
>"' ''

MICROPROGRAMMING A PROPOSED
16-BIT STACK MACHINE/

by

STEVEN HOWARD CULP

B.A. , Mid-America Nazarene College, 1985

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

h

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

Approved by

,,-<? JTJS, y«-u?
Ma j or professor

,vi

E£OL

ms

C 2-

AllEOfl W"^7

SECTION

1

2

3

4

TABLE OF CONTENTS

Objectives

Abbreviations and Notation

Overview
The ALU Hardware
4.1 Operation of the 2901
4.2 The 2901 Control Bits

The Control Unit
5 . 1 General Structure

of the Control Unit
5.2 The 2910 .

5.3 The 2910 Control Bits

Main Memory
6.1 Main Memory Organization
6.2 Main Memory Access

Data Flow
7 . 1 Data Flow for

Memory Reference Instructions
7 . 2 Data Flow for

Register Reference Instructions

Instruction Set Definition
8.1 Goals of the Instruction Set
8.2 The Macroinstructions
8.3 Bit Formats

The ILL
9.1 Purpose of the ILL
9.2 ILL Description .

9.3 ILL Control Bit Specifications
9.4 ILL Examples

PAGE

3

6

11
11
13

24

24
25
30

34
34
34

33

38

40

41
41
42
43

55
55
5 6

62
84

TABLE OF CONTENTS (Cont.)

SECTION PAGE

10 Control Bit Summary 87
10.1 Next Address Generation

(2910) Control Bits 87
10.2 Arithmetic Logic Unit

(2901) Control Bits 87
10.3 BUS Control Bits 89
10.4 Control Bit Layout 90

11 Control Store 92

12 An Implementation Aid 9 5

12.1 Existence of a Tool 95
12.2 Parameters to be Specified ... 95
12.3 Dissection of the Program ... 97

13 Future Work 100

14 Conclusion 101

References 102

Appendix A — Control Bits
for Macroinstructions 103

Appendix B — Input File for
Generation Program 18 7

Appendix C — Control Store Memory Dump . . .19
Appendix D — Control Bit Generation Program . . 197

ii

LIST OF FIGURES

FIGURE PAGE

4.1

5.1
5.2
5.3
5.4

6.1

7.1

8.1

8.2

8.3

8.4

10.1

11.1

12.1

2901 Block Diagram

2910 Block Diagram
JMAP Flow .'

CJP Flow
CONT Flow .

Main Memory Format

Computer Block Diagram
with Control Bits

Bit Format for
Memory Reference Instructions

Bit Format for
Register Reference Instructions

Bit Format for
Branch Instructions

Bit Format for
I/O Instructions

Control Bit Organization

Control Store Memory Map

High-level Flowchart

12

26
29
29
29

35

39

49

51

53

53

91

94

98

LIST OF TABLES

TABLE PAGE

4 .

1

ALU Source Operand Control Bits
4 .

2

ALU Function Control Bits
4 .

3

ALU Source Operand
and Function Matrix

4.4 ALU Destination Control Bits
4.5 2901 RAM Register Definitions
4 .

6

Modes of ALU Operation
4.7 ALU Carry-In Determination Control Bits
4.8 BUS Select Control Bits
4.9 2901 Direct Data Select Control Bits

5.1 2910 Instruction Set
5.2 Status Condition Select Control Bits
5.3 Polarity Definition Control Bits
5.4 2910 D Inputs Select Control Bits

15
15

16
13
20
20
22
22
22

28
31
32
32

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. John J. Devore for the role

he played as being my Major Professor and for the guidance,

insight, and assistance he provided. I would also like to

express my appreciation to the Electrical and Computer

Engineering Department for its financial support and to the

faculty thereof for their influential contributions to my

education. My parents Raymond and Avis Culp who provided

the foundation of my motivation, are to whom my deepest

gratitude belongs. The immense depth of their interest and

emotional support is valued so very much.

1 — Objectives

This thesis presents the implementation of a specific

instruction set on the 16-bit microprogrammed stack machine

designed by Dr. Don Hush in 1982. The purpose for this

research was threefold:

1. to verify that an arbitrary instruction set

could indeed be implemented on the

predetermined hardware design;

2. to provide a simple, yet illustrative example

of microcoding; and

3 . to develop an implementation tool in the form

of a computer program which would

automatically generate the required control

bits.

Due to the nature of the research, little concern was

given to the optimization and eloquence of the microcode.

Instead, a rather straightforward, logical approach was

adopted, which should prove to be more conducive to the

learning process for students in the future.

Various instruction sets will place different demands

on the structure of a machine and because of this,

occasional tailoring of given design choices is expected.

This tailoring process entails any changes that must be

made to the machine's structure in order to implement the

desired instruction set. For the instruction set presented

in this thesis, these changes took the form of redefining

several registers and two status flags. The redefining of

these fields results in only minor changes in the original

architecture presented by Dr. Hush, and this is favorable

since paralleling his design as closely as possible was

desired. The changes made to Dr. Hush's design will be

noted in the text.

2_ — Abbreviations and Notation

The following is a list of abbreviations and a

definition of the notation used throughout the text.

Abbreviations

AC — Accumulator

ALU — Arithmetic Logic Unit

AND — The logic AND function

CPU — Central Processing Unit

CS — Control Store. The memory where the
microcode is stored

DCR — Device Code Register

ea — effective address. The address where
the data is stored

FS — Fast Stack

ILL — Intermediate Language Level

IP- — Instruction Register, i.e. the macro-
instruction register

IX — the X Index register

IV — the Y Index register

macroinstruction — a single instruction which is a member
of the instruction set specified by
the machine architecture

MAR — Memory Address Register

microinstruction — an instruction which specifies the con-
trol bits for a single cycle. Micro-
instructions are more primitive in
nature than macroinstructions, i.e. a
single macroinstruction is composed of

NA

N/D

OR

PC

PLR

RAM

ROM

RTN

3P

XOR

several microinstructions.

Next Address field

Not Defined

the logic OR function

Program Counter

PipeLine Register, i.e. the micro-
instruction register

Random Access Memory

Read Only Memory

Register Transfer Notation

Stack Pointer

the logic exclusive OR function

Notation

BUS

CARRY

IMMEDIATE

L 2,l

L 5-0

this refers to the system BUS and will
always be capitalized. Any other bus
referred to will be in lower-case
letters.

this refers to the CARRY status bit

the IMMEDIATE field in the pipeline
register

the comma indicates bits 2 and 1

the dash indicates bits 5 through

an arrow symbol indicates that a data
transfer will take place. At the end
of the given cycle, the data that is
located on the- BUS or in the register
to the right of the arrow will be

copied in the register to the left of
the arrow or loaded on the BUS,
respectively.

the equals sign indicates that no data
transfer takes place. Instead, the
specified register, control bit, etc.
on the left of the equals sign con-
tains the value on the right of the
equals sign prior to the execution of
the cycle.

Y <— M[X] — Brackets signify an access to memory.
At the completion of this transfer,
register Y will contain the contents
of memory, the location of which is
pointed to by register X.

() — parenthesis signify that an option is
available; one of the enclosed vari-
ables may be selected.

2 — Overview

The machine presented in Dr. Hush's Master's Thesis

was a 16-bit microprogrammed stack machine. The ALU was

designed using the Am2901 Four-Bit Bipolar Microprocessor

Slice, i.e. a four-bit chip-slice, which has 16 internal

registers. The top four registers were utilized as a "Fast

Stack" (FS) or small cache memory and four of these chip-

slices were connected in order to obtain a full 16-bit ALU.

The 2910 Microprogram Controller was used as a Next

Address Generator, which determines the next Control Store

(CS) location to be accessed. Each time a next address is

generated, the appropriate microinstruction is loaded into

the pipeline register (PLR), also known as the

microinstruction register. It is the contents of this

register that control the execution of each

microinstruction.

The machine originated by Dr. Hush had an undefined

architecture, but was intended to operate as a stack

machine. A stack machine operates by pulling the top two

operands off the stack, performing the operation, and then

pushing the result back on the stack. For a number of

reasons however, the microcode that was written for this

research assumed a single-address architecture. The

primary disadvantage of adopting a single-address

architecture point of view is that a degradation in speed

occurs. One operand that is to be sent to the ALU

generally lies in main memory which implies that a single-

address architecture machine accesses memory much more

frequently than a machine with a stack architecture. These

additional accesses to memory result in a slower machine.

The decision of opting for the single-address

architecture when writing the microcode was twofold.

First, the curriculum at Kansas State University favors the

single-address architecture approach to computer design,

and therefore students studying the microcode would already

be familiar with the sequence of events that must be

executed. Realizing that the purpose of this machine is

to serve as a teaching tool brings the second reason to

light; speed is not of critical importance. If some speed

is given up in order to have a machine that is easy for

students to understand, then the sacrifice is certainly

justified.

It is also for the sake of simplicity that the use of

four internal registers as a small cache memory has been

eliminated. This frees the four registers of the 2901 to

be used for other purposes and places the entire stack in

main memory, alleviating the need for certain TRAP routines

which considerably complicated the machine. (These TRAP

routines were necessary if an operation was to be

performed on the FS when it was in an inadequate condition,

namely too many or too few values on the FS)

.

The author's original intention was to build the

machine and implement the instruction set on actual

hardware. The four registers internal to the 2901 which

served as a small cache memory complicated the

implementation process to such an extent however, that the

decision was made to keep the entire stack in main memory.

When actually constructing the machine was observed to be a

bit too ambitious, the top of the stack (formerly the four

2901 registers) was left in main memory. The author made

this design choice due to the fact that the emphasis of his

research was on producing an educational tool. No

functionality of the instruction set is lost by allowing

the top four stack locations to remain in main memory;

indeed, instructions are executed at a slower speed, but

this is not important for an educational tool.

This thesis presents an implementation of a specific

instruction set on Dr. Hush's machine. Each instruction is

decomposed into a sequence of microoperations which are

expressed in Register Transfer Notation (RTN) . The

microoperations are then converted into Intermediate

Language Level (ILL) mnemonics. Just as macroinstructions

compose an instruction set, so these ILL mnemonics also

compose their own instruction set. This instruction set

will simply be referred to as the ILL. These ILL mnemonics

strongly resemble assembly language code, but careful

attention should be paid not to confuse the two. The

implementable instruction set is given in assembly language

code whereas the ILL represents the microcode. Each

individual ILL statement represents one microinstruction

and generally, several ILL statements are required to

complete a single assembly language command. The ILL is

one notch closer to machine code (the binary form of the

microcode), i.e. the ILL serves as an interface which

translates the assembly language commands to their

corresponding machine code. Just as a high-level language

(such as C, Pascal, Fortran etc.) command is broken down

into several assembly language commands, so an assembly

language command is decomposed into several ILL commands.

The resulting ILL commands in turn specify the l's and O's

required for machine execution.

The ILL presented within this thesis was created by

the author for the purpose of bridging the gap between the

instruction set and the microcode for this particular

implementation task; it is by no means a universally

accepted symbolic code.

Each ILL statement represents a single

microinstruction. The control bits for each ILL command

were then generated as they would appear in the Control

Store and pipeline register, and may be viewed in their

9

entirety in appendix A.

It is important to keep the following distinction in

mind while reading this thesis: a macroinstruction is one,

specific instruction in the instruction set. A

macroinstruction is executed by performing a series of ILL

commands or micro instructions. Each microinstruction has

its own location in the CS memory and is loaded into the

pipeline register when it is ready to be executed.

10

4 — The ALU Hardware

4.1 Operation of the 2901

The main component in the ALU hardware is the 2901, a

block diagram of which is illustrated in Fig. 4.1. This

chip features a 16-word by 4-bit two-port RAM and a high-

speed ALU.

The ALU has five possible sources which are passed

through a selector circuit composed of two multiplexors.

Each multiplexor has one output which is connected to an

input of the ALU. The first multiplexor is a 2-to-l

multiplexor which selects between the Direct Data or D

inputs and the ASEL field (to be defined shortly.) This

multiplexor's output becomes the R input to the ALU. The

second multiplexor selects one of three input fields: the

ASEL field, the BSEL field or the Q register output. The Q

register is a feature of the 2901 for enhanced execution of

multiplication and division routines that require a double

length operand and is not used in the implementation

presented in this thesis. The output of this 3-to-l

multiplexor becomes the S input to the ALU. Additionally,

both multiplexors have an inhibit capability which in

effect, loads a logic "0."

The RAM is addressed by address lines A
3 _ (A

3
through

A Q), a.k.a. the ASEL field, which select the A inputs to

the ALU, and B 3 _ , a.k.a. the BSEL field, which select the

11

\k-

RCB) RRM SHIFT 1(11

-H- RDDRESS '

> -

•* mwto\

\/
'' DHTB IN

IS RODRESSRBLE REGISTERS

'' FIODRESS

•R' DRTR OUT •»• ORTR OUT

DIRECT DRTR IN

N/ N/ \l/ \l/ \l/

J^ki
a<» Qt3)

a SHIFT

^ \kl

Q REGISTER

RLU ORTR SOURCE
SELECTOR

">

^ j^:

S-FUNCTION RLU

^k_ j^

OUTPUT DRTR SELECTOR

T.

Natai
HI I Unas ara
four blta widi

Figure 4.1 2901 Block Diagram

12

B inputs. Any two of the 16 RAM locations may be accessed

in parallel and provided as operands to the ALU. A third

input to the ALU may originate from the Direct Data In

input, through which data coming from a source external to

the chip enters the ALU. The Q register, as well as a

"logic 0" input may also serve as operands to the ALU.

These five sources are then passed through the selector

circuit explained above, with the outputs of this circuit

determining the R and S inputs to the ALU.

The ALU receives the two operands R and S, performs

the currently selected function on them, and stores the

result F in the local RAM prescribed by B
3 _ Q

. The option

of transferring data off-chip is also available. The data

to be transferred may either be the F output, i.e. the

result of the ALU function, or must currently reside in the

register addressed by the ASEL field.

The 2901 was designed as a bit-slice element so that

expanding it from a four-bit data flow to a 16-bit

data flow is accomplished merely by cascading four of the

2901s together. Because of this parallel cascading, the

2902 Carry Look-Ahead Generator is incorporated into the

ALU circuit to increase the speed of computations.

4.2 The 2901 Control Bits

The following section goes into considerable detail

13

about the control bits and how they affect the behavior of

the 2901. These and all control bits are stored in the CS

and are loaded into the pipeline register when they need to

be executed, and it is the variance of these control bits

that distinguishes one microinstruction from another.

Control bits I
2 -o determine the ALU source operands,

i.e. the R and S inputs to the ALU. These bits are

enumerated in Table 4.1. When microprogramming this

machine, the microprogrammer must decide which inputs are

to be used. If sources A and B are desired, then control

bits I2 _ would be assigned the values 001
2

. Similarly, if

the sources D and A were desired, then I
2 _o would be set to

101 2 .

I 5-3 determine which ALU function is to be performed

on the selected R and S inputs. These functions are listed

in Table 4.2 and are fairly self-explanatory, with three of

the functions performing binary arithmetic operations and

five performing logic operations.

Tables 4.1 and 4.2 may be combined into a single

matrix, shown in Table 4.3. I
2 _ are listed horizontally

across the top while I 5 _ 3
are listed vertically along the

side. As an aid in understanding the usefulness of this

figure, an example is now demonstrated.

Suppose that an XOR operation to be

performed on registers D and A is desired. Since

14

Table 4.1 RLU Source Operand Control Bits

RLU Source
Operands

12 11 10 R S

R Q
1 R B

1 Q
1 1 B

1 R
1 1 D R
1 1 Q
1 1 1 D

Table 4.2 RLU Function Control Bits

15 14 13 Funct 1 on

R p 1 us S
1 S m t nus R

1 R minus S
1 1 R OR S

1 R RND S
1 1 R RND S
1 1 R XOR S
1 1 1 R XNOR S

15

o

r-.
o
Q o +

- Q O 1

i

i a
a

Q O O Q)Q

_

CO O o +
+ o

I o
O i A ? a a O a K3

' a a !Q a In

o o O

,_

a I < K
a

i < 1 o Q e a la
< a

-1.

<
^r *

u

<
6 < +

<
i <
<

<
< i

i

< o < < w

u
5 U)

o D

n <
o*

CO +
m

1 CD
at

i a
CD 1

i

£D o CD CD KD

CM O
o"

a +
o I

°
4

° a o o a a

,_

i < i m
<

i a> < -c < < <r

< CD < V

_
i

>
o O

<"
o *
+ o < 1 n <? a O o a o a"

' o < < < <
< O < i

<

C
= 1-1 o

CO BE

J ml
ill

(0

1 1

01

cr

o
cr

CO

a a

Crt

DZ

9

CO

X
O
z

cr

o

>

*l °>L

m
dfi<J

DC

<
ex

<
tr

X
Ui

X
UJ

cr

1
2

_l
< w B
•~ 2

°
*

*• « £1 * W •a *. +

16

registers D and A are needed, I
2 _n are 101

2 , and

the XOR operation is performed by setting bits

l5_3 to no
2 . The concatenation of control bits

1-5-0 would then be 110101
2

.

The disposition of the result produced by the ALU is a

function of control bits I 8 _ 6 . A summary of allowed

operations and destinations is shown in Table 4.4. When

microprogramming this machine, the instruction set was

implemented in such a way that the I
8 _ 6 , RAM function and Y

output specifications were of primary concern. For

example, if the result of a given ALU operation needed to

be stored in one of the internal RAM locations, then any

value for I 8 _ 6 except 000
2 and 001

2 could be used.

Furthermore, if the result was not to be shifted, then

values of 100
2 through 111

2
for I 8 _ 6 were eliminated.

Thus, a choice of 010
2
and 011

2
remain available, and the

determination of whether the A select register or the ALU

result F should be relayed to the Y output dictated which

to use. If the F output of the ALU was desired, then I
8 _ s

would be set to 011
2 , otherwise I 8 _ 6 would equal 010,.

A
3 _ and B

3 _ are specified by the ASEL and BSEL

control bits, and it is these control bits that select one

of the 16 internal RAM locations defined in Table 4.5. A

slight deviation from Dr. Hush's design now occurs, i.e.

some register redefinitions have taken place. The main

17

i.

v m m m
* z xxxxzzmm
« tr MHli.li.
- a:

X
Ul

s H Q
z z XXXXQSZZ
tr a: LLhhke

L
+» •»»

c 3
>- a. u.b.aiu.ij.u.ii.L.

u *>

3
•f O
If.

X c
10 a
\ - T) OUUUauOU
c +» « a C C C 1 C a c

1 (VI 1

C J U.CCCN COC
4> 3 O (VI

u.

c
*. • -f

+» 0>M- 1) c
N u - CXX X 3 X Q.X
a L X 3
a 1 Ul C T)

13

o

_l

(£ c m m
o -a UODOBJaaCDCQ
« « C C a a I | A A

*• 4» 1 1 (VI (VI 1 1

_l C CltLWklL
xr c

3
Ik U. (VI (VI

a u_
+>

x z « II c c
A I - XXCC33Q.D.
1- a:x 3 3

Ul c c -a -a

CO S-*Q — S--(S-»
H

IN- as — — qh — —
H

CD QQ[9G|HH*4ri
M

IB

reallocations of which the microprogrammer should be aware

are locations 0000
2
and 0011

2
. These registers have been

changed from FS registers to a Device Code Register (DCR)

and an Accumulator (AC), respectively. Also, locations

1010
2
and 1011

2
have become the X Index register (IX) and

the Y Index register (IY).

The ALU can operate in a total of four, modes

determined by control bits Mj . Mode 00
2 is the typical

mode with registers A and B coming from the ASEL and BSEL

fields as specified in the PLR. Mode 11, is used for

register reference instructions and is also fairly common.

In this mode the A and B registers are taken directly from

the IR. Mode 10 2 is used for computing the ea when indexed

addressing is invoked, and allows the ASEL register (the

register to be indexed from) to be defined in the IR. Since

mode 01
2 deals with the Bottom Of Stack (BOS) register and

was initially designed by Dr. Hush to handle a certain TRAP

condition that could occur on the FS, it is never used in

this implementation. (These FS registers have been

reallocated to other uses and the stack relocated to main

memory, which completely eliminates the need for this

mode.) These mode functions are summarized in Table 4.6.

The value for the carry-in bit involves programming

two control bits: C in and 0/1. If c in equals 1, then the

carry in value is determined by the CARRY bit. If C in

19

Table 4.5 2901 RAM Register Definitions

RSEL op
BSEL 2301 Reglst er

0000 Dev 1 ce Code Reg 1 ster
0001 N/D
0010 N/D
001 1 Rccumu 1 ator
0100 TEMPI
0101 TEMP2
01 10 N/D
01 1 1 N/D
1000 N/D
1001 PC, Program Counter
1010 IX, X Index Reg 1 ster
101 1 IY, Y Index Reg 1 ster
1 100 N/D
1 101 N/D
1 110 SP
1 11 1 N/D

Table 4.6 Modes of RLU Operation

Ml M0
Reg . R
Se 1 ect

Reg . B
Se 1 ect

1

1

1

1

RSEL
RSEL
RCIR)
RCIR)

BSEL
BOS
BSEL
BCIR)

20

equals however, the carry in value is determined from the

0/1 control bit. In this way the microprogrammer can

either force or not force a carry in. This is illustrated

in Table 4.7.

Whenever a value from the Central Processing Unit

(CPU) needs to leave the 2901 to go to main memory, I/O,

etc., control bits BS^ must be set to 01,. BS stands for

Bus Select and it is through the BUS that the CPU

communicates with other chips and devices. Additionally,

the CPU status bits may be routed to the BUS by setting

BS 1,0 to 10
2

- Tat| l e 4 - 8 summarizes the BS-^ control bits.

Conversely, data enters the CPU from an off-chip

source through the D inputs by setting the control bit Bus

to 1. Bus must equal for Table 4.8 to apply.

The final set of control bits with which the

microprogrammer must be concerned for the 2901 is DS-,
,

listed in Table 4.9. These two control bits determine the

source of the external data inputs to the 2901. Recall

that the D inputs come from off the chip, and DS
1

determine the source of this input. Perhaps the most

common value for DS 1 is 00. This indicates that the

IMMEDIATE field of the PLR is fed into the D inputs. This

of course, is very useful when forcing an increment,

e.g. PC <— PC plus 2.

In summary, the general architecture of the 2901 has

21

Table 4.7 RLU Carry In Determ 1 nat 1 on
Control Bits

CC in) "Carry In" to RLU

1

0/1
CRRRY

Table 4.8 BUS Select Control Bits

BS1 BS0 Data to BUS

a
a i

i

i i

Nothing (safe state)
Y's from 2901
CPU status bits
N/D

Table 4.9 2901 Direct Data Select
Control Bits

DS1 DS0 D Inputs to 2901

1

1

1 1

IMMEDIATE
N/D
IR 2nd byte
N/0

22

been presented with special attention given to the control

bits and how they determine the operation of the ALU.

2 3

5 — The Control Unit

5.1 General Structure of the Control Unit

There are two main methods of control unit (CU)

implementation: hardwiring and microprogramming. When a

CU is hardwired, additional logic gates are needed, and

processes such as prime implicant identification, control

point gathering, etc. are performed. The particular CU

implemented for this research however, is microprogrammed.

Microprogramming differs from hardwiring in that control

bits dictate the flow of data and the determination of the

next address. These governing control bits are specified

by the microprogrammed as opposed to control signals being

produced by the hardware. It is the l's and O's of the

control bits that dictate exactly what happens during each

microinstruction. The previous chapter illustrated how

various control bits determined a specific operation,

specified where to store the result, and signaled what data

was to enter or exit the CPU. This chapter will parallel

hapter four in that the necessary control bits are

defined, but this chapter deals with the CU and the 2910

Microprogram Controller.

The CU of this machine is predominately horizontal in

nature as may be observed by the rather large, 67-bit

control word. The control word could alternatively have

been vertical in nature, resulting in a much shorter word,

24

c

but this would have slowed the execution time. As might be

expected, a trade-off is present: faster execution at the

expense of a large control word, or degradation of speed

with a small control word.

After a macro instruction is loaded into the IR, it is

executed by a series of steps specified by

m icroinstructions. A microinstruction that is ready to be

executed is transferred from the Control Store (where the

microcode is stored) into the PLR, and it is from the PLR

that the required control bits are used.

A microinstruction is usually composed of two major

fields which execute simultaneously. The first field

provides bits necessary for the ALU to function (discussed

previously), for memory and for I/O. The second field is

used for next address generation, i.e. determining which

address of the CS to access next. «

5.2 The 2910

The Next Address (NA) generation is accomplished

through the use of the 2910 Microprogram Controller, a

block diagram of which is shown in Fig. 5.1. The

microprogram counter is used when accessing the next

sequential CS location and is probably the block used most

frequently. However, other logic is present as well,

including a 9-word X 12-bit stack which can be used for

25

decrcmcnt/
hold/loob

^ eauntir

^k:

^

*
Zero

dateotor

or r upc

Multlpl.x.r

Inatrustlon
run

PUSH-TOP--HOl.Ilxa.EFlR

CLEFCfCOUNT

v
/

/ 12

"> Stuk
Paints*1

*

^Ll

9 aard X 11-blt
•tick

"71V

.'.»

->

H(oM>progri
oountar
r«gt «t«r

7r

"7T"

Figure 5.1 2910 Block Diagram

SB

nesting microinstruction subroutines. Any data entering

the chip from an external source enters through the D

inputs, and once the Next Address has been generated, it

exits the chip via the Y output bus.

The instruction set for the 2910 appears in Table 5.1,

and the vast majority of the microcoding was done using

three of the 16 instructions. These three instructions

are explained in detail.

Instruction number 2, JMAP, performs an unconditional

jump. The flow of such an instruction is illustrated in

Fig. 5.2, from which it is apparent that regardless of a

previous result or condition, control is routed out of the

normal next sequential address to a different address.

This new address is located in the NA field of the PLR

(microinstruction register) and must be specified by the

microprogrammer

.

Instruction 3, CJP, is a conditional jump instruction.

If a certain condition is met, a status flag being set for

example, a jump to another location is executed. Once

again, the NA field of the PLR provides this address. If

however, the condition is not met, then the jump is aborted

and sequential access is continued. Fig. 5.3 pictures the

conditional jump flow.

Fig. 5.4 illustrates the flow for the final

instruction that was most commonly used. This is the

27

ul

B
<z 1. a. 5 a. BL a.

1—

>
CL. £L CL a CL 0. 0. CL 0- CL CL LL

w
'-a o Q a o - O o Q

->
Q a Q o Q a Q a J o

a t- < _i

s* o d d d a d d d a d 3 d d d o O o D O
x u I I i X Z X X I X X X X -1 X -c r

-1

X
o
<

< I
/>

D
a.

D
d
X

d
X

X
t/i

0.

X
(/)

a.
d
X

O
d
X

o
d
X

0.

O
CL

o
d
X

d
X

a.

O
a

CL

o
a d

X

CL

o
a.

Q
_i

O
X

CL

O
0-

CL

o
CL

w o

2*

£
lu

> o Q a a o
0- Q a o IL a Q o

Q.
UL a o

CL £ S £ if

<n
z I
g I it cc Q a Q X X Q Q Q 0.

s

Q a Q a o a q Q CL

O
CL

t—
18

O < _i _i _j _i _J _i _i _l

o < UJ d o o D D O d O O o O o o o o O
Z> =1

<

t- X X X Q. CL I X X X X X X X X i X

K * -1
U)
z M

p
u.

rc3o Rf 3- o o
a.

a o O
Q. tr

o
Q.

cr u. a a o
a. E

u
CL

o
a.

LL cj
a LL a

UJ
_l
m
< X X X X X X X X

o
ft

o
I

o
t

o
t

X X X X X
O
*

CCO<->£

cr

fcz
tr

o

CL

o
0-

UJ

z
I

u
ti-

o 0,
cc

t
"0

z CL

z<
Ul

<
_! a.

q UJ
> cr CL

z
O 0- 8 8 CO

O
CC

CL

CD a.
a.

5
Q
2

er

CD

CL

2
CL

5 8
Q. Z

CL

5 >o
—i

a LU
>
<

cn < 3 O a> z> Z> "^O D X z 3 j5

0. a
3

Q
O
X o a Q S£ <

UJ D D z
a

LU

I—

Z
LU

2 z 5 Z Ul z z Z Cut- a. Z Z cn Z CC

X) O O D
8

o o UJZ UJ o O o LU 8 X
a O CL o u ceo s o o

o
1o
1H
2
3

(j 3

CL
< CL

X
c/1

X)
Q.

CL

X
<SI
->

> CL
X

t-
oC
£C

CL
n

z
p
CC

o

CL
CL

c3 1

CL

8
z

8

<D

o
o C\J o tfl to ID o> o - CJ a v in

V0L6ZUiV

28

-e—« i i
• 2 w «

Z
O
u
^-

in

i)

L
3
01

Q-

h
u

m

m

o
L

0)

/fr-

—

-

4)

29

a.

tr

r
h

in

L
3
0)

continue (CONT) instruction, and it merely causes the

microprogram counter to be incremented and the next

sequential address to be accessed.

5.3 The 2910 Control Bits

In addition to I
3 _ , a number of other control bits

are needed for proper operation of the 2910. Control bits

T
3 _ for example, specify which status condition to test

for and are listed in Table 5.2. Once again a slight

deviation from Dr. Hush's design has been made. TRAP1 and

TRAP2 flags, signified by T
3 _ being 0111

2
and 1000

2 ,

respectively, and were necessary only because of the

small cache memory located internal to the 2901, have been

replaced by N XOR V and Halt status flags. This

redefinition considerably simplified the microcoding.

For every test condition, the microprogrammer may use

positive or negative polarity. The control bit which

specifies this is POL, and POL equalling implies positive

logic; POL equalling 1 implies negative logic. Table 5.3

results.

The final two control bits required by the 2910 are

s l,0 and tnev determine the D inputs. Recall that all

external sources must enter the 2910 via the D inputs and

the possible sources are given in Table 5.4. The

definition of these bits is believed to be self-

explanatory, and any confusion that may be currently

30

Table 5.2 Status Condition
Select Control Bits

Tes t Fie d Se 1 ected
T3 T2 Tl T0 St atus

1

1 CRRRY
1 OVERFLOW
1 1 SIGN

1 ZERO
1 1 INTERRUPT
1 1 I/O RERDY
1 1 1 N XOR V

HRLT
1 N/D

1 NXD
1 1 N/D

1 N/D
1 1 N/D
1 1 N/D
1 1 1 N/D

31

Table 5.3 Polarity Definition
Control Bits

POL Test for:

1

TRUE (1

)

FRLSE (0)

Table 5.4 2910 D Input Select
Control Bits

SI S0 2910 Inputs

1

1

1 1

Next Address Field
IR 2nd byte
IR opcode
IR ea/opcode

32

present should be cleared when examples of actual

microinstructions are given.

3 3

6 — Main Memory

6.1 Main Memory Organization

The main memory of this machine contains 3 2k-words of

16-bits each, resulting in a total of 64k-bytes of storage.

The Hitachi 6116 static CMOS RAM was chosen by Dr. Hush to

implement the memory, and the 6116 is available with a 2k X

8-bit format. A full 64k-byte memory would then require 32

of these RAMs and they are arranged in 16 blocks as

illustrated in Fig. 6.1. Since Dr. Hush's design however,

Hitachi has produced a 61256 chip which is 32k X 8-bits.

Using the 61256 for main memory, only two chips would be

needed!

6 . 2 Main Memory Access

Inclusive in the hardware design for main memory is a

Memory Address Register (MAR). The MAR is a 16-bit

register which holds the address of the memory location to

be accessed during both read and write operations. As a

design constraint imposed by the author, the MAR may

contain only even-numbered addresses, thus forcing an

entire 16-bit word to be accessed each time memory is

invoked.

A Memory Buffer Register (MBR) is not needed in this

system since no handshaking sequence exists; all transfers

to and from main memory occur in two microinstruction

34

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

Block

1

2

3

4

5

6

7

8

9

10

1 1

12

13

14

15

BUS (0-7) BUS(8-15)

most
s

1
gn 1 f 1 cant
byte

1 east
s 1 gn

1

f I cant
byte

Figure B.l Main Memory Format

35

cycles.

A read instruction consists of two sequential

microinstruction cycles. In the first cycle the CPU sends

its data, i.e. an address, via the BUS into the MAR, where

in the second cycle the data is actually read. This of

course, suggests the use of control bits to govern these

operations. In the first microinstruction cycle BS-, must

be set to 01
2 in order to pipe the Y output of the 2901 to

the BUS. (See Table 4.8). Also LDMAR must be set to 1 to

enable the MAR to be loaded. For the second

microinstruction cycle, control bits MEMSEL and R/W both

must be set to 1, indicating that memory is being selected

and that a read operation is being performed.

A write operation is practically identical to the read

operation. It also requires two sequential

microinstruction cycles, the first of which parallels the

read operation exaclty and the second of which differs in

only one control bit; R/W must be cleared to 0, indicating

a write operation.

Summarizing, main memory is organized in 32k-words

with each word being 16-bits wide. In addition to the

6116s (or the 61256s), the other major component to the

memory hardware is a 16-bit MAR. All transfers to and from

main memory are performed in two sequential

microinstruciton cycles: one to send the address to the

36

MAR and one to transfer the data.

37

7 — Data Flow

A fairly detailed block diagram of the computer system

being microprogrammed and the governing control bits is

illustrated in Fig. 7.1. The diagram is given at this time

to aid the reader in conceptualizing exactly what happens

during the execution of an instruction.

7.1 Data Flow for Memory Reference Instructions

Memory reference instructions are four-byte

instructions. The first two bytes define the opcode and

the addressing scheme and are present in the IR upon

completion of the instruction fetch. Before the designated

opcode routine can be performed however, an operand located

in main memory must be received. In order to obtain this

operand the address where it is located must be computed;

this process is known as the effective address (ea)

calculation since finding the address where the actual data

is stored needs to be performed.

Numerous microinstruction routines have been written

to facilitate ea calculation and are presented in detail in

appendix A. Once the ea has been calculated, the data is

fetched and the operation prescribed by the opcode

performed. The result is then either stored in the

internal RAM registers or transferred to main memory.

g,
•H

7.2 Data Flow for Register Reference Instructions

Register reference instructions are two-byte

instructions, implying that after the instruction fetch, no

additional access to memory is required. The first byte

defines the opcode and the second byte indicates the source

and destination registers. After the instruction fetch,

the data flow is confined strictly to the 2901 ALU chip;

this is the reason register reference instructions execute

so rapidly.

Fig. 7.1 may appear a bit overwhelming at first

glance, but after studying and working with it for a period

of time the intimidating initial impression disappears.

At that point, it is certain the microprogrammer will find

that periodically referring to it will prove to be quite

beneficial.

40

8 — Instruction Set Definition

Up to now, the groundwork upon which the actual

research was performed has been laid. The reader should at

this point possess a working knowledge of the 2901, the

2910, of Dr. Hush's paper-designed machine and of the few,

minor changes that have been made to his machine. If

comprehension in any of these areas is weak, reviewing the

preceeding text and references [1] and [2] is strongly

urged.

The instruction set to be presented consists of 29

instructions, 11 of which are memory reference

instructions, eight of which are register reference

instructions, eight of which are branching instructions and

two of which are I/O instructions.

8.1 Goals of the Instruction Set

When choosing the instructions to be included, several

criteria were carefully weighed. First, the instruction

set should be confined to a reasonable number of

instructions, all of which in of themselves are basic, yet

when integrated into a whole, form a powerful programming

tool. For this reason, this machine may be considered to

have a Reduced Instruction Set Computer (RISC) nature,

although that was not its focal point.

41

Strong branching was also desired. Since control of

the flow for a program is dictated directly by branch

statements, a large number of branching options seemed to

be an inherent part of obtaining a powerful instruction

set.

In addition, subroutines were to be facilitated,

particularly the capability of nesting subroutines. By

allowing the programmer to nest subroutines, the depth and

complexity to which he may work has been substantially

increased, thus promoting more efficient programs.

Additionally, possessing the ability to nest subroutines

adds a touch of flare to any instruction set!

Finally, an assortment of addressing modes was sought.

The more methods possible in which a programmer may access

data relates proportionally to the efficiency and eloquence

of a program, and providing the programmer with these tools

was a primary goal. *

Successfully meeting the four criteria outlined above

should result in a highly efficient, workable instruction

set, and it is hoped that the instruction set listed in the

following section is found to be so.

8.2 The Macroinstructions

The instructions given below compose the instruction

set. These instruction are called macroinstructions, are

the equivalent of a given microprocessor's assembly

42

language, and are executed by a series of

microinstructions. Given with each mnemonic is its

expanded form, the Register Transfer Notation(s) (RTNs)

required, and a brief English description of what takes

place upon execution of the instruction.

Memory reference instructions are listed first,

register reference instructions next, branch instructions

following with the I/O commands concluding the section.

Each group of instructions are listed by increasing opcode

number which will be defined shortly. The instructions of

the instruction set follow.

Memory reference instructions

LAC — Load Accumulator
AC <— M[ea]

A read from main memory is performed and
the data is loaded into the accumulator.

SAC — Store Accumulator
M[ea] <— AC

The data stored in the accumulator is
written to main memory.

AND — logic AND operation
AC <— AC AND M[ea]

The data retrieved from the access to
memory is ANDed with the data stored in
the accumulator. The result is then
stored back in the accumulator.

OR — logic OR operation
AC <— AC OR M[ea]

The data retrieved from the access to
memory is ORed with the data stored in
the accumulator. The result is then

43

stored back in the accumulator.

ADD — ADDition operation
AC <— AC plus M[ea]

The data retrieved from the access to
memory is added with the data stored in
the accumulator. The result is then
stored back in the accumulator.

SUB — SUBtraction operation
AC <— AC minus M[ea]

The data retrieved from the access to
memory is subtracted from the data stored
in the accumulator. The result is then
stored back in the accumulator.

PUSH — PUSH accumulator on stack
SP <— SP plus 2

M[SP] <— AC
The Stack Pointer (SP) is adjusted so data
will not be overwritten. The data
located in the accumulator is written
to the memory location pointed to by
the stack pointer.

PULL — PULL off stack into accumulator
AC <— M[SP]
SP <— SP minus 2

The top data value on the stack is read
from memory and loaded into the
accumulator. The stack pointer is then
adjusted to point to the top valid data
location.

RTI — ReTurn from Interrupt
PC <— M[SP]
SP <— SP minus 2

Restore status registers
The address of the next macroinstruction
is loaded from the stack into the program
counter. The stack pointer is then
adjusted and the status register is
restored.

RTS — ReTurn from Subroutine
PC <— M[SP]
SP <— SP minus 2

The address of the next macroinstruction
is loaded from the stack into the program
counter. The stack pointer is then

44

adjusted.

NOP — No operation

There is no real reason for this
instruction; it just seems no instruction
set is complete without one!

Register reference instructions

INC — INCrement
(A 2901 reg.) <— (A 2901 reg.) plus 1
The selected register will be incremented
by 1.

DEC — DECrement
(A 2901 reg.) <— (A 2901 reg.) minus 1
The selected register will be decremented
by 1.

ROR — Rotate Right
(A 2901 reg.) <— ROR(A 2901 reg.)
The selected register will be rotated
right 1 bit. Note — the CARRY bit is
included.

ROL — Rotate Left
(A 2901 reg.) <— ROL(A 2901 reg.)
The selected register will be rotated
left 1 bit. Note — the CARRY bit is
included.

CLR — CLeaR
(A 2901 reg.) <—
The selected register will be cleared,
i.e. loaded with zeros.

COM — COMplement
(A 2901 reg.) <— COM(A 2901 reg.)
The selected register will be
complemented, i.e. a will become a 1 and
vice versa.

TFR — TransFeR
(A 2901 reg.) <— (A 2901 reg.)

45

The data currently in the source register
will be transferred to the destination
register.

HLT — HaLT
Halt execution of machine.

A NOP is continually jumped to with the
halt flag tested each time.

Branch instructions

BEQ — Branch if EQual
If "Z" = 1

then PC <— PC plus relative addresSoF
else PC <— PC plus
The "Z" status flag is tested. If set,
then the relative address is sign extended
and added to the program counter. If the
"Z" flag is clear, then is added to the
program counter. In either case, the
result is stored back into the program
counter.

BNE — Branch if Not Equal
If "Z" =
then PC <— PC plus relative addresscp
else PC <— PC plus
The "Z" status flag is tested. If clear,
then the relative address is sign extended
and added to the program counter. If the
"Z" flag is set, then is added to the
program counter. In either case, the
result is stored back into the program
counter.

BGT — Branch if Greater Than
If "N XOR V" =
then

if "Z" = o

then PC <— PC plus relative address
else PC <— PC plus

else PC <— PC plus
The "N XOR V" status flag is tested.
If it is set then is added to the PC. If

= SE

4 6

it is clear, then the "Z" status flag is
tested. If the "Z" flag is clear then the
relative address is sign extended and added
to the program counter. If it is set, then
is added to the program counter.

BLT — Branch if Less Than
If "N XOR V" = 1
then PC <— PC plus relative addressSEelse PC <— PC plus
The "N XOR V" status flag is tested. If
set, then the relative address is sign
extended and added to the program counter.
If it is clear, then is added to the
program counter.

BGE — Branch if Greater than or Equal
If "N XOR V" =
then PC <— PC plus relative addressqF
else PC <— PC plus
The "N XOR V" status flag is tested. If
clear, then the relative addres is sign
extended and added to the program counter.
If it is set, then is added to the
program counter.

BLE — Branch if Less than or Equal
If "N XOR V" = 1
then PC <— PC plus relative address™
else bE

if "Z" = 1

then PC <— PC plus relative address™
else PC <— PC plus

The "N XOR V" status flag is tested. If
set, then the relative address is sign
extended and added to the program counter.
If it is clear, then the "Z" status flag
is tested. If set, then the relative
address is sign extended and added to the
program counter. If clear, then is
added to the program counter.

BSR — Branch to SubRoutine
SP <— SP plus 2

M[SP] <-- PC
PC <— pc plus relative addressSEThe stack pointer is adjusted so that data
will not be overwritten. The program
counter is then pushed onto the stack and

47

the relative address sign extended and
added to the program counter.

BRA — BRanch Always
PC <— PC plus relative addressSEThe relative address is sign extended and
added to the program counter.

I/O instructions

DO — Do Output
Device <— AC
The accumulator will output its data to an
output device.

DI — Do Input
AC <— Data
The accumulator will receive data from an
input device.

8.3 Bit Formats

Instructions are either two or four bytes in length

with the opcode always occupying the first byte. The

second byte fulfills a variety of roles and the third

and fourth bytes provide either an address or data.

Details are now given.

All memory reference instructions must occupy four

bytes and Fig. 8.1 illustrates the prescribed bit format.

As previously mentioned, the first byte specifies the

opcode. Please note that the first four bits are all set

to l's. This signals to the CPU that a memory reference

48

Opcode Rddresstng Scheme

3 4 7 8 1112 15

1111 SUBOP Reg 1 step
Select

LRC

1 SRC

2 HND

3 OR

4 ADD

5 SUB

5 PUSH

7 PULL

8 RTS

9 RTI

R NOP

_ RC

_ 1 SP

_ 2 IX

_ 3 IY

_ 4 PC

Immed 1 ate

1 Direct

3 Ind 1 rect

3 Re 1 at 1 ve

4 Indexed

Figure B.l Bit Format -for Memory
Reference Instructions

instruction is being executed and that regardless of the

opcode, an ea calculation needs to be computed prior to the

execution of the instruction. This leaves four bits in

which 16 memory reference instructions may be defined.

The second byte specifies the addressing scheme and

the register to be used while the third and fourth bytes

provide either a data value or a relative address. Data is

provided by bytes three and four for immediate addressing,

the address of the data for direct addressing, the address

of the address of the data for indirect addressing, the

data to be added to the PC for relative addressing and the

register to be indexed off of for indexed addressing.

Examples of ea calculation for all of these addressing

schemes are given in appendix A.

Register reference instructions are two bytes in

length and their format is pictured in Fig. 8.2. A

register reference instruction is specified by setting the

first four bits of the opcode to 0001
2

. The last four bits

in the opcode indicate which specific operation to perform.

The second byte is also divided into two fields of

four bits each, and they determine the source register

(bits 8 - 11) and the destination register (bits 12 - 15)

for the instruction. These are loaded directly from the IR

into the ASEL and BSEL fields of the 2901 via mode 11, as

described previously in chapter four.

5

Opcode Register Select

3 4 7 8 1112 15

1 SUBOP Source
Reg 1 ster

Dest 1 nat t on
?eg 1 ster

INC

1 DEC

2 ROR

3 ROL

4 CLR

5 COM

6 TFR

7 HLT

RC

_ I SP

_ 2 IX

_ 3 IY
_ RC

_ 1 SP

_ 2 IX

_ 3 IY

Figure 8.2 Bit Format -for Register
Reference Instructions

The third format, illustrated in Fig. 8.3 is for

branching instructions. A branch instruction is indicated

by setting the first four bits of the opcode to 0010
2
and

allowing bits 4 - 7 to define the specific branch desired.

The second byte of a branch instruction provides a

relative address which must be sign extended and added to

the PC. The sign extension capability is performed via the

hardware designed by Dr. Hush and simply converts a byte

into a full 16-bit word. This is accomplished by copying

the most significant bit of the 8-bit byte into the most

significant byte of the newly formed 16-bit word!!

The final instruction format, viewed in Fig. 8.4 is

for the I/O instructions. The first seven bits must be

cleared to with the least significant bit indicating

whether an input or output command is being issued.

The second byte contains the device code to which the

data is to be either written to in the case of an output

command, or read from in the case of an input command. 2
8

combinations allow 256 I/O devices to be connected to the

system.

At this point a few words of warning seem appropriate.

The instruction set allows the programmer many capabilities

and careful attention must be paid to the detail in

specifying each task. For example, the instruction set

permits the programmer to clear the SP. Doing this in the

5 2

Opcode Rotative Address

3 4

BEQ

_ 1 BNE

_ 2 BGT

_ 3 BLT

_ 4 BGE

_ S BLE

— S BSR

? BRH

15

10 SUBOP

Figure B.3 Bit Format for Branch Instructions

Opcode Dev 1 ce Code

15

OUTPUT
1_ 1 INPUT

Figure B.4 Bit Format for I/O Instructions

vast majority of cases would prove detrimental to further

execution and successful completion of the program, yet

allowing this to occur is facilitated just in case the need

ever should arise. Also, rotating a given register and

then storing the result in a different register is

possible. The occasions where this is necessary are

probably more common than clearing the SP, but a frequent

use of this capability certainly isn't anticipated.

In summary, the instruction set has been given along

with a breakdown of the various bit formats. The function

of each byte of the four types of instructions, memory

reference, register reference, branch and I/O has been

defined and subsequently clarified.

5 4

9 — The ILL

9 . 1 Purpose of the ILL

To accommodate the generation of the control bits, an

Intermediate Language Level (ILL) instruction set was

developed, simply referred to from now on as "ILL." The

utility of the ILL lies in the realization that it aids in

bridging the conceptual gap present between the instruction

set and the l's and O's. The ILL lends the microprogrammer

an additional tool for microprogramming the machine and

should facilitate breaking down the macroinstructions into

their various microinstructions.

The ILL is a set of 42 commands which are used to

decompose the macroinstructions into their respective

control bits and the particular ILL developed was named

"Later Daze!" Once these control bits are generated,

they require only to be stored in the CS to obtain a

complete microprogrammed machine. The power of an ILL is

manifested once the microprogrammer becomes familiar enough

with it that he can think and program using the ILL.

Without an ILL, he must jump directly from the

macroinstruction level to the l's and O's which define the

microinstruction. The existence of an ILL will fill this

conceptual deficiency and thus act as an interagent between

these two levels of thought.

5 5

The particular ILL developed assumes a pseudo-assembly

language format, which should prove to be fairly easy for

the microprogrammer to become accustomed to. A thorough

understanding of each ILL command is essential for fully

utilizing the convenience and power of such a tool.

As one last reminder before the ILL commands are

introduced, it is stated that they strongly resemble

assembly language commands; in fact, some of them are the

exact same. However, care must be taken to distinguish

between assembly language commands and ILL commands; they

are in nowise identical! An assembly language command is a

member of the instruction set, a.k.a. a macroinstruction.

A macroinstruction is performed by execution of one or more

microinstructions, a.k.a. ILL commands. Each

microinstruction is represented by a unique ILL command.

9.2 ILL Description

ACTOBUS — BUS <— AC
The accumulator is transferred to the
BUS. This instruction is used for
I/O purposes.

ADD — AC <— AC plus D plus CinThe accumulator receives the sum of
what is currently in the accumulator
plus the D inputs of the 2901 (this
will usually be the result of an off-
chip access to memory) plus the value
of the CARRY bit.

AND — AC <— AC AND D
The accumulator receives the result of
a logical AND operation performed on

5 6

the contents of the accumulator with
the D inputs of the 2901.

CLR (A 2901 reg.) <—
The specified register will be cleared,
i.e. loaded with zeros.

COM — (A 2901 reg.) <— COM(A 2901 reg.)
The destination register receives the
complement of the source register.

DATATOAC — AC <— data
Data is read from memory and loaded
into the accumulator. This instruction
is used for I/O purposes.

DCRTOBUS — BUS <— DCR
The device code register is transferred
to the BUS.

DEC

FORPC

HLT

(A 2901 reg.) <— (A 2901 reg.) minus 1
The destination register receives the
result of decrementing the source
register by 1.

PC <— forced data
The program counter is loaded with a
forced data value. For this particular
implementation, the beginning address
of the macroinstruction interrupt
servicing routine is assumed to be at
location 100

J0 . This instruction is
used when an interrupt occurs.

The current instruction is a no-
operation instruction and execution is
halted.

INC

INCIASM

(A 2901 reg.) <— (A 2901 reg.) plus 1
The destination register is loaded with
the result of incrementing the source
register by 1.

SP <— SP plus 2
MAR <-- SP

Interrupt Acknowledge
The stack pointer is incremented by 2
and this result is transferred to the
memory address register. The interrupt

57

is then acknowledged.

INCPCMAR PC
MAR <-

PC plus 2
PCnew.mi_ .

rjew

.

The program counter is incremented by 2
and this result is transferred to the
memory address register.

INCSPMAR — SP <— SP plus 2

MAR <— SPnevThe stack pointer is incremented by 2
and this result is transferred to the
memory address register.

PC <— o
The program counter is loaded with
zeros.

INIT

LAC

LIRPCINC —

LPC

LPCRS

LTEMP1

NOP

OR

AC <— M[ea]
The accumulator is loaded with the data
read from memory.

IR <— M[ea]
PC <— PC plus 2

The instruction register is loaded with
the data read from memory and the
program counter is incremented by 2

.

PC <— M[ea]
The program counter is loaded with the
data read from memory.

PC <— M[ea]
Restore status bits

The program counter is loaded with the
data read from memory and the status
bits are restored.

TEMPI <— M[ea]
The TEMPI register is loaded with the
data read from memory.

No operation is performed.

AC <— AC OR D
The accumulator receives the result of

5 8

PCREL

PCTEMP1

ROL

a logical OR operation performed on the
contents of the accumulator with the D
inputs of the 2901.

PC <— PC plus rel. addr. SEThe program counter receives the result
of adding the program counter with the
sign extended relative address.

TEMPI <— PC
The TEMPI register is loaded with the
data currently in the program counter.

(A 2901 reg.) <— R0L(A 2901 reg.)
The destination register receives the
result of the source register being
rotated left 1 bit. The CARRY bit is
included.

ROR (A 2901 reg.) <— R0R(A 2901 reg.)
The destination register receives the
result of the source register being
rotated right 1 bit. The CARRY bit is
included.

SAC

SPC

SPMARDEC —

M[ea] <— AC
The accumulator is written to memory.

M[SP] <— PC
The program counter is written to the
location of memory where the stack
pointer is pointing.

MAR <— SP
SP <— SP minus 2

The stackpointer is transferred to the
memory address register and then
decremented.

SUB

TEMAR

TEMPADD —

AC <— AC minus D
The accumulator receives the result of
subtracting D from the accumulator.
The CARRY is included.

MAR <— TEMPI
The memory address register is loaded
with the data in the TEMPI register.

TEMPI <— TEMPI plus

5 9

TEMPC

TFRIA

TFRRR

TINT

(A 2901 reg.)
The TEMPI register receives the result
of adding the TEMPI register with the
specified register.

TEMPI <— TEMPI plus PC
The TEMPI register receives the result
of adding the TEMPI register with the
program counter.

(A 2901 reg.) <— (A 2901 reg.)
The destination register receives the
contents of the source register. The
source register is specified in the IR and
the destination register by the BSEL field
in the PLR. This instruction is used when
indexed addressing is being used.

(A 2901 reg.) <— (A 2901 reg.)
The destination register receives the
contents of the source register. Both the
source and destination registers are
specified in the IR.

MAR <— PC plus 2

Test for interrupt
The program counter is incremented by 2
and transferred to the memory address
register. The interrupt status flag is
tested.

TNV0

TNV0NC

PC <— (PC plus rel. addr, SE
/PC plus

Test for "N XOR V" =
Depending on the result of the test
condition, the program counter receives
the result of one of two sums: either
the program counter plus the sign
extended relative address or the
program counter plus zero.

Test for "N XOR V" =
The "N XOR V" status flag is tested to
see if it is clear. No computations
are performed.

TNV1 PC <— (PC plus rel. addr, SE
/PC plus 0)

Test for "N XOR V" = 1
Depending on the result of the test

60

condition, the program counter receives
one of two sums: either the program
counter plus the sign extended relative
address, or the program counter plus
zero.

TNV1NC — Test for "N XOR V" = 1
The "N XOR V" status flag is tested to
see if it is set. No computations are
performed.

TZ0 — PC <— (PC plus rel. addr. SE
/PC plus 0)

Test for "Z" =
Depending on the result of the test
condition, the program counter receives
one of two sums: either the program
counter plus the sign extended relative
address, or the program counter plus
zero.

TZ1 PC <— (PC plus rel. addr. qF
/PC plus 0)

Test for "Z" = 1
Depending on the result of the test
condition, the program counter receives
one of two sums: either the program
counter plus the sign extended relative
address, or the program counter plus
zero.

The same warnings mentioned at the end of chapter

eight also apply here. The ILL gives the microprogrammer

much power when coding microroutines, but this strength

also introduces the possibility of severe errors. For

instance, it is possible to increment a certain register

but store it in a different register! Likewise, a register

may be transferred to itself. Suffice it to say that a

solid understanding of each ILL command and its exact

function are vital to effective microprogramming.

61

9.3 ILL Control Bit Specifications

Each individual ILL command requires a specific set of

control bits to be set or cleared. These control bits are

related to the CPU, the BUS, and sometimes memory and I/O

devices depending on the particular command.

With the exception of the seven test commands, the

control bits driving the 2910 are independent of the ILL

commands. That is, the control bits associated with the

next address generation part of the microinstruction are

completely independent from the "action" part. As a result,

a complete microinstruction is a concatenation of two types

of control bits: those generated by the particular ILL and

those necessary for the next address generation. This

should be intuitively obvious since an operation is

performed with no prior knowledge as to the location of the

succeeding instruction.

With this in mind, the control bits for each ILL

command are now listed. Unless specified otherwise, all

value are given in binary. Clarifications are given in

section 9.4 for various operations that differ in their

method of transferring data. Note that these are not

complete microinstructions. Complete microinstructions,

ILL commands with the addition of the next address control

bits, are presented in appendix A.

6 2

ACTOBUS

2901
J5-0
c in
071

M1.0
ASEL

L 8-6

BUS
BS 1 ,0
I/O SEL

I/O S/D

= 000100
=
=

= 00
= 0011

= 000

01
1

A plus
"Carry in" =

Normal mode
AC

Don't store result

Result to I/O
as data

ADD

| 2901
I5-O
cin

=
000101
1

D plus A plus Ci
Cin from CARRY b

SS
BUS =

1

1

Set status bits
D inputs of 2901
come from BUS

»1.C
| ASEL

= 00
0011

Normal mode
AC

I§-6
|

BSEL =
010
0011

Result to AC

BUS
MEMSEL = 1 Read from memory

1
R/w = 1

6 3

AND

| 2901
I5-0
cin
0/1 =

100101 D AND A
"Carry in" =

ss
BUS =

1

1

Set status bits
D inputs of 2901
come from BUS

M1.0
ASEL

= 00
0011

Normal mode
AC

h-6BSEL
= 010

0011
Result to AC

BUS
MEMSEL = 1 Read from memory

1
R/w = 1

CLR

2901

£5-0

SS

BUS
BS 1,0

000111

= 1

Mi„o
= 11 Reg. ref. mode

ASEL 0011
1110
1010
1011

AC
SP
IX
IY

BUS = to D inputs
DSi

gImmed

.

= 00
= 00000000

r8-6 = 010 Result to
BSEL 0011

1110
1010
1011

AC
SP
IX
IY

00

D plus
"Carry in" =

Set status bits

Nothing to BUS

64

COM

DATATOAC

2901
110101 D XOR A

"Carry in" =

ss = 1 Set status bits

M
1A

= 11 Reg. ref. mode
asel = 0011 AC

1110 SP
1010 IX
1011 IY

BUS = FF16 to D inPu
DS 1,Q
Immed

.

= 00
= 11111111

I8-6 = 010 Result to
BSEL = 0011 AC

1110 SP
1010 IX
1011 IY

BUS
BS 1,0 Nothing to BUS

2901

=
000111

J5-0
D plus
"Carry in" =

Ml,0
= 00 Normal mode

BUS > 1 D inputs from BUS

BSEL
= 010

0011
Result to AC

BUS
I/O SEL = 1 Data from input

I/O S/D =
device onto BUS

65

DCRTOBUS

2901

Js-o

0/1

Ihtl

BUS

I/O'SEL

= 000100
=
=

= 00
= 0000

= 000

01
1

I/O S/D =

A plus
"Carry in" =0

Normal mode
DCR

Don't store result

Result to I/O
device as a
device code

DEC

2901

I5-O

0/1

ss

"1.0
ASEL

BUS
DS
Imiii

xd.

Ib-s
BSEL

BUS
BS

001101
.

1

11
0011
1110
1010
1011

00
00000001

010
0011
1110
1010
1011

1,0 = 00

A minus D
"Carry in"

Set status bits

Reg. ref. mode
AC
SP
IX
IY

1 to D inputs

Result to
AC
SP
IX
IY

Nothing to BUS

,3 6

FORPC

2901

a
5 '

Ml,0

BUS

Immed

.

000111

= 00

00
01100100

D plus
"Carry in" =

Normal mode

100 1Q to D inputs

BSEL
Oil
1001

Result to PC

HLT

BUS
BS 1.0
MEMSEL

R/W

10
1

Write CPU status
to memory

All control
bits set to

6 7

INC

2901
I 5 -0

S>2

ss

ASfiL

BUS
DS_
Imm

i
*a.

*8-6
BSEL

BUS
BS

000101

= 1

1,0

11
0011
1110
1010
1011

00
00000001

010
0011
1110
1010
1011

00

D plus A
"Carry in" =

Set status bits

Reg. ref. mode
AC
SP
IX
IY

1 to D inputs

Result to
AC
SP
IX
IY

Nothing to BUS

08

INCIASM

2901
m 000101I5-0 D plus A

071 =
"Carry in" =

ASfeL =
00
mo Normal mode

SP

BUS

5»i .9
Immed

=

00
2 to D inputs

= 00000010

I|-6
BSEL =

Oil
1110

Y <— F output
SP

BUS
BS 1,0
ldmAr :

01
1

Y output to BU.

INTACK = 1

6 9

INCPCMAR

2901
l5-0

=

000101 D plus
"Carry-

A
in" =

ML0
ASEL

= 00
1001

Normal
PC

mode

BUS

Immed

.

=

00
00000010

2 to D inputs

*8-6
BSEL =

Oil
1001

Result to PC

BUS
BS 1,0
ldmar =

01
1

Y output to BUS

INCSPMAR

I
2901
l5-0

0/1 =

000101
I

D plus A
"Carry in" =

ML0
asel =

00
1110

Normal mode
SP

BUS

Immed

.

= 00
00000010

2 to D inputs

Ig-6
BSEL =

011
1110

Y <— F output
SP

I
BUS
BS

1,0ldmAr =
01
1

Y output to BUS

70

INIT

LAC

2901
x3-0 = 000111 D plus
cin
071 -

"Carry in" =

Ml,0
= 00 Normal mode

BUS
DSL0
Immed

.

=
00

to D inputs

= 00000000

BSEL
= 010 Result to PC

1001

BUS
BS 1,0 00 Nothinc\ to BUS

2901
= 000111Js-o

071

D plus
"Carry in" =

ss
BUS

~ 1

1

Set status bits
D inputs of 2901
come from BUS,

Ml,0
= 00 Normal mode

BSEL =
010
0011

Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1

71

LIRPCINC

I
2901

j5-0
cin
0/1

=
000101 A plus

"Carry
D
in" =

M1.0
ASEL

= 00
1001

Normal
PC

mode

BUS
DSLQ
Immed. —

00
00000010

2 to D inputs

I|-6
BSEL

= 010
1001

Result to PC

BUS
MEMSEL 1 Read value from

R/W
LDIR

= 1

1

memory into ir

LPC

I
2901

Js-o = 000111 D plus

1

oH
=
=

"Carry in" =

BUS = 1 D inputs of 2901
come from BUS

Ml,0 = 00 Normal mode

X 8-6
BSEL

= 010
= 1001

Result to PC

BUS
MEMSEL - 1 Read from memory

1
R/W = 1

72

LPCRS

2901
= 000111Js-o D plus

071 =
"Carry in" =0

BUS = 1 D inputs of 2901
come from BUS

Ml,0 = 00 Normal mode

BSEL
= 010

1001
Result to PC

BUS
MEMSEL = 1 Read from memory

R/W = 1
RS = 1 Restore status b

LTEMP

2901
X5-0

5>!
=

000111

Ml,0 = 00

BUS = 1

BSEL
= 010

0100

BUS
MEMSEL = 1

R/W = 1

D plus
"Carry in" =0

Normal mode

D inputs from BUS

Result to TEMPI

Read from memory

NOP

All control
bits =

73

OR

|
2901
I5-0 = 011101 D OR A

0/1 =
"Carry in" =

ss = 1 Set status bits
BUS 1 D inputs of 2901

come from BUS

Ml„0
ASEL =

00
0011

Normal mode
AC

h-9BSEL
= 010

0011
Result to AC

BUS
MEMSEL = 1 Read from memory

1
R/w = 1

PCREL

2901

0/1

«1,0
ASEL

BUS
DS 1,0

SE

x 8-6
BSEL

BUS
BS

000101

00
1001

10

= 1

010
1001

1,0 = 00

D plus A
"Carry in" =

Normal mode
PC

2nd byte of IR
to D inputs

Sign extend

Result to PC

Nothing to BUS

74

.. ..

PCTEMP1

2901

cin
071

M1.0
ASEL

BSEL

BUS
BS

000100

00
1001

010
0100

1,0 = 00

A plus
"Carry in" =

Normal mode
PC

Result to TEMPI

Nothing to BUS

ROL

I
2901
I5-0 = 000100 A plus
cin

= 1 Include CARRY

ss = 1 Set status bits

Mlf
1 ASEL

= 11
0011

Reg. ref. mode
AC

1110 SP
1010 IX
1011 IY

BSEL _
110
0011

ROL - Result to
AC

1110 SP
1010 IX
1011 IY

BUS
1

BS 1,0
= 00 Nothing to BUS

75

ROR

SAC

2901
JS-0

= 000100 A plus
cin

= 1 Include CARRY

ss = 1 Set status bits

"lo = 11 Reg. ref. mode
ASEL = 0011 AC

1110 SP
1010 IX
1011 IY

H-6 = 100 ROR — Result t
BSEL = 0011 AC

1110 SP
1010 IX
1011 IY

BUS
BS 1,0 00 Nothing to BUS

2901
I 5-0

ss

ML0
asel

*e-6

BUS
MEMSEL

R/W

000100

00
0011

= 000

A plus
"Carry in" =

Set status bits

Normal mode
AC

Y <— F output
Don't store result

Write to memory

76

SPC

2901

o>2

Mi .0
asel

BUS
Bs l,0
MEMSEL

R/W

000100

00
1001

000

01
1

=

A plus
"Carry in" =

Normal mode
PC

Don't store result

Write PC to memory

SPMARDEC

2901

15-0 = 001101 A minus D

0/1 = 1
"Carry in" = 1

Mi*o
ASEL =

00
1110

Normal mode
SP

BUS
DS 1,0
Immed.

: 00
2 to D inputs

= 00000010

l%-6BSEL
- 010

1110
Y <— A select
Result to SP

BUS
BS 1,0
ldmAr =

01
1

A select to BUS

77

SUB

]
2901
I 5-0
cin

=
001101
1

A minus D
Consider Cj_

SS
BUS =

1

1

Set status bits
D inputs of 2901
come from BUS

ML0
| ASEL

= 00
0011

Normal mode
AC

X8-6
BSEL

= 010
0011

Result to AC

BUS
MEMSEL = 1 Read from memory

1
R/W = 1

TEMAR

2901

15-0
cin
0/1

ASEL

L 8-6

BUS
BS 1.0
ldmAr

000100

00
0100

000

01
1

A plus
"Carry in" =

Normal mode
TEMPI

Y <— F output
Don't store result

Y output to BUS

7 3

TEMPADD

2901

13-0
cin
071

M1.0
ASEL

BSEL

r8-6

BUS
BS 1,0

- 000001
=
=

= 10
= 0011

1110
1010
1011

= 0100

- 010

00

A plus B
"Carry in" =

Index mode
AC
SP
IX
IY

TEMPI

Store result

Nothing to BUS

TEMPC

2901
I5-O

0/1

"1.0
ASEL
BSEL

BUS
BS 1,0

= 000001
=
=

= 00
= 1001
= 0100

= 010

= 00

A plus B
"Carry in" =

Normal mode
PC
TEMPI

Store result

Nothing to BUS

7 9

TFRIA

TFRRR

2901

°\"
0/1

ss

M1.0
asel

Zg-s
BSEL

BUS
BS

000100

= 1

1,0

10
0011

010
0011
1110
1010
1011

00

A plus
"Carry in" =

Set status bits

Ind. addr. mode
AC

Result to
AC
SP
IX
IY

Nothing to BUS

2901
I5-6
cin
o/l

ss

M
AShi

BSEL

BUS
BS

000100

= 1

11
0011
1110
1010
1011

010
0011
1110
1010
1011

1,0 = 00

A plus
"Carry in" =

Set status bits

Reg. ref. mode
AC
SP
IX
IY

Result to
AC
SP
IX
IY

Nothing to BUS

ao

TINT

2910
T3-0 = 0101 Test for interrupt

2901
I5-0 = 000101 A plus D
cin
0/1 =

"Carry in" =

M1.0
ASEL

= 00
1001

Normal mode
PC

BUS
DS 1,Q
Immed

.

=

00
2 to D inputs

= 00000010

*8-6 = 000 Don't store result

BUS
BS 1.0
ldmAr =

01
1

Y output to BUS

TNV0

2910
T3-0

2901

BUS
BS 1,0

0111

= 00

Test for "N XOR V"

r5-0

=

000101 D plus A
"Carry in" =

Mi*o
asel =

00
1001

Normal mode
PC

BUS
DS 1,0

= 10
2nd byte of
to D inputs

IR

SE
TE =

1

1
Sign extend
Enable test to
force D inputs to

BSEL _
010
1001

Result to PC

Nothing to BUS

81

TNVONC

TNV1

2910

All other control
bits =

Test for "N XOR V"

2910
T3-0

2901

Js-o
cin
0/1

M1.0
asel

BUS
DS 1,0

SE
TE

BSEL

BUS
BS 1,0

= 0111

000101

00
1001

10

1

1

010
1001

00

Test for "N XOR V"

D plus A
"Carry in" =

Normal mode
PC

2nd byte of IR
to D inputs

Sign extend
Enable test to »

force D inputs to
Result to PC

Nothing to BUS

8 2

TNV1NC

2910

All other control
bits = o

Test for "N XOR V"

TZO

2910
= 0100T3-0 Test for "Z"

2901
I 5-0

=

000101 D plus A
"Carry in" =

asel
= 00

1001
Normal mode
PC

BUS
DS 1,0

=

10
2nd byte of IR
to D inputs

SE
TE

X8-6
BSEL

=
1

1

010
1001

Sign extend
Enable test to
force D inputs to
Result to PC

BUS
BS 1,0

= 00 Nothing to BUS

3 3

TZ1

2910
T3-0

2901
r5-0
c in
071

"1.0
ASEL

BUS
DS 1,0

SE
TE

I§-6
BSEL

BUS

0100

000101

00
1001

BS 1,0

10

010
1001

00

Test for "Z"

D plus A
"Carry in" =

Normal mode
PC

2nd byte of IR
to D inputs

Sign extend
Enable test to
force D inputs to

Result to PC

Nothing to BUS

9.4 ILL Examples

When writing the microcode and decomposing the

macroinstructions into their respective ILL commands, a

certain thought process must be adopted, and five examples

of this thought process are now given. This identical

procedure must be completed for every instruction in the

instruction set, and the examples were intentionally chosen

to illustrate the control bit generation approach for

instructions with diverse data flows. Note — looking at

8 4

Figs. 4.1 and 5.1 may be helpful while stepping through

these examples.

LAC — In order to load the AC, an access to memory

must be made. It is assumed that the ea has

already been computed and is currently in the

TEMPI register. The first thing that needs to

be done is to send the data in TEMPI, i.e. the

ea to the MAR. This is the ILL command TEMAR.

Once this is accomplished, the AC needs to be

loaded with the data to which the MAR is

referring. This is the LAC ILL command.

ADD This instruction also requires an access to

memory and as before, the ea is assumed to be

located in TEMPI. Transferring the ea to the

MAR is necessary, so TEMAR is called. The

next microinstruction must add the data read

to the AC and store the result in the AC.

This is the ADD ILL command.

PUSH — The value in the AC is to be pushed on the

stack. The SP is adjusted so that it always

points to valid data, therefore implying that

it must be incremented before pushing new data

onto it. This incremented SP value is then

sent to the MAR, and this is done by the ILL

85

INC

command INCSPMAR. Now the data in the AC must

be stored to where the MAR is pointing. This

is simply the SAC ILL command.

This example is practically trivial. The

given register is incremented. Obviously, the

INC ILL command is requested.

BEQ — This instruction requests a branch if the

result of a previous operation was equal to

zero. The "Z" status flag must therefore be

tested to see if it is set. The resulting ILL

command is TZ1.

Several of these examples required two ILL commands to

complete their execution. These commands need to be

executed sequentially, hence placing them sequentially in

the CS is the logical arrangement. The next address part

of all the "last" microinstructions would invoke a jump to

the microinstruction routine that fetches the next

macroinstruction. For this particular implementation

project, this was CS location 1000

8 6

10 — Control Bit Summary

Remembering and attempting to keep the numerous

control bits from avalanching into a hopeless state of

meaningless l's and 0's certainly may seem to be a sizeable

task. For this reason, a summary of all the control bits

is now given with an explanation of their function.

10.1 Next Address Generation (2910) Control Bits

I3-0 — These four bits determine which instruction the
2910 will execute. They are summarized in
Table 5.1, page 28.

T3-0 — If a status flag needs to be tested for a
conditional jump instruction, these four bits
indicate which status flag to test. They are
summarized in Table 5.2, page 31.

POL — This bit allows a test condition to be
performed for either positive or negative
polarity.

==> Positive polarity
1 ==> Negative polarity

s l,0 — These bits determine where the D inputs to the
2910 will come from. See Table 5.4, page 32.

— This is the Next Address field. This is a 12-
bit field which supplies a potential address
for the CS.

NA

10.2 Arithmetic Logic Unit (2901) Control Bits

J 2-0 These three bits determine eight possible
combinations for the ALU source operands.
These bits are summarized in Table 4.1, page 15.

I 5-3 - - These three bits determine eight possible
combinations for the ALU function. These bits
are summarized in Table 4.2, page 15.

8 7

cin This bit indicates whether the carry in value
comes from the CARRY bit or from 0/1.

==> Carry comes from 0/1
1 ==> Carry comes from CARRY bit

0/1 — This bit functions as a forced set or clear for
c in-

Ml,0 — These two bits determine four modes in which
the ALU can operate. See Table 4.6, page 20.

ASEL — This four-bit field selects one of the 16 RAM
locations to be fed into the A inputs of the
2901 ALD. See Table 4.5, page 20.

BSEL — This four-bit field selects one of the 16 RAM
locations to be fed into the B inputs of the
2901 ALU. BSEL also functions as the address
of the destination register. See Table 4 5
page 20. '

SE — This bit indicates if the D inputs to the 2901
should be sign extended.
==> Do not sign extend.

1 ==> Sign extend.

— This bit allows the test result to force the Dinputs to zero.
==> °o not allow force to occur

1 ==> Allow force to occur

— This bit allows the status flags to be set from
the resulting ALU operation.
==> Do not allow status flags to be set

1 ==> Allow status flags to be set

— If set, this bit indicates that the D inputs ofthe 2901 will come from the BUS. Otherwise
the D inputs are determined by DS-,^

Q .

DS 1/0 — Assuming BUS is clear, these two bitsdetermine the source of the D inputs to the
2901. See Table 4.9, page 22.

immed. — If DS, is 00, Immed. supplies an immediate
value for the D inputs to the 2901.

I 8-6 - _ These bits determine the destination of theresult of the ALU operation as well as whether
it should be shifted or not. Finally, the

8 8

TE

SS

BUS

source of the Y output is determined. The
function of these bits is summarized in Table
4.4, page 18

.

10.3 BUS Control Bits

LDMAR

LDIR

MEMSEL

BS 1,0 "" These two bits determine what data is
transferred to the BOS. Table 4.8, page 22
summarizes these control bits.

This bit indicates that the MAR is to be loaded
with the value currently on the BUS

.

==> Do not load MAR
1 ==> Load MAR

This bit indicates that the IR is to be loaded
with the value currently on the BUS.

==> Do not load IR
1 ==> Load IR

This bit indicates that a transfer to or from
memory is to take place.

==> Memory is not selected
1 ==> Memory is selected

R/W — This bit specifies whether a read or a write
operation is to occur.

==> Write
1 ==> Read

I/O SEL — This bit determines if a transfer to or from an
I/O device is to take place.
==> No I/O transfer

1 ==> I/O transfer

I/O S/D — When I/O SEL is set, this bit determines
whether the status of a device is requested or
if data is being sent.
==> Data is being sent

1 ==> Device status is being requested

INTACK — This bit acknowledges that an I/O device is
prompting to be serviced.

==> No acknowledgment
1 ==> Acknowledge interrupt

3 9

10.4 Control Bit Layout

Sections 10.1 through 10.3 listed the control bits.

These bits are arranged as illustrated in Fig. 10.1, and

this particular ordering was chosen to parallel Dr. Hush's

machine as much as possible.

90

to
0)

J1 i

10

to
IS

1/1

to

s

?
oi

I

1

M

TT s
CD to o

c ni \

CO~ K
+> in

s
to 1

« en 3
N

(VI

Ic *•
8 (0

« m
a

p4 dL
o CO

en s
to

i
4*

IS M
a cu

en
to 3

»—
«*

i 0)
L en in
+>

iH

to
in

•

c
a s a
u en

I

en r*. 5
<-4 CXI M in

ts
w to C

(\i 5 in u
1

01
i

ML
3 1-f *» in

s01

2

in
^

CDU. <
in

T
N 0)

VI

1

T
n

*- M

*• M
—

«

CD

1

„

T
P) to

*

1

(VI

f
* ft

in

8
** s

.

IS s
c

11 — Control Store

The Control Store (CS) is a 4k X 67-bit ROM in which

the microcode is stored. The scheme for determining the

location of each microinstruction is arbitrary and

completely at the discretion of the individual

inicroprogrammer, but the method prescribed by Dr. Hush

appeared straightforward and was adopted.

The macroinstruction execution "start area" is

locations 2000
8 through 2999

8 . The exact location for each

instruction was determined by the particular opcode. The

LAC macroinstruction for example, has the opcode value of

11110000
2 . Reading left to right in groups of 3 bits

(octal conversion), it is found that location 2740„ is

where the first microinstruction needed to execute the LAC

macroinstruction resides. Likewise, SUB has an opcode

value of 11110101
2 , resulting in location 2752

g housing the

first microinstruction, and BNE with an opcode of 00100001,

starts at location 2102
8

.

Recall that when a memory reference instruction is

invoked, the ea must first be calculated. Locations 3000„
8

through 3077
8 are reserved for these computations.

Relative addressing has values of 0011XXXX
2

for bits 8

through 15. Reading as described above, 3014
8 emerges as

the location.

92

Location 1000
8 was chosen to be where the FETCH

routine which fetches the next macroinstruction is located.

Once again, 1000
8 was purely arbitrary as long as the

microprogrammer remains consistent throughout the stages of

his coding.

The microcode section for the interrupt servicing

routine is stored in locations 0400
8 through 0403

8 and the

initialization routine is at location OOOOg in the CS.

The CS memory map summarizing the above outline, is

pictured in Fig. 11. l, and all of the locations not

specifically reserved remain available to the

microprogrammer for various routines deemed necessary.

93

cs] oc at 1 on

0000

1000

2000

3000

3100

4000

5000

6000

7000

7FFF

Macro 1 nstruct 1 on Execution

"start area"

ea calculation routines
"start area"

addresses given In octal

Figure 11.1 Control Store Memory Map

94

12 — An Implementation Aid

12 . 1 Existence of a Tool

In an attempt to relieve the microprogrammer from an

excessive amount of work with l's and O's, a tool to aid in

the process of microcoding was developed. This tool is a

computer program written in C, which will generate the

control bits from a minimal amount of data. Only the ILL

command, the CS location and five other parameters must be

specified. The advantage of this program however, is that

the last five elements are all related to the next address

generation, and this removes the microprogrammer entirely

from the data flow part of the microinstruction. This

substantially raises the conceptual level: the

microprogrammer needs only to determine what instruction

will reside in each CS location and a few parameters

dealing with testing conditions; every control bit related

to the data flow is generated automatically and thus

appears as a black box.

12.2 Parameters to be Specified

As stated above, the ILL command and its location in

the CS must be specified. Also required for successful

implementation of the program are the following:

1. it must be known if the next microinstruction
to be executed is stored in the next

95

sequential CS location or if it needs to be
jumped to;

2. it must be known where the D inputs to the
2910 originate. See Table 5.4, page 32. In
the vast majority of cases, these inputs will
be located in the NA field of the
microinstruction register. As a matter of
fact, the only time this will not apply is for
ea calculations and the macroinstruction fetch
routine, both of which are written only once.
Therefore, unless a specific microcode routine
is being written, a value of for this
parameter will be used for all instructions;

3. the NA field must be known. This involves no
more than deciding the location for each
microinstruction

;

4. if a conditional jump instruction, i.e. a
"test" ILL command is being executed, then the
appropriate status flag must be specified.
See Table 5.2, page 31; and

5. assuming a test instruction, the polarity must
be determined.

Once these parameters have been determined, the

microprogrammer needs only to decide the CS location for

each microinstruction; the program receives this data,

generates the complete microinstruction and stores it in

the given CS location.

Appendix B contains the input file which the program

reads for the particular instruction set presented in this

paper. The following format is required:

ILL command — j_or_ns — s — NA — flag — pol — cs_loc.

The order of the input data is purely arbitrary.

9 6

The output of the program is a memory dump to a file

and the memory dump for this instruction set may be viewed

in appendix C. Please note that only the memory locations

with relevant data are listed.

12.3 Dissection of the Program

The computer program, a highlevel flowchart of which

appears in Fig. 12.1, consists of a main function and

three "sub-functions." The main function calls these other

functions to perform specific tasks.

The main function prompts the user for the name of the

input and output files. The input file must of course

already exist. This is not so with the output file

however; the output file may exist, but if it does not, C

will create it.

The clear function which clears, i.e. sets to all

the control bits is then called. The control bits need to

be cleared each time so that a control bit that has been

set for one ILL command will not carry over into the next

ILL command's generation process. The clear function

receives as its parameters all of the control bits.

One line of the input file is then read. This line

contains the information discussed in section 12.2.

The generate function which performs the actual

control bit generation is then called. Internal to this

function is a mass of case and nested case statements which

97

Initial i z at i on

Clear control bits

Read ILL command
and parameters

Generate control bits

Print generated control
bits to screen

Sto r e Resu 1

t

Figure 12.1 High-level Flowchart

98

parse the ILL command. Once the command has been parsed

and the appropriate control bits for the data flow

generated, the control bits for the next address generation

part of the microinstruction are produced. This involves

more case statements, but these are to a lesser degree of

complexity.

Control is then returned to the main function which

outputs the generated bits to the screen. This allows the

user to verify the control bits if he wishes.

The main function then calls store () which stores the

control bits in the specified CS location. The sequencing

of the control bit fields is illustrated in Fig. 10. 1.

The final operation performed by the main function is

a memory dump to the output file.

The main, clear, generate and store functions appear

in appendix D. They have been documented and commented
quite extensively, so following the logic and sequence of

operations should pose no problem for the reader.

9 9

13 — Future Work

An abundant amount of work for the future is provided

by this machine. Chronologically, the next reasonable step

would be to physically build the machine and implement the

given microcode. Enhancing the system by upgrading the

memory, using the 2903 or 29203 rather than the 2901, etc.

would be favorable. Applications to the classroom are

practically limitless. Students could construct parts of

the hardware as group efforts, interface and

subsequently integrate these parts into a functional whole.

Once the hardware aspect is completed, vast amounts of

software could be written, both at the assembly language

level and at the ILL. Additionally, different instruction

sets could be implemented, which could lead to a study"

dealing with the characteristics of various instruction

sets.

If a less ambitious or an individual project is

desired, an excellent exercise in microprogramming could be

obtained by writing the microcode for a different
instruction set. Doing this would certainly bring to light

many of the finer aspects involved with microprogramming a

machine that are oftentimes overlooked in the classroom.

100

14 — Conclusion

The primary focus of this research was to develop a

workable knowledge of a 16-bit stack machine designed by

Dr. Don Hush and to implement the control unit of a

specific instruction set via microcode. To this end

an Intermediate Level Language (ILL) was devised which

represented the various required data transfers and was

utilized when undergoing the breakdown of the

macroinstructions

.

Each ILL command dictates a unique set of control

bits in completing the "action part" of a microinstruction

and a program was then written which simulated this process

of control bit generation.

The original objectives of verifying that an

instruction set could actually be implemented on Dr. Hush's

machine, providing a simple, illustrative example of

microcoding, and producing a tool in the form of a computer

program were all met.

101

References

1. "The Design Proposal of a 16-bit Microprogrammed Stack
198°2

HUSh
'

D°n RhSa
'

Kansas State University,

2. Bipolar M icroprocessor Logic and Interface, 1985 DataBook.

3. Comguter Design, Langdon, Glen G. , Jr. , Computeach
Press Inc., San Jose, CA, 1982.

4. Structured Computer Organization , Tanenbaum, Andrew SPrentice Hall, Inc., Englewood Cliffs, N.J. 1984. '

102

Appendix A — Control Bits for Macroinstructions

This appendix contains an exhaustive list of the

macroinstructions and the control bits required to execute

them. Perhaps the most opportune method of totally

understanding the precise function of each control bit and

how it relates with and affects the flow of data is simply

to study the following examples. Comments have been

provided alongside each control bit specification to guide

the reader and clear up any potential confusion. Careful

study of these examples is strongly recommended.

The macroinstruction is presented first, followed by

the needed algorithm. Along with any assumptions made, one

will also find the necessary ILL commands, their location

in the CS and an English description of what is to take

place during each microinstruction. Finally, the various

control bits that need to be set will be presented in

tabular form.

As a step to simplify the task of the microprogrammed

the machine was designed by Dr. Hush so that a control bit

was activated by setting it. (This is opposed to clearing

it.) Hence, any active low control bits were routed

through an inverter prior to being loaded into the PLR.

Unless otherwise stated, all control bits are assumed

103

to be in binary form and to be clear; only those bits

required to be set for proper execution of the instruction

are given. One may notice however, that occasionally a

control bit is specified to be 0, e.g. BUS = 0. This was

done for the sake of uniformity and was believed that

including this bit specification would enhance the

readability.

104

LAC

!

i
iIllll|0000l

I
I

I

mem. ref. LAC

Algorithm
AC <— M[ea]

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/100/00

CS location 2740
8

Location ILL Command
2740 8 TEMAR

2741 E LAC

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Read from memory to AC
* Jump to FETCH routine
at CS 1000

8 via NA field

105

Assembly

Location Microinstruction Comments

2740
8 I

2910
I3-0 = 1110

1
Continue

2901
x5-0 = 000100

=
=

1 A plus
1

"Carry in" =

ML0
ASEL

= 00
= 0100

1
Normal mode
TEMPI

r8-6 = 000 Y <— F output
1

Don't store result

BUS
BS

1<°
ldmar

= 01
= 1

Y output to BUS

2741
8 2910

s
l3 -° = 0010

= 00
= lOOOg

JMAP
FETCH next uinstr.
at CS lOOOg

2901
15-0

o)
n
i

- 000111
=
=

D plus
"Carry in" -

ss
BUS

= 1
= 1 1

Set status bits
D inputs of 2901
come from BUS

Ml,0 = 00 1 Normal mode

h-6
BSEL

= 010
= 0011

Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1 1

106

SAC

!

1 1

1

l l 1 o
1

1
1

1

mem. ref.
| SAC

Algorithm
M[ea] <— AC

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/100/01

CS location 2742
g

Location ILL Command
2742

8 TEMAR

2743 c SAC

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Write AC to memory
* Jump to FETCH routine

at CS 1000
8 via NA field

107

Assembly

Location Microinstruction Comments

2742g
1

2910
I3-0 = 1110

I
Continue

2901
l5-0 = 000100

I
A plus

cin
0/1

=
=

"Carry in" =

ML0
1 ASEL

= 00
= 0100

I

Normal mode
I

TEMPI

h-e = 000 Y <— F output
1

Don't store result

BUS
BSl.0
ldmAr

= 01
= 1

Y output to BUS

2743
8 1 2910

I3-0 = 0010 JMAP
s i,o
NA

= 00
= lOOOg

FETCH next uinstr.
at CS 1000

a

2901

*5-0 = 000100 A plus

0/1
=
=

"Carry in" =

ss = 1 Set status bits

ASEL
= 00
= 0011

1

Normal mode
AC

*8-6 = 000 Y <— F output
Don't store result

BUS
MEMSEL = 1 Write to memory

R/W -

108

AND

1

1
1

I

1 1 1 1 o
1

[

mem. ref. AND

Algorithm
AC <— AC AND M[ea]

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/100/10

CS location 2744g

Location ILL Command
2744 s TEMAR

2745 c AND

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Perform AND operation
* Jump to FETCH routine
at CS lOOOg via NA field

109

Assembly

Location Microinstruction Comments

2744
8 I

2910

*3-0 = 1110
[Continue

2901
15-0
cin
0/1

= 000100
=
=

I
A plus
"Carry in" =

M
l*9ASEL

= 00
= 0100

I

Normal mode
TEMPI

*8-6 = 000 Y <— F output
I

Don't store result

BUS
BS

1 <0ldmAr
= 01
= 1

Y output to BUS

2745 8 1 2910

s
3 -° = 0010

= 00
= lOOOg

JMAP
FETCH next uinstr.
at CS 1000g

2901

a
5 '

o>?

- 100101
=
=

D AND A
"Carry in" =0

ss
BUS

= 1
= 1

Set status bits
D inputs of 2901
come from BUS

Ml*0
ASEL

= 00
= 0011

Normal mode
AC

l§-6BSEL
= 010
= 0011

Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1

110

OR

I 1111| 0011
mem. ref. OR

Algorithm
AC <— AC OR M[ea]

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/100/11

CS location 2746 a

Location
2746 Q

2747
8

ILL Command
TEMAR

OR

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Perform OR operation
* Jump to FETCH routine

at CS 1000
8 via NA field

111

Assembly

Location Microinstruction Comments

2746
8 | 2910

I3-0 - 1110
1 Continue

2901

! c
5-°

0>?

= 000100
=
=

A plus
1

"Carry in" =

M
J*PASEL

= 00
= 0100

1
Normal mode
TEMPI

*8-6 = 000 Y <— F output
Don't store result

BUS
BS 1,0
ldmAr

= 01
= 1

Y output to BUS

2747
8 1

2910

! s
3 -° = 0010

= 00
= lOOOg

JMAP
FETCH next uinstr.
at CS 1000

8

2901

•
15-0

0}?

= 011101
=
=

D OR A
"Carry in" =

SS
BUS

= 1
= 1

Set status bits
D inputs of 2901
come from BUS

ML0
ASEL

= 00
= 0011

Normal mode
AC

X8-6
BSEL

= 010
= 0011

Result to AC

BUS
MEMSEL = 1 1 Read from memory

R/W = 1

112

ADD

I
11111 0100

I
I

I

mem. ref. | ADD

Algorithm
AC <— AC plus M[ea]

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/101/00

CS location 2750 Q

Location ILL Command
2750 c

2751
8

TEMAR

ADD

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Perform ADD operation
* Jump to FETCH routine

at CS 1000c via NA field

113

Assembly

Location Microinstruction Comments

2750
8 | 2910

I3-0 = 1110
1 Continue

2901

J5-O
= 000100

1
A plus

j

o>?
=
=

1
"Carry in" =

! aM = 00
= 0100

1
Normal mode

|
TEMPI

r8-6 = 000 Y <— F output
1

Don't store result

BUS
BS 1.0
ldmAr

= 01
= 1

Y output to BUS

2751
8 2910

I3-O = 0010 JMAP
s i,o
NA

= 00
= lOOOg

FETCH next uinstr.
at CS 1000

8

2901
I5-O = 000101 D plus A plus Cj
cin = 1 Cin from CARRY bit

ss = 1 Set status bits
BUS = 1 D inputs of 2901

come from BUS

M1^0
ASEL

= 00
= 0011

Normal mode
AC

I§-6
BSEL

= 010
1

= 0011
Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1
I

114

SUB

1

1 1 1 1 o 1
!

i
1

mem. ref. SUB

Algorithm
AC <— AC minus M[ea]

Assumptions
1. The ea lies in TEMPI
2. Opcode = 111/101/01

CS location 2752g

Location
2752

8

2753,

ILL Command
TEMAR

SUB

Description
* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Perform SUB operation
* Jump to FETCH routine

at CS 1000 8 via NA field

115

Assembly

Location Microinstruction Comments

2752
8 1 2910

I3-0 = 1110
1 Continue

2901
I5-0 = 000100

1 A plus

0/1
=
=

"Carry in" =

M1.0
ASEL

= 00
= 0100

I
Normal mode

I
TEMPI

*8-« = 000 Y <— F output
Don't store result

BUS
BS 1.0
ldmAr

= 01
= 1

Y output to BUS

2753
8 2910

= 3 " = 0010 JMAP
S l,0
NA

= 00
= lOOOg

FETCH next uinstr.
at CS 1000

8

2901

r5
' = 001101 A minus D

Cin - 1 Consider CARRY bit

SS = 1 Set status bits
BUS = 1 D inputs of 2901

come from BUS

ASEL
= 00
= 0011

Normal mode
AC

I§-5
BSEL

= 010
= 0011

Result to AC

BUS
MEMSEL = 1 1 Read from memory

R/W = 1

116

PUSH

1111 0110
mem. ref.

| PUSH

Algorithm
SP <— SP plus 2

M[SP] <— AC

Assumptions
1. The SP must be incre-

mented before going
to MAR.

2. Opcode = 111/101/10
CS location 2754 Q

Location
2754

8

ILL Command
INCSPMAR

Description
Increment the SP and
send result to MAR
Fetch next sequential
microinstruction

2755, SAC * Write AC to memory
* Jump to FETCH routine

at CS IOOOq via NA field

117

Assembly

Location Microinstruction Comments

2754g | 2910
= 1110

I
Continue

2901
= 000101
=
=

I

D plus A
"Carry in" =

1 ASEL
= 00
= 1110

I
Normal mode
SP

BUS

Immed

.

=
= 00
= 00000010

2 to D inputs

ls-6BSEL
= Oil
= 1110

Y <— F output
Store result

BUS

ldmAr
= 01
= 1

Y output to BUS

2755
8 2910

X3-0
S l,0
NA

= 0010
= 00
= lOOOg

JMAP
FETCH next uinstr.
at CS 1000

8

2901

15-0
cin
0/1

= 000100
=
=

A plus
"Carry in" =

ss = 1 Set status bits

ASEL
= 00
= 0011

Normal mode
AC

r8-6 = 000 Y <— F output
Don't store result

BUS
MEMSEL = 1 Write to memory

R/W =

118

PULL

1
I111110111

mem. ref. PULL

Algorithm
AC <— M[SP]
SP <— SP minus 2

Assumptions
1. The SP must be decre-

mented after reading
its value

2. Opcode = 111/101/11
CS location 2756 D

Location
2756

8

ILL Command
SPMARDEC

2757 c LAC

Description
* Send SP to MAR
* Decrement SP by 2
* Fetch next sequential
microinstruction

* Read memory into AC
* Jump to FETCH routine

at CS 1000o via NA field

119

Assembly

Location Microinstruction Comments

2756 8 I
2910
J3-0 = 1110

I
Continue

2901

*S-0 = 001101
I

A minus D

0/1
=
= 1

"Carry in" = 1

M1.0
ASEL

= 00
= 1110

I
Normal mode

I
SP

BUS

Immed.

-
= 00
= 00000010

1 2 to D inputs

BSEL
= 010
= 1110

Y <— A select
1

Result to SP

BUS
BS

1<0
LDMAR

= 01
= 1

A select to BUS

2757
8 2910

= 3 " = 0010 JMAP

Si'°
= 00
= lOOOg

FETCH next uinstr.
at CS 1000

8

2901

j5-0 = 000111 D plus
cin
0/1

=
=

"Carry in" =

ss = 1 Set status bits
BUS = 1 D inputs of 2901

come from BUS

Ml,0 = 00 Normal mode

Jg-fiBSEL
= 010
= 0011

Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1

120

RTS

I

1 1

1

1 1 1 1
1

o
1

1

mem. ref. RTS

Algorithm
PC <— M[SP]
SP <— SP minus 2

Assumptions
Opcode = 111/no/OO
CS location 2760„

Location
2760

8

ILL Command
SPMARDEC

2761, LPC

Description
* Send SP to MAR
* Decrement SP by 2
* Fetch next sequential
microinstruction

* Read memory into PC
* Jump to FETCH routine

at CS 1000
8 via NA field

121

Assembly

Location Microinstruction Comments

2760
8 |

2910
I 3-0 = 1110

1
Continue

2901
X 5-0 = 001101

I
A minus D

cin
0/1

=
= 1

"Carry in" = 1

ASEL
= 00
= 1110

I
Normal mode

| SP

BUS

Immed

.

=
= 00
= 00000010

I
2 to D inputs

BSEL
= 010
= 1110

Y <— A select
1

Result to SP

BUS

LDMAR
= 01
= 1

A select to BUS

2761g 2910

e 3 -° = 0010 JMAP
s i,o
NA

= 00
= lOOOg

FETCH next uinstr.
at CS lOOOg

2901

*5-0 = 000111 D plus

0/1
=
=

"Carry in" =

BUS = 1 D inputs of 2901
come from BUS

Ml,0 = 00 Normal mode

I§-6
BSEL

= 010
= 1001

Result to PC

BUS
MEMSEL = 1 Read from memory

R/W = 1

122

RTI

1111| lOOlj
mem. ref.

| RTI

Algorithm
PC <— M[SP]
SP <— SP minus 2
Restore status bits

Assumptions
1. Opcode = 111/110/01

CS location 2762
8

Location
2762

8

2763 c

ILL Command
SPMARDEC

LPCRS

Description
* Send SP to MAR
* Decrement SP by 2
* Fetch next sequential
microinstruction

* Read memory into PC
* Restore status bits
* Jump to FETCH routine

at CS 1000„ via NA field

123

Assembly

Location Microinstruction Comments

2762
8 I

2910

^-0 = 1110
1 Continue

2901
I
5-0 = 001101

1
A minus D

0/1
=
= 1

"Carry in" = 1

ASEL
= 00
= 1110

1
Normal mode

I
SP

BUS

1 Immed

.

=
= 00
= 00000010

2 to D inputs

BSEL
= 010
= 1110

V <— A select
Result to SP

BUS

ldmAr
= 01
= 1

A select to BUS

2763
8 1 2910

13-0 = 0010 JMAP

5i'°
= 00
= lOOOg

FETCH next uinstr.
at CS 1000g

2901

J5-O
= 000111 D plus

o)S
=
=

"Carry in" =

BUS = 1 D inputs of 2901
come from BUS

Ml,0 = 00 Normal mode

h-6BSEL
= 010 1

= 1001
1

Result to PC

BUS
MEMSEL = 1 1 Read from memory

R/W = 1
RS = 1 1 Restore status bits

124

NOP

I
I

I 1111| 1010
mem. ref. | NOP

Algorithm Assumptions
1. Opcode = 111/110/10

CS location 2764 n

Location
2764

8

ILL Command
NOP

Description
* Jump to FETCH routine

at CS lOOOo via NA field

125

Assembly

Location Microinstruction Comments

2764
8 2910

I3-0
s i,o
NA

= 0010
= 00
= 1000

8

JMAP
FETCH next uinstr.
at CS 1000

8

All other
bits =

control

126

INC

11 12 15

1 0000| Source reg. | Dest. reg
|

1
I

I
I I

reg. ref. | INC

| — 3: AC — 3 AC
|
—A: IX —

A

IX
| —B: IY —

B

IY
| —E: SP —

E

SP

Algorithm
(A 2901 reg. (A 2901 reg.

plus 1

Assumptions
1. Opcode = 000/100/00

CS location 2040„

Location
2040 o

ILL Command
INC

Description
Appropriate register via
IR 2nd byte is selected
Perform INC command
Jump to FETCH routine
at CS lOOOo via NA field

127

Assembly

Location Microinstruction Comments

2040g
I

2910

= 3 " = 0010 JMAP
s i,o
NA

= 00
= lOOOg

I
Jump to FETCH

1
at CS 1000

8

2901
I 5-0 = 000101

1 D plus A
°4n
0/1

=
=

1
"Carry in" =

ss = 1 Set status bits

M
i*0*ASEL

= 11
= 0011

Reg. ref. mode
AC

1110 SP
1010 IX
1011 IY

BUS

Immed

.

=
= 00
= 00000001

1 to D inputs

I8-S
*BSEL

= 010
= 0011

Result to
AC

1110 SP
1010 IX
1011 IY

BUS

»
BS1,0 = 00 1 Nothing to BUS

* Selected via hardware

128

DEC

11 12 15

I
I

| |0001 0001| source reg. | Dest. reg. |'III
reg. ref. | DEC

|~3: AC — 3 AC
l—A: IX —

A

IX
| — B: IY — B IY
|~E: SP —

E

SP

Algorithm
(A 2901 reg.) <- (A 2901 reg.

minus 1

Assumptions
1. Opcode = 000/100/01

CS location 2042 Q

Location
2042 Q

ILL Command
DEC

Description
Appropriate register via
IR 2nd byte is selected
Perform DEC command
Jump to FETCH routine
at CS lOOOg via NA field

129

Assembly

Location Microinstruction Comments

2042 c 2910

2901

ss

MM*A.

BUS

Immec

z a-e
*BSEL

= 0010
= 00
= 1000.

001101

1

11
0011
1110
1010
1011

00
00000001

010
0011
1110
1010
1011

BUS
BS1,0 00

JMAP
FETCH next uinstr.
at CS lOOOj,

A minus D
"Carry in" = 1

Set status bits

Reg. ref. mode
AC
SP
IX
IY

1 to D inputs

Result to
AC
SP
IX
IY

Nothing to BUS

*Selected via hardware

130

ROR

__° I 4_ _7 8 11 12 15

|
^

^

.__

0001 0010| source reg. | Dest. reg.
|

1

I __!_ I
|

reg. ref.
| ror "I™~Z~~

I

— 3: AC —

3

AC
I
—A: IX —

A

IX
I
— B: IY —

B

IY
I
—E: SP —

E

SP

Algorithm
(A 2901 reg.) <- ROR(A 2901 reg.)

Assumptions
The CARRY bit is
included
Opcode = 000/100/10
CS location 2044 Q

Location
2044 a

ILL Command
ROR

Description
Appropriate register via
IR 2nd byte is selected
Perform ROR operation
Jump to FETCH routine
at CS 1000

8 via NA field

131

Assembly

Location Microinstruction Comments

2044
8 I

2910
I 3 -0 0010 JMAP

k'° :
00
lOOOg

1

' FETCH next uinstr.
1

at CS lOOOg

2901
I5-O 000100 A plus
cin 1 Include CARRY

SS 1 Set status bits

M1.0
*ASEL

11
0011

Reg. ref. mode
AC

1110 SP
1010 IX
1011 IY

1 B-6
*BSEL

100
0011

ROR — Result to
AC

1110 SP
1010 IX
1011 IY

BUS
BS1,0 00 1 Nothing to BUS

Selected via hardware

132

ROL

__° I f
7 8 11 12 15

!
^

^

—

-

0001 001l| Source reg. | Dest. reg.
1

I ___!_ I
|

reg. ref.
| rol _ZZZZZZZZZ~

I

— 3: AC — 3: AC
I
—A: IX —A: IX

I
—B: IY —B: IY

I
—E: SP —E: SP

Algorithm
(A 2901 reg.

)

ROL(A 2901 reg.) l,

Assumptions
The CARRY bit is
included
Opcode = 000/100/11
CS location 2046

8

Location
2046 Q

ILL Command
ROL

Description
* Appropriate register via

IR 2nd byte is selected
* Perform ROL operation
* Jump to FETCH routine

at CS 1000 8 via NA field

133

Assembly

Location Microinstruction Comments

2046
8 I

2910
I 3 -0 0010

I
JMAP

k'° :
00
lOOOg

1
FETCH next uinstr.

1
at CS lOOOg

2901

^5-0 000100 A plus
cin 1 Include CARRY

SS 1 Set status bits

M1^0
*asel

11
0011

Reg. ref. mode
AC

1110 SP
1010 IX
1011 IY

^-6
*BSEL

110
0011

ROL — Result to
AC

1110 SP
1010 IX
1011 IY

BUS
BS1,0 00

1 Nothing to BUS

Selected via hardware

134

CLR

11 12 15

1
I

I
I I0001 01001 Source reg. | Dest. reg.

|

I
I

I
|

reg. ref.
I

CLR

i

— 3: AC — 3 AC
| —A: IX —

A

IX
|~B: IY — B IY
I
—E: SP —

E

SP

Algorithm
(A 2901 reg.) <— o

Assumptions
Opcode = 000/101/00
CS location 2050 o

Location
2050„

ILL Command
CLR

Description
Appropriate register via
IR 2nd byte is selected
Perform CLR command
Jump to FETCH routine
at CS 1000o via NA field

135

Assembly

Location Microinstruction Comments

2050, 2910
X3-0 = 0010
s i,o

= 00
NX' = 1000

2901
I5-0 = 0001

& =

ss = 1

M1.0
*ASEL

= 11
0011

BUS
DS_
Immi**a.

1a-e
*BSE1

BUS
BS 1,0

1110
1010
1011

00
00000000

010
0011
1110
1010
1011

00

JMAP
FETCH next uinstr.
at CS 1000 o

D plus
"Carry in" = o

Set status bits

Reg. ref. mode
AC
SP
IX
IY

to D inputs

Result to
AC
SP
IX
IY

Nothing to BUS

Selected via hardware

136

COM

11 12 15

0001 0101 source reg.
|

Dest. reg. I

1

!
I

I

reg. ref. COM

-3: AC
-A: IX
-B: IY
-E: SP

—3: AC
—A: IX
—B: IY
—E: SP

Algorithm
(A 2901 reg.) <— C0M(A 2901 reg.)

Assumptions
1. To find COM, XOR

with 77g
2. Opcode = 000/101/01

CS location 2052
8

Location
2052 Q

ILL Command
COM

Description
* Appropriate register via

IP. 2nd byte is selected
* Perform COM operation
* Jump to FETCH routine

at CS lOOOg via NA field

137

Assembly

Location Microinstruction Comments

2052
g I

2910

]

I3-0 = 0010 JMAP
S l,0

I
NA

= 00
= lOOOg

1
FETCH next uinstr.

1
at CS lOOOg

2901

! J5
- = 110101 D XOR A

0/1
=
=

1
"Carry in" =

SS = 1 Set status bits

*ASEL
= 11
= 0011

Reg. ref. mode
AC

1110 SP
1010 IX
1011 IY

BUS
SE

=
= 1

FF16 to D inputs

limned

.

= 00
= 11111111

X8-6
*BSEL

= 010
= 0011

Result to
AC

1110 SP
1010 IX
1011 IY

BUS
BS 1,0 = 00 Nothing to BUS

Selected via hardware

138

TFR

__°
I f I _8_ 11 12 15

^

...

0001 0110| Source reg. | Dest. reg.
1

1 _!__ I
|

reg. ref.
| TFR Z_ZZ ZZZZZZZ

-3S AC
-A: ix
-B: IY
-E: SP

— 3 : AC
—A: IX
—B: IY
—E: SP

Algorithm
(A 2901 reg. (A 2901 reg.

Assumptions
1. Opcode = 000/101/10

CS location 2054 o

Location
2054 D

ILL Command
TFRRR

Description
Appropriate register via
IR 2nd byte is selected
Perform TFR command
Jump to FETCH routine
at CS lOOOp via NA field

139

Assembly

Location Microinstruction Comments

2054
8 I

2910
I
3 _ = 0010

S l,0 - 00
NA = lOOOg

JMAP
I

FETCH next uinstr.
at CS 1000

8

2901
I 5 _ = 000100
Cin =
0/1 =

A plus
"Carry in" =0

SS =1 Set status bits

ML0 = 11
*ASEL = 0011

1110
1010
1011

Reg. ref. mode
AC
SP
IX
IY

I8-6 = 010
*BSEL = 0011

1110
1010
1011

Result to
AC
SP
IX
IY

BUS
BS 1/Q = 00 | Nothing to BUS

Selected via hardware

140

HLT

11 12 15

1
I

I I0001 01 iixxxx|xxxx
1

!
I

I

reg. ref.
| HLT

Algorithm
Halt execution; continually
jump to itself

Assumptions
1. Opcode = 000/101/11

CS location 2056
g2. X implies Don't Cares

Location
2056 Q

ILL Command
HLT

2057, NOP

Description
* Make current instr.
no-operation

* Test "Halt" = o
pass - Jump to

FETCH
fail - Fetch next

sequential
microinstr.

* Make current instr.
no-operation

* Jump to CS loc.
2056

8

141

Assembly

Location Microinstruction Comments

2056
8 [

2910
I 3-0
TEST

3 _
POL

= 0011
= 1000
= 1
= 00
= iooo

8

1
CJP
"Halt"
Negative polarity
Jump to FETCH
at CS 1000g

All other control
bits set to

2057
8 2910

s
3 ' = 0010

= 00
= 2056 8

JMAP
Jump to CS loc.
2056g

All other control
bits set to

142

•

BEQ

0010|0000
branch

|
BEQ

Algorithm
if "Z" = 1
then PC <— PC plus

rel. addr,
else PC <— PC plus

SE

Assumptions
1. The rel. addr. is

located in the IR
2nd byte

2. Opcode = 001/000/00
CS location 2100 Q

Location
2100 Q

ILL Command
TZ1

Description
* Test for "Z" = 1
pass - PC <— PC plus

rel. addr. SEfail - PC <— PC plus
* Jump to FETCH routine

at CS 1000 8 via NA field

143

Assembly

Location Microinstruction Comments

2100g
| 2910

X 3-0
1

TEST
3 o

POL
S l,0

|
NA

= 0011
= 0100
=
= 00
= lOOOg

CJP
ZERO status flag

1
Positive polarity
FETCH next uinstr.
at CS 1000g

2901

c
5 " = 000101

=
=

D plus A
"Carry in" = o

M
J*PASEL

= 00
= 1001

Normal mode
PC

BUS
DS 1,0

=
= 10

2nd byte of IR
to D inputs

SE
TE

= 1
= 1

Sign extend
Enable test to
force D inputs to

BSEL
= 010
= 1001

Result to PC

BUS
BS 1,0 = 00 Nothing to BUS

144

BNE

1
I

I0010|0001
1

I

I

branch BNE

Algorithm
if "Z" = o
then PC <--

else PC <

—

PC plus
rel. addr,
PC plus

SE

Assumptions
The rel. addr. is
located in the IR
2nd byte
Opcode = 001/000/01
CS location 2102 a

Location
2102 D

ILL Command
TZ0

Description
* Test for "Z" = o
pass - PC <— PC plus

rel. addr. SEfail - PC <-- PC plus
* Jump to FETCH routine

at CS lOOOg via NA field

145

Assembly

Location Microinstruction Comments

2102g
I

2910
X 3-0

I
TEST,.
POL
s i,o
NA'

-0
=

0011
0100

00
lOOOg

I
CJP
ZERO status flag

1
Positive polarity
FETCH next uinstr.
at CS 1000g

2901

a
5 "

=
000101 D plus A

"Carry in" =0

ASEL «
00
1001

Normal mode
PC

BUS
DS 1,0

=

10
2nd byte of IR
to D inputs

SE
TE =

1

1
Sign extend
Enable test to
force D inputs to

BSEL =
010
1001

Result to PC

BUS
BS1,0

= 00 Nothing to BUS

146

BGT

1

1
o

1

1 i
1

o
1

branch | BGT

Algorithm
if "N XOR V" = o
then

if "Z" = o
then PC <— PC plus

rel. addr. qFelse PC <— PC plus
else PC <— PC plus

Assumptions
The rel. addr. is
located in the IR
2nd byte
Negative polarity is
assumed for the
first test
Opcode = 001/000/10
CS location 2104 o

Location
2104 o

ILL Command
TNV0NC

2105 ' TZ0

Description
Test for "N XOR V" = 1
pass - Jump to FETCH

at CS 1000
8fail - Fetch next

sequential
microinstruction

Test for "Z"
pass - PC <—

rel. addr. SEfail - PC <— PC plu

PC plus

:s
* Jump to FETCH routine

at CS 1000 R via NA field

147

Assembly

Location Microinstruction Comments

2104g
I

2910

1
TEST

3 Q
POL
S
J/0NA

= 0011
= 0111
= 1
= 00
= lOOOg

CJP
N XOR V status flag

1 Negative polarity
I

Jump to FETCH
at CS 1000g

All other control
I

bits =

2105g
I

2910

^-0
TEST

3 _ Q
POL

NA'°
CO

HO

O

HO

o

OH

O

O

O

O

O

O

H

II

II

II

II

II

CJP
ZERO status flag
Positive polarity
FETCH next uinstr.
at CS lOOOg

2901

a
5 " = 000101

=
=

D plus A
"Carry in" = o

ase£
= 00
= 1001

Normal mode
PC

BUS
DS 1,0

=
= 10

2nd byte of IR
to D inputs

SE
TE

= 1
= 1

Sign extend
Enable test to
force D inputs to

IS-6BSEL
= 010
= 1001

Result to PC

BUS
BS 1,0 = 00 | Nothing to BUS

148

BLT

3 4 7

1

1
o

1

1 o 1
I

1
1

1

branch | BLT

Algorithm
if "N XOR V" = l
then PC <— PC plus

rel. addr.
else PC <— PC plus

SE

Assumptions
The rel. addr. is
located in the IR
2nd byte
Opcode = 001/000/11
CS location 2106 o

Location
2106 D

ILL Command
TNV1

Description
* Test for "N XOR V" = 1
pass - PC <— PC plus

rel. addr. SEfail - PC <— PC plus
* Jump to FETCH routine
at CS 1000

8 via NA field

149

Assembly

Location Microinstruction Comments

2106g
1

2910

£a-o
1 TEST

3
POL

NA

= 0011
= 0111
=
= 00
= iooo

8

CJP
N XOR V status flag

I
Positive polarity

I
FETCH next uinstr.

1
at CS lOOOg

2901

c
5 "

0>S

= 000101
=
=

D plus A
"Carry in" = o

ML0
ASEL

= 00
= 1001

Normal mode
PC

BUS
DS 1,0

=
= 10

2nd byte of IR
to D inputs

SE
TE

= 1
= 1

Sign extend
Enable test to
force D inputs to

h-5BSEL
= 010
= 1001

Result to PC

BUS
BS 1,0

%

= 00 Nothing to BUS

15

BGE

0010|0100
branch | BGE

Algorithm
if "N XOR V " =
then PC <— PC plus

rel. addr.
else PC <— PC plus

SE

Assumptions
The rel. addr. is
located in the IR
2nd byte
Opcode = 001/001/00
CS location 2110„

Location
2110„

ILL Command
TNV0

Description
* Test for "N EOR V" =
pass - PC <— PC plus

rel. addr. SEfail - PC <— PC plus
* Jump to FETCH routine

at CS 1000
8 via NA field

151

Assembly

Location Microinstruction Comments

2110g
I

2910

1
TEST

3
POL

NA<°

- 0011
= 0111
=
= 00
= lOOOg

CJP
N XOR V status flag

1
Positive polarity

1
FETCH next uinstr.
at CS lOOOg

2901

Js-o
cin
0/1

= 000101
=
=

D plus A
"Carry in" =

ASEL
= 00
= 1001

Normal mode
PC

BUS
DS 1,0

=
= 10

2nd byte of IF.

to D inputs

SE
TE

= 1
= 1

Sign extend
Enable test to
force D inputs to

BSEL
= 010
= 1001

Result to PC

BUS
BS 1,0 = 00 Nothing to BUS

152

BLE

I

I
I|0010|0101

I
I

I

branch
| BLE

Algorithm
if "N XOR V" = 1
then PC <— pc plus

rel. addr.cT?
else SE

if "Z" = l

then PC <— PC plus
rel. addr

else PC <— pc plus
SE

Assumptions
The rel. addr. is
located in the IR
2nd byte
Opcode = 001/001/01
CS location 2112

Location
2112 D

2113
8

ILL Command
TNV1NC

TZ1

4000 c PCREL

Description
* Test for "N XOR V"
pass - Jump to CS

location 4000
fail - Fetch next

sequential
microinstruction

J
8

* Test "Z" =
pass - PC <

rel.
fail - PC <

—

* Jump to FETCH routine
at CS lOOOg via NA field

PC plus
addr. SE

PC plus

* PC <— PC plus
rel. addr.

* Jump to FETCH routine
SE

at CS lOOOg via NA field

153

Assembly

Location Microinstruction Comments

2112,
I

2910
I
3 _ = 0011

1
TEST

3 _ = om
POL =
S l,0 = 00
NA = 4000

g

All other control
1

bits =

CJP
N XOR V status flag
Positive polarity
Jump to CS 4000

8

2113g
I

2910

h-a
1 TESTt ,

POL
J C

NA
CO

HO

O

HO

O

OH

O

O

O

O

O

O

H

II

II

II

II

II

CJP
ZERO status flag

1
Positive polarity

1
FETCH next uinstr.

1
at CS 1000g

2901

o>2

= 000101
=
=

D plus A
"Carry in" = o

M1AASEL
= 00
= 1001

Normal mode
PC

BUS
DS 1,0

=
= 10

2nd byte of IR
to D inputs

SE
TE

= 1
= 1

Sign extend
Enable test to
force D inputs to o

H-6BSEL
= 010
= 1001 |

Result to PC

BUS
BS 1,0 = 00 | Nothing to BUS

154

Assembly (cont.

)

Location

4000 o

Microinstruction Comments

2910
I 3-0
S l,0
NA

2901

0/1

M_
AShi

BUS
DS 1,0

SE

Ig-6
BSEL

BUS

= 0010
= 00
= 1000c

000101

00
1001

10

= 1

BS 1,0

010
1001

00

JMAP
FETCH next uinstr.
at CS lOOOg

D plus A
"Carry in" =

Normal mode
PC

2nd byte of IR
to D inputs

Sign extend
force D inputs to

Result to PC

Nothing to BUS

155

BSR

0010|0110
branch

|
BSR

Algorithm
SP <— SP plus 2

M[SP] <— PC
PC <— PC plus rel. addr SE

Assumptions
1. The rel. addr. is

located in the 1R
2nd byte

2. Opcode = 001/001/10
CS location 21l4 n

Location
2114 Q

2115 c

ILL Command
INCSPMAR

SPC

Description
* Increment SP by 2 and
send to the MAR

* Fetch next sequential
microinstruction

* Write PC to memory
* Jump to CS loc. 4000 a

156

Assembly

Location Microinstruction Comments

2114
8 I

2910
I3-0 = 1110

I
Continue

2901

Js-o = 000101
1

D plus A

! Sa
=
=

1 "Carry in" =

! 2h£
= 00
= 1110

I
Normal mode

I
SP

BUS

Immed.

=
= 00
= 00000010

1 2 to D inputs

I

BSEL
= Oil
= 1110

Y <— F output
SP

BUS
BS

1,0
LDMAR

= 01
= 1

Y output to BUS

2115
8 2910

c
3 " = 0010 JMAP

NA'°
= 00
= 4000g

Jump to CS 4000
8

2901
l5-0 = 000100 A plus

oH
=
=

"Carry in" =

thl
= 00
= 1001

Normal mode
PC

I8-6 = 000 Don't store result

BUS
BS 1 AMEMSEL

= 01
= 1

Write PC to memory

R/W =

157

BRA

0010|0111|
!___ I

branch
| BRA

Algorithm
PC <— pc plus rel. addr. SE

Assumptions
1. The rel. addr. is
located in the IR
2nd byte

2. Opcode = 001/001/11
CS location 2116g

Location
2116 D

ILL Command
PCREL

Description
* PC <— PC plus

rel. addr. SF
* Jump to FETCH routine

at CS 1000
8 via NA field

158

Assembly

Location

2116 £

Microinstruction Comments

J
8 2910

b l,0
NA

2901

071

M_
AS
l
E£

BUS
DS 1,0

SE

I8-S
BSEL

BUS

= 0010
= 00
= 1000

000101

00
1001

10

010
1001

BS 1,0 = 00

JMAP
FETCH next uinstr.
at CS 1000-

D plus A
"Carry in" =

Normal mode
PC

2nd byte of IR
to D inputs

Sign extend

Result to PC

Nothing to BUS

159

DO

!

1
o

1

o

[

1

o
1

1

I/O output

15

Devi Code

Algorithm
Put device code on BUS
Put AC (i.e. data) on BUS

Assumptions
1. Assume DCR is valid
2

.

Data written from AC
3. Opcode = 000/000/00

CS location 2000 Q

Location
2000 o

2001,

ILL Command
DCRTOBUS

ACTOBUS

Description
* BUS <— DCR
* Fetch next sequential
microinstruction

* BUS <— AC, i.e. data
* Jump to FETCH routine

at CS 1000 R via NA field

160

Assembly

Location Microinstruction' Comments

2000g | 2910

^-0 = 1110
1

Continue

2901
I5-0 = 000100

1 A plus

0/1
=
=

"Carry in" =

M
J*PASEL

= 00
= 0000

I
Normal mode

I
DCR

*8-6 = 000 Don't store result

BUS
BS

1,Q
I/O SEL

= 01
= 1

Result to I/O as
a device code

I/O S/D =

2001g 2910

= 3"°
= 0010 JMAP

S l,0
NA

= 00
= lOOOg

FETCH next uinstr.
at CS 1000g

2901

lS
'° = 000100 A plus

fa
=
=

"Carry in" =

M1.0
ASEL

= 00
= 0011

Normal mode
AC

*8-6 = 000 Don't store result

BUS

I/O 'SEL
= 01
= 1

Result to I/O
as data

I/O S/D =

161

DI

0000 0001
I/O input

15

Devi Code

Algorithm
Put device code on BUS
Read data into AC from BUS

Assumptions
1. Assume DCR is valid
2

.

Data read via AC
3. Opcode = 000/000/01

CS location 2002
8

Location
2002 Q

2003,

ILL Command
DCRTOBUS

DATATOAC

Description
* BUS <— DCR
* Fetch next sequential
microinstruction

* AC <— BUS, i.e. data
* Jump to FETCH routine

at CS 1000
8 via NA field

162

Assembly

Location Microinstruction Comments

2002g
I

2910
J3-0 = 1110

1 Continue

2901

Js-o = 000100
1 A plus

|

oft
=
=

1
"Carry in" =

ML0
ASEL

= 00
= 0000

1
Normal mode

I

DCR

*8-6 = 000 Don't store result

BUS
BS 1,0
I/O' SEL

= 01
= 1

Result to I/O as
1

a device code

I/O S/D =

2003g 2910

« 3
"° = 0010 JMAP

Si'°
= 00
= lOOOg

FETCH next uinstr.
at CS 1000

8

2901
I5-0 = 000111 D plus
C
oft

=
=

"Carry in" =0

Ml,0 = 00 Normal mode

BUS = 1 D inputs from BUS

X8-6
BSEL

= 010 1

= 0011
Result to AC

BUS
I/O SEL = 1 Data from input

I/O S/D " °
1

device onto BUS

163

Immediate Addressing

11 12 15

|0000|XXXX|
Immediate

16
31

I m m e d i ate data

Algorithm
TEMPI <— pc

Assumptions
Upon completion of the
ea calculation, TEMPI
will contain the ea
X's imply Don't Cares
Opcode = 000/OXX/XX
CS location 3000 o

Location
3000 o

ILL Command
PCTEMP1

Description
Move PC to TEMPI
Fetch next micro-
instruction using the
IR opcode address

164

Assembly

Location Microinstruction Comments

3000g
I

2910
I
3 _ = 0010 JMAP

Sl,0 - io NA from IR opcode

2901
I 5 _ = 000100 A plus
Cin -
0/1 =

"Carry in" =0

M1.0 = oo
ASEL = 1001

Normal mode
PC

I8-6 * 01°
BSEL = 0100

Result to TEMPI

BUS
BS1,0 " 0° Nothing to BUS

165

Direct Address incf

11 12 15

|0001|XXXX|
1

I

I

Direct

16
31

Direct A d d r e

Algorithm
PC <— PC plus 2

TEMPI <— M[PC]

Assumptions
Upon completion of the
ea calculation, TEMPI
will contain the ea
X's imply Don't Cares
Opcode - 000/1XX/XX
CS location 3004 o

Location
3004 o

3005
8

ILL Command
INCPCMAR

LTEMP

Description
* Increment PC by 2
* Send result to MAR
* Fetch next sequential
microinstruction

* Read memory into TEMPI
* Fetch next micro-

instruction using
IR opcode address

166

Assembly

Location Microinstruction Comments

3004
8 I

2910
r3-0 = 1110

1 Continue

2901
I 5-0 = 000101

1 D plus A
C4n
0/1

=
=

"Carry in" =

HL0
ASEL

= 00
= 1001

1
Normal mode

I
PC

BUS

Immed.

=
= 00
= 00000010

2 to D inputs

1
BSEL

= Oil
= 1001

1
Result to PC

BUS
BS 1,0
ldmar

= 01
= 1

y output to bus

3005
8 2910

*3-0 = 0010 JMAP
s i,o = 10 NA from IR opcode

2901
I5-0 = 000111 D plus

o>S
=
=

"Carry in" =0

Ml,0 = 00 Normal mode

BUS = 1 D inputs from BUS

X8-6
BSEL

= 010
= 0100

Result to TEMPI

BUS
MEMSEL = 1 Read from memory

R/W = 1

167

8

Indirect Addressing

11 12 15

I

I
I|0010|XXXX

I
I

I

Indirect
|

16
31

Indirect A d d r ess

Algorithm
PC <— PC plus 2
TEMPI <— M[PC]
TEMPI <— M[TEMP1]

Assumptions
1. Upon completion of the

ea calculation, TEMPI
will contain the ea

2. X's imply Don't Cares
3. Opcode = 001/OXX/XX

CS location 3010
g

Location
3010 a

3011
8

ILL Command
INCPCMAR

LTEMP

3012 £

3013
8

TEMAR

LTEMP

Description
* Increment PC by 2
* Send result to MAR
* Fetch next sequential
microinstruction

* Read memory into TEMPI
* Fetch next sequential
microinstruction

* Send TEMPI to MAR
* Fetch next sequential
microinstruction

* Read memory into TEMPI
* Fetch next micro-
instruction using
IR opcode address

168

Assembly

Location Microinstruction Comments

3010
8 1 2910

*3-0 = 1110 Continue

2901
I 5-0 = 000101

1
D plus A

cin
0/1

=
=

1
"Carry in" =

M
1*PASEL

= 00
= 1001

1
Normal mode

1 PC

BUS

Immed

.

=
= 00
= 00000010

2 to D inputs

Jl-6
1 BSEL

= Oil
= 1001

Result to PC

BUS
BS1.0
LDMAR

= 01
= 1

1
Y output to BUS

30118 2910
X 3-0 = 1110 Continue

2901
I5-O = 000111 D plus
cin
0/1

=
=

"Carry in" =0

Ml,0 = 00 Normal mode

BUS = 1
I

D inputs from BUS

Ig-6
BSEL

= 010
1

= 0100 1

Result to TEMPI

BUS
MEMSEL = 1 Read from memory

R/W = 1 1

169

Assembly (Cont.

)

3012 8 2910
I3-0 = 1110 Continue

2901
r5-0 = 000100 A plus

S)s
= "Carry in" =
=

asel
= 00 Normal mode
= 0100 TEMPI

X8-6 = 000 Don't store result

BUS
BS 1,0

= 01 Y output to BUS
ldmar = 1

3013 8 2910
I3-0 = 0010 JMAP
S l,0 = 10 NA from IR opcode

2901
l5-0 = 000111 D plus
cin
071

= "Carry in" =
=

Ml,0 = 00 Normal mode

BUS = 1 D inputs from BUS

I§-§ = 010 Result to TEMPI
BSEL = 0100

BUS
MEMSEL = 1 Read from memory

R/W = 1

170

Relative Addressing

11 12 15

1

1
o

1

1 1
1

X X X
1

x
1

1

Relative

16
31

R e 1 a t i Address

Algorithm
PC <— PC plus 2

TEMPI <— M[PC]
TEMPI <— PC plus TEMPI

2.

3.

Assumptions
Upon completion of the
ea calculation, TEMPI
will contain the ea
X's imply Don't Cares
Opcode = 001/1XX/XX
CS location 3014 o

Location
3014 D

3015

3016
8

ILL Command
INCPCMAR

LTEMP

TEMPC

Description
* Increment PC by 2
* Send result to MAR
* Fetch next sequential
microinstruction

* Read memory into LTEMP
* Fetch next sequential
microinstruction

* Store in TEMPI the sum
of PC plus TEMPI

* Fetch next micro-
instruction using
IR opcode address

171

Assembly

Location Microinstruction Comments

3014g
1

2910
r3-0 = 1110

1 Continue

2901

!

*5-0 = 000101
1 D plus A

cin
0/1

=
=

1
"Carry in" =

HL0
ASEL

= 00
= 1001

I
Normal mode

I

PC

BUS

Immed.

=
= 00
= 00000010

2 to D inputs

I8-6
BSEL

= Oil
= 1001

Result to PC

BUS
BS 1.0
ldmar

= 01
= 1

Y output to BUS

3015g 2910

13-0 = 1110 Continue

2901
I5-0 = 000111 D plus
cin
0/1

=
=

"Carry in" =0

Ml,0 = 00 Normal mode

BUS = 1 D inputs from BUS

*a-6
BSEL

= 010
= 0100

J

Result to TEMPI

BUS
MEMSEL = 1 Read from memory

R/W = 1 1

172

Assembly (Cont.

)

3016
8 1 2910

*3-0 = 0010 JMAP
s i,o = 10 NA from IB opcode

2901
I5-0 = 000001 A plus B

o>5
=
=

"Carry in" =

Mi*o
ASEL

= 00
= 1001

Normal mode
PC

BSEL = 0100 TEMPI

*8-6 = 010 Store result

BUS
BS 1,0 = 00 Nothing to BUS

173

Indexed Addressing

11 12 15

I 1 o
I

Index reg.

Indexed
|

—3:
--A:
— B:
—E:

AC
IX
IY
SP

Algorithm
PC <— PC plus 2

TEMPI <— M[PC]
TEMPI <— TEMPI plus AC

SP
IX
IY

Assumptions
Upon completion of the
ea calculation, TEMPI
will contain the ea
Opcode = 010/0—/

—

CS location 3020 n

Location
3020

8

3021,

3022,

3023,

3024,

ILL Command
TFRIA

INCPCMAR

ADD

TFRIA

TFRIA

Description
* Transfer Index to AC
* Fetch next sequential
microinstruction

* Increment PC and send
new value to MAR

* Fetch next sequential
microinstruction

* Perform AC plus M[PC]
* Fetch next sequential
microinstruction

* Transfer AC to Index
* Fetch next sequential
microinstruction

* Transfer AC to TEMPI
* Fetch next micro-

instruction using
IR opcode address

174

Assembly

Location Microinstruction Comments

3020
8 I

2910
I3-0 = 1110

1
Continue

1 2901
I 5-0 = 000100

1 A plus

j

oH
=
=

1 "Carry in" =

i ltd
= 00
= 1001

1
Normal mode

I

PC

BSEL
= 010
= 0100

Result to TEMPI

BUS
BS 1,0 = 00 Nothing to BUS

3021
8 2910

X3-0 = 1110 Continue

2901

Js-o = 000101 D plus A

o)S
=
=

"Carry in" =

thtl
= 00
= 1001

Normal mode
PC

BUS

Immed.

=
= 00
= 00000010

1

2 to D inputs

BSEL
= Oil
= 1001

Result to PC
PC

BUS
BS 1,0
ldmAr

= 01
= 1 1

Y output to BUS

175

Assembly

Location

3022
8 1

2910
I3-0 = 1110 Continue

2901

r
5 " = 000101 A plus D plus Cj

cln = 1 Cin from CARRY bit

SS = 1 Set status bits
BUS = 1 D inputs of 2901

come from BUS

M
1*PASEL

= 00
= 0011

Normal mode
AC

I§-6
BSEL

= 010
= 0011

Result to AC

BUS
MEMSEL = 1 Read from memory

R/W = 1

Location

3023
8 1 2910

j

X3-0 = 1110
1 Continue

2901

! >° = 000100 A plus

.
&i

=
=

"Carry in" =

M1AASEL
= 10
» 0011

Ind. addr. mode
AC

Jg-6*BSEL
= 010
= 0011

Result to
AC

1110 SP
1010 IX
1011 IY

BUS
BS1,0 = 00 1 Nothing to BUS

176

Assembly

Location

3024
8 1 2910

*3-0 = 0010 JMAP
b l,0 = 10 NA from IR opcode

2901

1
I 5-0 = 000100 A plus

o>?
=
=

"Carry in" =

&£ = 10
= 0011

Ind. addr. mode
AC

li-6BSEL
= 010

= 0100
Result to
TEMPI

BUS
BS 1,0 = 00 1 Nothing to BUS

177

Hacroinstruction FETCH

Algorithm

Interrupt

No

Yes

Assumptions

1. CS location at 1000 c

PC < PC plus 2

I

Interrupt
Servicing
Routine

at CS 0400
8

IR <— M[PC]

Jump to microcode determined either
by opcode or addressing mode.

Location
1000 o

ILL Command
TINT

1001c LIRPCINC

Description
* TEST for INTERRUPT

pass - Jump to CS
location 0400

8
fail - Fetch next

sequential
microinstruction

* Add 2 to PC but don't
store result (in case
of an interrupt.)

* Send result to MAR

* Read memory into IR
* Add 2 to PC and store
* Fetch next micro-

instruction via the
IR ea/opcode address

178

Assembly

Location Microinstruction Comments

lOOOg
I

2910

2a-o
= 0011 CJP

test
3 .-0 = 0101 Interrupt status fl

POL = Positive polarity

NA<°
= 00
= 0400g

Jump to CS 0400
8

2901

J5-O
= 000101 A plus D

oH
=
=

"Carry in" =

as£l
= 00
= 1001

Normal mode
PC

BUS

Immed

.

=
= 00
= 00000010

2 to D inputs

18-6 = 000 Don't store result

BUS

f
s l

LDMAR
= 01
= 1

Y output to BUS

179

Assembly (Cont.

)

1001
3 2910

=
0010
11a

3 "

1,0

JMAP
NA from IR (ea/
opcode)

2901

Jb-o

071

=
000101 A plus D

"Carry in" =

MlfASEL
= 00

1001
Normal mode
PC

BUS

Immed. I
00
00000010

2 to D inputs

BSEL =
010
1001

Result to PC

BUS
MEMSEL . 1 Read value from

R/W
LDIR =

1

1

memory into IR

180

Interrupt Servicing Routine

Algorithm
Set INTACK
M[SP] <— PC
Save status register
Set PC to macroinstruction

servicing routine

Assumptions
CS location 0400 8Current PC will be
saved on user stack
via microcode
Current status flags
will also be saved
on the stack.
Macrocode servicing
routine at location
ioo lp
The last macro-
instruction in the
servicing routine
will be RTI

Location
0400 D

ILL Command
INCIASM

0401
8 SPC

0402 c

0403
8

INCSPMAR

FORPC

Description
* Increment SP and send

result to MAR
* Acknowledge interrupt
* Fetch next sequential
microinstruction

* Write PC to memory
* Fetch next sequential
microinstruction

* Increment SP and send
result to MAR

* Fetch next sequential
microinstruction

PC <— 100 10
* Save status register

181

Assembly

Location Microinstruction Comments

0400
3 I

2910
r3-0 = 1110

1 Continue

2901
I 5-0 = 000101

1
D plus A

! OH
=
=

I
"Carry in" =

I

KM = 00
= 1110

I
Normal mode

I
SP

BUS

Immed

.

=
= 00
= 00000010

2 to D inputs

BSEL
= Oil
= 1110

1
Result to SP

BUS
BS

1 <0ldmar
,

= 01
= 1

V output to BUS

INTACK = 1

0401
8 2910

13-0 = 1110 Continue

2901
I5-0 = 000100 A plus

o>5
=
=

"Carry in" =

ASEL
= 00
= 1001

Normal mode
PC

ra-6 = 000 Don't store result

BUS
BSLO
MEMSEL

= 01 1

= 1
Write PC to memory

R/W = 1

182

Assembly (Cont.

)

0402g
1 2910

r3-0 = 1110
i

Continue

2901

>° = 000101 D plus A
cin
0/1

=
=

"Carry in" =

M1.0
hSth

= 00
= 1110

Normal
SP

mode

BUS

Immed

.

=
= 00
= 00000010

2 to D inputs

BSEL
= Oil
= 1110

Result to SP

BUS
BS

1 <0ldmAr
= 01

|

= 1

Y output to BUS

183

Assembly (Cont.

)

0403g
1 2910

*3-0 = 0010 JMAP
S l,0

1
NA

= 00
= lOOOg

1
FETCH next uinstr.

1
at CS lOOOg

2901

r
5-° = 000111 D plus

0/1
=
=

"Carry in" =0

Ml,0 = 00 Normal mode

BUS

Immed.

=
= 00
= 01100100

10010 to D inputs

X8-6
BSEL

= Oil
= 1001

Result to PC

BUS
BS

1AMEMSEL
= 10
= 1

Write CPU status
to memory

R/W =

184

Initialization

Algorithm
PC <— o

Reset BUS
FETCH 1st macroinstruction

Assumptions
1. The bootstrap program

is located in ROM n

2. CS location 0000 o

'16

Location
0000 n

ILL Command
INIT

Description
* PC <— o
* Jump to FETCH routine

at CS 1000g via NA field

185

Assembly

Location

0000 Q

Microinstruction

2910

Comments

^3-0

2901

o/i

M1,0

BUS
DS_
Imm̂ a.

x 8-6
BSEL

BUS
BS

= 0010
- 00
= 1000

8

= 000111
=
=

= 00

=
= 00
= 00000000

= 010
= 1001

1,0 = 00

JMAP
FETCH next uinstr.
at CS 1000 a

D plus
"Carry in" =

Normal mode

to D inputs

Result to PC

Nothing to BUS

186

Appendix B — Input File for Generation Program

The following pages contain the input file that the

control bit generation program read. The format for the

various fields is as follows:

ILL command — j_or_ns — s — NA — flag — pol — cs_loc

These parameters were explained in considerable detail in

section 12.2.

187

TEMAR 0000 2740
LAC 1 1000 2741
TEMAR 0000 2742
SAC 1 1000 2743
TEMAR 0000 2744
AND 1 1000 2745
TEMAR 0000 2746
OR 1 1000 2747
TEMAR 0000 2750
ADD 1 1000 2751
TEMAR 0000 2752
SUB 1 1000 2753
INCSPMAR 0000 2754
SAC 1 1000 2755
SPMARDEC 0000 2756
LAC 1 1000 2757
SPMARDEC 0000 2760
LPC 1 1000 2761
SPMARDEC 0000 2762
LPCRS 1 1000 2763
NOP 1 1000 2764
INC 1 1000 2040
DEC 1 1000 2042
ROR 1 1000 2044
ROL 1 1000 2046
CLR 1 1000 2050
COM 1 1000 2052
TFR 1 1000 2054
HLT 2 1000 8 1 2056
NOP 1 2056 2057
TZ1 2 1000 4 2100
TZO 2 1000 4 1 2102
TNVONC 2 1000 7 1 2104
TZO 2 1000 4 2105
TNV1 2 1000 7 2106
TNVO 2 1000 7 1 2110
TNV1NC 2 4000 7 2112
TZ1 2 1000 4 2113
PCREL 1 1000 4000
INCSPMAR 0000 2114
SPC 1 4000 2115
PCREL 1 1000 2116
DCRTOBUS 0000 2000
ACTOBUS 1 1000 2001
DCRTOBUS 0000 2002
DATATOAC 1 1000 2003
PCTEMP1 1 2 0000 3000
INCPCMAR 0000 3004
LTEMP 1 2 0000 3005
INCPCMAR 0000 3010

188

LTEMP 0000 3011
TEMAR 0000 3012
LTEMP 1 2 0000 3013
INCPCMAR 0000 3014
LTEMP 0000 3015
TEMPC 1 2 0000 3016
TFRIA 0000 3020
INCPCMAR 0000 3021
ADD 0000 3022
TFRIA 0000 3023
TFRIA 1 2 1000 3024
TINT 2 0400 5 1000
LIRPCINC 1 3 0000 1001
INCIASM 0000 0400
SPC 0000 0401
INCSPMAR 0000 0402
FORPC 1 1000 0403
INIT 1 1000 0000

189

Appendix C — Control Store Memory Dump

A memory dump of the CS memory, the output of the

computer program written to generate the control bits, is

seen on the following pages. Please note that only the

locations with relevant data are shown.

190

cs s NA i3 pol t3 immed ds BUS se te
0000 00 1000 0010 0000 00000000 00
0001 00 0000 0000 0000 00000000 00

0400 00 0000 1110 0000 00000010 00
0401 00 0000 1110 0000 00000000 00
0402 00 0000 1110 0000 00000010 00
0403 00 1000 0010 0000 01100100 00
0404 00 0000 0000 0000 00000000 00

1000 00 0400 0011 0101 00000010 00
1001 11 0000 0010 0000 00000010 00
1002 00 0000 0000 0000 00000000 00

2000 00 0000 1110 0000 00000000 00
2001 00 1000 0010 0000 00000000 00
2002 00 0000 1110 0000 00000000 00
2003 00 1000 0010 0000 00000000 00 1
2004 00 0000 0000 0000 00000000 00

2040 00 1000 0010 0000 00000001 00
2041 00 0000 0000 0000 00000000 00
2042 00 1000 0010 0000 11111111 00
2043 00 0000 0000 0000 00000000 00
2044 00 1000 0010 0000 00000000 00
2045 00 0000 0000 0000 00000000 00
2046 00 1000 0010 0000 00000000 00
2047 00 0000 0000 0000 00000000 00
2050 00 1000 0010 0000 00000000 00
2051 00 0000 0000 0000 00000000 00
2052 00 1000 0010 0000 11111111 00
2053 00 0000 0000 0000 00000000 00
2054 00 1000 0010 0000 00000000 00
2055 00 0000 0000 0000 00000000 00
2056 00 1000 0011 1 0000 00000000 00
2057 00 2056 0010 0000 00000000 00

2100 00 1000 0011 0100 00000000 10 1 1
2101 00 0000 0000 0000 00000000 00
2102 00 1000 0011 1 0100 00000000 10 1 12103 00 0000 0000 0000 00000000 00
2104 00 1000 0011 1 0111 00000000 00
2105 00 1000 0011 0100 00000000 10 1 12106 00 1000 0011 0111 00000000 10 1 12107 00 0000 0000 0000 00000000 00
2110 00 1000 0011 1 0111 00000000 10 1 12111 00 0000 0000 0000 00000000 00
2112 00 4000 0011 0111 00000000 00
2113 00 1000 0011 0100 00000000 10 1 12114 00 0000 1110 0000 00000010 00

191

2115 00 4000 0010 0000 00000000 00
2116 00 1000 0010 0000 00000000 10 1
2117 00 0000 0000 0000 00000000 00

2740 00 0000 1110 0000 00000000 00
2741 00 1000 0010 0000 00000000 00 1
2742 00 0000 1110 0000 00000000 00
2743 00 1000 0010 0000 00000000 00
2744 00 0000 1110 0000 00000000 00
2745 00 1000 0010 0000 00000000 00 1
2746 00 0000 1110 0000 00000000 00
2747 00 1000 0010 0000 00000000 00 1
2750 00 0000 1110 0000 00000000 00
2751 00 1000 0010 0000 00000000 00 1
2752 00 0000 1110 0000 00000000 00
2753 00 1000 0010 0000 00000000 00 1
2754 00 0000 1110 0000 00000010 00
2755 00 1000 0010 0000 00000000 00
2756 00 0000 1110 0000 11111110 00
2757 00 1000 0010 0000 00000000 00 1
2760 00 0000 1110 0000 11111110 00
2761 00 1000 0010 0000 00000000 00 1
2762 00 0000 1110 0000 11111110 00
2763 00 1000 0010 0000 00000000 00 1
2764 00 1000 0010 0000 00000000 00

3000 10 0000 0010 0000 00000000 00
3001 00 0000 0000 0000 00000000 00
3002 00 0000 0000 0000 00000000 00
3003 00 0000 0000 0000 00000000 00
3004 00 0000 1110 0000 00000010 00
3005 10 0000 0010 0000 00000000 00 13006 00 0000 0000 0000 00000000 00
3007 00 0000 0000 0000 00000000 00
3010 00 0000 1110 0000 00000010 00
3011 00 0000 1110 0000 00000000 00 1 o3012 00 0000 1110 0000 00000000 00
3013 10 0000 0010 0000 00000000 00 13014 00 0000 1110 0000 00000010 00
3015 00 0000 1110 0000 00000000 00 13016 10 0000 0010 0000 00000000 00 o3017 00 0000 0000 0000 00000000 00
3020 00 0000 1110 0000 00000000 00 o3021 00 0000 1110 0000 00000010 00
3022 00 0000 1110 0000 00000000 00 13023 00 0000 1110 0000 00000000 00
3024 10 0000 0010 0000 00000000 00

4000 00 1000 0010 0000 00000000 10 1 n

192

2000 0000 0000 00 000

CS ASEL BSEL mode i8 6 15 z or o cin ss hi lrtlr-0000 oooo looi oo olo oooiii -
o- o"

S

o 000001 0000 0000 00 000 000000 00

0400 1110 1110 00 011 000101 010401 1001 0000 00 000 000100 010402 1110 1110 00 Oil 000101 010403 0000 1001 00 Oil 000111 100404 0000 0000 00 000 000000 00

1000 1001 0000 00 000 000101 01 n1001 1001 1001 00 010 000101 00 11002 0000 0000 00 000 000000 00

000100 01
01

2001 0011 0000 00 000 000100
2002 0000 0000 00 000 000100 012003 OOOO 0011 00 010 000111 Q 002004 OOOO OOOO 00 000 000000 00

2040 9999 9999 11 010 000101 1 on2041 OOOO OOOO 00 000 000000 002042 9999 9999 11 010 001101 1 g 1 gg n2043 OOOO OOOO 00 000 000000 00 n

1„£ III*
"" " 10 ° 00010 ° 1 1 00 o2045 OOOO OOOO 00 000 000000 00 n2046 9999 9999 11 i 10 000100 1 ? gg n2047 OOOO OOOO 00 000 000000 002050 9999 9999 11 010 000111

°

o° o° o

1

o°o°

1 00

OOOO OOOO 00 000 000000
2052 9999 9999 11 010 110101 -

°

2053 OOOO OOOO 00 000 000000
2054 9999 9999 11 010 000100 1 00 n2055 OOOO OOOO 00 000 000000 00 o2056 OOOO OOOO 00 000 000000 00 n2057 OOOO OOOO 00 000 000000 gg

"°? "" 1001 oo 010 000101"" °°°° oooo 00 000 000000
2102 1001 1001 00 010 000101 n n ™2103 OOOO OOOO 00 000 000000

o 00
2104 OOOO OOOO 00 000 g

°

g gg g
lint J22

1 1001 °° ° 10 ° 00101 g g gg g

l^n nnn
1 1001 °° 01 ° °0101 gg2107 OOOO OOOO 00 000 000000 gg n

p^° ^ 1001 00 ° 10 °°oioi g g gg g

1^1 nnnn
° 00 °° °°° 000 000 g gg q2112 OOOO OOOO 00 000 000000 g gg g2113 1001 1001 00 010 000101 gg n2114 1110 1110 00 Oil 000101 g g g o°

193

2115 1001 0000 00 000 000100 01
2116 1001 1001 00 010 000101 00 o2117 0000 0000 00 000 000000 00

2740 0100 0000 00 000 000100 01 o2741 0000 0011 00 010 000111 1 00
2742 0100 0000 00 000 000100 01 o2743 0011 0000 00 000 000100 1 00
2744 0100 0000 00 000 000100 01 o2745 0011 0011 00 010 100101 1 00 o2746 0100 0000 00 000 000100 01 o2747 0011 0011 00 010 011101 1 00 o2750 0100 0000 00 000 000100 01 o2751 0011 0011 00 010 000101 1 1 00 o2752 0100 0000 00 000 000100 01

o

2753 0011 0011 00 010 001101 1 1 002754 1110 1110 00 Oil 000101 012755 0011 0000 00 000 000100 1 002756 1110 1110 00 010 001100 1 012757 0000 0011 00 010 000111 1 002760 1110 1110 00 010 001100 1 012761 0000 1001 00 010 000111 002762 1110 1110 00 010 001100 1 012763 0000 1001 00 010 000111 002764 0000 0000 00 000 000000 00

3000 1001 0100 00 010 000100 003001 0000 0000 00 000 000000 003002 0000 0000 00 000 000000 003003 0000 0000 00 000 000000 003004 1001 1001 00 Oil 000101 o 01
00

3005 0000 0100 00 010 000111
3006 0000 0000 00 000 000000 o 00

00
01
00

3007 0000 0000 00 000 000000 o3010 1001 1001 00 Oil 000101
3011 0000 0100 00 010 000111
3012 0100 0000 00 000 000100 01

00
3013 0000 0100 00 010 000111 o3014 1001 1001 00 Oil 000101 o 01

00
3015 0000 0100 00 010 000111
3016 1001 0100 00 010 000001 o 00

00
00
01
00

3017 0000 0000 00 000 000000 o3020 1001 0100 00 010 000100 o3021 1001 1001 00 Oil 000101 o3022 0011 0011 00 010 000101 1 13023 0011 9999 10 010 000100 o 00
00

3024 0011 0100 10 010 000100 1

4000 1001 1001 00 010 000101 00

194

CS memsel r_w ldmar io_sel io_s_d intack rs
0000
0001

0400 1 1
0401 1

0402 1

0403 1

0404

1000 1

1001 1 1

1002

2000 1

2001 1
2002 1

2003 1
2004

2040
2041
2042
2043
2044
2045
2046
2047
2050
2051
2052
2053
2054
2055
2056
2057

2100
2101
2102
2103
2104
2105
2106
2107
2110
2111
2112
2113
2114 1

195

2115 1
o2116

2117

2740 1 o2741 1 1
o2742

. 1 o

o

2743 1
2744 1 o
2745 1 1
2746 1

o

2747 1 1
2750 1
2751 1 1

1

2752 1
2753 1 1 o2754 1
2755 1

2756 1
2757 1 1
2760 1
2761 1 1
2762 1 o2763 1 1

2764

3000
3001
3002

o
3003
3004 1 o3005 1 1

o3006
3007

o3010 1 o3011 1 1

o
3012 1
3013 1 1

o3014 1

o

3015
3016

1 1

3017
o3020

o

3021 1
3022 1 1
3023
3024

4000

196

Appendix D — Control Bit Generation Program

This appendix contains the functions written by the

author to generate the control bits. The four functions

were written in the C programming language and include a

main function which calls the clear, generate and store

functions. These functions were introduced in section 12.3

and are fully documented to promote the ease in which they

may be read.

197

* SOURCE FILE: [culp]main.

c

*

*

* FUNCTION: main.c

DESCRIPTION: This program will read data from an input
file, generate the corresponding
control bits, store these control bits
in the specified Control Store memory
location and print to an output
file a dump of the Control Store memory.

Note — The input file should use the
following form for listing the data,
with at least one space between
each field.

ILL command — j_or_ns NA — flag pol cs loc

DOCUMENTATION
FILES: None.

ARGUMENTS

:

RETURN:

None.

mt
NORMAL
ERROR

Normal execution
An error has occurred

FUNCTIONS
CALLED: clear () — clears all the parameters

passed to it. In this
case, all the control bits
received by clear () are
set to 0.

generate () — produces the control bits
given the ILL command and
other needed information.

198

store (

)

stores the generated control
bits into the Control Store.

* AUTHOR: Steven H. Culp

DATE
CREATED: 22Mar88 Version 1.00

* REVISIONS: None.

include <stdio.h> '

/*
/* The following defs. are for the types of terminate

#define
#define

#define
#define

NORMAL
ERROR

MAX_LEN
BUFFER

10

8

88
/* max. length of ill command */
/* no. of buffer elements */

Main program begins here.

main()
{

char command [MAX_LEN]

,

i_f_name[15]

,

o_f_name[15]
,

s_buf [BUFFER]
;

/* holds the ILL command of
/* which the control bits
/* are to be generated
/* input file name
/* output "

/* string buffer

int clear (), /* a fen. which clears the control bitscs_loc, /* the Control Store location, i.e. the
/* addr. of the microinstr.

cs[4001][88], /* Control Store is 4k by 88 bits widenag, /* which status flag is being testedgenerate (), /* a fen. which generates the control

*/
*/
*/
*/
*/
*/

*/
V
*/

V
"/

199

i,

J,
j_or_ns,
store ()

,

bits
is an index

ii

jump vs. next sequential microinstr

.

a fen. which stores the generated
microinstr. in the Control Store

V
V
*/
*/
*/
*/

These are the control bits. They are used as specified */
in the thesis. */

ASEL, /*
BSEL, /*
bs, /*
BUS, /*
cin, /*
ds, /*
io_sel, /*
io_s_d, /*
i3_0, /*
i5_0, /*
i8_6, /*
immed, /*
intack, /*
ldir, /*
ldmar, /*
memsel, /*
mode, /*
NA, /*
pol, /*
rs, /*
r_w, /*
s, /*
se, /*
ss, /*
t3_0, /*
te, /*
z_or_one; /*

FILE *input_file, /*
output_file; /

2901 reg. A select */
il n B n */

bus select control bits */
determines if BUS is selected */
"carry in" source determination */
2901 D input source */
I/O device selected */
I/O status or data */
2910 instruction bits */
2901 source and function bits */
2901 destination bits */
immed. field in the microinstr. */
acknowledge an interrupt */
load instr. reg., a.k.a. IR */
" memory addr. reg., a.k.a. MAR */

memory selected */
mode of 2901 ALU operation */
next address field in microinstr. */
polarity determination bit */
restore status bits */
read or write operation */
2910 D input source */
sign extend */
save status */
2910 test determination bits */
test enable */

or 1 */

a pointer to the input file */
" " " " output " */

/* Prompt for the input and output file names, then open
/* each file for reading and writing, respectively.

printf ("\n\nlnput file name:
scanf ("%s", i_f_name)

;

200

printf ("\nOutput file name: »)

;

scanf ("%s", o_f_name)

;

input_file = fopen(i_f_name, "r")

;

if (input_file == NULL)
{

printf ("\nFile can not be opened for input "1

•

return (ERROR)

;

)

output_file = fopen(o_f_name, "w")

;

if (output_file == NULL)
{

printf ("\nFile can not be opened for outout 'M •

return (ERROR)

;

* ' ''

}

/*
/*

*"^!^fe the *ntire Control store memory to~o7~~ " */

for (i = 0; i < 4001; i++) '

for (j =0; j < 88; j++)
cs[i] [j] = o;

/*
/* The main loop begins here. *J,/* ~

, ,

while ((fgets(s_buf, BUFFER, input_file)) != NULL)
/

/*
_,

/* Reset/initialize all control bits to 0. *//* —————————————— -.——_—————__________,
if (clear (SASEL, &BSEL, &bs, &BUS, scin" &dsr&io"sel«o s_d &i3_0, sis_o, &is_6, Simmed, sTntack,

sidir, Sldmar, Smemsel, Smode, SNA, Spol , &rs
&r_w, &s, &se, iss, St3_0, &te, &z_or_one))

'

printf ("\nAn error has occurred in clear M »1

•

return (ERROR)

;

w
'

)

/*
/* Read the data. *J.
/* */

fscanf (input_file, »%s", command);
*/

fscanf (input_file, "%d %d %d %d %d %d",

201

&j_or_ns, &s, SNA, SfXag, Spol, &cs_loc)

/*
/*
/*
/*
/*
if

The generate () is now called to generate the
appropriate control bits that correspond to thegiven ILL command.

(generate (command, flag, j_or_ns, &ASEL, &BSEL, ibs"
&BUS, Scin, &ds, &io_sel, &io_s_d, &i3 '&i
&i8_6, simmed, Sintack, sidir, &ldmar,~&mems
Smode, NA, pol, &rs, &r_w, &s, &se, &ss, it3
Ste, &z_or_one)

)

printf ("\nAn error has occurred in generate M ")
return (ERROR)

;

\> • i •

}

V
*/
*/
*/
*/

5_0,
1,
o,

/* Print generated control bits to verify that all is/* correct.
/*

printf ("\n\n\n\n\nThe generated control bits for-for (i=0; i < MAX_LEN; i++)
printf ("%c", command [i])

;

*/

printf ("\n\nFor the 2910
printf (" For the BUS")

;

printf("\ni3_0 = %04d i5
i3_0, i5_0, bs)

;

printf ("\nt3_0 = %04d cin
t3_0, cin, ldir)

;

printf ("\npol = %4d z_or_one
pol, z_or_one, ldmar)

;

printf(»\ns = %02d ss
s, ss, io sel) ;

printf ("\nNA = %04d "mode
NA, mode, io s d)

;

printf ("\n
-
A§EL

ASEL, memsel)

;

printf ("\n BUS
BUS, r w)

;

printf (»\n ds
ds, intack)

;

printf ("\n immed = %08d
lmmed, rs)

;

printf("\n se
printf ("\n te

For the 2901

%06d

%4d

%4d

bs = %02d'

ldir = %4d",

ldmar = %4d",

%4d io_sel = %4d",

%02d io_s_d = %04d"

%04d memsel = %4d",

%4d r_w = %4d",

%4d intack = %4d",

rs %ld",

%4d ",se)

;

%4d "

202

te);
printf("\n i8_6 = %03d ", is 6)
printf("\n BSEL .= %04d », BSEL)

if (store(cs, cs_loc, ASEL, BSEL, bs, BUS, cin, ds,
io_sel, io_s_d, i3_0, i5_0, i8_6, immed,
intack, ldir, ldmar, memsel , mode, NA, pol
rs, r_w, s, se, ss, t3_0, te, z_or_one)

)

printf("\nAn error has occurred in store ().")

;

return (ERROR)

;

}

}

fprintf (output_file, " CS s NA i3_0 pol t3 0")

;

fprintf (output_file, " immed ds BUS se te") ;
~

for (i = 0; i < 4001; i++)
{

fprintf (output_file, "\n%04d %02d %04d %04d",
i, cs[i][0], cs[i][i], cs[i][2]);

fprintf (output_file, " %ld %04d"

,

cs[i][3], cs[i][4])

;

fprintf (output_file, " %08d %02d %ld %ld",
cs[i][5], cs[i][6], cs[i][7], cs[i][8]);

fprintf (output_file, " %ld",
cs[i][9]);

)

fprintf (output_file,"\n\n\n CS ASEL BSEL mode i8 6")

;

fprintf (output_file," i5_0 z_or o cin ss bs ldir");
for (i = 0; i < 4001; i++)

{

fprintf (output_file, "\n%04d %04d %04d %02d %03d"
i, cs[i][10], cs[i][ll], cs[i][12], cs[i][13]);'

fprintf (output_file, " %06d %ld %ld %ld",
cs[i][14], cs[i][15], cs[i][16], cs[i][171);

fprintf (output_file, " %02d %ld",
cs[i][18], cs[i] [19])

;

fprintf (output_file,"\n\n\n CS memsel r w ldmar io sel");
fprintf (output_file," io_s_d intack rs")7
for (i = 0; i < 4001; i++)

{

fprintf (output_file, "\n%04d %ld %ld %ld",
i, cs[i][20], cs[i][21], cs[i][22]);

fprintf (output_file, " %id %id %id %ld"
cs[i][23], cs[i][24], CS[i][25], cs[i][26]);

203

return (NORMAL)

;

}

/* EOJ — Steven H. Culp — main() V

204

/***
*

* SOURCE FILE: [culp]clear.c

* FUNCTION

:

clear.

c

* DESCRIPTION: This function clears, i.e. sets to all
* the parameters it receives.

DOCUMENTATION
FILES: None.

ARGUMENTS

:

ASEL

BSEL

bs

BUS

ds

io sel

io s d

(input) int *

a four-bit field which selects one of the
16 RAM locations to be fed into the A inputs
of the 2901 ALU.

(input) int *

a four-bit field which selects one of the
16 RAM locations to be fed into the B inputs
of the 2901 ALU. BSEL also functions as the
address of the destination register.

(input) int *

determine what data is transferred to the BUS

(input) int *

indicates whether D inputs to 2901 come from
the BUS or from ds

(input) int *

indicates whether the carry in value comes
from the CARRY bit or from 0/1

(input) int *

determines the source of the D inputs to
the 2901

(input) int *

determines if a transfer to an I/O device is
to take place.

(input) int *

determines whether the status of a device

205

*

*

*

*

*

*
*

*

*

*

*

is requested or if data is being sent

i3_0 (input) int *

four bits which determine the instruction
the 2910 will execute

i5_0 (input) int *

six bits which determine the source for the
ALU operands and the ALU function

i8_6 (input) int *

three bits which determine the destination
of the ALU result

immed (input) int *

supplies an immediate value for the D inputs
to the 2901

intack (input) int *

acknowledges that an I/O device is prompting
to be serviced.

ldir (input) int *

indicates that the IR is to be loaded with
the value currently on the BUS

ldmar (input) int *

indicates that the MAR is to be loaded with
the value currently on the BUS

memsel (input) int *

indicates that a transfer to or from memory
is to take place

mode (input) int *

two bits which define the four modes in
which the 2901 ALU is capable of operating

NA (input) int *

12-bit field which supplies a potential
next address for the CS

P°l (input) int *

determines whether positive or negative
polarity is being used

rs (input) int *

determines whether to restore the status
flags

206

s

se

*

*

*

*

*

*

*

* ss
*

*

*

* t3_0
*

*

*

* te
*
*

*

* z_or_one
*

*

*

RETURN:

* FUNCTIONS
* CALLED:

* AUTHOR:

(input) int *

indicates whether a read or a write
operation is to take place

(input) int *

determines where the D inputs to the 2910
originate

(input) int *

indicates whether to sign extend the D
inputs to the 2901

(input) int *

indicates whether current operation should
set the status flags

(input) int *

four bits which indicate the status flaq to
be tested

(input) int *

allows the test result to force the D inputs
to zero

(input) int *

functions as a forced set or clear for cin

int
NORMAL : normal return
ERR_CLEAR : an error has occurred

None.

Steven H. Culp

Version l.oo

* DATE
* CREATED: 25Mar88
*

* REVISIONS: None.

*

207

/
^* ^

h
f_f

ol
^;°
wing defs - are for the types of termination" */

/
#•

#define ERR CLEAR 20

#define NORMAL " *^

int clear(ASEL, BSEL, bs, BUS, cin, da, io_sel, io s d i3
l5_°- i8_6, immed, intack, ldir, ldmar, memsel,

_
mode,

NA, pol, rs, r_w, s, se, ss, t3_0, te, z_or_one)

/*
/* The following parameters are defined exactly as in the */
/* main() and in the thesis. */

/int *ASEL, *BSEL, *bs, *BUS, *cin, *ds, *i _sel, *i s d
*i3_o, *i5_0, *i8_6, *immed, *intack, *ldir, *ldia?,

'

*memsel, *mode, *NA, *pol, *rs, *r w, *s, *se, *ss
*t3_0, *te, *z_or_one;

~

/*
/* Clear function begins here. All the parameters are"" */
/* being set to 0. Unless otherwise stated, all control *//* bits are assumed to be 0. J,
/* /

(

*ASEL 0;
*BSEL — 0;
*bs a 0;
*BUS = 0;
*cin = 0;
*ds = 0;
*io sel = 0;
*io s d = 0;
*i3 = 0;
*i5 = 0;
*i8 6 = 0;
* immed m n;
*intack = 0;
*ldir = 0;
* ldmar = 0;
*memsel = 0;
*mode = 0;
*NA = 0;

208

*pol = 0;
*rs = 0;
*r w = 0;
*s = 0;
*se = 0;
*ss = 0;
*t3 = 0;
*te = 0;
*z_or_ one = 0;

return (NORMAL ;

}

/* EOJ Steven H Gulp — clear ()

209

* SOURCE FILE: [culp] generate.

c

* FUNCTION: generate.

c

DESCRIPTION: This function generates the control bits
for the given ILL command.

Note for some instructions, the ASEL and
BSEL fields are taken directly from
the IR. When this occurs, a value
of 9999 for ASEL and/or BSEL is
generated.

DOCUMENTATION
FILES: None.

* ARGUMENTS

:

ASEL (input) int *

a four-bit field which selects one of the
16 RAM locations to be fed into the A inputs
of the 2901 ALU.

BSEL (input) int *

a four-bit field which selects one of the
16 RAM locations to be fed into the B inputsof the 2901 ALU. BSEL also functions as theaddress of the destination register.

bs (input) int *

determine what data is transferred to the BUS

Bus (input) int *

indicates whether D inputs to 2 9 01 come from
the BUS or from ds

cin (input) int *

indicates whether the carry in value comes
from the CARRY bit or from 0/1

command [] (input) char *

contains the ILL command for which the control
bits are to be generated

210

ds (input) int *

determines the source of the D inputs to
the 2901

flag (input) int
indicates which status flag is to be tested

io_sel (input) int *

determines if a transfer to an I/O device is
to take place.

io_s_d (input) int *

determines whether the status of a device
is requested or if data is being sent

i3_o (input) int *

four bits which determine the instruction
the 2910 will execute

i5_0 (input) int *

six bits which determine the source for the
ALU operands and the ALU function

i8_6 (input) int *

three bits which determine the destination
of the ALU result

immed (input) int *

supplies an immediate value for the D inputs
to the 2901

intack (input) int *

acknowledges that an I/O device is prompting
to be serviced.

J_or_ns (input) int
indicates whether the next microinstruction
is jumped to or if it is the next sequential
microinstruction

ldir (input) int *

indicates that the IR is to be loaded with
the value currently on the BUS

ldmar (input) int *

indicates that the MAR is to be loaded with
the value currently on the BUS

memsel (input) int *

indicates that a transfer to or from memory

211

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

is to take place

mode (input) int *

two bits which define the four modes in
which the 2901 ALU is capable of operating

NA (input) int
12-bit field which supplies a potential
address for the CS

Po1 (input) int
determines whether positive or negative
polarity is being used

rs (input) int *

indicates if the status bits should be
restored

r_w (input) int *

indicates whether a read or a write
operation is to take place

s (input) int *

determines where the D inputs to the 2910
originate

se (input) int *

indicates whether to sign extend the D
inputs to the 2901

ss (input) int *

indicates whether current operation should
set the status flags

t3_° (input) int
four bits whi
be tested

te (input) int

four bits which indicate the status flaq tobe tested

allows the test result to force the D inputsto zero

(input) int *

functions as a forced set or clear for cin

to zero

z_or_one (input) int

* RETURN: int
NORMAL : normal return
ERR_GENERATE : an error has occurred

212

FUNCTIONS
CALLED: None.

AUTHOR

:

Steven H. Culp

DATE
CREATED:

* REVISIONS:

25Mar88

None.

Version 1.00

l******4**n**tt**t***H***H**4*************************
*y

/* _™_f°ll0Wi"g
^
efS- are for tne types of termination. */

#define NORMAL o
*/

#define ERR GENERATE 3

int generate (command, flag, j_or_ns, ASEL, BSEL, bs, BUS
cin, da, io Ml, io_s_d, i3_o, i5_0, i8_6, immed,
intack, ldir, ldmar, memsel, mode, NA, pol rs
r_w, s, se, ss, t3_0, te, z_or_one)

f*
/*
/*
/*
char *command;

The following variables are defined exactly as inmam() and in the thesis.

/* a ptr. to the command array

int flag, j_or_ns, *ASEL, *BSEL, *bs, *BUS, *cin *ds

IiSt
8"1

:,!
10-8-'1 '

* i3- '

* i5- '
* i8-6

' * ironed, *intack*ldir, *ldmar, *memsel, *mode, NA, pol. *rs. *r- u *.. NA, pol,
*se, *ss, *t3_0, *te, *z_or_one;

lrs, *r_w, *s,

/*
//* Generate function begins here. In this function, only *'/

/* the bits which need to be set or the ones which need */
/* to be included for uniformity are generated. All */
/* other control bits are assumed to be clear, i.e set */

213

V
/* equal to 0. This was performed by the clear (). */

{

switch (command[0]

)

ACTOBUS

case 'A'

:

switch (command [

1

])

{

case ' C

:

{

*i5_0 = 100;
*cin = 0;
*z_or_one = 0;
*mode = 0;
*ASEL = li;
*i8 6 = 0;
*bs = 1;
*io_sel = 1;
*io_s d = 0;
break;
}

case 'D 1
:

{

*i5_0 = 101;
*cin = 1;
*ss = 1;
*BUS = 1;
*mode = 0;
*ASEL = 11;
*i8 6 = 10;
*BSEL = 11;
*memsel = 1;
*r w = 1;
break;
}

case 'N'

:

{

*i5_0 = 100101
*cin = 0;
*z or one = 0;
*ss = 1;
*BUS = 1;
*mode = 0;
*ASEL = 11;
*i8 6 = 10;
*BSEL = 11;
*memsel = 1;
*r_w = 1;
break

;

ADD */

AND

214

case 'C
switch (command [1]

)

{

case 'L'

:

{

*i5_0 = ill;
*cin = 0;
*z_or_one 0;
*ss = 1;
*mode = 11;
*ASEL = 9999;
*BUS = 0;
*ds = 0;
*immed = 0;
*i8 6 = 10;
*BSEL = 9999;
*bs = 0;
break

;

}

case ' 1
:

{

*i5_0 = 110101;
*cin = 0;
*z_or one = 0;
*ss = 1;
*mode = ii;
*ASEL = 9999;
BUS = 0;
*se = 1;
*ds = 0;
*immed = 11111111
*i8 6 = 10;
*BSEL = 9999;
*bs = 0;
break;

CLR

COM

)

break;

case ' D'

:

switch (command [1]

)

{

case 'A'

:

{

*i5_0
*cin
*z or one =

DATATOAC

ill;
0;
0;

215

*mode = 0;

*BUS = 1;
*i8 6 = io;
*BSEL = il;
*io sel = 1;
*io_s_
break;

d = 0;

}

case ' C

:

{

*i5_0 = 100;
*cin = 0;
*z_or one = 0;
*mode = 0;
*ASEL = 0;
*i8 6 = 0;
*bs = 1;

*io_seil = 1;
*io s
break;

d 0;

}

case '
E'

:

{

*i5_0 = 1101;
*cin = 0;
*z_or one = I;
*ss = 1;
*mode = 11;
*ASEL = 9999;
*BUS = 0;
*ds = 0;
*immed = 00000001
*i8 6 = 10;
*BSEL = 9999;
*bs = 0;
break;

DCRTOBUS

DEC

break

;

case '
F'

:

{

*X5_0
*cin
*z_or_one
*mode
*BUS
*ds
*immed
*i8 6

111;
0;
0;
0;
0;

0;
1100100;
il;

FORPC V

216

*BSEL = 1001 ;

*bs = 10;
*memsel = l;
*r w = 0;
break;
}

case 'H' : /* HLT
{

break;
}

case 'I'

:

switch (command [2]

)

{

case ' C:
switch (command [3]

)

{

case ' ' : /* INC
{

*i5_0 = 101;
*cin = 0;
*z_or_one = 0;
*ss = 1;
*mode = li;
*ASEL = 9999
*BUS = 0;
*ds = 0;
*immed = 1;
*i8 6 = 10;
*BSEL = 9999
*bs = 0;
break;
}

case ' I '

:

/* INCIASM
i

*i5_0 = 101;
*cin = 0;
*z_or one = 0;
*mode = 0;
*ASEL = 1110;
BUS = 0;
*ds = o;
*immed = 10;
*i8 6 = 11;
*BSEL = 1110;
*bs = 1;
*ldmar = 1;
*intack = 1;
break;

217

case 'P'

:

/* INCPCMAR
{

*i5_0 = 101;
*cin = 0;
*z_or_one = 0;
*mode = 0;
*ASEL = 1001;
BUS = 0;
*ds = 0;
*immed = 10;
*i8 6 = ii;
*BSEL = 1001;
*bs = 1;
*ldmar = 1;
break;
}

case 'S':

{

*i5_0

/* INCSPMAR

= 101;
*cin = 0;
*z_or_one = 0;
*mode = 0;
*ASEL = 1110;
*BUS = 0;
*ds = 0;
*immed = 10;
*i8 6 = 11;
*BSEL = 1110;
*bs = 1;
*ldmar = 1;
break;

}

break;

{

*i5_0
*cin
*z_or_one
*mode
*BUS
*ds
*immed
*i8_6
*BSEL
*bs
break;
}

INIT

ill;
0;
0;
0;
0;

0;

0;
10;
1001;
0;

218

break;

case 'L'

:

switch (command [1]

)

(

case 'A'

:

{

*i5_0
*cin
*z_or_one
*ss
*BUS
*mode
*i8_6
*BSEL
memsel
*r_w
break;

ill;
0;
0;

1;

1;

0;

10;
11;
1;
1;

/* LAC

LIRPCINC
{

*i5_0
*cin
*z_or_one
*mode
*ASEL
*BUS
*ds
*immed
*i8_6
*BSEL
*memsel
*r_w
*ldir
break;

101;
0;

0;

0;
1001;
0;
0;

10;
10;
1001;
1;
1;

1;

case ' P'

:

switch (command [3]

)

{

case ' '

:

LPC

*15_0
*cin
*z_or_one
*BUS
*mode
*i8_6
*BSEL
*memsel

ill;
o;
0;
1;

0;
10;
1001;
I;

219

*r_w
break;
}

case 'R'

:

{

*i5_0
*cin
*z_or_one
*BUS
*mode
*i8_6
*BSEL
memsel
*r_w
*rs
break

;

LPCRS

111;
0;
0;
1;

0;

10;
1001;
1;
1;
1;

}

break;
case '

T'

:

{

*i5_0
*cin
*z_or_one
*mode
*BUS
*i8_6
*BSEL
*memsel
*r_w
break;

}

break;

}

ill;
o;
0;

0;

1;

10;
100;
1;
1;

LTEMP

case 'N' NOP

break;
}

(

*i5_0
*cin
*z_or_one
*ss
*BUS
*mode
*ASEL
*i8 6

OR

11101;
0;
0;
1;
1;

0;

li;
10;

220

*BSEL
*memsel
*r_w
break;
}

11;
1;

1;

case '
P'

:

switch (command [2]

)

{

case '
R'

:

{

*i5_0
*cin
*z_or_one
*mode
*ASEL
*BUS
*ds
*se
*i8_6
*BSEL
*bs
break;
}

case 'T 1

:

{

*i5_0
*cin
* z_or_one
*mode
*ASEL
*i8_6
*BSEL
*bs
break;

}

break;

}

101;
0;
0;

0;
1001;
0;
10;
l;

10;
1001;
0;

100;
0;
0;
0;
100]
10;
100;
0;

PCREL

PCTEMP1

case 'R'

:

switch (command [2]

)

(

case '

L

1
:

{

*i5_0
*cin
*ss
*mode
*ASEL
*i8 6

100;
1;
l;
11;
9999;
110;

ROL

221

*BSEL
*bs
break;

case 'R

{

*i5

}

break;

_0
*cin
*ss
*mode
*ASEL
*i8_6
*BSEL
*bs
break;
}

case 'S'

:

switch (command [1]

)

{

case 'A'

:

{

*i5_0
*cin
*z_or_one
*ss
*mode
*ASEL
*i8_6
*memsel
*r_w
break

;

}

case 'P':
switch (command [2]

)

{

case c

:

{

*i5_0
*cin
*z_or_one
*mode
*ASEL
*i8_6
*bs
*memsel
*r_w
break;

9999;
0;

100;
1;
1;
11;
9999;
100;
9999;
0;

100;
0;
0;

1;
0;

li;
0;
1;

0;

/* ROR

100;
0;
0;

0;
1001;
0;
1;

1;

0;

SAC

/* SPC

222

SPMARDEC

*i5_0 = 1101;
*cin = 0;
*z_or_one = 1;
*mode = 0;
*ASEL = 1110;
*BUS = 0;
*ds = 0;
*immed = 00000010
*i8 6 = 10;
*BSEL = 1110;
*bs = 1;
*ldmar = 1)
break;
>

}

break;
case 'U'

:

/
{

*i5_0 = 1101;
*cin = 1;
*ss = 1;
*BUS = Li
*mode = 0;
*ASEL = li;
*i8 6 = 10;
*BSEL = 11;
*memsel = Li
*r w = 1;
break;
}

*

SUB

break;

case ' T'

:

switch(command[l]

)

{

case '
E'

:

switch (command [3]

]

{

TEMAR

*i5_0 = 100;
*cin = 0;
*z or one = 0;
*mode = 0;
*ASEL. = 100;
*i8_6 = 0;

223

*bs = 1

;

*ldmar = 1

;

break;
)

case '
P'

:

switch (command [4]

)

{

case
{

*i5_0
*cin =
*z_or_one =
*mode =
*ASEL
*BSEL
*i8_6
*bs
break;
}

/* TEMPADD */

1;
0;

0;
10;
9999;
100;
10;
0;

/* TEMPC

*i5_0 = 1;
*cin = 0;
*z_or_one = 0;
*mode = 0;
*ASEL = 1001
*BSEL = 100;
*i8 6 = 10;
*bs = 0;

break;

break

;

case ' F'

:

switch (command

[

{

case 'R'

:

{

*i5_0

3])

/* TFRRR

= 100;
*cin = 0;
*z or one = 0;
*ss = 1;
*mode = 11;
*ASEL = 9999;
*i8 6 = 10;
*BSEL = 9999;
*bs = 0;
break;

224

{

*i5_0
*cin
*z_or_one
*ss
*mode
*ASEL
*i8_6
*BSEL
*bs
break;
}

TFRIA

100;
0;
0;
1;
10;
9999;
10;
9999;
0;

V

TINT */

*t3_0
*i5_0
*cin
*z_or_one
*mode
*ASEL
*BUS
*ds
*immed
*i8_6
*bs
*ldmar
break;
}

101;
101;
0;
0;

0;
1001;
0;
0;
10;
0;

1;
1;

case 'N'

:

switch (command [3]

)

{

case ' 0'

:

switch (command [4]

)

{

case ' ' : TNVO
{

*t3 = 111;
*i5_0 = 101;
*cin = 0;
*z_or one = 0;
*mode = 0;
*ASEL = 1001;
*BUS = 0;
*ds = 10;
*se = 1;
*te = 1;

225

*i8 6 = 10 •

*BSEL = 1001;
*bs = 0;
break;
)

case 'N'

:

/* TNVONC

*t3 = ill;
)

}

break;
case ' 1 ' :

switch (command [4]

)

{

case ' '

:

/* TNV1
{

*t3 = ill;
*i5_0 = 101;
*cin = 0;
*z_or one = 0;
*mode = 0;
*ASEL = 1001;
*BUS = 0;
*ds = 10;
*se = 1;
*te = 1;
*i8 6 = 10;
*BSEL = 1001;
*bs = 0;
break;
)

case 'N 1

: /* TNV1NC
{

*t3_0 = ill;
break;
)

}

break;

break;
case ' Z' :

switch (command [2]

)

{

case
{

*t3_0
*i5_0
*cin
*z_or_one
*mode

TZO

100;
101;
0;

0;
0;

226

*ASEL
*BUS
*ds
*se
*te
*i8_6
*BSEL
*bs
break;
)

case ' 1'

:

{

*t3_0
*i5_0
*cin
*z_or_one
*mode
*ASEL
BUS
*ds
*se
*te
*i8_6
*BSEL
*bs
break;

1001;
0;

10;
1;

1;

10;
1001;
0;

/* TZ1

100;
101;
0;
0;

0;
1001;
0;
10;
1;

1;

10;
1001;
0;

)

}

}

__ _ t/
At this point, all the control bits for the data flow */

have been generated. All that remains to be performed*/
is to determine the next address control bits. */

switch
(j _or_ns

)

{

case 0:

{

*i3_0 = 1110;
break;
}

case 1:

{

*i3_0 = 10;
if (*s == 2)

*s = 10;
if (*s == 3)

/* next sequential

V

/* unconditional jump */

227

*s = 11;
NA = NA;
break

;

}

case 2:

(

*i3_0 = 11;
pol = pol

;

if (*s == 2)
*s = 10;

if (*s == 3)
*s = 11;

NA = NA;
switch (flag)

{

case :

{

*t3_0
break;

= 0;

/* conditional jump */

/* "1"

case 1:

{

*t3_0
break

;

}

case 2:

{

*t3_0 =
break;
}

case 3:

(

*t3_0 =
break;
}

case 4

:

{

*t3_0 =
break;
}

case 5:

(

*t3_0
break;
)

case 6

:

{

*t3_0 =
break;
}

= i;

10;

11;

100;

= 101;

110;

/* carry

/* overflow

/* sign

/* zero

/* interrupt

/* I/O ready

V

v

228

/* N XOR Vcase 7:

{

*t3_0 = 111;
break;
}

case 8: /* Halt
{

t3_0 = 1000;
break

;

}

break;

return (NORMAL)
}

/* EOJ — Steven H. Culp — generate
(

)

229

* SOURCE FILE: [culp] store.

c

*

*

* FUNCTION: store.

c

DESCRIPTION: This function stores the generated control
bits into the Control Store memory.

DOCUMENTATION
FILES: None.

ARGUMENTS

:

ASEL (input) int
a four-bit field which selects one of the
16 RAM locations to be fed into the A inputs
of the 2901 ALU.

BSEL

bs

BUS

cs[]

cs loc

ds

(input) int
a four-bit field which selects one of the
16 RAM locations to be fed into the B inputs
of the 2901 ALU. BSEL also functions as the
address of the destination register.

(input) int
determine what data is transferred to the BUS

(input) int
indicates whether D inputs to 2901 come from
the BUS or from ds

(input) int
indicates whether the carry in value comes
from the CARRY bit or from 0/1

(input) int
a two-dimensional array which models the
Control Store memory

(input) int
the location in the Control Store where the
control bits are to be stored.

(input) int
determines the source of the D inputs to

230

the 2901

io_sel (input) int
determines if a transfer to an I/O device is
to take place.

io_s_d (input) int
determines whether the status of a device
is requested or if data is being sent

i3_0 (input) int
four bits which determine the instruction
the 2910 will execute

i5_0 (input) int
six bits which determine the source for the
ALU operands and the ALU function

i8_6 (input) int
three bits which determine the destination
of the ALU result

immed (input) int
supplies an immediate value for the D inputs
to the 2901

intack (input) int
acknowledges that an I/O device is prompting
to be serviced.

ldir (input) int
indicates that the IR is to be loaded with
the value currently on the BUS

ldmar (input) int
indicates that the MAR is to be loaded with
the value currently on the BUS

memsel (input) int
indicates that a transfer to or from memory
is to take place

mode (input) int
two bits which define the four modes in
which the 2901 ALU is capable of operating

NA (input) int
12-bit field which supplies a potential
address for the CS

231

pol (input) int
determines whether positive or negative
polarity is being used

(input) int
indicates whether the status register
should be restored

(input) int
indicates whether a read or a write
operation is to take place

(input) int
determine where the D inputs to the 2910
originate

t3

(input) int
indicates whether to sign extend the D
inputs to the 2901

(input) int
indicates whether current operation should
set the status flags

(input) int
four bits which indicate the status flag to
be tested

te (input) int
allows the test result to force the D inputs
to zero

z_or_one (input) int
functions as a forced set or clear for cin

RETURN: int
NORMAL
ERR STORE

normal return
an error has occurred

FUNCTIONS
CALLED: None.

AUTHOR: Steven H. Culp

232

* DATE
* CREATED

:

23Mar88 Version 1.00

* REVISIONS: None.
*

************************************ ***********************/

/*
4/

/* The following defs. are for the types of termination. */

v/
#define NORMAL
#define ERR STORE 40

int store(cs, cs_loc, ASEL, BSEL, bs, BUS, cin, ds, io_sel,
io_s_d, i3_0, i5_0, i8_6, immed, intack, ldir,
ldmar, memsel, mode, NA, pol, rs, r_w, s, se, ss,
t3_0, te, z_or one)

int cs[4001] [88]

,

cs_loc,
ASEL,
BSEL,
bs,
BUS,
cin,
ds,
io_sel,
io_s_d,
i3_0,
i5_0,
i8_6,
immed

,

intack,
ldir,
ldmar,
memsel,
mode,
NA,
pol,
rs,
r w.

/* ptr. to Control Store array */
/* location of the Control store */
/* The following are the control */
/* bits and are defined as before. */

se,
ss.

233

t3_0,
te,
z_or one;

Store fen. begins here.

cs[cs
cs[cs
cs[cs
csfes
cs[cs
cs[cs
cs[cs
cs[cs
cs[cs
cs[cs
cs[cs"
cs[cs"
cs[cs
cs[cs
cs[cs
cs[cs"
cs[cs
cs[cs"
cs[cs
cs[cs
cs[cs_
cs[cs
cs[cs"
cs[cs_
cs[cs_
cs[cs_
cs[cs_

_loc][0]
_loc] [11

_loc][2]
_loc][3]
_loc] [4]
_loc][5]
_loc] [6]
:ioc][7]
loc] [8]
loc] [9]
"loc] [10]
loc] [11]
lOC] [12]
"loc] [13]
"loc] [14]
lOC] [15]
loc] [16]
lOC] [17]
loc] [18]
loc] [19]
loc] [20]
"loc] [21]
loc] [22]
loc] [23]
loc] [24]
loc] [25]
loc] [26]

s;

NA;
i3_0;
pol;
t3_0 ;

iitimed ;

ds;
BUS;
se;
te;
ASEL;
BSEL;
mode ;

i8_6;
i5_0;
z_or_one

;

cin;
ss;
bs;
ldir;
memsel

;

r_w;
ldmar;
io_sel

;

io_s_d;
intack;
rs;

return (NORMAL)

;

} ,

EOJ Steven H. Culp store (

)

234

MICROPROGRAMMING A PROPOSED
16-BIT STACK MACHINE

by

STEVEN HOWARD CULP

B.A., Mid-America Nazarene College, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1988

ABSTRACT

In 1982, Dr. Don Rhea Hush presented a thesis

which contained the complete design of a 16-bit,

educational computer system. The ALU hardware

was to be implemented using the Am2901 Four-Bit Bipolar

Microprocessor Slice chip and the Am2910 Microprogram

Controller chip generated the next address for the

Control Unit. The Control Store was specified to have

4k locations which were 88 bits wide. Once built, the

machine could be used as an excellent educational tool

for areas involved with computer design, instruction

sets, and microprogramming.

This paper presents an instruction set and the

corresponding microcode that must be generated in order

to implement the instruction set on Dr. Hush's

machine. To this end, an ILL (Intermediate Level

Language) was created which symbolized the required

microcode and a program was then written which
generated the microcode from the ILL.

Inclusive to this thesis are the instruction set

to be implemented, the devised ILL, a complete listing

of the bit specifications for the microcode and the

program that converts the individual ILL statements to

their particular microinstructions.

