1),bl],b € [1,dy], and
f:(f117 n?"'afl?"' 'n,?"'7 17" fdl)ERll
Writing w’ in the same way we can see that

diny

w' e Z copies of S(w) C Z copies of S(wy).

i=1 =1

In a quite similar way we can show w’ € > | copies of S(ws).

But we have > ' copies of S(w;) C W(w;),7=1,2. Which means

w' e W(wl) N W(wg) (3415)

. The base of every cluster string contained in W;(o, f) is a multiple of .

To see that; let w be an element of Wj(o, f). Then w = av for some a € A and
v € Si(o, f). Here, a can be written as Z?Zl kie;, where k; € K*, and e; € M(E),Vi €
[1,n] ( eq,...,eq are different monomials). Each of e;, as we saw above, does not
change the superscripts of the monomials of v, however it change the second subscripts
simultaneously with the coefficients, such that the action’s output is still an element of
Si(o, f). Also, since o : [1,1] = Z2, x Z" i.e., B;; >,Vi € [1,n],j € [1,1]. This condition
guarantees that each term of v is a product of a coefficient from the ring R times a
full cluster monomial. So, the action of any element of M(&) must change every term
of v. Hence, in deed w = 327 | s;, where s; is an element of (o, f), for all i € [1,d).
Therefore, the element w = av is a sum of di-different terms where each term belongs
to a copy of Sj(o, f). Consider the cluster string S(w) associated to w. One can see
W (w) is of base dl and every cluster string contained in W consists of elements of W

i.e., every cluster string contained in W is of the form W (w) which is of base equals a
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multiple of .

4. Let W be a cyclic module generated by w. Then W (w) C W. To see the other direction.
We have every v € W is an element of a sum of copies of the cluster string S(w) which
is a subset of W (w). So the bijection is defined to send W to S(w).
Now let Si(o, f) be a cluster string. Fix a generic element w of Sj(o, f). One can
see S(w) = Si(o, f). So, Si(o, f) is sent back to W(w). Remark that, the above
argument shows that, every element of Sj(o, f) can replace w, i.e., S(w) = S(w’) for
every w' € S(o, f).

]

Corollary 3.4.15. 1. For every two elements w and w' of the string module Wi(o, f). If
w = Zle s; and w' = Zgzl si, where s; and s are elements of Si(o, f), for alli € [1,d],

then S(w) = S(w') and W(w) = W(w'), (immediate from the definition of cluster

strings and the above arguments).

2. For any string module W(o, f), every cyclic module is of the form Wy, f), where
d € Lo, & [1,dl] — T, x Z" with & = (61,65), and
61(3) = (Bi—inyrs - Bi—im), J € [+ 1, (i + 1)I],i € [o,d — 1],
520) = (... iy e zn vj e [1,dl]

7lo ' YIn

and f = (ff, .. L fb L fe ey,
® ®)
where [ = ;077 (&1),..., 00" (), Vi € [1,1],b € [1,d].

(Horizontal) Infinite base Cluster strings. Let V,, be the ring of all infinite series
formed by the set of all cluster monomials over the ring R. The action defined in (3.4.3)
and (3.4.4) can be extended to V,,. Now fix 3 = (Bi, ..., Bn) € Z~g. Consider the following

element

w(pB) = Z y/1871ml+tl o 'y7€7mn+tn- (3.4.16)
Denote the cluster string of w(/5) by S(8) and the string submodule by W (5).
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Theorem 3.4.16. For every 8 € Z2,, W(B) is an irreducible B module.

Proof. One can see the following

yw(B) =w(B) and z;w(B) = 0;,(§)w(P), Vi € [1,n]. (3.4.17)

Therefore, for any b € B, we have bw(f) = f(x1, ..., & )w(B), for some § € K(&,...,&).
Then Bw(p) = K (&1, ..., &)w(B). ie., W(p) is in fact a one dimensional vector space.

Then it is an irreducible B module.

3.5 Hyperbolic category

Definition 3.5.1. Hyperbolic category. Let A be an additive category with an n tuple
of auto-equivalences 6 = (64,...,0,) and an n-tuple of endomorphisms & = (§,...,&,) of
the identical functor of A. The hyperbolic category of rank n on A is denoted by A{#, ¢}
and is defined as follows:

The objects are the triples (v, M,n) where M is an object of A and v = (7y1,...,7,) and

n=(m,...,n,) are two n-tuples of A-morphisms, given by
Yi: M — 0;(M) and n;:60;(M)— M, i€ [l,n],
where
niov, =&m and yiomn =&, Vi€ l[ln] (3.5.1)

The morphisms from (v, M,n) to (7', M',n') are the n-tuples f = (f1,..., fn) of elements

of Mor. 4 (M, M’) which make the following diagrams commutative

M —"50,(M) L~ M |

Lfi L@‘(fi) Lfi
74 ;i

M —%0,(M") " M’

for i € [1,n].
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Example 3.5.2. Let R be an associative ring with ¢ an R-automorphism, and z a central
element of R, such that, R{¢, z} is a hyperbolic algebra of rank 1 in the two indeterminate x
and y. Let A =R —mod (the category of R-modules). The category H of R{¢, z}-modules
is equivalent to a hyperbolic category A{6, ¢} which is defined as; 6 : A — A induced by
the R-automorphism ¢ and for M € objets of A, £y : M — M is given by &(m) := zm.
Objects of A{0,&} are the triples (T, M,y) where M is an object in A, T : M — 6(M)

given by T(m) = xm and y : (M) — M given by y(m) = ym.

3.6 Hyperbolic cluster category

Definition 3.6.1. Categorical Seed. Let H be a category. A categorical seed of rank n
in H is the following data S = (0, ¢£,C) where

1. 0 = (b,,...,0,) is an n-tuple of auto-equivalences in H.

2. £=(&,...,&,) is an n-tuples of endomorphisms of the identical functor of H.

3. C is the following category;
Objects are the pairs (M,n), where M is an object in H and n = (m,...,7n,) is an

n-tuple of invertible elements of Mor.o (O(M), M) satisfy the following
nlofiﬁi(ej 0, (M)) &9 .05, (M) © T3, Uy Jks -5 J1 € [1,’”] (361)
Morphisms are f € Mor.c, (M,n),(M',n")) C Mov.yy (M, M') such that the following

diagram is commutative for every i € [1,n]

0,(M) "~ M (3.6.2)

|

0,(M") 2 M
Furthermore, if {0;;7 € [1,n]} and {&;i € [1,n]} are two sets of commutative functors,

then S is called a categorical hyperbolic seed.
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Example 3.6.2. Let R{¢, z} be a hyperbolic algebra of rank n in the the indeterminates z =
{z1,.. .,z and y = {y1, ..., yn}, with ¢ = {1,...,0n} C Aut.(R) and z = {z1,...,2,} C
Z(R) (center of R) and let A = ST'R[y;™, ..., yF!], where S = {2, #;(z); i € [1,n]}. Let
A = A —mod, and R = ¢, (A), where ¢, : A — R — mod, the functor that sends each
object in 2 to itself as an R-module forgetting the rest of the A-action. Let S = (6,&,C)
where 6 = (04, ...,0,) is an n-tuple of R-auto equivalences where 6; : R — R is induced
by ¢;, and £ = (&1,...,&,) is an n-tuple of endomorphisms of the identity functor of fR,
given by &w @ W — W where & (w) = 2; - w, i € [1,n], for any object W in fR.

Objects of C are pairs (M,7), where M is an object of R, and ¥ = (¥y,...,7,),
where g, : 0;(M) — M, y,(m) = y; - m for i € [1,n] and morphisms of C are given
by Mor.c((M,7),(M',5)) = Mor.g(M, M’).

In the following we will show & = (0,¢,C) is a categorical hyperbolic seed in 8. The

commutativity of {6;}", is due to the commutativity of {¢;} ;, ad the commutativity of

{&}7 is because {z1,...,2,} C Z(R). To prove 3.2, for t € 0}, ...6;,(M) we have

Yi&i0:(05,, .0, ) (8) = Y;(¢i(2:)1)
= yigi(zi)t
= iyt
= &y, .0, (v (T (1))-

Equations 3.6.1 are consequences of the equations y;0;(r) = ry; for any r € R.

Before introducing the categorical mutations we need to introduce the following mor-
phisms;

Sew W — W, Gw(w) =2, w.
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o W — W, &, w(w) =0k(21) - w.

oo W — W, &, w(w) =0k(2) - w.

SEW W — W, §E7W(w) = zk_l .

One can see that the following identity is satisfied
G © &ew = &ew 0 &y = idw, VE € [1,n],V W € objects of R.

Definition 3.6.3. Let S = (6,&,C) be a categorical seed of rank n in H.
e Right Categorical Mutations. The right categorical mutation on S in the k-direction
is defined as follows pff(S) = (5(_15, S,Cl(f’l)), where 5(_,5 =(01,...,6,",...,0,) and C](%k’l) is a

category with objects are pairs (0,(M), &k, (a1 © n. '), and morphisms are given by

Mor.cg,n((@k(M), oy © My 1), (O (M), Loy © M) = 0u(Mor.c((M,n), (M, 7))).
(3.6.3)

Second generation seeds Applying mutation on the same direction one more time gives

us p (i (S)) = (0,€, Cg’Q)), where the objects of Cl(f’z) are the pairs (M, &o,,11 0710 & g(apy)-
So, the right mutation rules are the following:

1. & is frozen.
2. 0 1is altered by replacing it by 6A?(k).

3. C®Y with objects are the pairs (W,v*D), where v = (v1,..., 1), is replaced by

C®tH) where its objects are given by
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;

(O (W), 54D, it

kyi+1) _ 1 oy
' (E4+1) pkt+l) — (U150 Vi1, €0, (M) O Vg s V15 - - -5 Vi), if T is even,
objects of Cp7 " =

(W, v ") with

J(Et+1)

= (v1,..., Vg—1,&0,.m © I/k_l, Vkily -+ sVn), if t is odd.
(3.6.4)

\

e Left Categorical Mutations. the left mutation rules for & and 6 are the same as

in the right mutations, and for ngk’t) with objects are the pairs (W,v®), where v =

C(Lk,t-i-l)

(1, ..., V), is replaced by where its objects are given by

p

(O (W), D) it

kt+1) _ ~1 o
. (bt 1) v D = (b vk, v 0 Eas Vi - - -5 Vi), if t is even,
objects of C} =3

(W, v D) “with

]/(k’t"’l) = (Vh e, Vg1, £E7M OV O €k,9(M)7 Vi1, .- - 7Vn)> th 18 odd.
(3.6.5)

\
The morphisms of C’ék’tﬂ) is defined the same way as the the morphisms of Cg’tﬂ).

Lemma 3.6.4. Let S = (6,&,C) be a categorical hyperbolic seed of rank n in A. Then the

following are true
1. ,ufl .. ./Lﬁ(S) is a categorical hyperbolic seed for any sequence of right mutations ule .. .,uﬁ
(resp., to pi ... i (S))
2. puipg(S) = ppi(S) = S, for every k € [1,n]

3. The categorical seed S together with the categorical seeds pii(S), ..., u(S) give raise to

a hyperbolic category (respect., to ut(S), ..., uk(S)).
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Proof. For first part, we prove it for right mutations and for the left mutations is similar with
the obvious changes. The proof is divided into into three steps; first notice that uft, ... uf
are commutative on S, this statement is a consequence of the identity p/*1f(S) = pftulf(S),
which is due to the commutativity of the following sets {&}1,, {6;}},, and {y;},. This
remark reduces the proof into proving it only for the case j; = ... = j; = k for some
k € [1,n]. In the following we show part (1) for sequences of length one and two, and for
the sequences of any odd or even length the proof is quite similar.

Secondly, we show that pff(S) is again a categorical seed. One can see that é\(_ls still
commutative.

Diagram (3.6.2) tells us that (6x(f) o nz)(m) = (. o f)(m),¥m € M. Then we have

the following consecutive identities are satisfied

& - O(f)on)m) = & ("o f)(m)
& Ot (m) = &+ (n,  (f(m))
0k () Erponmy (M) = Eroorm (. (f(m)))

Ou(f) o Erovonmi) = (o omg o f.
The last one says the following diagram is commutative

on—1
O (M2 A (3.6.6)

l9k(f) Lf

Op(M') ~— M’

Eko(a) Oy,

which is equivalent to the commutativity of the following diagram
13 o !
Ok (M) 20 (M) (3.6.7)

j(?k(f) 191(9160‘))
05 (M) ~— 6 (6(M))

k0 (M)
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To prove (3.6.1) we have; for ¢ # k no thing to prove. Now, let i = k

(&k.01(65,..0,, (M) © Ty 1) © Ek0=1 (05,05, 00 (0)) = (Ek(05,.05, (1)) © M ') © &k, .0, (1)
Ek.01(05,.-0,, (M)) © Ek,0,(65,..0;, (M) © Ty |
= Ek,,..0,,00(0) © (Ek.00(05,..0,,(M0)) © T 1 )-

The commutativity of 5(75 is used for the first and the last equations and (3.6.2) for n; ' for
the second. This finishes the proof for sequences of right mutations of length one.

Finally,the right mutations of length two, Altering xf'(S) by mutation in K-direction,
we get uftuli(S) = (6,¢,C%?), where objects of C*?) are given by the pairs (M, &, s 0 (3
& oo an)))- In the following we show that (6, €, C*2)) is a categorical hyperbolic seed.

First, we show (3.6.2) replacing ny, by &g, ar © (i © fﬁ,ek(M))

(€01 © (16 © G g, (a11)) © Eroary = Eopa © T
€007 © 1k © Eeo (M) © &G g, (1)
= &op 07 © et © Mk © &G, (11

= &m0 (Egy om0 (M © gﬁ,ek(M’)))'

For diagram (3.6.2), we have

fo (oo (Moo ) = om0 f ooy )
= o, oMy 0 Ok(f) o fz,gk(M/)
= (oomr om0 fg,gk(M/)) o O (f)-
To prove second part, the only thing need to be checked here is that; the categories uf (u£(C))
and pl(uff(C)) are equivalent. Actually, one can see that the category C will be reproduced

by applying pful or pFuft. which is straightforward to prove.

Here we prove part three for S and uff(S),..., u2(S). Let S = (6,€,C) be a categorical
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seed and consider the categorical seeds uf(S),k € [1,n]. We introduce the following full
subcategory C of C with objects are the triples (v, M,n), where v = (y1,...,7,) with
Ve = k.05, (M) © 77;;1, and M is an object of C. The conditions of the hyperbolic category are

immediate.

[]

Theorem 3.6.5. Every categorical seed in H is equivalent to one of the categories Rly;,i €

[1,n]] —mod or Rlx;,i € [1,n]] — mod.

Proof. Straightforward. O
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Chapter 4

Conclusion

The thesis consists of two main parts, first part comes in the first two chapters, and the
second part is chapter three. First part has to do with Fomin-Zelevinsky (commutative)
cluster algebras. In the second part we introduce a noncommutative cluster structure,
namely hyperbolic cluster algebra.

First chapter provides the reader with a short course on the basic notions and the
original motivations of the theory.

In the second chapter we introduce the group of the cluster automorphisms. The
main result of the chapter is giving three equivalent conditions describing the intersection
of the group of automorphism with the group of the field automorphisms which are induced
by mutations, (the exchange automorphisms). The theorem is proved for cluster algebras
satisfying the Fomin-Zelevinsky positivity conjecture. An open question comes out of this
chapter is; whether the positivity conjecture is a necessary condition for Theorem 2.2.3.

In Chapter 3 we introduce a non-commutative cluster structure on some hyperbolic
algebras. This class of algebras is studied and we provide some results on the cluster auto-
morphisms in this case. The cluster structure is been used to introduce representations for

Weyl algebras, similar representations can be defined for other hyperbolic algebras as well.
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Indecomposable and irreducible representations are described inside these representations.
Fomin-Zelevinsky finite type classification fails in this case. An open problem is to find
sufficient conditions for a hyperbolic cluster structure to be of finite type.

The last section of Chapter 3 is devoted to introduce a categorical version of the

hyperbolic cluster structure for the Weyl algebra case.

88



Bibliography

[1] A. Bernstein, S. Fomin and A. Zelevinsky, Cluster algebra III: Upper bounds and double Bruhat cells,
Duke Math. J.; math. RT/0305434.

[2] A. Berenstein, and A. Zelevinsky, Quantum Cluster algebras, Adv. Math. 195 (2005), no. 2, 405-455.

[3] Richard E. Block, The irreducible Representations of the Lie Algebra si(2) and of the Weyl Algebra,
Advances In Mathematics 39, (1981), 69-110.

[4] P. Caldero, F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math.
Helv. 81 (2006), 595616.

[5] P. Caldero, B. Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169211.

[6] P. Caledero and M. Reinke, On the quiver Grassmannian in the acyclic case, preprint (2006),
arXiv/mah:RT/0611074.

[7] E. Chapoton, S. Fomin and A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad.

Math. Bull. 45 (2002), 537-566.
[8] H. S. M. Coxeter, Regular Polytopes, Dover Publications, Inc. New York, 1973.
[9] J. Dixmier, Enveloping algebras, North Holland 1977.

[10] V. V. Fock, and A. B. Goncharov, Cluster Ensembles, Quantization and The Dilogarithm,

Ann.Scient.Ec.Norm.Sup, 42, 865-930, 2009.

[11] V. V. Fock, and A. B. Goncharov, Cluster Ensembles, Quantization and The Dilogarithm II: The
intertwiner, arXive:math/0702398v1 [math.QA]13 Feb. 2007.

[12] V. V. Fock, and A. B. Goncharov, The quantum Dilogarithm and Representations of Cluster varieties,
arXive:math/0702398v6 [math.QA]21 Jul. 2008.

[13] S. Fomin, Total positivity and cluster algebras, Proceedings of the International Congress of Mathemati-

cians, Hyderabad, 2010.

[14] S. Fomin and N. Reading, Root systems and generalized associahedra, arXive:math/0505518v2, 2005.

89



[15] S. Fomin and A. Zelevinsky. Cluster algebras I. Foundations. J.Amer.Math. Soc., 15(2):497-
529(electronic), 2002.

[16] S. Fomin and A. Zelevinsky. Cluster algebras II: Finite type classification, Invent. Math. 154 (2003),
63-121.

[17] S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients, Compositio Mathematica 143 (2007)112-
164.

[18] S. Fomin and A. Zelevinsky., The Laurent phenomenon, Adv. in Applied Math. 28(2002), 119-144.

[19] C. Fu and B. Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer.
Math. Soc. 362 (2010), 859895.

[20] D. Hernandez and B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. Volume 154,
Number 2 (2010), 265-341.

[21] B. Keller, Cluster algebras, quiver representations and triangulated categories, arXiv.org:0807.1960.
[22] B. Leclerc, Cluster algebras and representation theory, arXiv:1009.4552v1 [math.RT] 23 Sep 2010
[23] G. Lusztig, Semicanonical basis arising from enveloping algebras, Adv. Math 151 (2000), no. 2, 129-139.

[24] G. Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr. Math., vol. 123,
Brikhauser Boston, Boston, MA, 1994, pp. 531-568.

[25] G. Lusztig, Canonical basis arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990),
no. 2, 447-498.

[26] S. Mac-Lane, Categories for the working mahematicians, Springer-Verag; New York-Heidelberg-Berlin
(1971)

[27] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from spaces, preprint (2009)
arXiv:0906.0748v1.

. Nakajima, Quiver varieties and cluster algebras, arXiv. . .
28] H. Nakaji Qui ieti d cl lgeb Xiv.0905.0002
[29] O. Ore, Linear equations in non-commutative fields, Ann. of Math. (2)32 (1931)463-477.

[30] A. L. Rosenberg, Algebraic Geometry and representations of quantized Algebras, Kluwer academic

publishers, Dordrecht, Boston London, 1995.

[31] A. L. Rosenberg, Geometry of Grothendieck Categories, Preprint, Harvard, 1989.

90



[32] 1. A. Saleh, On the Automorphisms of Cluser Algebras, arXiv:submit/0138614 [math.RT] 3 Nov 2010

[33] P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and

affine types, Moscow Math. J. 4 (2004), No. 4, 947-974.

[34] A. Zelevinsky. Cluster algebras: Notes for 2004 IMCC (Chonju, Korea, August 2004),
arXiv:math.RT/0407414.

[35] A. Zelevinsky. Cluster algebras: origins, results and conjectures, advances in algebra towards millennium

problems, SAS Int. Publ. Delhi, 2005, pp. 85-105.

91



	Title Page
	Abstract
	Table of Contents
	Acknowledgements
	Dedication
	Introduction
	 Cluster Algebra Basics
	Preliminaries
	Quantum cluster algebra
	Cluster algebras and total positivity
	Cluster algebras and root systems

	Cluster Automorphisms
	Cluster groups
	Exchange groups

	Hyperbolic Cluster Algebras
	Hyperbolic algebras
	Hyperbolic cluster algebras
	Generalized and hyperbolic seeds
	The groups of cluster automorphisms
	Hyperbolic cluster algebra

	Examples
	The Weyl algebra
	The coordinate algebra of SLq(2, k).

	Irreducible representation arising from the cluster graphs of Weyl algebras.
	Cluster strings and the string submodules of Vn.

	Hyperbolic category
	Hyperbolic cluster category

	Conclusion
	Bibliography

