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1.0. INTRODUCTION

Flowing Brownian motion systems are encountered in many practical

situations of interest e.g., soot particles in flames as well as other

aerosol systems. Recently, the dynamic light scattering technique,

Photon Correlation Spectroscopy (PCS) has proven useful for studying the

diffusional processes in these aerosol systems as well as sizing the

aerosol particulates. This has stimulated the need for an understanding

of the PCS spectrum of such diffusing and flowing systems. A

representative system of such a situation is polystyrene latex spheres

suspended in water flowing through a tube at a known flow rate. This

system is quite simple to allow for verification of the theoretical

spectrum and to establish an experimental basis for the more complicated

cases of interest. The purpose of this thesis is to develop a

theoretical expression for the PCS spectrum of a system of diffusing and

flowing particles and to test this theory with this well characterized

system of latex spheres in water.

The diffusive motion of a system of particles may be investigated by

studying the spectrum of initially monochromatic light scattered by the

particles. If the incident light source is a laser, and the scattered

light falls on the photosurface of a photomultiplier tube, then by

measuring the spectrum of the photocurrent one obtains the spectrum of

the intensity fluctuations of the scattered light. The intensity of the

scattered light is determined by the instantaneous superposition of the

phases of the waves scattered from each of the diffusing particles. The

intensity fluctuates because the particles move. By finding the

correlation function of the scattered light, we can estimate the particle
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size, or if the particle size is known, if needed we. can calculate the

temperature or viscosity. If there exists a bulk motion of the particles

relative to the scattering volume, an additional fluctuation is generated

in the scattered light. This extra term in the correlation function

becomes important only when the correlation time due to the movement of

the particles in and out of the sample volume becomes comparable to the

time due to the diffusion of the particles.

Two terms 1) the correlation time, x , and 2) the beam transit time,

x , are useful in describing a system of particles which are diffusing

while in bulk motion. PCS can measure these times. In this thesis,

correlation functions for both static and flowing systems are derived for

comparison with experiment. The correlation time, x , is due to the

random Brownian diffusion of the particles while the beam transit term,

x , arises due to the bulk motion of the particles with respect to the

scattering volume. The diffusional term appears as an exponential and

the beam transit term appears as a Gaussian in the correlation spectrum.

In summary, this thesis presents a theoretical and experimental

study of the photon correlation spectrum observed for light scattered

from a flowing Brownian motion system. The simple polystyrene-water

system as mentioned earlier, was used. The study of the simple system

allowed us to study the effect of both the diffusion and the flow terms

in the PCS spectrum and provided a testing ground for our theoretical

understanding of the spectrum and the experimental technique. The theory

was worked out and was tested with the simple system. It was found that

the theory works for such a system. Furthermore, a very useful method of

analysis was developed. Finally, it was found that x and x could be

separated for different flow rates even when x was much faster than x ,

a result not previously expected.



2.0 THEORY DEVELOPMENT

2.1 Light Scattering Theory

In the classical theory of light scattering an incident

electromagnetic field exerts a force on the charges in the scattering

volume. These accelerating charges then radiate light. The incident

field is said to polarize the medium. When visible light is incident on

the medium, the atoms in a subregion of the illuminated volume, small

compared to the cube of the incident light wavelength, see essentially

the same incident electric field. If many subregions of equal size are

considered, the scattered electric field is the superposition of the

scattered fields from each of them. If the subregions are optically

identical, that is, each has the same dielectric constant, there will be

no scattered light in other than the forward direction. This is so

because the wavelets scattered from each subregion are identical except

for a phase factor that depends on the relative positions of the

subregions. If we ignore surface effects it is clear that for a large

medium, each subregion can always be paired with another subregion whose

scattered field is identical in amplitude but opposite in phase and will

thus cancel, leaving no net scattered field in other than the forward

direction. If, however, the regions are optically different, that is,

have different dielectric constants, then the amplitudes of the light

scattered from the different subregions are no longer identical.

Complete cancellation will no longer take place, and there will be

scattered light in other than the forward direction. Thus, in this

semimacroscopic view, originally introduced by Einstein, light scattering

is a result of local fluctuations in the dielectric constant of the

medium. Kinetic theory makes it clear that molecules are constantly
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translating and rotating so that the instantaneous dielectric constant of

a given subregion will fluctuate and thus give rise to light scattering.

Let's consider a nonmagnetic, nonconducting, nonabsorbing medium

with average dielectric constant e and refractive index n = »e . Let

the incident electric field be a plane wave of the form

E^Cr.t) = n E
q

exp Kk^r - a)

±
t)

where n is a unit vector in the direction of the incident electric

field, E is the field amplitude, K. is the wave vector, and go. is the
o i i

angular frequency. This plane wave is incident upon a medium that has a

local dielectric constant

e(r,t) = e I + 3e(r,t)
o

where 8e(r,t) is the dielectric constant fluctuation tensor at position r

and time t and I is the second rank unit tensor. The component of the

scattered electric field at large distance R from the scattering volume

with polarization n
f

, wave vector K
f

and frequency u>

f
is

E r

E (R,t) =
4ir

°

e
exp(i K

f
«R) d 3

r exp i(q«r - ia^t) [n
f

• [K
f
x(K

f
x(3e(r,t) i^)]

Scat

where the subscript vn indicates that the integral is over the scattering
beat

volume. The vector q is defined in terms of the scattering geometry as

-»-» ->

q = K
±

- K
f

Where K. and K
f

point, respectively, in the direction of propagation of

the incident wave and the wave that reaches the detector, respectively.

->-»•
The angle between K. and K

f
is called the scattering angle 9.



Fig. 2.1.1. The total radiated field at the detector is the

superposition of the fields radiated from all

infinitesimal volumes d 3r at position r with respect

to the center of the illuminated volume V. The

detector is at position R with respect to the center

of the illuminated volume.





Fig. 2.1.2. Light of polarization n and wave vector K is scattered in

-»•

all directions. Only scattered light of wave vector K
f

and

polarization n
f
arrives at the dtector. The scattering

vector q = K - K
f

is defined by the geometry. Since for

elastic scattering the scattered wave has essentially the

same wave length as the incident wave, K
f

= 2irn/X K., it

follows from the law of cosines, q 2K sin6/2.



Kj,ajj

POLARIZER
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The magnitudes of K. and K- are respectively 2Tm/A. and 2irn/A,,

where X. and A are the wavelengths in vacuum of the incident and

scattered radiation and n is the refractive index of the scattering

medium. It is usually the case of elastic scattering that the wavelength

of the incident light is changed very little in the scattering process so

that

|Kj s |K
f l-

Thus,

q
2 = |Kr - K.I 2 = K2 + K2 - 2K.-K, = 2K2 - 2K2 cos 6 = 4K.2 sin 2 9/2H, fi' fi if i i i

q = 2K. sin 6/2 = y^ sin 6/2.
1 A

±

2.2 Fluctuations and Time-Correlation Functions

In light-scattering experiments the incident light field is

sufficiently weak that the system can be assumed to respond linearly to

it. The basic problem is to describe the response of an equilibrium

system to this weak incident field, or more precisely the changes of the

light field (frequency shifts, polarization changes, etc.) due to its

interaction with the system. This problem has been solved in general for

weak probes. The major result of this theory, which is called 'linear

response theory', is very simple. Whenever two systems are weakly

coupled to one another (such as radiation weakly coupled to matter) , it

is only necessary to know how both systems behave in the absence of the

coupling in order to describe the way in which one system responds to the

other. Furthermore, the response of one system to the other is

completely describable in terms of time correlation functions of

dynamical variables

.
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Time-dependent correlation functions have been familiar for a long

time in the theory of noise and stochastic processes. In recent years

they have become very useful in many areas of statistical physics and

spectroscopy. Correlation functions provide a concise method for

expressing the degree to which two dynamical properties are correlated

over a period of time.

Let us consider a property A that depends on the positions and

momenta of all the particles in the system. By virtue of the thermal

motions the particles are constantly jostling around so that their

positions and momenta are changing in time, and so too is the property A.

Although the constituent particles are moving according to Newton's

equations (or Schrodinger 's equation), their very number makes their

motion appear to be somewhat random. The time dependence of the property

A(t) will generally resemble a noise pattern given in Fig. 2.2.1.

As an example, let's consider the pressure on the wall of a cylinder

containing a gas in equilibrium. The pressure on the wall at a given

time is proportional to the total force on the wall, which in turn is a

function of the distances of all the particles from the wall. As the

particles move about, the total force fluctuates in time in a very finite

manner. The pressure is therefore a fluctuating property. Suppose now

that we could couple some kind of gauge to the wall that could respond

rapidly to the pressure changes. The needle on this gauge would execute

an erratic behavior - it would fluctuate. Since molecular motion is very

rapid, the needle would jump around very rapidly. What would be reported

as the pressure of the gas? The gauge should be read at a large number

of time intervals and the results should be averaged. An average over a

sufficiently long time (a time long compared with the period of the



Fig. 2.2.1. The property A(t) fluctuates in time as the molecules move

around in the fluid. The time axis is divided into discrete

intervals, At, and the time average <A> is assumed to be

zero for convenience.
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fluctuation) would yield a fairly reliable pressure. .
If the same average

were performed at a different time, essentially the same average value

would be obtained. From this example we see that the measured bulk

property of an equilibrium system is simply a time average

A(t
Q
.T) - ?

}

t +T
r
°

A(t) dt . (2.2.1)

t
o

Here t is the time at which the measurement is initiated and T is
o

the time over which it is averaged. The average becomes meaningful only

if T is large compared to the period of fluctuation. The ideal

experiment would be one in which A is averaged over an infinite time,

t +T

1 f

°

A(t ) = lim -
T-H»

T
J

o

A(t)dt. (2.2.2)

It can be shown that under certain general conditions this infinite time

average is independent of t . In statistical mechanics it is usually

assumed that this is valid. In Fig. 2.2.1 we see that the property A

fluctuates about the time average which because of its independence of t

can be expressed as

T

A(t)dt. (2.2.3)

o

<A> = lim j

The noise signal A(t) in Fig. 2.2.1 displays the following features: The

property A at the two times t, and t + T can, in general, have different

values so that A(t + t) ^ A(t) . Nevertheless, when t is very small

compared to time typifying the fluctuations in A, A(t + x) will be very
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close to A(t). As T increases the deviation of A(t + t) from A(t) is more

likely to be non-zero. Thus, in some sense we can say that the value

A(t + t) is correlated with A(t) when T is small but that this correlation

is lost as t becomes large compared with the period of the fluctuations.

A measure of this correlation is the autocorrelation function of the

property A which is defined by

<A(0) A(t)> - lim y A(t)A(t + T)dt. (2.2.4)

Let's Suppose that the time axis is divided into discrete intervals

At, such that t = jAt, T = nAt, T = NAt and t + x = (j+n)At, and let's

suppose further that the property A varies very little over the time

interval At. From the definition of the integral it then follows that

Eqs. (2.2.3) and (2.2.4) can be approximated by

i
N

<A> = limi I A. (2.2.5)

N+~ j=l J

N
(2.2.6)<A(0)A(x)> s lim I

j A A
N+« j = l

J J +n

where A. is the value of the property at the beginning of the j

interval. These sums become better approximations to the infinite time

averages as At+0.

In optical mixing experiments, a correlator computes time-

correlation functions of the scattered field in this discrete manner. Of

course, in any experimental determination the averaging is done over a

finite number of steps. It may be noted that many of the terms in the

sum of Eq. (2.2.6) are negative. For example, in Fig. 2.2.1, A A . is

negative. Consequently, this sum will involve some cancellation between
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positive and negative terms. Now let's consider the. case <A(0)A(0)>. The

sum contributing to this is Ja.A = £a2 since A2
>_ all the terms in the

j J J J J

sum are positive and we expect the total to be large. What this implies

is that

N N

I A? > I A. A. (2.2.7)

thus,

<A(0) 2 > > <A(0)A(t)>. (2.2.8)

It would appear that the autocorrelation function either remains

equal to its initial value for all times t, in which case A is a constant

of the motion (a conserved quantity) or decays from its initial value

which is a maximum. That is, we expect the autocorrelation function of

a nonconserved , nonperiodic property will decay from its initial value

<A2 >. For times T large compared to the characteristic time for the

fluctuation of A, A(t) and A(t+t) are expected to become totally

uncorrelated. Thus,

lim <A(0)A(t)> = <A(0)><A(t)> = <A> 2
.

That is, the time-correlation function of a nonperiodic property decays

from <A2 > to <A> 2 in the course of time. This is shown in Fig. 2.2.2.

2.3 Photon Correlation Spectroscopy

In this section we will describe PCS. A useful example of the

application of this technique is to consider a suspension of particles in

a liquid. The photons are scattered quasi-elastically by the particles

in a solution, which are in random motion, causing phase shifts in the



Fig. 2.2.2. The time correlation function <A(0)A(t)>. Initially this

function is <A2 >. For times very long compared to the

correlation time, x., the correlation function decays to

<A>2
.
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<A(0)A(T)>
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A TIME
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scattered light. This is similar to the frequency shift experienced with

moving objects because of the Doppler effect. The spectrum of

frequencies arising from the phase modulated scattered light is

detectable only with a signal mixing or light beating technique. The

high resolution measurement of these small frequency shifts is

14
accomplished by translation of the spectrum originally at ^10 Hz to the

audio frequency range, by either homodyne or heterodyne detection.

In heterodyne detection, the signal is beat or mixed with a strong

'local oscillator'. In the case of light scattering this local

oscillator is the unshifted laser light which is mixed with the scattered

light signal on the cathode of the photomultiplier tube. Homodyne

detection uses a so-called self-beating process. The scattered light is

mixed with itself on the cathode of the photomultiplier tube.

Previously particle size was determined using an analog power

spectrum method. PCS, on the other hand, uses digital methods to

determine the correlation function of the scattered light, the Fourier

transform of the power spectrum. PCS counts the number of scattered

photons per unit time interval and thus needs lower scattered light power

than does the analog power spectrum method. Furthermore, PCS is more

efficient with information measured at low light levels. Details about

the homodyne and heterodyne detection technique and their respective

correlation functions will be discussed later in this chapter.

2.4 Optical Mixing Technique

Optical mixing techniques are the optical analogs of the beating

techniques developed in radio-frequency spectroscopy. They have made

possible the application of light scattering in the study of the dynamics
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of relatively slow processes such as macromolecular diffusion, the

dynamics of fluctuations in the critical region, and the motility of

microorganisms

.

In optical mixing methods no wavelength filter is inserted between

the scattering medium and the photomultiplier. The scattered light

impinges directly on the PM cathode. Since the phototube is a square-law

detector, its instantaneous current output is proportional to the square

of the incident electric field i(t) • |E(t)| 2
. The PM output is then

passed to an autocorrelator, which calculates its time autocorrelation

function

<i(t)i(0)> = $ <|E(0)| 2 |E(t)| 2 >. (2.4.1)

Here 6 is a proportionality constant. The correlator can be used in

either a 'digital' or an 'analog' mode. In the digital mode one counts

and then autocorrelates current photopulses due to photons, whereas in

the analog mode, one directly autocorrelates the fluctuations in the PM

output current.

For the purpose of discussing the differences between heterodyne and

homodyne scattering, two scattered field autocorrelation functions are

defined.

I,(t) 2 <E (0) E*(t)> (2.4.2)
1 s s

I,(t) = <|E (0)|
2 |E(t)| 2 >. (2.4.3)

z s s

Here E is the scattered field and the asterisk implies complex
s

conjugation. We also introduce two more functions dependent only on the

wave phases ty,

F^q.t) = <* (q,0)**(q,t)> .
(2.4.4)
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F
2
(q,t) = <|* (5,0)

|

2 |**(q\t)| 2 >. (2.4.5)

We see that

I <v F. and I
2
^ F

2

where
N

*(q,t) = l
% exp iq-r.(t). (2.4.6)

J-l
J

The prime on the sum for i|> is used to indicate summation only over

particles which are in the scattering volume V at time t. When a

particle leaves V, it ceases to contribute to the scattering until it

re-enters V. r.(t) indicates the position of the j particle at time t

relative to some reference. To eliminate the restricted sum in Eq.

(2.4.6), we introduce the function P(r) which is called the amplitude

function in the scattering volume so that

-» *>

* -
I e J P (r.) (2.4.7)

j

The summation indicated in the above equation is performed over all the

scattering centers within the fluid. The fact that only a small portion

of the centers are actually illuminated and detected is taken into

account by the electric field amplitude weighting function P(r).

2.4.1 Heterodyne Correlation Function

In the heterodyne method, a small portion of the unscattered laser

light is mixed with the scattered light on the photomultiplier cathode.

If EL (t) represents the local oscialltor electric field, then the

electric field at the PM is the superposition of E (t) and E (t) and

thus the autocorrelation function of the PM output becomes
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<i(0)i(t)> = 8 <|E. (t) + E (t)| 2
|E, (0) + E (Q)|

2 >. (2.4.1.1)
IjO S J_iO 5

If |ET (t)|»|E (t) I , which can be obtained by proper choice of
' Lo 8

experimental conditions, and if we also assume a) fluctuations of the

local oscillator field are negligible, and b) the local oscillator field

and the scattered field are statistically independent, i.e.

<I T > - <T ><i >, equation (2.4.1.1) gives
s Lo Lo s

<i(0)i(t)> a 8[I
Lo

2 + 2I
Lo

ReI
1
(t)] (2.4.1.2)

where, 1^ = <|E
LJ

2 >

and Rel.(t) is the real part of I-(t). To proceed further, we need to

calculate F. (t) which is proportional to I.(t). We calculate Pj for a

system of particles that are:

1) diffusing

2) flowing with velocity V.

The relationship between the distance vectors is shown in Fig. 2.4.1.1.

L is measured from some fixed point in the laboratory, in this case the

surface of the photomultiplier tube, and is a constant vector ending at

some fixed reference point within the fluid, here the center of the

scattering volume. The vector r'(t) gives the position of the n

particle in the fluid at time t relative to the fixed reference point.

It is considered that the fluid undergoes a translational motion

with respect to the detector at velocity V. In this case the

transformation made is

r'(t) - r (t) + Vt. (2.4.1.3)
n n

r (t) is the position of the n scattering center measured relative
n

to the moving fluid rather than with respect to the- stationary



Fig. 2.4.1.1. The relationship between the distance and velocity

vectors.
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(laboratory) frame of reference that was used for r'(t). The vector

r (t) is still time dependent because the scattering center can undergo
n

random, diffusive motions with respect to the fluid. The fluid velocity

may also be a function of position. The transformation in Eq. (2.4.1.3)

is done to separate V from Brownian motion.

We now substitute Eq. (2.4.1.3) into Eq. (2.4.7) which is then

substituted into Eq. (2.4.4) to give

+iq>(r (o)) -iq-(r (t)+Vt)

F^q.t) =
<J e

m
P(r

m (0)) £ e
n

P(r
n
(t)+Vt)>

m n

-iq-Vt iq-(r -r (t))

= <e I e
m n

P(r (0))P(r (t)+Vt)> (2.4.1.4)
L m n

m,n

where < > represents two ensemble averages

1) One over the displacement, 6r (t) i r (t) - r (0) due tor m,n n m

diffusion, and

2) One over the initial positions r (0)

.

We write both these ensemble averages explicitly as

-iq«Vt iq»6r (t)

F^q.t) = e «l e
m 'n P(r

m
(0)) P(r

n
(t)+Vt)» (2.4.1.5)

mn

Where the double bracket denotes that the ensemble average involves an

average over initial positions of the scattering centers and an average

over their displacement relative to the fluid.

Now, 6r = r (t) - r (0)
n n n

Since 6r , the distance moved by the n scattering center relative to
n

the fluid, is assumed independent of the original particle position,

r
n
(0),
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-iq«Vt iq«6r

F -• I <e >
6r

<P(r
m
(0))P(r

n
(t) Vt) (2.4.1.6)

mn

The average of all the terms for m^n is zero if the scattering centers

are randomly placed throughout the fluid.

+ ± •+ .* £ -, **
-iq #Vt iq«6r -iq*Vt iq*or

F = e I <e
m
><P (0)P (t)> = N e <e ><P(0)P(t)> (2.4.1.7)

1
L mm

In many cases of practical interest, especially in light scattering

experiments in which the fluid is static, the effect of the term P(r) is

small. In other words, if exp (iq*r) goes through many revolutions as it

passes through the sample volume, then to a good approximation P(r) can

be replaced by unity. However, when the fluid is moving due to the bulk

motion the effect of the finite illuminated volume can be very pronounced

and, in fact, causes considerable broadening of the signal. For the

situation of concern to us where we have flow, we need to evaluate the

expression for <P(r (0)) P(r (t) + Vt)> in Eq. (2.4.1.7).r m n

It is now useful to introduce the Van-Hove 'self space-time

correlation function' through the equation

F (q,t) = <•**''*>
-f G (Sr.t) £' ** d(5r). (2.4.1.8)

s J
s

In probability theory the Fourier transform of a probability

distribution function is called the characteristic function of the

distribution. Thus F (q,t) is the characteristic function of G (6r,t).

F (q,t) can be determined from light scattering. Thus, G (6r,t) can be
s s

determined by an inverse Fourier transform

F (q*,t) e
" iq,<Sr

d(6r) (2.4.1.9)G
g
(6r,t) = (2tt)

-3

s
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G (6r,t) is the probability distribution for a particle to suffer a
s

displacement 6r in time t and is called Van Hove self space-time

correlation function. Suppose that there is a solution such that at

time t=0 a macromolecule is in the neighborhood of the origin. As time

progresses it is expected that the macromolecule will execute small

excursions - perform a random walk - so that after time t this particle

will diffuse into the neighborhood of 6r with probability G (6r ,t)d(6r)

.

It is well known from the theory of random walk that the diffusion

equation (for times long compared to the velocity correlation time)

describes this probability. Then G (6r,t) can, to a very good

approximation, be regarded as the solution to the diffusion equation

|- G (5r,t) = DV 2 G (6r,t) (2.4.1.10)
3t s 8

where D is the diffusion coefficient.

The spatial Fourier transform of Eq. (2.4.1.10) is

~ F
a
(q,t) = -q 2D F

g
(q\t).

The solution of this equation subject to the boundary condition F (q,0)=l

is

F
g
(q,t) = <e

iq ' 6r
> = exp (-q 2Dt)

.

(2.4.1.11)

For simple diffusional case the heterodyne correlation function is

C(q,t) = <i(0)i(t)> = 6[I 2

o
+ 2 I

Lo
<N> exp(-Dq 2t)]

As stated earlier 6 is a proportionality constant, I
T

is a constant

proportional to the intensity of the local oscillator and <N> is the
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average number of particles in the scattering volume. The time dependent

part of this function is C(q,t) °° <N> exp (-q
2Dt)

We now continue with the solution of Eq. (2.4.1.7). Consider a

realistic P(r) for a laser which is

P(r) = e
2//.rr2-r2/4o

(2.4.1.12)

The above expression for P(r) is true for spherically symmetric sample

volume. We know that the laser beam is cylindrically symmetric. But the

use of the above expression was justified because of its simplicity and

because the spherical symmetry approximation for the scattered beam is a

reasonable approximation.

Then
.- •>

<P P(t)> =
f
e"

r2/4a3

(r+Vt) :

4o^ l3d J
r.

Let d 3
r = dx • dy • dz, also let V = V , i.e. the velocity is only in one

z

direction. Then

+00
_r240 2 ir+Vtii +00 +00

4a'
dx dy dz = e

' -x 2 /2a 2 f -y 2 /2a
dx dy

+- Z 2-(z+Vt) :

4a5
dz

\

+00

-z 2 - (z+Vt) 2

4a2
dz

let u = z - %b, then
du = dz

-a(u+isb) 2 - a(u-*5b) 2
,

e du

-a(2u 2+J5b 2 ) , -ab 2
/2

e du = e
' -2au 2

, , -ab 2
/2

e du ^ e
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where

1 . -ab 2 /2 " 8a 2
,_ . . ,,*

a = tt , b = -vt, e = e (2.4.1.13)
4a

Therefore, .

F
l(
;,t) = <S

>;""t

a""''' e-V '!'
!

(2.4.1.14)

So we see that the correlation function is proportional to the product of

two exponentials, one has linear dependency on t which is the case for

diffusion and the other has quadratic dependency on t which is the case

for flow. For the situation of interest to us we have both of these

together an exponential with the sum of t and t
2 terms.

2.4.2 Homodyne Correlation Function

Since in the homodyne method only the scattered light impinges on

the photocathode, E(t) is equal to the scattered field E (t) , so that

<i(0)i(t)> is proportional to I„(t) - which is called the homodyne

correlation function. The amplitude of E (t), the scattered field, is

proportional to the instantaneous dielectric constant fluctuation in the

scattering volume and, of course, fluctuates in the same manner.

As was defined before in Eq. (2.4.5)

F
2
(q,t) = <|**(q,0)| 2 |iKq,t)| 2 >,

where 4> defined in Eq. (2.4.7) turns out to be,

N
iKq.t) = I exp(iq-r(t)) P(r(t)),

j-l

iq-(r(t)+Vt) P(r(t)+Vt)

iq-Vt iq«r(t)
= I e e P(r(t) + Vt) . (2.4.2.1)
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Now we consider four particle j, k, I, m because at time t=0, we have to

have two ty's, one complex conjugate of the other and the same at time t.

Here again as in the heterodyne case we have two ensemble averages

1) over the displacement, 6r = r (t) - r (0) due to diffusion, and
r m,n n m

2) one over the initial positions r^CO).

iq«Vt +iq«r (t)

n

iq-r,(0) -iq-r (0)

= «
I e J P(r^(0)) e

K
P(r

fc
(0))

jkJlm

-iq-Vt -iq-r (t)

P(r
A
(t) + Vt) e e

m
P(r

a
<t) + Vt)

>

r(0)
>
6r

(2.4.2.2)

These terms simplify considerably for dilute solutions when the

positions of different molecules are statistically independent. Then the

term

<P(r (0)P(r
k
(0))P(r

£
(t)+Vt)P(r

m
(t)+Vt) exp iq- [r"

£
(t) - r\ (0) ]

exp - iq-[r
m
(t) - r

fc
(0)]>

will be zero if any pair of the four particle indices are not equal.

Suppose that the particle I is distinct, the term factors due to the

assumed particle independence into

iq-Vt iq-r (t)

<e e P(r (t)+Vt)><P(r.(0))P(r, (0))P(r (t)+Vt) exp(iq-r . (0))
I j k m j

exp(-iq«r, (0)) exp - (iq«Vt + iq*r (t))>

The first factor is simply the ensemble average of the quantity

exp(iq*r(t)) . If the system is homogeneous, the particles are

distributed randomly so that the probability of finding particle I in the

neighborhood d 3r is d 3r V„ . Where V_ is the illuminated volume of° Scat Scat

the sample. Thus,
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<exp(iq-r
Jl

(t))> = v"^
iq«r

d 3r e 6(q)

V
Scat

For scattering in other than the forward direction (q^O) , this

quantity is zero. Consequently only two kinds of terms survive, those

for which a) j=k, &=m including k=j=A=m and b) j=m, k=l, j^k.

For case a)

F i F! = «
I P 2 (r.(0)) P 2 (r.(t) + Vt)». (2.4.2.3)

2 2
j.l J

For case b)

Fo E F o' " <K
I P(r,(0)P(r, (0))P(r, (t)+Vt)P(r (t)+Vt)

Z Z jj^ J K K J

-iq*6r. iq*^^
e J e

j - "k». (2.4.2.4)

Now we consider these terms separately with the assumptions

1) 6r << Vt, i.e. diffusion is much smaller than the bulk motion.

-r 2 /4a 2

2) Spherical scattering volume for which P(r) * e

For case a, there is no dependence on 6r. So <A>
(

r A. Thus we need

to perform an average over r(0) . The average over initial positions can

be performed by recognizing that the probability per unit volume of

finding a scattering center is just p/N. Where p is N/V .

For case (a)

-r2 /2a 2 -(r n +Vt)
2 /2a 2

v I &1 in N
e j e

' 1
d 3r.d 3

r.
1 1

= I p
2 /N 2 (ir2a 2 )

3/2
(tt2o 2 )

3/2
(2.4.2.5)

There are N 2 - N terms of J sc
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S =^P 2 U™ 2
)
3 -fei p

2
(2 iro

2
)
3

2 N N
(2.4.2.6)

3 6,
(8tt a ) can be regarded as the effective scattering volume squared

C*L.J which gives ^# p
2 V« = N 2-N.

Scat' N' Scat

Now considering j=&=m=k

-r2 /

f; - [ p/n

J-4

(r,+Vt) 2

2/2a 2 - 3 a

e J e d 3 r. d 3
Pj

„
/XT

-V 2
t
2 /4a 2

,= N p/N e V
Scat

-V 2
t
2 /4o 2 _

= p e V = N e
scat

2 <.2//,_2-V 2
t
2 /4o

or, F^ = N(N-l) + N e
-V2

t
2 /4a

(2.4.2.7)

(2.4.2.8)

For Case (b)

we use 6r << Vt, then the ensemble average separates

F
2

=
J <P(r.(0)P(r.(0)+Vt)P(r (0))P(r (0)+Vt)>

*•»* *»"*
-iq*6r. iq*or

<e -
1 e

6r

. iq # 6r
= I <PP(t)> 2 |<e >|

2
.

J?*

r(0)

(2.4.2.9)

It was shown before in Sec. 2.4.1 that

<PP(t)> = e

iq*6r
<e > = i

2«.2/q„2-V 2
t
2 /8o

-Dq 2
t

V 2
t
2

which gives, F*' = N(N-l) e
4a

e"
2Dq C

, (2.4.2.10)
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Now F' and F' 1 are combined together to get F.

V 2
t
2

F
2
(q,t) - N(N-l) [1 + e

"V2t /4a e"^ C
] N e "°

. (2.4.2.11)

for a Poisson distribution

<N(N-1)> = <N 2 > - <N> = <N> 2
, which gives

1,(5.0 - <»>= [1 e-
V2t2/4° 2

e-
2D"2t

] <H> e
-"^">° 2

. (2 .4.2.U)

Again we see that the correlation function is proportional to the product

of two terms for the situation of interest to us. One of these terms is

exponential which arises due to Brownian diffusion and the other is a

Gaussian, arising due to the bulk motion.



33

3.0 EXPERIMENTAL APPROACH

The experimental chapter consists of four different sections,

the apparatus, the analysis routine, the initial experiment, and the

final experiment resulting in the conclusion.

3.

1

Optical Component Arrangement

The optical system is illustrated in Fig. 3.1.1, where the principal

components are shown in their usual relative positions. An aluminum

slab, 132 cm by 100 cm by 6 cm, formed the main body of the optical

table. Onto this slab was rigidly mounted a 6 mm thick sheet of mild

steel so that magnetic optical holders could be used. This composite

table top was supported by four sand filled concrete legs. An optically

straight entruded magnesium rail was mounted to the table top. One part

of this rail was fixed rigidly to the table, but the other part pivoted

about a pin located below the center point of the scattering volume.

Onto this rail the light collection assembly was mounted. A model 165-07

Spectra-physics Argon Ion Laser with a model 265 power supply was used

for the majority of the measurements. The laser was located on a

separate table near the main optical table. The laser beam was steered

by two front surface mirrors, and then focused into the sample by a lens.

As the laser was operated in the TEM mode, the beam profile wasr oo

Gaussian. The scattering volume was the intersection of the cylinders

formed by the focused laser beam and the cylinder formed by the field of

view of the collection optics.

The photomultiplier tube (PMT) used in the experiment monitored the

light scattered about a certain angle. The PMT, an ITT FW 130, was

mounted on the pivoted optical rail. The housing for this tube is shown



Fig. 3.1.1. Optical system showing the major components in their

relative locations.
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in Fig. 3.1.2. The output from the FW 130 was fed through a Products for

Research Inc. model 1102 modular amplifier-discriminator, which converts

the photo-pulses into TTL pulses. Thus converted, these pulses were sent

to a Langley-Ford instruments, model 1096, digital correlator. The

processing of the scattered light signal is shown in Fig. 3.1.3.

3.2 Data Analysis

A typical intensity autocorrelation function measured in an

experiment in which laser light is scattered from a suspension of

particles is shown in Fig. 3.2.1.

The measured intensity autocorrelation function can be expressed as

G
(2)

(q,t) =a + b |g
(1)

(?,t)|
2

,

where g (q,t) is the normalized electric field autocorrelation

function, and q is the scattering wave vector, defined in Section 2.1.

For the simplest case of monodisperse particles, the field

correlation is a single decaying exponential, |g (q,t) |
= exp (~rt)

,

where T = Dq 2 and D is the diffusion coefficient.

If the suspension contains a distribution of particle sizes or

shapes, then |g (q,t) |

= F_(D e"
rt

dr where Fv (r)dr is the

Q
K K

fraction of the total scattered intensity contributed by particles with

decay rates in the range T to T + dT.

the decay rate distribution is given by

¥v (T)dT = 1. The n
1

moment of
K

y
n

= F_(D(r - <r>)
n

dr

o
K

where <T> is the average decay rate, <T> =

dispersity is not too great, the field autocorrelation function is only

TF^(r)dr. If the poly-
K



Fig. 3.1.2. The housing for the ITTFW130 Photomultiplier tube and

amplifier-discriminator

.
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Fig. 3.1.3. Data acquisition system for scattering measurement,
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Fig. 3.2.1. A typical intensity auto-correlation function.
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slightly non-exponential and we can write its natural logarithm in the

form

In |g
(1)

(q,t) |
= -<r>t + |y V^

2
- jj- u^

3
+ ... .

2 3
The coefficients of the terms in t, t , t , etc. are called the first,

second, third cumulants, respectively.

Two parameters that are frequently used to characterize particle

distributions are (1) the average decay rate <T> which in the case of

small particles, is related to the diffusion coefficient by

D = <r>/q 2
,

(3.2.1)

2
and (2) the polydispersity parameter u~/<r> which is the ratio of the

variance (the square of the standard deviation) to the square of the

average of the decay rate distribution. The polydispersity parameter is

a measure of the width of the distribution, but does not provide any

information about its shape (i.e., whether the distribution is uni- or

bimodal, skewed, etc.). The higher order moments are increasingly

difficult to measure experimentally and are accessible only when the data

are of very high precision. The analysis program in the Langley-Ford

correlator calculates the two parameters <T> and u./<r> 2 by performing a

weighted, least-squares fit of a quadratic equation to the natural log of

(2) +
the measured correlation function G (q,t) after the baseline has been

subtracted. There are two possible choices for the baseline: the

average of the last 8 channels of the measured correlation function or

the theoretical baseline. Either may be selected from the keyboard.

When the analysis is complete, the results appear on the display

screen of the correlator. The b/a ratio, <T> and u-_ /<T> 2 are calculated
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and the values given. The diffusion coefficient may be calculated from

Eq. (3.2.1). If the particles are assumed to be spherical, average

diameter d may be calculated from the well known Stokes-Einstein equation

D =
D

3irnd

Here K is Boltzmann's constant, T is the absolute temperature and ti is

the solvent viscosity.

From Eq. (2.4.2.12), we see for a system of particles that are both

diffusing and flowing past the scattering volume with velocity v, that

when the average number of particles <N> in the scattering volume is

large, the time dependent part of the homodyne correlation function is

related to t as shown below

,2«.2 1

C«<N> 2 |exp(-2q 2Dt -
f^-)

or 2

C-e
l T2

1 2a
Where T . = -tjt and t = — and T = Dq . t is the correlation time

due to diffusion and t is the beam transit term due to bulk motion. In

practical cases we have a background noise with the spectrum for which

-t/x - t
2 /T§

C = A. e + B

from which it follows that

1 , C-B _ 1
|

t
"

t
n
A

1

=

x
x

xf
'
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If we denote the L.H.S. of the above equation by Y,

Y=^ +
C

T
l

T *

A plot of Y against t should give us a straight line with the Y

intercept of 1/t
1

and a slope of 1/xf. Such a slope-intercept (SI) graph

should make the analysis easier. t„ is inversely proportional to V.

If we make a plot of the slope of the slope-intercept plot against flow

rate squared, we should get a straight line from which we should be able

to find the beam width a. We shall call this the S plot. On the other

hand, if we have a distribution of particle sizes in the scattering

volume, as shown previously in this Section, for homodyne detection we

will have for pure diffusion

C • A, exp(-2<r>t + u
2
t ) + B

So as before,

Y =^- V"

We now see that if we have polydispersity then for pure diffusional

system a plot of Y against t will give us a straight line with negative

slope rather than a line parallel to the t axis expected for the

monodisperse case. The intercept in Y axis will be the same, 1/x . The

negative slope of the line with polydispersity will be u_, the second

cumulant

.

When we have polydispersity and we are flowing at a lower rate then

the relative magnitude of v„ and 1/t„ will determine the direction and

magnitude of the slope.
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Afterpulsing is the presence of spurious pulses after true pulses

within the photomultiplier tube and may be regarded as a defect of the

tube itself. The SI plot for sample time <10 sec gave us an indication

that we might be getting into the problem of photomultiplier after-

pulsing. For sample times of the order of 10 sec it became obvious.

Since afterpulsing only effects the first few channels of the spectrum we

felt that it would be worthwhile to modify our analysis to ignore these

first few channels. Thus,

C(t) = A exp - (t/T
1

+ t
2 /x|)

C(nAt) = A exp - (nAt/i^ + n 2At 2 /t|)

where n is the channel number and At is the sample time.

we -» l
i

C(nAt) At nAt 2

Y(n) = " n
ln

c7§)
= ~

1

+ TT

where C(0) = A

Now redoing at C(l)

vl/ n 1
i

C(n) At
f

... At 2

Y (n) = " n^T
ln coy

= ~
x

+ (n+1) IT

T (0) -|£, Y^O) . |L + *£. ^(-l) .£*
T
l

T
l

T2 T
l

So Y(0) = Y^-l), which gives Y(n) = Y^n-l)

Similarly

vm, . 1
1

C(n) At . . At 2

n—m C \.m; t. t 2

Thus Y^n-m) = Y(n).
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The mathematics above show that we may shift the Y-plot over by m.

Changing m, shouldn't give any change in the slope and intercept

of the SI plot if the axis is shifted properly. This allows us to

ignore the first few channels which may be affected by the afterpulsing

yet still are able to pull-out the correct t. and t .

3.3 Initial Experiment

The main idea behind this thesis was to understand light scattering

from flowing Brownian motion particles applying PCS, and to be able to

separate the correlation time due to diffusion from the beam transit

term, which arises from the bulk motion of the fluid in which the

particles are suspended. With this idea in mind, the first system

studied was a non-flowing aqueous suspension of polystyrene latex

microspheres. Systems composed of monodisperse polystyrene latex

microspheres in aqueous suspension represent an established standard

against which to verify the operation of the PCS system. Three sizes of

Dow Chemical microspheres with nominal diameters 0.091y ± 0.0058u,

0.261y ± .0031u, and 0.330y ± ,0040u, were suspended in dilute (10~"

volume %) solution. The measurements were conducted at four different

scattering angles, 90°, 60°, 45°, and 30°. The sizes inferred from the

diffusion constant measured with PCS agreed to within 3% of the

manufacturer's stated sizes.

As shown previously, the scattering vector q equals t— sin 9/2.
A
i

For a purely diffusional process, the correlation functions for

heterodyne and homodyne cases are proportional to e and e ,

respectively. Accordingly, x becomes equal to (Dq 2
) and (2dq 2

) for

heterodyne and homodyne cases, respectively. Thus the logarithm of the
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inverse correlation time of such a system will vary linearly with the

logarithm of the sine of half the scattering angle, 9/2. Furthermore,

such a plot should have a slope of 2. This test was also performed.

Figure 3.3.1 indicates that the dynamic light scattering from the

polystyrene system yield a slope close to 2.

Next we tried to set up our flow system so that the scattering

particles had translational motion with respect to the scattering volume.

The system is shown in Fig. 3.3.2. It consists mainly of a 5 gallon

overhead tank which contained the stock solution. The solution

concentration used was the same as was used to study our non-flow system.

A 3 ft. long glass tube 1 cm in diameter was connected to the bottom of

this tank with tygon tubing. The laser beam was directed into this glass

tube. The glass tube was held vertically and arrangements were made to

keep it straight and free from vibration. The lower end of the tube was

connected through tygon tubing to the flow meter. Another piece of tygon

tubing connected the flow meter to a flow control valve. At the other

end of the control valve a piece of tygon tubing was attached, the other

end of which was connected to the lower level tank which has a capacity

of about a gallon. From the lower level tank through a variable speed

pump the solution can be taken to the overhead tank. There is also an

overflow line from the overhead to the lower level tank.

Most of the measurements for the flow system were made at 90°. We

filtered the distilled water before making the solutions. The overhead

tank was then filled with this filtered water. The polystyrene particles

were added in some filtered water in the lower level tank. Then the

solution was mixed well by circulating the solution through the system

for considerable length of time.



Fig. 3.3.1. A graph showing inverse correlation time versus Sin 6/2

for a non-flowing system of Brownian particles of

d = 0.091u. The line has a slope of 2.03.
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Fig. 3.3.2. The initial experimental set-up.
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We took some data for our flow system at flows of about 0.1 gallon

per minute (GPM) and 0.2 GPM. In the way we analyzed our data as

discussed previously, the slope of the line was measured. This value of

the slope was not found to agree with the calculated value of the slope.

So we thought that polydispersity in the solution might have resulted in

this discrepancy. So we next tried to see if this was the case.

To observe the effect of polydispersity we took some data with the

same solution but for the non-flowing case. A typical plot of the data

is shown in Fig. 3.3.3. The plot shows a negative slope. The slope and

intercept of the line agree well with the values found from the curve

fitting routine of the correlator. Thus, it was found that

polydispersity caused by a distribution of particle sizes was causing

some problem in analyzing our data for the flow system.

We then thought of cleaning up our whole flow system and of making

new solutions with newly filtered water, so as to eliminate the

polydispersity in the solution as much as possible. In this way a new

8 —3
solution was made with a concentration of about 6.7 x 10 cm of

polystyrene particles of 0.261 u diameter. We took data for the non-flow

system and made the plot. The SI plot of the data is shown in Fig.

3.3.4. As we see from the plot we were not getting a straight line as we

were expecting. From the correlator fitting routine we did get T and \x ,

the first and second cumulant, respectively. If, however, V obtained

from the correlator fit program was used to indicate the proper

Y-intercept, then a line passing through this point and data at large

time had a slope that gave the second cummulant reasonably close to the

value found from the correlator fit. The data points at smaller t were



Fig. 3.3.3. A typical SI plot of a nonflowing system showing

polydispersity with negative slope. Fit is to the

— OFf + U f
function c = e

2
. Particles are of nominal

3 -1
diameter 0.091 u. Taking T = 2.4 x 10 sec and y

2

as slope of the line, u /T 2 compares well with the

fit program value.
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Fig. 3.3.4. A typical SI plot showing multiple scattering, for particles

of nominal diameter 0.261 P with particle concentration of

6.7 x 10 cm
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found to be off the line and they were much too high. We thought that

these higher initial points which correspond to higher value of T may

have resulted from multiple scattering from Brownian motion. Previous

experiments by researchers show that the linewidth (inverse correlation

time) increases monotonically with concentration. So as the extent of

multiple scattering is a function of particle concentration, we wanted to

see a concentration dependence for the linewidth. Starting with the

original solution we had been taking data with, we made solutions of

several different concentrations and took data for each of those

solutions separately. What we found is that the initial points started

coming down more and more as the solution was diluted more and more.

When the original solution was diluted ten times, all the data points

lined up to give us a straight line with the value of the Y-intercept

matching reasonably well with the V value. So it was thought that the

multiple scattering due to high particle concentration was causing the

high value of Y-intercept. We decided to work with the concentration for

which a reasonably good straight line was obtained.

We made a new solution of 0.261 y diameter Particles and made a run

for the non-flowing system. We started with a very small flow of 50

ml/min. Then we started increasing the flow in small increments to a

maximum flow of 850 ml/min. The Reynolds numbers calculated at flowrates

of 50 ml/min, 100 ml/min, 150 ml/min, 300 ml/min, 600 ml/min, and 850

ml/min are about 106, 212, 318, 637, 1279 and 1800 respectively. The Y-

intercept of each of the plots should be the same, because the

Y-intercept determines T, the first cumulant, which is proportional to

the diffusion constant. From the plots it is evident that the
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Y-intercepts are not yielding the same values for different flow rates.

We plotted the Y-intercept against the flow rate as shown in Fig. 3.3.5

and found that the plot comes out to be a straight line increasing with

flow. We suspect that if there is any type of turbulence present in the

system, it will increase the diffusion of the particle in addition to

that due to the Brownian motion. The existence of laminar or turbulent

flow doesn't depend only on the Reynolds number. The Reynolds stresses

which initiate turbulence may be present even with very small flows for

which we expect the flow to be laminar. These stresses may be due to the

various non-idealities in the system, like the roughness of the tube

surface through which the fluid is flowing, the flow tube is disturbed by

some means, or if the mean velocity fluctuation is not zero. Another

point of consideration is the length of the section of the flow tube over

which the velocity profile develops. The approximate length of straight

pipe needed for completion of the final laminar flow velocity

distribution

X
t

IT " '°5 N
Re

where

X is the length of the pipe,

D is the diameter of the pipe, and

N is the Reynolds number at which the flow exists.

For the highest Reynold's number we worked with for the 10 mm l.D.

tube, this formula suggests that the velocity profile had just developed.

The entrance disturbance may not, however, damp out right there.

We next tried to do the same set of experiments as we did for the

3 ft long 10 mm l.D. tube with a 4 ft long 6 mm. I.D. tube. The



Fig. 3.3.5. A graph of the Y-intercept of the SI plot versus flow rate

for tube of 10 mm I. D. using the initial set-up.



61

12000

o

£ 10000

o
_i
GL

55 8000
LU

fe 6000

Q.
UJ
o
gj 4000

I

2000

200 400 600 800

FLOW RATE (ml/min)

1000



62

connection to the 6 mm tube was still from a 10 mm tygon tubing. Thus

the entrance disturbance is different for this smaller tube and is

expected to be larger with this tube than with the 10 mm tube. Also with

this tube there was a better chance for the velocity profile to develop

fully, as indicated by the equation above, at the point where the laser

beam was shown. The data was taken at flows of 50 ml/min, 100 ml/min,

350 ml/min, 450 ml/min, 600 ml/min, and 850 ml/min. The Reynolds number

corresponding to these flows are, respectively, 177, 354, 1060, 1600,

2123 and 3007. The Y-intercept was plotted against flow rate as before.

The plot is shown in Fig. 3.3.6. As with the 10-mm tube, the Y-intercept

for the 6 mm tube was also found to increase with the flow rate, but the

slope of the line for 6 mm tube was about 4.25 times larger than that of

the 10 mm tube.

3.4 Final Experiment

To remove some of the uncertainties and disturbances in the flow

system which we though may have effected our results, we decided to

rebuild our flow system. We wanted to remove the pump, make the tube

longer, minimize vibration of the tube, and also to have a smooth

surfaced tube. The set-up we designed is shown in Fig. 3.3.7. In this

system we made solutions in a separate jar and filled the upper level

flask with the solution. We filled the rest of the sections of the

system with the solution with the help of the pump. Once that was done,

the pump is no longer needed. Using the flow and control valve right

after the flow-meter, we adjusted the flow, and once the upper level tank

is about to empty, we stopped the flow, poured the solution in the lower

level tank into the one at the top, and then restarted the flow.



Fig. 3.3.6. A graph of the Y-intercept of the SI plot versus flow rate

for tube of 6 mm I.D. using the initial setup.
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Fig. 3.3.7. The revised flow system.
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During the time the flow system was being made, we tried to study a

system which didn't have Brownian motion, but had instead a pure

translational motion. The correlation time for such a system is expected

to be infinite and the beam transit time to be finite depending on the

rate of translation. According to the plotting routine described in

Section 3.2, the slope-intercept plot should give us a straight line

passing through zero at zero time. Such a system is provided by a

rotating ground glass. We could never see, however, the line going

through zero, because of a dead-time problem in the pad.

The particles used to study the new flow system were 0.234 y in

7 -3
diameter and the concentration used was about 8.0 x 10 cm . The water

used in making the solution was filtered separately into a big jar and

the polystyrene balls were suspended into the water. The whole flow

system was cleaned and rinsed several times with filtered distilled water

before introduction of the solution. Several different combinations of

the optical settings were tried to see if we had any alignment problem.

These were: 1) taking the PM tube close to the scattering volume and

placing a pinhole in front, 2) taking the PM tube away from the

scattering volume and focussing the beam from the tube to the slit right

in front of the iris, and 3) the same as (2) but with the inclusion of a

pinhole. The three different optical settings worked with didn't give us

any difference in the results implying that there were not any coherence

problems.

The data were taken at several different flowrates starting from

zero up to a flow rate of 900 ml/min. The slope-intercept plot was made

for each different flow. The Y-intercept was plotted against flow rate



68

as before. The plot was found to have a small positive slope for flow

rates up to about 500 ml/min. From there up to 900 ml/min the plot was

found to have a higher positive slope. So it seemed that there were two

portions in the plot for which the flow behavior might be different.

When we looked at the sample times used at different flow rates, however,

it turned out that right after the flow of 500 ml/min, we had used

smaller sample times for which the effects of afterpulsing may have been

greater. As was mentioned before in the analysis of data, our procedure

was to normalize the signal value with respect to that at the first or

m channel and then proceeded further. If that value was in error, we

were propagating the error throughout the analysis. Thus, we decided to

fit the data directly to the correlation function. This reduced the

afterpulsing problem, and we found that the data points for flows with

afterpulsing came down and fell on the same line as with the others. The

plot still has a small positive slope. The Y-intercept of the slope-

intercept plot gives us information about diffusion, which becomes less

and less contributing to the spectrum at higher flow rates where beam

transit term dominates. We thought that this might be the reason for

giving slightly higher values of the Y-intercept at higher flow rates.

The size of the particles evaluated from the Y-intercept agreed well with

the result from the static solution. The first and second cumulants came

out reasonable. The S plot as was described in Section 3.2, was made out

of the experimental data. It proved to be a nice straight line from

where the beam width was calculated and subsequently from which the

incident beam diameter was evaluated. We ran the experiment with three

different lenses of three different focal length and made the S plot for

each of them. The slopes scaled correctly with the focal length and the

incident beam diameters calculated agreed well.
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For smaller size particles the diffusion will be faster, the

correlation time smaller, and consequently at a given flow rate the

diffusion is expected to contribute relatively more to the spectrum than

for larger particles. Thus if the small positive slope we found

previously for 0.234 u particles was due to the relative magnitudes of x

and x , the slope should go down for smaller particles like 0.091 p. To

see the effect we did a run on the 0.091 p size particles and the slope

did indeed prove to be smaller.

Next we tried to perturb the flow by hanging a small obstacle in the

way of the flow from the top of the tube. The obstacle was very small in

comparison to the tube diameter and it was about 3 ft. away from the

scattering volume. We used 0.234 p particles. We didn't see any change

in the Y-intercept or slope in the slope-intercept plot from our

nonperturbed flow with 0.234 p size particles. We thought maybe the

disturbance was not enough to give any appreciable effect. Afterwards we

placed a much larger obstacle about h ft away from the scattering volume

in the way of flow, and took data again. This time the Y-intercept

started going up more and more with flow rate. The slope of the plot of

Y-intercept against flow rate was about nine times higher than that

without perturbation.
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4.0 DISCUSSION AND CONCLUSION

The data taken after rebuilding the flow system are given in Tables

4.1 to 4.3, and the plots of the data are shown in Figs. 4.1 to 4.7. The

particle size used first was nominally 0.234u in diameter as given by the

manufacturer, Dow Chemical Company. For these particles the average

measured size of the particles came out to be 0.2294p from the static

data, which is only off by about -2.0%. This value is quite reasonable,

considering possible errors incurred by uncertainties in temperature,

which changes t by 3% for each °C, and uncertainty in scattering angle,

which changes x by 1.7% at 90° if we are off the center line by about

0.5 mm. This result indicates that the controlling equation (Eq.

2.4.2.12) for the diffusional, no flow condition, holds. For the flowing

system the slope-intercept plots were found to be straight lines

indicating that the spectra was a product of an exponential and a

Gaussian. For flowing systems, the plot of the Y-intercept of the

slope-intercept plot against flow rate for particles of 0.234y diameter

is shown in Fig. 4.1. This plot rather than being flat as expected came

out to have a small positive slope. The average size of the particles at

a flow rate of 900 ml/min came out to be 0.164u, which is off by -29.91%.

At this flow rate, however, t is about 5 times faster than T .. The

average size of the particles, using the average value of the Y-intercept

obtained within the range of the experimental flow rates was 0.193 u,

which is off by about -17.50%. Once again, however, x is on the average

about 4.5 times faster than t .

Fig. 4.1 also shows the plot of the Y-intercept of the

slope-intercept plot against flow rate for particles of 0.091 y diameter.

This plot indicates a small positive slope too, but- the slope is smaller.
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Table 4.1. Y-intercept and slope of the SI plot, Tj and t^

as a function of flow rate for particles of

nominal diameter 0.234u

-3 -7
Flow rate Y-intercept x 10 Slope x 10

-1 -2
(ml/min) (sec ) (sec )

2.369

50 2.320 .095

100 2.378 0.340

200 2.608 1.599

300 2.642 3.229

400 2.674 5.420

500 2.774 8.421

600 2.723 12.592

700 2.990 16.520

800 3.074 22.076

850 3.122 25.800

900 3.326 27.340

T, x 10
4

t
2

x 10
4

(sec) (sec)

4.221 CXJ

4.310 10.230

4.205 5.419

3.834 2.501

3.785 1.760

3.740 1.358

3.605 1.090

3.672 0.891

3.344 0.778

3.253 0.673

3.203 0.622

3.007 0.605



72

Table 4.2. Y-intercept and slope of the SI plot, t and t

as a function of flow rate for particles of

nominal diameter 0.091u

Flow rate

(ml/min)

-3
Y-intercept x 10

(sec )

Slope x 10

(sec )

T. x 10
4

(sec)

T
2
X 10

4

(sec)

6.086 1.643 00

100 6.144 0.217 1.627 6.789

200 6.120 1.218 1.634 2.865

400 6.142 4.080 1.628 1.565

500 6.211 6.588 1.610 1.232

600 6.426 9.609 1.556 1.020

700 6.416 13.076 1.558 0.874

800 6.446 17.891 1.551 0.747

900 6.488 22.226 1.541 0.671
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Table 4.3. Y-intercept and slope of the SI plot

as a function of flow rate for 3

focussing lenses of different focal

lengths.

Focal Length, F = 15.3 cm

-3 ,«-7
Flow rate Y-intercept x 10 Slope x 10

(ml/min) (sec ) (sec )

6.385

100 6.551 0.679

200 6.967 3.594

400 7.817 11.135

600 9.132 28.062

800 10.571 49.106

Focal Length, F 9.4 cm

-3 ,~-7
Flow rate Y--intercept x 10 Slope x 10

(ml/min) (sec ) (sec )

6.068
100 6.436 1.968

200 7.073 8.237

400 9.204 26.526

Focal Length, F = 30.0 cm

Flow rate Y-interce]

(ml/min)

6.160
100 6.225
200 6.331
400 6.412
600 7.333
800 7.653

,-3
Slope x 10

-7

0.129
0.765
2.685
5.646
10.371



Fig. 4.1. A graph of the Y-intercept of the SI plot against flow rate

for particles of two different sizes.
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The slope seems to scale with the particle size. The data for the no

flow condition with these particles gave the average size of the

particles as 0.0886 y, which is off by -2.6% and which is, again in good

agreement with the manufacturers value. At the flow rate of 900 ml/min

the particle size turned out to be 0.0832 p, which is off by -8.69%. The

average value of the Y-intercept gave average particle size as 0.0858 y,

which is off by -5.7%. For these smaller particles, x is only 2.3 times

faster than x at 900 ml/min. At the average value of the Y-intercept,

the t is only 1.3 times faster than x . At higher flow rates we still

have the afterpulsing problem. Also the particles sweep by the

scattering volume so fast that the diffusion may not contribute much

information to the spectra for such a situation. This we think might be

an important reason for the Y-intercept becoming larger at higher flow

rates. The smaller particles diffuse faster than the bigger ones thus

even at the same flow rate smaller particles should give more diffusional

information than bigger ones. From the comparison of the graphs in

Fig. 4.1, we really can see that the percentage increase of the

Y-intercept for the smaller particles are much smaller than the bigger

ones. So we conclude that the relative values of x and x are a

determining factor for the behavior of the Y-intercept.

Figures 4.2 and 4.3 are plots of x. and x against flow rates for

0.234 p and 0.091u particles, respectively. These plots indicate that we

can separate x and x even when x is smaller than x . This result was

unexpected because it was felt that if x. < t the quick decay of the

Gaussian term would mask the decay of the exponential term which contains

the useful diffusional information.



Fig. 4.2. A plot of t and x versus flow rate for particles of nominal

diameter 0.234 u.
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Fig. 4.3. A plot of T and t versus flow rate for particles of nominal

diameter 0.091 V
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Fig. 4.4, as described in Sec. 3.2, is an S plot. This, as we can

see, is a straight line for both particle sizes. Fig. 4.5, is an S plot

for 0.091 P particle with three focussing lenses of different focal

lengths, which corresponds to the data in Table 4.3. According to the

2
plotting routine, the slope of these lines are 1/t , which in turn is

equal to V 2 /4o2 . So the slope of the S-plot should give o, the beam

width. Using diffraction theory, the incident beam diameter on the

lenses was calculated. This diameter according to the theory is the

diameter of the Gaussian beam for which the intensity is 1/e 2 times that

at the center of the beam. If 2W is this diameter, then

_ . 2 -2r 2 /W2
I = A e

o

In our derivation of correlation function we used

_ , 2 -r2 /2o2

I = A e
o

so W = 2a

According to the diffraction theory , the diameter of the incident beam

2W becomes

4^F
2W =

^(2W
1
)

where, 2W. is the diameter of the focussed beam which gives,

XF
2W =

,

For the three different lenses the incident beam diameters agreed to

within 5%. The width of the beam for which the intensity is 1/e times

that at the center was calculated too. The average width at 1/e 2 point

was found to be 0.35 cm, corresponding to 0.25 cm at the 1/e point. The



Fig. 4.4. A graph of the slope of the SI plot versus flow rate squared

for particles of two different sizes.
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Fig. 4.5. A graph of the slope of the SI plot versus flow rate squared

for three converging lenses of different focal lengths.
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direct experimental measurement of the beam intensity with position in

the beam is shown in Fig. 4.6. The measurement was done by placing a

photomultiplier tube with a pinhole in front, perpendicular to the beam.

The photomultiplier tube was mounted over a translator, which was

graduated, so as to read the position of the tube within the beam. The

PMT was connected to a photon counter. These data indicate that the

actual beam widths at the 1/e 2 and 1/e points were 0.293 cm and 0.195 cm,

respectively. However, all these indicate that the controlling equation

(Eq. 4.2.2.12) for the flowing particles works. So we can conclude that

the light scattering by flowing and diffusing particles gave us

information which agrees well with the theory.

When we were doing flow-experiments, we didn't really measure the

aperture opening in the laser. But we adjusted the opening such that we

were in the TEM mode, for which the beam profile was Gaussian. This
oo

beam width varies with aperture opening and we weren't sure what the

aperture opening was during the experiment. This may be a reason for

which we found a difference between the calculated and measured beam

diameters

.

In Fig. 4.7, we see that for a highly perturbed flow, the

Y-intercept shows a sharp rise with flow rate, which arises due to the

disturbance within the flow. Turbulence in the flow is expected to

increase the diffusion, which should give a high value of the first

cumulant, i.e., a large Y-intercept. The same effect was observed in the

perturbed flow. So we think that turbulence in the flow is causing it.

We have not performed enough work on this phenomenum to give any positive

remark

.
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Table 4.4. Intensity of the beam with position

for about 80° aperature opening.

Relative
Position Intensity

(cm)

2.30 0.20
2.32 0.20

2.36 0.40

2.38 0.65
2.40 1.15

2.42 1.70

2.44 2.60
2.46 4.05
2.48 4.85

2.50 6.05

2.52 6.60

2.54 6.60
2.56 6.35

2.58 5.40
2.60 3.90
2.62 2.70
2.64 2.05

2.66 1.45
2.68 1.00

2.70 0.55
2.72 0.30
2.74 0.15



Fig. 4.6. A plot of the beam profile for aperture opening of about 80'
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Fig. 4.7. A graph of the Y-intercept of the SI plot versus flow-rate

for highly perturbed flow.
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In this thesis a theoretical expression was developed for the PCS

spectrum of a system of diffusing and flowing particles. The theory was

tested with a simple polystyrene-water system. The controlling equations

for the two different conditions were found to work. The particle size

measurements worked out in the no flow condition. The particle sizes

agreed to within 3% of the manufacturers stated size. x. and x were

calculated for two different particle sizes at several different flow

rates. For the smaller particles of 0.091 u diameter x was found to be

within 6% of its no flow value even at a very high flow of about 900

ml/min. For the bigger particles of 0.234 u diameter the x
1

at the flow

rate of 900 ml/min was found to be within 30% of its no flow value, x

and x were found to be separable at different flow rates. For a highly

perturbed flow the measurements indicate that x even at 600 ml/min is

about 70% off its true value. So turbulence in the flow is suspected to

cause this big discrepancy. The beam width was calculated from x and

also directly measured experimentally and the two agreed to within 15 to

20%. The method of analysis developed was found very useful and simple

to use. This work can be used as an experimental basis for the future

work with flowing Brownian motion systems.
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ABSTRACT

Flowing Brownian motion systems are encountered in many practical

situations of interest e.g., soot particles in flames as well as other

aerosol systems. Recently, the dynamic light scattering technique,

Photon Correlation Spectroscopy (PCS) has proven useful for studying the

diffusional processes in these aerosol systems. This has stimulated the

need for an understanding of the PCS spectrum of such diffusing and

flowing systems. A representative system of such a situation is

polystyrene latex spheres suspended in water flowing through a tube at a

known flow rate. Two terms 1) the correlation of time, t , and 2) the

beam transit term, f , are useful in describing a system of particles

which are diffusing while in bulk motion, t is due to the random

Brownian diffusion of the particles while x arises due to the bulk

motion of the particles with respect to the scattering volume. The

diffusional term appears as an exponential and the beam transit term

appears as a Gaussian in the correlation spectrum. A theoretical and

experimental study of the PCS spectrum observed for light scattered from

a flowing Brownian motion system was done. The study of the simple

system allowed us to study the effect of both the diffusion and flow

terms in the PCS spectrum and provided a testing ground for our

theoretical understanding of the spectrum and the experimental technique.

The theory works for such a system. Finally, it was found that t and t„

could be separated for different flow rates even when t was much faster

than t , a result not previously expected.


