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NOMENCLATURE

Symbols

A cross sectional area

E modulus of elasticity

G shear modulus

I moment of inertia

L length

M moment

Q resultant force

P applied load

v shear

2a length of the opening

f stress
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k kip

m moment due to unilt load

t thickness

v shear due to unit load

X longitudinal distance from the center line of the opening
¥ transverse distance from centrodial axis to any fiber
8 deflection

o normal stress

T shearing stress

(UG)S shearing strain per unit volume
u, total shearing strain

(Uo)b bending straln per unit volume
Ub total bending strain

vii



NOMENCLATURE. (Continued)
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Abbreviations
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INTRODUCTION

During recent years, architects and engineers have more frequently
been specifying that openings be provided in the webs of beams and girders.
These openings accommodate the passage of utility components, thereby mini-
mizing the story height and coﬁsequently the cost of the bulldings. The
openings cut in the web may be concentric or eccentric with respect to mid-
depth of the structural steel members. The position of the opening depends
upon the level of the utilities components and the level of the beam or
girder. When the practice of cutting openings in the web first started, little
information was available regarding the effect of the opening on the strength
of the members. In the past few years considerable effort has been made by
the steel industry, university investigators and ASCE to develop theoretical
and experimental information on steel beams with web openings.

Most of the previous investigations (3,5,6,12) have been restricted to
reinforced and unreinforced concentric web openings and a suggested design
guide (16) is available for this case. However, until recently little
attention had been paid to openings which are eccentric with respect to mid-
depth of the beam. Some work has been done on eccentric circular web openings
(4) and a design guide (13) has been published. Papers (1,2,8,9,11) have been
published on the strength of beams with eccentriec rectangular web openings.
The papers (2,8,9) take into consideration only the unreinforced web openingsy
whereas (1,11) deal with both the reinforced and the unreinforced cases.

This Investigation deals with the stress analysis and deflections of
beams with eccentric, rectangular, unreiﬁforced and reinforced web openings.
Although plastic design methods may be preferred because of their rationality

and because their application to rectangular holes have been explored



extensively (3,6,9,15,17), the allowable stress approach may be necessary in
some cases. In particular, openings in non-compact sections require elastic
analysis. In this report attention is restricted to determining the elastic
stresses and the deflections, and it is assumed that buckling does not occur.

The Vierendeel method of analysis is perhaps the most popular theoretical
method used to compute the normal stresses in the vicinity of the opening.
This analysis was originally developed for rigid trusses with posts normal to
the main longitudinal chords of the truss. The_Vierendeel analysils estimates
the normal stress at the opening as a summation of the primary bending stress
and the secondary bending stress (Vierendeel stress). The primarylbending
stress is due to the bending moment at the centerline of the opening, while
the secondary bending stresses are due to the shearing forces carried by the
sections above and below the opening. This method has its limitaticns, first
it can only be applied to rectangular web openings, and second it does not
account for the stress concentration at the corners of the openings. Cooper
and Snell (5) performed sixteen elastic tests on beams with reinforced con-
centric rectangular web openings and obtained good agreement with the results
predicted by the Vierendeel method of amalysis. For its application to beams
with eccentric rectangular web openings, it is necessary to know the shear
distribution ratio VT/VB, i.e., the ratio between the shearing force carried
by the section above the opening (VT) to that carried by the section below
the opening (VB). Four recent papers have presented methods to determine
this shear distribution ratio VT/VB.

Frost (9) conducted tests on four A36 steel W16 x 40 beams having rec-

tangular openings at different eccentricities and moment shear ratios. No



consistent value of the shear force distributlen ratio VT/VB could be
obtained, although considerable data was recorded during the tests.

Bower (2) useq data based on experimental tests conducted by Frost (10)
to compare five different analytical methods for determining the shear force
distribution ratio VT/VB at unreinforced eccentric openings. Bower concluded
that the best shear force ratio was that determined by equating the shear
deformation in the sections above and below the opening when the shear
coefficlents of Cowper (7) are used.

Brice-Nash and Snell (1) used finite element computer programs to deter-—
mine the shear force above and below the opening for both the unreinforced
and the reinforced cases. During these investigations the moment-shear ratios
and the eccentricity of the opening were varied to determine the effect on
the shear force distribution ratio VT/VB. Six theoretical methods of cal~
culating the shear force distribution were compared with the results of the
finite element investigation. None of these methods gave results which were
entirely consistent with the finite element results, however, the method
preferred by Bower (2}, discussed above, did seem to give the best agreement.

Douglas and Gambrell (8) developed a design procedure for beams with
unreinforced eccentric web openings based on the interaction curves which
were derived using the Vierendeel method of elastic stress analysis and von
Mises yield theory. By treating the sections above and below the opening as
fixed-end beams they determined an equation for shear ratio VT/VB. This
equation is almost the same as that used by Frost (9), which was based on
relative stiffness of the two sections, except that Douglas and Gambrell used

the shear coefficient of Cowper (7) to determine the shear deflection.



The main objective of the elastic tests was to determine experimentally
the shear distribution ratio VT/VB and the effect the opening reinforcing
had on this ratio. The elastic tests in this report deal with W16 x 40 and
W16 x 45 steel beamﬁ. McNew (11) conducted both elastic and ultimate load
tests on the Wl x 45 steel begms. The beams had 9" x 6'" rectangular openings
with an eccentricity of 2 inches above the mid-depth, but differed in the
amount of reinforcing. Beam 1 was unreinforced, whereas thg opening in
Beam 2 was reinforced with 0.5 sq. in. reinforc%ng bars. In this report
the experimental‘and finite element elastic test results of Beams 1 and 2
are revised and presented along with the results of the present inﬁestiga-
tion on W16 x 40 steel beams.

Elastic tests were conducted on steel beams having four different
opening configurations, which were named as Beams 3, 4, 5 and 5a. All four
beams had eccentrically positioned rectangular web openings of the same size,
but differed in the amount of reinforcing or eccentricity of the opening.

The beams were each subjected to elastic tests at three different moment

shear ratios, hence in all data was taken for twelve elastic tests. During

the elastic tests, both deflection and strain data were recorded. Deflec-
tions were measured at three sections, namely at the edges of the openings

and at the mid-span of the beam. Exﬁerimeutal results of mid-span deflec-
tions and relative deflections aéross the opening have been compared with

those predicted by theory and were found to be in good agreement. Longitudinal
linear strains were measured at sections four and one half inches either

side of the vertical centerline of the opening. The cross—sectional stresses

were determined from these strains and were used to evaluate the shear force



carried by the sections above and below the opening. This experimental value
of shear distribution VT/VB was used as Input data for Vierendeel analysis in
estimating the stresses in the vicinity of the opening.

Theoretical in#estigation included the determination of the shear
Qistribution ratio VT/VB by finite element analysis. The finite element
analysis is an elastic-plastic computer program. Only the elastic portion
of the program was used. For Beams 1 and 2 finite element runs were made
for four moment-shear ratios and for Beams é, 4, and 5 runs were made for
three moment-shear ratios resulting in a total of seventeen finite element
computer runs. No finite element computer run was made for Beam 5#. In the
finite element analysis, the shear distribution was calculated by numerically
integrating the normal as well as the shearing stress curves. The normal
stresses were compared with those obtained by Vierendeel analysis and
experimental tests and good agreement was obtained. The shear distribution
ratio VT/VB obtained experimentally compared reasonably well with the results
predicted by the finite element analysis. Results from several analytical
methods for predicting the shear force distributions have been compared with
the results predicted by finite element and those obtained experimentally.

Equations for predicting the mid-span deflection and relative deflection
across the opening have been developed and presented in this report. The
theoretically predicted deflecti§ns compare reasonably well with experimental

results.



EXPERIMENTAL PROGRAM

Introduction

The elastic tests were conducted on a single 14 ft. — 6 in. length of
Wlé x 40 steel beam, The four different opening configurations which were
studied were referred to as Beam 3, 4, 5 and 5a. All the tests utilized the
same web opening but variations were made in thé amount of reinforcing for
Beams 3, 4, and 5 and in the position of the opening for Beam 5a. The beams
were simply supported and were subjected to a single concentrated load at
mid-span. By varying the span each beam was tested at three different
moment to shear ratios (M/V = 20, 40, 60 inches). Hence in all, strain and

deflection data was taken for twelve elastie tests.

Web Opening

To minimize the effect of the concentrated load the vertical centerline
of the opening was located at 25 inches from the mid-span of the beam. The
opening was a 12 inch long by 6 inch deep rectangle with 17/32 inch radius
corner fillets. It was located at an eccentricity of 2 inches, with respect
to the mid-depth of the beam. The centerline of the opening was above mid-
depth for Beams 3, 4 and 5 and below for Beam 5a. The web opening was cut
by first drilling 17/16 inch diameter holes at all the four cormers of the
opening and then flame cutting between the holes. Except where strain
gages were placed the irregularities in the edges of the openings were left

in order to make the specimen more representative of commercial fabrication.

Reinforcement

To be able to analyze the effect of adding reinforeing around the opening

the unreinforced beam was first tested elastically and was named Beam 3.



Beam 4 was fabricated by adding 1/2 sq. in. of reinforcement above and below

the opening on only one side of the web. Beam 5 was obtained from Beam 4 by

adding the same amount of reinforecing to the other side of the web. Beam 5a

is Beam 5 inverted, so that the opening 1s eccentric below the mid-depth of

the beam. The reinforcing for Beam 4, 5 and 5a consisted of steel bars of

rectangular cross sections running parallel to the beam flanges and welded

to the beam with 3/16 inch fillet welds. Reinforcing bars were made from

1/4 inch thick by 2 inch wide bar stock and were 18 inches long so that they

extended 3 inches on either side of the opening. This size of the reinforcing

bar was used to minimize the possibility of local buckling according to the

ATISC Specifications for width-to-thickness (18). The bars were placed 1/4
inch ffom the top and the bottom edges of the opening. The welds ran the

full length of the bar on the sides nearest the opening and lapped back

1-1/2 inches on the other sides at the ends. The details of the reinforcement

are shown in Fig. 7. No bearing stiffeners were used during the elastic

tests.

The cross-sectional dimensions of the beams were measured at sections
1-1/2 inches away from the edges of opening, i.e., at the low and high
moment sections. These sections were chosen for measuring the dimension
because experimentél strain data was to be recorded at these sections.
Figure 6 shows the sections where the dimensions were measured. These
cross—sectional dimensions were used in the Vierendeel analysis, in the
numerical integration program (experimental) and to find the theoretical
mid-span deflection and the relative deflection across the opening. Slight
varlations exist between the measured dimensions and those found in the
AISC manual for W16 x 40. The width of the flange was found to vary quite

a bit along the length of the beam, but the average value was within 0.4%



of the nominal value in the manual. The web of the test beam was found to

be 8.08% thicker than the nominal dimension. The thickness of the flange
was 5.5% thinner than the nominal. The average values of the cross-sectional
dimensions measured at the low and high moment sections are presented in
Table 1.

Tensile specimens (Coupon;) were cut from each beam and from the re-
inforcing bar stock. The Coupons fo; the tensile tests were taken from a
one foot length cut from one end of each beam, two from‘therwab, and two
from each flange; As the reinforcing bars were.cut from the same length of
bar stock, two one foot lengths were cut from the same piece for the tensile
tests. Figure 8 shows the locations from which the Coupons were taken and
their dimensions. The tension tests were conducted on a Riehle screw type,
20,000 pound universal testing machine, using a 2 inch extensometer and an
automatic load-elongation recorder., The tests results are presented in
Table 2 and consist of the static yield point Gy (yield point corresponding
to zero strain rate), the temsile strength CA the percent elongation in 2

inch and the percent reduction in area.

Instrumentation

Two types of instrumentation were used during the elastic test program.
The purpose of the first type was to measure the strain which was accomplished
by the use of 1/4 inch gage length, epoxy backed, foill type electrical resistant
strain gages. These were Micro Measurement NO EA-06-250BG-120. Strain
gages were orlented parallel to the longitudinal axis of the test beam and
were used on the flanges, web and reinforcing bars at the low and high
moment sections, which were 9 inches apart. In all 42, 58, 76, and 76

strain gages were used on Beams 3, 4, 5 and 5a, respectively. The locatlon



of the strain gages on Beams 3, 4, and 5 are shown in Figs. 9, 10, and 11,
As Beam 5a was obtained by inverting Beam 5, there was no change in the strain
gage locations for Beam 5a.

The purpose of the second type of instrumentation was to measure the
vertical deflections. This was achieved by using mechanical dial gages
having dial divisions of one-thousandth of an inch and a maximum deflection
of 2 inches. During the elastic test on the beams, vertical deflections
were recorded at three sections, the low moment edge (LME), the high moment
edge (HME) and at the mid-span of the beam. The dial gages were supported
by a 4 inch steel channel. In order to eliminate the necessity of correcting
the deflection readings due to the settlement of the support arms of the
machine, the channel and the beam were supported on the same support pedestals,

The location of the dial gages are shown in Fig. 7.

Test Procedure

The elastic tests on the beams were conducted in a 200,000 1b capacity,
Tinius-Olsen screw type testing machine, with a lever-type load measuring
system. The machine is equipped with centilever arms for holding the pedestal
supports for the beams, and is well suited for testing the beams at different
moment shear ratios, since the pedestals can be moved with ease. The pedestals
had rounded top and bottom surfaces, thus permitting the rotation of the beam
and rocking of the pedestal as the load was applied. During the loading a
3" x 7" x 1" bearing plate was placed on top of the beam at the load point.
The beam was loaded with a 10 kips load before the straln gages and the
dial gages were "zeroed." The 10 kips load was applied in order to make
sure that the beam was seated properly on the pedestal supports before

recording any data. By '"zeroing" the instruments at the 10 kips load, the
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nonlinearity in the strain and deflection data, which was found to occur
while seating the beam, was avolded. Before recording any data at each
moment-shear ratio the beams were loaded and unloaded three or four times
to allow the gage backing and adhesive to adjust. The load was applied in
two equal increments of 15 kips each, up to a maximum load of 40 kips. The
same load increments were used during the unloading, ending the test with
10 kips load. The proper functioning of the instruments was checked by

comparing the data recorded during loading and unloading cycles.
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THEORETICAL METHODS

Finite Element Analysis

The finite element analysis 1s an approximate method for obtaining
solutions to the problems in mechanics. Due to the complexities cf the
matrices involved, it 1s only pfactical to obtain solutions with the
help of computers. The computer program (14) used in this investigation was
a two—dimensional elastic-plastic progrdm developed jointly by the
Illinois Institute of Technology Research Institute and the Air Force Flight
Dynamics Laboratory. Since elastic conditions were under consideration,
only the elastic portion of the program was used.

For the application of this method, the beam is idealized by dividing it
into small triangles and bars called elements. The accuracy of the solution
depends upon the size of the elements, and in general, the smaller the
elements the better the accuracy. Since the time to obtain a solution
depends upon the number of elements, the tests beams were divided in such
a fashion that the elements were comparatively bigger at sections away from
the opening but in the vicinity of the opening (area of prime interest) the
elements were made smaller for better accuracy. Constant strain triangles
and bar elements were used to represent the beams. The complete structure
is obtained by connecting these elements at points called nodes. Triangular
elements are connected at the corners and the bar elements are connected
at the ends. TFinite element discretization of Beam 5 1s shown in Fig. la
and 1b, as a typical example. Beam 4 was idealized in the same manner and
Beam 3 was the same except there were no'reinforcing bar elements immediately

above and below the opening.
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In order to apply the two-dimensional finite element program to a three
dimensional structure, certain modifications had to be made. The actual
flanges and web reinforcing were replaced by equivalent bar elements. Thess
bar elements run bétween nodes along the path of actual flange and web
reinforcement. The bar elemen?s do not have thickness, hence in determining
the equivalent flange area either the flange area or the moment of inertia
of the beam could be maintained. To maintain the bending stiffness of the
beam the equivalent flange area was determined so that the moment of inertia
remained constant,

A coordinate system for the entire beam was set up, with the origin at
the left end of the bottom flange. Thus each triangular element could be
specified by the X and Y coordinates of its nodes, ahd the thickness of the
elements. In the case of bar elements, the cross-sectional area was speci-
fied, instead of thickness. Since each of the bar or triangular elements
has to satisfy equilibrium, the force vector can be equated to the product
of the stiffness matrix and the displacement.matrix. The displacement of
each node is determined, and then used to obtain element strains and stresses.
A more detalled description of the method of application of the finite
element method is given in Ref. (1).

Finite element computer runs were made for Beams 1, 2, 3, 4 and 5. TFor
Beams 1 and 2 four moment shear ratios were tested and for the remaining
beams three moment-shear ratios were Investigated. No finite element com-—
puter run was made for Beam 5a. 1In all, seventeen finite element models
were Investigated. Figure 2a shows the position of a vertical section of

elements at the low moment section (IMS) of Beam 3, when M/V = 20 inches.
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Fig. 2a Element discretization for
M/V = 20" at X = 15.50"
(1MS), Beam 3 (unreinforced)

Fig. 2b Element discretization for
M/V = 20" at X = 15,50"
(LMS), Beam 4 (reinforced)
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Since Beam 3 is unreinforced, the only bar elements are numbers 162 and 183,
which represeut‘tﬁe beam flanges. For the reinforced beams the only change
in the idealized section is the addition of the reinforcing bar elements.
These bar elements have the same location and cross-sectional area as the
actual reinforcing and are shown by element number 541 and 556 in Fig. 2b.
The strains obtained for this set of elements and for a similar set at the
high moment section (HMS) were used to determine the amount of shearing
force distributed to the top section (VT) and the bottom seétion (VB) at
the web opening.

The vertical centerline of these elements is at X = 15.50 in. which is
the section to be investigated. The actual size of the opening is 12 in. x
6 in. for Beams 3, 4, and 5, but to stay away from the effect of stress
concentrations at the corner, the section selected for the invéstigation was
chosen to be 1.50 in. away from the edge of the opening. The centroid of
each of the triangular elements is the pqint where stress i1s determined.
For example the stress in elements 163 and 164 are combined and averaged to
obtain the stress which acts halfway between the centroids of the elements
163 and 164, which falls at coordinates X = 15,50" and Y = 0.75".

By averaging the stresses between the adjacent elements, ten stress
points at X = 15.50" (LMS) were obtained. The curves of normal stresses
were plotted and a numerical integration program was used to obtain the
shear force distribution VT/VB. This program was also used for numerical

integration of the experimental data to obtain the experimental VT/VB.

Numerical Integratilon Program

The numerical integration computer program divides the normal stress

curves into small areas and calculates the force (Qi) acting on each of



these swall areas. The summation of all these forces give the resultant
force (Q) acting on the section. The same procedure is repeated for zall
four sections; ﬁamely top and bottow at low and high mcment sections.

Figure 3 shows the resultont forces and their locations on all the four

sections,

‘ [ of opening

Fig;‘3. Equilibrium of tee sections.

In the computer program the shear force above the opening (VT) is

determined by writing the moment equilibrium equation ahout point 0, giving

Vok2a) = 0¥, = QY ~Emm s wmm - w (1)
LLuhtey o
T 2a
where VT =2 shear in the section above the opening
Q1 v resultant force actlupg on the top low moment section

Qz = regultant force acting on the top nigh moment section

o
]

1 distance from the top to the point where the resultant force

Ql nctyg

17
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Y2 = distance from the top to the point where the resultant force
Q2 acts.

The expression Q times Y can be replaced by moments, hence

Q.,Y, - Q,Y
3°3 474
VB = 5e " T T T - -=-mT-o- (4)
M, - M
= _——_3 4 ------------
Vg = T (5

The total shear force acting on the section 1s the summation of the shear in
the section above the opening (VT) and the shear below the opening (VB).

Hence the total shear at the sectlon is given by

A more detailed description of the method is given in Ref. (11).

The shear force distribution VT/VB was also determined from the shear
stress distribution curves. Thé area under the curve above the opening
multiplied by the thickness of the element gives the shear force above the
opening, and the area under the shearing stress curve below the opening
multiplied by the thickness of the element.gives the shear force below the

opening.

Vierendeel Method of Analysis

This analysis was originally developed for rigid concrete trusses with
posts normal to main longitudinal chords of the truss., It was later used
for rigid steel trusses of the same nature. This approximate elastic analysis,

when applied to beams with rectangular web opening, predicts qulte accurately



the stresses in the vicinity of the opuning.
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For its applicatisa to becams

with web openings, the following assumptions have to be made:

(1)

(11)

(111)

The beam section above and below the opening are fixed at thelr

ends.

Points of inflection occur in the sections at the vertical center-

- ne of the opening.

The amount of shearing force distributed to the sections above and

below the opening must be assumed,

Figure 4 shows the portion of the beam betweer the reaction and the

centerline of the opening.

Sinece this portion is in equilibrium, the internal

bending moment is equal to the reaction V times the distance Lo’ and the

internal shear VT and VB add up to reaction force V.

-

-xo<——|—=) ‘I'Xo

T

of opening

T ] N.A.of Top Section
L h_g___l
VT M:"VLQ
- - 1 __N N.A_of Net Scctign
Y
. N.A. of _Bottom Section

M v
Yo Ve

< —>
L~

Fig. 4.

Free body diagran.

According to Fig. 4 the general ecquatiorn for the combined stress at any

point in the top or bettom sectlon is given as the summatlon of the primary
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bending stress and the secondary stress (Vierendeel stress). The combined
stress for the top section may be expressed as

MY a L]
fTIN-i-vT};OYT——- ———————— (7
N T

and for the bottom section

vhere M = primary bending moment at the centerline of the opening and
is equal to V times LO‘
Y,, = distance from neutral axis of the net beam section to any

fiber, and 1s measured positive down.

IN = moment of inertia of the net section,

VT' VB = ghear iIn the top and bottom sectiog, respectively.

Xo = distance from the centerline of the opening and measured
positive, towards the right.

YT’ YB = distance from the neutral axes of top and bottom sections,
respectively, to any fibre in the section and are measured
positive down.

IT’ IB = moments of inertia of the top and bottom sections.

As is obvious from the above equations, for the application of Vierendeel
analysis; the shear distribution ratio VT/VB should be known. In the case
of beams with concentric web openings, the value of VT/VB is one, and hence the
Vierendeel analysis can be applied directly. But in the case of beams with
eccentric web opening, the shear distribution ratio VT/VB must be obtained
from experimental investigation; or from finite element analysis, then used
as input data for obtaining stresses around the opening. The Vierendeel

method of analysis is restricted to rectangular web openings and does not



account for the stress concentration around the corners of the opening. A

detailed description of the method is given in Ref. (11).

Equilibrium Check

According to Egs. (7) and (8), the normal stress at the centerline of

the opening may be writtenm as °

where fx = normal stress

M, Y

N’ and I

N are the same as in Eqs. (7) and (8).

The normal stress fx may be integrated over the total area of the top tee

section to give the resultant axial force (Q) acting on the section.

Hence Q= f +dA = L9 Y *dA = = = = = = = = (10)
AT x IN AT N
Q=t-A F mmememaaa- (11)
wE I, °T 'NT
. N
where AT = area of the top tee section
?NT = distance from the centroid of the net beam section to the

centroid of the top tee sectiom.

The resultant axial force (Q) only varies with the moment M at the
vertical centerline of the opening. Hence for a given load P the above
equation may be written as

Q=CH == === == - - - (12)

where C = constant, which depends upon AT’ IN and ¥ {gection properties).

NT

To satisfy equilibrium, the resultant axial forces at all four sections, see

Fig. 3, must be equal. Hence, the evaluation of Q for one section is all

that is required.

21
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DEFLECTIONS

Mid-span Deflections

During the elastic tests on the beams, mid-span deflections were recorded
along with the deflections at the low moment edge (LME) and the high moment
edge (HME). The mid-span defléctions may be theoretically predicted using
Castigliano's theorem on deflections. If the effect of the opening, the
opening reinforcement, and the'céver piates are neglected. The mid-
span deflection of a simply supported beam with load P at the center may be

written as

PL3 _PL

YpTRET TEAE T T T T T T (13
where P = point load at the mid-span of the beam

L = span length of the beam.

E = Young's modulus of elasticity (E = 29,600 ksi)

I = moment of inertia of the gross beam sectiom.

AW = area of the web.

G = shear modulus (G = 11,500 ksi)
The first term In the above equation represents the deflection due to the
moments, the second term shows the deflection due to the shear. The shear
correction factor (k) which is normally applied to shear deflection has been
taken as A/AW.

If the flange cover plates are taken iInto account, the above

equation takes the form

T
P 3 3|°R ] P |
 TRES . R 'L 4 _,.L - ! -
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vhere . LR = Jength of the cover plates.
IR = moment of ilnertla with flange plates added.
&WR = web area found by taking the beam depth including the thickness
of the cover plates time the web thickness.

The above two equations were used by McNew (11) for predicting the mid-span

deflections for Beams 1 and 2.

Xe
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— -.—--1-—._—--\
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e = = -
m
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If the effect of the web opening and the opening reinforcement are taken

into account and the flange reinforcement is present the mid-span deflection

may be written as

2
3 pLa 3 (2a)
p {3, .3 3..1 (L2 .3 0 2a oy
y s XD 42X - X +2._...[_.._._ ] = [ £ ]
p, " 1zET| %3 T T % T, 8 " o) TErg Y Vr (3T, T A

kP kP 1L
+ae K T 2Xp - X)) 4 e G e mme e mume - (15)
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where kT’ k, and kR are the shear deflection coefficients for the top tee
secilon, the gross section and the flange reinforced gross section, respec-
tively. The other dimensions used in the above equation are shown in Fig. 5

and the derivation of Eq. (15) is presented in Appendix A.

Relative Deflection Across the Opening

In an attempt to better understand the behavior of beams at web openings,
deflections were measured at the high and low moment edges at the center of
the bottom flange. Mechanical dial gages with the smallest division of
one-thousandth inch were used., More accurate gages could have been used

to an advantage since for the lower loads and M/V ratios the opening deflec-

o

tions were but a few thousandths of an_inchf

Castigliano's theorem on deflections (strain energy principle of virtual
forces) was used to derive the equations for the deflection across the opening.
For a detailed explanation of the derivation see Appendix A. Because of the
reduced area of the opening cross-section, shear deformation becomes important.
If we assume that shearing stress 1s proportional to shearing strain the

shear strain energy per unit volume may be written as
(L) = 2220 S = = o e e (16)
o's
where T is the shearing stress and G is the shearing modulus.
By assuming that the basic strength of materials equation fof the transverse
shearing stress is sufficlently accurate we can write the total shear strain
energy as

2AG

L 2
US = I kv dE e e e e (17)
[¢]
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where A 1s the cross section area and k is the shear deflection coefficient.
The derivation of the shear deflection coefficient k for the shapes involved
in this report are given in Appendix B.

Assuming that normal stress is proportional to normal strain, the strain

energy of bending per unit volume may be written as

where o is the normal stress and E is the modulus of elasticity. When the
normal stress is given by the flexure formula, ¢ = MY/I, the total strain

energy of bending becomes

U

B 2
b=Jde ------------ (19)

5 2EI
where M 1s the moment at x and I is the centroldal moment of inertia.

The bending moments and shearing forces in regions other than at the
opening are well defined and the strain energy may be determined using Egs.
(17) and (19). The normal stresses at the opening are obtained by assuming
that the Vierendeel method of analysis, as explained in Ref. (11), is
correct. The strain energy is then determined by substituting the equations
for normal stress into Eq. (18) and integrating over the volume. In order
to apply this method it is necessary to know the amount of the shearing
force carried above and below the opening. Although there are a number of
theoretical methods for determining this ratio, the method based on the
Vierendeel assumptions seems to give the best results. This procedure
assumes that the sections above and below the opening behave as fixed end

beams with center inflection points which must deflect equally. Applying



Castigliano's Theorem to the strain energy derived using these assumptions

results in the following equation for the relative opening deflection:

x3 - 3 x2 L 2
2pa | *c " *B  *c | %o? L kaE , L
Y F-3 — o + T - (_... — L ) + ity + B et
BC E 61L 41 INL 2 0 ALG 161R
x2 3 kT(za)
0 1 2 a 2a
= (1l - =) + V (= + )(1___) ..__.(20)
41 IR T3 EIT ATG L

where P is the applied load, the subscript T refers to top section, and I,

I, and I

N are the centroidal moments of inertia of the gross beam, the net

R
section at the opening and of the flange reinforced beam.
The equations for the theoretical relative deflection across the openiung

and the mid-span deflection were programmed for a digital computer. In the

deflection calculations, the modulus elasticity was taken as 29,600 ksi.
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ANALYTICAL METHODS FOR CALCULATING SHEAR DISTRIBUTION RATIO VT/VB'

For concentric web openings in steel beams, the shear forece at the
opening is equally distributed between the upper and lower tee sections,
hence the shear distribution ratio VT/VB is 1;0. An eccentric opening in
the web creates a section as sﬂown in Fig. 6. The unequal tee sections
cause unequal shearing forces to be distributed to the web sections above
and below the opening. Several methods of calculating uneqﬁal shear force
distribution ratios VT/VB were presented by Bowér (2). One method assumes
that shear forces are proportional to the bending stiffnesses of the tees.
Two other methods considered VT/VB as an exclusive function of the beam web
instead of the tee sections, and another method takes into account the
effect of the beam flanges in altering the shear stress distribution in a
normal wide flange beam, In another method Bower equated the shear deflec-
tion of the upper and the low sections, but he did not consider shear and
bending deflections at the same time, hence the length of the opening did
not enter the calculations. His theoretical ratios were compared with the
experimental results obtained from four W16 x 40 steel beams having a
12.80" x 6.50"™ rectangular opening with one and two inch eccentricities.
Brice-Nash (1) summarized the methods of Bower in his report and compared
the ratio of VT/VB that he obtained by the finite element method to Bower's
theoretical methods. Brice-Nash applied the finite element method to six
W16 x 40 steel beams. All beams had the same size opening (12,.80" x 6.50")
but the openings were reinforced on three of the beams and the opening
eccentricities varied from one to three inches. Brice-Nash concluded that
the ratio VT/VB predicted by equating the shear deflections of the two
sectlons, when the shear shape factors of Cowper (7) were used, gave good

agreement with the results of the finite element analysis. Brice~Nash extended
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the work of Cowper to include the unsymmetrical "I" sections, which were used
to obtain the shear coefficients for the reinforced tee sections.

Five different methods for calculating the unequal shear force distri-
bution in the case of eécentric rectangular web openings are presented here,
and the results obtained by applying them to particular problems are compared
with finite element and experimental results. Three of these methods are
quite similar and differ only in the shear deflection coefficient used. These
methods consider both shear deflection and bending deflection and are derived
by equating the deflections of the two sections. The shear distribution

ratio VT/VB in a general form may be written

2%
A

Vo 31.E/G BLNIE ~ By
7 " (1)
B a
3I E/G AT
where a = one-half the opening width

A = cross-sectional area
I = moment of inertia
k = shear deflection coefficient
E = modulus of elasticity
G = shear modulus
T = subscript referring to top section
B = subscript referring to bottom section
Method 1 uses a shear deflection coefficient k based on strain energy.
The derivation of the coefficlent is presented in Appendix B.
Method 2 was presented by Frost (9) and suggests using a constant value

of 1.20 for the shear deflection coefficient k.
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In Method 3, whose derivatior i3 presented in Douglas and Gambrell (8),
the coefficient k is replaced by 1/R, where R is the shear shape factor of
Cowper (7). Cowper's coefficient R is derived on the basis of theory of
elasticity.

The two other methods considered are derived by equating the shear
deflection in the sections above and below the opening. Method 4 uses the

shear deflection coefficient based on strain energy and takes the form
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DISCUSSION AND PRESENTATION OF RESULTS

Normal and Shearing Stresses

Linear strains parallel to the axis of the beam were measured at the
cross sections 4.50 inches either side of the vertical centerline of the
opening, as shown in Fig. 9a. .The strain gages were located at these sections,
which are 1.50 inches from the edges of the opening, so that the effect of
stress concentrations at the corners of the opening would be reduced. The
positions of the strain gages for beams 3, 4, 5 and 5a are shown in Figs. 9,
10 and 11. Measured strains were multiplied by the modulus of elasticity
(E = 29,600 ksi) to obtain normal stresses. These normal stresses were then
plotted with respect to cross-sectional position, and numerically integrated
to determine the shearing force distribution VT/VB' The normal stress
curves for the experimental data are shown in Figs. 12-19. The three curves
in each of these figures correspond to the different M/V ratios tested and
for each beam the séresses at the low moment section and the high moment
section are shown in different figures. The plotted points in these curves
have been commected by straight lines and no attempt was made to draw smooth
curves, The stress plotted for the flanges are the average values except in
Figs. 16 and 17 where the web stress in the region of the flange is shown by
a dashed line for Beam 5. Similar curves obtained from the finite element
solution are presented in Figs, 20-25. Curves comparing the experimental
normal stresses to those obtained by the finite element solution and Vierendeel
method of analysis are shown in Figs. 28 and 29. The shear distribution
VT/VB, which was determined experimentally, was used In the Vierendeel

analysis to determine the stresses shown in these figures. The shearing
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stress curves for Beam 3 which were obtained by the finite element method are
shown in Figs. 30-31. These curves are typlcal of the shearing stress dis-
tribution of the other beams. Consideration of the normal stress curves,
Figs. 26 and 27, shows that the main effect of adding reinforcing at the
opening is to reduce the stresses toward the edge of the opening. For
example at M/V = 60 inches, toé low moment section (TLMS), the stress at the
opening is 19.29 ksi for Beam 3, 15.50 ksi for Beam 4 and 10.38 ksi for Beam
5. The same pattern of results is predicted by the finite element analysis.
It may be noted from the normal stress curves that finite element analysis
tends to overestimate the stresses at the top and the bottom edges of the
opening, while the Vierendeel analysis tends to underestimate the stresses,
since it does not take Into account the effect of stress concentration.

The normal stresses from the elastic tests and the normal and shearing
stresses from the finite element analysis were numerically integrated to
determine the shearing force present in the section above and below the
opening, Tables 3a-4b presents the resulting shearing forces at the opening,
for all M/V ratios tested_for each beam. The numerical integration pro-
cedures were unable to account for the total 10 kip shearing force that
should exist at the opening. It can be seen in Table 5 that the amount of
shearing force accounted for is always less than that due to the applied
load. It is felt that neglecting the flange fillets in the real beams could
account for some of this difference but the same argument doesn't apply to
the finite element solutions. However, checking the equilibrium according
to Eq. (11) from the section Equilibrium Check, indicated beam equilibrium

to be within 5%. To be more realistic, the forces in the reinforcing bars
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were considered to act at the position of the weld on the side of the bar
nearest to the opening, approximately 1/4 inch from the edge of the opening.
Dimensions used in the numerical integration of the finite element data were
the same as those used in the finite element analysis. The actual dimensions
shown in Table 1 were used in the numerical integration program to determine
the experimental shear distribution ratio VT/VB. So that the effect of
adding reinforcing bars at the opening could be studied, slight adjustments
were made in the position of the openings for Beams 1 and 2. Although the
dimensions shown in Table 1 for Beams 1 and 2 are approximately the same, they
turned out to be sufficiently different to cause the change in the shear
distribution ratio VT/VB to appear inconsistent. However when the dimen-
sions at the opening were made equal, i.e., dT = 3,05" and dB = 7.05", the
change in the ratios VT/VB between the two beams became consistent with the
finite element results and those obtained for beams 3, 4 and 5. The initial
as well as the adjusted results are shown in Table 7a where a comparison of
the shear distribution ratio obtained by the different methods are shown.
Table 7a shows that the change in the wvalue of shear distribution ratio VT/VB
increases with the addition of reinforeing to the web opening.

During the elastic tests on the beams, the strain gages were placed on
either side of the web to check bending of the web about the vertical axis.
As would be expected the variation in the strain across the web was greatest
in Beam 4, which was reinforced on only one side of the web. The strain
variation across the web, which was obtained for M/V ratio of 40, is shown
in Fig. 39, as a typical example. This figure shows that the side of the
web without the reinforcing experilenced greater strain. When gages existed

on opposite sides of the web their average was used as the strain at that
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position, but when only one gage e#isted the average was obtained from the
curve.
- For Beams 4 and 5 the strain variation curves of the reinforcing

bars are shown in Figs. 34-37. These curves represent the average strains
in the bars. As shown in Figs. 10 and 11, linear strain gages were placed
on the edges of the reinforcing bars and on the top and bettom of the bar
mid-day between the edge and the web. Also Beam 4 had a gage on the web
directly opposite the reinforcing bar. The strain at the web centerline at
the level of the reinforcing bar of Beam 5 was determined by linearly inter-
polating between the gages on the web above and below the reinforcing bars.
Consideration of Figs. 34-37 show the reinforcing bar strains to be slightly
nonlinear. It is felt, however, that a linear interpolation between the
value at the web and that at the edge of the reinforcing bar would give
satisfactory results., An alternate method of handling the reinforcing bar
strains would be to use the average of strains obtained from gages placed
on the top and bottom of the bar halfway between the web and the edge of the
bar.

Figure 38 shows the strain variation in the bottom flange at the low and
high moment sections for Beam 5. Since no gages were placed at the edges
of the top flange, thelr strain variations were not plotted. From the above
graphs, it can be concluded that the average flange strain may be obtained
to a reasonable accuracy by using the average of the gages placed 1-3/4

inches from the edges of the beam flanges.

Deflections
Deflection readings were recorded for each loading and unloading cycle,

and the average of these are presented as the experimental values. The deflection
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readings were recorded to the nearest thousandth of an inch and were taken
at the edges of the opening and the centerline of the beam. Since the dial
gages were connected to a steel channel, which was supported on the same
pedestal as the beams? no corrections in the deflection readings were nec-
essary because of suppert settlement,

Tables 8-10 presents the.éxperimental and theoretical mid-span deflec-
tions and relative deflections across the opening for Beams 1, 2, 3, 4 and
5. The actual average dimensions as shown in Table 1 were used in the
calculations. It is observed that mid-span deflections decrease when re-
inforcement is added to the web opening. For example at M/V = 20 inches,
the experimental mid-span deflection decreases by 1.80% with the addition of
unsymmetrical reinforcement (Beam 4), and by 3.72% with the addition of
reinforcement to both sides of the web. The theoretically predicted value
of mid-span deflection taking into account the web opening and the reinforcing
agrees very well for M/V = 20 and M/V = 40, but are slightly high for the
higher M/V values. One-reason for this is probably the difference in the
moment of inertia. Since the fillets are not taken into account in the
computer program used to evaluate the deflection, the reduced moment of
inertia tends to become more important as bending deflection terms become
larger with length. The theoretical mid-span deflections for Beam 1 are
plotted against the moment-shear ratio M/V in Fig. 40. Since thelpattern of
the curve remains the same for all beams, the plot of Beam 1 has been pre-
sented as a typical example. The curves of Figs. 41-45 show the theoretically
predicted and experimental values of the relative deflections across the
opening. Relative deflections were theoretically predicted using Eq. (20).

Agreement between the theoretical and experimental deflections across the
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opening seems to be the best for Beams 1 and 2, but in general seem to be

pretty good.

Theoretical Values of the Shear Distribution Ratio VT/VB

Table 7a presents the shear distribution ratio results for beams 1 and 2.
The experimental and finite element results obtained by McNew (11) are also
presented along with the revised results. Table 7a also presents the results
of the five different analytical methods described above. Results of Beams
3, 4 and 5 are recorded in Table 7b. The dimensions used in the calculations
are given in Table 1.

Theoretical values of VT/VB were obtained for eccentricities of 1, 2,
and 3 inches and M/V ratios of 20, 40 and 60 inches. Experimental tests were
for the same M/V ratios but for only the 2 inch eccentricity. Methods 1
and 2 given values which are consistent with the experimental results.
However Method 1 shows better agreement than Method 2. The shear distri-
bution ratio obtained by Method 1 is always lower than the experimental value.
For example, Method 1 predicts wvalues of the ratio VT/VB which are approxi-
mately 17, 1, and 10 percent low for Beams 3, 4 and 5, respectively.

While Method 3 does not yield results as close to experimental results
as Methods 1 and 2 it does show an increase in the shear distribution ratio
VT/VB when the opening is reinforced. Methods 4 and 5, which equate the
shear deflection above and below the opening, are not consistent. With the
addition of reinforcement of the web opening the value of VT/VB as predicted
by these methods decrease, whereas the experimental results show an increase

in the same.



36

CONCLUSIONS

From this theoretical and experimental investigation, the following

conclusions can be reached.

1,

3.

6.

The distribution of shear force above and below the web opening
did not appear to be sensitive to the variation of the moment to
shear ratio at the centerline of the web opening.

When the reinforcement was added above and below the opening, the
shear distribution ratio VT/VB increased.

The addition of reinforcement to the web opening had the following
effect on the stress: For the HMS (high moment section) and IM3
(low moment section), the normal stresses are lowered toward the
opening and only minor stress reduction occurs at the top and
bot:tom flange.

The finite element analysis tends to overestimate the stress at
the opening. However, the shear distribution ratios predicted by
finite element analysis show good agreement with experimental
results.

Normal stresses calculated on the basis of the Vierendeel method
of analysis compare reasonably well with the experimental results.
However since the Vierendeel analysis does not account for stress
concentration at the opening, the stresses predicted are lower in
magnitude than the measured stresses.

Among the theoretical methods of calculating the shear distribution

ratio V., /V

p/Vgs Method 1, which considers both bending and shear

deformation and uses a shear coefficient based on strain energy,
gave results which compared reasonably well with the experimental

results.
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9.
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The shear stresses obtained from the finite element analysis
predicted higher values for VT/VB than the finite element normal
stresses.

By chang£ng the eccentricity from 2 inches above the mid-depth to
2 inches below mid-depth, the results obtained were approximately
the inverse of each other,

Mid~span deflectlions and relative deflections across the opening
can beApredicted fairly accurately by using the Castigliano's

theorem on defliections.
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RECOMMENDATIONS FOR FURTHER RESEARCH

In this research project unreinforced and reinforced eccentric web
openings were studied. All the openings were six inches deep and had a
2 inch eccentricity with respect to the mid-depth of the beam. The widths
of the web openings were 9 inches for two beams and 12 inches for four
beams. Further experimental investigation of the opening size and position
are necessary before theoretical methods of determining the shear distri-
bution ratic VT/VB can be substantlated, The lemgth, depth and eccentricity
of the opening are three parameters which need further investigation.
Perhaps the finite element method of analysis could be refined so that
the experimental and finite element results agree better. After refine-
ment, the finite element method of analysis should be applied to openings
with different lengths, depths and eccentricities and compared with the
experimental results. In the experimental investigations the increase in
the length or depth of the opening could be accomplished by just changing
the opening size without disturbing the setup of the strain gages..

For the elastic tests it would be helpful to record deflection to
one ten-thousandth of an inch, since the relative deflections across the
opening are of extremely small magnitude. Two types of web reinforcement,
symmetrical and unsymmetrical were considered, but in these cases the
reinforcing bars were parallel to the flange. The effect of diagonally
reinforcing the web opening upon the elastic stresses and ultimate strength
should be investigated. Beams with opening depth greater than half the
beam depth should be tested, and the validity of the Vierendeel method of
analysis investigated for various opening lengths, eccentricities and

reinforcement,
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TABLE 2. TENSILE TEST RESULTS.
Yield Point | % Red. ﬁ Elong. | Ult, Tensile
Beam Coupon (ksi) Area (in. 2" Str. {(ksi)
Tl 43.12 56.4 27.9 Not Measured
T2 42.98 57.8 32.5 80.07
1 Bl 43.94 57.4 31.3 80.11
B2 43.89 58.1 31.3 80.59
Wi 43.65 54,7 31.5 76.61
w2 41.46 60.9 35.3 75.68
Tl 42.77 56.8 31.5 81.97
T2 42.60 57.1 32.0 80.37
Bl 43.02 55.4 26.4 83.91
B2 42,24 52.0 32.5 80.29
2
' Wl 42 .40 55.7 33.0 76.15
w2 43.72 56.5 33.0 76.44
Rl 40.36 57.1 35.0 66.35
R2 38.48 55.2 36.5 64.96
T1 40,42 62.1 37.8 69.71
T2 39.65 63.3 38.3 69.48
Bl 41.92 60.3 35.3 70.72
B2 40.13 62.4 36.3 69.83
3,4,5
and 5a W1 41.47 62.9 33.3 69.65
w2 41.24 61.8 37.3 69.06
Rl 38.39 65.4 35.3 64.72
R2 38.17 63.0 37.8 64.88 .
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TABLE 3a. SHEARING FORCES AT THEkOPENING, "NORMAL STRESSES' FINITE
ELEMENT SOLUTION FOR 20" LOAD ~- BEAMS 1 AND 2.

M/V VT VB VT + VB VT/VB
20 | 2.4606° | 7.0153% | 9.4759% | 0.3508
BEAM 1 40 | 2.2970% | 7.2569% | 9.5538% | 0.3165
(UNREINFORCED) | 60 | 2.4137° | 7.1341% | 9.5478% | 0.3383
| K ¥ K

80 2.4037 7.0410 9.4447 0.3414

M/V Vo VB VT + VB VT/VB

20 | 2.6697% | 7.0292% | 9.6989% | 0.3798

BEAM 2 40 | 2.4861% | 7.1885% | 9.6746" | 0.3459

(REINFORCED) | 60 | 2.5938% | 6.9985% | 9.5923% | 0.3706
K K K

80 2,6002 6.9740 9.5742 0.3728




TABLE 3b.

SHEARING FORCE AT THE OPENING '""NORMAL STRESSES"™ FINITE

ELEMENT, SOLUTION FOR 20 LOAD -- BEAMS 3, 4 AND 5.

MY |V v, Uy + V| Vv

20 | 2.2501% | 7.4240% | 9.6741% | 0.3031

BEAM 3 40 | 2.0853% | 7.5527% | 9.6380% | 0.2761

(UNREINFORCED) | o6 | 5.0903% | 7.5162% | 9.6065% | 0.2781
Wy | v, v, Vo Vg | ViV

20 | 2.5162% | 7.1593% | 9.6755% | 0.3515

BEAM 4 40 | 2.3194° | 7.2482% | 9.5676° | 0.3200
(REINFORCED) | ¢ | 2,3223% | 7.3127% | 9.6350% | 0.3176
M/V VT vy VT + vB VT/VB

20 | 2.6575% | 7.0688% | 9.7263% | 0.3759

BEAM 5 40 | 2.4248% | 7.2519% | 9.6767% | 0.3344
(REINFORCED) | o | 5.4175% | 7.4829% | 9.9003% | 0.3231
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APPENDIX A

DERIVATION OF THEORETICAL DEFLECTIONS

Relative Deflection Across Web Opening

The problem considered here is finding the deflection at a section

in a beam which has a web opening, see Fig. Al. The introduction of the

p

An xn

LT+l

]
=]

B S P
1
|

@ —-—
af-=--

!
|

Lo

L/2

— = - ——
m

Fig. Al

opening not only reduces the moment of inertia and cross sectional area,
but it also allows secondary bending deflections to be created. The un-
symmetrical shape created by cutting the opening also introduces a rigid
body rotation term in the deflection equation. So that the secondary
deflections can be included in the solution, Castigliano's energy method
for finding deflections (Principle of Virtual Forces) is used in this
derivation. Both the strain energy &ue to shearing stresses and normal
stresses must be considered.

The notation used in this derivation is as follows:
Symbols

A - cross-sectional area

C -~ ratio of shearing forces

E - modulus of elasticity

G - modulus of elasticity for shear

I - moment of inertia
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g =-

T -

length
bending moment
applied load

integral of the first moment of area to either side of section
where shear is desired

reaction

strain energy

shearing force

distanée from centroid of section
one-half the opening width

shear deflection ccefficient
volume

distance from origin

deflection

normal stress

shearing stress

Subscripts

A, B, C, D, E, F, G, — vertical cross-sections of beam shown in Fig. Al

B -

L -

bottom section at opening

left

net section

refers to vertical centerline of the opening

reinforced section or right

top section at opening

bending

shear

strain energy due to shear is determined by using the equation

z
“‘fL kV dx

s o 2a6 T T o (AL

U

The basic assumptions in the derivation of this equation is that the shearing
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stress and strain are linearly proportional and that the strength of materials .
equation for the transverse shearing stress (1 = VQ/It) is sufficiently
accurate. The derivation of Eq. (1) and the shear deflection coefficient
k for the shapes involved in this report are given in Appendix B.

The equation for the strain energy due to normal stress may be written

as : 2
. |
Us ™ gy, o OF e - (A2)

where it is assumed that normal stresses and strains are linearly proportional.
When the normal stresses are given by the flexure formula (o = My/I) the

following more convenient form may be used:

L Mzdx

b of 2E1

(A3)

The fictious loads PB and P shown in Fig. 1 are used to determine the

C
deflection at those two sectiomns. According to Castigliano's theorem the
deflection at B is given by yy = BUIBPBfwhere Pp and P. are set equal to
zero after differentiating. Since the fictious loads are set to zero after dif-

ferentiating it is often simpler to differentiate before integrating. For ex-
ample consider the region A-B, the strain energy can easily be determined from
Eqs. (Al) and (A3) where
VR
M= RL -Vx
L-x L-x

- L B ¢
RL”2+PB(L)+PC(L)

By differentiating we obtain

au

AB
B P
®, o

X
B M OM
LT 3p, dx + [ 7 3¢ sp. 9%

now setting P_ and PC equal to zero and substituting from above we get

B
U Xp Cg *x) I-x X k(g) L-x

B B B
%, - 4 g Cp =t SR 63

Y dx
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After integrating the equation becomes

3
aUAB ) PxB L—xB kPxB L-xB
D+ T

BPB "~ 6EI L 2AG

) ——— (Ab4-a)

Following the same prodcedure we obtain for the other regions, except

region B-C, the following Egs:

Region C-D:

2 3 2
BUCD ) PxB Lx, ) Xy _ Lxc .\ X, ) kPxB . i e )
8P,  2EIL | 2 3 2 3 2a¢L “¥p T~ *¢

Region D-E:

2 39
W, Pxg [Ls Lx, XD] kPxy o )

= ok -y + = ( p DT (Ad-c)
3P,  2EL.L |12 2 3 2A6L 2 *
Region E-F:
U Px 3 kPx
EF B L 3 B L
- G- x) + G - %) - (a4-d)
8P,  GELL '8 ) 28_6L 2 %p
Region F-G:
U Px 3 kPx
FG _ _*BD  “*B'D (ké—e)
oP 6ELL 2AGL ’

B

To account for the strain energy in the region BC certain assumptions
must be made about the normal stresses and the amount of the shearing force
carried above and below the opening. In this derivation the normal stresses
are assumed to be correctly predicted by the Vierendeel method of analysis as
explained in Ref. (11). According to this theory the normal stresses in the
sections above and below are given by the equation

5 = ot + it L S

T IN IT
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U o, —-- -- (a5-b)

where positive values of the distance y are measured down. To the left
of the opening centerline the negative sign applies to Eqs. (A5) and the
positive to the right. By substituting Eqs. (A5) into Eq. (A2) and simplify-

ing we obtain

22
MY 2 V.'x
1 ON & 1 . T .2
Uze g S5 63) dadx+ [ ﬁT O %) dA; dx
A N i
V 2x2
s fl(---2- T )dA dx

o AB

and integrating gives the strain energy due to bending as

M za v 233 v 233
) SO MO SN (46)
BC’bending EI 3EIT 3EIB

(U
N

From Eq.{Al) the shearing strain energy may be written as

2 2
3 } kTVT (2a) s kBVB oo s
BC’shear ZATG ZABG

Now by combining Eqs. (A6) and (A7), differentiating with respect to P

and then setting PB and PC equal to zero we obtain

BUBC ) PLOaxB Loy - 9 PxB Cg a3 .\ kT(Za))
BPB EINL 0 T 2L 3 EIT ATG
e 2 PxB (__a3 . kB(2a))
B "2l 3EI;  AG T —-= (a8)

where CT and CB are constants representing the precent of the total shearing

force in region BC distributed to the sections above and below the opening



respectively. In order to simplify Eq. (A8) it is necessary to know the
shear distribution ratio VT/VB. To determine this ratio the sections above
and below the opening are treated as beams which must deflect equally. The
deflections of these beams as determined by assuming fixed ends with points
of inflection at their centers are

3

{ - 2.VT& N kTVT(Za)
YBc'y ~ 3 EL, Te
; VBa3 k¥, (2a)
Opdy =3 EL, * AG aas ——mem-= (A9)

2 k
a® B
v 3I.E A G
T B B
== = - (A10)
v 2 k,
B a_ ., T
BITE ATG
Now since the deflections given by Eq. (A9) are equal we can rearrange
Eq. (A8) to
aUBC _ PLOaxB 55— PxB og a3 . kT(Za)) i 2 . XI ; 2) ----- A1D)
BPB EIﬁL 0 2L 3 EIT ATG T VB B
By substituting for the constants CT and CB’ the last term in Eq. (All)
becomes
2 2
2. v 2 Yy Ny U
Cp *v. % "2 tv. 2 T®2
B v BV
and the partial derivative of the strain energy in region BC reduces to
:EBC - Pzia:B L=Lg) = Vyp» % (;:25 gi * kz(zfﬂ) -——- (al12)
B N ' T T
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Adding Egs. (A4) and (Al2) and reducing gives the deflection at B as

2 2 3
S e o MRS SN HP
B EI 4E1 I 6EI L
R R
2 2
P P
s kPxB a _.fE) . L0 a a _.fE) ) Loa
2AG L EI L EI
N N
Px X 3 Lx . kPx
B (S Cy 4B,
2EIL 3 2 2AGL “C
Y X3 g_a3 N kT(Za)) .
T L *3 EIT ATG
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(Al3)

The deflection at section C is given by the partial derivative of the strain

energy with respect to PC'

Hence following the same procedure as before we

find the partial derivatives for the different portions to be as follows:

3

BUAB ) PxB o = EEJ s kPxB - EQ)
BPC 6EL L BbAG L
a8u PL 2a X 3 k_(2a) X
ot s 22— -+ EE ) (- D) e
Cc N T T
2 3 3
aUCD i PX, (LxD ) X ) LxCZ . X0 - kPxC . 2] e
3P,  2EIL - 2 3 2 3 2a¢L p T *¢
U Px 3 L £ 3 kPx
DE _ c @i_ - D + XD ) C (L._ ; RS ,
BPC ZEIRL 12 2 3 ZARGL 2
au Px 3 X kP X
_GF __ D . C, D C o
oP 6EI L 2AG L

(Al4-a)

(Al4-d)

s {iTh=e)
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W _ PXg ¢ T A k"'b) s (L)
3%, L CABEL, = 4A G GEI  2AG

By adding Egs. (Al4) and canceling terms the deflection at C maybe written as

3 2
PxB kPxB PL0 a ZkTa xC
Yy = + + (1--)
C 6EI 2AG EIN T 3EI A G L
Px L2 Px xD Px X 3 Lx 2 kPx 2
+ P e S Q¥ WP R T < s - S (a15)
16EIR 4E1 IR 2EIL 3 2 2AGL

Then subtracting Eq. (Al3) from Eq. (Al5) we obtain the equation for the

relative opening deflection to be

X 3— 3 X 2 L a
_2ra|’c ™™ ¢ 0 (_ L)
BC E 61L 41 INL 0
2 xDZ
kaE , L I
+ + + a--=)
ALG © 161, = 4I Ie
3 k.(2a)
2 a T 2a
*V G T We ) -7 - - -== (Al6)

Deflection at the Point of Load

The less difficult problem of determining the deflection under the load is
accomplished by finding the partial derivative of the strain energy with respect
to the applied load P. This solution takes intc account the web opening and the
flange reinforcing as shown in Fig. Al. By evaluating the regions of the
beam separately, the following equations for the partial derivatives of the

strain energy were obtained:

3
U PxB kPxB

A _"*8" % _
5 128I T %ac (a17-a)




load
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By adding all the terms in Egs.

P may be written as

Yp = 12EI (XB ¥ 2xD - % ) + @ G““ - X %)
2
E
N T Ap
kP

4AG (xp + 2% - xo) + 4ARG 2 " %) T

L

e % sy
N AT
3y
P 12EI (KD T % o+ as 4AG (=, - " = (Al7-c)
U 3 kP :
DE P L 3
= = ("" ) - (A17-4d)
3P 12EL, "8 4ARG %D
U U
_EF __DE _______ —_ .
3P 3P (Al7-e)
U Px 3 kP
FG _ D + D PR PR ———— (A17-f)
5P 12EI | 4AG

(A17) and reducing the deflection under the

--- (A18)



APPENDIX B

Shear Deflection Coefficient

To determine the distributicn of shearing force to the tee sections
above and below the web opening on the basis of equal deflections, the
deformgtion due to shearing strains as well as bending strains must be
considered. To correct for the variation in the shearing strain over the
cross section, a shear deflection coefficient k is generally applied to the
simple shear deflection formula based on the de%lectibn of the neutral axis.
Letting Vg represent thg shear deformation ;f the neutral axis we can

write

,dys

- | _ kv —_
=S = (B1)

dx ny y=0 xy| y=0 AG

where V-is the shearing force, A is the area of the cross section and G is

the shear modulus., Then if the cross section and shearing force are constant,

the shear deformation over the length L is

105

L kvl

Vs Tac T - (B2)
The shear deflection coefficient k depends upon the shearing stress distribution
and hence the shape of the cross section. For a linearly elastic material the

strain energy may be used to determine the coefficient k.

The shearing strain energy per unit volume in terms of the shearing stress

T and the shearing strain Yy is

and for the whole volume v we have
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Now assuming that the shearing stress distribution given by the strength
of materials approach (Txy = VQ/It) is sufficiently accurate for our purposes
the total shear strain energy becomes

L v2

2

A Q_

v=/J —=|—5 S dA | dx =~—-—- ~-- (B&)
0 2AG IZAtz

where t is the thickness and I is the centroidal moment of inertia. The

term Q represents the first moment of the cross sectional area to either side
of the section where the shearing stress is being determined. By setting

the bracket term in Eq. (B4), which is dimensionless and independent of the

integration over the length, equal to the constant

9 4a - (B5)

the strain energy due to shearing stress may be written as

U, = fL kv2
S 0 2AG

fix . - (86)

Then by applying Castigliang's theorem on deflections we again obtain Eq. (B2).
Hence the k given by Eq. (B5) is the proper equqtion for the shear deflection
coefficient when the assumptions are those stated above.

Although the valuesof the shear deflection coefficient k have been found
for a number of cross sections, these required for a tee section or a reinforced
tee section don't seem to be available. The integration of Eq. (B5) for the
shear deflection coefficient is broken down into four parts; the flange, the
web between the flange and the reinforcing bar, the reinforecing bar including
the web at that level, and the web portion outside the reinforcing. By

integrating and using the notation shown in Fig. Bl the following equations
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were obtained for the reinforced tee section:

_ A e —_ e
k—IZ () + Ty + kg + k) (87)
where
b oabpe oy 2203 o3 .1 .5 .5
ky =7 (5 (517830 =3 8,7(8;7 = 87) +5 (5,7 - 5;7)
I — 22,03 3, 1,5
k2 = 4 [33 (S3 + 54) 3 S3 (53 + 54 ) + 3 (53 + 545)] .
- 2 1.3 3
Ay - T 15,705, + 5 - 28,7+ 5,0
+(A-§)zs+5)/
g Yg) (S5 + 500w
e . b ) 2.2 .3 3, .01 .5 5
ky =5 [85 (85 =8 =385 (857 -5,7) +5 (557 -8,7)]
- 2 ey 133
+A3 Y, [s5 (s5 8, 3(85 54)]
_ 2
w ok ) 2.2 ,.3 . 3,.,1,.5 5
ky =7 [Sy (85 =85 =38, (8,7 - 857) +5 (5,7 - 857)]
Ag =D -t

¥z (S1 + 83)/2

Y, = (s, + 55)/2
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Fig. Bl.

By making u and q in Fig. Bl zero and getting ¢ equal to the width
of the web w, the same equations apply to the unreinforced tee section.
After working a number of numerical examples the conclusion was reached that
the only significant term in the shear coefficient was kz, that for the

web between the flange and the reinforcing.

Shearing Force Distribution

One way to determine the theoretical distribution of shearing force to
sections above and below the web opening is on the basis of equal secondary
deflections. The secondary deflection of the beam between the edges of the
opening depends upon bofh bending stresses and shearing stresses. By assuming
the tee sections to have fixed ends with points of Inflection at the middle,
the bending deflection is found to be

_ 2va®
Yo ¥ 3E1
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where V is the shearing force and 2a equals the width of the opening.

Hence the total secondary deflection becomes

3
2 Va 2kVa
V=Y *¥ =38t ac = (B8)
Now equating the secondary deflections of the sections above and below
the opening we write
v a3 2k, V_a 4 33 2k _V_a
21 “TT _2 B BB
3 EIT ATG 3 EIB ABG
and solving for the shear force ratio gives
___LJP.k_B
v 31, E/G A
T B B
il e —== {B9)
v 2 k
B a 4+ I
SIT E/G AT

where the subscripts T and B refer to the sections above and below the opening
respectively.

This equation for the shearing force distribution ratio is essentially
the same as those presented by Frost (9 ) and by Douglas and Gambrell (8).
Frost's version uses only the area of the web along with a shear deflection
coefficient of 1.2, while Douglas and Gambrell suggest using the shear
coefficient defined by Cowper (7). Although based on the Vierendeel analysis,
the assumptions of the derviation presented in Douglas and Gambrell appear

to be somewhat different than those used here.
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ABSTRACT

Frequently openings are cut in the web of the beams for passage of
utility ducts in the building frames. Because of the insufficient informa-
tion on the strength of beams and the structural behavior of beams with
eccentric web openings, a theoretical and experimental investigation of such
beams was conducted.

For the experimental investigation, four W16 x 40 steel beams with 12
inch long by 6 inch deep rectangular openings were tested elastically. All
the beams had eccentricities of 2 incheé with three of the openings being
above mid-depth and one below. One beam was unreinforced, one was reinforced
only on one side of the web, and two were reinforced symmetrically. Both
deflections and strains were recorded during the elastic tests., The experi-
mental stresses were compared with those obtained by the finite element and
Vierendeel solution, and were used to determine the ratio of shear force
carried by the section above and below the opening VT/VB. The experimental
values of the ratio VT/VB were used to determine the theoretical stresses by
the Vierendeel method.

The three beams with the opening centered above mid-depth were modeled
by the finite element me;hod and solutions were obtained for moment shear
ratios of 20, 40 and 60. These solutions give shearing stresses as well as
normal stresses, which allows the shear force distribution VT/VB to be
determined in two ways.

Several theoretical methods of calculating the shear force distribution
were studied and compared with the experimental results. Nene of the methods

seemed to give the accuracy desired, but some methodé were definitely better



than others. The derivation of a shear deflection coefficient based on
strain energy, which is used in one of the theoretical methods, is given in
Appendix B.

Theoretical equations for mid-span deflection and relative deflection
across the opening, which take into account the web opening, the opening
reinforcement, and the flange reinforcement, are derived in Appendix A. The
theoretically predicted mid-span deflections and relative deflections across

the opening have been compared with the experimental results.



