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Abstract 

In this study, we identify a new method of tracking motion over a sequence of images 

using feature point clusters.  We identify and implement a system that takes as input a sequence 

of images and generates clusters of SIFT features using the K-Means clustering algorithm.  

Every time the system processes an image it compares each new cluster to the clusters of 

previous images, which it stores in a local cache.  When at least 25% of the SIFT features that 

compose a cluster match a cluster in the local cache, the system uses the centroid of both clusters 

in order to determine the direction of travel.  To establish a direction of travel, we calculate the 

slope of the line connecting the centroid of two clusters relative to their Cartesian coordinates in 

the secondary image.  In an experiment using a P3-AT mobile robotic agent equipped with a 

digital camera, the system receives and processes a sequence of eight images.  Experimental 

results show that the system is able to identify and track the motion of objects using SIFT feature 

clusters more efficiently when applying spatial outlier detection prior to generating clusters. 
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CHAPTER 1 - Introduction 

Tracking the motion of objects is a key task in computer vision.  Through computer 

vision we analyze information relating to motion in a sequence of images or video.  Robot vision 

is a subtask of computer vision in which robots collect information from cameras or other optical 

sensors in order to detect or identify objects in their surroundings.  Information that a robot 

retrieves from its sensors provide the information about the location and possibly the size of an 

object or obstacle.  In some tasks it is essential that a robot be capable of determining if objects 

are stationary or in motion in order to complete the task.  Robots use knowledge pertaining to the 

motion of an object such as the direction of travel for path planning, obstacle avoidance, and 

identifying traffic patterns.  

 

In this thesis we hypothesize that it is possible to identify and track the motion of objects 

in 2D images using clusters of Scale Invariant Feature Transforms keys, from this point we refer 

to them as to as SIFT features [3].  First, we identify some of the existing problems in object 

identification and motion tracking.  Then, we identify a method for recognizing and extracting 

SIFT features from an image.  Next we identify a method for generating clusters of SIFT features 

to represent objects in our 2D image.  Once we generate clusters of SIFT features to represent 

objects, we identify object matches over a sequence of images.  Finally, for each new cluster that 

we match to a cluster from a prior image in the sequence, we identify its direction of travel. 

 

To identify and extract SIFT features we use an implementation of David Lowe’s SIFT 

feature identification algorithm [3].  Because one of our objectives is to identify objects from 2D 

images, it is necessary to define properties of objects within an image [3].  Problems that arise 

when identifying objects in 2D images include: objects in motion, physical appearance, unusual 

poses, lighting, reflections, and loss of 3D projection [4].  In Lowe’s study, “Object recognition 

From Local Scale Invariant Features” [7], it is proven that SIFT features are strong enough to 

identify objects from 2D images even if we manipulate the image.  We rely on this fact in 

assuming that the use of SIFT features minimize the problems above.  In a chapter two we 



 2 

examine SIFT in further detail. 

 

To generate clusters of SIFT features, we must identify a clustering algorithm appropriate 

to the task we would like to accomplish.  In “A Survey of Clustering Algorithms” [6], Rui Xu 

establishes a basis for clustering on a set of four common principals: 

1. Feature Selection or Extraction 

2. Clustering Algorithm Design or Selection 

3. Cluster Validation 

4. Results Interpretation 

Each principal identifies a key step in generating data clusters.  We explore these steps 

further in chapter two.  We select SIFT features as the type of data to cluster and identify a 

method for extracting these features using David Lowe’s algorithm.  The K-Means clustering 

algorithm is a standard partitioning algorithm frequently used in computer vision.  Because our 

goal is to track the motion of objects over a sequence of images, speed in generating clusters is a 

priority. In that aspect it is important to note that generally K-Means completes in a number of 

iterations that is less than the number of points in the data set.  In this thesis we identify the K-

Means algorithm as our method for clustering.  In chapter three we discuss the design details of 

the basic K-Means algorithm and the modifications necessary to generate clusters of SIFT 

features.  Occasionally, we refer to SIFT feature clusters simply as objects. 

To identify object matches among clusters of SIFT features (objects), we implement a 

matching scheme to compare each individual SIFT feature in a cluster to those of previously 

identified clusters.  Clusters identified in an image are stored in a cache.  For each cached object 

we identify the number of points corresponding to the new object.  If the number of points that 

match is at least 25% of the points in the new image we identify it as a match.  We chose 25% as 

a minimal match rate relative to the set of boundary conditions for our experiment.  The basis for 

these boundaries depend upon the initialization of the SIFT algorithm which determines the 

number of SIFT features to be created for an image, and the number of clusters that the 

clustering algorithm generates.  Using this information we empirically determine that 25% is an 

acceptable match rate to identify a portion of an object by observing the number of SIFT features 

in an object.  We consider this the most reasonable match unless we identify multiple matching 

clusters in the cache.  If there are multiple matches we perform further analysis to determine 
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which the best fit is.  We further discuss determining best-fit matches, caching objects, and 

obstructed objects in chapter four. 

 

Motion tracking of matching SIFT feature clusters is a post processing step in our system 

in which we identify a direction of travel for each new cluster match.  We define a minimum set 

of directions of travel including North, East, South, West, Northwest, Northeast, Southeast, and 

Southwest.  The first time we identify a new cluster or encounter a cluster without a match we 

consider it stationary.  The direction of travel is computed as a function of the slope of the line 

connecting the mean point of a cluster in the local cache to the mean point of the new cluster.  

More precisely, we compute the slope of the line connecting the centroid of two clusters by 

dividing the original image into four quadrants relative to the x and y-axis.  If the orientation of 

the direction changes between images, then it is necessary to offset the x and y-axis.  We cannot 

guarantee that two objects that match on all points are exactly the same due to problems such as 

duplicates and reflections which may introduce uncertainty.  These invariants require us to define 

a measure to evaluate the predicted direction of travel over all object matches in a sequence of 

images.  We discuss this measure in chapter five as we identify measurement and metrics to 

evaluate the entire system. 
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CHAPTER 2 - Background & Other Approaches 

In this chapter, we establish a background in research relating to the topics we cover in 

order to track motion using feature point clusters.  We collect background information in four 

different topics including scale invariant feature transform (SIFT), clustering algorithms, 

identifying 3D objects from 2D images, and inferring 3D people from 2D images.  For each 

topic, we reference the relevant pieces of literature and describe the authors’ important 

contributions to this research.  Additionally, some of the topics touch on alternative approaches 

to solving problems relating to the topic.  Some of the topics, such as obstructions that impair 

object recognition are reoccurring themes that heavily influence the system design of the 

experiment in this research. 

Scale Invariant Feature Transform (SIFT) 
David Lowe’s “Object Recognition from Local Scale-Invariant Features” [7], introduces 

the idea of using a new class of local image features to identify 3D objects from 2D images.  

Lowe sets several requirements of these features to ensure reliability and consistency among 

features.  These requirements include invariance to image scaling, translation, and partial 

invariance to illumination changes and affine (3D projection).  The algorithm begins by 

identifying the local maxima or minima of a difference of Gaussian function.  Each point is used 

to generate a feature vector, then Lowe derives SIFT features from images by blurring gradient 

locations.  Figure 1 (extracted from “Object Recognition from Local Scale-Invariant Features” 

[7]) shows three objects for which Lowe identifies SIFT features, the second image shows a new 

arrangement of the objects overlapping in a chair, and in third image smaller rectangles are 

drawn to represent the SIFT features that Lowe recognizes after rearranging the objects (note that 

the larger rectangles around the borders of the objects are not SIFT features).  It is important to 

note that Lowe’s implementation of SIFT ignores color content and thus operates on grayscale 

images. 
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Figure 1:  A SIFT Example [7] 

In addition to the vector of descriptors, SIFT features maintain scale, orientation, and 

location for each point.  Lowe’s test results, shown in Table 1: SIFT Performance [7], are given 

in percentage matches of feature points.  In the test, Lowe first identifies SIFT features in an 

original image, and predicts the location of those features in the image after performing 

transformations.  Lowe performs various transformations to images including: changes in 

contrast, intensity, rotation, scale, and stretching.  Then, he compares the features from the 

original image to the features in the image after transformation.  Each value in the table is a 
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percentage of how closely features in the original image match to features in the transformed 

image by location, scale, and orientation.  The results over a 20 image sample for the combined 

transformations yield a 78.6% match rate on location and scale, and 71.8% over orientation.  It is 

shown that stretching images provides the lowest match percentage of location and scale with a 

77.7% match on average, and 65.0% match rate on average over orientation.  It should also be 

noted that pixel noise still allows a 90.3% match rate in location and scale as well as 88.4% in 

orientation. 

Table 1: SIFT Performance [7] 

 
 

To obtain local image descriptors, Lowe performs several operations on the pixels of the 

given image.  Using two spatial dimensions and linear interpolation on each pixel in the image 

and its eight nearest neighbors, Lowe introduces a blurring affect.  He explains that finding an 

exact SIFT feature match over multiple SIFT feature sets has a high complexity so he uses the 

best-bin-first search method to identify nearest neighbors.  In addition he claims that using a 

Hough transform to search for matching keys is an efficient way to cluster reliable model 

hypotheses.  Identifying nearest neighbors and clustering are also tasks in this study.  

A Survey of Clustering Algorithms 
Xu describes feature selection as choosing distinguishing features from a set of 

candidates [6].  Because our goal is to classify data, the data must have qualities that allow us to 

categorize it.  We refer to the collection of similar qualities that a group of data shares as 
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features.  Note that these are not the same as the SIFT feature that Lowe identifies, but generic 

features that are more like attributes of a data set.  Feature identification and selection are the 

first steps towards clustering data.  Xu states that ideal features are those that are useful in 

distinguishing patterns, immune to noise, and easy extracted and interpreted.   

Features should be strong enough so that when generating clusters, it is possible to 

classify each feature into one of the existing clusters.  If a feature is not classifiable we can 

identify it as an outlier of the given data set.  This type of feature provides noise to the clustering 

method so we must address such features on an individual basis or make modifications to feature 

specification so that clustering is immune to noise.  We can use spatial outlier detection to re-

specify or strengthen features. 

Clustering Algorithm Design or Selection 
Upon identifying common features of a data set, we may begin to design or select a 

clustering algorithm.  In this step it is important to identify a relationship between features.  

Normally we base the relationship on proximity, which requires us to generate a distance 

function to map features.   After identifying the relationship between features and choosing a 

measure of proximity we must establish criterion for clustering.  Xu states this as an optimization 

problem with several existing solutions.  In many cases this step involves partitioning and can 

also introduce randomness.  Selecting or designing the algorithm necessary to group similar 

features is heavily dependent on the types of data, precision requirements, and available 

computing resources. 

Cluster Validation 
An essential step in the process of designing or selecting an algorithm is the validation of 

clusters.  We must ensure that the algorithm generates clusters only when valid data is present, 

and then we must attempt to verify the quality of the clusters that the algorithm generates.  Xu 

defines three test criteria based on the clustering structures including external indices, internal 

indices, and relative indices with respect to 3 different clustering models respectively including 

partitioning, hierarchical clustering, and individual clustering.  Essentially, we must define 

control data to test against as well as a benchmark for acceptable cluster identification.  

It is possible to compare resulting clusters to expected results or test criterion.  

Specifically in the case of partitioning, it is useful to run controlled experiments with data whose 



 8 

features are well defined.  In this case it is possible to validate the features composing the cluster 

that the algorithm generates.  If features are not a part of the cluster that we expect, then we can 

detect potential errors in the algorithm and representation of features. 

Results Interpretation 
In this step, we validate the results, or gather what Xu defines “meaningful insight” [6] 

from the original data.  Our goal is to interpret the results in such a way that they can be useful in 

solving the initial problem.  We must further analyze the resulting data in order to verify the 

reliability of our results.  Additionally, we determine whether the cluster information is useful 

enough to construct new data sets for further analysis.  Consider Figure 2: A Clustering 

Example, which shows the result of clustering a set of data (numbers one through seven).  

Suppose that in the example we identify the feature to cluster on as the integer value of each data 

point.  When we interpret the results, we discover that clusters that share the same integer value 

also share the same color.  Given the representation of data after clustering, this observation 

seems obvious.  However, prior to clustering the data may be spread out such that the data points 

overlap, and the only known fact is that they are integers. 

 
Figure 2: A Clustering Example 
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Thus a cluster of feature data may provide a new layer of data to be interpreted that could not be 

expressed in a single feature.  Application of the resulting data could present new problems or 

provide insight into a different approach of solving existing problems. 

Object Identification from 2D Images 
A previous approach to object identification as described by Mauro Barni in “A Robust 

Fuzzy Clustering Algorithm for the Classification of Remote Sensing Images” [5] is to generate 

clusters of pixels.  In classical approach to this concept one must know the number of clusters 

that should be obtained in advance.  In this method, a valid cluster is one whose pixel value sums 

to the value of one.  This feature classification pattern fails to meet Xu’s feature selection 

requirement in that it is not immune to noise.  In some cases it is possible that we must discard 

noisy pixels indicating that they do not belong to a particular cluster.  This corresponds to a type 

of feature strengthening as specified by Xu.  One could also implement an algorithm that would 

discard these noisy pixels or outliers or further analyze them to determine which classification 

set they should belong to as a sort of outlier detection. 

Barni [5] proposes a new fuzzy clustering algorithm over the pixels of an image in which 

the feature classification restraint of summing to zero is relaxed and introduces a probabilistic 

constraint.  Because the original model does not handle noisy cases in which a pixel is not a 

member of any cluster, Barni introduces Alternate Constraint Clustering.  This technique ensures 

that every pixel has membership within some cluster.  The algorithm uses the classical 

probabilistic constraint for good pixels deemed as good (easily classified) and an r-constraint for 

noisy pixels.  This example of feature extraction complies with the standards described by Xu 

and serves as an example of how to strengthen features.  An alternative is to identify such 

features as outliers from the data set because they do not provide any useful information.  In this 

study we choose not to generate clusters of pixels because they may lack consistency.  The lack 

of consistency may be due to changes in lighting or shadows thus SIFT feature clusters are more 

appropriate. 

Inferring 3D people from 2D images 
In Michael J. Black’s presentation of “Inferring 3D people from 2D images” [4], he 

considers the idea of capturing humans in motion through 2D images.  Black discusses using of 
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markerless motion capture, a system that identifies a model to represent humans in various poses.  

The system tracks motion by identifying changes in poses using the model.  Black identifies the 

difficulty of tracking people as a factor of people’s physical appearances.  This applies to object 

recognition and motion tracking because we must consider generic moving obstacles that may 

also have moving parts.  Other difficulty in object tracking through 2D images includes loss of 

3D projection, unusual poses, low contrast lighting and reflections, as well as obstructions.  

Clothing, lighting, and obstruction play a large role in tracking motion between multiple images 

as it may be difficult to identify a pose or even the same object if there is another object 

obstructing it or the image misrepresents objects due to lighting reflections or refractions.  The 

image in Figure 3 exhibits several of these problems including unusual poses and obstruction.  

Additionally similar poses in people with approximately the same dimensions and colored 

clothing may appear to be the same person in different images.   

 
Figure 3: Unusual pose, large range of movement, and obstructions 

Large motions pose a large problem in motion tracking because blurs and other 

ambiguities can be introduced into an image.  In particular when tracking people as objects or 

other items with multiple moving parts it can be difficult to identify the path of travel of the 

entire object as opposed to one moving part.  Black states 4 requirements in order to track motion 

of objects with multiple moving parts: 

1. Represent uncertainty and multiple hypotheses. 

2. Model complex movements. 

3. Exploit multiple image cues in a robust fashion. 



 11 

4. Integrate information over time. 

Black also considers generic background statistics in 2D images using a Bayesian 

formulation.  Filtering out background statistics plays an essential role in both precision on 

motion tracking and speed.  With fewer background images one can process a motion-tracking 

algorithm more quickly while providing more accurate results by eliminating unnecessary data 

points.  The Bayesian model uses the notion of prior and next cues to learn particular motion 

patterns.  These can be learned over a sequence of images of moving objects. 

It is possible to track motion in not only poses but also in direction.  If we can identify 

specific objects as a whole we can identify a direction of travel for those objects between 2D 

images assuming that we are able to overcome the difficulties Black identifies.  Even when 

tracking the location of stationary objects without moving parts between 2D images it is possible 

that lighting reflections and refractions may distort results making it difficult to identify even 

“simple” objects.  We do not use this approach because modeling requires a significant amount 

of overhead, and the approach is directed only towards tracking the motion of people. 
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CHAPTER 3 - Clustering SIFT features & Tracking Motion: 

The K-Means algorithm is a partitioning algorithm for clustering and classification of 

data.  The algorithm partitions a data set of n features into k regions based on the proximity of 

features.  The number of regions k must be specified but may be unknown, or guessed.  There 

are several common mathematical functions that estimate a number of clusters for the algorithm 

to generate.  The proximity of features is determined using a distance function given for a 

particular feature type.  K-Means partitions a data set using Lloyds Algorithm in order to find a 

solution to a K-Means problem [2].  The algorithm uses an iterative heuristic such that once it 

partitions the initial set of n features, it calculates the clusters mean. It then uses the distance 

function to determine which cluster to add the given feature.  The algorithm repeats each step 

until no features remain to assign [2].    Figure 4 (extracted from Wikipedia [2]) provides an 

illustration of the K-Means algorithm.   

 

 
Figure 4: A K-Means illustration [2] 

 

The process of developing the modified K-Means algorithm involves several steps.  Here 

we discuss topics that determine how we design this component of the system, its performance, 

and the results.  First, we give a description of relevant objects and define a function to 

determine the initial value for k.  Then, we define the distance function and consider the random 

nature of K-Means.  Next, we discuss cluster validation, clusters as objects, and irrelevant 
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objects.  Finally, we identify two spatial outlier algorithms; consider cluster caching, and 

everything together to define a method for tracking motion. 

Relevant Objects and Choosing an Initial Value for k 
The process of clustering in order to identify objects requires that we first define which 

objects we consider relevant.  We base this decision on the number of SIFT features in our set of 

n objects.  The next task is choosing an initial value for k.  K must be large enough so that each 

cluster is representative of each relevant object, yet small enough so that each relevant object is 

still identified.  Thus k determines the size of relevant objects although we base the size of 

individual objects on the distance between SIFT feature descriptors [8]. We treat the problem of 

choosing k, as a function of n, as a subtask of clustering.  Through several trial and error tests we 

verify that the following function for k,   

Equation 1 

 
serves as a tolerable value for k when we adjust the initial settings of the SIFT algorithms.  Note 

that determining optimal settings for SIFT requires calibration of filters which is not within the 

scope of this task but we consider it a future task.  

The Distance Function and Randomness: 
The original implementation of K-Means assigns n k-means points to k clusters.  

Generically a k-means point simply consists of a (x, y) coordinate or in the case of 3-dimensional 

mapping an (x, y, z) coordinate.  The modified k-means object stores a list of k-means points, 

which contains a SIFT feature.  After the initialization of k-means the algorithm randomly 

assigns a single k-means point to each cluster.  Because the k-means algorithm assigns each k-

means point to a cluster while updating the entire structure, a distance function is necessary to 

determine how closely points that do not belong to a cluster relate to the mean of each cluster.  

The modified k-means algorithm uses a distance function that operates on the SIFT feature of 
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each k-means point.  This value does not identify an exact match, but a probability that there is a 

match.  Thus we also identify a tolerance level that defines how high the probability must be in 

order for us to consider two SIFT features to match. 

Given two k-means points P1 and P2 given their feature descriptor vectors P1d and P2d, 

we use the following equation to calculate their distance: 

 

Equation 2 

 

Clusters as Objects 
Because we desire to recognize relevant objects, in modified-k-means we require each 

cluster to be a representation of that object.  Although objects in 2D images suffer from the loss 

of 3D projection, they still occupy an area of the 2D image.  For this reason, we require that a 

cluster be capable of computing its area.  Clusters in the modified-k-means algorithm are able to 

accomplish this by keeping track of the highest and a lowest value of the Cartesian coordinates 

of the SIFT features that compose them.  More specifically, the cluster uses the maximum and 

minimum (x, y) values over the composing SIFT features in order to compute a bounding box 

that contains each point in the cluster.  This allows the cluster interface to provide the area that it 

occupies in the image. 

  When mapping new clusters to the clusters in the local cache, we can now compare the 

area of clusters, and match each feature of the new clusters to those of the clusters in the cache.  

Thus the cluster interface provides a method to obtain all of the features that compose it.  We can 

use the number of matches between clusters SIFT features to identify a relationship between 

them.  It is important to note there is no guarantee that a cluster has more than one point so a 

cluster containing a single point has a cluster area of zero.  This is more likely to occur when 
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features are sparse or very spread out.  A more efficient method of calculating the area that a 

cluster occupies may enhance the performance of motion tracking using SIFT feature clusters.  If 

we determine that this is valid, then we consider it in chapter six when we discuss future work. 

Cluster Validation 
Visual image comparison is used for images.  A test suite has been implemented that 

when given a number of files n and n file names, generates a set of images.  This set of images 

includes an image displaying the original set of SIFT features as circles with orientation, the 

same image showing only the cluster means, and a similar image showing the cluster means 

when outlier detection is applied.  From this set of images we can observe how accurately the 

cluster means map to the centroid of the object we are identifying.  In all of our test cases the 

output images showed that we were able to find a cluster for each object to be recognized.  We 

can use this to verify that our k value is sufficient as the number of objects recognized changes 

with the equation for k.  The clusters that we plot do not always align directly with the objects 

centroid; however with the use of outlier detection they are considerably closer. 

 

Irrelevant Objects and Outlier Detection: 
Outlier detection is essential when working with SIFT features and k-means points 

because we may not know the initial settings of SIFT.  Thus it is possible that many of the SIFT 

features are simply light reflections or some other irrelevant object.  Removing irrelevant objects 

allows us to generate a cluster that maps more closely to the original object.  Because the number 

of outliers is also a function of the number of features to be clustered, outlier detection must be 

done during the k-means initialization.  We implement two types of outlier detection, nearest 

neighbor detection (NND) and top 50% detection, T50D [9].  Note that for test purposes, we use 

the algorithm without outlier detection (WOD).  The algorithm implemented for outlier detection 

in this modified k-means maps the distance (see Figure A) of each SIFT feature to its nearest 

neighbor.  The distance and neighbor are stored in a table that is later used to remove a 

percentage p of the number of features.  Features are removed in order of the furthest distance 

from their nearest neighbor.  The modified feature set is used when k-means is executed.  

Alternatively a second outlier detection method is provided which calculates the average nearest 
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neighbor distance of each SIFT feature.  The algorithm then removes all features from the set 

where the nearest neighbor distance is greater than the average nearest neighbor distance. 

Caching and Obstructed Objects  
When identifying objects in a sequence of images, moving objects may obstruct 

stationary or other moving objects between images.  Even with outlier detection lighting 

reflections and refractions can give a misrepresentation of the object.  In these situations we 

compare the area and centroid of existing clusters to determine if one object obstructs another in 

an image.  We use the relationship between the number of points in a cluster, the relative 

location, centroid, and the overall area size to identify obstructed objects or the best fit.  When 

the identification of previous object is questionable we cache both objects until we identify 

another object from a more recent image as a match to either of the objects in the cache. In this 

case we compare all of the objects with matching features and store the object with the largest 

area and K-Means-Point ratio then remove the previously stored objects.   

During the phase in which we compare clusters to identify matches we can also identify 

the best-fit match.  We assume that clusters with more points in a smaller area are more likely to 

be an accurate representation of an object.  We assume the opposite about larger clusters with 

sparse features.  When comparing clusters, if more than one cluster matches the same number of 

points, then we compare the area of the matching clusters.  We identify the cluster with the 

closest area and the same number of points as the match.  We are unable to validate these 

assumptions without testing.  

Motion Tracking 
We implement a motion tracking algorithm assuming that because SIFT features are scale 

invariant, identical features can be identified from a 2D image taken at time t to one taken at time 

t + n where n is the amount of time necessary to take and process a single image.  Therefore, 

when processing new clusters with matches we can use the Cartesian location of the clusters 

centroid location in the image to determine a direction of travel in one of eight directions: North, 

South, East, West, Northeast, Northwest, Southeast, and Southwest.  By obtaining the robots 

current position and orientation we can determine the orientation of the 2D image by rotating the 

x and y-axis accordingly.  We use the mean of the new cluster and the matching cluster to 
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calculate the slope of the line connecting the two points.  The direction is a function of the 

maximum value of the slope equation.  If both the rise and run are equal to zero we identify the 

object as stationary. 
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CHAPTER 4 - Experimentation 

Robot Image Processor (RIP) is an application that can communicate with mobile robotic 

device through a socket connection (the connection occurs in the main method of the RIP).  The 

RIP implements both the modified K-Means and SIFT feature identification and extraction 

algorithm in order to generate clusters of SIFT features.  RIP also implements 

TakePhotoAndProcess, which is a command that sends a message to an agent through the socket 

connection to take a photo and send it back.  When RIP receives an image it generates and 

processes a set of SIFT cluster features to track the motion of objects.  
Now that we are able to clearly identify the task, objective, and necessary algorithms we 

begin to construct a system to track motion using SIFT feature point clusters. First we identify a 

test scenario in which the system we develop can be useful. Next we identify and describe any 

components necessary to execute the experiment in the given scenario.  Then we describe the 

initialization and operation of the system during that scenario. Finally we execute the experiment 

under the constructs of the scenario and collect any output. 

Recall that in the introduction we identify motion tracking as an important task in robot 

vision.  We choose to perform the experiment in a scenario in which a mobile robotic agent must 

navigate from one end of hallway in the basement of Nichols to the other.  At the opposite end of 

the hallway there is a person traveling toward the agent.  The person travels in an indirect path 

varying its movement in several directions never obstructing the agent. 

 
Figure 5: Images taken by the agent during the experiment 
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Such a scenario requires several components in order to perform the experiment 

including a person, mobile robotic agent, robot controller, and a camera.  In this scenario we can 

use person of any size although in future test we may evaluate the performance of the system 

using people of various sizes.  The mobile robotic agent component is an agent that can navigate 

from one end of the hallway to the other.  In this experiment we use a Pioneer 3 or P3-AT mobile 

robot with Player robot server.  Player robot server is a commonly used robotic controller.  A 

remote machine uses Player Joy, a tool for connecting to and manually controlling the 

movements of a robotic device using Player. We use this to navigate the P3-AT down the 

hallway.  The agent also requires a camera in order to generate the sequence of images for the 

system to process.  We mount and connect the camera to a base extension of the unit to increase 

its range of view.  Note that the agent uses additional software gPhoto in order to capture and 

save images such as those in Figure 5.   

 
Figure 6: Images after SIFT feature generation 

Initially, we position both the agent and person at opposite ends of the hallway.  We 

power on the agent, and connect to it using Player Joy on a remote machine.  The remote 

machine also instantiates an instance of an RIP and specifies the type of outlier detection to use 

(if any) when generating clusters.  The remote machine then establishes a connection to the 

agent, and begins invoking the RIP’s TakePhotoAndProcess method until the user terminates the 

system. When the agent receives a “Take Photo” message from the RIP it takes a photo, saves it 

locally, and transmits it back to the RIP. 

When the RIP receives an image from the agent it saves it to the host machine and 

extracts SIFT features from the image.  For testing purposes and further analysis, it also stores 

the grayscale image with red circles indicating the location of SIFT features (Figure 6).  After 
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extracting SIFT features, depending on the type of outlier detection the user specifies (if any) the 

system removes outliers and then generates a set of SIFT feature clusters.  As with SIFT results, 

the RIP also saves a grayscale image with red circles indicating the location of the centroid of a 

cluster (Figure 7). 

If the image is the first in the sequence, the RIP places all of the clusters in the system 

cache.  The RIP compares all clusters from succeeding images to those in the caches to detect 

matches.  When a new cluster matches one in the cache, the RIP performs further analysis to 

check for obstructed objects, in order to determine the best-fitting representation of an object in 

the original image.  The process repeats until the user terminates the system. 

 
Figure 7: Mean cluster features 
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CHAPTER 5 - Results Analysis 

As the system executes, it collects and prints statistical information about the clusters it 

identifies in an image and their direction of travel.  We term an entire set of this statistical 

information collected by the system over a sequence of images “Matched Object and Directional 

Information” (MODI). In this chapter we first examine the content of MODI and specify its 

purpose.  Then we identify and define a set of corresponding metrics used to evaluate and 

measure the performance of the system.  Using these metrics we generate result tables to 

evaluate the performance of the system WOD, with NND, and with T50D.  Finally, we compare 

the overall performance of all three tests to conclude which method (if any) performs best. 

 

 
Figure 8: Sample MODI 



 22 

MODI & Tracking Tables 
MODI consists of three components, Cluster Identification Information (CII), Cluster 

Match Information (CMI), and Direction of Travel Information (DTI) corresponding to the SIFT, 

k-means, and tracking components respectively.  CII consists of the location, scale, and 

orientation of the SIFT feature representing the centroid of a cluster.  We represent the CMI as a 

table mapping the values of a newly identified cluster to those of each cached cluster.  The 

values mapped in CMI include an identification number, cluster area, number of points, and 

number of matched points.  The DTI is a text representation of the direction of travel of an object 

in motion.  We generate CII on a per image basis, the remaining components we generate once 

per cluster, per image (Note that if there is a match, we d not generate DTI).   

We use MODI to construct tracking tables similar to those in Table 2: Tracking WOD.  A 

tracking table consists of a set of initial clusters and cluster area, and for each consecutive pair of 

images in the test sequence: secondary cluster id, previous cluster id, point percentage match, 

secondary cluster area, previous cluster area, direction.  The default value for any field with an 

integral type is 0 and ST for the directional field to indicate stationary objects.  We place purple 

borders around some cells with values of 100% point percentage match. This indicates that the 

cluster in the local cache has more features that match than the new cluster has features.  Later 

we describe how to use tracking tables to construct result tables. 
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Table 2: Tracking WOD 

 

Metrics 
To identify a set of metrics that can be interpreted from MODI, we recall the objective of 

the task.  In order to track an object we must first be able to identify that object. Similarly, 

motion tracking implies the identification of changes in location.  Thus to properly evaluate the 

system we must identify at least two metrics.  One used to measure the identification of objects 

and the other to measure the identification of location changes of those objects.  To do this, we 

first identify comparable qualities of clusters that can be extracted from the MODI, the number 

of feature points, cluster area, and direction of travel.  Using these values we identify four 

metrics to describe the performance of the overall system, including cluster frequency match rate 

(CFMR), cluster volume match rate (CVMR), cluster area variance (CAV), and direction 

prediction accuracy (DPA).  
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CFMR CMVR & CAV 
For each metric we define what it measures and explain how to calculate it.  CFMR is 

used as a measure of object identification and indicates how frequently we are able to identify 

objects from one image to the next.  We calculate this value as a percentage by dividing the 

number of clusters with matches by the total number of clusters the system generates in an 

image, and multiplying the result by one hundred.   CVMR is a measure of object identification 

and indicates the percentage of SIFT feature points that compose a new cluster relative to the 

number of SIFT feature points in the matching cluster.  Because the number of feature points in 

the matching cluster may be greater than those in the new cluster, it is possible that this value 

may be greater than 100%.  In this case we evaluate it as a normal 100% match rate and also 

mark it for further observation.  Average cluster area distance indicates how closely the 

dimensions of a new cluster relate to those of the matching cluster.  CAV is also a measure of 

object identification and indicates how closely the dimensions of newly identified cluster and a 

matched cluster relate.  To calculate CAV we compute the average of the sum of the difference 

in area for each matching cluster pair. 

DPA 
DPA is used as a measure of accuracy for the identification of location changes.  To 

calculate DPA we generate a system of measurement.  We design a system to evaluate how 

frequently newly identified objects that match to a cached object are predicted as moving in the 

correct direction.  We evaluate the system on a 5-point scale, and because there are eight possible 

prediction directions we develop a prediction accuracy scoring system as follows.  An incorrect 

prediction receives a score of 0 while a correct prediction receives a score of 5.  Partially correct 

predictions such as N vs. NE or W vs. SW receives a score of 2.5. We define the predicted 

direction as the average weighted direction for each cluster over a given image.  The weighted 

direction value is an integer value calculated as the quotient of the number of points in a new 

cluster divided by the number of points in the matching cluster. 

Example: 

 Cluster  Match Rate Direction 

 1  50%  NE 

 2  25%  NW 
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 3  75%  SE 

 4  0%  ST 

 5  0%  ST (Note: ST indicates a Stationary Object) 

In the example, 5 clusters are identified and 3 are in motion.  Cluster 1 had a 50% match 

rate and a direction of NE, cluster 2 had a 25% match Rate and a direction of NW, and cluster 3 

have a 75% match rate and a direction of SE.  We assign directional values as follows: 

 Direction Weighted Values Value Sums 

 N  50, 25   75 

 E  50, 75   125 

 S  75   75 

 W  25   25 

We use the value sums for each direction to calculate the predicted direction of travel by 

taking the highest combinations of North South and East West directions.  When opposite 

directional values are present we use the absolute value of the difference of their value sums to 

choose.  In this case the values of N and S are equal to 75 so they are negated and do not include 

North or South in our predicted direction, the overall value of the East West combination is 125 

– 25 = 100 for the value sum of E.  So east is the predicted direction. 

 Interpreting Metrics 
Now that we have a set of metrics for analysis purposes we consider how to interpret the 

results relative to performance.  Following, we use the metrics to analyze the performance of the 

system.  We begin with CFMR and CVMR, for both metric higher values indicate better 

performance in object identification.  Lower CAV values are indicative of lower variance in the 

area of matched clusters indicating better performance. Because DPA value is an integral type 

over a 5-point scale, the average percentage would be computed by taking quotient of the 

average DPA divided by 5.  Higher DPA values indicate better performance in identifying 

location changes. 

Performance Analysis & Result Tables 
To analyze the performance of the system WOD, with NND, and with T50D we construct 

result tables for each test.  Result tables are constructed of values collected from the tracking 

tables we describe in section 5.1.  For each pair of consecutive images in the sequence of test 
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images, the result table contains a column for each of the defined metrics.  Additionally, the 

result table provides a column for the predicted direction and the actual direction so that we may 

better observe the behavior of the systems motion tracking predictions.  The overall values for 

CFMR, CVMR, DPA, and CAV for a given test are calculated as averages over all of the images 

in the set.  Next we consider the analysis process applied for each table. 

For each metric or column in a result table excluding DPA, we observe the minimum and 

maximum values for correlations to other metrics or image pairs.  DPA is excluded from 

maximum and minimum comparison because it is not a measure of object identification as the 

others.  We have not yet verified that either minimum or maximum DPA values are comparable 

to those of the remaining metrics.  Similarly, for each metric we identify patterns and duplicate 

values across result tables.  Such patters or duplicate entries could be indicative of performance 

issues, errors in algorithms, system flaws, or learned behavior. Finally, we search for trends in 

the averages for each metric. The systems performance WOD provides baseline measurements in 

each category with respect to our performance metrics.  Thus the following NND and T50D 

result table analysis indicates increases or decreases in performance when in comparison to the 

WOD table. 

Performance WOD 
Observing the CFMR values of this result table we first note that the minimum value 

occurs in the second image pair while the maximum value occurs in the sixth.  Neither the 

minimum or maximum values correspond to those remaining metrics, nor do we identify any 

visible patterns over the image pairs.  The maximum CVMR value occurs in the fifth image pair 

and corresponds to the maximum CAV value.  The minimum CVMR value occurs in the third 

image pair corresponding to the minimum CAV.  There appear to be no visible patterns in the 

change of CVMR over each pair of images.  DPA values do not appear to follow any 

recognizable patterns at this time; however predicted direction follows a counterclockwise 

pattern from one image pair to the next.   
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Table 3: WOD result table 

 
 

The average CFMR in the WOD result table indicates that 60% of the time we are able to 

map clusters from proceeding images to clusters identified in succeeding images.  Out of the 

60% of the matched clusters we are able to identify the 56% of the features composing the 

cluster as indicated by the average CVMR percentage.  Similarly, a DPA average of 2.14 or 43% 

indicates how often we predict the correct direction of travel among the 60% of clusters with a 

match.  The CAV average indicates nothing in the base performance evaluation WOD because 

we have nothing to compare it to.   

Performance NND 
Result tables for system performance with NND show that the minimum CFMR of 40% 

occurs in the second image pair and does not correspond to other metrics.  The maximum CFMR 

of 100% occurs in the seventh and last image set which corresponds to the maximum CVMR 

value of 97.14%; this could imply a relationship between the two metrics.  There is no 

correspondence of the minimum CVMR value of 42.38% is located in the fifth image pair.  

CVMR values do not follow any visible patterns.  The maximum CAV value is 618045.09 

occurs in the sixth image pair and the minimum CAV is 92590.31 occurs in the third image pair.  

CAV values appear not to conform to any patterns. 
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Table 4:  NND result table 

 
 

Average CFMR indicates that 72% of the time we were able to map clusters from 

proceeding images to clusters identified in succeeding images.  Out of the 72% of the matched 

clusters we were able to identify the 70% of the features composing the cluster as indicated by 

the average CVMR or overall match percentage.  Similarly, A DPA average of 3.21 or 64% 

indicates how often we predict the correct direction of travel among the 72% of matched clusters.  

We measure average CAV values measured in units of distance measurement and evaluate it in 

section 5.4 when we evaluate system performance over all metrics.     

 

 Performance T50D 
System performance with T50D table shows that the minimum CFMR of 25.0% occurs in 

the third image pair and corresponds to the max CVMR value of 100% (Note that CVMR is 

100% at the first and third image pairs) and minimum CAV of 363381.79 units.  The maximum 

CFMR of 100% occurs in the fourth image and does not correspond to other metrics.  There is no 

correspondence of the minimum CVMR value of 36.01% located in the fifth image pair.  CVMR 

values do not follow any visible patterns.  The maximum CAV value is 788386.28 occurs in the 

second image pair and does not correspond to any other metrics.  From the result table it appears 

that CAV values do not to conform to any patterns or trends. 
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Table 5: T50D result table 

 
 
Average CFMR indicates that 59% of the time we re able to map clusters from 

proceeding images to clusters identified in succeeding images.  Out of the 59% of the matched 

clusters we are able to identify the 68% of the features composing the cluster as indicated by the 

average CVMR.  Similarly, A DPA average of 2.85 or 68% indicates how often we predict the 

correct direction of travel among the 72% of matched clusters.  

Performance Averages & Observations 
In this section we analyze the results of each metrics average value over all three tests.  

Next we compare the findings of test with NND and T50D to test WOD.  To visually analyze the 

average performance of each metric over all 3 tests we have constructed an averages table.   

 

Table 6: The averages table 
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We construct Table 6: The averages table, by extracting the averages for each metric from the 

result tables.  The table shows the average CFMR, CVMR, and DPA as percentages for each test, 

and the average CAV in units.   

 

 
Figure 9: The CFMR graph 

 

From the averages table we see that the lowest CFMR value occurs in the test using 

T50D, and the highest occurs testing with NND.  The minimum value 59% matches the median 

value, which is also the baseline.  Test with NND show maximum value of 72%, a 13% 

performance improvement in CFMR when compared to test WOD and with T50D.  We observe 

that over all three tests, the maximum CFMR reaches 100%.  This indicates that when the same 

objects appear over a sequence of images the system is capable of generating a set of clusters 

that map to an existing set.  The minimum CFRM values for the test WOD and with NND both 

occur in the second image pair.  The improved performance with NND shows an increasing 

CFMR over time with the exception of image pair 2.  This could indicate that as more images are 

processed the system is able to recognize objects more frequently.  This is the expected behavior 

for a well performing system, but we cannot verify this without further testing. 
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Figure 10: The CVMR graph 

 

The averages table also indicates that using either form of outlier detection improves the 

system performance measured by CVMR 13% on average, and up to 14% in test using NND.  

The maximum CVMR indicates that test with NND perform best.  In Figure 10: The CVMR 

graph we see that the minimum CVMR occurs in the fifth image pair for both test with NND and 

T50D, while test WOD shows its highest CVMR at the same location.  This is indicative that 

between the set of images both outlier detection algorithms treated features of an obstructed 

object as outliers causing a less accurate match.  Further analysis of Img_5.JPG and Img_6.JPG 

of our test data confirms that the person in Img_5.JPG is obstructing the bulletin board that is 

later completely visible in Img_6.JPG. 
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Figure 11: The CAV graph 

 

In the averages table in Figure 5 shows the min CAV value occurs in test WOD and the 

max in test with T50D.  Recall that lower CAV values are indicative of better performance 

because we consider smaller clusters with more features more accurate.  In previous analysis we 

have seen that test with NND generate the best performance results yet fall in the middle for this 

metric.  In Figure 8 we see that the lowest CAV values for test with either form of outlier 

detection occur in the third image pair.  Further analysis of the IMG_3.JPG - IMG_4.JPG, 

tracking tables, and result tables indicate that the motion of objects between the set caused few 

obstructions so that new clusters have similar dimensions. 

Test WOD, generates the baseline DPA value of 43%, followed by T50D with 57% and 

test with NND at 64%.  This increase indicates that outlier detection improves system 

performance measured by DPA by 18% on average and up to 21%.  Further analysis of the 

predicted directions for test with DPA and T50D shows that NND predicts fully accurate 

direction more frequently than T50D, which predicts partial directions more frequently.  Both 

algorithms fail to even partially identify the direction of travel correctly over one image pair in 

the set.  In test with NND the worst DPA value corresponds to the largest CAV in image pair 6, 

and in test with T50D the worst DPA value corresponds to the lowest CVMR in image pair 5.  In 

both cases the actual direction of travel was SW, a combined direction and the predicted values 
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were single directional values.  This is indicative that poor performance in CAV or CVMR can 

affect DPA. 

After analyzing each metric individually we can see that increases in object identification 

performance indicated by CFMR and CVMR lead to increases in location change identification 

performance measured by DPA.  Furthermore, tests using outlier detection perform better over 

all four metrics than the system WOD.  Although there does not appear to be a direct correlation 

between CFMR and CVMR, it is clear that outlier detection increases the performance of the 

later.  Testing with NND performs the best over all 4 metrics, and in the category of CFMR 

improves as more image pairs are evaluated.   
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CHAPTER 6 - Summary & Conclusions, Applications, and Future 

Work 

In summary of our study, we first specify the type of features that we want to cluster.  We 

choose SIFT features because they are scale invariant, and somewhat immune to the problems 

relating to object identification.  Then, we identify a method to cluster the SIFT features using K-

Means, and define the modifications that we must make in order for it work.  We also design and 

implement an application to demonstrate the system that allows us to track motion using SIFT 

feature point clusters over a sequence of images.  Next, we devise a real world scenario and 

experiment in which we test the system, and finally identify a set of metrics to evaluate the 

performance of the system. 

We conclude that it is possible to identify 3D objects from 2D images using clusters of 

SIFT features.  Also, we believe that it is possible to track the motion of objects using clusters of 

SIFT features as objects.  Our best-case results indicate that we are able to identify a 3D object 

from 2D images 71.86% of the time, and of the objects we identify we are able to track their 

direction 64% of the time.  With some improvements (to be discussed in future work) and further 

analysis, it may be possible to identify objects more accurately and improve motion tracking and 

direction prediction accuracy rates.  

Applications 
Motion tracking using SIFT features can be useful in many applications of computer 

vision.  In the introduction we state that in Robot vision, path planning, obstacle avoidance, and 

traffic pattern identification relate to the task of motion tracking using SIFT feature clusters.  In 

this section we consider how to apply this design to each of those tasks.  As a result of 

identifying and tracking the motion of objects, we obtain information that proves valuable for 

path planning.  When a mobile robotic agent navigates through a location it usually plans a path 

in advance.  Some path planners such as Wavefront depend on sonar sensing or laser detection to 

find a route to the destination avoiding obstacles by generating a map and dividing it into a grid.  

This method assigns probabilistic values to each cell in order to plan.  Using a system such as 
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Wavefront in conjunction with a predictive motion-tracking algorithm such as the one we define 

in this thesis, it may be possible to improve path-planning performance. 

Obstacle avoidance is a task in which a mobile robotic agent avoids colliding with 

obstacles.  A key task in being able to avoid obstacles is to first identify them which is what we 

do by generating SIFT cluster features.  When the agent identifies an obstacle it must decide 

what actions to take in order to avoid colliding with it.  Often that task is as simple as speeding 

up, slowing down, or stopping.  By identifying the obstacle using SIFT feature clusters and 

tracking its motion (if any), it is possible that we can improve on actions taken in order to avoid 

obstacles. 

We can identify traffic patterns by tracking the motion of multiple moving objects, which 

is useful because we can then determine the direction of travel for multiple obstacles at once.  If 

we are able to determine a similar path of travel for multiple obstacles, then we can identify 

traffic patterns.  Identifying traffic patterns allows us to make additional decisions when 

implementing path-planning algorithms; more specifically we can plan our path based on 

common traffic flows.  This has potential to reduce the amount of resources used to re-plan each 

time we identify an obstacle. It is also possible that using a system similar to ours with some 

modification, to identify traffic patterns from 2D images only 

Future Work 
In future work we consider improvements in the following areas in order to achieve better 

system performance: outlier detection, SIFT, and testing.  We first consider an improved outlier 

detection algorithm. Calculating the average nearest neighbor distance and removing percentage 

p from our initial SIFT feature set may lead to performance gains.  Thus type of outlier detection 

is a hybrid combination of the two types we implement in the current system.  T50D removes 

half of the features in the set that may be relatively close in proximity to the other features but be 

very far away from the others.  This indicates that the algorithm is likely to remove 

corresponding features as well.  Alternatively some points may fall within the average because 

the extreme distances of outliers bring it down so that we may not remove enough features. 

A preliminary task in robot navigation and obstacle avoidance applications that use SIFT 

features is the calibration of filters that find relevant objects from which to calculate those 

features. Calibrating the filters involves finding acceptance levels for step size, initial sigma, 
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descriptor size, feature descriptor orientation, and the minimum and maximum scale octaves.  An 

implementation of SIFT that performs on color images may allow us to identify features faster 

and more accurately using color information in order to identify obstructions.  Before deciding to 

use such an implementation of SIFT we must identify whether or not there are tradeoffs in 

performance by processing color images. In general a more in depth analysis of the minimal 

image quality and size necessary to obtain accurate results from any SIFT implementation may 

be help achieves better performances. 

Testing over larger image sets and in different environments may allow us to better 

evaluate the performance of the system and perhaps identify more metrics.  It is possible that 

system may perform better or worse under some conditions as we conduct the proceeding 

experiment using a high level of control to minimize invariance.  Also, our experiment tests the 

systems behavior when there is only one moving object in the images, although the agent taking 

the images is also in motion.  We suggest testing the system using objects of various sizes and 

shapes and in varying quantities in order to obtain a better understanding of how to improve the 

system’s performance.   
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