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Abstract 

Nearly 790 million square feet or approximately 11,000 to 12,000 buildings are constructed using 

tilt-up concrete panels per year since 2007 according to the Tilt-Up Concrete Association.   In Tilt-

Up panel design P-delta effects control slender concrete wall panel design.  Therefore, 

understanding the nonlinear deflection behavior of these walls is the first step in refining their 

design, which may make them more sustainable by using less material.  The American Concrete 

Institute (ACI) 318 Building Code Requirements for Structural Concrete provisions for slender 

vertical wall panels take into consideration the self-weight of the panel along with uniformly 

distributed lateral wind pressure in estimating the mid-height deflection.  In doing so, the Branson 

deflection equation is used to compute central lateral displacement while adjusting for the effect of 

axial force. In this study, a more rigorous formulation is proposed taking into account the axial 

force effect on the moment curvature calculation and integration to yield more accurate load-

deflection values. In this formulation, the stiffness variation along the slender wall panel allowing 

for un-cracked, post cracked and post yielded regions was taken into consideration.  Accordingly, 

the full analytical load-deflection response is made available for the designers based on accurate 

simplifying assumptions.  The developed equation is used to compare the present analytical results 

to some available experimental results along with the predictions of other deflection equations 

proposed in the literature such as the latest ACI 318, Branson and the Bischoff effective moment of 

inertia equations.  The experimental results are full-scale panel testing data conducted by a joint 

venture of the Southern California Chapter of ACI and SEAOC. These results reflect representative 

stiffness variation of the panels beyond cracking.  More specifically, the latest ACI 318 linear 

moment-deflection expression will be examined against the present equation that considers less 



  

simplifying assumptions.  A parametric study is extended for the purpose of further proposing a 

simplified equation based on the rigorous approach. 
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1 

 

Chapter 1 - Introduction 

Nearly 790 million square feet or approximately 11,000 to 12,000 buildings are 

constructed using tilt-up concrete panels per year since 2007 according to the Tilt-Up Concrete 

Association (TCA, 2011).  Tilt-up wall panels are constructed where the concrete panels are 

casted horizontally on site on a slab.  After the required concrete strength for lifting is reached, 

usually 7 days, they are lifted by a crane and placed in their final vertical position. Tilt-up can be 

referred to as “slender walls” per the American Concrete Institute (ACI) 318-19 Building Code 

Requirements for Structural Concrete.  Slender walls are concrete walls designed to resist 

eccentric axial loads and any possible lateral load such as wind, seismic, and soil.  Slender walls 

can be bearing, non-bearing, or exterior basement or foundation walls.  The ACI 318 code 

specifies a minimum requirement for the thickness of the slender walls in table 11.3.1.1 

depending on their usage in the structure.  The main concern regarding this type of construction 

is P-delta effect that occurs due to the extra bending in the member.  

When tilt-up construction first started, it was referred to site-cast precast since the wall 

panels were not cast in a fabrication shop similar to other precast concrete elements.  Tilt-up and 

precast wall panels may seem similar, but they are very different in properties and code 

requirements.  Precast panels are made in factories and then transported to the job site via trucks, 

limiting the size of the panels.  Precast panels are constructed in specific sizes and cannot be 

modified or changed easily on site, which mean less flexibility.  In addition, precast panels are 

most often nonloadbearing.  

Tilt-Up and Precast have different design provisions in the ACI 318-19.  For tilt-up walls, 

per the current ACI 318-19, P-delta effects control slender, concrete wall panel design.  

Therefore, understanding the nonlinear deflection behavior of these walls is the first step in 
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refining their design. Tilt-up panels are designed to fully resist all applied loads, which is why 

the effective moment of inertia is used when designing the panels.  On the other hand, for 

precast, ACI 553R-11 states in Table 3.5.2 Deflection Limits for Precast Wall Panels, limit 

deflection to span/240 or ¾” for dead loads, and span/360 or ¾” for live loads.  According to 

ACI 553R, the precast panels are usually designed not to crack; therefore, the gross moment of 

inertia is used for deflection calculations and no p-delta effects are incorporated because the 

panels are not slender. 

 

 1.1 Background  

 1.1.1 Usage of Tilt Up  

The development of the concrete industry occurred in the period from 1895 to 1918.  

American Concrete Institute (ACI), the Portland Cement Association (PCA), and the 

American Society of Civil Engineers (ASCE) worked on developing the specifications for 

concrete, as the demand on the market was mostly concrete building.  

 Robert Aiken led the tilt up construction growth in 1903. The first building to use tilt up 

was the Camp Logan Illinois Rifle Range.  It was constructed using 5” retaining walls. By 

1916 there was less than 20 buildings constructed using tilt up (Johnson, 2002). 

After the World War I, the tilt up society stopped developing as precast was introduced.  

In 1930’s tilt up construction remained dormant as public funded construction lead the 

industry and the country was not looking for the labor cost savings. 

The next development in the tilt up history started in the late 1940s’ after world War II 

when contractors found tilt up to be cost effective.  The tilt up techniques started to develop 
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in 1950’s and 1960’s as contractors used custom lifting devices, temporary braces, chemical 

bond breakers, and other specialized products in the construction process. 

In 1970’s several events affected the tilt up industry after the capabilities were recognized 

and the panels were allowed to be used as load bearing walls.  Those events included a full-

scale test was performed, K. M. Kripanarayanan introduced P∆ effects, and tilt up was 

introduced in Florida.  

 In 1986 the Tilt-Up Concrete Association (TCA) was formed.  In 1990’s panels varied in 

complexity, shifting from a simple rectangle to complicated lifts with strong backs, to four-

story panels with two-crane lift.  

Currently, tilt-up is extensively used across the United States.  It is also emergent in other 

countries. Figure 1.1 Tilt-Up Market Growth across the Globe shows a global image 

displaying the locations of tilt up construction in red.  Design engineers in these various 

countries use an assortment of code mandated design methodologies.  Some countries use 

various versions of the ACI 318 code; those countries are South America, Central America, 

Mexico, Indonesia, Russia, Brazil, China, and South Africa.  Additionally, some countries 

have their own code and provisions regarding this type of construction, such as, Saudi 

Arabia. 
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Figure 1.1.1.1 Tilt-Up Market Growth across the Globe (Tilt-Up Concrete Association). 

As shown on the map, tilt-up construction is recently occurring in eastern Saudi Arabia.  

A possible reason is an ACI chapter exists in that province.  As a future engineer and a Saudi 

citizen, I wish that Saudi Arabia expands the usage of this type of construction for several 

reasons.   

Introducing Tilt-up will have positive impacts on both the population and the economy of 

the country.  The crown prince, Mohammed bin Salman, generated the 2030 vision that aims to 

develop all aspects of Saudi Arabia.  The 2030 vision promised to deliver stability and create a 

brighter future for Saudi Arabia and the citizens (Vision 2030, 2016). Spreading the usage of 

Tilt-up will help achieve some of the 2030 vision goals by enhancing the construction economy 

and creating more job opportunities for young engineers.  

Beyond the 2030 vision goals, tilt up construction has several advantages.  One important 

factor is the climate in Saudi Arabia.  As of 2017, Saudi Arabia reached its highest temperature 

of 53 Celsius degrees which is equivalent to 127.4 Fahrenheit (Khalaf, 2017).   Moreover, the 

Figure 1.1:Tilt-Up Market Growth across the Globe (Tilt-Up Concrete Association). 
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average temperature is expected increase every decade by at least 0.65 degrees (Chowdhury and 

Tarawneh, 2018).  A hot and dry climate can have negative impacts on the construction 

materials.  For example, high temperatures can cause cementitious mortar to settle early.  Dry 

weather can cause dust storms, haboob, due to the lack of moisture, causing an extremely 

dangerous construction site (Chamberland, 2014).  In addition, high temperature can affect 

builders and contractors.  Studies confirm exposure to high temperature for a long time can lead 

to dehydration and heat stroke (United States Environmental Protection Agency, 2017). Tilt-up is 

a fast construction method meaning the workers will be exposed to fewer weather issues on job 

sites.  The speed of tilt-up construction typically reduces the cost, by decreasing the number of 

labor hours, when compared to traditional construction methods. This correlates to lower 

construction costs.  That will allow more houses be constructed in a shorter period of time (DBS 

Group, 2018).  

The 2030 vision aims to create new employment opportunities for the younger 

generation; introducing tilt-up construction will create new opportunities.  This construction 

method will give the opportunity to engineers who received their degrees from across the world 

to practice what they have learned.  In Saudi Arabia, most importantly, we should always look 

forward to adapt new ideas and methods that can help develop the country.  

 1.2 Scope 

The proper design of tilt-up wall panels for strength and safety is an important task for 

the structural engineer with the main concern being the deflection behavior of these panels 

subjected to different loads.  The ACI 318-19 provisions for slender vertical wall panels consider 

the self-weight of the panel, eccentric gravity loading, and uniformly distributed lateral wind or 

seismic forces in assessing the mid-height deflection.   
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The scope of this research is to examine the current design practices for calculating the 

mid-height deflection and propose a more rigorous formulation, of effective moment of inertia, 

including the axial force effect on the moment curvature calculation and integration to yield 

more accurate load-deflection values.  The stiffness variation along the slender wall panel is 

taken into account to allow for uncracked, post cracked and post yielded regions.  Accordingly, 

the full analytical load-deflection response is made available for the designers based on accurate 

simplifying assumptions.  

The developed equation is used to compare the present analytical results to the available 

experimental test results along with the predictions of other deflection equations proposed in the 

literature, such as, the ACI 318, Branson, and the Bischoff effective moment of inertia equations. 

More specifically, the latest ACI 318 linear moment-deflection expressions examined against the 

present equation that considers fewer simplifying assumptions.  
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Chapter 2 - Literature Review 

 2.0 Literature Review 

This chapter summarizes some studies reviewed for the area of interest.  The books and 

articles reviewed contained experimental data and analytical methods pertaining to slender 

reinforced concrete wall design controlled by tension flexure, which includes moment-curvature 

analysis and load-deflection computation. In particular, references cited by the current American 

Concrete Institute Building Code Requirements for Structural Concrete, ACI 318-19 Code, are 

highlighted. 

 2.1 Experimental Data 

Very little testing on tilt-up slender walls has been performed.  The American Concrete 

Institute-Structural Engineers Association of Southern California (ACI_SEASC) joint task 

committee in the early 1980s Test Report on Slender Walls is one of the few (ACI_SEASC, 

1982).  The ACI-SEASC Task Committee on slender walls was created in 1980 to determine 

their behavior when subjected to eccentric axial and lateral forces that simulated gravity loads, 

along with wind or seismic pressures.   Prior to these tests, the design of slender walls was 

limited by specific height/thickness ratio limit of 25 for load bearing walls and 30 for non-load 

bearing walls (Lawson and Lai, 2010).  At the time, an increase usage of slender walls was 

occurring with a trend toward more slender wall for increased cost savings.  The ACI-SEASC 

Task committee realized the need to design more slender walls in order to save money by using 

less materials.  Deflection tests were performed to obtain the stability behavior of the wall under 

lateral and vertical load.  Twelve tilt-up concrete panels were tested in the upright position as the 

self-weight of the panels act as a vertical load.  The panels were tested in a special frame 
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allowing eccentric roof loads and lateral forces to be both applied at the same time.  Horizontal 

deflection of the panels was measured under different increments of load to regulate the ultimate 

capacity of each panel. 

The 12 tilt-up panels were constructed using a concrete mix supplied by a local firm in 

California.  The water to cement ration is 0.67.  The design mix consisted of Portland Cement, 

Washed Concrete Sand, 1-in gravel, and water.  To measure the concrete strength of the panels, 

16 cylinders and six concrete beams specimens were sent to the Twinning laborites.  The lab 

measured the specimens’ strengths for 7 -Day test results, 28-Day test, and 167-Days (job cured).  

Tilt Up panels were casted on October 3, 1980 and then lifted by the inserts in the long edges on 

October 15, 1980 to ensure the safety against any damage that can occur in the lifting process.  

The panels were stored on edge for 160 days prior to lifting into their final position to perform 

the test. This allowed for drying shrinkage to occur when the panels were stored on edge.  

Upon the completion of the deflection test program, cores were drilled and prisms were sawn 

from tilt-up panels in order to measure the properties of the actual test specimens.  A difference 

in strength values were noticed.  The ACI-SEASC Task committee attribute the difference in 

strength results between the actual wall panels and the lab specimens to the fact that the actual 

wall panels strengths were measured a year after the panels were casted and that two different 

labs performed the tests.  The differences were not significant since the values were not used in 

the original design calculations. 

All panels were 4’-0” wide and 24’-8” high.  The panels were horizontally supported at the 

base and at 24 feet with the lateral loaded portion of the wall equaling 24 feet.  This height was 

selected to represent the current construction trend for slender walls at that time.  Twelve tilt-up 
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panels were tested, three each with thicknesses of 4- ¾”, 5- ¾”, 7- ¼”, and 9- ½” resulting in 

nominal height/thickness (h/t) ratios of 60, 50, 40, and 30, respectively. 

Panels were reinforced vertically with four #4 grade 60 reinforcing steel.   All vertical bars 

were in full-length pieces without splices.  The strain of reinforcement ranges from 0.0025 to 

0.0032.  Panels were also reinforced in the horizontal direction with #3 bars grade 40 spaced at 2 

feet on center for the 4- ¾” and 5- ¾” panels; and reinforced with #4 bars grade 40 spaced at 2 

feet on center for the 7- ¼” and 9- ¼” panels.  All reinforcing steel met the requirement of 

ASTM A615-78 standard specifications for deformed and Plain Billet-Steel Bars for Concrete 

Reinforcement. 

The vertical reinforcements were designed to be located on the middle of the panel.  The 

actual location of the bars was measured after the test.  Post the deflection test, tilt-up panels 

were broken apart specifically in the middle third and the location of the bars were measured in 

relation to the loading face.  For the 9 ¼” thick panels, the location of reinforcement was on 

average off by 2% of the specified d location, where d is the distance from the extreme fiber in 

compression to the center of the tension reinforcing steel.  For the 7 ¼”, 5 ¾”, and 4 ¾” panels, 

the reinforcement location was on average off by 14%, 19.3% and 9%, respectively, of the 

specified d.  It is important to measure the exact location of d because it could increase or 

decrease the panel capacity to resist the specified forces.   

A special frame was made and designed for this test.  Figure 2.1:  Side Elevation of Test 

Setup indicates the loading frame showing drums of water for vertical load and air bag for lateral 

load of the test procedure.  A tubular steel frame was constructed and secured by plywood face to 

support for the air bag that acts as the lateral load.  A lever system on top of the wall was 

designed to act as a vertical load beside the weight of the panel.  The panels were pin-pin 
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connected.  The bottom edge of the wall was attached to a rocker base to eliminate any moment 

that can occur.  Also, a rectangular steel frame was attached to the bottom of the wall to prevent 

the base from any lateral load that can occur from the airbag.  

 

Figure 2.1:Side Elevation of Test Setup – Loading Frame Showing Drums of Water for Vertical Load and 

Air Bag for Lateral Load. 
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The lever arm at the top of the wall was loaded with water.  The amount of water was 

adjusted depending on the desired vertical load (roof load).  The distributed lateral load (wind or 

seismic) was supplied by airbag that added pressure to the wall.  The airbag was inflated by ½ 

Horsepower compressor.  The pressure inside the bag was then measured by double water tube 

manometer correlating one-inch of water to 5.2 pounds per square foot air pressure in the bag. 

To acquire the shape of the elastic curve, the deflection of the panels was measured at the 

supports of the wall and at the intermediate tenth points.  Three methods were used to measure 

the deflection of the wall:  attaching yardsticks to the wall, using dial gages, and using steel wire 

tension line from the wall.  The electric transducers values were the main measurement used for 

this test.  There was an attempt to make the deflection control in loading the walls, however load 

control was used in most cases.  As the maximum load was approached, the loading increments 

became smaller.  The results of this test are used in further chapters of this thesis. 

 2.3 Analysis Methods 

Several published works were reviewed that proposed moment-curvature analysis and load-

deflection analysis procedures for load-bearing slender walls.  In particular, works referenced by 

ACI 318-19 Code methods are reviewed.  In addition, works pertaining to tri-linear moment-

curvature analysis of reinforced concrete analysis is reviewed. 

 2.3.1 ACI 318 Alternative Method for Out-of-Plane Slender Wall Analysis 

ACI 318 Alternative Method for Out-of-Plane Slender Wall Analysis provisions are 

based on the full-scale testing of slender concrete wall panels that occurred in the early 1980’s by 

a joint venture of the ACI_SEASC.   The testing program and results are published in a 

document referred to as the Green Book that included all testing details and recommended design 
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equations.  These equations and methodology was adopted by the Uniform Building Code (UBC) 

in 1988.  When the International Building Code (IBC) created a single national model code, the 

slender wall provision from the UBC were adopted into the ACI 318-99 Building Code 

Requirements for Structural Concrete that was referenced by the 2000 IBC. 

The ACI 318 code started to incorporate requirements for slender walls, tilt-up, in the 

early 1980’s.  One of the first items incorporated was in Chapter 10, which indicated walls with 

height-to-thickness ratio of 36 and larger is need to consider second order effects.. Prior to this, 

the tilt-up design requirements were included in the Yellow Book that was issued in 1979 by the 

Structural Engineers Association of Southern California (SEAOSC).  In the Yellow Book, the 

design of tilt-up panels was restricted by height-to-thickness ratio of 36 and P-delta effects must 

be considered, which resulted in designing thinner walls than the UBC 1984 provisions of 

height-to-thickness ratio h/t of 25.  The design provisions for slender walls were quickly 

modified by SEAOSC; they issued a Green Book in 1982 that included a full-scale test of 12 

panels.  The test of these panels proved that thinner walls could still resist the applied load before 

they reach failure.  The Green Book eliminated the specified thickness-to-height ratio limit of 

t/150 for slender walls.  However, the deflection behavior including P-delta affects was still a 

concern since some of the panels tested deflected 18 inches without failure, which is why the 

SEAOSC committee proposed a 1/100 height of the panel as a deflection limit.  At that time, the 

UBC did include provisions for slender walls and they limited the deflection of walls to h/150.  

In the late 1990s with the push to develop a uniform national building code, the 

IBC, all slender wall provisions were incorporated from the UBC to the ACI 318 code.  

In fact, the first ACI 318 code to have a slender wall chapter was the ACI 318-99.  The 
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design moment procedure in the ACI 318 and UBC were the same, but the approach to 

calculate the service deflection equations is completely different in the two codes.   

The ACI uses Branson’s effective moment of inertia and the magnified moment to 

calculate combined moment due to lateral and vertical load, P-delta effect, for the service 

deflections.  On the other hand, the UBC used a bilinear load deflection equation for the 

service load, which is a linear interpolation between Δcr and Δn.  Also, the cracked 

moment in the UBC-97 code is 2/3 the cracked moment based on the ACI 318-99.  The 

difference in the cracking moment is due to the different values used for the modulus of 

rupture.  Section 1914.8 in the UBC-97 code uses𝑓𝑟 = 5 √𝑓′𝑐 while Section 14.8 in the 

ACI 318-99 uses 𝑓𝑟 =  7.5√𝑓𝑐′.  The 2/3 accounts for this difference. 

The ACI 318-02 and ACI 318-05 did have the same provisions regarding the 

slender walls’ behavior.  A change was proposed to the ACI committee to change the 

design equations since the 1997 version of the UBC was a better match to the test results 

performed in 1982.  The 2002 and 2005 version of the ACI 318 also overestimated the 

cracking moment equation by 25% which resulted in calculating higher deflection values 

(Lawson, 2007).  The ACI 318-08 committee approved a new service deflection equation 

to make a better match to the test results.  The change was consistent for the 2011, 2014 

and 2019 code. Table 2-1 and table 2-2 shows the development of Slender Wall 

Provisions in the UBC 1997 and the ACI 318 from 1999 to 2019.  
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Table 2-1: The Development of Slender Wall Provisions in the UBC 1997 and the ACI 318-99 through ACI 318-

05. 
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Table 2-2: The Development of Slender Wall Provisions in the ACI 318-08 through ACI 318-19. 
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2.3.2 Tri-linear moment-curvature analysis  

Alwis (1990) presented a moment-curvature analysis for reinforced concrete 

beams using a tri-linear representation dependent on the cracking and yielding points for 

rectangular cross-sections.  The moment-curvature response after the yielding point was 

assumed to be perfectly plastic.  Therefore, the tri-linear moment-curvature response was 

defined by three points, the cracking point, the yielding point, and the ultimate point.  

However, Alwis concluded that the method was not suitable for curvatures significantly 

larger than the curvature at yielding point, as the member was assumed to be perfectly 

plastic after yielding.   Alwis did find good correlation between load-deflection curves 

derived from the moment-curvature method and load-deflection curves using Branson’s 

formula within the service load range.  In addition, Alwis concluded that the methods 

would produce only minor differences in their predictions in the service load range due to 

their use of cracked and uncracked sectional properties in their derivations.  Alwis 

presented several numerical and experimental comparisons to further support his 

conclusions. 

Charkas, Rasheed, and Melhem (2003) presented a tri-linear moment-curvature 

analysis method for reinforced concrete beams.  However, the method included the 

effects of fiber-reinforce polymer, FRP, for strengthening the member.  While the use of 

FRP strengthened members is outside the scope of the present method, the paper presents 

relevant concrete analysis and moment-area integration procedures.  In addition, the 

derivation of the equivalent stress block factor, α, is useful:  
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Since the load-deflection response is based on the moment-curvature response, 

the paper also provided bases for developing the moment-area procedure for determining 

the structural response of the member.     

 2.3.3 Moment Curvature Analysis for Slender Walls 

According to Sakai and Kakuta (1980), calculating the moment curvature of 

reinforced concrete structures can be accomplished by several methods.  Moreover, the 

most popular method is relatively easy and fast.  It measures the transition of flexural 

rigidities of reinforced concrete members subjected to bending only, which means this 

method has never been tested on members that are subjected to both axial and bending.  

The main focus of Sakai and Kakuta’s (1980) research is to calculate moment-curvature 

relationship of reinforced concrete members subjected to combine bending and axial 

forces. 

To investigate this case they started by introducing the three procedures to 

estimate the tensile resistances of the flexural rigidity of the concrete.  The first procedure 
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is to assume the transition of stress distribution of concrete in the tensile region.  The 

second procedure is to assume the relation between steel stress in a cracked section and 

average steel strain.  The third procedure is to either give the transition of flexural 

rigidities or the moment-curvature relationships.  

The flexural rigidity, the curvature, and the strain of the first and second 

procedures are calculated theoretically from the forces’ equilibrium.  Most importantly 

these specific procedures can be used when member is subjected to both bending and axil 

forces.  The third method was developed by Branson, Yu and Winter, Beeby and Miles, 

Rabich, and Wegner and Duddeck.  This specific method can be applied to very few 

cases where the member is subjected to combine axial and bending. To be able to use this 

procedure in all cases, Branson’s term for the effective moment of inertia needs to be 

generalized.  Sakai and Kakuta (1980) on moment-curvature relationships of reinforced 

concrete members subjected to combined bending and axial force paper worked on 

establishing a method to generalize Branson’s equation, later on they verified their 

method experimentally.  Branson established a term for effective moment of inertia in 

1963 as follows 

                                                                                                     (Eq’n 2.3.3.1) 

 

Where m is a constant power.  Shaikh and Branson tested this equation on 

members subjected to bending force; their finding was that this equation is valid for all 

kind of bending forces.  However, when the member is subjected to bending and axial 

forces the results are not clearly determined.  

𝐼𝑒𝑓𝑓 = (
𝑀𝑐𝑟
𝑀

)
𝑚

+ (1 − (
𝑀𝑐𝑟
𝑀

)
𝑚

) 𝐼𝑐𝑟 ≤ 𝐼𝑔  
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The procedure to generalize the effective moment of inertia equation is described 

as follows.  The bending moment and the moment of inertia on the center of gravity of 

the section is used first.  When a member is subjected to both bending and axial forces, 

the neutral axis is separated from the center of the gravity.  The following equation can 

be used to calculate the average curvature after the member cracks.  

 

The effective moment of inertia should be calculated at the center of the gravity 

for both cracked and uncracked sections.  When the member is subjected to both bending 

and axial loading, the location of the neutral axis is separated from the center of the 

gravity.  In order to the keep the relationship in the previous equation between the 

moment and the curvature we need to use the center of gravity.  It is important to find the 

moment of inertia at the center of gravity for gross moment then the cracked moment in 

order to calculate the effective the moment of inertia.  

Sakai and Kakuta (1980) replaced the ratio of moment by a ratio of tensile 

reinforcement force.  Their reason to do so was because the main concern is related to the 

tensile rigidity.  The following equation shows the generalized form of Branson’s 

effective moment of inertia derived by Sakai and Kakuta (1980) 

                                                                                                             (Eq’n 2.3.3.2)   

 

Where,  

Icr = The cracked moment of inertia. 

Ig = Gross Moment of Inertia.  

Ts,cr = The tensile reinforcement force in cracked section at cracking. 

∅ =
𝑀

𝐸𝐼
 

𝐼𝑒𝑓𝑓 = (
𝑇𝑠, 𝑐𝑟
𝑇𝑠

)
𝑚
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Ts = The tensile reinforcement force in cracked section at arbitrary load levels. 

To prove the validity of the provided equation, two tests were completed.  The 

first test was when the member is subjected to bending.  The second test was when the 

member sis subjected to both forces axial and bending.  The results of this test indicate 

that calculating the average curvature is possible for members subjected to bending and 

axial loading if we consider both the moment of inertia and the effective center of gravity 

of the effective section.  In addition, the authors indicated that it is reasonable to replace 

the moment ratio with the tensile ratio in the effective moment of inertia equation 

because the main concern with concrete members is related to the rigidity of the tensile 

zone.  They concluded their research by indicating that the validity of the presented 

method presented is valid and can be confirmed experimentally.   

 2.3.4 Cracked Sectional Analysis 

This section discusses the analysis of cracked concrete members.  It is important 

to understand the behavior of the section after it starts to crack in order to find the 

deflection.  The section cracks as the load increases.  When the applied moment exceeds 

the cracking moment, the section cracks.  Cracking starts at the tension area; when the 

tension region starts to crack it can’t hold any tension stresses.  The following steps show 

the analysis of cracked section as presented in the ACI 318: 

1- Neutral axis: As shown in Figure 2.2, the concrete below the current neutral axis 

is cracked.  Thus, we need to find new location of the neutral axis.  To calculate 

the new location of the neutral axis, follow to provided steps: 

a-  The centroid of the cracked section needs to be calculated.  Assume a trial 

section of the value c. 
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b- Combine the section properties of the cracked and net section.  

c- Solve for c to locate the neutral axis: 

                                                                                                             (Eq’n 2.3.4.1) 

2- Cracking moment of inertia: Use the parallel axis theorem; the first part of the 

equation represents the top compression concrete and the second part represents 

the steel transformed into concrete.  The cracked moment of inertia equation is 

taken from chapter 14 in the ACI 318-14; equation 14-7.  The derivation of this 

equation is presented in Appendix B.  

                                                                                                              (Eq’n 2.3.4.2) 

                                                                                                              (Eq’n 2.3.4.3) 

Where, 

b = the width of the compression face of member. 

c = The distance from extreme compression fiber to the neutral axis. 

n = The ration for the modulus of elasticity of reinforcement over the 

modulus of elasticity of concrete.  

As = The area of the reinforcement steel. 

fy = The specified reinforcement yield strength.  

Pu= factored axial force. 

h = Overall thickness of the member.  

d = The distance from extreme compression fiber to centroid of 

longitudinal tension reinforcement.  

Figure 2.3.4.1 shows the section case analyzed in this section. 

 

𝑏𝑐 (
𝑐

2
) = 𝑛𝐴𝑠(𝑑 − 𝑐) 

𝐼𝑐𝑟 = 𝐼𝑔 + 𝐴𝑑2 

𝐼𝑐𝑟 =
𝑏𝑐3

3
+ 𝑛(𝐴𝑠 +

𝑃𝑢ℎ

𝑓𝑦2𝑑
) (𝑑 − 𝑐)2 



22 

 

 

After finding the cracked moment of inertia, we use it in the deflection equation.  

However, this approach is conservative as it overestimates the section deflection since the 

entire length of the slender wall panel has not cracked. 

 2.2.5 Bi-linear Behavior  

Bilinear function is used to represent the elastic relationship for both pre-cracked and post-

cracked regions.  Figure 2.3 shows a normalized moment-curvature curve. 

 

 

Figure 2.2: Cracked section Analysis. 
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The first elastic stage extends until it reaches the first flexural cracking point.  The second 

stage extends until it reaches the ultimate flexural capacity.  The second elastic stage can be 

also defined as the curvature at maximum tensile of compressive strain at specified flexural 

failure mode for members.  The moment curvature response can be expressed by the 

cracking and ultimate moment and curvature, Mcr, Mu, φcr and φu. 

 

 2.2.6 Effective Moment of inertia 

 Determining the deflection using the moment of inertia was conservatively estimated 

using Icr, or under estimated using Ig (Mohammadhassani, et all 2011).  The first model for 

developing the effective moment of inertia was done by Yu and Winter (1960).  They 

examined two test specimens both subjected to uniform load.  The following equation shows 

the first form of the effective moment of inertia that was developed: 

Figure 2.3: Normalized Moment-Curvature Curve. 
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                                                                            (Eq’n 2.2.6.1)  

where M1 is computed as follows: 

                                                                 (Eq’n 2.2.6.2) 

Later on, in 1963 Branson developed the second form of Ieff.  His goal was to accounts for the 

cracked part of the concrete not having any tension in it.  The following equation represents 

Branson’s work for Ieff:  

                                                                        (Eq’n 2.2.6.3) 

The ACI 318 approved his equation and added it to the design guide for calculating the 

deflection in 1971.  In 2005, Bischoff reevaluated Ieff, his work was based on the moment 

curvature relation established by the Euro code.  The following equation shows Bischoff’s 

approach:  

                                                                     (Eq’n 2.2.6.4) 

 

 

 

 

  

𝐼𝑒 =
𝐼𝑐𝑟

 1 − ( 
𝑀𝑐𝑟
𝑀𝑎

 )
2

[ 1 −
𝐼𝑐𝑟
𝐼𝑔

]

 

  

𝐼𝑒 = ( 
𝑀𝑐𝑟
𝑀𝑎

 )
3

𝐼𝑔 + [ 1 − ( 
𝑀𝑐𝑟
𝑀𝑎

 )
3

] 𝐼𝑐𝑟 

  

𝐼𝑒𝑓𝑓 =
𝐼𝑐𝑟

(1 − 𝑏 (
𝑀1
𝑀𝑎 

))

 

𝑀1 = 0.1(𝑓′
𝑐)

 2
3  ℎ(ℎ − 𝑘𝑑) 
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Chapter 3 - Sectional Analysis: Load Deflection Behavior 

 3.0 Moment-Curvature Response 

This section presents assumptions used for rectangular cross sections, uniformly loading 

in bending with axial load, and all two-moment curvature points: cracking point and yield point.  

The given assumptions aim to simplify the deflection calculations, describe the behavior of the 

materials, and note the members’ behaviors.  The assumptions are:  

1) Stress-Strain Relationship: It is important to define the stress-strain relationship in 

compression for concrete members.  Concrete is mainly used because it is strong in 

compression, which explains why we need to fully understand the behavior of this 

curve.  The stress-strain relationship is assumed to be linear with the concrete 

modulus of elasticity, Ec.  It remains linear until the stress in the extreme compression 

fiber becomes 0.7f’c.  This is based on eliminating the creep strains from 

consideration, in the lower portion of the instantaneous stress-strain curve (Park and  

Pauley 1975).  In this region, the stress relationship is assumed to follow the Whitney 

stress block distribution.  As the loading increases, the curvature starts to show non-

linear, plastic, behavior.  After compression stress exceeds 0.7f’c, the stress-strain 

relationship is assumed to follow the Hognestad’s parabolic equation.  Figure 3.1 

shows the curve for Hognestad’s parabolic equation. 
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The linear and non-linear behavior of the concrete members is shown in Figure 

3.2  

Figure 3.1: Hognestad’s Parabolic Curve. 

Figure 3.2: The Linear and Non-Linear Behavior of Concrete Members. 
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2) The reinforcement stress-strain relationship: The reinforcement is assumed to meet 

the requirements of ASTM A615-60 grade material.   The stress-strain relationship 

for the reinforcement is assumed to be elastic-perfectly plastic.  Figure 3.3 shows the 

stress-strain relationship for ASTM A615-60 grade steel.   

3) Reinforcement: Deformed Billet-Steel is used in this thesis, thus the yielding stress is 

60 ksi.  In addition, the strain is distributed linearly across the cross-section depth 

following Bernoulli’s hypothesis of a plane section remaining plane after bending.  

4) Failure in Compression: Concrete will fail in compression when the strain equal to 

0.003in./in unless otherwise noted.  Hognestad’s equation is applicable for a strain of 

0.003 in./in.  

5) Confinement: The confinement’s effects are beyond the scope of the presented thesis 

– typically, tilt-up wall panels without openings do not have confinement reinforcing. 

Figure 3.3: ASTM A615-grade 60 Reinforcing Steel Stress-Strain Curve. 
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6) Concrete Cracks: The concrete will crack when the extreme fiber in tension reaches 

the modulus of rupture of the concrete.  After cracking occurs, the concrete is 

assumed to have tension stiffening, the effect of concrete acting in tension between 

cracks on the stress of steel reinforcement.  At a crack, the internal tensile force is 

resisted by the reinforcement; between the cracks, some of the tensile force is 

transferred through bond to the surrounding concrete.  This results in a reduction in 

the reinforcement stresses and strains which causes the reinforcement strain in the 

uncracked zone to be less than the reinforcement strain at the cracked sections.  The 

tension-stiffening is accounted for by using the linear moment curvature relationship 

between the cracking and yielding points.  The ACI 318-19 indicates a value of   fr = 

7.5√f‘c for the modulus of rupture.  Figures 3.4 and 3.5 show the tension stiffening 

relationship at cracked sections.  

 

Figure 3.4: Tension Stiffening Relationship at Cracked Section (a) 
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The tension stiffing relation can also be shown in term or load and deflection curve. 

Figure 3.6 shows that relationship.  

 

Figure 3.5: Tension Stiffening Relationship at Cracked Section. 

Figure 3.6: Tension Stiffening Relationship at Cracked Section – Load vs. Deflection 
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7) Strain are assumed to be distrubted lineraly over the depth of the wall panel.  

8) Tension and compression forces acting on the cross section must be in equilibrium for 

the wall panel with flexure and axial load. 

9) The ultimate moment corresponds to the occurrence of a strain in the concrete, which 

causes crushing (0.003 in./in.). 

10) The failure analyzed is in combined flexure and axial load, and it is assumed that 

adequate shear strength exists to prevent shear failure.  Bond and anchorage of the 

steel is assumed to be adequate to prevent development length failure or bond slip 

allowing full flexural strength at the section being analyzed.  

The moment-curvature relationship: The relationship is tri-linear where the first straight line 

shows the pre-cracking response, the second linear portion represents the post-cracking behavior, 

and the third linear part shows the post yielding response.  Figure 3.0.6 shows the moment 

curvature used in this research.   The focus of the research is the bi-linear behavior – pre-

cracking response and post-cracking response to yield.  Mathematical representation of load-

deflection relations as shown in Figure 3.7 first occurred in literature in the 1940’s.  

Timoshenko’s 1956 Advance Strength of Materials book gives various methods to predict these 

load-deflection relations.  
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Additional assumptions are provided when applicable 

 3.1 Initial Point 

Initial point is the tilt-up panel not subjected to any bending load, wind, seismic, or soil 

load, or external axial load.  The only loading acting on the panel is self-weight.  At this stage, 

the moment due to the self-weight is insignificant.  Therefore, the moment-curvature is zero..  

𝑀𝑖𝑛 = 0                                       (Eq’n 3.1.1) 

𝜙𝑖𝑛 = 0                                       (Eq’n. 3.1.2) 

 3.2 Cracking Point 

 Cracking point occurs at the end of the linear, elastic behavior.  The cracking point for 

concrete develops when the tension stress reaches the cracking stress, modulus of rupture.  The 

modulus of rupture stress is used to determine the cracking stress.  Chapter 19 in the ACI 318-19 

Figure 3.7: Mathematical Representation of Load-Deflection Relations. 
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code specifies Equation 19.2.3.1 to calculate the modulus of rupture.  For normal weight 

concrete, the ‘lambda’ term, which modifies the modulus of rupture based on the density of the 

concrete, equals one.   Therefore, the modulus of rupture for this study is calculated using 

Equation 3.2.1.  

                                        (Eq’n 3.2.1) 

In this specific analysis, the self-weight of the panel is considered as an external axial 

load and wind pressure is considered as an external lateral load.  The external load is required for 

the extreme fiber in tension to reach the cracking stress. The panel could reach the cracking 

stress due to its self-weight only, but this does not typically occur.  Figure 3.8 shows the strain 

and stress distribution for the cross section when the member is subjected to external lateral 

(flexural) loading. 

 

The section is considered to be uncracked since the extreme fiber has just reached the 

cracking stress.  At this stage, linear elastic analysis is still used.  The stresses are distributed 

linearly across the cross-section.  The area of reinforcing as a percentage of the total cross-

sectional area of a beam is quite small, less than two percent.  Its effect on the wall panel 

properties is almost negligible as long as the beam is uncracked.  The following equation shows 

the cracking moment for wall panel subjected to bending with an axial load less than 0.06f’c Ag 

7.5 'r cf f

Figure 3.8: Strain and Stress Distribution for the Tilt Up Panel Cross Section. 
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(similar to a tilt-up concrete panel), P-delta affect is not considered since the section has not 

cracked:  

 𝑴𝒄𝒓 =
𝒇𝒓𝑰𝒈

𝒚𝒕
                                     (Eq’n 3.2.2) 

Where:  

Ig = gross moment of inertia of the reinforced concrete section.  The tilt-up concrete wall 

panels in this study have one layer of reinforcement, which is very close to gross 

transformed section’s neutral axis.  Therefore, the gross moment of inertia and the gross 

transformed moment of inertia are almost equal; the effects of reinforcement is neglected. 

yt = distance from the centroid to extreme tension fiber.  For a tilt-up panel reinforced 

with a single layer of reinforcing steel that is located in the center of the panel, the 

centroid of the wall section occurs approximately at the same location as the reinforcing 

steel depending on size of chairs used and accuracy of construction.  

Since the section is still uncracked and is assumed to act elastically, the strains, ɛ, are linearly 

distributed over the depth of the member and can be determined by dividing the stresses, f, by the 

modulus of elasticity of the concrete, Ec : 

 𝜀 =
𝑓

𝐸𝑐
                                          (Eg’n 3.2.3) 

Where:  

𝑬𝒄 = 𝟓𝟕𝟎𝟎𝟎√𝒇𝒄
′          (ACI 318-19 Eq’n 19.2.2.1.a) 

The deflection of a wall panel is calculated by integrating the curvatures along the length 

of the wall panel.  For an elastic wall panel, the curvature is equal to the moment divided 

by the flexural stiffness, EI, of the member.  Thus, the cracking curvature is shown as 

follows: 
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𝜙𝑐𝑟 =
𝑀𝑐𝑟

𝐸𝑐𝐼𝑔
                                           (Eq’n 3.2.4) 

 3.3 Yielding Point 

The yielding point in concrete members occurs when the steel reaches the specified 

yielding stress.  The yielding stress permitted by the ACI 318 ranges from 40,000 psi to 80,000 

psi (Paulson et al. 2016).  The most common reinforcing steel used in tilt-up wall panels is 

ASTM C615-60 grade.  Therefore, for the purpose of this research, the reinforcing steel yield 

stress is 60,000 psi.  Since the reinforcing steel strain is greater than the concrete cracking strain, 

the section is defined as cracked at the reinforcing yielding.  It is not possible to determine the 

yielding moment and curvature using the internal stress analysis since the section is cracked.  

When the section is cracked, the stresses are not distributed linearly across the cross-section, 

which is why we need to use the strain-compatibility analysis instead.  

Strain-compatibility analysis is used to establish computable internal stresses and forces 

relationships; it is assumed that within the cross-section the strain is distributed.  The analysis 

uses the following assumptions for cracked sections: 

1) Plane section remains plane. 

2) Steel and concrete strains are the same at all locations. 

3) Strains within the cross-section are distributed linearly is applicable. 

Reinforced steel is a bilinear material, which means we can apply Hooke’s Law until it reaches 

the yield stress.  Since strain-compatibility is being used, the strain equation that causes the 

reinforcement to yield is: 

 

                                                         (Eq’n 3.3.1) 𝜀𝑦 =
𝑓𝑦

𝐸𝑠
=

0.002

𝑐
𝑑 
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To determine the tension force of the reinforcement, the area of the steel is multiplied by the 

steel stress using the following equation: 

        T = Asfy                                    (Eq’n 3.3.2)
 

By using strain-compatibility, the extreme compression fiber strain is determined from: 

                   
𝜀𝑐𝑓

𝑐𝑦
=

𝜀𝑦𝑐𝑦

(𝑑−𝑐𝑦)
⟹ 𝜎𝑐𝑓 =

𝜀𝑦𝑐𝑦

(𝑑−𝑐𝑦)
𝐸𝑐                  (Eq’n 3.3.3) 

The location of the neutral axis from the extreme compression fiber, cy, is unknown and will be 

determine from the internal force equilibrium of the cross section.  After determining the steel-

concrete strain relationship, the stress-block model shown in Figure3.3.1 is used to replace the 

actual parabolic concrete stress distribution.  The coefficient β1 is multiplied by the depth to the 

neutral axis, c, to get the depth of the stress block, a.  The concrete is assumed to carry no tension 

- no concrete stress distribution below the neutral axis.   The assumed stress block is the Whitney 

stress block to specify concrete stresses in compression.  The ACI 318-19 Section 22.2.2.4 

allows for an approximation for the force in the stress block.  The approximation is based on the 

work done by Whitney in 1930’s.  Whitney (1937) proposed to replace the parabolic stress block 

to a rectangular stress block.  Figure 3.9 shows the parabolic stress block and Whitney’s 

rectangular stress block distribution: 



36 

 

The following procedure shows how to convert the parabolic stress block into a 

rectangular stress block.  Uniform compressive strength of 0.85 f’c shall be assumed distributed 

over an equivalent compression zone (Mattock et al. 1961).  The depth of the compression zone 

is a straight line parallel to the neutral axis from the extreme concrete fiber in compression.  The 

depth of the equivalent compression block, a, varies depending on the concrete’s compression 

strength by a factor, β1.  The ACI 318-19 defines the depth of the equivalent compression block: 

        (ACI 318-19 Eq’n 22.2.2.4.1)  

The ratio of depth to resultant of concrete compressive force to depth of neutral axis is expressed 

as k2, which is represented as follows: 

                                       (Eq’n 3.3.4) 

The distance from the fiber of maximum compressive strain to the neutral axis, c, is measured 

perpendicular to that axis.  The beta factor for 4000 psi is equal to 0.85.  The width of the stress 

block is represented as the value b.  Thus, after combining the previous equation, the following 

equation shows an expression for the resultant compressive force of a rectangular stress block: 

𝑘2 =
𝛽1𝑐
2

=
𝑎

2
 

𝑎 = 𝛽1𝑐 

Figure 3.9: Whitney’s Equivalent Stress Block. 
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                                                               (Eq’n 3.3.5) 

Then, the compression and tension forces are set equal to each other to find the depth of the 

neutral axis: 

T = C                       (Eq’n 3.3.6)  

                                                     (Eq’n 3.3.7) 

Once cy is determined the curvature and the corresponding moment are found from the equation: 

            𝜙𝑦 =
𝜀𝑐𝑓

𝑐𝑦
=

𝜀𝑦

(𝑑−𝑐𝑦)
                     (Eq’n 3.3.8) 

The corresponding moment for yielding point is found by summing the moments about the 

centroid of the compressive force.  The bending moment equation is:  

                                                                 (Eq’n 3.3.9)  

 3.4 Ultimate Point 

This section discusses the derivation of equations for determining the slender wall 

members’ ultimate moment and corresponding curvatures.  Since confinement reinforcement is 

not typically provided, a rectangular cross-section without compression steel is discussed.  The 

two possible failure modes for reinforced concrete panels are steel rupture and concrete crushing 

(Stowik, 2019).  

 3.4.1 Steel Rupture 

Reinforcing steel is used in concrete members to give the needed tensile strength.  

The reinforced steel rupture occurs at 0.05in/in.  All other conditions indicated in the 

yield point section remain the same.  Figures 3.10 and 3.11 shows the behavior of steel at 

the yield point.  The curve is a flat line to show that the reinforcement steel is elastic-

plastic material (Hogenstad, 1952).  

C = 0.85f ′
c 
ab 

𝑐𝑦 =
Asfy

0.85f ′
c𝛽1b 

 

𝑀𝑛 = 𝐴𝑠𝑓𝑦 (𝑑 −
𝑎

2
) 
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Figure 3.11: The Behavior of Steel (Hogenstad, 1952). 

Figure 3.10: Nomenclature for Stress-Strain Curve of Reinforcing Bars. 
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In most cases, concrete fail before steel reaches the yielding point (Hogenstad, 

1952).  The derivation of the equations has been shown in the previous section.  For a 

rectangular section, the neutral axis for a linear stress distribution is as follows: 

(0.5)𝜀𝑢𝑐𝑛
2𝐸𝑐𝑏 = 𝐴𝑠𝑓𝑦(𝑑 − 𝑐𝑛) ⇒ ((0.5)𝜀𝑢𝐸𝑐𝑏)𝑐𝑛

2 + (𝐴𝑠𝑓𝑦)𝑐𝑛 − 𝐴𝑠𝑓𝑦𝑑 = 0         (Eq’n 3.4.1.1) 

After summing the forces in about the compression force, the moment for steel rupture 

failure mode is as follows: 

                                                                           (Eq’n 3.4.1.2)  

 

 3.4.2 Concrete Crushing Failure 

The concrete crushing failure mode occurs when the strain at the concrete extreme 

compressive fiber equals to 0.003in/in.  Since concrete crushing is the failure mode, it is 

assumed that the compressive stress distribution is parabolic.   A stress above 0.7f’c in the 

compression zone is required to achieve a strain of 0.003 in./in. in the extreme concrete 

compression fiber.  To determine the ultimate moment and corresponding curvature, 

strain-compatibility analysis must be used.  Keeping in mind that both the tension and 

compression forces vary depending on the location of the neutral axis.  The only 

difference is both the tension and the compression force are dependent on the neutral axis 

location.   

For a rectangular section, the neutral axis for a linear stress distribution is as follows:  

𝜀𝑐𝑢

𝑐𝑛
=

0.003

𝑐𝑛
=

𝜀𝑠

(𝑑−𝑐𝑛)
⇒ 𝜀𝑠 =

(𝑑−𝑐𝑛)

𝑐𝑛
0.003                   (Eq’n 3.4.2.1) 

The stress distribution is converted into an equivalent rectangular stress block by the 

following procedure: 

𝑀𝑛 = 𝐴𝑠𝑓𝑦 (𝑑 −
𝛽1𝑐𝑛

2
) 



40 

                     (Eq’n 3.4.2.2) 

where α captures the height of the equivalent rectangular block, which is a function of the 

extreme compressive fiber strain, εcf, and the strain at maximum compressive stress, ε’c. 

This stress block is used to determine the compressive force attributed to the concrete. 

However, while this stress block gives the equivalent magnitude of the compression 

force; the location of the compression force is not located at the center of the block.  

Since the centroid of the actual compressive stress is based off of the parabolic shape. 

The location of the compression force is placed at a distance of γcy from the extreme 

compressive fiber.  The neutral axis multiplier, γ, is based of the following equation used 

by Charkas, Rasheed and Melhem (2003): 

                    (Eq’n 3.4.2.3) 

The neutral axis multiplier, γ, is also dependent on the strain at maximum compressive, 

ε’c and extreme compressive fiber strain, εcf.  The strain is converted to a stress by 

multiplying by the modulus of elasticity of concrete, Ec.  The parabolic distribution is 

valid at an extreme fiber stress greater than 0.7f‘c.  If the stress is greater than 0.7f‘c, the 

stress is distributed in accordance with Hognestad’s parabolic equation.  With the steel 

and concrete stress-strain relationships are known it is possible to find cn by force 

equilibrium.  
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((3𝜀𝑠𝜀𝑐
′)𝑓𝑐

′𝑏)𝑐𝑛
3 + (𝐴𝑠𝑓𝑦3𝜀𝑐

′2 − 3𝜀𝑠𝑓𝑐
′𝑏𝜀𝑐

′𝑑)𝑐𝑛
2 − (𝐴𝑠𝑓𝑦6𝜀𝑐

′2𝑑)𝑐𝑛 

+𝐴𝑠𝑓𝑦3𝜀𝑐
′2𝑑2 = 0                                                         (Eq’n 3.4.2.4) 

After summing the forces in the compression, the moment for a parabolic stress 

distribution in the concrete crushing failure mode is as follows: 

𝑀𝑛 = 𝑇(𝑑 − 𝛾𝑐𝑛) = 𝐴𝑠𝑓𝑦(𝑑 − 𝛾𝑐𝑛)                           (Eq’n 3.4.2.5)  

                                       

 𝝓𝒏 =
𝜺𝒄𝒖

𝒄𝒏
=

𝜺𝒔

(𝒅−𝒄𝒏)
                                                   (Eq’n 3.4.2.5)  

 3.5 Analytical Formulation 

This section describes the analysis of deriving short-term deflection equations for out-of-

plane load-bearing tilt up panels.  This work is based on several irritations of deflection 

equations and procedures.  The derived equations describe the behavior of the slender walls 

under bending loading.  The moment-curvature curve was used in this procedure.  In deriving the 

Figure 3.12: Loading Case Acting on the Tilt-Up Panel. 
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equations, closed forms of analytical expressions are obtained for the pre-cracking, post-

cracking, and post-yielding regions.  Figure 3.12 Shows the load case analyzed in this research. 

 3.5.1 Introduction 

The proposed equations aim to represent an accurate description of the deflection 

behaviour of tilt-up panels under bending loading.  The maximum deflection occurs in 

the mid-height of the panel.  Figure 3.13 shows the deflected shape of the panel when 

subjected to external forces.  

 

The following assumptions apply to all work presented in this research: 

1) Maximum deflection occurs at the mid-height of the panel. 

2) Panel is simply supported (pin-pin). 

Figure 3.13: Deflected Shape of the Tilt Up Panel. 
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3) Panels are lightly reinforced load bearing walls. 

4) Self-weight of the panel is considered as axial load. 

5) Concrete in compression region is assumed to behave linearly up to an 

extreme fiber stress of 0.7fc’ then Hogenstad’s parabolic stress distribution is 

used. 

6) Steel has elastic-perfectly plastic response.  

7) Prior cracking gross moment of inertia (Ig) is used in the deflection equation 

neglecting reinforcing steel since the steel is located near the neutral axis. 

8) Post-cracking proposed effective moment of inertia (Iey) equation is used. 

9) Moment-Curvature assumed to have Tri-linear behavior. 

 3.5.2 Pre-Cracking Stage 

 The member is considered to be in the pre-cracking stage if it is not subjected to 

any loading or lightly loaded.  In this region the cracking moment is greater than the 

applied moment due to bending and axial loading.  The first step if the derivation is to use 

the moment- curvature relationship equation: 

                                                                     (Eq’n 3.5.2.1)   

The moment of inertia used at this stage is the gross moment of inertia of the section: 

                                                                     (Eq’n 3.5.2.2) 

M(x) term represents the moment of the forces acting on the panel: 

                                                         (Eq’n 3.5.2.3) 

The deflection of the panel in the pre-cracked region is equal to the integral of the 

moment-curvature equation: 

                                                         (Eq’n 3.5.2.4) 

∅(𝑥) =
𝑀(𝑥)

𝐸𝐼
 

Δ
c
=𝛿𝑢𝑛 

∅𝑢𝑛(𝑥) =
𝑀(𝑥)

𝐸𝑐𝐼𝑔𝑡
 

𝑀(𝑥) =
𝑤𝐿

2
x −

wx2

2
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                                                         (Eq’n 3.5.2.5) 

We plug equations 3.5.2.2 and 3.5.2.2 into equation 3.5.2.5.  The integral limit is from 0 

to L/2: 

                                                                          (Eq’n 3.5.2.6) 

 

The following equations show the progress of the integration with respect to x: 

                                                                          (Eq’n 3.5.2.7) 

 

 

                                                                          (Eq’n 3.5.2.8) 

 

We replace the x term by the limit 0 to L/2: 

                                                                                       (Eq’n 3.5.2.9) 

 

                                                                                       (Eq’n 3.5.2.10) 

Then we use algebra to find a common denominator and simplify the equation: 

                                                                           (Eq’n 3.5.2.11) 

The final form of the deflection equation for out of plane load-bearing walls in the pre-

cracking region is as follows: 

                                                                          (Eq’n 3.5.2.12) 
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An exception where equation 3.4.2.12 is not valid is when cracking occurs prior L/2 

point.  We use the following equation: 

                                                                          (Eq’n 3.5.2.13) 

Then we use algebra to find a common denominator and simplify the equation.  The final 

deflection equation for out of plane load-bearing walls in the pre-cracking region when 

cracking occurs prior to L/2 is as follows: 

                                                                     (Eq’n 3.5.2.14) 

The term of Lg is: 

                                                                     (Eq’n 3.5.2.15) 

 

 3.5.3 Post Cracking Stage 

The member is considered to be in the post cracking stage when it is heavily 

loaded.  In this stage the cracking moment is less than the applied moment due to bending 

and axial loading.  The deflection in this stage includes the deflection of the member 

prior cracking in addition to the deflection post cracking.  The first step in determining 

the deflection equation is to show a representation of the deflection equation at the post-

cracking region: 

                                                                 (Eq’n 3.5.3.1) 

Then we use the moment curvature relationship in this stage: 

                                                                             (Eq’n 3.5.3.2) 
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                                                                             (Eq’n 3.5.3.3) 

The deflection of the panel in the cracked region is equal to the integral of the moment-

curvature equation: 

                                                                              (Eq’n 3.5.3.4) 

We plug equations 3.5.3.2 and 3.5.3.3 into equation 3.5.3.4.  The integral limit is from Lg 

to Ly: 

                                                                                           (Eq’n 3.5.3.5) 

 

The following equations show the progress of the integration with respect to x: 

 

                                                                                                                        (Eq’n 3.5.3.6) 

 

                                                                                                                        (Eq’n 3.5.3.7) 

 

 

                                                                (Eq’n 3.5.3.8) 

 

 

                                                                                           (Eq’n 3.5.3.9) 

 

 

                                                                                           (Eq’n 3.5.3.10) 
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Then we recall the pre-cracking deflection equation 3.5.2.14 that was derived in the 

previous section and we use equation 3.5.3.10 to plug it in equation 3.5.3.1.  The 

following equation represents the total deflection that occurs at the post-cracking region: 

 

                                                                               

 

                                                                                         (Eq’n 3.5.3.11) 

Equation 3.5.3.11 can be used in all cases except at the end of the post cracking region 

where yielding starts to occur.  We replace Ly by L/2 and use the following equation: 

 

 

 

                                                                           (Eq’n 3.5.3.12) 

We simplify the previous equation using algebra: 

 

 

                                                                              (Eq’n 3.5.3.13) 

Then we recall the pre-cracking deflection equation 3.5.2.14 that was derived in the 

previous section and we use equation 3.5.3.13 to plug it in equation 3.5.3.1.  The 

following equation represents the total deflection that occurs at the end of the post 

cracking region where yielding starts to occur:  
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The equation for Lg remains the same as the one used in the previous section and is not 

repeated here.  The following equation is used for Ly and is obtained from previous 

research (Charkas et al. 2003):     

                                                                          (Eq’n 3.5.3.15)     

 

 3.5.4 Post Yielding Stage 

The member is considered to be in the post yielding when it is heavily loaded 

where the applied moment due to bending and axial loading exceeds the yielding 

moment.  The deflection at this stage includes the deflection of the member prior 

cracking region, the deflection at post-cracking region, in addition to the deflection at the 

post-yielding region.  The first step in determining the deflection equation is to show a 

representation of the deflection at the post-yielding region: 

                                                              (Eq’n 3.5.4.1) 

 Then we use the moment curvature relationship in this stage: 

                                                                                      (Eq’n 3.5.4.2) 

The deflection of the panel in the post-yielding region is equal to the integral of the 

moment-curvature equation: 

                                                                          (Eq’n 3.5.4.4) 

We plug equations 3.5.4.2 into equation 3.5.3.4.  The integral limit is from Ly to L/2:  

                                                                                                                  

                                                                                                                   (Eq’n 3.5.4.4) 
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                                                                                                                  (Eq’n 3.5.4.5) 

 

                                                                                                                   (Eq’n 3.5.4.6) 

 

 

                                                                                                                   (Eq’n 3.5.4.7) 

 

 

                                                                          

                                                                                                                    (Eq’n 3.5.4.8) 

 

We simplify the previous equation using algebra: 

                                                                                                                                 

 

                                                                                                                    (Eq’n 3.5.4.9) 

 

Then we recall the pre-cracking deflection equation 3.5.2.14 and the post cracking 

deflection 3.5.3.13 that were derived in the previous sections in addition to equation 

3.5.4.9 to plug it in the total deflection equation 3.5.4.1.  The following equation 
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                                                                                                                      (Eq’n 3.5.4.10) 
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Chapter 4 - Structural Response: Load-Deflection Behavior  

 4.0 Uniform Loads and Axial Load  

This chapter discusses the deflection behavior of tilt-up panels subjected to out-of-plane 

uniform load and axial load.  This loading condition is the most common and basic of the loading 

conditions.  Since the panels are slender and typically pinned supported at the foundation and the 

floor and/or roof diaphragm, the most important aspect when designing tilt-up panels is the 

deflection behavior that occurs at mid-height.  The loads and stiffness are considered when 

deflection is evaluated.  The slender wall behavior is first introduced. Multiple analysis methods 

can be used for calculating the deflection: moment area theorem, different equations and moment 

magnifier method.  These procedures are presented.  Discussion of moment of inertia is included 

in Section 4.3.  Lastly, the results of the Test Report on Slender Walls conducted by the ACI-

SEASC Task Committee are discussed.  

 4.1 Wall Behavior 

The behavior of slender load-bearing walls is discussed in this section.  The load-bearing 

walls resist axial, in-plane loads acting vertically on the wall, which means the panels are 

primarily used to support gravity loads axially in this study.  In addition, the wall panels resist 

out-of-plane forces, perpendicular to the wall, such as wind, seismic, and soil pressure.  The 

focus of this research is wind out-of-plane forces.  Bending moments are a product of out-of-

plane loading (wind or seismic) as shown in Figure 4.1.1 and axial loads initiated by the panel 

self-weight and/or roof/floor structure shown in Figure 4.1.1.  In addition, the axial loads may 

eccentrically load the wall panel causing and an additional moment as shown in Figure 4.1.1.  

The wall panels are beam-column members that are governed by flexural tension so we use the 

design provisions for axial and flexure loads. Since tilt-up concrete wall panels are slender 
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elements, the second-order bending effects, P-delta effects, caused by axial load acting on the 

deflected panel shape increase the primary moments.  The maximum bending moment can be 

categorized into two components: primary moment due to applied loads, and secondary moments 

due to P-delta effects.  Initial lateral deflections caused by panel out-of-straightness are not 

considered as part of this study.  In addition, the moments caused by small horizontal 

displacements of the top of the panel in relation to the bottom of the panel are small and 

negligible. 

  The ACI 318-19 has three design procedures for walls.  The first procedure is to idealize 

the wall as a column considering the slenderness affects, which can be found in Sections 22.2 

and 22.4.   The second design procedure is the simplified wall design expressed in Section 

11.5.3.  The third procedure is the alternative method for out-of-plane slender wall analysis in 

Section 11.8 – the focus of this research. 

Vertical loading may act with eccentricity, which induces a moment.  Figure 4.1 shows 

the maximum bending moment due vertical and lateral loads in a simply supported wall panel.  

The maximum moment is due to the eccentric, vertical load occurring at the roofline where the 

joist is supported, and the out-of-plane lateral load.  Since the panel is idealized as pinned-pinned 

support conditions, the maximum moment occurs at mid-height.  
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In addition to this moment, these slender walls when subjected to different loading will 

deflect laterally.  The secondary moments can be large after the wall has reached the cracking 

moment; therefore, cannot be neglected in design.  When the bending moment due to lateral and 

vertical loads exceeds the cracking moment capacity of the walls, cracking occurs in the 

horizontal dimension of the wall.  As the loading continues to increase, the applied moment with 

secondary effects increases until it exceeds the ultimate capacity, which is when failure occurs.  

Since the walls are idealized as pinned-pinned, the maximum deflection occurs approximately at 

mid-height of the wall.  Figure 4.2 shows the deflected shape of the wall subjected to lateral and 

vertical loads.  The force “P” indicates the axial load, including self-weight above mid-height, 

which the wall panel is supporting.   

Figure 4.1: Maximum Moment Due to Vertical and Lateral Loading. 
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 4.2 Analysis Methods for Deflection on Slender Walls 

Calculation of deflection of the tilt-up concrete wall panel depends on its bending 

stiffness.  Bending stiffness is affected by several factors, such as, the area of steel 

reinforcement, location of the steel reinforcement within the wall section, compressive strength, 

concrete tensile strength, wall thickness, loading, bending curvature, and the moment capacity of 

the member.  Four different approaches are used to investigate the deflection behavior of the 

slender walls.  The four approaches are presented and described in details in this section.  The 

approaches are the moment area theorem, the effective moment of inertia approach, the latest 

ACI 318 approach, and the moment magnifier method.  The case we are investigating here is a 

tilt-up panel subjected to lateral loading. 

Figure 4.2: Deflected Shape of Out of Plane Load Bearing Walls. 
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 4.2.1 Moment Area Theorem 

The structural response of walls can be expressed using the first and second 

moment area theorem.  Otto Mohr founded the moment area theorem in 1873.  This 

theorem is designed to find the slope and deflection based on the relationship between 

bending moment, slope, and deflection in the moment-curvature curve.  Three regions 

represent the curve:  the un-cracked, post-cracked, and post yield regions.  Figure 4.3 

shows the moment curve used in the moment area theorem. 

 

The first theorem assumes that the change in the slope between any two points on 

the member is equal to the area under the two points on the curve.  The first moment-area 

theorem is done by in integrating the area under the moment curvature curve.  However, 

∅ =
𝑀

𝐸𝐼
 

Figure 4.3: Moment Area Theorem. 
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in a simply supported member with uniform loading the curvature is equal to M/EI at any 

point due to symmetry.  The curvature equation is as follows: 

                                                (Eq’n 4.2.1.1) 

The second moment area theorem is used to compute the deflection through 

obtaining the vertical distance between two tangent points on the member.  The 

difference between the two points equals to the moment of the area under the curve.  The 

deflection equation can be calculated by finding the integral of the curvature equation 

4.2.1.1 founded in theorem one; then multiply it by the distance, x, from the vertical axis 

of the point to the centroid of the moment area.  The integral can be expressed as follows, 

where y and z are the integral limits: 

                                   (Eq’n 4.2.1.2) 

For the un-cracked region, we use equation 4.2.1.2 and the integration limit is from 0 to 

L/2, the location of maximum deflection.  The equation can be expressed as follows:  

                                               (Eq’n 4.2.1.3) 

For the post-cracked region, the deflection equals to the un-cracked section deflection in 

addition to the post-cracked section deflection.  For the post-cracked section, we use 

equation 4.2.1.2 and the integration limit is from Ly to Lg.  The equation can be expressed 

as follows:  

                                                         (Eq’n 4.2.1.4) 

Lg and Ly equation are provided in the previous section and not repeated here.  

For the post-yield region, the deflection equals to the un-cracked section deflection and 

post-cracked deflection in addition to the post-yield section deflection.  For the post-yield 

𝛿𝑝𝑐 = 𝛿𝑢𝑛  
+∫ Ø𝑐𝑟 (𝑥) 𝑑𝑥

𝐿𝑦

𝐿𝑔

 

𝛿 = ∫ Ø (𝑥) 𝑑𝑥
𝑧

𝑦

 

𝛿𝑢𝑛 = ∫ Ø (𝑥) 𝑑𝑥

𝐿
2

0

 

𝛿𝑝𝑦 =𝛿𝑢𝑛 + 
𝛿𝑝𝑐 +  ∫ Ø𝑛 (𝑥) 𝑑𝑥

𝐿

2
𝐿𝑦
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section, we use equation 4.2.1.2 and the integration limit is from Ly to L/2.  The equation 

can be expressed as follows:  

                                                                (Eq’n 4.2.1.5) 

 

 4.2.2 Differential Equations 

A number of categories of combined bending and axial load along with the likely 

mode of failure exist.  For a slender concrete wall panel, the axial compression and 

transverse bending about one axis, failure by instability in the plane of bending without 

twisting, is the failure mode. 

To better understand the behavior, differential equations can be used to describe 

the element behavior for axial compression and bending.  Consider the general case 

shown in Figure 4.4, where the lateral load w in combination with axial load constitute 

the primary bending moment Mi which is a function of the applied load, w.  The primary 

moment causes the member to deflect, y, giving rise to a secondary moment Py.   
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Stating the moment Mz at the location z in Figure 4.2.2.1,  gives: 

    𝑀𝑧 = 𝑀𝑖 + 𝑃𝑦 = −𝐸𝐼
𝑑2𝑦

𝑑𝑧2
                              (Eq’n 4.2.2.1) 

For sections with constant EI and dividing by EI gives the deflection differential 

equation:  

   
𝑑2𝑦

𝑑𝑧2 +
𝑃

𝐸𝐼
𝑦 = −

𝑀𝑖

𝐸𝐼
                                               (Eq’n 4.2.2.2) 

For design purposes, the general expression for moment Mz is of greater importance than 

the deflection y.  Differentiating Equation 4.2.2.2 twice gives: 

  
𝑑4𝑦

𝑑𝑧4 +
𝑃

𝐸𝐼

𝑑2𝑦

𝑑𝑧2 = −
1

𝐸𝐼

𝑑2𝑀𝑖

𝑑𝑧2                                     (Eq’n 4.2.2.3) 

Figure 4.4: General Loading of Beam-Column. 
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From Equation (4.2.2.1),  

 
𝑑2𝑦

𝑑𝑧2 = −
𝑀𝑧

𝐸𝐼
 𝑎𝑛𝑑 

𝑑4𝑦

𝑑𝑧4 = −
1

𝐸𝐼

𝑑2𝑀𝑧

𝑑𝑧2                    (Eq’n 4.2.2.4)  

Substitution in Equation 4.2.2.3, gives:  

−
1

𝐸𝐼

𝑑2𝑀𝑧

𝑑𝑧2 +
𝑃

𝐸𝐼
(−

𝑀𝑧

𝐸𝐼
) = −

1

𝐸𝐼

𝑑2𝑀𝑖

𝑑𝑧2                 (Eq’n 4.2.2.5)  

Or, simplifying and letting k2=P/EI,  

𝑑2𝑀𝑧

𝑑𝑧2 + 𝑘2𝑀𝑧 =
𝑑2𝑀𝑖

𝑑𝑧2                                      (Eq’n 4.2.2.6)  

Which is of the same form as the deflection differential equation.  The homogenous 

solution form equation 4.2.2.6 is: 

𝑀𝑧 = 𝐴 sin 𝑘𝑧 + 𝐵 cos 𝑘𝑧                                            (Eq’n 4.2.2.7) 

Applying the boundary conditions, (a) y=0 at z=0; and (b) y=0 at z=L, one obtains for 

condition (a), B=0; and for condition (b),  

0 = 𝐴 sin 𝑘𝐿                                                                 (Eq’n 4.2.2.8)  

To this must be added the particular solution that will satisfy the right-hand side of the 

differential equation.  Since Mi = f(z), where f(z) is usually a polynomial in z, the 

particular solution will be of the same form; thus the complete solution may be written 

as: 

Alternate to differential equation approach, a simple approximate procedure is 

satisfactory for many common situations.  

𝑀𝑧 = 𝐴 sin 𝑘𝑧 + 𝐵 cos 𝑘𝑧 + 𝑓1(𝑧)                                    (Eq’n 4.2.2.9) 

Where f1(z) = value of Mz satisfying Equation 4.2.2.5.  When Mz is a continuous function, 

the maximum value of Mz may be found by differentiation: 
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𝑑𝑀𝑧

𝑑𝑧
= 0 = 𝐴𝑘 cos 𝑘𝑧 − 𝐵𝑘 sin 𝑘𝑧 +

𝑑𝑓1(𝑧)

𝑑𝑧
           (Eq’n 4.2.2.10) 

For most cases, such as concentrated loads, uniform loads, and end moments, or 

combination thereof, it may be shown that  

𝑑𝑓1(𝑧)

𝑑𝑧
= 0                                                                         (Eq’n 4.2.2.11) 

In which case a general expression for maximum Mz can be established; from Equation 

4.2.2.10: 

𝐴𝑘 cos 𝑘𝑧 = 𝐵𝑘 sin 𝑘𝑧                                                          (Eq’n 4.2.2.12) 

            tan𝑘𝑧 =
𝐴

𝐵
                                                                          (Eq’n 4.2.2.13) 

At maximum Mz,  

𝑀𝑧𝑚𝑎𝑥
= √𝐴2 + 𝐵2 + 𝑓1(𝑧)                                                (Eq’n 4.2.2.14) 

 

 4.2.3 Moment Magnifier Method  

The moment magnifier method was adopted by the ACI 318 to account for the P-delta 

effect in axially loaded members.  It can provide the same results as the iterative method 

if the section stiffness, EI, is assumed the same.  To calculate the deflection, we use the 

following steps.  After finding the section properties, gross moment of inertia, and 

cracked moment of inertia, we obtain the bending stiffness, kb, for a slender wall as 

follows: 

                                                                         (Eq’n 4.2.3.1) 

This slightly overestimates the deflection and maximum bending moment of a slender 

wall subjected to the combined effects of lateral and axial load for all axial loads that 

produce P-delta moments larger than the moment produced by lateral loads.  

k𝑏 =
48𝐸𝑐𝐼𝑐𝑟

5𝑙𝑐2
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The bending stiffness kb is similar in value to the more familiar term for buckling load, 

Pcr.  

Then we find the maximum moment:  

   𝑀𝑚𝑎𝑥 = 𝑀𝑎 ∗ (
1

1−
𝑃

𝐾𝑏

)                                      (Eq’n 4.2.3.2)  

Mu equation is provided in section 4.2.2 and not repeated here.  Then the final step is to 

obtain the defletion which can be calucted using the following equation: 

                                                                                   (Eq’n 4.2.3.3)   

Moment Magnification simplified treatment for members in single curvature without end 

translation. As an alternate to the differential equation approach, a simple approximate 

procedure is satisfactory for many common situations.   Assume a beam-column is 

subjected to lateral loading w, which causes a defection δ0, at midspan, as shown in 

Figure 4.5.  The secondary bending moment may be assumed to vary as a sine curve, 

which is nearly correct for members with no end restraint whose primary bending 

moment and deflection are maximum at midspan.  

The portion of the midspan deflection, y1, due to the secondary bending moment, equals 

the moment of the M/EI diagram between the support and midspan (shaded portion of 

Figure 4.5) taken about the support, according to the moment-area principle: 

Δ𝑚𝑎𝑥 = ( 
𝑀𝑚𝑎𝑥
(𝑘 𝑏)

)

𝑀𝑚𝑎𝑥
𝐾 𝑏
2
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𝑦1 =
𝑃

𝐸𝐼
(𝑦1 + 𝛿0) (

𝐿

2
)

2

𝜋
(

𝐿

𝜋
) = (𝑦1 + 𝛿0)

𝑃𝐿2

𝜋2𝐸𝐼
            (Eq’n 4.2.3.1) 

Or  

𝑦1 = (𝑦1 + 𝛿0)
𝑃

𝑃𝑒
                                                               (Eq’n 4.2.3.2) 

Where  

𝑃𝑒 =
𝜋2𝐸𝐼

𝐿2
                                                                               (Eq’n 4.2.3.3) 

Solving for y1,  

Figure 4.5: Primary and Secondary Bending Moment. 
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   𝑦1 = 𝛿0 [
𝑃

𝑃𝑒
⁄

1−𝑃
𝑃𝑒

⁄
] = 𝛿0 (

𝛼

1−𝛼
)                                        (Eq’n 4.2.3.4)  

Where 

   𝛼 = 𝑃
𝑃𝑒

⁄                                                                            (Eq’n 4.2.3.5)  

Since ymax is the sum of δ0 and y1 

   𝑦𝑚𝑎𝑥 = 𝛿0 + 𝑦1 = 𝛿0 + 𝛿0 (
𝛼

1−𝛼
) =

𝛿0

1−𝛼
                 (Eq’n 4.2.3.6) 

The maximum bending moment including the axial effect becomes 

   𝑀𝑧𝑚𝑎𝑥
= 𝑀0 + 𝑃𝑦𝑚𝑎𝑥                                                  (Eq’n 4.2.3.7) 

Substituting the expression for ymax into Equation 4.2.3.5 and setting  

   𝑃 = 𝛼𝑃𝑒 =
𝛼𝜋2𝐸𝐼

𝐿2
                                                             (Eq’n 4.2.3.8) 

Equation 4.2.3.7 may be written as the primary moment M0 multiplied by a magnification 

factor B1. 

   𝑀𝑧𝑚𝑎𝑥
= 𝑀0𝐵1                                                                (Eq’n 4.2.3.9) 

Where   

   𝐵1 =
𝐶𝑚

1−𝛼
                                                                            (Eq’n 4.2.3.10) 

And  

   𝐶𝑚 = 1 + (
𝜋2𝐸𝐼𝛿0

𝑀0𝐿2
− 1)𝛼                                            (Eq’n 4.2.3.11) 

For the case of uniform lateral load and a concentric axial load, Cm=1, the magnified 

moment becomes: 
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𝑀𝑧𝑚𝑎𝑥
= 𝑀0 (

1

1−𝑃
𝜋2𝐸𝐼

𝐿2
⁄

)                                               (Eq’n 4.2.3.12) 

For the particular case of transverse uniform loading and axial compression the primary 

moment may be expressed as: 

                                                                                             (Eq’n 4.2.3.13) 

Since:   

                                                                                             (Eq’n 4.2.3.14) 

F1(z) doesn’t equal to zero, thus the particular solution for the differential eqaution is 

required.  Let f1(z)= C1+Cz z.  Subtitute the particular solution into equation 4.2.4.13 

                                                                                            (Eq’n 4.2.3.15) 

 

                                                                                            (Eq’n 4.2.3.16)   

Thus,  

                                                                                            (Eq’n 4.2.3.17) 

                                                                                            (Eq’n 4.3.3.18) 

Then the moment equation becomes: 

                                                                                             (Eq’n 4.2.3.19) 

Applying boundary consditions, first boundary condition at z =0: 

                                                                                             (Eq’n 4.2.3.20) 

                                                                                             (Eq’n 4.2.3.21) 

Thus, 

                                                                                              (Eq’n 4.2.3.22) 

 

𝑀𝑖 =
𝑤

2
 𝑧(𝐿 − 𝑧) 

𝑑2𝑀𝑖
𝑑𝑧2

= − 𝑤 

𝑑2[𝑓1(𝑧)]

𝑑𝑧2
= 0 

0 + 𝑘2(𝐶1 + 𝐶2𝑧) = −𝑤 

𝐶1 = −𝑤/𝑘2 

𝐶2 = 0 

𝑀𝑧 = 𝐴 𝑠𝑖𝑛(𝑘𝑧) + 𝐵 𝑐𝑜𝑠(𝑘𝑧) − 𝑤/𝑘2 

𝑀𝑧 = 0 

0 = 𝐵 − 𝑤/𝑘2 

𝐵 = 𝑤/𝑘2 
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The second boundary condition at z =L : 

                                                                                             (Eq’n 4.2.3.23)  

 

                                                                                              (Eq’n 4.2.3.24) 

Thus, 

                                                                                             (Eq’n 4.2.3.25) 

Since dfs(z)/dz =0, Mx max is computes as follows: 

 

 

                                                                                               

                                                                                            (Eq’n 4.2.3.26) 

 

Where the                                         portion of the eqaution accounts for the magnification 

factor due to axial compression.  

 

 4.2.4 ACI Slender Wall Provisions: Latest ACI 318 Approach 

  4.2.4.1 Ultimate Deflectin  

 Section 11.8 in the latest ACI 318 code is used to design out-of-plane 

slender walls.  The alternative design method for slender walls assumes the 

section has fully cracked, thus the cracking moment of inertia is used.  The out of 

plane ultimate deflection equation is as follows: 

                                                                      (ACI 318-19 Eq’n 11.8.3.1b) 

Mu and Mua equations are provided in section 4.2.2 and not repeated here.  

Δ𝑢 =
5𝑀𝑢𝑙2

((0.75)48𝐸𝑐𝐼𝑐𝑟)
 

 

  

𝑀𝑧 = 0 
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𝑤

𝑘2
𝑐𝑜𝑠(𝑘𝐿) − 𝑤/𝑘2 
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𝑤

𝑘2
 (

1 − cos 𝑘𝐿

sin 𝑘𝐿
 ) 

𝑀𝑧 𝑚𝑎𝑥 =
𝑤

𝑘2
√(

1 − cos 𝑘𝐿

sin 𝑘𝐿
 ) + 1 −

𝑤

𝑘2
 

=
𝑤

𝑘2
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𝑘𝐿

2
 − 1) 
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𝑘𝐿
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𝑘𝐿

2
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First step, we find the weight of the panel above the design section at mid-

height of the un-braced length.  Applied axial forces will counteract a portion of 

the flexural tension stresses in the concrete section, resulting in increased bending 

moment resistance.  For small axial stress less than 0.06f’cAg, this can be 

accounted for by a simple modification of the area of reinforcement.  Then we 

calculate the area of the steel for the vertical reinforcement first then we compute 

effective area of steel instead using the following equation: 

                                                                              (Eq’n 4.2.4.1) 

Where Ase can also be used to account for the increased bending stiffness when 

computing P-delta deflections.  The assumption that concrete section stiffness is 

equal to EcIcr and is constant over the entire height of the panel is considered valid 

for factored load condition.  The calculation for Icr is based on the value of c for 

the rectangular stress block that occurs at ultimate loads rather than kd for the 

triangular stress distribution at occurs at service loads. 

Then we compute the area of the compression stress block using 

Whitney’s equivalent rectangular stress block. The block is consisted of a uniform 

stress equal to 0.85 f’c over a depth of a.  The depth of the block can be calculated 

using the following equation: 

                                                                                     (Eq’n 4.2.4.2) 

Then we compute the depth of the neutral axis using the following equation, 

where 𝔅 = 0.85 for concrete strength equal to 4000 psi and less: 

                                                                                       (Eq’n 4.2.4.3) 

𝐴𝑠𝑒 = 𝐴𝑠 +
𝑃𝑢
𝑓𝑦

(
ℎ

2𝑑
) 

𝑎 =
𝐴𝑠𝑒𝑓𝑦

0.85 𝑓′
𝑐 
𝑏

 

𝑐 = (
𝑎

𝛽
) 
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Then we calculate the cracked moment of inertia, the derivation of the cracked 

moment of inertia is presented in Appendix B, using the following equation: 

                                                                                        (Eq’n 4.2.4.4) 

 After that, we compute the moment of inertia for the gross section:  

                                                                                        (Eq’n 4.2.4.5) 

Then we find the modulus of rupture using the following ACI 318-10 Equation 

19.2.3.1: 

                                                                                        (Eq’n 4.2.4.6) 

Then we calculate the cracking moment using ACI 318-19 Equation 24.2.3.5b: 

                                                                                        (Eq’n 4.2.4.7)  

Then we calculate the applied moment for the distributed transverse load: 

                                                                                        (Eq’n 4.2.4.8) 

Then we compute the ultimate moment using ACI 318-19 Equation 11.8.3.1d: 

                                                                                        (Eq’n 4.2.4.9) 

 

The final step is to compute the ultimate deflection using ACI 318-19 Equation 

11.8.3.1b. 

 

  4.2.4.2 Service Deflection  

To compute the service deflection for out of plane wall we design with 

accordance with table 11.8.4.1 in the ACI 318-19   

When Ma less or equal to 2/3 Mcr we use the following equation: 

                                                                                    (ACI 318-19 Eq’n 11.8.1.1a) 

𝐼𝑔 =
𝑏ℎ3

12
 

  

  

𝑓𝑟 = 7.5√𝑓′
𝑐 

𝑀 =
𝑤𝑙2
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𝑀𝑐𝑟 =
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𝑏𝑡2
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𝐸𝑠
𝐸𝑐
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𝑙𝑤𝑐3
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 ) 
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(

 
 𝑀𝑢𝑎

(1 −
5P𝑢𝑙2

((0.75)48𝐸𝑐𝐼𝑐𝑟)
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∆𝑠 = (
𝑀𝑎

(𝑀𝑐𝑟
)∆𝑐𝑟 
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When Ma greater than 2/3 Mcr we use the following equation:  

 

                                                                                   (ACI 318-19 Eq’n 11.8.1.1b) 

 

Where the maximum moment, Ma, at midheight of wall due to service lateral and 

eccentric vertical loads, including PsΔs effects shall be calculated suing the 

following equation: 

                                                                                   (ACI 318-19 Eq’n 11.8.4.2) 

Δcr and Δn shall be calculated using the following equations:  

                                                                                   (ACI 318-19 Eq’n 11.8.4.3a) 

 

                                                                                   (ACI 318-19 Eq’n 11.8.4.3b) 

 

 4.2.5 The Effective Moment of Inertia Approach 

The effective moment of inertia approach may possible be used when designing slender 

walls. Branson developed the first expression for the effective moments of inertia.  Later on 

Bischoff reevaluated Branson’s work and developed a new equation.  This section will describe 

the steps in computing the deflection using the effective moment of inertia approach.  The two 

different expressions for Ie will be discussed in later sections.  

We use all steps describes in section 4.2.4.1 then when computing the deflection, the 

moment of inertia we use in the deflection equation depends on the section behavior.  If the 

applied moment is less than the cracking moment, it means the section has not cracked yet. Thus, 

we use the gross moment of inertia.  If the applied moment is greater than the cracked moment, it 

∆𝑠 =
2

3
 ∆𝑐𝑟 +

( 𝑀𝑎 − (
2
3
)𝑀𝑐𝑟)

(𝑀𝑛 − (
2
3)𝑀𝑐𝑟)

(∆𝑛 − (
2

3
) ∆𝑐𝑟 ) 

𝑀𝑎 = 𝑀𝑠𝑎 + 𝑃𝑠∆𝑠 

∆𝑐𝑟 = (
5𝑀𝑐𝑟 𝑙𝑐

2

(48 𝐸𝑐 𝐼𝑔)
 ) 

∆𝑛 = (
5𝑀𝑛 𝑙𝑐

2

(48 𝐸𝑐 𝐼𝑐𝑟)
 ) 
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means the section has cracked.  Then the effective moment of inertia using Branson or Bischoff’s 

approach is used.  Each approach is discussed in details the following two sections.   

The service deflection equation when the section is uncracked is as follows: 

                                                                           (Eq’n 4.2.5.1) 

 

The service deflection equation when the section is cracked is as follows: 

                                                                           (Eq’n 4.2.5.2) 

 

 4.2.5.1 Branson’s Effective Moment of Inertia 

Branson developed the first expression of the effective moment of inertia in 1963.  

ACI Committee 435 published “Deflection of Reinforced Concrete Flexural Members” in 

1966.  The report compares several methods for computing immediate deflection 

including the effects of cracking on element response (ACI Committee 435, 1966).  One 

of the methods compared included the 1963 ACI method to the effective moment of 

inertia approach proposed by Branson.  The ACI 318 adopted his equation in the code in 

1971.  Other building codes included his equation as well such at the Canadian 

Standards Association, CSA, and Standards Association of Australia, SAA, (Gilbert, 

2006).  The purpose of developing the effective moment of inertia was to accurately 

estimate the deflection of the reinforced concrete member since they do not change from 

un-cracked to fully cracked stiffness immediately.  For that reason, Branson’s established 

an equation that allows for steady transition from cracked to un-cracked section including 

accounting for tension stiffening as follows: 

𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)
3

𝐼𝑔 + [1 − (
𝑀𝑐𝑟

𝑀𝑎
)
3

] 𝐼𝑐𝑟 ≤ 𝐼𝑔        (ACI 318-14 Eq’n 24.2.3.5a) 

∆𝑠 = (
5𝑀

 𝑙𝑐
2

(48 𝐸𝑐 𝐼𝑔)
 ) 

∆𝑠 = (
5𝑀

 𝑙𝑐
2

(48 𝐸𝑐 𝐼𝑒)
 ) 
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This equation adequately predicted the deflection of beams with reinforcement 

ratios above 1%.   The Australian Standard AS3600 limited the effective moment of 

inertia to a value of 0.6Ig for flexure members with a reinforcing ratio less than 0.5% 

(Gilbert, 2001). 

 4.2.5.2 Bischoff’s Effective Moment of Inertia 

Bischoff reevaluated the effective moment of inertia proposed by Branson in his 

research for the applicability of Branson’s equation to members reinforced with fiber 

reinforced polymer (FRP) bars.  He found that a correction factor is necessary to correct 

for over prediction of member stiffness when FRP bars are used.  He used the integration 

of curvature to find a new expression for the effective moment of inertia.  Bischoff’s 

work was based on the Eurocode since their code affirms that the moment curvature 

relation can predict an accurate form of the deflection. (AlSunna et al. 2012) Bischoff’s 

equation accounts for the change in stiffness along the length of a member as well as 

accounting for tension and reinforcement stiffening.  The first form of Bischoff equation 

was published in 2005.  Bischoff revised his work in 2007 and later on in 2011. The final 

form of Bischoff’s equation for the effective moment of inertia is as follows: 

                                                                

 (Eq’n 4.2.5.2.1) 

 

 

4.3 Slender Walls Test Results 

As stated previously in Chapter 1, the ACI-SEASC Task Committee on Slender Walls, 

performed test of 12 Tilt-Up panels back in early 1980’s.  The tested panels have four different 

𝐼𝑒 =
𝐼𝑐𝑟

 (1 − ( 
𝑀𝑐𝑟
𝑀𝑎

 )
2

[ 1 −
𝐼𝑐𝑟
𝐼𝑔

])
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thicknesses 4.75”, 5.75”, 7.25”, and 9.5”.  Three specimens of each thickness were tested.  The 

height of all panels was 24 feet.  The panels were lightly reinforced with 4#4 grade 60 bars in the 

vertical direction with reinforcement ratio varying from 0.7% to 0.3%).  Welded trussed frame 

was used to load the panels. The panels were placed against airbag to apply pressure from the 

side and a vertical lever system was used for the external axial load.  The maximum deflection 

was measured at the mid-height of each panel.  

The applied maximum lateral load was different for each panel thickness.  The maximum 

loads are as follows 40 psf for the 4.75” panel, 55 psf for the 5.75” panel, 70 psf for the 7.25” 

panel, and 90 psf for the 9.50” panel.  The maximum load readings do not include correction due 

loss of contact with the airbag when the deflection exceeded 7 to 8 inches.  

 4.3.1 Panels behavior 

The behavior of tilt-up panel deflection curves was a linear straight line until the panel 

exceeds the cracking moment, which is when a sharp break occurs.  The deflection keeps 

increasing and the slope starts to flatten out as it started to reach the yield moment.  The 

deflection behavior was very similar to an idealized stress/strain curve for a reinforced panel.  

Figure 4.6 shows the Idealized composite stress/strain relation for reinforced concrete panel.  
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The test results confirmed that the behavior of the walls is very similar to the behavior of 

columns when subjected to lateral load.  That explains why shear failure and reduction in panel 

resistance did not occur.  Walls were very flexible after cracking and the deflection curve 

flattened out after yielding.  

 4.3.2 Deflection Curves 

The test results confirmed good performance of the panels, as they were loaded. The 

panels continued to resist the load until the steel reached the yielding point.  However, the test 

did not note any elastic or inelastic lateral instability.  The relationship of the lateral load and 

mid-height deflection was confirmed to be a bilinear behavior. 

Load-Deflection were plotted to show the performance of each panel.  The results 

indicated that panels with height to thickness ratio ranging between 30 and 60 resist 50%-90% of 

their weight in the lateral direction.  In addition, it was noted that even when deflection was very 

Figure 4.6: Idealized Composite Stress/Strain Relation for Reinforced Concrete Panel. 
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large the lateral resistance of the panels increased.  The reason could be due to strain hardening 

of the reinforcing steel.  

Figure 4.7 shows the average deflection behavior of the three different specimens for 

each panel thickness.  Roughly, panel-yielding behavior occurred at 3” for 9.5” panel, 5” for the 

7.5” panel, 7.5” for the 5.75” panel, and 8.5” for the 4.75” panel. 

 

 

 4.3.3 Cracking 

The crack pattern started with a single crack at the middle of the panel.  As they 

continued to load the panels, more cracks started to spread in the horizontal direction.  The 

spacing of the cracks was approximately the same at maximum deflection.  Two times the panel 

thickness was measure to be the cracking spacing for tilt up panels.   

The cracking started to occur at a deflection less than 0.5 inches.  As stated previously all 

panels were reinforced the same, which means thinner panels had higher reinforcement 

Figure 4.7: Deflection of Tilt Up Panels at Mid-Height in Inches. 
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percentage.  As a result, thinner panels had higher percent of load capacity from cracking to 

yielding compared to thicker panels.  Thus, it was determined that the performance of the panels 

is controlled by the reinforcing percentage. 

 4.3.4 P-Delta Effects 

The test results indicated P-delta effect through comparing the P-delta moment to the 

actual moment caused by the lateral and axial load. The following equation was used to find the 

percentage of P-delta moment at mid-height: 

 

                                                              (4.3.4.1) 

 

The test results also confirmed that P-delta moment is minor compared to the total moment since 

the percentage was found to be less than 15% when the deflection to height ratio is less than 

0.01.  At higher deflection to height ratio’s, the secondary moments induce by the P-delta effect 

will not be minor. 

  

 

 

 

 

 

 

%  𝑃∆ 𝑀𝑜𝑚𝑒𝑛𝑡 =
𝑃∆ 𝑀𝑜𝑚𝑒𝑛𝑡 ∗ 100

𝑤𝑙2

8 +
𝑃 ∗ 𝑒

2
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Chapter 5 - Structural Application 

 5.0 Comparisons with Experimental Results 

This chapter discusses and compares the deflection results for the tilt-up panels from 

research conducted by ACI-SEASC joint committee and reported in the Test Report on Slender 

Walls using some of the methods presented in Chapter 4 and then compare each method to the 

actual test results.   The comparison is to determine which equations reflect the actual behavior 

of the wall panels tested and if additional stiffness can be accounted for by using an effective 

moment of inertia instead of cracked moment of inertia to determine the deflection.  Four 

approaches are compared: ACI 318-19 Section 11.8, Branson’s effective moment of inertia, 

Bischoff’s effective moment of inertia, and a proposed effective moment of inertia done by 

Kramer and Alkotami.  

The tilt-up panels properties are taken from the actual test results to ensure the use of 

accurate properties and have a valid comparison.  The properties were measured after the panels 

were cured, 167 days after the panels were poured.  The following characteristics were reported 

in the Test Report on Slender Walls and apply to all panels: 

1) The compressive strength of concrete is 4,009 psi.  

2) The modulus of elasticity for concrete is 3,540,000 psi. 

3) The modulus of elasticity for the reinforcement is 28,600,000 psi. 

4) The reinforcement average yield strength is 70,000 psi.  

5) The reinforcement located in the middle of the panel. 

6) The concrete weight is 149 pcf.  

7) Vertical reinforcement: Four #4 reinforcing bars. 

8) Unbraced eight of panel is 24 feet. 
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9) Width of panel is 4 feet. 

10) Three specimens of each thickness were tested. 

11) Thicknesses are as follows: 4.75”, 5.75”, 7.25”, and 9.5”. 

12) Yielding point was 8.5” for the 4.75” panel, 7.5” for the 5.75” panel, 5” for the 7.25” 

panel, and 3” for the 9.5” panel.  

13) The average deflection of the different specimens for each thickness is used. 

14)  The eccentricity for the axial loading is 3 inches.  

Additional properties are indicated when applicable. 

 5.1 Latest ACI 318 Section 11.8 vs. Test Results 

This section discusses the assumed service deflection for different thicknesses of tilt-up 

panels following Section 11.8 in the ACI 318-19; the Alternative Design Method for Out-of-

Plane Slender Walls.  The steps to compute the deflection was presented in Section 4.2.4.2 in 

Shapter 4 and not repeated here.  The modulus of rupture equation used is as follows: 

                                                                                   (ACI 318-19 Eq’n 19.2.3.1) 

The service deflection equations are as follows: 

a) When Ma ≤ (2/3) Mcr  

 

                                                                                               (ACI 318-19 Eq’n 11.8.1.1a) 

 

b) When Ma > (2/3) Mcr 

 

                                                                                              (ACI 318-19 Eq’n 11.8.1.1b) 

 

∆𝑠 = (
𝑀𝑎

(𝑀𝑐𝑟
)∆𝑐𝑟 
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3
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2
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The modulus of rupture is adjusted by 2/3 in the deflection calculations to correlate the 

modulus of rupture determined by original testing and reported in the Test Report on 

Slender Walls.     

  5.1.1 Panels 4.75” in Thickness with a Slenderness Ratio of 60 

 Figure 5.1 shows the average deflection for the 4.75” panels.  The blue line is the 

actual test results.  The grey line is the estimated deflection based on the ACI 318-19 

Section 11.8 Alternative Design Method for Out-of-Plane Slender Walls.  The red vertical 

line indicates the deflection at which yielding was noted from testing.   

  

The behavior of the panel before cracking is linear and the flexural stiffness 

neglecting reinforcing, EcIg, represents the actual flexural stiffness accurately.  It is shown 

that the ACI 381-19 Section 11.8 approach matches the actual test results very well.  

After cracking, the ACI 318-19 Section 11.8 bilinear approach estimates the deflection 

accurately until the panel reaches the yielding point.  After the panel yields, the deflection 
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is underestimated and the concern now may be  a stability issue or a trilinear approach 

could be developed to better describe the behavior from yield to ultimate   The ACI 318-

19 Equation 11.8.1.1b, service deflection equation, accurately represents the bilinear 

behavior and not trilinear behavior of the wall panels.  

At a lateral service level pressure of 20 psf, the ACI 318-19 approach estimates a 

deflection of 3.3 inches while the test results shows a deflection of 2.5 inches.  In this 

load case, the deflection using this specific approach is overestimated by 32%.  At a 

lateral service level pressure of 27 psf, the ACI 318-19 approach estimates a deflection of 

8.24 inches while the test results shows a deflection of 8.4 inches.  In this load case, the 

deflection using this specific approach is underestimated by 1.9%.  Both are still 

representing a lower bound that ensures a safe and stable wall panel design. 

 

 5.1.2 Panels 5.75” in Thickness with a Slenderness Ratio of 50 

Figure 5.2 shows the average deflection for the 5.75” panels.  The blue line is the 

actual test results.  The grey line is the estimated deflection based on the ACI 318-19 

Section 11.8 Alternative Design Method for Out-of-Plane Slender Walls.  The red vertical 

line indicates the deflection at which yielding was noted from testing.   
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Figure 5.2: Deflection Comparison for Actual Test results and Latest ACI 318 Approach (5.75”) Panel. 

 

These specific panels were not loaded beyond the yielding point, so the results 

presented only include the bilinear behavior.  The ACI 318-19 cracking point doesn’t 

match the test results accurately. However, in general, it estimates a linear behavior of the 

panel until it reaches the cracking point.  After cracking, the deflection is overestimated 

until the loading reaches 35psf.  Beyond a lateral service level load of 35 psf, the 

deflection is underestimated.  

At a lateral service level load of 30 psf, the ACI 318-19 approach calculates a 

deflection of 1.65 inches while the test result shows a deflection of 0.6 inches.  In this 

load case, the deflection using this specific approach is overestimated by 63.6%.  At a 

lateral service level load of 41 psf, the ACI 318-19 approach calculates a deflection of 4.8 

inches while the test result shows a deflection of 6.1 inches.  In this load case, the 

deflection using this specific approach is underestimated by 21.3%.  Based on the Figure 

5.1.2.1, the ACI 318-19 Equation 11.8.1.1.b is a lower bound equation until the tilt-up 
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wall panel deflections 3-inches.  After a deflection of 3-inches, the ACI 318-19 Equation 

11.8.1.1.b is no longer accurate for determining service level deflections.  

 

 5.1.3 Panels 7.25” in Thickness with a Slenderness Ratio of 40 

Figure 5.3 shows the average deflection for the 7.25” panels.  The blue line is the 

actual test results.  The grey line is the calculated deflection based on the ACI 318-19 

Section 11.8 Alternative Design Method for Out-of-Plane Slender Walls.  The red vertical 

line indicates the deflection at which yielding was noted from testing..  

 

 

The behavior of the panel before cracking is linear and the flexural stiffness 

neglecting reinforcing, EcIg, represents the actual flexural stiffness accurately.  The ACI 

318-19 Equation 11.8.1.1a calculates the uncracked section deflection well.   Beyond 
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cracking, the deflection calculated using ACI 318-19 Equation 11.8.1.1b is overestimated 

as shown in the figure.  The flexural stiffness, EcIcr, is a lower bound - the 7.25” panels 

with a slenderness ratio of 40 exhibit additional flexural stiffness that may be captured 

using an effective moment of inertia in the flexural stiffness.  After yielding, deflection is 

still overestimated for this specific panel.  These panels were not loaded to failure.  

Therefore, a trilinear behavior approach cannot be examined since the ultimate point is 

unknown. 

At a lateral service level load of 45 psf, the ACI 318-19 approach calculates a 

deflection of 1.14 inches while the test result shows a deflection of 1.3 inches.  In this 

load case, the deflection using this specific approach is overestimated by 12.3%.At a 

lateral service level load of 55 psf, the ACI 318-19 approach determines a deflection of 

10.1 inches while the test result shows a deflection of 5.3 inches.  In this load case, the 

deflection using this specific approach is overestimated by 47.5%.  In all lateral loads 

examined, the ACI 318-19 Section 11.8 approach is lower bound.  

 5.1.4 Panels 9.5” in Thickness with a Slenderness Ratio of 30 

Figure 5.4 shows the average deflection for the 9.5” panels.  The blue line is the 

actual test results.  The grey line is the calculated deflection based on the ACI 318-19 

Section 11.8 Alternative Design Method for Out-of-Plane Slender Walls.  The red vertical 

line indicates the deflection at which yielding was noted from testing.  
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Similar to the previous panels, the flexural stiffness, EcIg, of the panel prior to 

cracking well represented by ACI 318-19 Equation 11.8.1.1a.  However, the ACI 318-19 

cracking point doesn’t match the test results.  After the cracking occurs, the deflection is 

overestimated by ACI 318-19 Equation 11.8.1.1b.  After the panel reaches the yielding 

point the deflection is still overestimated.  

At a lateral service level load of 68 psf, the ACI 318-19 approach calculates a 

deflection of 2.62 inches while the test results show a deflection of 0.27 inches.  In this 

load case, the deflection using this specific approach is overestimated by 89.7%.  At a 

lateral service level load of 85 psf, the ACI 318-19 approach calculates a deflection of 

16.9 inches while the test result shows a deflection of 8.1 inches.  In this load case, the 

deflection using this specific approach is overestimated by 52.1%.  In all lateral loads 

examined, the ACI 318-19 Section 11.8 approach is lower bound which indicates that 
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using an effective moment of inertia approach for the flexural stiffness, EcIe, could 

capture the actual stiffness.  

 

 5.2. Branson's Effective Moment of Inertia vs. 1980s Test Results 

This section comparse the calculated service deflection for different thicknesses of tilt-up 

panels following Branson’s effective moment of inertia approach.  The steps to compute the 

deflection using Branson’s effective moment of inertia was presented in Sections 4.2.5 and 

4.2.5.1 in Chapter 4 and not repeated.  The equation for Branson’s effective moment of inertia is: 

 

𝐼𝑒 = ( 
𝑀𝑐𝑟
𝑀𝑎

 )
3
𝐼𝑔 + [ 1 − ( 

𝑀𝑐𝑟
𝑀𝑎

 )
3
] 𝐼𝑐𝑟 

                  (ACI 318-14 Eq’n 24.2.3.5a) 

 

Due to the nature of the panels during testing, it was determine that the panels had a 

modulus of rupture shown in the following equation:: 

                                                     (Eq’n 5.2.1) 

 

Since the coefficient for the modulus of rupture is computed as 5 (instead of 7.5 as used in the 

ACI 318-19 code, the service deflection equation doesn’t have the 2/3 ratio multiplied by the 

cracking moment.  

The service deflection equations are as follows: 

c) When Ma < Mcr  

 

                                                                 (Eq’n 4.2.5.1) 

 

𝑓𝑟 = 5 √𝑓′
𝑐 
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5𝑀

 𝑙𝑐
2

(48 𝐸𝑐 𝐼𝑔)
 ) 



84 

d) When Ma > Mcr 

 

                                                                 (Eq’n 4.2.5.2) 

 

 5.2.1 Panels 4.75” in Thickness with a Slenderness Ratio of 60 

Figure 5.5 shows the average deflection for the 4.75” panels.. The blue line is the 

actual test results.  The orange line is the calculated deflection using Branson’s effective 

moment of inertia equation.  The red vertical line indicates the deflection at which 

yielding was noted from testing.   

 

This specific panel was not loaded beyond the yielding point, so the results 

presented here only include the bilinear behavior.  The flexural stiffness of the panel is 

represented well by EcIg excluding the reinforcement and is is linear.  Branson’s equation 

is used when the, member cracks. However, after the panel cracks, the deflection is 

∆𝑠 = (
5𝑀

 𝑙𝑐
2

(48 𝐸𝑐 𝐼𝑒(𝐵𝑟𝑎𝑛𝑠𝑜𝑛)
)
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underestimated for this specific panel.  Branson’s approach does not take an account of 

the panel beyond the yielding point, the Trilinear behavior. 

At a lateral service level load of 20 psf, Branson’s effective moment of inertia 

approach calculates a deflection of 1.2 inches while the test result shows a deflection of 

2.5 inches.  In this load case, the deflection using this specific approach is underestimated 

by 52%.At a lateral service level load of 27 psf, Branson’s approach calculates a 

deflection of 4.1 inches while the test result shows a deflection of 8.4 inches.  In this load 

case, the deflection using this specific approach is underestimated by 51.2%.   

 5.2.2 Panels 5.75” in Thickness with a Slenderness Ratio of 50 

Figure 5.6 shows the average deflection for the 5.75” panel.  The blue line is the 

actual test results.  The orange line is the calculated deflection using Branson’s effective 

moment of inertia equation.  The red vertical line indicates the deflection at which 

yielding was noted from testing.   
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Same at the previous panel, the behavior of the panel before cracking is linear and 

assumed accurately.  However, after the panel cracks, the deflection is underestimated for 

this specific panel.  Branson’s approach does not take an account of the panel beyond the 

yielding point, the Trilinear behavior. At a lateral service level load of 30 psf, Branson’s 

effective moment of inertia determines a deflection of 0.61 inch while the test result 

indicate a deflection of 0.6 inch.  In this load case the deflection using this specific 

approach is overestimated by 1.7%.  At a lateral service level load of 41 psf, Branson’s 

effective moment of inertia equation calculates a deflection of 2.1 inches while the test 

result indicarte a deflection of 6.1 inches.  In this load case, the deflection using this 

specific approach is underestimated by 65.6%. 

 5.2.3 Panels 7.25” in Thickness with a Slenderness Ratio of 40 

Figure 5.7 shows the average deflection for the 7.25” panels.  The blue line is the actual 

test results.  The orange line is the calculated deflection using Branson’s effective 

moment of inertia equation.  The red vertical line indicates the deflection at which 

yielding was noted from testing.   
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Similar to the panels with slenderness ratios of 60 and 50, the behavior of the 

panel before cracking is linear and assumed accurately.  However, after the panel cracks 

the deflection is underestimated for this specific panel.  At a lateral service level load of 

45 psf, Branson’s effective moment of inertia equation results in a deflection of 0.6 inch 

while the test results shows a deflection of 1.3 inches.  In this load case, the deflection 

using this specific approach is underestimated by 53.8%.At a lateral service level load of 

55 psf Branson’s effective moment of inertia equation results in a deflection of 1.7 inches 

while the test results indicates a deflection of 5.3 inches.  In this load case, the deflection 

using this specific approach is underestimated by 67.9%. 
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 5.2.4 Panels 9.5” in Thickness with a Slenderness Ratio of 30 

Figure 5.8 shows the average deflection for the 9.25” panel. The blue line is the 

actual test results.  The orange line is the calculated deflection using Branson’s effective 

moment of inertia equation.  The red vertical line indicates the deflection at which 

yielding was noted from testing.   

 

Same as all other thicknesses, slenderness ratios, discussed previously, the 

behavior of the panel before cracking is linear and assumed accurately. After the panel 

cracks, the deflection is underestimated for this specific panel.   

At a service level lateral load of 68 psf, a deflection of 0.24 inches is calculated 

when using Branson’s effective moment of inertia equation while the test result shows a 

deflection of 0.27 inch which underestimates the deflection by 11.1%.At a service level 
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lateral load of 85 psf, a deflection of 1.2 inches in calculated while the test result shows a 

deflection of 8.1 inches, which underestimates the deflection by 85.2%. 

 5.3 Bischoff's Effective Moment of Inertia vs. 1980s Test Results 

Similar to the previous section, the flexural stiffness of a tilt-up panel is examined. 

Bischoff’s effective moment of inertia approach is used to calculate deflections of the wall 

panels under various lateral service level loads.  The steps to compute the deflection are the same 

as the previous section and were presented in sections 4.2.5 and 4.2.5.2 in Chapter 4.  The 

modulus of rupture Equation 5.2.1 is used and the service level deflections for uncracked and 

cracked are calculated using Equations 4.4.2.5.1.1 and 4.2.5.2, respectively.  Bischoff’s effective 

moment of inertia equation is shown again here for convenience.  

𝐼𝑒 =
𝐼𝑐𝑟

1−(
𝑀𝑐𝑟
𝑀𝑎

)
2
[1−

𝐼𝑐𝑟
𝐼𝑔

]
                                                 (Eq’n 4.2.5.2.1)       

In other previous approaches, a discussion of the uncracked behavior was discussed.  Since this 

is for an uncracked section and the stiffness is calculated by using the gross moment of inertia, 

the uncracked section is not discussed further.  

 5.3.1 Panels 4.75” in Thickness with a Slenderness Ratio of 60 

Figure 5.9 shows the average deflection for the 4.75” panels.  The blue line 

indicates the test results and the red line the deflection at which the panel yielding during 

testing. The yellow line indicates the deflection of the panels using an effective moment 

of inertia using Bischoff’s equation.   
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  After the panel cracks, the deflection is underestimated including when the panel 

reaches the yielding point and beyond.  The panels were not loaded to ultimate failure.  

Therefore, a trilinear behavior cannot be examined.  When the panels are laterally loaded 

at a service level load of 20 psf, the deflection calculated using Bischoff’s effective 

moment of inertia equation is 2.3 inches while the test results indicates a deflection of 2.5 

inches – underestimating the deflection by 8%.  When the lateral service level load is 27 

psf, the deflection calculated using Bischoff’’s effective moment of inertia equation is 5.9 

inches underestimating the deflection by 29.8% (actual deflection of 8.4 inches). 

 

 5.3.2 Panels 5.75” in Thickness with a Slenderness Ratio of 50 

Figure 5.10 shows the average deflection for the 5.75” panels.  The blue line 

indicates the test results and the red line the deflection at which the panel yielding during 
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testing. The yellow line indicates the deflection of the panels using an effective moment 

of inertia using Bischoff’s equation.   

 

This specific panel was not loaded beyond the yielding point, so the results 

presented here only include the bilinear behavior.  After the panel cracks,  the deflection 

is overestimated up to approximately two inches of lateral deformation. Beyond two 

inches of lateral deflection, Bischoff’s effective moment of inertia equation 

underestimated the flexural stiffness. When the panels are laterally loaded at a service 

level load of 30 psf, the deflection calculated using Bischoff’s effective moment of inertia 

equation is 1.3 inches while the test results indicates a deflection of 0.6 inch – 

overestimating the deflection by 53.8%.  When the lateral service level load is 41 psf, the 

deflection calculated using Bischoff’’s effective moment of inertia equation is 3.63 

inches underestimating the deflection by 40.5% (actual deflection of 6.1 inches). 
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 5.3.3 Panels 7.25” in Thickness with a Slenderness Ratio of 40  

Figure 5.11 shows the average deflection for the 7.25” panel. The blue line 

indicates the test results and the red line the deflection at which the panel yielding during 

testing. The yellow line indicates the deflection of the panels using an effective moment 

of inertia using Bischoff’s equation.   

 

The behavior of the panel before cracking is linear and assumed accurately.  After 

cracking, Bischoff’s effective moment of inertia approach matches the actual deflection 

behavior until the panel is loaded more than 47 psf.  When the lateral load exceeds 47 

psf, the deflection is underestimated for the bilinear and trilinear behavior.  At 45 psf, 

Bischoff’s approach estimates a deflection of 1.53 inch while the test result shows a 

deflection of 1.3 inch, overestimated by 15%.   At 55 psf, Bischoff’s approach estimates  

a deflection of 3.8 inches with test results of 5.3 inches, an underestimation by 28.3%. 
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 5.3.4 Panels 9.5” in Thickness with a Slenderness Ratio of 30  

Figure 5.12 shows the average deflection for the 9.25” panel. It shows the actual 

test results versus the assumed deflection using the Bischoff’s effective moment of inertia 

approach.  

 

After cracking, Bischoff’s effective moment of inertia approach matches the actual 

deflection behavior until the panel is loaded more than 76 psf, approximately 1.8 inches 

of lateral deformation.  When the lateral load exceeds 76 psf, the deflection is 

underestimated for the bilinear and trilinear behavior.   At 68 psf, a deflection of 0.55 

inch is calculated using Bischoff’s approach compared to the test result of 0.27 inch, an 

overestimation by 50.9%.  As the lateral load increases to 85 psf, a deflection of 3.1 
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inches is calculated using Bischoff’s approach compared to the actual deflection of 8.1 

inches - underestimated by 61.7%. 

 

 5.4 Proposed Effective Moment of Inertia Derived by Kramer and Alkotami 

This section discuss the deflection results for the derived deflection equation presented in 

the analytical formulation in Section 3.5 in Chapter 4 and compared to the actual test results.  

The deflection equations for Kramer and Kimberly are as follows:  

a) For Pre-Cracking region: 

- When Cracking occurs After L/2: 

                                                                                              (Eq’n 3.5.2.13) 

 

- When Cracking occurs prior L/2: 

                                                                                             (Eq’n 3.5.2.14) 

 

b) For Post-Cracking Region: 

- In all cases, except at the end of the cracking region where yielding start to occur: 

 

 

                                                                                                                  

                                                                                                                   (Eq’n 3.5.3.11) 

- At the end of the cracking region where yielding start to occur: 

 

                                                                                                                                 (Eq’n 3.5.3.14) 
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c) For Post-Yielding region: 

 

 

 

 

 

 

                                                                  (Eq’n 3.5.4.10) 

These equations were used to calculate deflections of the tilt-up panels and these 

deflections were used to compare the actual deflections from the test results.  Once a comparison 

was completed, different ways of normalizing the flexural stiffness was examined.  Rasheed et. 

al. 2004 found a good correlation and proposed a modified cracked moment of inertia to use in 

Branson’s effective moment of inertia equation for reinforced concrete beams strengthened with 

fiber-reinforced polymers. Therefore, the first item used to normalizing the cracking moment of 

inertia was the gross moment of inertia.  Unfortunately, no accurate correlation was made.   

Several other factors was considered including reinforcement ratio and slenderness ratio.  The 

following paragraphs indicated the finding of this research. 

 Two different equations are proposed for effective moment of inertia used in the service 

deflection equations for slender tilt-up wall panels.  The following sections present the difference 

between the two equations in detail.  A comparison with the actual test results is presented as 

well. 
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 5.4.1 Equation One: Proposed Effective Moment of Inertia by Kramer & Alkotami  

The following effective moment of inertia is used to compute the service 

deflection:  

                               𝐼𝑔 ≤ 𝐼𝑒 = [(
𝑀𝑐𝑟

𝑀𝑎
)
3

𝐼𝑔 + [1 − (
𝑀𝑐𝑟

𝑀𝑎
)
3

𝐼𝑐𝑟]] (
𝑡

ℎ
)  ≤ 𝐼𝑐𝑟            (Eq’n 5.4.1.1) 

where: 

h = height of panel in feet. 

t = thickness of panel in inches. 

 5.4.1.1 Panels 4.75” in Thickness with a Slenderness Ratio of 60  

Figure 5.13 shows the average deflection for the 4.75” panels.  The actual 

test results are shown in blue with the calculated deflections using the Kramer and 

Alkotami’s effective moment of inertia approach 1 shown in the green. 
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After the panel cracks, the deflection is overestimated until it reaches the 

yielding point, which is a lower bound, when using the Kramer & Alkotami 

Effective moment of inertia Approach 1 equation.  The deflection is over 

estimated until it reaches the yielding point and after yielding the deflection is 

underestimated which can be due to stability issues or the trilinear behavior 

should be examined.  At a service level load of 20 psf , the deflection is 5.68 

inches when using Kramer &Alkotami’s Approach 1 for the flexural stiffness. 

Compared to the test result deflection of 2.5 inches, an overestimation of 56%.  

When the lateral service load is increased to 27 psf,  a deflection of 8.9 inces is 

found using the Kramer & Alkotami’s Approach 1 compared to the test result 

deflection of 8.4 inch, an overestimation of 5.6%. 

 

 5.4.1.2 Panels 5.75” in Thickness with a Slenderness Ratio of 50 

Figure 5.14 shows the average deflection for the 5.75” panels The actual 

test results are shown in blue with the calculated deflections using the Kramer and 

Alkotami’s effective moment of inertia approach 1 shown in the green. 
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This specific panel was not loaded beyond the yielding point, so the 

results presented here only include the bilinear behavior.  The behavior of the 

panel before cracking is linear and assumed accurately. After the panel cracks, the 

deflection calculated using Kramer & Alkotami Approach 1 over estimates the 

deflection until the lateral load reaches 37 psf.  After 37 psf of loading, the 

deflection matches the actual test results well.  At a service level lateral load of 30 

psf, a deflection of 2.1 inches is calculated using the Kramer & Alkotami’s 

approach 1 for effective moment of inertia compared to the testing deflection of 

0.6 inch- overestimating deflection by 71.4%.  But at 41 psf of lateral load, the 

Kramer &Alkotami’s approach 1 for flexural stiffness becomes more accurate 

with a calculated deflection of 6.4 inches while the test result deflection is 6.1 

inches, over estimated by 4.6%. 
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 5.4.1.3 Panels 7.5” in Thickness with a Slenderness Ratio of 40 

Figure 5.15 shows the average deflection for the 7.25” panel.  It shows the 

actual test results in blue and the calculated deflection using Kramer & 

Alkotami’s effective moment of inertia approach 1 in the green.   

 

The behavior of the panel before cracking is linear and assumed 

accurately.  After cracking Kramer & Alkotami’s effective moment of inertia 

approach 1 matches the actual deflection behavior until the loading reaches 48 

psf.  After 48 psf the deflection is underestimated.  At 45 psf, Kramer & 

Alkotami’s approach 1 calculates a deflection of 1.34 inches while the testing 

deflection is 1.3 inches, overestimated by 3%.  At 55 psf, Kramer &Alkotami’s 

approach 1 calculates a deflection of 3.1 inch while the testing deflection is 5.3 

inches, underestimated by 41.5%. 
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 5.4.1.4 Panels 9.5” in Thickness with a Slenderness Ratio of 30 

Figure 5.16 shows the average deflection for the 9.25” panel.  It shows the 

actual test results versus the calculated deflection using the Kramer &Alkotami’s 

effective moment of inertia approach 1.   

 

Kramer & Alkotami’s effective moment of inertia approach 1 matches the 

actual deflection behavior until the loading exceeds 75 psf.  After 75 psf, the 

deflection is underestimated.  At 68 psf, Kramer and Alkotami’s approach 1 finds 

a deflection of 0.53 inch while the test result deflection is 0.27 inch, 

overestimated by 49.1%.  At 85 psf, Kramer & Alkotami’s approach 1 calculates 

a deflection of 1.52 inches while the test result deflection is 8.1 inches, 

underestimated by 80.5%. 

 

 

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

Lo
ad

, P
SF

Deflection, IN

Load vs. Deflection (9.5" Tilt Up Panel)

Test Results

Yielding

Kramer and
Alkotami
Equation 1

Figure 5.16: Deflection Comparison for Actual Test results and Kramer and Alkotami’s Approach 1 

(9.5”) Panel. 



101 

 5.4.2 Equation Two: Proposed Effective Moment of Inertia by Kramer &Alkotami  

The following effective moment of inertia is used to compute the service 

deflection:  

                               𝐼𝑒 = (
𝑀𝑐𝑟

𝑀𝑎
)
𝑚

𝐼𝑔 + [1 − (
𝑀𝑐𝑟

𝑀𝑎
)
𝑚

𝐼𝑐𝑟]                   (Eq’n 5.4.2.1) 

Where: 

m=10 

  5.4.2.1 Panels 4.75” in Thickness with a Slenderness Ratio of 60 

Figure 5.17 shows the average deflection for the 4.75” panels in blue and 

the calculated deflection using the Kramer & Alkotami’s effective moment of 

inertia approach 2 in the green. 

The Kramer & Alkotami’s effective moment of inertia approach 2 matches 

the actual test results very well.  After the panel cracks, the deflection 

overestimates a little.  As the panel reaches the yielding point, the deflection 
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behavior is underestimated.  At 20 psf, a deflection of 4.07 inches is calculated 

using the Kramer & Alkotami’s approach 2 while the testing deflection is 2.5 

inches, overestimated by 38.6%.  As the lateral load increase to 27 psf, the 

deflection calculated using the Kramer & Alkotami’s approach 2 is 7.82 inches 

while the test results is 8.4 inches, underestimated by 6.9%. 

  

 5.4.2.2 Panels 5.75” in Thickness with a Slenderness Ratio of 50 

 Figure 5.18 shows the average deflection for the 5.75” panels.  It shows 

the actual test results in blue and the calculated deflection using Kramer & 

Alkotami’s effective moment of inertia approach 2 in green. 

 

This specific panel was not loaded beyond the yielding point, so the results 

presented here only include the bilinear behavior.  The behavior of the panel 
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before cracking is linear and assumed accurately.  After cracking, the deflection is 

slightly overestimated until the loading reaches 37 psf.  When the pressure is 

more than 37 psf, the deflection is underestimated.  For example at 30 psf, a 

deflection of 1.24 inches is calculated using the Kramer & Alkotami’s approach 2 

while the test deflection is 0.6 inch, overestimated by 51.6%.  However, as the 

load is increase to 41 psf, the Kramer & Alkotami’s approach 2 for effective 

moment of inertia estimates the stiffness well with a calculated deflection of 5.1 

inches compared to the actual deflection of 6.1 inches, underestimated by 16.4%. 

 

 5.4.2.3 Panels 7.25” in Thickness with a Slenderness Ratio of 40  

Figure 5.19 shows the average deflection for the 7.25” panels.  It shows 

the actual test results in blue versus the calculated deflection using Kramer & 

Alkotami’s effective moment of inertia approach 2 in the green.  
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After cracking, Kramer & Alkotami’s effective moment of inertia 

approach 2 slightly underestimates the deflection until the panel reaches the 

yielding point in which the deflection is underestimated beyond yielding.  This is 

an example where this approach would need to be further developed for trilinear 

behavior after yielding.  At 45 psf, a deflection of 0.98 inch is calculated using the 

Kramer & Alkotami’s approach 2 compared to the test result of 1.3 inch, 

underestimated by 24.6%.  When the load is increased to 55 psf, the Kramer and 

Alkotami’s approach 2 estimates the stiffness more accurately with a calculated 

deflection of 4.4 inches while the test result shows a deflection of 5.3 inches, 

underestimated by 17%. 
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 5.4.2.4 Panels 9.5” in Thickness with a Slenderness Ratio of 30 

Figure 5.20 shows the average deflection for the 9.25” panels.  The actual 

test results are shown in green while the deflection calculated using the Kramer & 

Alkotami’s effective moment of inertia approach 2 is shown in green.  

 

Beyond cracking the deflection is underestimated. For example, at 68 psf of 

lateral loading, a deflection equal to 0.26 inch is calculated using the Kramer & 

Alkotami approach 2 for effective moment of inertia compared to the actual 

deflection of 0.27 inch, underestimated by 3.7%.  However when the load is 

increased to 85 psf, the deflection calculated using the Kramer &Alkotami’s 

approach 2 is 2.2 inches while the test deflection is 8.1 inch, underestimated by 

72.8%. 
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Chapter 6 - Conclusion and Recommendations 

 

This Chapter 6 presents the conclusion of this research and highlights some 

recommendations for future researches. 

 6.1 Conclusion 

The following tables summarize the deflection behavior for each panel thickness and 

slenderness ratio using all presented approaches in Chapter 5 and a comparison to the actual test 

results is also presented.  Two different lateral loads are presented to investigate the percent 

difference between each approach and the actual deflection value.  The red error percentage 

indicates that the deflection was underestimated, which can be an unsafe design.  The green error 

percentage indicates that the deflection is overestimated, which would be a conservative 

following design.  The figures show a visual representation of the deflection behavior of the tilt-

up panels following all presented approaches compared to the actual test results.  
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Figure 6.1: 4.75” Panels’ Deflection Behavior 
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As stated previously, the deflection of a wall panel is calculated by integrating the 

curvatures along the length of the wall panel.  The curvature is equal to the moment divided by 

the flexural stiffness, EI, of the member.  Prior cracking the gross moment of inertia is used for 

the flexural stiffness.  After cracking, the cracked moment of inertia is used for the flexural 

stiffness when following the ACI 318-19 Section 11.8 approach.  We only use the effective 

moment of inertia after cracking if we are following the effective moment of inertia approaches.   
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The deflection behavior of the panel is linear until it reaches the end of the elastic region.  

At the end of the elastic region, the stiffness changes drastically that can be seen in the load 

deflection figures.  After cracking, the deflection is considered to be the elastic-plastic region; 

this region is referred to as the bilinear region for the ACI 318-19 Section 11.8 method until it 

reaches the yield moment.  The load-deflection slope typically changes from the yield moment to 

the ultimate moment.  After yield point the curve starts to flatten out; therefore, it can be 

idealized as a trilinear behavior.  Unfortunately, the original panels were not tested or loaded to 

the ultimate point.  Therefore, the trilinear behavior of slender wall panels was not examined in 

this research.  

As the load increases to near yielding of the panels, the four effective moment of inertia 

approaches examined become irregular ,which may be caused by the P-delta effects, stability 

issues.  For a slender concrete wall panel, the axial compression and transverse bending about 

one axis, failure by instability in the plane of bending without twisting, is the failure mode.  

However, the actual test results did not note any elastic or inelastic lateral instability. 

 

 6.2 Recommendations 

This section will provide multiple recommendations for future work to improve the slender walls 

provisions in the code.   

1) Design Approach: 

After comparing ACI 318-19 Section 11.8 approach, Branson’s effective moment of 

inertia, Bischoff’s effective moment of inertia, and two proposed effective moment of 

inertia by Kramer & Alkotami, using the ACI 318-19 Section 11.8 Alternate Design 

Method for Slender Walls should be used.  The bilinear approach is a lower bound, 
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conservative, approach that represents walls with slenderness ratio ranging from 30 to 

60.   

2) Modification for ACI 318 service Equation: 

The service deflection equation for the un-cracked region is as follows: 

                                                               (ACI 318-19 Eq’n 11.8.1.1a) 

 

Using the previous equation, the deflection is slightly off and underestimated.  

Adding a (2/3) coefficient to the cracking moment has been examined and should be 

used to match the test results. The propose equation for the service deflection in the 

un-cracked region is as follows: 

 

                                                                    (Proposed Equation)  

 

To prove the validity of the proposed equation, comparison of the original service 

deflection equation to the proposed equation was performed.  The following figures 

show the actual and modified ACI 318 service deflection equations compared to the 

actual test results for all panels thicknesses.  If this equation is modified, the service 

deflection equation for after cracking should remove the 2/3 from the cracked 

deflection 

∆𝑠 = (
𝑀𝑎

(𝑀𝑐𝑟
)∆𝑐𝑟 

∆𝑠 = (
𝑀𝑎
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𝟐
𝟑
)𝑀𝑐𝑟

)∆𝑐𝑟 
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Figure 6.6: 4.75” Panel Deflection Comparison of Actual ACI 318, Proposed ACI 318, and Actual 

Test Results. 

Figure 6.5: 5.75” Panel Deflection Comparison of Actual ACI 318, Proposed ACI 318, and Actual 

Test Results. 
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Results. 
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Further investigation to ensure validity of the ACI 318-19 Section 11.8 method 

beyond yielding is recommended.  Stability issues could occur beyond yielding.  

4) Testing of Panels:  

a) More full-scale testing of tilt-up panels with higher slenderness ratios.   

b) More than one layer of reinforcement.  

It is also recommend loading the panels to ultimate to ensure the validity of 

equation for the trilinear behavior.   

5) Modulus of Rupture: 

Since concrete materials, mix designs, have changed considerable in the last forty 

years, it is recommended that additional research on the modulus of rupture of slender 

load-bearing wall panels occur.  This research would confirm the use of 5√f’c for the 

modulus of rupture.  
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Appendix A - Notations 

a = depth of equivalent rectangular stress block, in. 

av = shear span, equal to distance from center of concentrated load to either: (a) face of support 

for continuous or cantilevered members, or (b) center of support for simply supported members, 

in. 

Ab = area of an individual bar or wire, in.2 

Abrg = net bearing area of the head of stud, anchor bolt, or headed deformed bar, in.2 

Ac = area of concrete section resisting shear transfer, in.2  

Acf = greater gross cross-sectional area of the slab-beam strips of the two orthogonal equivalent 

frames intersecting at a column of a two-way slab, in.2  

Ach = cross-sectional area of a member measured to the outside edges of transverse 

reinforcement, in.2  

Acp = area enclosed by outside perimeter of concrete cross section, in.2  

Acs = cross-sectional area at one end of a strut in a strut and-tie model, taken perpendicular to the 

axis of the strut, in.2  

Act = area of that part of cross section between the flexural tension face and centroid of gross 

section, in.2  

Acv = gross area of concrete section bounded by web thickness and length of section in the 

direction of shear force considered in the case of walls, and gross area of concrete section in the 

case of diaphragms, not to exceed the thickness times the width of the diaphragm, in.2  

Acw = area of concrete section of an individual pier, horizontal wall segment, or coupling beam 

resisting shear, in.2  

Af = area of reinforcement in bracket or corbel resisting design moment, in.2  

Ag = gross area of concrete section, in.2 For a hollow section, Ag is the area of the concrete only 

and does not include the area of the void(s)  

Ah = total area of shear reinforcement parallel to primary tension reinforcement in a corbel or 

bracket, in.2  

Aj = effective cross-sectional area within a joint in a plane parallel to plane of beam 

reinforcement generating shear in the joint, in.2  

Aℓ = total area of longitudinal reinforcement to resist torsion, in.2  
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Aℓ,min = minimum area of longitudinal reinforcement to resist torsion, in.2  

An = area of reinforcement in bracket or corbel resisting factored tensile force Nuc, in.2  

Anz = area of a face of a nodal zone or a section through a nodal zone, in.2 

ANa = projected influence area of a single adhesive anchor or group of adhesive anchors, for 

calculation of bond strength in tension, in.2  

ANao = projected influence area of a single adhesive anchor, for calculation of bond strength in 

tension if not limited by edge distance or spacing, in.2  

ANc = projected concrete failure area of a single anchor or group of anchors, for calculation of 

strength in tension, in.2 

ANco = projected concrete failure area of a single anchor, for calculation of strength in tension if 

not limited by edge distance or spacing, in.2  

Ao = gross area enclosed by torsional shear flow path, in.2  

Aoh = area enclosed by centerline of the outermost closed transverse torsional reinforcement, in.2  

Apd = total area occupied by duct, sheathing, and prestressing reinforcement, in.2  

Aps = area of prestressed longitudinal tension reinforcement, in.2  

Apt = total area of prestressing reinforcement, in.2  

As = area of non-prestressed longitudinal tension reinforcement, in.2  

As′ = area of compression reinforcement, in.2  

Asc = area of primary tension reinforcement in a corbel or bracket, in.2  

Ase,N = effective cross-sectional area of anchor in tension, in.2  

Ase,V = effective cross-sectional area of anchor in shear, in.2  

Ash = total cross-sectional area of transverse reinforcement, including crossties, within spacing s 

and perpendicular to dimension bc, in.2  

Asi = total area of surface reinforcement at spacing si in the i-th layer crossing a strut, with 

reinforcement at an angle αi to the axis of the strut, in.2  

As,min = minimum area of flexural reinforcement, in.2  

Ast = total area of nonprestressed longitudinal reinforcement including bars or steel shapes, and 

excluding prestressing reinforcement, in.2  

Asx = area of steel shape, pipe, or tubing in a composite section, in.2  

At = area of one leg of a closed stirrup, hoop, or tie resisting torsion within spacing s, in.2  

Atp = area of prestressing reinforcement in a tie, in.2  



122 

Atr = total cross-sectional area of all transverse reinforcement within spacing s that crosses the 

potential plane of splitting through the reinforcement being developed, in.2  

Ats = area of nonprestressed reinforcement in a tie, in.2  

Av = area of shear reinforcement within spacing s, in.2  

Avd = total area of reinforcement in each group of diagonal bars in a diagonally reinforced 

coupling beam, in.2  

Avf = area of shear-friction reinforcement, in.2 

Avh = area of shear reinforcement parallel to flexural tension reinforcement within spacing s2, in.2  

Av,min = minimum area of shear reinforcement within spacing s, in.2  

AVc = projected concrete failure area of a single anchor or group of anchors, for calculation of 

strength in shear, in.2  

AVco = projected concrete failure area of a single anchor, for calculation of strength in shear, if 

not limited by corner influences, spacing, or member thickness, in.2  

A1 = loaded area for consideration of bearing strength, in.2  

A2 = area of the lower base of the largest frustum of a pyramid, cone, or tapered wedge contained 

wholly within the support and having its upper base equal to the loaded area. The sides of the 

pyramid, cone, or tapered wedge shall be sloped one vertical to two horizontal, in.2  

b = width of compression face of member, in. 

bc = cross-sectional dimension of member core measured to the outside edges of the transverse 

reinforcement composing area Ash, in. 

bf = effective flange width of T section, in.  

bo = perimeter of critical section for two-way shear in slabs and footings, in.  

bs = width of strut, in. 

bslab = effective slab width resisting γfMsc, in.  

bt = width of that part of cross section containing the closed stirrups resisting torsion, in.  

bv = width of cross section at contact surface being investigated for horizontal shear, in. 

bw = web width or diameter of circular section, in.  

b1 = dimension of the critical section bo measured in the direction of the span for which moments 

are determined, in.  

b2 = dimension of the critical section bo measured in the direction perpendicular to b1, in.  

Bn = nominal bearing strength, lb  
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Bu = factored bearing load, lb  

c = distance from extreme compression fiber to neutral axis, in.  

cac = critical edge distance required to develop the basic strength as controlled by concrete 

breakout or bond of a post-installed anchor in tension in uncracked concrete without 

supplementary reinforcement to control splitting, in.  

ca,max = maximum distance from center of an anchor shaft to the edge of concrete, in.  

ca,min = minimum distance from center of an anchor shaft to the edge of concrete, in.  

ca1 = distance from the center of an anchor shaft to the edge of concrete in one direction, in. If 

shear is applied to anchor, ca1 is taken in the direction of the applied shear. If tension is applied to 

the anchor, ca1 is the minimum edge distance. Where anchors subject to shear are located in 

narrow sections of limited thickness, see 17.5.2.4 in ACI 318-14 

c′a1 = limiting value of ca1 where anchors are located less than 1.5ca1 from three or more edges, 

in.; see Fig. R17.5.2.4 in ACI 318-14 

ca2 = distance from center of an anchor shaft to the edge of concrete in the direction 

perpendicular to ca1, in.  

cb = lesser of: (a) the distance from center of a bar or wire to nearest concrete surface, and (b) 

one-half the center-to-center spacing of bars or wires being developed, in.  

cc = clear cover of reinforcement, in.  

cNa = projected distance from center of an anchor shaft on one side of the anchor required to 

develop the full bond strength of a single adhesive anchor, in.  

ct = distance from the interior face of the column to the slab edge measured parallel to c1, but not 

exceeding c1, in.  

c1 = dimension of rectangular or equivalent rectangular column, capital, or bracket measured in 

the direction of the span for which moments are being determined, in.  

c2 = dimension of rectangular or equivalent rectangular column, capital, or bracket measured in 

the direction perpendicular to c1, in.  

C = cross-sectional constant to define torsional properties of slab and beam 

C = compressive force acting on a nodal zone, lb 

Cm = factor relating actual moment diagram to an equivalent uniform moment diagram 

d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement, 

in.  
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d′ = distance from extreme compression fiber to centroid of longitudinal compression 

reinforcement, in. 

da = outside diameter of anchor or shaft diameter of headed stud, headed bolt, or hooked bolt, in.  

da′ = value substituted for da if an oversized anchor is used, in.  

dagg = nominal maximum size of coarse aggregate, in.  

db = nominal diameter of bar, wire, or prestressing strand, in. 

dburst = distance from the anchorage device to the centroid of the bursting force, Tburst, in. 

dp = distance from extreme compression fiber to centroid of prestressing reinforcement, in.  

dpile = diameter of pile at footing base, in.  

D = effect of service dead load 

eanc = eccentricity of the anchorage device or group of devices with respect to the centroid of the 

cross section, in. 

eh = distance from the inner surface of the shaft of a J- or L-bolt to the outer tip of the J- or L-

bolt, in.  

e′N = distance between resultant tension load on a group of anchors loaded in tension and the 

centroid of the group of anchors loaded in tension, in.; eN′ is always positive 

e′V = distance between resultant shear load on a group of anchors loaded in shear in the same 

direction, and the centroid of the group of anchors loaded in shear in the same direction, in.; eV′ 

is always positive  

E = effect of horizontal and vertical earthquake-induced forces 

Ec = modulus of elasticity of concrete, psi  

Ecb = modulus of elasticity of beam concrete, psi  

Ecs = modulus of elasticity of slab concrete, psi  

EI = flexural stiffness of member, in.2-lb  

(EI)eff = effective flexural stiffness of member, in.2-lb  

Ep = modulus of elasticity of prestressing reinforcement, psi  

Es = modulus of elasticity of reinforcement and structural steel, excluding prestressing 

reinforcement, psi  

fc′ = specified compressive strength of concrete, psi  

′f c = square root of specified compressive strength of concrete, psi  

fci′ = specified compressive strength of concrete at time of initial prestress, psi  
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′f ci = square root of specified compressive strength of concrete at time of initial prestress, psi  

fce = effective compressive strength of the concrete in a strut or a nodal zone, psi  

fcm = measured average compressive strength of concrete, psi  

fct = measured average splitting tensile strength of lightweight concrete, psi  

fd = stress due to unfactored dead load, at extreme fiber of section where tensile stress is caused 

by externally applied loads, psi  

fdc = decompression stress; stress in the prestressing reinforcement if stress is zero in the concrete 

at the same level as the centroid of the prestressing reinforcement, psi  

fpc = compressive stress in concrete, after allowance for all prestress losses, at centroid of cross 

section resisting externally applied loads or at junction of web and flange where the centroid lies 

within the flange, psi. In a composite member, fpc is the resultant compressive stress at centroid 

of composite section, or at junction of web and flange where the centroid lies within the flange, 

due to both prestress and moments resisted by precast member acting alone  

fpe = compressive stress in concrete due only to effective prestress forces, after allowance for all 

prestress losses, at extreme fiber of section if tensile stress is caused by externally applied loads, 

psi  

fps = stress in prestressing reinforcement at nominal flexural strength, psi  

fpu = specified tensile strength of prestressing reinforcement, psi  

fpy = specified yield strength of prestressing reinforcement, psi 

fr = modulus of rupture of concrete, psi  

fs = tensile stress in reinforcement at service loads, excluding prestressing reinforcement, psi  

fs′ = compressive stress in reinforcement under factored loads, excluding prestressing 

reinforcement, psi  

fse = effective stress in prestressing reinforcement, after allowance for all prestress losses, psi 

fsi = stress in the i-th layer of surface reinforcement, psi 

ft = extreme fiber stress in the precompressed tension zone calculated at service loads using gross 

section properties after allowance of all prestress losses, psi  

futa = specified tensile strength of anchor steel, psi  

fy = specified yield strength for nonprestressed reinforcement, psi  

fya = specified yield strength of anchor steel, psi  

fyt = specified yield strength of transverse reinforcement, psi  
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F = effect of service lateral load due to fluids with well-defined pressures and maximum heights  

Fnn = nominal strength at face of a nodal zone, lb  

Fns = nominal strength of a strut, lb  

Fnt = nominal strength of a tie, lb  

Fun = factored force on the face of a node, lb  

Fus = factored compressive force in a strut, lb  

Fut = factored tensile force in a tie, lb  

h = overall thickness, height, or depth of member, in.  

ha = thickness of member in which an anchor is located, measured parallel to anchor axis, in. 

hanc = dimension of anchorage device or single group of closely spaced devices in the direction 

of bursting being considered, in. 

hef = effective embedment depth of anchor, in. 

h′ef = limiting value of hef where anchors are located less than 1.5hef from three or more edges, 

in. 

hsx = story height for story x, in.  

hu = laterally unsupported height at extreme compression fiber of wall or wall pier, in., 

equivalent to ℓu for compression members  

hv = depth of shear head cross section, in.  

hw = height of entire wall from base to top, or clear height of wall segment or wall pier 

considered, in.  

hx = maximum center-to-center spacing of longitudinal bars laterally supported by corners of 

crossties or hoop legs around the perimeter of the column, in.  

H = effect of service load due to lateral earth pressure, ground water pressure, or pressure of bulk 

materials, lb  

I = moment of inertia of section about centroidal axis, in.4 

Ib = moment of inertia of gross section of beam about centroidal axis, in.4  

Icr = moment of inertia of cracked section transformed to concrete, in.4  

Ie = effective moment of inertia for calculation of deflection, in.4 

Ig = moment of inertia of gross concrete section about centroidal axis, neglecting reinforcement, 

in.4  

Is = moment of inertia of gross section of slab about centroidal axis, in.4  
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Ise = moment of inertia of reinforcement about centroidal axis of member cross section, in.4  

Isx = moment of inertia of structural steel shape, pipe, or tubing about centroidal axis of 

composite member cross section, in.4  

k = effective length factor for compression members  

kc = coefficient for basic concrete breakout strength in tension  

kcp = coefficient for pryout strength  

kf = concrete strength factor  

kn = confinement effectiveness factor 

Kt = torsional stiffness of member; moment per unit rotation 

Ktr = transverse reinforcement index, in. 

K05 = coefficient associated with the 5 percent fractile 

ℓ = span length of beam or one-way slab; clear projection of cantilever, in.  

ℓa = additional embedment length beyond centerline of support or point of inflection, in. 

ℓanc = length along which anchorage of a tie must occur, in.  

ℓb = width of bearing, in. 

ℓc = length of compression member, measured center to-center of the joints, in.  

ℓd = development length in tension of deformed bar, deformed wire, plain and deformed welded 

wire reinforcement, or pretensioned strand, in.  

ℓdc = development length in compression of deformed bars and deformed wire, in.  

ℓdb = debonded length of prestressed reinforcement at end of member, in.  

ℓdh = development length in tension of deformed bar or deformed wire with a standard hook, 

measured from outside end of hook, point of tangency, toward critical section, in.  

ℓdt = development length in tension of headed deformed bar, measured from the bearing face of 

the head toward the critical section, in.  

ℓe = load bearing length of anchor for shear, in.  

ℓext = straight extension at the end of a standard hook, in.  

ℓn = length of clear span measured face-to-face of supports, in.  

ℓo = length, measured from joint face along axis of member, over which special transverse 

reinforcement must be provided, in.  

ℓsc = compression lap splice length, in.  

ℓst = tension lap splice length, in.  
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ℓt = span of member under load test, taken as the shorter span for two-way slab systems, in. Span 

is the lesser of: (a) distance between centers of supports, and (b) clear distance between supports 

plus thickness h of member. Span for a cantilever shall be taken as twice the distance from face 

of support to cantilever end 

ℓtr = transfer length of prestressed reinforcement, in.  

ℓu = unsupported length of column or wall, in.  

ℓv = length of shearhead arm from centroid of concentrated load or reaction, in.  

ℓw = length of entire wall, or length of wall segment or wall pier considered in direction of shear 

force, in.  

ℓ1 = length of span in direction that moments are being determined, measured center-to-center of 

supports, in.  

ℓ2 = length of span in direction perpendicular to ℓ1, measured center-to-center of supports, in.  

L = effect of service live load  

Lr = effect of service roof live load 

M = moment acting on anchor or anchor group, in.-lb 

Ma = maximum moment in member due to service loads at stage deflection is calculated, in.-lb  

Mc = factored moment amplified for the effects of member curvature used for design of 

compression member, in.-lb  

Mcr = cracking moment, in.-lb  

Mcre = moment causing flexural cracking at section due to externally applied loads, in.-lb  

Mmax = maximum factored moment at section due to externally applied loads, in.-lb  

Mn = nominal flexural strength at section, in.-lb  

Mnb = nominal flexural strength of beam including slab where in tension, framing into joint, in.-

lb  

Mnc = nominal flexural strength of column framing into joint, calculated for factored axial force, 

consistent with the direction of lateral forces considered, resulting in lowest flexural strength, in.-

lb  

Mo = total factored static moment, in.-lb  

Mp = required plastic moment strength of shearhead cross section, in.-lb  
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Mpr = probable flexural strength of members, with or without axial load, determined using the 

properties of the member at joint faces assuming a tensile stress in the longitudinal bars of at 

least 1.25fy and a strength reduction factor ϕ of 1.0, in.-lb  

Msa = maximum moment in wall due to service loads, excluding P∆ effects, in.-lb  

Msc = factored slab moment that is resisted by the column at a joint, in.-lb  

Mu = factored moment at section, in.-lb  

Mua = moment at mid height of wall due to factored lateral and eccentric vertical loads, not 

including P∆ effects, in.-lb  

Mv = moment resistance contributed by shearhead reinforcement, in.-lb  

M1 = lesser factored end moment on a compression member, in.-lb  

M1ns = factored end moment on a compression member at the end at which M1 acts, due to loads 

that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, in.-lb 

M1s = factored end moment on compression member at the end at which M1 acts, due to loads 

that cause appreciable sidesway, calculated using a first-order elastic frame analysis, in.-lb  

M2 = greater factored end moment on a compression member. If transverse loading occurs 

between supports, M2 is taken as the largest moment occurring in member. Value of M2 is 

always positive, in.-lb  

M2,min = minimum value of M2, in.-lb  

M2ns = factored end moment on compression member at the end at which M2 acts, due to loads 

that cause no appreciable sidesway, calculated using a first-order elastic frame analysis, in.-lb  

M2s = factored end moment on compression member at the end at which M2 acts, due to loads 

that cause appreciable sidesway, calculated using a first-order elastic frame analysis, in.-lb  

n = number of items, such as, bars, wires, monostrand anchorage devices, anchors, or shearhead 

arms  

nℓ = number of longitudinal bars around the perimeter of a column core with rectilinear hoops 

that are laterally supported by the corner of hoops or by seismic hooks. A bundle of bars is 

counted as a single bar 

nt = number of threads per inch  

N = tension force acting on anchor or anchor group, lb 

Na = nominal bond strength in tension of a single adhesive anchor, lb  

Nag = nominal bond strength in tension of a group of adhesive anchors, lb  
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Nb = basic concrete breakout strength in tension of a single anchor in cracked concrete, lb  

Nba = basic bond strength in tension of a single adhesive anchor, lb  

Nc = resultant tensile force acting on the portion of the concrete cross section that is subjected to 

tensile stresses due to the combined effects of service loads and effective prestress, lb  

Ncb = nominal concrete breakout strength in tension of a single anchor, lb  

Ncbg = nominal concrete breakout strength in tension of a group of anchors, lb  

Ncp = basic concrete pryout strength of a single anchor, lb  

Ncpg = basic concrete pryout strength of a group of anchors, lb  

Nn = nominal strength in tension, lb  

Np = pullout strength in tension of a single anchor in cracked concrete, lb  

Npn = nominal pullout strength in tension of a single anchor, lb  

Nsa = nominal strength of a single anchor or individual anchor in a group of anchors in tension as 

governed by the steel strength, lb  

Nsb = side-face blowout strength of a single anchor, lb 

 

Nsbg = side-face blowout strength of a group of anchors, lb  

Nu = factored axial force normal to cross section occurring simultaneously with Vu or Tu; to be 

taken as positive for compression and negative for tension, lb  

Nua = factored tensile force applied to anchor or individual anchor in a group of anchors, lb  

Nua,g = total factored tensile force applied to anchor group, lb  

Nua,i = factored tensile force applied to most highly stressed anchor in a group of anchors, lb 

Nua,s = factored sustained tension load, lb  

Nuc = factored horizontal tensile force applied at top of bracket or corbel acting simultaneously 

with Vu, to be taken as positive for tension, lb  

pcp = outside perimeter of concrete cross section, in.  

ph = perimeter of centerline of outermost closed transverse torsional reinforcement, in. 

Pδ = secondary moment due to individual member slenderness, in.-lb 

Pc = critical buckling load, lb  

Pn = nominal axial compressive strength of member, lb  

Pn,max = maximum nominal axial compressive strength of a member, lb  

Pnt = nominal axial tensile strength of member, lb  
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Pnt,max = maximum nominal axial tensile strength of member, lb  

Po = nominal axial strength at zero eccentricity, lb  

Ppu = factored prestressing force at anchorage device, lb  

Ps = unfactored axial load at the design, midheight section including effects of self-weight, lb  

Pu = factored axial force; to be taken as positive for compression and negative for tension, lb  

PΔ = secondary moment due to lateral deflection, in.-lb  

qDu = factored dead load per unit area, lb/ft2  

qLu = factored live load per unit area, lb/ft2  

qu = factored load per unit area, lb/ft2  

Q = stability index for a story  

r = radius of gyration of cross section, in.  

R = cumulative load effect of service rain load 

R = reaction, lb 

s = center-to-center spacing of items, such as longitudinal reinforcement, transverse 

reinforcement, tendons, or anchors, in.  

si = center-to-center spacing of reinforcement in the i-th direction adjacent to the surface of the 

member, in. so = center-to-center spacing of transverse reinforcement within the length ℓo, in.  

ss = sample standard deviation, psi  

sw = clear distance between adjacent webs, in.  

s2 = center-to-center spacing of longitudinal shear or torsional reinforcement, in.  

S = effect of service snow load  

Se = moment, shear, or axial force at connection corresponding to development of probable 

strength at intended yield locations, based on the governing mechanism of inelastic lateral 

deformation, considering both gravity and earthquake effects 

Sm = elastic section modulus, in.3  

Sn = nominal moment, shear, axial, torsional, or bearing strength  

Sy = yield strength of connection, based on fy of the connected part, for moment, shear, or axial 

force, psi  

t = wall thickness of hollow section, in.  

tf = thickness of flange, in.  
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T = cumulative effects of service temperature, creep, shrinkage, differential settlement, and 

shrinkage-compensating concrete 

T = tension force acting on a nodal zone in a strut-and tie model, lb (T is also used to define the 

cumulative effects of service temperature, creep, shrinkage, differential settlement, and 

shrinkage-compensating concrete in the load combinations) 

Tburst = tensile force in general zone acting ahead of the anchorage device caused by spreading of 

the anchorage force, in. 

Tcr = cracking torsional moment, in.-lb  

Tt = total test load, lb  

Tth = threshold torsional moment, in.-lb  

Tn = nominal torsional moment strength, in.-lb  

Tu = factored torsional moment at section, in.-lb  

U = strength of a member or cross section required to resist factored loads or related internal 

moments and forces in such combinations as stipulated in this Code  

vc = stress corresponding to nominal two-way shear strength provided by concrete, psi  

vn = equivalent concrete stress corresponding to nominal two-way shear strength of slab or 

footing, psi  

vs = equivalent concrete stress corresponding to nominal two-way shear strength provided by 

reinforcement, psi  

vu = maximum factored two-way shear stress calculated around the perimeter of a given critical 

section, psi  

vug = factored shear stress on the slab critical section for two-way action due to gravity loads 

without moment transfer, psi 

V = shear force acting on anchor or anchor group, lb 

Vb = basic concrete breakout strength in shear of a single anchor in cracked concrete, lb  

Vc = nominal shear strength provided by concrete, lb  

Vcb = nominal concrete breakout strength in shear of a single anchor, lb  

Vcbg = nominal concrete breakout strength in shear of a group of anchors, lb  

Vci = nominal shear strength provided by concrete where diagonal cracking results from 

combined shear and moment, lb 

Vcp = nominal concrete pryout strength of a single anchor, lb  
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Vcpg = nominal concrete pryout strength of a group of anchors, lb  

Vcw = nominal shear strength provided by concrete where diagonal cracking results from high 

principal tensile stress in web, lb 

Vd = shear force at section due to unfactored dead load, lb  

Ve = design shear force for load combinations including earthquake effects, lb  

Vi = factored shear force at section due to externally applied loads occurring simultaneously with 

Mmax, lb  

Vn = nominal shear strength, lb  

Vnh = nominal horizontal shear strength, lb  

Vp = vertical component of effective prestress force at section, lb  

Vs = nominal shear strength provided by shear reinforcement, lb  

Vsa = nominal shear strength of a single anchor or individual anchor in a group of anchors as 

governed by the steel strength, lb,  

Vu = factored shear force at section, lb  

Vua = factored shear force applied to a single anchor or group of anchors, lb  

Vua,g = total factored shear force applied to anchor group, lb  

Vua,i = factored shear force applied to most highly stressed anchor in a group of anchors, lb  

Vuh = factored shear force along contact surface in composite concrete flexural member, lb  

Vus = factored horizontal shear in a story, lb 

V|| = maximum shear force that can be applied parallel to the edge, lb 

V┴ = maximum shear force that can be applied perpendicular to the edge, lb 

wc = density, unit weight, of normal-weight concrete or equilibrium density of lightweight 

concrete, lb/ft3 

ws = width of a strut perpendicular to the axis of the strut, in.  

wt = effective height of concrete concentric with a tie, used to dimension nodal zone, in.  

wt,max = maximum effective height of concrete concentric with a tie, in. 

wu = factored load per unit length of beam or one-way slab, lb/in.  

w/cm = water-cementitious material ratio  

W = effect of wind load 

Wa = service-level wind load, lb 

x = shorter overall dimension of rectangular part of cross section, in  
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y = longer overall dimension of rectangular part of cross section, in  

yt = distance from centroidal axis of gross section, neglecting reinforcement, to tension face, in.  

α = angle defining the orientation of reinforcement  

αc = coefficient defining the relative contribution of concrete strength to nominal wall shear 

strength  

αf = ratio of flexural stiffness of beam section to flexural stiffness of a width of slab bounded 

laterally by centerlines of adjacent panels, if any, on each side of the beam 

αfm = average value of αf for all beams on edges of a panel  

αf1 = αf in direction of ℓ1  

αf2 = αf in direction of ℓ2  

αi = angle between the axis of a strut and the bars in the i-th layer of reinforcement crossing that 

strut 

αs = constant used to calculate Vc in slabs and footings  

αv = ratio of flexural stiffness of shear-head arm to that of the surrounding composite slab section  

α1 = orientation of distributed reinforcement in a strut  

α2 = orientation of reinforcement orthogonal to α1 in a strut  

β = ratio of long to short dimensions: clear spans for two-way slabs, sides of column, 

concentrated load or reaction area; or sides of a footing  

βb = ratio of area of reinforcement cut off to total area of tension reinforcement at section  

βdns = ratio used to account for reduction of stiffness of columns due to sustained axial loads  

βds = the ratio of maximum factored sustained shear within a story to the maximum factored 

shear in that story associated with the same load combination  

βn = factor used to account for the effect of the anchorage of ties on the effective compressive 

strength of a nodal zone  

βs = factor used to account for the effect of cracking and confining reinforcement on the effective 

compressive strength of the concrete in a strut  

βt = ratio of torsional stiffness of edge beam section to flexural stiffness of a width of slab equal 

to span length of beam, center-to-center of supports  

β1 = factor relating depth of equivalent rectangular compressive stress block to depth of neutral 

axis  
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γf = factor used to determine the fraction of Msc transferred by slab flexure at slab-column 

connections  

γp = factor used for type of prestressing reinforcement  

γs = factor used to determine the portion of reinforcement located in center band of footing  

γv = factor used to determine the fraction of Msc transferred by eccentricity of shear at slab-

column connections  

δ = moment magnification factor used to reflect effects of member curvature between ends of a 

compression member  

δs = moment magnification factor used for frames not braced against side-sway, to reflect lateral 

drift resulting from lateral and gravity loads  

δu = design displacement, in.  

Δcr = calculated out-of-plane deflection at mid-height of wall corresponding to cracking moment 

Mcr, in. 

Δn = calculated out-of-plane deflection at mid-height of wall corresponding to nominal flexural 

strength Mn, in.  

Δo = relative lateral deflection between the top and bottom of a story due to Vus, in. 

Δfp = increase in stress in prestressing reinforcement due to factored loads, psi  

Δfps = stress in prestressing reinforcement at service loads less decompression stress, psi 

Δfpt = difference between the stress that can be developed in the strand at the section under 

consideration and the stress required to resist factored bending moment at section, Mu/ϕ, psi 

Δr = residual deflection measured 24 hours after removal of the test load. For the first load test, 

residual deflection is measured relative to the position of the structure at the beginning of the 

first load test. For the second load test, residual deflection is measured relative to the position of 

the structure at the beginning of the second load test, in.  

Δs = out-of-plane deflection due to service loads, in.  

Δu = calculated out-of-plane deflection at mid-height of wall due to factored loads, in.  

Δx = design story drift of story x, in.  

Δ1 = maximum deflection, during first load test, measured 24 hours after application of the full 

test load, in.  
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Δ2 = maximum deflection, during second load test, measured 24 hours after application of the 

full test load. Deflection is measured relative to the position of the structure at the beginning of 

the second load test, in. 

εcu = maximum usable strain at extreme concrete compression fiber 

εt = net tensile strain in extreme layer of longitudinal tension reinforcement at nominal strength, 

excluding strains due to effective prestress, creep, shrinkage, and temperature  

εty = value of net tensile strain in the extreme layer of longitudinal tension reinforcement used to 

define a compression-controlled section 

θ = angle between axis of strut, compression diagonal, or compression field and the tension 

chord of the members  

λ = modification factor to reflect the reduced mechanical properties of lightweight concrete 

relative to normal-weight concrete of the same compressive strength  

λa = modification factor to reflect the reduced mechanical properties of lightweight concrete in 

certain concrete anchorage applications  

λΔ = multiplier used for additional deflection due to long-term effects 

 μ = coefficient of friction  

ξ = time-dependent factor for sustained load  

ρ = ratio of As to bd  

ρ′ = ratio of As′ to bd  

ρℓ = ratio of area of distributed longitudinal reinforcement to gross concrete area perpendicular to 

that reinforcement 

ρp = ratio of Aps to bdp  

ρs = ratio of volume of spiral reinforcement to total volume of core confined by the spiral, 

measured out-to-out of spirals  

ρt = ratio of area of distributed transverse reinforcement to gross concrete area perpendicular to 

that reinforcement  

ρv = ratio of tie reinforcement area to area of contact surface  

ρw = ratio of As to bwd 

ς = exponent symbol in tensile/shear force interaction equation 

ϕ = strength reduction factor 

ϕK = stiffness reduction factor  
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σ = wall boundary extreme fiber concrete nominal compressive stress, psi 

τcr = characteristic bond stress of adhesive anchor in cracked concrete, psi  

τuncr = characteristic bond stress of adhesive anchor in uncracked concrete, psi  

ψc = factor used to modify development length based on cover  

ψc,N = factor used to modify tensile strength of anchors based on presence or absence of cracks in 

concrete  

ψc,P = factor used to modify pullout strength of anchors based on presence or absence of cracks 

in concrete  

ψc,V = factor used to modify shear strength of anchors based on presence or absence of cracks in 

concrete and presence or absence of supplementary reinforcement 

ψcp,N  = factor used to modify tensile strength of post-installed anchors intended for use in 

uncracked concrete without supplementary reinforcement to account for the splitting tensile 

stresses due to installation  

ψcp,Na  = factor used to modify tensile strength of adhesive anchors intended for use in uncracked 

concrete without supplementary reinforcement to account for the splitting tensile stresses due to 

installation  

ψe = factor used to modify development length based on reinforcement coating  

ψec,N = factor used to modify tensile strength of anchors based on eccentricity of applied loads  

ψec,Na = factor used to modify tensile strength of adhesive anchors based on eccentricity of 

applied loads  

ψec,V = factor used to modify shear strength of anchors based on eccentricity of applied loads  

ψed,N = factor used to modify tensile strength of anchors based on proximity to edges of concrete 

member  

ψed,Na = factor used to modify tensile strength of adhesive anchors based on proximity to edges of 

concrete member  

ψed,V = factor used to modify shear strength of anchors based on proximity to edges of concrete 

member 

ψh,V = factor used to modify shear strength of anchors located in concrete members with ha < 

1.5ca1  

ψr = factor used to modify development length based on confining reinforcement  

ψs = factor used to modify development length based on reinforcement size  
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ψt = factor used to modify development length for casting location in tension  

ψw = factor used to modify development length for welded deformed wire reinforcement in 

tension  

Ωo = amplification factor to account for overstrength of the seismic-force-resisting system 

determined in accordance with the general building code 
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Appendix B - Cracked Moment of Inertia Derivation 

 

The derivation for the effective moment of inertia is presented here.  For one layer of steel and 

no axial load the stress distribution is shown in figure B.1  

 

Figure B.1: Stress Block for Rectangular Section. 

Using the forces in figure B.1, the equation can be calculated as follows.   

The first step we set the compression and tension forces equal to each other: 

 

                                                                                                      (Eq’n B.1) 

 

Then we solve for the depth of stress block, a: 

                                                                                                      (Eq’n B.2) 

 

Then we solve for the depth of the neutral axis: 

                                                                                                      (Eq’n B.3) 

 

𝐶 = 0.85𝑓′
𝑐 𝑎 𝑏 = 𝑇 = 𝐴𝑠 𝑓𝑦  

𝑎 =
𝐴𝑠𝑓𝑦

0.85𝑓′
𝑐𝑏

 

𝑐 =
𝑎

𝛽1
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Where β1 is equal to 0.85 when f’c is equal or less than 4000 psi,.   

Then we sum the forces about the neutral axis to solve for the nominal moment: 

                                                                                                        (Eq’n B.4) 

 

Then we substitute equations B.2 and B.3 into equation B.4  

                                                                                                        (Eq’n B.4) 

 

Then we simplify equation B.4 using basic algebra:  

 

 

 

 

 

Where n=Es/Ec 

The final form of the cracked moment of inertia is as follows 

                                                                                                      (Eq’n B.5) 

 

 

 

  

 

 

𝑀𝑛 = 𝐴𝑠 𝑓𝑦 (𝑑 −
𝑎

2
) 

𝐸𝐼𝑐𝑟 = 𝐸𝑠𝐴𝑠(𝑑 − 𝑐)2 +
𝐸𝑐𝑎

3𝑏

12
+ 𝐸𝑐ab (c −

a

2
)

2

 

𝐼𝑐𝑟 = 𝑛𝐴𝑠(𝑑 − 𝑐)2 +
𝑏𝑐3

3
 

𝐼𝑐𝑟 = 𝐸𝑐 [𝑛𝐴𝑠(𝑑 − 𝑐)2 + 𝑏𝑐3
𝛽1
12

+ bc3𝛽1(1 −
𝛽1
2

 )
2

 ] 

= 𝐸𝑐[𝑛𝐴𝑠(𝑑 − 𝑐)2 + 0.051𝑏𝑐3 + 0.28 bc3 ] 

= 𝑛𝐴𝑠(𝑑 − 𝑐)2 + 0.332𝑏𝑐3 
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