
Learning representations for information mining from text corpora with

applications to cyber threat intelligence

by

Avishek Bose

B.S., University of Dhaka, 2012

M.S., University of Dhaka, 2014

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2023

Abstract

This research develops learning representations and architectures for natural language

understanding, within an information mining framework for analysis of open-source cyber

threat intelligence (CTI). Both contextual (sequential) and topological (graph-based) encod-

ings of short text documents are modeled. To accomplish this goal, a series of machine learn-

ing tasks are defined, and learning representations are developed to detect crucial information

in these documents: cyber threat entities, types, and events. Using hybrid transformer-based

implementations of these learning models, CTI-relevant key phrases are identified, and spe-

cific cyber threats are classified using classification models based upon graph neural networks

(GNNs). The central scientific goal here is to learn features from corpora consisting of short

texts for multiple document categorization and information extraction sub-tasks to improve

the accuracy, precision, recall, and F1 score of a multimodal framework.

To address a performance gap (e.g., classification accuracy) for text classification, a novel

multi-dimensional Feature Attended Parametric Kernel Graph Neural Network (APKGNN)

layer is introduced to construct a GNN model in this dissertation where the text classification

task is transformed into a graph node classification task. To extract key phrases, contextual

semantic tagging with text sequences as input to transformers is used which improves a

transformer’s learning representation. By deriving a set of characteristics ranging from low-

level (lexical) natural language features to summative extracts, this research focuses on

reducing human effort by adopting a combination of semi-supervised approaches for learning

syntactic, semantic, and topological feature representation. The following central research

questions are addressed: can CTI-relevant key phrases be identified effectively with reduced

human effort; whether threats be classified into different types; and can threat events be

detected and ranked from social media like Twitter data and other benchmark data sets.

Developing an integrated system to answer these research questions showed that user-

specific information in shared social media content, and connections (followers and followees)

are effective and crucial for algorithmically tracing active CTI user accounts from open-source

social network data. All these components, used in combination, facilitate the understanding

of key analytical tasks and objectives of open-source cyber-threat intelligence.

Learning representations for information mining from text corpora with

applications to cyber threat intelligence

by

Avishek Bose

B.S., University of Dhaka, 2012

M.S., University of Dhaka, 2014

A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2023

Approved by:

Major Professor
William H. Hsu

Copyright

© Avishek Bose 2023.

Abstract

This research develops learning representations and architectures for natural language

understanding, within an information mining framework for analysis of open-source cyber

threat intelligence (CTI). Both contextual (sequential) and topological (graph-based) encod-

ings of short text documents are modeled. To accomplish this goal, a series of machine learn-

ing tasks are defined, and learning representations are developed to detect crucial information

in these documents: cyber threat entities, types, and events. Using hybrid transformer-based

implementations of these learning models, CTI-relevant key phrases are identified, and spe-

cific cyber threats are classified using classification models based upon graph neural networks

(GNNs). The central scientific goal here is to learn features from corpora consisting of short

texts for multiple document categorization and information extraction sub-tasks to improve

the accuracy, precision, recall, and F1 score of a multimodal framework.

To address a performance gap (e.g., classification accuracy) for text classification, a novel

multi-dimensional Feature Attended Parametric Kernel Graph Neural Network (APKGNN)

layer is introduced to construct a GNN model in this dissertation where the text classification

task is transformed into a graph node classification task. To extract key phrases, contextual

semantic tagging with text sequences as input to transformers is used which improves a

transformer’s learning representation. By deriving a set of characteristics ranging from low-

level (lexical) natural language features to summative extracts, this research focuses on

reducing human effort by adopting a combination of semi-supervised approaches for learning

syntactic, semantic, and topological feature representation. The following central research

questions are addressed: can CTI-relevant key phrases be identified effectively with reduced

human effort; whether threats be classified into different types; and can threat events be

detected and ranked from social media like Twitter data and other benchmark data sets.

Developing an integrated system to answer these research questions showed that user-

specific information in shared social media content, and connections (followers and followees)

are effective and crucial for algorithmically tracing active CTI user accounts from open-source

social network data. All these components, used in combination, facilitate the understanding

of key analytical tasks and objectives of open-source cyber-threat intelligence.

Table of Contents

List of Figures . xii

List of Tables . xiv

Acknowledgements . xvi

Dedication . xvii

1 Introduction . 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Dissertation Outline . 5

2 Extracting Key Phrases from Short Texts for Cyber-Threat Intelligence Tasks . . 7

2.1 Introduction . 7

2.2 Related Work . 9

2.2.1 Statistical Learning Approaches . 9

2.2.2 Feature-Based Heuristic Approaches 10

2.2.3 ML/DL Based Approaches . 10

2.2.4 NE Extraction for CTI . 10

2.3 Cybersecurity Keyphrase Identification Framework 13

2.3.1 Incorporating Heuristic Rules . 14

2.3.2 Adopted Statistical and Neural Network Models 18

2.4 Experiment and Evaluation . 23

viii

2.4.1 Data sets . 23

2.4.2 Environment Setup . 24

2.4.3 Compatibility of Tagging Rules . 24

2.4.4 Our Developed Tagging Rule Validation 26

2.4.5 Analysis of Results . 26

2.5 Conclusion and Future Work . 28

3 Attention Aware Parametric Kernel Graph Neural Network for Classifying Cyber-

Threat Types . 30

3.1 Introduction . 30

3.2 Related Work . 33

3.3 Deep Learning on Graphs . 34

3.3.1 Spectral and Spatial based approaches 34

3.3.2 Parametric Kernel for Extracting Patches 36

3.3.3 Self Attention in GNN . 37

3.4 Implemented Technique . 39

3.5 Experiments . 43

3.5.1 Data sets . 43

3.5.2 Experimental Setup . 44

3.6 Results and Performance Evaluation . 45

3.6.1 Discussion . 53

3.7 Conclusion and Future Work . 54

4 Event Detection and Ranking of Cyber-Threat Events 55

4.1 Introduction . 55

4.2 Related Approaches . 57

4.3 Background . 59

4.3.1 Named Entity Recognition (NER) . 59

ix

4.3.2 TextRank . 59

4.3.3 TFIDF . 59

4.3.4 DBSCAN . 60

4.4 Methods . 60

4.4.1 Tweet Collection and Early Annotation 60

4.4.2 Tweet Pre-processing and Cleaning 61

4.4.3 Influential Twitter User Impact . 61

4.4.4 Determining Algorithm Design Architecture 62

4.4.5 Event Detection Heuristics and Scoring 62

4.4.6 Annotation Approach . 67

4.5 Experimental Results . 68

4.5.1 Simulation . 68

4.5.2 Annotation-Based Validation . 71

4.6 Conclusion . 74

5 Tracing Relevant Twitter Accounts in CTI Domain 75

5.1 Introduction . 75

5.2 Related Work . 77

5.3 Methods . 78

5.3.1 Graph Construction . 79

5.3.2 Text Pre-processing . 79

5.3.3 Community Detection . 80

5.3.4 Calculating Community Weight and User Weight 80

5.3.5 Calculating Text Similarity and Community Ranking 82

5.3.6 Scoring and Ranking User Nodes . 83

5.3.7 Validating Model Output . 84

5.4 Collecting and Preparing Data . 86

5.4.1 Text Rating . 86

x

5.4.2 Extracting Sample Network . 87

5.4.3 Annotation of Sample Network . 87

5.5 Experimental Setup . 88

5.6 Results and Discussion . 89

5.7 Conclusion and Future Work . 92

6 Conclusions and Future Research . 93

6.1 Summary of Contributions . 93

6.2 Future Research . 95

Bibliography . 98

xi

List of Figures

1.1 Proposed Cyber-Threat Awareness System 4

2.1 Workflow diagram of new context-augmented key phrase extractor 11

2.2 Illustration of our new tagging rules with their respective steps for key phrase

tagging . 19

2.3 BERT-BiLSTM-CRF model1 . 23

2.4 Precision, Recall, and F1-Value of Rouge 1 score of developed rule-based tagger 27

2.5 Precision, Recall, and F1-Value of Rouge 1 score for baseline rule-based tagger 27

3.1 Euclidean and Non-euclidean data structure2 31

3.2 A two leyer GNN network3 . 36

3.3 Operational steps of node classification using novel implemented APKGNN

layer) . 42

3.4 Construction of APKGNN layer) . 42

3.5 Updating node representation using novel APKGNN layer) 43

3.6 Test accuracy curve up to fifty epochs for the CORA data set for all GNN

layers . 46

3.7 Training accuracy curve up to fifty epochs for the CORA data set for all GNN

layers . 47

3.8 Validation accuracy curve up to fifty epochs for the CORA data set for all

GNN layers . 47

3.9 Testing accuracy curve up to fifty epochs for the CITESEER data set for all

GNN layers . 48

xii

3.10 Training accuracy curve up to fifty epochs for the CITESEER data set for all

GNN layers . 48

3.11 Validation accuracy curve up to fifty epochs for the CITESEER data set for

all GNN layers . 49

3.12 Testing accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers . 50

3.13 Training accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers . 50

3.14 Validation accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers . 51

3.15 Testing accuracy curve up to fifty epochs for the CTI data set for all GNN

layers . 52

3.16 Training accuracy curve up to fifty epochs for the CTI data set for all GNN

layers . 52

3.17 Validation accuracy curve up to fifty epochs for the CTI data set for all GNN

layers . 53

4.1 Graphical representation of commonSet, keywordSet and namedEntitySet . . 63

4.2 Flowchart of the proposed approach . 67

4.3 Event plot of the second time interval proposed approach 69

5.1 Flow diagram of our proposed approach . 79

5.2 High level structure of a user community in our analysis 82

5.3 User weight calculation using the predicted values of account tweets and de-

scriptions . 83

5.4 Precision, Recall, and F1β comparison of our approach against two relevant

user recommendation approaches . 91

xiii

List of Tables

2.1 Comparing our developed hybrid system and current tools for identifying key

phrases from a short text . 12

2.2 Comparing our developed hybrid system and current tools for identifying key

phrases from a short text . 13

2.3 Results for baseline tagging rules and our rules tandem with different sta-

tistical and transformer-based models1 applied to CVE & NVD-specific and

general cybersecurity corpora . 20

2.4 Results for BERT-base-uncased model on Twitter general cybersecurity corpus 25

2.5 ROUGE-1 and Rouge-L score comparing generated key phrases against the

annotated data set for each set of rules . 26

3.1 Data set statistics for benchmark data sets and CTI data 43

3.2 Training statistics for benchmark data sets and CTI data 44

3.3 Performance of APKGNN compared to SOTA methods on validation and test

accuracy for benchmark and CTI data sets based on implemented experimen-

tal set up . 45

3.4 Performance of APKGNN compared to SPLINECNN on validation and test

accuracy for benchmark data sets based on SPLINECNN experimental set up 46

4.1 Summary results of five time intervals; NT:Number of Tweets; JT: Just

Trendy; TN: Trendy and Novel; FS: First Story; TE: Total Number of Events 69

4.2 Summary results of time interval 1 . 70

4.3 Sample results of doc2Vec . 72

4.4 Confusion matrix of the algorithm’s generated result 73

xiv

4.5 Summary results of time interval 1; EN: Event Number;EL: Event Link;

TC:Tweets Count

NESR:Normalized Event Score Rank;ET: Event Type; AER: Annotator Event

Ranking; DBR: Difference between Rankings; FS: First Story (“Just Novel”);

FST: First Story and Trendy (developing) 73

5.1 Performance comparisons with different methods on the sampled annotated

data set . 90

xv

Acknowledgments

I thank all of the people and well-wishers who have helped, supported, and encouraged

me throughout my Ph.D. journey at Kansas State University.

First, I thank my advisor, Dr. William Hsu. Without his support, completing my

degree would have been unimaginable. He guided me through a way full of obstacles. He

is one of the kindest people I have ever met in my life. He is a knowledgeable, versatile,

and enthusiastic mentor. He not only provided proper guidance and insightful ideas but

also provided the freedom to become a self-reliant, independent researcher in my areas of

interest. In addition to academic and research experience, I have developed soft skills such

as leadership, communication, and cooperation working under him and with my peers in the

Knowledge Discovery in Databases (KDD) laboratory. It is an honor to have been a part of

this wonderful group.

Dr. Doina Caragea, Dr. Pascal Hitzler, and Caterina Scoglio who served as my committee

members and provided valuable guidance and insight on my dissertation. I thank them all.

Dr. Daniel Anderson helped me with my High-Performance Computing (HPC) research.

Thank you! I also thank Dr. Mustaque Hossain who supported me in an inter-departmental

project.

I also want to thank Nora Ransom who helped me revise my dissertation manuscripts.

Finally, I could not have completed my doctoral program without unconditional love,

support, and encouragement from my parents, especially my mom, my younger brother, and

my wife.

xvi

Dedication

To my lovely family, especially my son Aradhyo Bose (Ved), for their support and love.

xvii

Chapter 1

Introduction

Despite being a highly dynamic domain, cyber-threat intelligence (CTI) from open-source

platforms often lacks the information needed to characterize CTI using specific correspond-

ing components such as threat types, key entities, and actors. Although earlier stud-

ies4–8,9–13,14–18,19–22 of these components have shown performance gain individually, a com-

plete framework for understanding cyber-threat intelligence was needed. To address this re-

search gap, I present a combined framework that focuses on understanding text information

using novel syntheses of machine learning methods including a hybrid set up of tagging rules

and transformers, graph neural networks (GNNs)3;23;24, and other semi-supervised models for

analyzing syntactic and semantic patterns. The central objective is to learn improved feature

representations in multiple, domain-independent sub-tasks, such as structured information

extraction, detection, and classification, that use social media data and other benchmark

data sets25–27 to (1) predict cyber-threat types25; (2) automatically label key phrases using

semantic rules14–17; (3) rank emergent threat events based on novelty and trendiness4–8; and

(4) perform relevant user account detection in social networks19–22.

To improve the performance of cyber-threat type detection or, more generally, to im-

prove text classification performance that was insufficient due to limitations in learning edge

feature dimensionality, I introduce a novel node feature attended parametric kernel Graph

Neural Network (APKGNN) in this dissertation. For key phrase extraction, I show that aug-

1

menting documents with contextual semantic tags can improve the accuracy of transformers

used to encode text sequences. Both of these approaches support semi-supervised learn-

ing principles that are one of our implicit objectives because of the scarcity of labeled data

among abundant, unlabeled, open-source data. In addition to the scientific goal of developing

improved feature representations, the secondary goal was to present a robust cyber-threat

awareness system comprising cyber-threat event detection and cyber threat-relevant user

tracing methods. Therefore, I empirically demonstrate that incorporating user community

structural information in social networks with their shared text content can trace influential

user accounts effectively. This research thus incorporates multiple sub-modules such as a new

GNN architecture, a hybrid system of context-aware transformers, and a system for tracing

active user accounts using both network structures and text contents, and CTI events and

ranking to reach both the scientific and application goals. In each of the sub-modules, exper-

imental results on cyber-threat and other benchmark corpora demonstrate the improvements

over existing state-of-the-art models, providing support for the hypothesis that the use of a

unified framework consisting of multiple hybrid components and an implemented GNN layer

(APKGNN) facilitate domain adaptation for characterizing cyber-threat intelligence.

1.1 Motivation

• Learning high-quality feature representation via deep learning models, such as trans-

formers and GNNs, from short and raw text corpora, remains an open research problem.

Transformer models often fail to learn improved representation for sequence labeling

tasks such as key phrase identification because plain tokenized text data is fed into

models. However, apart from improving the transformer models themselves, gener-

ating contextualized tagging data to feed into transformer models would be a new

research direction to boost transformer performance because context information has

provided performance gains in predictive NLP tasks. On the other hand, GNNs have

begun outperforming CNNs in text classification tasks, and GNNs are very effective in

semi-supervised learning settings. Using a parametric kernel to attend over the node

2

features in multi-dimensional vector space settings has not yet been explored for learn-

ing text or node feature representation. Therefore, introducing a novel efficient GNN

layer would not only facilitate generic text classification, but also it allow classifying

cyber-threat types as an application domain.

• Moreover, in dealing with emerging cyber-threats to online systems, updating security

measures must be proactive rather than incremental. Open-source cyber-threat intel-

ligence (CTI) provides predictive indicators to support such a strategy. Research gaps

in earlier relevant research has exposed ambiguities in characterizing CTI through dis-

tinct components, which include CTI key phrases, cyber-threat types, tracing malicious

users, and finding and ranking events.

• The Keyphrase identification process is a principal component of understanding CTI,

but it supplies only limited information to characterize OSINT. However, predicting

cyber-threat types can address this limitation. In addition, the cyber-threat event

detection method will activate the expected functionality of the system, and tracing

user accounts to monitor CTI instances will allow the construction of a robust CTI

awareness system. So, analysis that points out these key components before incorporat-

ing them and improving the performance of each component over the state-of-the-art

models is highly important.

1.2 Problem Statement

In this dissertation, I implemented novel techniques to learn sequential representations for

the extraction task and topological representations for the text classification task using the

short text and applying them to the CTI domain. From an application perspective, this

research characterizes and then addresses the limitations of individual components of CTI,

such as cyber-threat entity extraction, cyber-threat classification, CTI-relevant user account

tracing, and event identification. The problem statement addressing these techniques follows:

• Improving classification performance on text data by implementing a novel graph neu-

3

ral network (GNN) convolution technique in which the text classification task is con-

sidered as a node classification task and raw text corpus is transformed into graph

data;

• Boosting transformer-based language model performance by feeding contextualized

semantic information into hybrid transformer models for the key phrase identification

task;

• Identifying the key components of CTI and their correlations to facilitate constructing

an end-to-end cyber threat awareness system;

• Reducing the human effort in data annotation and labeling by providing a set of semi-

supervised and unsupervised machine learning approaches.

Figure 1.1 illustrates the block diagram of the proposed cyber threat awareness system.

Figure 1.1: Proposed Cyber-Threat Awareness System

1.3 Contributions

Much of the research behind this dissertation has been published in peer-reviewed conference

proceedings, while the rest of the research has been submitted and is under review. The

research contributions can be summarised as follows:

• I introduce a new attention-based GNN that uses a Gaussian mixture model for short-

text classification tasks.

4

• In the dissertation, I address the contextual limitations of current deep learning-based

and heuristic key phrase extraction tools as applied to the domain of cybersecurity. To

address these limitations, I develop a hybrid system that augments the performance

of state-of-the-art (SOTA) transformers for the task of key phrase sequence labeling,

using a novel set of semantic role-aware tagging rules to generate effective tag sequences

from short text corpora. Next, I fine-tune multiple SOTA deep learning (DL) language

model (LM) architectures to these transformed sequences.

• I present a new machine learning and text information extraction approach for detect-

ing cyber-threat events in Twitter that are novel (previously non-extant) and develop-

ing (marked by significance concerning similarity with a previously detected event).

• In the dissertation, I propose a novel approach for cyber threat-associated user account

tracing in the Twitter data stream based on the ranking of users according to their con-

textual relevance and topological information extracted from finding user communities

in the Twitter network.

1.4 Dissertation Outline

• Chapter 2 - Extracting Key Phrases from Short Texts for Cyber Threat Intelligence

Tasks

This chapter presents how contextualized tagging can help transformer language mod-

els (LM) learn improved feature representation for the CTI keyphrase extraction task.

This technique introduces a hybrid framework with a generalization objective that

validates the importance of contextual tagging in fine-tuning transformer models by

showing experimental results using standard performance metrics.

• Chapter 3 - Attention Aware Parametric Kernel GNN for Classifying Cyber-Threat

Types

This chapter introduces a novel GNN layer architecture to construct a GNN model as a

5

semi-supervised learning technique for a node classification task that is more accurate

than all reported SOTA approaches on standard benchmark data. The implemented

GNN model is adapted to classify cyber-threat type from raw tweets by transforming

the text data into a text graph.

• Chapter 4 - Event Detection and Ranking of Cyber-Threat Events

My application goal is to contribute to building an effective cyber-threat awareness

system. Thus, in this chapter, I present an approach that identifies and ranks novel

and trending cyber-threat events. To the best of my knowledge, this was the first time

both novel and trending events were detected and ranked simultaneously on Twitter.

The findings of this research are validated by investigating true incidents.

• Chapter 5 Tracing Relevant Twitter Accounts in CTI Domain

This chapter introduces another essential component of cyber-threat awareness: tracing

CTI-relevant users from the Twitter network by analyzing the content of user accounts

and their relational structure.

• Chapter 6 - Conclusions and Future Research

This chapter summarizes contributions and future direction of the continuing research.

The research in this dissertation contributes to efficient representation learning using

short texts for downstream deep learning tasks. Altogether, the combined framework pro-

vides a cyber-threat awareness system that will facilitate the cybersecurity action process by

(i) boosting the accuracy of threat classification using an APKGNN-based text classifier that

outperforms SOTA baselines, (ii) identifying CTI-relevant key phrases through improved se-

quence labels from transformers, (iii) improving the account tracing of active CTI users over

SOTA baselines, and (iv) implementing a novel event detection and ranking technique. Indi-

vidual performance of each of the sub-tasks mentioned above is evaluated based on standard

quantifiable metrics such as accuracy, precision, recall, and F1 score.

6

Chapter 2

Extracting Key Phrases from Short

Texts for Cyber-Threat Intelligence

Tasks

2.1 Introduction

Extracting cybersecurity-relevant informative tokens from text documents on open-source

domains such as CVE and NVD reports and Twitter and then mapping them to respective

labels as a sequence labeling task has particular significance for cybersecurity researchers

in detecting emerging cyber-attacks. Key phrase extraction from text corpora has been

unquestionably prolific but remains highly challenging because open-source short texts have

a peculiar lack of structure. Because manual extraction of information from these massive

data sets is often infeasible or prohibitively expensive, the only choice left is to use automatic

extraction approaches.

Named Entity (NE) Extraction/identification as an information extraction process is used

as a pipeline in many other applications7;13;14 of CTI, mapping a sequence of text tokens to

predefined classes. However, existing NE extraction tools can usually only find NEs that are

nouns or conjunctions of nouns. Moreover, raw text that has vital information conveyed by

7

corresponding tokens does not qualify as NEs because those tokens may have been tagged

as other parts of speech, are wrongly formed, or derived from different languages. Thus,

existing NE extraction/identification methods often cannot identify crucial CTI information,

triggering the need to develop more robust techniques than current NE extraction processes.

Deep learning neural networks such as sequence-to-sequence models and transformers

have predominated among methods for key phrase extraction/identification from text15 be-

cause of their domain-independent adaptability across fields. They do not require feature

engineering based upon specialized knowledge. Heuristic-empowered extraction methods de-

fined by a set of rules have some initial benefits, but incorporating extraction tagging rules

with deep learning (DL) provides the most convenience in a model. On the other hand, DL

methods have trouble extracting rare entities, acronyms, and abbreviations and are limited

in learning from text documents relevant to cybersecurity if they were different lengths be-

cause information from short texts is condensed, whereas descriptive reports spread across

pages.

Effective and insightful key phrase extraction from raw texts is not straightforward be-

cause contextual information is lacking; key information may remain unobserved by even

some robust key phrase identification processes that are either DL-based or heuristic-based.

DL-based LM architectures naturally facilitate context-learning of entities by focusing se-

mantic structure of inputting text documents. On the other hand, the semantic role labeling

(SRL) process can contextualize text documents based on the central verb. Therefore, a

potential solution may be to unify these two context-aware modules to establish a hybrid

system that adopts fruitful concepts from both domains. Thus, considering the contextual

limitations of inputting text data and the huge effort required in annotating text corpora,

we developed a set of SRL-powered generic extraction tagging rules. We fed text documents

into this module to get a fine-grained, tagged sequence from the inputting documents. Next,

we adopted a DL-based sequence labeling task of NE extraction1 along with generalized ex-

traction tagging rules to formulate a hybrid key phrase identification method that supports

domain transferability.

The set of tagging rules we developed was empirically validated and analytically struc-

8

tured to generate compatible tagged sequence as input to the DL LM architectures. Our

contributions are as follows:

1. We proposed a set of generalized extraction tagging rules for key phrase extraction;

2. We fed the tagged data set to some prominent DL-based transformers and statisti-

cal language model architectures to determine the suitable learning architectures for

specific use cases;

3. We validated the applicability of extraction tagging rules by applying the ROUGE

metric calculation between a sample tagged data set and its corresponding annotated

data set;

4. We designed, implemented, and experimented with an end-to-end framework that com-

bined the developed extraction tagging module and learning framework module which

achieved better generalization performance.

2.2 Related Work

This section gives information on earlier approaches to key phrase extraction and NE ex-

traction from text documents specifically in cybersecurity domain and that apply heuristic,

statistical, ML/DL-based techniques.

2.2.1 Statistical Learning Approaches

As basic techniques key phrase extraction, statistical learning approaches compute the prob-

abilities of a sequence of tokens in a text that enables labeling the tokens by suitable, partic-

ular classes. Examples of such approaches are Support Vector Machine (SVM) frameworks16

or Conditional Random Field (CRF) frameworks17 for extracting entity and context infor-

mation about security vulnerabilities and attacks. Some models17;18 took advantage of cyber

security-specific rule dictionaries in conjunction with statistical ML methods to improve the

performance of existing models. These statistical approaches depend on a large labeled text

9

corpus and require manual feature engineering steps that do not perform well nor are they

cost-efficient.

2.2.2 Feature-Based Heuristic Approaches

The scarcity of labeled data sets from various open-source text corpora has paved the way for

a generalized rule-based unsupervised approach to extract NEs28. However, the rules applied

here require further domain-specific knowledge. Currently, the word embedding technique is

replacing text-based features29, but the technique cannot provide accurate information for

finding key phrases. Knowledge based approaches14;30;31 can increase accuracy in extracting

key phrases, but the domain knowledge insufficiency, specifically in cybersecurity, has always

been a problem.

2.2.3 ML/DL Based Approaches

Approaches that applied various ML architectures32 such as vanilla BERT33 for NE extrac-

tion are limited because they depend upon external knowledge bases. On the other hand,

another approach applies bootstrap sampling for learning patterns generated from sample

sets to label NEs from the test text sequence34. The label dependency tagging feature of

CRF shows potential in the NE extraction tasks35 and has been incorporated into different

ML/DL architectures. More recently, NLP and cybersecurity researchers have used DL-

based approaches applied to various DL architectures for key phrase extraction because DL

is feature-independent. BiLSTM-CRF settings36 and all its descendant approaches37;38 for

NE extraction have become state of the art (SOTA) techniques because they effectively apply

word context as a primary step in token sequence tagging.

2.2.4 NE Extraction for CTI

The implications associated with extracting cybersecurity key phrases39 can be well ad-

dressed using a combination of DL methods40 that leverage the connection between the

10

character vector model and the word vector model with feature templates. The atten-

tion mechanism41;42 and its combination with feature templates43 facilitate extracting cyber

security-relevant rare tokens from a text corpus. A joint module of a DL model and domain

dictionary for generalized applicability and correctness for security entity extraction has been

proposed44, and in another study14, a framework combined Stanford NER and Regular Ex-

pressions to detect cybersecurity NEs. Other research45 uses vector space representations.

DL architectures such as LSTM and BERT, have been frequently used in cybersecurity key

phrase extraction tasks46;47 that collect features locally and globally from the corpus.

This earlier research has shown incremental improvement in cybersecurity key phrases

and entity extraction, but they did not provide more effective results through combining

both context augmentation and DL techniques. We have results of different, open source,

key phrase extraction tools that are very popular (see Tables 2.1 and 2.2). Therefore, the

extraction performance must be further improved.

Figure 2.1: Workflow diagram of new context-augmented key phrase extractor

11

Table 2.1: Comparing our developed hybrid system and current tools for identifying key
phrases from a short text
Clean Struc-
tured Text

A cyber attack in CSEDU has been committed by North Korean hackers

Existing
Tools

Different test case of the given
text

Remarks

TextRazor
A cyber attack in csedu has been com-
mitted by north korean hackers

TextRazor could not detect all
the key phrases after making all
letters of certain NE tokens lower
case, e.g., North Korean −→
north korean

A cyber attack in CSEDU has been

committed by north korea hackers

TextRazor detected only part of
key phrase after nounifying the
token north korean −→ north ko-
rea

Stanford
NER

A cyber attack in csedu has been com-
mitted by north korean hackers

Stanford NER failed to detect any
key phrase from the given lower
case letter transformed text

A cyber attack in Csedu has been
committed by north korean hackers

Stanford NER detected only part
of key phrase after making the to-
ken upper case csedu −→ Csedu

A cyber attack in Csedu has been
committed by North Korea Hackers

Stanford NER detected two key
phrases only after nounifying and
making the tokens upper case
csedu −→ Csedu and north ko-
rean −→ North Korea

Spacy

A cyber attack in CSEDU has been
committed by north korean hackers

Spacy detected only one after
making the token upper case
csedu −→ CSEDU

A cyber attack in csedu has been com-
mitted by North Korean Hackers

Spacy failed to detect any key
phrase from the given lower case
letter transformed text

A cyber attack in CSEDU has been
committed by North Korea Hackers

Spacy failed to detect any part of
a certain key phrase North Korea
Hackers even though it was in up-
per case and nounified

A cyber attack in CSEDU has been
committed by North Korean Hackers

Spacy detected two key phrases,
one after making the first NE to-
ken upper case; the second was
only partly detected

12

Table 2.2: Comparing our developed hybrid system and current tools for identifying key
phrases from a short text
Clean Struc-
tured Text

A cyber attack in CSEDU has been committed by North Korean hackers

Existing
Tools

Different test case of the given
text

Remarks

IBM Watson A cyber attack in csedu has been com-
mitted by North Korean Hackers

IBM Watson detected only one
key phrase from the given text

Our developed tagging
rules: tagging rules along
with BERT-BiLSTM-CRF
Model

A cyber attack in csedu has been

committed by north korean hackers

All potential key phrases are
tagged even after modifications

A cyber attack in CSEDU has been

committed by North Korean hackers

All potential key phrases are
tagged even after modifications

2.3 Cybersecurity Keyphrase Identification Framework

Despite having many common ideas and processes, the difference between NE extraction and

Key Phrase extraction lies in their purposes within a particular domain. Unlike NE extrac-

tion, which focuses only on extracting and identifying noun phrases, the key phrase extrac-

tion process tries to extract all key information that makes it appropriate for downstream

CTI tasks. Nearly all generic NE extraction methods fail to detect text tokens mentioning

emerging cyberthreats and foreign-language software entities because it is nearly impossible

to assign a tag to each valid NE. On the other hand, key phrase extraction is important

in the CTI domain because it accumulates subtle information from both structured long

text and unstructured short text in which non-noun tokens also contain crucial information.

Moreover, the purpose of CTI information extraction, even characterizing entity types, has

significant value in CTI, although obtaining this vital information is a priority. Considering

the requirement of the current needs in CTI, we designed a generalized set of extraction

tagging rules to obtain key phrases by keeping their previously assigned types. Figure 2.1

presents our implemented framework for key phrase identification, which consisted of six

steps.

13

2.3.1 Incorporating Heuristic Rules

Preparing Initial Data

To create primary test beds for applying the extractive tagging rules we developed, we

first applied part of speech (POS) tagging and semantic role labeling (SRL) to every text

document in the benchmark corpora. POS tagging defined micro-level feature information

for each token present in a text, but semantic role labeling (SRL) defined verbs as predicates

and associated other tokens with semantic roles represented as class-type arguments. In

other words, SRL mapped the verb or predicate arguments as functions and other tokens

to specific relations that corresponded to a specific function in a given sentence. NLTK’s

POS tagger tagged each token in an English text as follows: CC was the coordinating

conjunction; CD was the cardinal digit; DT was the determiner; FW was a foreign word; IN

was a preposition/subordinating conjunction; JJ+ was an adjective; MD was a modal; NN+

were nouns; RB+ were adverbs; VB+ were verbs. The symbol + showed all types of similar

POS tags were included.

On the other hand, SRL-produced tagging included the only following three terms: (i)

numbered arguments such as ARG0 and ARG1 plotted a middle course among possible

different theoretical analyses and ensured consistent annotation; (ii) IOB tagging located

the position relative to the verb; (iii) mnemonic ArgM modifier tags were LOC or location,

CAU or cause, TMP or time, PNC or purpose, NEG or negation marker, DIR or direction.

SRL usually generated two to four role arguments, but as many as six could appear based

on the verbs and other tokens remaining adjuncts. A reference example follows: i appreciate

the love for hacking guys but let [ARG0: us] [ARGM-NEG: not] [V: dos] [ARG1: our own

fun stream rip techno therapy] [ARG2: an above beyond].

However, more than one verb in a sentence can cause ambiguity because of multiple SRL

assignments. To solve this problem, we excluded all light verbs from being predicates and

prioritized the verb written at the end of a sentence as a predicate. At the end of this step,

we had POS tags and role labels for each token present in a given text.

14

Applying Extractive Tagging Rules

A crucial component of our new keyphrase extraction system was a set of tagging rules we

developed that mapped POS and SRL-tagged sequences to the input of our transformer-

based language model. Although the designed rules were not specific to cybersecurity, this

simple but effective set of rules worked better for both structured and unstructured texts.

These rules were formulated empirically to synthesize the intrinsic structure of sentences

obtained from POS and SRL tags. These rules avoided using overconstrained, domain-

specific pattern matching techniques such as gazetteers that are too brittle to adapt to new

domains, such as different cybersecurity-related domains, and thus omitted key role-specific

information in context. For example, for the text document A cyber attack in CSEDU has

been committed by North Korean hackers , SRL tagged representation is A cyber attack in

CSEDU[B-ARG1, I-ARG1, I-ARG1, I-ARG1, I-ARG1] has[O] been[O] committed[B-V] by

North Korean hackers[B-ARG0, I-ARG1, I-ARG1, I-ARG1]. Here, the role verb committed

created the relation context that the rule-based tagger could use with a token POS tag to

extract the key phrases by tagging respective tokens.

SRL synthesizes a text document into multiple contexts (examples given in subsection

2.3.1.1 and subsection 2.3.1.2) according to the roles based on the central verb of the text

document. Our rules mentioned (see subsection 2.3.1.2) considered the position of different

arguments in the contexts and extracted noun phrases from them. If informative tokens

in the context mapped to other POS other than nouns, the rules transformed them into

Noun phrases. The resulting tagging sequence was mapped to the respective token where a

tag determined a token’s presence in the set of key phrases. Unlike existing tagging rules

(too brittle for generic Benchmark 225 data set) that attempted to tag only specific CTI text

tokens, our new rules considered the POS tag sequence of tokens inside the context (generated

by SRL for tagging text tokens of a text document) for key phrase extraction tasks. Our

new set of rules does not constrain itself to a particular domain data set (Benchmark 126),

so it supports cross-domain transfer. In the following itemized points, we describe the set of

rules that we designed for tagging key phrases.

15

For any set of tokens T and SRL argument tags A , the set of all functions fSRL(T):T→A

is denoted as A = fSRL(T) = SRL(T)

For any set of tokens T and POS tag P , the set of all functions fPOS(T):T→P is denoted

as P = fPOS(T) = POS(T)

For any set of tokens T and Nounified token N, the set of all functions fNOUN(T):T→N

is denoted as P = fNOUN(T) = NOUN(T)

1. Up to two consecutive noun phrases (NN+) where the first one is an initial argu-

ment (B-ARG) and the second is an intermediate argument (I-ARG) preceded by a

determiner (DT/IN) are jointly considered a key phrase.

keyj = {TiTi+1 : i ∈ {1, ..., |Sk|},

fSRL(Ti) ∈ {NN+},

fSRL(Ti+1) ∈ {NN+},

fPOS(Ti) ∈ {B − ARG},

fPOS(Ti+1) ∈ {I − ARG},

fPOS(Ti−1) ∈ {DT/IN}}.

(2.1)

2. A noun phrase (NN+) tagged by an initial argument (I-ARG) preceded by a determiner

(DT/IN) is considered a key phrase.

keyj = {Ti : i ∈ {1, ..., |Sk|},

fSRL(Ti) ∈ {NN+},

fPOS(Ti) ∈ {I − ARG},

fPOS(Ti−1) ∈ {DT/IN}}.

(2.2)

16

3. If any determiner (DT/IN) is present just before an adjective (JJ), the adjective is an

intermediate argument (I-ARG), and a noun (NN+) is located just after the adjective

(JJ+), the adjective and noun are jointly considered a key phrase.

keyj = {TiTi+1 : i ∈ {1, ..., |Sk|},

fSRL(Ti) ∈ {JJ+},

fSRL(Ti+1) ∈ {NN+},

fPOS(Ti) ∈ {I − ARG},

fPOS(Ti+1) ∈ {I − ARG/B − ARG},

fPOS(Ti−1) ∈ {DT/IN}}.

(2.3)

4. If up to two adjectives (JJ) are followed by a noun phrase (NN), they are considered

a key phrase.

keyj = {Ti−1TiTi+1 : i ∈ {1, ..., |Sk|},

fSRL(Ti−1) ∈ {JJ+},

fSRL(Ti) ∈ {JJ+},

fSRL(Ti+1) ∈ {NN+}}.

(2.4)

5. We nounify adjective (JJ+), adverb (RB), and verb (VB) and check to see if any of

the noun forms are related to cybersecurity or not.

keyj = {Ti : i ∈ {1, ..., |Sk|},

fNOUN(Ti) ∈ {NN+}}.
(2.5)

17

6. Any foreign language token or token length of more than 3 written with alphanumeric

letters are considered key phrases.

keyj = {Ti : i ∈ {1, ..., |Sk|},

fPOS(Ti) ∈ {FW} ∪ |Ti| ≥ 3}.
(2.6)

Here, i represents the token number of a token part of a key phrase that can be any

number from 1 to |Sk|, where |Sk| is the length of the key phrase.

Figure 2.2 shows a step diagram of our developed extraction tagging rules. DL trans-

former language models do not learn well if they receive highly constrained target labels

against training data. Following this concept, too many type-specific CTI tags as labels

would reduce the learning of LMs to predict key phrases from a text document. However,

our contextualized set of rules produces generic tagging of tokens that does not limit the

performance of LMs and results in a higher overall accuracy boost. So, new tagging rules are

effective in tandem with transformers, generating better results, which means hybridizing

two modules is transformer-friendly.

2.3.2 Adopted Statistical and Neural Network Models

BERT Pre-trained Language Model

Pre-trained language models of Bidirectional Encoder Representations from Transformers

(BERT)33 performed better than Word2Vec to generate contextualized embeddings for words

present in a sentence by introducing two new ideas: (i) masked language model (MLM) and

next sentence prediction (NSP). The MLM technique masks some words from a provided

sentence to generate masked tokens according to the context. However, the second technique

tries to predict the next sentence by feeding two randomly selected sentences as input.

These two ideas leverage BERT as an embedding to include attention-focused, multi-layer,

bidirectional, and nonlinear correlation constraint layers for sequence labeling tasks. BERT

18

Figure 2.2: Illustration of our new tagging rules with their respective steps for key phrase
tagging

19

Table 2.3: Results for baseline tagging rules and our rules tandem with different statistical
and transformer-based models1 applied to CVE & NVD-specific and general cybersecurity
corpora
Corpora Model Prec Rec F1
Merged CVE &
NVD-specific
corpus tagged
using baseline
rules

BERT 96.40 97.13 96.77
CRF 84.00 77.00 79.00
BERT-CRF 97.36 97.29 97.33
BiLSTM-CRF (Word2Vec) 94.78 89.70 92.17
BERT-BiLSTM-CRF 97.82 97.37 97.59

Merged CVE &
NVD-specific
corpus tagged
using our new
rules

BERT 90.34 91.54 90.94
CRF 88.00 86.00 87.00
BERT-CRF 91.39 92.16 91.77
BiLSTM-CRF (Word2Vec) 82.30 83.67 82.98
BERT-BiLSTM-CRF 92.36 92.21 92.28

Twitter general
cybersecurity
corpus tagged
using baseline
rules

BERT 51.42 49.18 50.28
CRF 70.00 54.00 60.00
BERT-CRF 66.97 52.14 58.63
BiLSTM-CRF (Word2Vec) 44.58 45.83 45.19
BERT-BiLSTM-CRF 63.63 70.68 66.97

Twitter general
cybersecurity
corpus tagged
using our new
rules

BERT 80.44 80.55 80.49
CRF 82.00 81.00 82.00
BERT-CRF 82.38 83.41 82.89
BiLSTM-CRF (Word2Vec) 70.02 69.60 69.81
BERT-BiLSTM-CRF 84.01 83.89 83.95

20

must be trained on a large corpus, so adopting a pre-trained BERT model and fine-tuning it

with cybersecurity data sets is reasonable. BERT has used contextual information learning

and transferability, so it can be certainly used as an embedding layer for key phrase extraction

as a sequence labeling task.

BiLSTM Layer

The applicability of Bidirectional LSTM or BiLSTM in sequence processing tasks leads to fur-

ther improvement that simultaneously analyzes both forward (future) and backward (past)

contextual information for a given text. Unlike RNN, BiLSTM inherits similar advantages

that LSTM introduced, such as addressing vanishing and exploding gradient problems.

CRF Model

Unlike the Softmax layer on top of a neural network that independently predicts labels

based on the highest score among label probability distributions, a CRF layer as an out-

put layer formulated by Conditional Random Field performs better in constraint labeling

settings where labels are interdependent. A CRF layer used as a classification layer along

with an LSTM network decodes vector information generated by the LSTM network. CRF

outperforms Softmax in automatic learning of constraints between labels, such as in IOB

tagging in which the word label should begin with ”O-type” or ”B-type” but not with ”I-

type”. The CRF layer predicts labels by combining the score Q of the output vector matrix

generated from the BiLSTM layer and probabilities from label transition matrix T. For an

input sequence X = (x1, x2, ..., xn) and label sequence Y = (y1, y2, ..., y3) Qiyi represents the

score of the ith word in the input sequence with yi tag, and Tyi,yi+1 represents the transition

probability from tag yi to tag yi+1. The following equation is used to calculate the score to

predict sequence labeling:

score(X, Y) = [
n∑

i=1

Qi,yi +
n∑

i=1

Tyi,yi+1] (2.7)

21

BERT-CRF Model

Taking advantage of a pre-trained BERT model as a contextualized embedding layer along

with a CRF layer correlation constraint feature, we used the BERT-CRF model for the

sequence labeling task of cybersecurity key phrase extraction.

BiLSTM-CRF Model with Word2Vec

We adopted the classic BiLSTM-CRF model36 comprising BiLSTM recurrent neural net-

work and CRF statistical learning techniques for this sequence labeling task. In a sentence,

BiLSTM effectively uses the word context while CRF layers use tag sequence information.

We used a pre-trained Word2Vec model as an embedding layer to this model.

BERT-BiLSTM-CRF Model

This model1 is an extension of the previous model but comes with the added advantage of

BERT, which is used as a contextualized embedding layer. The BiLSTM model gets its em-

bedding input from the BERT embedding layer, where BiLSTM’s hidden states concatenate

outputs from forward and backward LSTM networks together to generate a feature vector

matrix for the CRF layer. Figure 2.3 shows a block diagram of this model.

22

Figure 2.3: BERT-BiLSTM-CRF model1

2.4 Experiment and Evaluation

Block five and block six in Figure 2.1 present model training and experiment steps.

2.4.1 Data sets

Open-source cybersecurity data sets are significant to supporting new CTI applications.

Here, we work with two benchmark data sets (i) benchmark 126 and (ii) benchmark 225 to

train and evaluate different machine learning language models. The benchmark 126 data set

comprises cybersecurity information from three different sources: NVD, Metasploit, and Mi-

crosoft Security Bulletins. The data set includes the following 15 entity types, among them,

”software vendor”, ”software product”, ”software version”, ”software language”, ”vulnera-

bility name”, “software symbol”, ”OS”, and ”hardware”, where the tagging rules are strictly

constrained to tag entities from the data set. However, important cybersecurity information

23

beyond these 15 entity types, like rare entities, non-noun entities, and misspelled entities,

cannot be detected using these tagging rules. This tagging rule thus works for a structured

data set such as the benchmark 1 data set but is severely limited for an unstructured data

set such as the benchmark 2 data set that was generated by a crawl from Twitter using

security-related keywords. The data set was manually annotated based on the relevancy of

each tweet to cybersecurity. The data set initially had 21368 clean tweet texts but, of those

tweets, 11111 are related to cybersecurity. We used only cybersecurity-related tweets. We

used the full text of a tweet if the tweet was not quoted or retweeted and the original tweet

if the tweet was retweeted or quoted. We applied our extraction tagging rule to both data

sets (26 and25), tagging key phrases by KeyB, KeyI, KeyO, and KeyNone. To evaluate the

validity of the purposed tagging rules, we annotated 100 tweets by extracting all possible

combinations of key phrases from the tweet texts. Then we compared the tagged tweet texts

from the 100-tweet sample data set against the annotated extracted key phrases from the

same data set by calculating rouge scores.

2.4.2 Environment Setup

We used Python, PyTorch, and NLTK to implement our source code. We used two embed-

ding layers, word2Vec and BERT in two different learning models, to compare performance.

For the BiLSTM-CRF model, we set the maximum sequence length at 256, batch size at 8,

learning rate at 0.00005, and round of training at 20 epochs. For the BERT-related models

(BERT, BERT-CRF, BERT-BiLSTM-CRF), we used 512 for maximum sequence length, 32

for batch size, 0.00005 for learning rate, and 10 epochs for training rounds. The BERT

pre-trained language models were tuned as the BERT embedding layer during the training

process. All models were trained with a single Nvidia A40 GPU.

2.4.3 Compatibility of Tagging Rules

To evaluate the effectiveness of the tagging rules introduced above, we fine-tune our trans-

former models on a training data set without the tagging/extraction rules as a baseline, and

24

with them as an alternative treatment. Then we validate the resulting predicted sequences.

Higher performance metric scores of a model obtained by fine-tuning with the tagged data

set (e.g. Precision, Recall, F1) validate the importance of contextualized tagging of texts

for transformers. Conversely, lower scores obtained from the model after fine-tuning with

a small labeled data set represent a lack of expressiveness or generalization in the model.

In other words, contextualized tagging can improve transformer model learning by guiding

the transformer models to learn SRL information of texts. For this analysis, we use a pre-

trained BERT-base-uncased model with two different model setups (I) without fine-tuning

the rule-tagged data set from Twitter cybersecurity corpus, and (II) fine-tuned with this.

We annotated a sample dataset of 200 tweets where we used the sample of the first 100

tweets for fine-tuning, and the remaining 100 tweets for testing. For the first model setup,

we fine-tuned the whole tweet corpus and predicted the sequences for the 100 test tweet

sample. For the second model setup, we use the first 100 labeled tweets for fine-tuning and

the 100 test tweet sample for prediction. Table 2.4 shows the BERT-base-uncased model

result for two experimental setups (batch size 4 and batch size 2) run on 15 epochs. The

model performs worse when it is fine-tuned on 100 annotated tweets to predict sequence

labels for 100 tweets. On the other hand, the model predicts a relatively correct sequence

label for the 100 test tweet sample if this is fine-tuned on the data set generated by the

newly introduced tagging rules.

Table 2.4: Results for BERT-base-uncased model on Twitter general cybersecurity corpus

Experiment Setup Model Setup Prec Rec F1

Batch size 4 Without tagging Rules 48.52 55.75 51.88

Batch size 4 With Tagging Rules 65.45 63.78 64.60

Batch size 2 Without tagging Rules 48.45 49.83 49.13

Batch size 2 With Tagging Rules 62.40 66.90 64.57

25

Table 2.5: ROUGE-1 and Rouge-L score comparing generated key phrases against the an-
notated data set for each set of rules
ROUGE Metric Twitter data set Prec Rec F1

ROUGE-1
Tagged with developed rule 52.19 35.05 40.09
Tagged with baseline rule 20.45 28.52 21.49

ROUGE-L
Tagged with developed rule 31.96 27.61 31.96
Tagged with baseline rule 19.40 26.93 20.45

2.4.4 Our Developed Tagging Rule Validation

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score48 provided a set of

performance evaluation metrics for various text sequence matching tasks such as summary

generation49, entity matching, and machine translation. We adopted the ROUGE score to

evaluate how effective the developed extraction tagging rules were in tagging key phrases

compared to the baseline tagging rules on the annotated sample of benchmark 225 data set.

Table 2.5 provides the results of two ROUGE metrics ROUGE-N (where N=1) and Rouge-L

with their corresponding performance indicators such as precision, recall, and F1 score for

both developed and the baseline sets of rules. ROUGE-1 computed 1-gram matching per-

formance and ROUGE-L computed the Longest Common Sub-sequence performance for the

generated tagged data set and annotated data set. Figure 2.5 shows the density distribution

of recall, precision, and F1 value of ROUGE-1 computed for the sample data set tagged by

the baseline set of rules and the annotated tag labels. Figure 2.4 shows the density dis-

tribution of recall, precision, and F1 value of ROUGE-1 computed for the sample data set

tagged by the set of developed rules and the annotated tag labels. Our developed set of rules

outperformed the baseline tagging rules by a significant margin in tagging key phrases in a

text. The tagged-data set was then fed as input to the machine learning models for sequence

labeling.

2.4.5 Analysis of Results

Table 2.3 shows the performance evaluation of all models and the two different data sets

(42 and25). Clearly, any learning model using a generalized word2Vec embedding performs

26

Figure 2.4: Precision, Recall, and F1-Value of Rouge 1 score of developed rule-based tagger

Figure 2.5: Precision, Recall, and F1-Value of Rouge 1 score for baseline rule-based tagger

27

the worst for both data sets. The BERT-BiLSTM-CRF model is the best-performing model

overall, so we recommend this LM be used with our generic contextualized tagging rules for

sequence labeling prediction tasks. All learning models trained on the benchmark 2 data

set and tagged using our set of extraction tagging rules outperform learning models using

baseline tagging rules. The BERT, BERT-CRF, BiLSTM-CRF, and BERT-BiLSTM-CRF

models trained on the data set tagged by our new tagging rules outperform the same models

trained on the data set tagged by the baseline rules. The BERT F1 scores are 60% higher,

BERT-CRF results are 41.37% higher, BiLSTM-CRF 54.48% higher, and BERT-BiLSTM-

CRF 25.35% higher. On the other hand, the models trained on the benchmark 1 data set

tagged by the baseline rules outperform the same models trained on the benchmark 1 data

set tagged by our newly developed set of rules. The F1 scores are 6.41%, 6.05%, 11.07%, and

5.7% higher (see Table 2.3). Baseline tagging rules slightly outperform our newly developed

rules on the benchmark 1 data set because this data set is domain-dependent and has some

repetitive and similar pattern security keywords (CVE-NVD-specific cyberthreat), easily

identified by the highly-specific baseline rules. However, our generic set of rules worked much

better for generic CTI data sets such as the benchmark 2 data set. The trade-off in using

our new tagging rules includes slight performance loss in results on highly domain-dependent

data sets. Attempting to improve the resulting performance on a domain-dependent data

set would require the rules to be over-constrained, which in turn will reduce performance on

more generic data. Because emerging cyberthreat incidents are ceaseless and have drawn the

most scrutiny, limiting rules to a particular domain(s) would only make room for potential

loss of security information.

2.5 Conclusion and Future Work

In this research, we presented a two-stage hybrid system combining a newly developed ex-

traction tagging module with a recommended DL-based sequence label prediction module

(BERT-BiLSTM-CRF) for key phrase extraction in the cyber-threat intelligence domain.

We have also demonstrated in detailed experiments with different machine learning and sta-

28

tistical learning models that our claim is supported by the evaluation of their performances

on two benchmark data sets tagged by both the newly developed and baseline rules. The

ROUGE score validated the applicability of the newly developed set of tagging rules for key

phrase extraction against a small sample annotated data set. Although our system works

better for generic CTI (benchmark 2) data sets, this hybrid system can be further improved

for particular data sets containing entities of specific patterns. We intend to apply the tag-

ging rules to other knowledge bases to do so. Efficiency could also be increased by adding

more layers to the current DL LMs to extract more discriminative features. We will continue

developing our set of rules to obtain better performance indicator scores.

29

Chapter 3

Attention Aware Parametric Kernel

Graph Neural Network for Classifying

Cyber-Threat Types

3.1 Introduction

Despite being successfully applied to many real-life applications, such as image classifica-

tion50, object detection51;52, machine translation53;54, and speech recognition55, CNN56 and

RNN57 cannot be directly applied to generic graph structure data especially in non-Euclidean

domains such as social networks, telecommunication networks, and epidemic networks be-

cause of the structural limitations of these deep neural networks (DNN). In general, grid-

based (image) and sequential (text) data structures are independent and identically dis-

tributed (IID). On the other hand, images and text corpora can be considered subsets of

graph-structured data; image pixels and documents can be considered as graph nodes in

Euclidean space58. For the non-Euclidean domain, information from both properties of a

graph, (i) the intrinsic features of nodes and (ii) the relationships between the nodes, is im-

portant. To learn information from both types of sources for a downstream predictive task

such as classification, Graph Neural Networks (GNN) are a learning representation technique

30

Figure 3.1: Euclidean and Non-euclidean data structure2

where the predictive result is calculated by neighborhood information aggregation. For many

text classification tasks that are transformed into node classification tasks, semi-supervised

learning approaches like GNNs outperform CNN models for which less labeled data limits

learning models. Figure 3.1 shows the Euclidean and non-Euclidean data structure.

Existing GNN layers such as Monet59 has a common problem in extracting represen-

tative local intrinsic patches because in it, a node feature attention is not considered by

its neighbors. From a different direction, in an attention-based method such as GAT23,

edge attributes do not convolve with a parametric kernel, so the filters are not applied

to edge attributes to project fixed-length transformed signals. Therefore, the results pro-

vide less representative patches for the downstream task of learning node representation.

Consequently, node feature information and graph structural information without applying

a parametric kernel (e.g., Gaussian mixture model) aggregated to form a scalar attention

score for each edge will lead to poor learning representation. On the other hand, using a

fixed kernel for neighborhood information aggregation as in GCN3 also shows limitations in

learning complex graph structural information to produce efficient learning representations

for downstream node classification tasks.

For instance, a relationship between two humans depends on such things as their natures,

favorite items, origins, interests, and food habits, and relationship elements like communi-

cation, proximity, and common social media platform. So the relationship between them

31

or the edge connecting two nodes having a single weight does not encode a graph struc-

ture efficiently in a latent space. Again, each edge feature is not equally important because

they represent individual features with different objectives. So, a model aggregating two

sub-module computations according to the number of specified kernels might be effective in

learning a representation where the first one attends over the distribution of connected node

features and the second one generates patches by convolving a parametric kernel over the

edge attributes. The observation mentioned above becomes crucial when GNNs are applied

to text graphs of short text corpora because the graph structure itself, by default, lacks con-

textual information, and any form of information loss information can affect the classification

performance. Hence, we have low classification performance in many SOTA approaches.

In this method, the local intrinsic patches (receptive fields) are extracted after the para-

metric kernel is applied to edge attributes (pseudo-coordinates). The result is then linearly

combined with node feature attention to form augmented local patches. The augmented lo-

cal patches convolve with node features as a template matching process between augmented

local patches and signals of nodes in a graph.

The cost of labeling open-source social media data is high enough that GNNs as semi-

supervised learning techniques are applied to the CTI data set (Social media corpora contain-

ing raw tweets) for threat type classification. We applied the SOTA GNN models, including

our implemented GNNmodel APKGNN on the CTI data for cyber-threat classification where

the text categories of the CTI data set are mapped to different types of such cyber-threats

as 0day, malware, and botnet.

In this study, I contributed (i) implementing a novel GNN architecture and (ii) its ap-

plication to a cybersecurity raw text corpus obtained from Twitter. Our contributions are

listed below:

• I implemented attention aware parametric kernel augmented GNN (APKGNN) layer

architecture to implement a robust GNN model;

• I evaluated the implemented model on benchmark graph data sets, which gained per-

formance over all of the SOTA models by a significant margin;

32

• I designed a GNN model building pipeline by applying all considered GNN layers

where the pipeline results show the models outperform even their corresponding original

implementations.

• I also applied the implemented GNN model on the CTI data set for cyber-threat type

classification where the implemented model outperforms all SOTA models.

3.2 Related Work

The advent of graph neural network (GNN) was first inspired by recurrent neural networks

applied to directed acyclic graphs Frasconi et al. (1998)60 and Sperduti et al. (1997)61.

Later GNN was introduced by Gori et al. (2005)62 which was then extended by Scarselli et

al. (2009)61 and further improved by Li et al. (2016)63 to handle general types of graphs.

These methods recursively exchanged neighborhood information as a propagation method

until a stable equilibrium was reached. Semi-supervised learning was first introduced in

graph learning using a graph Laplacian regularization approach that includes methods such

as label propagation by Zhu et al. (2003)64, label spreading by Zhou et al. (2003)65, man-

ifold regularization by Belkin et al. (2006)66, semi-supervised embedding by Weston et al.

(2012)67 applied to attribute graphs. Considering structural correlation among data samples,

the non-spectral technique of graph convolution was introduced in Duvenaud et al. (2015)68

and GraphSage Hamilton et al. (2017)69 for graph-level classification, and in Atwood &

Towsley (2016)70 for node classification. These approaches require learning weight matrices

either for each node degree or for both input channel and neighborhood degree (using the

power of transition matrix) and do not scale to large graphs with a wide range of node degree

distributions. Niepert et al. (2016)71 requires normalizing fixed neighborhoods of a graph

before converting them locally into ordered node sequences to feed into a convolutional neural

network. Spectral graph convolutional networks, first introduced by Bruna et al, (2014)72,

are inspired by graph Fourier analysis, which assumes that a filter can be defined using a

set of learnable parameters and considers graph signals with multiple channels. After that,

33

Henaff et al. (2015)73 parameterized spectral filters to make them spatially localized using

smoothing coefficients. In a follow-up, Defferrard et al. (2016)24 extended the research by

approximating the filters using Chebyshev expansion of the graph Laplacian through avoid-

ing computation of Laplacian eigenvectors to yield spatially localized convolutions. After

that, Kipf et al. (2017)3 simplified the ChebNet approximation using filters restricted to

operating up to the first order neighborhood of each node. An extension of this GCN was

introduced by Klicpera et al. (2019)74, improving GCN’s over-smoothing by adopting the

PageRank algorithm. Unlike GCN that assumes equal contributions of neighboring nodes

by assigning non-parametric weights to the edges, GAT (Velickovic et al. (2018)23), inspired

by the attention mechanism (Bahdanau et al. (2015))75 that could handle variable size

neighborhoods, attended highly important parts of the inputs to learn the relative weights

between two connected nodes. A significant, parametric kernel-based approach (referred

as GMM throughout this chapter) proposed by Monti et al. (2017)59 assigned weights to

a node’s neighbors by mapping with relative positions of nodes within a neighborhood by

introducing a feature called node pseudo-coordinates.

3.3 Deep Learning on Graphs

3.3.1 Spectral and Spatial based approaches

GNN architectures are theoretically categorized into two types of approaches: spectral

approaches and spatial approaches. Spectral graph convolution72;73 originated from net-

work signal spectral analysis where a signal X ∈ RF or a node’s set of input channel

X in = (xin
1 , ..., xin

p) is multiplied with a parameterized filter Gθ in the Fourier domain:

gθ ∗X = V GθV
TX = V Gθ(Λ)V

TX (3.1)

where V is the eigenvector matrix of the normalized graph Laplacian L, θ is the set of

34

learnable parameters, and R is the set of all real numbers. The normalized graph Laplacian

matrix can be represented as follows:

L = IN −D−1/2AD−1/2 = V ΛV T (3.2)

where V T X is the Fourier transform of graph signal X, Λ is a diagonal eigenvalue matrix,

and Gθ is a function of eigenvalues Gl,j = diag(gl,j,1, ...gl,j,k) with learnable parameters of

normalized graph Laplacian L.

Some major drawbacks of the basic spectral approaches are that the filter depends on

a given graph and the learned filter cannot be applied to different graphs; computationally

expensive Fourier transformation; and filters cannot guarantee spatial consistency. After

simplifying the higher order Chebyshev polynomial by ChebyNet24, the convolution of the

input signal X with a filter is represented as

gθ ∗X = V (ΣK
p=0θpTp(Λ))V

TX

∼ ΣK
p=0θpTp(L

′)X

(3.3)

where Tp(x) is the recursively defined truncated expansion of the Chebyshev polynomials,

K is the order of polynomials, and L’ is the normalized Laplacian.

On the other hand, spatial GNN approaches68–71 rely on the spatial information of a

node: its location in a graph, its neighbors, its degrees, for learning graph representation

where the convolution operation propagates node information along the edge connections.

The spatial filter can work with variable-sized neighborhoods and can be generalized across

other domains. Unlike earlier spatial-based approaches that had fixed filter operations3;74 to

extract local intrinsic patches on the graph, spatial approaches formulating patch operators

as a function of pseudo-coordinates59 perform better for the complex node classification task.

The general form of a spatial GNN can be written as follows:

35

H i = f(XW i + σi−1
i=1AH

i−1θi) (3.4)

where H is the hidden layer feature matrix, and W represents the linear transformation

weight matrix. Figure 3.2 shows a simple two-layer GNN network.

Figure 3.2: A two leyer GNN network3

3.3.2 Parametric Kernel for Extracting Patches

However, a parametric kernel59 can significantly improve the performance of node classifica-

tion of spatial GNNs if the patch operator can be represented by Gaussian mixture model

(GMM) kernels. Parametric kernel function (weight function) (wθ(u) = (w1(u), ..., wK(u)))

can encode graph spatial information into low dimensional space where the dimension de-

pends on the number of kernels applied to the d-dimensional vector of pseudo-coordinates

u(x, y):

36

u(x, y) = (
1√

deg(x)
,

1√
deg(y)

) (3.5)

Here x is a node in a graph, and y is the neighbor of x (e.g., y ∈ N(x)), θ is learnable

parameters, and K is the dimensionality of the extracted patch. The patch operator can

therefore be written in the following general form:

DK(x)f = Σy∈N(x)wKu(x, y)f(y) (3.6)

On the other hand, the parametric kernel function (weight function) is defined as follows:

wK(u) = exp(
−1
2
(u− µk)

TΣ−1
k (u− µk)) (3.7)

where µ represents the mean, and Σ represents the covariance matrix of the GMM.

3.3.3 Self Attention in GNN

Attention mechanism75 applied to graph neural networks23 allows the representation of a

central node to attend to its most important nodes in the neighborhood. A graph attention

network (GAT) as a spatial-based approach relies on the locality of nodes, so for a given

node, this aggregates neighboring node features X ({−→x1,
−→x2, ...,

−→xN}, −→xi ∈ RF) after attending

them. Here N is the number of nodes, and F is the number of node features. Each GAT layer

produces a new node feature vector X ({
−→
x′
1,
−→
x′
2, ...,

−→
x′
N},
−→xi ∈ RF

′
) after a learnable linear

transformation is computed by a weight matrix W ∈ RF×F ′
. To calculate the importance of

neighboring node j features to node i (j ∈ Ni), the concept of attention coefficients has been

introduced:

37

eij = a(W−→xi ,W
−→xj) (3.8)

Here, the attention function a is a single-layer, feed-forward neural network that applies

LeakyRelu non-linearity parameterized by a weight vector −→a ∈ R2f ′
. Thus, Equation 3.8

can be rewritten:

a(W−→xi ,W
−→xj) = LeakyReLU(−→a T [W

−→
X i||W

−→
X j]) (3.9)

where .T refers to matrix transposition, W refers to the linear transformation weight matrix,

and || represents the concatenation of vectors. To scale the different coefficient values over

each node’s neighborhood, the coefficients are normalized as follows:

aij = softmax(eij) =
exp(eij)

Σq∈N exp(eiq)
. (3.10)

Edge attributes do not convolve with a parametric kernel, so the filters are not applied

to edge attributes to project fixed-length transformed signals.

Attending the combined information of node features and edge attributes (without con-

volving with the parametric kernel) results in an imperfect learning representation for a

central node because the linear combination of the two sources of information (node features

and edge attributes) generates a scalar value that does not effectively project into a trans-

formed representation according to the specified number of kernels. In contrast, parametric

kernel-based approaches do not take attention into account. Therefore, GNN architecture

must improve representation learning by adopting the useful features of these two techniques.

Moreover, unlike parametric kernel techniques, the attention model uses node features for

computing similarity without considering node structural properties. This reveals a research

gap: not knowing the graph structure upfront for the classification task.

38

3.4 Implemented Technique

We will first describe our APKGNN convolutional layer, the layer structure used to imple-

ment the GNN model to generate node representation learning. We have two different inputs

to this layer:

1. A set of node features, X = ({−→x1,
−→x2, ...,

−→xF}, −→xi ∈ RN)

2. A set of neighboring node d-dimensional pseudo-coordinates u(x, y) defined as u ∈∑M
1 e, where e is a single edge connection.

From these two sets of inputs, the edge attribute vectors are represented as E = 2
∑M

1 e×

d, where M is the number of total edge connections, d is the dimension of edge attributes, N

is the number of nodes, F is the number of node features, x is the given node, and y ∈ N (x)

is the neighboring node of x.

We first self-attend neighboring node features (features of local patches) X of a cen-

tral node x, so we can define which features contribute more in learning a better graph

representation. The formulation can be written as follows:

att veck = softmax(LeakyReLU([θk
−→
X i||θk

−→
X j])), whereK ∈ 1, 2, 3, ..., k

=
exp(LeakyReLU([θk

−→
X i||θk

−→
X j]))∑

l∈N (x) exp(LeakyReLU([θk
−→
X i||θk

−→
X l]))

(3.11)

where K ∈ 1, 2, 3, ..., k, att veck is the attention vector for nodes in their corresponding

neighborhoods, dimension is defined according to the number of specified kernels k, and || is

the concatenation operation.

We adopted the GMM-based parametric kernel function to extract patches from neigh-

boring edge attributes (pseudo coordinates) in a local graph structure where the kernel

function (weight function) maps relative positions (pseudo coordinates) to weight vectors.

The size vectors are defined according to the number of kernels K. Therefore, the weight

function applied to the edge attributes (or the relative positions or pseudo coordinates) is

defined as follows:

39

wθ(u) = (w1(u), ..., wk(u)) (3.12)

where θ refers to the kernel learnable parameters used to extract patches P from edge

attributes E. The following equation presents the GMM operation on edge attributes to

extract patches P :

−→
P = exp(

−1
2
(u− µk)

TΣ−1
k (u− µk))). (3.13)

The set of attention vectors is aggregated with the set of extracted patches after mapping

these with respect to the number of kernels K. The resulting feature attended patches are

then transformed by a parameter vector −→q .

−→
S = −→q (att veck +

−→
P) (3.14)

Finally, the set of updated patch vectors is convolved with the neighboring node features to

compute node representations as the final output, followed by a linear activation as follows:

Xk = σ(
∑

x∈N (x)

−→
S ∗WXk−1). (3.15)

A two-layer APKGNN model is implemented for semi-supervised node classification on

graph data sets. After applying all these steps, the forward model expression can be defined

as follows:

40

Z = f(E, θ,X) = softmax(Wθ ⊙ ELU(Wθ ⊙X)) (3.16)

where Z is the final convolved feature matrix.

Softmax activation applied to the final layer output can be defined as follows:

softmax(xi) =
1
Z
exp(xi).

Therefore, Z =
∑

i exp(xi).

For semi-supervised multi-class classification, the cross-entropy loss over the labeled ex-

ample is defined as follows:

L = −
∑
l∈YL

C∑
f=1

Ylf lnZlf (3.17)

where YL is the set of nodes that have labels and C is the set of output classes. The

implemented GNN model is trained by mini-batch gradient descent on a full graph data set

for some training epochs. The mini-batches are sampled by the neighborhood node sampler

technique that was proposed in the GraphSage69 algorithm. Figure 3.3 shows the operational

steps of node classification using a graph neural network constructed by a novel APKGNN

layer. This figure shows neighborhood sampling is applied to make a partition of an input

graph into multiple subgraphs which are then processed in multi-processing settings. Finally,

each process is executed by a prototype of an APKGNN network. 3.4 displays construction of

the APKGNN layer by applying a parametric kernel with vector attention on edge attributes.

For an input graph with node features, this figure shows how different parameters of the

parametric kernel (µ, Σ) are learned and node features are transformed according to the

number of kernels to produce patch vectors. Figure 3.5 shows node feature update operation

with APKGNN layer output multiplied by current node features.

41

Figure 3.3: Operational steps of node classification using novel implemented APKGNN

layer)

Figure 3.4: Construction of APKGNN layer)

42

Figure 3.5: Updating node representation using novel APKGNN layer)

3.5 Experiments

We experimented with our implemented model on several graph benchmark data sets (cita-

tion networks) and one CTI text data set for semi-supervised node classification.

3.5.1 Data sets

We followed the Yang et al.27 experimental setup for benchmark data sets (see Table 3.1)

where the properties of the data sets are nodes, classes, number of features, and labels. Train

mask, test mask, and validation mask from Table 3.2 denote the number of nodes used for

training, testing, and validation, respectively.

Table 3.1: Data set statistics for benchmark data sets and CTI data

Dataset Type Nodes Classes Features Label

Cora Citation network 2,708 5,429 7 1,433

CiteSeer Citation network 3327 4732 6 3703

Pubmed Citation network 19,717 44,338 3 500

CTI Text graph 23113 303074 10 8114

43

Table 3.2: Training statistics for benchmark data sets and CTI data
Dataset Training Mask Test Mask Validation Mask

Cora 140 1000 500
CiteSeer 120 1000 500
Pubmed 60 1000 500
CTI 5000 2500 614

3.5.2 Experimental Setup

We conducted the experiments as transductive learning tasks where we trained a two-layer

APKGNN as described in Section 3.3. We evaluated prediction accuracy on a test mask

of 1,000 labeled nodes, with a validation mask of 500 labeled nodes for hyperparameter

optimization, but we did not use the validation mask for training. We kept the dropout

rate for all layers at 0.5 and weight decay at 0.0005. The first layer of the implemented

GNN network was followed by an exponential linear unit (ELU)76 nonlinearity whereas the

second layer followed by a softmax activation was used for node classification that computes

C features (C is the number of classes). The hidden layer unit size is 16, and the kernel size

is 4.

For all the citation network data sets (Cora, Pubmed, and Citeseer), we used the same

hyperparameter settings and trained all models for 50 epochs (training iterations). We used

the Adam optimizer77 with a learning rate of 0.01 and an early stop with a window size of

10. All the model and network parameters, including transformation weight matrices, were

initialized using the method described in this work78. For the CTI data set, the experiment

settings required slight changes because the data set was derived from raw tweets and the

text graph was generated following the method described in TextGCN79. In this data set,

document nodes did not have any direct connection; document nodes were instead connected

by common word nodes shared by two different documents. In addition, only document

nodes have labels (cyber-threat types) because words cannot have text categories or more

specifically, cyber-threat types.

44

3.6 Results and Performance Evaluation

The experimental results are summarized in Table 3.4 with reported mean test and validation

accuracies of different SOTA GNN models on benchmark data sets and our CTI data set.

All models were run for 50 epochs with random mini-batch on training data samples using

a neighborhood batch sampler adopted from the GraphSage69 algorithm. For each citation

benchmark data set (Cora, CiteSeer, and Pubmed) and for the CTI data set, mean test

accuracy, mean validation accuracy, and mean training accuracy curves were plotted with

SOTA GNN models compared to our newly introduced GNN model. Three seed numbers

were used for three different simulations for each data set, and an average of three accuracy

scores were plotted with corresponding standard deviations. We found that the proposed

model outperformed every model in all combinations by a significant margin and converged

in fewer epochs. Figures 3.6, 3.7, and 3.8 illustrate that the APKGNN model outperformed

all SOTA models on test, training, and validation data samples of the Cora citation data

set.

Table 3.3: Performance of APKGNN compared to SOTA methods on validation and test

accuracy for benchmark and CTI data sets based on implemented experimental set up

Method Cora Pubmed Citeseer CTI

Test Val Test Val Test Val Test Val

GCN 3 0.8400 0.8560 0.8200 0.8000 0.7260 0.7260 0.42 0.43

GAT 23 0.8460 0.8550 0.8140 0.7940 0.7280 0.7350 0.32 0.33

GMM 59 0.8260 0.8360 0.8180 0.8090 0.7300 0.7180 0.24 0.23

SPLINECNN 80 0.8400 0.8580 0.8120 0.8000 0.7320 0.7600 0.40 0.41

APKGNN 0.8620 0.8750 0.8280 0.8240 0.7400 0.7540 0.44 0.45

45

Table 3.4: Performance of APKGNN compared to SPLINECNN on validation and test

accuracy for benchmark data sets based on SPLINECNN experimental set up

Method Cora Pubmed Citeseer

Test Val Test Val Test Val

SPLINECNN 80 0.88.80 0.8780 0.8820 0.8760 0.7320 0.7850

APKGNN 0.8920 0.8850 0.8880 0.8740 0.7400 0.7960

Figure 3.6: Test accuracy curve up to fifty epochs for the CORA data set for all GNN layers

46

Figure 3.7: Training accuracy curve up to fifty epochs for the CORA data set for all GNN

layers

Figure 3.8: Validation accuracy curve up to fifty epochs for the CORA data set for all GNN

layers

Figures 3.9, 3.10, and 3.11 show the same trend, with the APKGNN model outperforming

47

all SOTA models on test, training, and validation data samples from the CiteSeer citation

data set.

Figure 3.9: Testing accuracy curve up to fifty epochs for the CITESEER data set for all

GNN layers

Figure 3.10: Training accuracy curve up to fifty epochs for the CITESEER data set for all

GNN layers

48

Figure 3.11: Validation accuracy curve up to fifty epochs for the CITESEER data set for

all GNN layers

Figures 3.12, 3.13, and 3.14 also illustrate the consistent performance of the new model

on testing, training, and validation data samples of the CiteSeer citation data set as opposed

to the SOTA models.

49

Figure 3.12: Testing accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers

Figure 3.13: Training accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers

50

Figure 3.14: Validation accuracy curve up to fifty epochs for the PUBMED data set for all

GNN layers

Figures 3.15, 3.16, and 3.17 also follow the same trend where the experimental model

outperforms the SOTA models in testing, training, and validation data samples of the CTI

data set. This particular result is significant because the CTI data set is generated and then

transformed into graph data from raw tweets. This raw data is highly complex in terms of

its sparsity, poor input features, and fewer numbers of labeled nodes because word nodes are

mapped with any labels.

51

Figure 3.15: Testing accuracy curve up to fifty epochs for the CTI data set for all GNN

layers

Figure 3.16: Training accuracy curve up to fifty epochs for the CTI data set for all GNN

layers

52

Figure 3.17: Validation accuracy curve up to fifty epochs for the CTI data set for all GNN

layers

3.6.1 Discussion

Implementing the APKGNN model was rooted in the theory that constructing a GNN layer

to produce efficient learning representations supported better experimental results. The

layer-wise computation of APKGNN includes two individual modules executed together.

The first module calculates attention vectors of neighboring node feature similarity, and the

second extracts patches by applying weight function on local graph structure components

called pseudo coordinates. A linear combination of the two modules followed by learning an

attribute vector produces better learning representations than SOTA GNN models in node

classification tasks. The running average of accuracy plotted to different curves indicate that

the performance of the models is consistent across epochs. Moreover, while at the initial

stage of the simulation, the new model does perform well, once the simulation proceeds

toward completion, the model outperforms all the other models. The newly implemented

APKGNN model learns more parameter vectors than other models, which is why each epoch

for the new model takes longer than the other models. The research, when extended to

53

short text multi-class classification tasks, also exhibits remarkable performance compared to

others. This result indicates that learning additional parameters helps the model to learn

highly complex graph data sets.

3.7 Conclusion and Future Work

In this research, we improved node representation learning by introducing a GNN layer

architecture for the node classification task. The GNN model constructed by the introduced

layer outperformed other models on all the data sets in all experimental settings. The model

was also applied to the CTI data set as a semi-supervised learning approach to classify

different cyber-threat types. The experiments were done in multi-processing settings. In the

future, I will use multi-GPU training, to parallelize the process over multiple GPUs.

54

Chapter 4

Event Detection and Ranking of

Cyber-Threat Events

4.1 Introduction

This chapter presents a new methodology for recognizing potential cyber-threats using pas-

sive filtering and ranking in social text streams, particularly Twitter streams. Passive filter-

ing also known as passive monitoring here refers to collecting intelligence and solutions of

different cyber-threats from different platforms using only text corpora and lists of named

entities or keywords (e.g., gazetteers) rather than direct background knowledge of threats.

Twitter was used because it is a high-bandwidth platform where actors from both sides of cy-

berdefense, both attackers and security professionals, post cybersecurity-related messages25.

The overall goal of this work is to analyze these messages collectively to obtain actionable

insights and collect intelligence on emergent cyber-threat events. Detecting events from so-

cial media includes a) novel event detection, including first stories or tweets about previously

non-extant topics; and developing events (especially for bursty topics, but also for non-bursty

topics for which volume and aggregate importance build up gradually). In this research, we

treat novel events from the time they begin (emergence) as orthogonal properties. This al-

lows us to track novel events that have not yet attained trending status or viral propagation,

55

while still incorporating traditional trend detection methods.

Recent research includes some work on detecting both novel and developing events in

Twitter streams (e.g.,4 81), especially where emergence is defined as trending. However,

only a few studies have further focused on detecting cyber-threat events in Twitter streams.

Furthermore, we propose an approach to ranking events for their significance. While such a

ranking generally depends on both the application domain and user objectives, the relative

importance to a general community of interest, like the cybersecurity community, can be

imputed based on pervasiveness, spread rate, and novelty. In this study, we also ranked the

two types of events based on the order of their corresponding importance score to show how

much more important a particular event is than proximate events within a user-specified

range of time for a reference tweet. In contrast with large document corpora, analyzing

short documents like tweets presents some specific semantic challenges for extracting terms,

relationships, patterns, and actionable insights in general. For example, terms mentioned

in a short tweet lack context, with less co-occurrence data in the entire corpus on which to

base expressible relationships between named entities or terms.

Our system took as input a user-specified maximum interval of detection for related

cyber-threat events within an original tweet that was deemed relevant. The full text of

this tweet, or quote part of a retweet, was captured. Social network parameters such as

indegree (number of followers) were calculated and normalized by range. The text bodies of

tweets are vectorized using the term frequency-inverse document frequency (TFIDF)82, and

the resulting TFIDF vectors were clustered using the DBSCAN 83 density-based clustering

algorithm. Noise points were discarded, and the concatenated text contents of each cluster

were ranked using the TextRank algorithm84 to obtain representative keywords and named

entities that represent potential events. We then identified different scenarios: a) novel and

developing story; b) novel story only; c) developing story only; d) an event not based on

heuristics as described in Section 4.4. Additionally, we also calculated an importance score

for each event based on the heuristics presented in Section 4.4. Finally, we tagged each event

according to the descriptive features and provided a rank based on the importance scores.

Key novel contributions of this work are as follows:

56

1. We detected both trendy and novel types of events related to cybersecurity from Twit-

ter streams.

2. We provided a method for ranking potential cyber-threat events according to their

importance score based on keywords, as well as their named entity confidence and user

influence scores.

3. The proposed method could be tuned to capture important cybersecurity events based

on user-specified parameters.

4.2 Related Approaches

This section briefly summarizes key methodologies for cyber-threat detection from text cor-

pora, particularly social media.

Dabiri et al.6 analyzed traffic-related tweets for detecting traffic events by applying

deep learning models, including convolutional and recurrent neural networks incorporat-

ing a word2vec-based word embedding layer to represent terms. This approach performed

well but is domain-dependent and costly in terms of manual annotation for high-throughput

sources of training data such as Twitter. In contrast, TwitInfo5 incorporated a new stream-

ing algorithm that automatically discovers peaks of event-related tweets and labels them

from the tweet texts. This approach, however, focused only on the burstiness of tweets and

ignores both user influence and the novelty of developing events.

Rupinder et al.9 also proposed a framework based on deep learning for extracting cyber-

threat and security-related insights from Twitter, categorizing three types of threats (exam-

ples of which are Distributed Denial of Service (DDoS) attacks, data breaches, and account

hijacking). From text documents, events were extracted using a) target domain generation;

b) dynamically-typed query expansion; and c) event extraction. This approach uses both

syntactic and semantic analysis with dependency tree graphs and convolutional kernels but

is highly computationally intensive because of the cost of autoencoder training.

Sceller et al.12 used unsupervised learning to detect and categorize cybersecurity events

57

by analyzing cybersecurity-related Twitter posts based on a set of seed keywords specified

for each level taxonomy. This algorithm is prone to false negatives because it may not detect

potential cyber-threat events as events.

Mittal et al.7 proposed a method for processing threat-related tweets using the Security

Vulnerability Concept Extractor (SVCE), which generates tags for cybersecurity threats or

vulnerabilities such as means of attack, consequences of the attack, and affected software,

hardware, and vendors. This approach does not generalize to user communities because it

is personalized for individual user system profiles.

Edouard8 proposed a framework that used Named Entity Recognition (NER) and ontol-

ogy reasoning (using DBPedia), along with classification learning approaches such as Naive

Bayes, SVM, and a deep neural network (Long Short Term Memory/Recurrent Neural Net-

work or LSTM-RNN), for imputing category tags. The graph algorithm PageRank ranked

candidate items for retrieving information.

The approach of Lee et al.10 focused on community communication and influence to

detect cyber-threats by grouping high contributing Twitter users and scoring them as an

expert community to get information to explore and then efficiently exploit. This framework

incorporated four components: a) an interface to the Twitter social media platform; b)

a flexible machine learning system interface for document categorization; c) a mixture-of-

experts weighting and extraction scheme; and d) a new topic detector. This framework

depends heavily on expertise and data quality.

Sapienza et al.11 considered various web data sources to generate warnings of potential

upcoming cyber-threats. While potentially extensible to named entities discoverable by set

expansion, this approach focused on detecting “novel words” and does not incorporate a full

contextualized topic model, feature weighting model, or method of user influence.

Finally, the research of Alan et al.85 used a supervised learning approach to train an

extractor for extracting new categories of cybersecurity events by seeding a small number

of positive event examples over a significant amount of unlabeled data. As with previous

approaches, it does not incorporate full NER nor allow for entity set expansion.

58

4.3 Background

This section presents a brief review of the key technologies that were adopted in our proposed

framework for detecting threat events in tweets.

4.3.1 Named Entity Recognition (NER)

In general, NER is an information extraction task for locating and classifying the names

of specific entities such as persons, organizations, and locations, based on analysis of text

units such as n-grams and noun phrases. Generic entities such as numerical quantities are

sometimes also included. In our analysis, NER was used to discover the names of entities in

reported cyber-threats. Key objectives of using machine learning to improve NER were a)

set expansion to broaden the set of cyber-threats based on synonymy and other relationships

that can be inferred by text pattern analysis; b) feature weighting for relevance or salience;

c) relationships discoverable from data; and d) confidence scoring.

4.3.2 TextRank

The TextRank algorithm84 is an extended version of the Google PageRank86 algorithm that

determines keywords by generating a word graph from a given text document instead of

determining highly ranked webpages using the PageRank algorithm. The TextRank score

calculates the importance of a word from a given text, which works like PageRank score for

webpages. The importance associated with a vertex, however, is determined from votes cast

for it and the score of the vertices casting these votes.

4.3.3 TFIDF

TFIDF82 is an information retrieval method used for such purposes as word co-occurence

based document vectorization, word ranking, and document similarity calculation. In in-

formation retrieval, TF (term frequency) refers to the term frequency of a particular word

that occurs in a document, while IDF (inverse document frequency) refers to the inverse

59

document frequency of a word that occurs in the whole corpus of documents.

4.3.4 DBSCAN

DBSCAN83 is a density-based clustering approach that operates by enforcing a minimum

number of data points (MinPts) inside a specified-radius neighborhood (Eps) of a data point

to make a density-reachable cluster; this process continues until no points on the frontier are

density-reachable, then begins again with a new initial point.

4.4 Methods

Analyzing Twitter texts for valuable insights has always been problematic because the writ-

ing lacks structure and tweets are short. In this section, we describe the steps we took for

analysis.

4.4.1 Tweet Collection and Early Annotation

For our analysis, we collected Twitter data for four days between September 6th to September

9th, 2018; a small portion of data was collected on August 30th and 31st, 2018, which is stored

in MongoDB database. Our main focus was to gain insight into cybersecurity-related events

and rank their scores, so we crawled Twitter data using the Twitter API based on some

security related keywords. Without applying security related keywords, the crawled Twitter

data would be generalized to all domains, and the results would be biased to detecting

general events. This data set was manually annotated by four annotators for our earlier

work25 to find tweets relevant to cybersecurity. Although we used security related keywords

for crawling the Twitter data, many tweets were irrelevant or promotional. That is why

annotation is crucial here; the resulting data set of this process is available at25. In this

study, we initially had 21368 tweets. After annotation, we found 11111 tweets related to

cybersecurity. We applied our algorithm to the cybersecurity related tweets and the entire

tweet data set individually. We took the full text of each tweet if the tweet is not quoted

60

or retweeted by any other users. If any tweet is retweeted or quoted by any other user, we

take the original retweeted or quoted tweet full text. Then, we let a user give a numeric

value input as the number of time intervals based on tweet occurrence. This process divides

the whole time period of tweet occurrence into equal time chunks based on the number we

took from the user. Thus, for each time interval, a number of tweets were aggregated into a

chunk based on their corresponding time of occurrence.

4.4.2 Tweet Pre-processing and Cleaning

As we noted, tweet text is very unstructured and contains many misspelled words. Sometimes

the text is not a complete sentence, so we applied SymSpell87 a tool that corrects misspelled

words. Then we took only alphanumeric characters from the tweet text and removed all

punctuation characters. We then removed all stopwords from the text because they occur

so frequently over the entire data set that stopwords could reduce the analysis performance.

We then cleaned the tweet texts either by applying stemming or without stemming. We

removed all the words or tokens with lengths of only one.

4.4.3 Influential Twitter User Impact

Influential user tweets are valuable for detecting important cybersecurity related events,

which is why we keep records of each Twitter user and their followers corresponding to their

posted cybersecurity related tweets. The number of followers is directly proportional to the

influence of the user, so their used words in cybersecurity related tweets are also important.

So for each time interval, we normalized the values of follower numbers for each user with

Min-Max normalization. This normalization process normalizes each value between 0 and 1.

We then assigned the normalized value of follower numbers to each used noun phrase in the

used posted tweets. Here, we used Python nltk library to extract noun phrases from tweets.

If similar words were used by several Twitter users, we kept the highest normalized value of

a user for each word used in a tweet. Now, for each time interval, for all tweets, each noun

phrase had a corresponding value that represented its weight as inherited by its user. This

61

value was also used to calculate event the score.

4.4.4 Determining Algorithm Design Architecture

In this study, we applied a very popular word vectorization method in the NLP domain named

TFIDF82 that is based on word co-occurrence in documents to make a word vector for each

tweet from the data set. After doing this for all tweets in a time interval, we generated a

TFIDF matrix. We found this method performs better than the word semantic relation based

approaches. Then, we applied the DBSCAN83 density based clustering algorithm using the

TFIDF matrix to find tweet clusters with similar meanings. These clusters may represent

potential events. However, we did not apply the K-means clustering algorithm because we

wanted to limit the number of events found in our analysis for each time interval. For

this analysis, we ignored the noise points generated by applying DBSCAN because in our

observation of the data set we found that the noise points are conveying very little impact

to find cybersecurity related events.

4.4.5 Event Detection Heuristics and Scoring

First, we aggregated all tweet texts in a cluster into a single text. Then we simulated

the named entity recognition process using the TextRazor online NER API and the keyword

identification process on the aggregated text with the TextRank84 algorithm from the Gensim

library. Additionally, TextRazor provided a confidence score for each named entity and

TextRank88 provided a score for each keyword based on the word graph. We applied two

different set rules to determine the type of events and their corresponding score, which was

then used to rank the cybersecurity related events. To test our idea for implementation, we

produced four different sets of tokens:

1. commonSet refers to the set of words common to both named entity and keyword. Ad-

ditionally, we took some higher-scored named entities and keywords from both name-

dEntitySet and keywordSet to add tokens to the commonSet.

62

2. keywordSet refers to the set of words that appear only in the keyword set but not the

named entity set.

3. namedEntitySet refers to the set of words that appear only in the named entity set but

not the keyword set.

4. unionSet kept all named entities and keywords.

Figure 4.1 depicts the graphical illustration of the four token sets. Here commonSet is

represented by k ∪ (K ∩ N) ∪ n, keywordSet is represented by K -N, namedEntitySet is

represented by N -K, and unionSet is represented by K ∪ (K ∩ N) ∪ N . Here, k and n are

the sets of keywords with a high score and named entities that can be represented as k ∈ K

and n ∈ N, respectively.

Figure 4.1: Graphical representation of commonSet, keywordSet and namedEntitySet

Determine Event Novelty

We stored all the tokens of the set namedEntitySet and commonSet into another set of

tokens named noveltyCheckerSet for all clusters generated for all time intervals. We have

stored all these tokens because we are checking the similarity of tokens from the set of

a subsequently generated cluster to the stored token set noveltyCheckerSet to determine

whether the newly generated cluster has some novelty or not based on a cosine similarity

threshold value determined empirically.

63

Determining Trendiness

If the similarity score reached the defined threshold cosineThresh, the working cluster was

“Just Trendy” except for the very first cluster because no other set was available to compare

the similarity of this first cluster. We also took a user defined threshold of numbers of tweets

tweetThresh to determine which cluster was trendy. Thus, if the the number of tweets did

not reach the value mentioned by the user, it was an unnoticeable event. However, if tweets

from a cluster satisfied the cosine similarity threshold cosineThresh as well as the threshold

tweetThresh for number of tweets, it still may not represent a noticeable event because it may

be a spammed banal topic. We applied a different heuristic if the length of the commonSet

set is greater than the one fifth(0.20) times of the namedEntitySet set; only then will the

cluster be counted as trendy. We are checking this because a big cluster of tweet texts will

have so many named entities that might mean a variety of topics; a single cluster should be

biased towards a single topic described in it.

Determining Novelty

If the cosine similarity of a stored token set noveltyCheckerSet and working cluster token set

is less than the threshold value cosineThresh, the working cluster could be a potential novel

event. However, we set a threshold value minimum of three tweets in a cluster to call it an

event. If the number of tweets was greater than or equal to the user-defined threshold value

of trendiness tweetThresh, the cluster was called‘Novel and Trendy”, but if the number of

tweets in the cluster is less than the number of users defined threshold value, it was called

“Just Novel”. That was how we defined a type of a generated cluster of tweets as an event

type.

Event Score Calculation Process

The ranking of cyber-threat related events was also important, so we were motivated to

calculate score of each event if an event finds an event type based on our empirically defined

heuristics. We calculated scores for each defined event individually by applying different

64

heuristics. The confidence score of a named entity in TextRazor and the score of a keyword

in the TextRank algorithm are different in scale, so we applied sigmoid function to normalize

each score. Every token is stored in a dictionary for each generated cluster, but we updated

the score of each token if it was both a named entity and a keyword by adding the two scores

after normalizing.

Score Calculation for Trendy Events

For a “Just Trendy” event, we first calculated the entity score of the event by adding the

scores of each token in the commonSet and then multiplied the total added value by the

value of total number of tweets that makes an event trendy. Second, we added the value of

each noun phrase corresponding to event tweets where the noun phrases are inherited from

the value of influential users’ followers. This score was then added to the initially calculated

entity score for the aggregated tweet texts to get the total score. We calculated the entity

score in this way because it assigned a higher score to a trendy event if tweets in a same

topic appear so many times in a cluster or if the number of tokens in the commonSet is

higher. This heuristic assumes that even if the event topic does not appear many times

in corresponding tweets like other highly tweeted event topics, because of the number of

common tokens in both name entity and keywords, the heuristic identifies those tokens as

important.

Score Calculation for Trendy and Novel Event

For an event that is both “Novel and Trendy”, we added the values of all the tokens of

the set generated by the union operation of keywordSet and commonSet. Afterward, we

multiplied the added value by the value of the total number of tweets representing the event

to calculate the entity score. Then we added the value of each noun phrase corresponding to

event tweets where the noun phrases were inherited from the value of followers of influential

users. This score was then added to the entity score as discussed earlier to get the total

score. We calculated the entity score like this because such an event was already proved

65

a novel event, and we needed to know whether it had tokens common in both the named

entity and keyword sets to check the main topic of this event. Additionally, we considered

the keywords appearing in this event to check which topics were also mentioned in the tweet

texts of the novel event. That means a novel and trendy event will get a much higher score

than the other events.

Score Calculation for Just Novel Events

For the first story event (also known as “Just Novel”), we kept a set of tokens generated

by differentiating keywordSet from unionSet and then did a union operation with the com-

monSet. The resulting set stored all the named entities with keywords, which have very

high score. Then, we added all the values of the corresponding tokens in the resulting set

and multiplied the added value by the user defined threshold value tweetThresh because a

novel event is sufficiently trendy to get the entity score. Then we repeat the procedure of

adding the value of noun phrases to the entity score of the working event. We calculated

the entity score this way because if an event is only novel, it will not appear in many other

tweets, which may cause the event to lose its importance. So to recognize the importance

of this kind of event, we multiplied the total score from the set of tokens by the value of

tweetThresh. Thus, a novel event can get a score at least as high as any trendy event. We

chose this resulting set because the novelty of an event had to be considered based on the

the confidence score of the named entity and some highly ranked keywords. We had no way

to consider the whole keyword set because, in this case, it was useless to other discussed

trendy topics except the common ones with named entity set.

Ranking Scores of Events

Our proposed approach repeated condition checking for each cluster to determine which

were events and calculated a score for each cluster in each time interval that were considered

events. Finally, we ranked each event by ordering their total score for each time interval.

The flow chart of our proposed approach is depicted in Figure 4.2.

66

Figure 4.2: Flowchart of the proposed approach

4.4.6 Annotation Approach

To evaluate the performance of our approach, we compared the results of our method to a

manually annotated list of events. A subset of 301 tweets collected in sequence from 2018-

08-30 23:00:08 CST to 2018-09-02 10:50:19 CST was manually annotated according to a.

impact, b. tweet count, and c. worldwide effect to be considered as an event. We also

consider three categories whether they are a. first story or novel, b. trending or developing,

and iii. novel and trending. For validation, we checked the ratio of correctly detected events

in that window to the total number of relevant events, and the ratio of correctly detected

events to the total number of detected events.

67

4.5 Experimental Results

4.5.1 Simulation

For our analysis, we used scikit learn89 to calculate the TFIDF matrix82, to apply the DB-

SCAN83 algorithm and cosine similarity. The parameter assignments for making the TFIDF

matrix were max df = 0.90, max features = 200000, min df = 0.01 and ngram range = (1,1).

Then, parameter assignments for the DBSCAN algorithm are eps = 1, and min samples =

3. Again, we used the cosine similarity threshold of 0.5 for similarity checking for trendiness.

Table 4.1 shows the results of five time intervals collectively from 2018-08-30 23:00:08 to 2018-

09-02 10:50:19.200000, from 2018-09-02 10:50:19.200000 to 2018-09-04 22:40:30.400000, from

2018-09-04 22:40:30.400000 to 2018-09-07 10:30:41.600000, from 2018-09-07 10:30:41.600000

to 2018-09-09 22:20:52.800000, and from 2018-09-09 22:20:52.800000 to 2018-09-12 10:11:04

(intervals 1, 2, 3, 4, and 5). We kept only detected True Positive events in Table 4.1. Table

4.1 shows for the first interval, we have 145 tweets and 15 events. Moreover, out of 15 events,

we had no “Trendy Event”, one “Novel and Trendy Event”, and 14 “Novel Events”. The

rest of the intervals are entered similarly. Table 4.2 shows the extracted keywords for each

event for the first time interval. The keywords mentioned in the table were used to detect

cybersecurity related events for the first time interval. For better representation, we show

only the plot of the 2nd time interval in Fig. 4.3. This figure depicts found events on the

x-axis, the number of tweets on the left side of in y-axis, and the event score on the right

side of the figure in the y-axis. The red vertical bar represents the number of tweets and the

blue vertical bar represents the event score for each detected event.

68

Table 4.1: Summary results of five time intervals; NT:Number of Tweets; JT: Just Trendy;

TN: Trendy and Novel; FS: First Story; TE: Total Number of Events

Interval NT JT TN FS TE

1 145 0 1 14 15

2 314 0 0 50 50

3 812 1 7 37 45

4 1239 0 9 18 27

5 297 4 0 5 11

Figure 4.3: Event plot of the second time interval proposed approach

69

Table 4.2: Summary results of time interval 1

Event Number Keywords

0 ’security’, ’android (operating system)’, ’android’, ’wi-fi’, ’privacy’

1
’microsoft’, ’disclosed’, ’twitter’, ’windows’,’microsoft windows’,

’hacker discloses’

2 ’website’, ’catalonia’, ’spain’, ’banking’, ’bank’, ’inf’

3 ’based’, ’huff’, ’buffer overflow’

4
’vulnerability (computing)’, ’security’, ’repository’,

’critical vulnerability’, ’apache’, ’inf’

5
’vulnerability’, ’resource consumption’, ’prior’, ’resource’,

’rsa’, ’bleach’

6 ’task’,’windows’,’patch,’scheduler’

7
’security’, ’android (operating system)’, ’android’,

’data’, ’privacy’, ’tracking’

8 ’cracking ransom’, ’coin’, ’free’, ’ransom’, ’cybersex’, ’net’

9
’vulnerability (computing)’, ’patch’, ’spyware’, ’phishing’,

’inf sec cube security’, ’patched’, ’malware’

10 ’security’, ’website’

11 ’plus’, ’pump’

12
’version’, ’web server’, ’debugger’, ’skype’, ’update’, ’denial service’,

’exploit (computer security)’

13 ’cisco systems’, ’service’, ’cisco’

14 security’, ’photo’,’service’

70

4.5.2 Annotation-Based Validation

Design Selection Approach

The design architecture of this algorithm required a few decisions. First, we wanted to

analyze the semantic relationships between the words of each tweet text to get insight into

cybersecurity events. Thus, we previously applied doc2Vec90, an extended application of

word2vec91 for grouping tweets with similar meanings to find events from the data sets.

We could not, however, get satisfactory results because shallow neural network model text

domain tools like doc2Vec90 works based on word vector embeddings that do not perform

well in a data set with short and noisy text. Embedding methods do not work properly on

short texts because tokens in a short text have thin contextual relationships, and this gets

worse when tokens are misspelled and incomprehensible. Table 4.3 shows a sample result of

doc2Vec applying hypermeter values vector size = 300, min count = 2 and epochs = 45 that

exhibits the most similar tweet and second most similar tweet of a particular tweet has no

noticeable similarity with the original tweet document. A document must show similarity

at least to itself. Similarity scores of each tweet to the particular tweet are in parentheses

in the first column. We decided to apply LDA92 to find topics that may represent events.

Because the tweet text is very short, almost always a tweet represents no more than one

event. Therefore, we applied LDA92 on the aggregated tweet texts from corresponding time

intervals. This approach, however, also fails to show the expected results because of the

incoherence of tweet text. Thus, we decided to apply the very popular TFIDF vectorization

because words in a tweet text have few semantic relationships and word co-occurrence is a

better option to use in this domain. We found this provided better performance compared

to the results from previously applied approaches.

Validation of the Approach

Table 4.4 shows the performance results of our approach according to the evaluation method-

ology described in Section 4.4.6. The annotators annotated 301 tweets and found 20 events

and six tweet clusters that are not events. Our algorithm found 16 events. Out of 16

71

Table 4.3: Sample results of doc2Vec
Terms Texts

Document guides on fixing sql injections vulnerabilities
sql injection technique exploits security vul-
nerability occurring database layer application
the vulnerability present user input either

Most Similar (0.8027611970901489) free vps server ddos protected hosting
Second Most Similar
(0.6457577347755432)

cvnway just ddos server

Median (0.21316465735435486) minibb bbfuncsearchphp table sql injection
Least (-0.4030833840370178) ransomware weapon used cyber attacks elixir

ng news source trust

events, 15 are real events (True Positive) with one false positive. So, the True Positive, False

Positive, False Negative, and True Negative rates are 75%, 16.67%, 25%, and 83.33%; our

precision value is good at 93.75%. We could stream only a very small number of tweets

per millisecond, approximately 1% of the total tweets posted; this issue is addressed in the

linked web article93. The Twitter data itself is insufficient to detect all ongoing cybersecurity

events. Thus, we limited ourselves to calculating recall scores by keeping track of published

cybersecurity events online. Table 4.5 presents the 15 true positive events, along with their

tweet count and their corresponding scores. We ordered the events by their corresponding

scores and matched the scores with the annotators’ annotations. The 4th column of Table

4.5 presents our approach’s event ranking, and the 7th column shows annotators’ rankings.

Comparing the 4th and the 7th column of the table shows the annotator predictions are

quite similar to our approach results for event detection and event ranking. The validity

of the detection approach can be checked by clicking the link in the 6th column to see re-

ports published in authentic blogs and newspapers. The 5th column provides the types of

events detected by our algorithm. The sum squared error (SSE) of the event ranking of our

approach and annotator rankings is 86 by calculating the difference mentioned in the 8th

column of the table.

72

Table 4.4: Confusion matrix of the algorithm’s generated result

Total Population
Ground Truth

positive
Ground Truth

negative
Derived positive True Posi-

tive=75%
False Posi-
tive=16.67%

Derived negative False Nega-
tive=25%

True Nega-
tive=83.33%

Table 4.5: Summary results of time interval 1; EN: Event Number;EL: Event Link;

TC:Tweets Count

NESR:Normalized Event Score Rank;ET: Event Type; AER: Annotator Event Ranking;

DBR: Difference between Rankings; FS: First Story (“Just Novel”); FST: First Story and

Trendy (developing)

EN TC Event Score NESR ET EL AER DBR

0 5 167.6084 5 FS link1 4 1

1 7 211.033 3 FS Link2 2 1

2 21 190.5950 4 FS Link3 3 1

3 3 55.3226 10 FS NA 13 3

4 12 110.6048 9 FS Link4 7 2

5 4 130.4169 8 FS Link5 8 0

6 3 17.2225 14 FS Link6 10 4

7 6 145.7938 7 FS Link7 5 2

8 8 154.3115 6 FS Link8 6 0

9 5 389.7082 2 FS Link9 9 7

10 4 40.0639 13 FS NA 14 1

11 7 46.4706 12 FS Link10 12 0

12 51 391.3391 1 FST Link11 1 0

13 5 52.8906 11 FS Link12 11 0

14 4 16.9345 15 FS NA 15 0

73

https://threatpost.com/android-os-api-breaking-flaw-offers-up-useful-wifi-data-to-bad-actors/137085/
http://www.excel.blue/search////2018_09_28/exploit.html
https://www.hackread.com/ddos-attack-anonymous-catalonia-cripples-bank-of-spain-website/
https://searchsecurity.techtarget.com/news/252447943/Another-patched-Apache-Struts-vulnerability-exploited
https://nvd.nist.gov/vuln/detail/CVE-2016-0887
https://duo.com/decipher/windows-task-scheduler-flaw-has-temporary-fix
https://www.zdnet.com/article/android-operating-system-vulnerability-leaks-device-data-allows-user-tracking/
https://www.zdnet.com/article/cracking-ransomware-ransomwarrior-victims-can-now-retrieve-files-for-free/
https://www.darkreading.com/risk/how-hackers-hit-printers-/d/d-id/1332715
https://healthitsecurity.com/news/critical-cybersecurity-vulnerability-found-in-bd-alaris-plus-pump
https://borncity.com/win/2018/11/28/dos-vulnerability-in-microsoft-skype-for-business/
https://www.cisco.com/c/en/us/support/docs/security/asa-5500-x-series-firewalls/212972-anyconnect-vpn-client-troubleshooting-gu.html

4.6 Conclusion

We presented a novel machine learning and text information extraction method for detecting

cyber-threat events from tweets. We considered two types of such events: those that are

novel, and those that are further developments of previously detected tweets. Furthermore,

we proposed an approach for ranking cyber-threat events based on an importance score

computed using the named entities and keywords in the text of tweets. We also impute

influence to users in order to assign a weighted score to noun phrases in proportion to

user influence and the corresponding event scores for named entities and keywords. To

evaluate the performance of our approach, we measured the efficiency and detection error

rate for events from a specified time interval relative to human annotator ground truth

and demonstrated the feasibility of applying our approach to detect cyber-threat events in

tweets. Future research should extend our method for detecting and ranking sub-events

in each cyber-threat event. Moreover, the heuristics applied in this work provide proof of

concept, while leaving room for further enhancement and customization as users require.

Further, future research can apply the method for measuring the influence of users can be

extended with meta-network modeling and link extraction of the dynamic social network of

users active in the cybersecurity domain.

74

Chapter 5

Tracing Relevant Twitter Accounts in

CTI Domain

5.1 Introduction

Analyzing Twitter data streams as an open source94 for cyber-threat monitoring is a key

research topic in Open Source Intelligence (OSINT). Although the feasibility and signifi-

cance of Twitter as a streaming data source for tracing Cyber-Threat Intelligence (CTI)

have already been established in earlier research5,7, the task of tracing user accounts as a

potential source of information on threats25 and then extracting pertinent information from

the accounts have not yet been fully explored.

In Twitter, user domain-specific posts and shared content over the social network tend to

have more importance/influence on followers if they structurally belongs to the community

of interest. CTI is such a community. Thus, detecting who belong to a structural community

is necessary before beginning to trace accounts of interest. User importance in a domain

of interest can, however, be evaluated by an automated ranking mechanism by considering

relevant domain experience and activities. Therefore, many accounts belonging to a commu-

nity may not be domain relevant if a ranking measure filters user accounts into appropriate

categories. Our interest lies with certain target topics, so topic similarity calculation of

75

user tweets is an obvious downstream process for tracing user accounts as CTI instances.

Tracing and monitoring groups of users is more effective than attempting to find a single

source because this can help i) identify emerging cyber-threats, ii) measure the credibility

of the information, and iii) find Twitter users who share similar or paraphrased texts on a

cyber-threat related topic. This research scope has high potential but is less explored and

inspired us to propose an approach to extract Twitter user accounts actively involved in

pursuing and propagating CTI on Twitter.

Many previous studies traced relevant instances of CTI information using text analy-

sis only, which is not efficient because such approaches account for neither the underlying

topology structure of Twitter nor the huge volume of data content and the speed with which

data are produced. To address this issue, we leveraged both the ”followers” and ”follow-

ing” relationships among users to formulate a homogeneous, directed user graph network.

Then, we detected user communities from the Twitter graph network, using the topologi-

cal information in the graph to trace CTI-relevant user accounts in the form of extracting

graph nodes. One regression model was trained on tweets and account descriptions of user

accounts that have numeric ratings (from pre-tag labels) to compute a weight for each user

account by adding the predicted score from the regression model of each inputting text. The

prediction scores for users in a community are then added to generate an overall weight for

a community.

We found similarities between the TF-IDF feature vectors of the community text com-

prising all user account texts; the feature vectors were obtained from previously selected

relevant nodes (i.e., seed nodes). We kept a record of the similarity scores calculated for

each community for input seed accounts, and then we added each score to the corresponding

community weight to generate a community ranking. To reduce computational complexity,

we kept only top-p (where p∈ N) communities, and for each community. We also calculated

the similarity between the text feature vectors of all users in the current community and the

text feature vector of the seed users. Based on the aggregated values of similarity scores and

respective user account weights, we ranked user accounts where the resulting top-k (where

k∈ N) user nodes were considered traced nodes in the CTI domain. In this research95, we

76

ran and evaluated our approach on a representative data set sampled from an original larger

data set of user nodes on Twitter. The result demonstrates that our approach performs well

in tracing user accounts that frequently feature tweets about CTI-relevant information.

The main contributions of this paper are as follows:

• To the best of our knowledge, this is the first approach95 to trace relevant user accounts

as instances of CTI-related information while using both graph structure and user

account content.

• To generalize our approach, we applied a regression model for predicting scores of all

posted tweets and the account description of each user account to rank and select user

accounts according to their relevance to CTI.

• We considered central user influence on other users in a community while ranking and

selecting user accounts/nodes.

• We also answered two relevant questions that can help explain our methodology.

5.2 Related Work

User account tracing comprised several methodological steps, a hybrid task that is theoreti-

cally different from a user recommendation system. Although the purpose of this study was

different from the more extensively researched topic of user recommendation or friend recom-

mendation in social networks, the low-level working procedures of user account tracing and

user account recommendation is similar with many common terms, backgrounds, and ideas.

Our research was compatible with the current trend of research on the recommendation

system, so we have provided references to earlier research.

A recommender system can be implemented in two mutually exclusive processes: one

using graph structure and one without. However, for a user recommender system in a social

network platform, the first outperforms the second96 in recommendations using missing link

prediction and identification. The working principle of recommendation models has three

77

main approaches for recommending users: i) Network Structure-based97, ii) Content-based19,

ii) Hybrid20. These approaches encompass link prediction to efficiently find potential future

links or missing links between user nodes in social network graphs. Several research reports

indicate that neither network structure nor content-based alone can produce efficient user

recommendations; on the other hand, a hybrid approach that fuses network structure and

content performs better.

Again, friend recommendation systems using Latent Dirichlet allocation (LDA)21 also

have limitations because most of the time Twitter’s short text content only covers a single

topic. Research22 includes structural and community information but lacks content infor-

mation in the analysis of effective link prediction.

Our research is the first that focuses on tracing specifically CTI user accounts in the

Twitter data stream. Our goal is to build a cost-effective approach by incorporating both

graph-structural and content information.

5.3 Methods

This section describes the techniques and methods used in our approach with the steps

illustrated in Figure 5.1. Our work is divided into two parts: (1) user account tracing,

and (2) result validation. This approach is formally depicted in algorithm 1 where ‘U acc’

represents a single user account and ‘U accs’ multiple user accounts.

78

Figure 5.1: Flow diagram of our proposed approach

5.3.1 Graph Construction

Because we wanted to construct a directed user graph with outgoing edges in a ”follower”

relationship, we used a current Twitter user account as a source node (nsi) (where i∈ N), and

all the Twitter user accounts in the ”follower” list of the account as destination nodes (ndj)

(where j∈ N). Similarly, for incoming edges in the ”following” relationship, we considered

all user accounts in the ”following” list of the Twitter account as source nodes (nsi) and

the Twitter account itself as a destination node (ndj). We then used NetworkX to build a

directed graph
−→
G . Figure 5.1 shows this step in sub-block 3.

5.3.2 Text Pre-processing

By nature, Twitter texts are often not grammatically correct, and the words in a tweet can

be misspelled or abbreviated because of Twitter’s promptness and short text structure. To

extract usable information from the text, we modularized the steps of the text pre-processing

task using i) contraction mapping: a contraction dictionary used for generating expanded

words, ii) misspelled word correction with SymSpell98, and iii) token removal to remove, for

79

example, punctuation, non-alphanumeric tokens, stopwords, and token length shorter than

one. For each Twitter account in the data set, we pre-processed the most recent 50 tweets,

the account description, and a combined text produced by concatenating the 50 tweets. We

then applied TF-IDF to generate feature vectors for the textual content of each account.

5.3.3 Community Detection

After constructing the directed homogeneous user graph
−→
G , we applied the Leiden99 com-

munity detection algorithm to find communities ∪i=N
i=1Ci = NC in the user graph where N

is the number of communities found by the algorithms. This detection algorithm extracts

communities by optimizing modularity that compares the relative density of edges inside

the community to edges outside the community. The underlying principle of the Leiden

algorithm99 follows the basic principle of the well-known Louvain algorithm100, which gener-

ates communities that are connected, and converge to a locally optimally assigned partition.

However, the Leiden algorithm runs far faster than the Louvain algorithm. Figure 5.2 il-

lustrates an abstract structure of a community, as detected by the community detection

algorithm, where the three bubble notes and the table of node contents are displayed to

simply represent how the proposed approach works on a community. The Look-Up table

in the figure keeps the required information needed for each node in a community for fu-

ture analysis and computation. The process flow diagram in Figure 5.1 shows this step in

sub-block 4.

5.3.4 Calculating Community Weight and User Weight

In tracing CTI relevant user accounts Ur as outputs, we calculated the weight of each com-

munity after calculating the weights of their corresponding user accounts. We have two

different text entity groups: i) all 50 tweets and ii) the description of each Twitter account;

these were stored in a new data set, although the tweets and descriptions from the sample

user account data set were omitted (discussed in sections 5.4.2 and 5.4.3). Each text from

the text data set was analyzed and pre-tagged by the IBM Watson text categorization tool

80

(see sub-block 2 in Figure 5.1). We applied an efficient semi-automated strategy to rate

all tweets and the descriptions from the text data set, assigning a numeric score to texts

depending on the pre-tag category generated by IBM Watson NLU. The pre-tag category

scores in the data set were specified distinctively by two cybersecurity expert raters (see

Section 5.4.1). To show the performance of our proposed approach we used only the sample

data set to evaluate the resulting outputs.

To generalize the process, we used a ridge regression model trained on the newly created

data set of tweets and descriptions of accounts with their corresponding scores. We fed all

tweets and the descriptions of each sample data set user account into the regression model to

predict each text’s CTI relevance score, which could be used to calculate the weight for each

user account. To obtain the weight of a user account, the score for each tweet was added to

the score of the account’s description of a user account. We used this regression model for

generalization because we wanted the proposed approach to work even on different data sets

or in different domains not specific to CTI.

For a community Ci detected, we then had each user weight Wni
; we combined all user

weights
∑i=M

i=1 Wni
= WCi

(M indicates number of users where M ∈ N) into a community to

calculate the corresponding community weightWCi
. Very likely, bigger communities will have

higher scores than smaller communities because of the large number of users, but a smaller

community can also be vital because of the specific shared content and user expertise. To

normalize the community weight, therefore, we divided the community weight value by the

number of user accounts in a community (WCi
/
∑i=M

i=1 ni). At this point in our analysis,

we selected only top-p (where p∈ N) filtered communities
⋃|F |

i=1 C
F
i (where F ⊂ N) for the

next step in the process to minimize computational overhead. Figure 5.1 shows this step in

sub-block 5, and Figure 5.3 shows the details of user weight calculation by predicting values

from the regression model.

81

Figure 5.2: High level structure of a user community in our analysis

5.3.5 Calculating Text Similarity and Community Ranking

After calculating all community weights
⋃i=N

i=1 WCi
using predicted values from the regres-

sion model, we formulated text vectors for each community
−→
T Ci

using TF-IDF vectorization.

However, before doing so, we combined all 50 tweets for each user account into a commu-

nity to make a single long text Tni
for each community. We also added Q input seed node

QSi (where i∈ N) texts in text vectorization. Then we calculated cosine similarity com-

munity cosim score = cosim(
−→
T Ci

,
−→
T Si

) between the text vector of each seed node TSi
and

combined text vector for each community TCi
. At this point, we had top-p communities

already ranked based on their weights. For each seed input Si, we then added each commu-

nity weight WCi
to the corresponding score of cosine similarity cosim(

−→
T Si

,
−→
T Ci

) between

the community combined text and seed node text vectors. The community score VCi
could

then be calculated using the following equation. See Figure 5.1 sub-block 6.

VCi
= WCi

+ cosim(
−→
T Si

,
−→
T Ci

). (5.1)

82

Figure 5.3: User weight calculation using the predicted values of account tweets and de-

scriptions

5.3.6 Scoring and Ranking User Nodes

After community ranking (rank(
⋃i=N

i=1 Ci)), we started consecutively taking each user ni from

the top p-communities CF
i based on the community ranking because we wanted to minimize

computational complexity by reducing the number of communities NC. Then, we extracted

the combined text of the top fifty tweets Tni
for each user ni and used TF-IDF vectorizing on

each user’s texts in a community with the seed node tweet texts T⋃i=N
i=1 Si

. We then calculated

cosine similarity and added the similarity score user cosim score = cosim(
−→
T ni

,
−→
T Si

) to the

user weight (see subsection 5.3.4). At this point, we already had user accounts with their

scores, so the user account indicates output Ur. We ranked the user accounts based on

the score VUr reached by adding user weight Wni
and similarity score cosim(

−→
T ni

,
−→
T Si

) and

ranked user accounts by using only the filtered communities |F |C and all seed nodes ∀S.

The central user in a community may have influenced other members in the community. So

we added a partial weight to other user nodes of the community by applying the following

formula:

83

Ur −max(Ur) = Ur −maxmal(Ur) +maxmal(Ur) ∗ β. (5.2)

where [β is the influence factor of the central user account in a community, and maxmal

is the user account with maximum value].

We then re-ranked the list of user nodes again based on their updated combined scores

to produce a user node output list in descending order of priority. Figure 5.1 shows this in

sub-block 7.

5.3.7 Validating Model Output

Social network data annotation is an expensive task; thus, we were inspired to develop our

approach in a semi-supervised manner. Instead of implementing our framework using the

original 50K data set, we extracted a representative sample data set. Then, we ran and

validated our framework on the sample data set. To do this, we annotated the sample

data set and proposed a novel validation process. User nodes in the sample data set were

labeled as “relevant” and “not relevant” based on their relevance to CTI. We calculated

the Precision value by finding the ratio between the number of resulting “relevant” user

accounts and the total number of obtained user accounts. Recall value was calculated by

finding the ratio between obtained “relevant” user count and the total number of “relevant”

users in the sampled annotated data set. We calculated F1-β where a user can give input

β. We fed the seed accounts as seed nodes into the framework, and the resulting nodes were

fed again into the framework to find cyber-threat related nodes. This process iterated for

a certain user-defined number of epochs, and after completing the process, we have results

to validate performance. We implemented different validation cases according to different

percentages of user nodes, so a certain percentage of ranked user nodes was selected to

feed into the framework again for a certain number of epochs. For any particular set of

seed nodes, and for all different percentages of node selection, we ran this process for both

84

the proposed method and all other methods. As we executed each method with different

sets of seed nodes, we finally averaged all calculated performance metrics values for each

node obtained from each set of seed nodes. The final step in the proposed work includes

Precision, Recall, and F1-β values for each selection percentage of user nodes. Figure 5.1

shows this process in sub-block 9.

Algorithm 1: Tracing User Accounts

input : seedNodeList
output: User NodeIDs

1 Edge generation e(nsi , ndj)

2 Directed graph
−→
G construction

3 Community Detection
4 for each community Ci generated in ∪i=N

i=1Ci do
5 for each userNode ni in Community Ci do
6 {ni : Wni

} ← regression(U acc ni)
7 end
8 {ni : WCi

} ← WCi
(where WCi

=
∑

Wni
/
∑

nci)

9 end

10
⋃|F |

i=1C
F
i := Filter community(top-p)

11
−→
T Si

:= Text Vector(seedNodes’ Texts TSi
)

12
−→
T CF

i
, := Text Vector(filteredCommunity.Texts TCF

i
)

13
⋃i=|F |

i=1 {CF
i : VCF

i
} := WCF

i
+ cosim(

−→
T Si

,
−→
T CF

i
)

14 for each community in ranked(
⋃|F |

i=1 C
F
i) do

15
−→
T F

ni
:= Text Vector(T F

ni
)

16
⋃r=|uC

r |
r=1 {ur : Vur} := Wni

+ cosim(
−→
T Si

,
−→
T nF

i
)

17 end

18 comMap := rank(
⋃i=|F |

i=1 {CF
i : VCF

i
})

19 usrMap := rank(
⋃r=|uC

r |
r=1 {ur : Vur})

20 traced.U accs := score distribution(comMap, usrMap)
21 if traced.U accs.scores <= Threashold K then
22 validate result(traced.U accs ur)
23 else
24 skip U acc ur

25 end

85

5.4 Collecting and Preparing Data

To obtain instances of CTI in the form of tracing Twitter user accounts, we wanted to crawl

through Twitter user accounts using a Twitter API called Tweepy101. We began by scraping

specific user details (account descriptions, the contents of the most recent 50 tweets, and

lists of “followers” and “followings” U accs) using a colleague’s account. Our colleague is

a passionate cyber threat enthusiast and an active Twitter user who follows expert cyber

threat professionals and is also followed by other cyber threat enthusiasts. We collected tweet

objects up to three levels of the follower and following lists from our colleague’s account and

collected 50K Twitter user accounts. For each user account, we collected their follower and

following lists, account description, and most recent 50 tweets. Then we created a new

entity namely “AllText” by concatenating all these recent tweets from each user as well as

the corresponding account’s description. Figure 5.1 illustrates this in sub-block 1.

5.4.1 Text Rating

The text data set derived by combining tweets and the descriptions (except sample data set

users) were rated to train the regression model. We used the scikit-learn ridge regression

library where we assigned alpha=1.0 and random state=241 with default settings for the rest

of the parameters. Raters assigned a score to each text of the derived text data set based

on text relevance to categories such as “CTI”, “Technology” and “Computer”. To facilitate

and speed up the rating process, raters used a text analytic feature of IBM’s Watson Natural

Language Understanding (NLU) service102 called ‘Categories’ to tag each text by category.

This feature of Watson NLU returned a five-level taxonomy of each text, and from them, we

used three categories: “antivirus and malware”, which was mapped to the CTI; “technology

and computing”, mapped to technology; and “computer science” mapped to the computer.

The categories assigned were limited to the top three of the highest score orders given by the

Watson NLU. Raters considered the category of “antivirus and malware” had precedence

over “technology and computing”, and “Technology and Computing” had precedence over

“computer science” for any particular text. If raters agreed with the Watson tagging of a

86

text, they put 1 for “CTI”, 0.5 for “Technology”, and 0.1 for “Computer”. If raters did

not agree on a tweet category that falls in any of the three categories, they put 0 as a

score for that tweet. We tagged tweets and the descriptions of 50K user accounts (other

than the sample data set users), making up 1802852 tweets and 16596 account descriptions.

To generalize our proposed approach, only the text rating process should be modified by

assigning a different set of scores to different texts. The scores of texts and their mapping

with corresponding tagged categories from IBM Watson would be determined by domain

experts.

5.4.2 Extracting Sample Network

To validate the results produced by the model, we extracted a sample data set from the

50K labeled Twitter user accounts and created a sample network from the sample data set.

We tried to retain the properties of the original network for creating this sample data set

where the root of the sample network remained the same. Starting from the root node,

we randomly chose 75 user accounts from each of the Followers and Following lists for a

total of 150 user accounts. We found a chance of duplication of IDs because of the network

structure. Before moving on to the next step, duplicate user IDs were removed from the

collection but not from the network, giving us 148 unique user IDs at this level. In the next

stage of creating a sample network, we collected three user accounts from Follower and three

from the following lists of these 148 user accounts, giving us 789 unique user accounts. In

the end, we had a sample network with 938 unique user accounts.

5.4.3 Annotation of Sample Network

The Twitter accounts in the sample network were manually annotated by two human cyber

threat experts. The accounts were classified as either “relevant” or “irrelevant” with

respect to CTI. Accounts were considered relevant to CTI if the description of the account

was related to cyber threats and at least two of the collected tweets were about cyber threat

incidents. In case no description was present in the account details, but the account has

87

three tweets related to CTI, the account was labeled as “relevant”. Keywords such as

“vulnerabilities”, “zero-day”, “malware attacks”, “Phishing”, “APT groups”, and “cyber

espionage” are good indicators of CTI relevance to label text category. The rest of the data

in the sample network were labeled as “irrelevant”. After taking into account all these

specifications to annotate the sampled data set, we ended up with 199 CTI “relevant”

Twitter accounts out of 938 accounts in the sample network. After that, the text processing

steps described previously were applied to the text data before running the validation process

on the sample network. Figure 5.1 shows the sample network extraction and annotation

steps in sub-block 8 where it was used to validate the proposed method’s output. The Inter

Annotator Agreement (IAA) of the annotated sample data set by the two annotators is

0.9617 using the Cohen Kappa method.

5.5 Experimental Setup

In this study, we applied the Leiden community detection algorithm for the 50k tagged

data set, but we evaluated our results on the sample annotated data set. The standard

Python library of this algorithm does not provide any hyperparameter tuning option, so this

worked as a black-box method. We evaluated the performance of our results against two

relevant user recommendation methods103, and we applied the Leiden algorithm on the 938

annotated user nodes; the Leiden algorithm found 31 communities out of 938 user nodes. We

experimented with three different sets of seed nodes where each set included three “relevant”

user nodes that were randomly chosen from the annotated sample data set. Each time, we

selected a percentage (from 10% to 100%) of the resulting nodes that were outputted using

the given seed nodes. The selected nodes were then fed into all the methods (our proposed

method and two other methods for comparison) for 5 epochs. For each method, for one set

of seed nodes, we got 10 different values of a performance metric according to the percentage

selection (from 10% to 100%) of resulting nodes. Finally, we averaged each performance

metric output of all the seed node sets for each method. We used the F1-β performance

metric where the value of β was 0.5 and the influence factor was 20%. To trace user nodes,

88

we retrieved two maximally similar communities from the similarity matrix for each seed

user node. We then selected the top 20 users (k=20) from filtered communities ranked by

adding the community weight score to its corresponding similarity score. Similarly, user

nodes were ranked based on similarity scores added to the corresponding user weights.

5.6 Results and Discussion

To the best of our knowledge, this is the first research to trace CTI related user accounts

in the Twitter data stream that considered both structure and content in the network. Our

approach is specifically a case of user recommendation, so we adopted two relevant user

recommendation methods to compare with our approach.

Friend of Friend (FoF) is a well known user recommendation method103 in the social

network domain that we used to compare to our proposed approach. This approach results

in a list of recommended users where a user connected to another user is connected to the

target user.

Content-plus-link (CplusL)103 is a user recommendation method that incorporates

content matching and social link information obtained from the underlying structure of

a social network. This method emphasizes exposing a network path to a weak tie or an

unknown user. The recipient user could thus accept the recommendation.

Table 5.1 shows that the precision of our approach outperformed the two comparable

approaches for all the selection threshold percentages. However, the recall values were lower

for the selection threshold percentages than either comparable approach. The reason behind

this paradigm is that our method results in fewer user nodes whereas the two other methods

have more user nodes. Because the number of traced user nodes from our proposed method

is not analogous to the other two approaches, the selection percentage cannot make any

difference. On the other hand, we value precision more than recall because the purpose

of our work is to find user nodes highly relevant to CTI rather than getting more relevant

nodes. This realization inspired us to use F1 − β score where the beta is 0.5. We can

see noticeably improved performance in the F1 − β score. We also calculated the Pearson

89

Table 5.1: Performance comparisons with different methods on the sampled annotated data
set

Selection
Threshold
Percentage Proposed FoF CplusL

Prec Rec F1β Prec Rec F1β Prec Rec F1β
10% 0.55 0.08 0.26 0.27 0.68 0.32 0.29 0.33 0.30
20% 0.58 0.11 0.32 0.27 0.70 0.32 0.29 0.34 0.29
30% 0.60 0.12 0.33 0.27 0.71 0.32 0.28 0.35 0.29
40% 0.56 0.11 0.31 0.27 0.73 0.31 0.28 0.37 0.29
50% 0.61 0.12 0.34 0.26 0.74 0.31 0.27 0.38 0.28
60% 0.64 0.12 0.35 0.26 0.74 0.31 0.28 0.42 0.30
70% 0.65 0.13 0.36 0.26 0.74 0.31 0.28 0.46 0.30
80% 0.66 0.13 0.37 0.26 0.74 0.31 0.28 0.49 0.31
90% 0.66 0.13 0.37 0.26 0.75 0.30 0.28 0.53 0.30
100% 0.67 0.13 0.37 0.26 0.75 0.30 0.27 0.57 0.30

Correlation Coefficient (R-value) between the predicted values of tweets and descriptions

of the sample user network from the regression model and the generated ratings from the

semi-automated process. We conducted this analysis to evaluate whether our regression

model was effective in predicting a text score regarding CTI where text scores were added

for calculating user weights; we found an R-value of 0.7167. In this analysis, user accounts

in the same community tend to share similar and relevant content, which helped us find

specific information by identifying underlying communities in a social network. Figure 5.4

shows plots of precision, recall, and F1 − β of the introduced approach against comparable

approaches on user account tracing for different selection percentages.

90

Figure 5.4: Precision, Recall, and F1β comparison of our approach against two relevant

user recommendation approaches

Question 1: Why is the predictive analysis performed on sample annotated

user accounts necessary?

Answer: We mentioned in subsection 5.3.4 that our approach computed the user weight

with predicted scores from the regression model. The predictive analysis works for the sample

data set users whose texts were unknown to the regression model when the model was trained

on the original 50K user data sets. We annotated only the sample user network to evaluate

the performance of our approach because user account annotation is an expensive task.

To present practically our approach and show its performance, we used the new validation

technique after experimenting with our approach on the sampled data set.

Question 2: Why did we develop an iterative validation process?

Answer: One reason for validating iteratively was that we intended to generate an

evolving list of traced CTI user accounts. Feeding fixed seed accounts can cause a bias

91

toward user preference, which should not be encouraged. However, selecting a new set of

seed accounts each time from the results can certainly address the bias issues of seed node

list selection. A second reason is that iterative filtering of user accounts also increased the

probability of tracing more relevant CTI user accounts.

5.7 Conclusion and Future Work

In this semi-supervised approach, we traced and recommended Twitter user accounts that

can serve as instances of CTI related information according to a set of given seed nodes.

We introduced new methods for accomplishing the task: predicting a text score using the

regression model, community formation, user weight calculation, and central user influence

measurement. Moreover, our proposed approach can be easily adapted to different domains

of interest by training the regression model on a rated data set specific to that domain using

the semi-automated rating process. We found that applying different regression algorithms or

distinct regression models for individual tweets and descriptions does not make any noticeable

difference in performance. We also provided a method of validating and evaluating the results

of our approach where the method feeds resulting user nodes as seed nodes iteratively into

the process with different selection percentages. However, our approach should be validated

with a larger sample of annotated user data sets. An interesting future direction would be

to apply a newly introduced tensor-based Graph Convolutional Network on an adequately

labeled Twitter user data set.

92

Chapter 6

Conclusions and Future Research

This chapter provides a summary of the key contributions of the dissertation, focusing on

theory, applications, and claims later justified by the experimental results. Finally, I provide

suggestions for future research.

6.1 Summary of Contributions

This dissertation presented techniques to improve representation learning on short text cor-

pora for downstream deep learning tasks; the goal was to reduce human effort in data annota-

tion and augmentation. These new techniques were applied to different components of CTI.

The novel contributions in this dissertation included theoretical advances for CTI-relevant

key phrase extraction using transformer model performance augmentation and threat type

classification using a novel GNN. Moreover, I implemented a technique for actively tracing

CTI user accounts on the Twitter network and detecting cyber-threat events as integral

components for constructing a potential cyber-threat awareness system. In this dissertation,

I focused on addressing the following fundamental problems:

• Exploring semi-supervised and unsupervised machine learning techniques to reduce

human effort in data labeling and annotation tasks;

• Research direction to improve transformer model performance on raw text data for

93

extraction;

• Improving node feature learning in graph data and adapting it for text classification;

• Pointing out key components of cyber-threat awareness systems and improving them

individually against baselines and SOTAs.

Chapter 2 addressed contextual limitations of current deep learning-based and heuristic

key phrase extraction tools as applied in cybersecurity. To address these limitations, I devel-

oped a hybrid system that augmented SOTA transformers for labeling key phrase sequences

using a novel set of part-of-speech and role-aware tagging rules to generate fine-grained tag

sequences from short text corpora. Next, I fine-tuned several SOTA deep learning language

model architectures to these transformed sequences. I then evaluated the architectures by

measuring the outcomes from the language models to select the best underlying transformers

for extracting cybersecurity key phrases. This new ensemble achieves significantly better pre-

dictions over SOTA baselines on general cybersecurity corpora. The F1 scores, for instance,

are at least 25% higher than hybrid SOTA transformers fine-tuned using baseline tagging

rules on the generic corpus, with a significantly lower trade-off on a vulnerability-specific

corpus.

Chapter 3 introduced the APKGNN model for short text/node classification tasks. I

adopted the attention mechanism and Gaussian mixture model-based parametric kernel as

a function of the local graph to extract patches. This combination process resulted in

augmented local patches that ultimately convolved with node features to generate updated

node representation. The updated learning representation benefits the performance of short

text classification. I also applied neighbor sampling with a multi-processing setup that

improves even the performance of SOTA models. The implemented GNN convolution layer

outperforms SOTA algorithms by a significant margin with better training, validation, and

test accuracy for three standard benchmark data sets and one cyber-threat text data set.

Chapter 4 presented a new machine learning and text information extraction approach to

detect cyber-threat events in Twitter that were both novel (previously non-extant) and de-

veloping (significantly similar to previously detected events). Furthermore, the implemented

94

approach allows us to rank cyber-threat events using an importance score; we extracted the

tweet terms characterized as named entities, keywords, or both. Influence is also imputed to

users according to their followers and following relationships to rank both types of events.

Finally, the performance of the implemented approach was evaluated, measuring the effi-

ciency and detection error rate for events over a specified time interval that is relative to

human annotator ground truth.

Chapter 5 introduced a way to trace user accounts to monitor as instances of CTI. In this

chapter, a novel approach was implemented to trace cyber-threat associated user accounts

in the Twitter data stream: ranking users were more accurate with contextual relevance and

topological information extracted by finding user communities on the Twitter network. I used

structural information in the graph network and tweet content from user accounts to find

relevant user accounts through previously identified seed user accounts. The implemented

method outperformed two baseline methods using annotated data of CTI-related Twitter

user accounts to trace accounts as instances of CTI.

6.2 Future Research

In the future, researchers may want to focus on the following

CTI Application

• User account tracing and recommendations using GNN

User account tracing and recommendations from social networks can be considered

as an application of user community detection. Traditional modularity optimization-

based research is a black box method, whereas deep learning approaches detect com-

munity by learning static node features and network structural information. Applying

GNNs could be an appropriate approach to community detection tasks because they

have multi-dimensional nodes and connection features. This leaves a wide scope for

research that applies efficient GNN models to identify cyber-threat relevant user com-

munities from social networks.

95

• Dynamic Event Detection and Ranking with Time Series Analysis

Social networks generate a massive amount of data within minutes, posing challenges

for all downstream analytical tasks such as classification and detection. Dynamic or

run-time versions of these processes directly acquire data from streams and create ad-

ditional overhead in the processing pipeline. This causes scalability issues. Therefore,

to implement real-life cyber-threat awareness applications, scalability issues must be

addressed.

• Define trade off between generalizability and specificity

Defining a margin between generic and domain-specific methods of key phrase iden-

tification is a significant challenge. Domain-specific methods can distinguish specific

features from the text but do not transfer or adapt well to other domains like different

social networks, news articles, and online blogs. Generic methods, on the other hand,

face the problem of identifying important domain-specific key phrases. This complex-

ity and unknown nature of cyber-threat indicators mean that specificity requirements

remain crucial. Policies thus must be determined and proper measures taken to define

the level of specificity and validate experimental results.

• Improve the GNN model by minimizing number of parameters

The novel GNN model introduced in this dissertation does outperform SOTA models

in node classification, but it also requires learning more parameter vectors than other

models. The overhead of learning additional parameters means the model requires

more time to train. The direction of this continuing research would be to reduce the

number of parameters.

• Apply GNNs to Parallalize on Multiple GPUs Efficiently

GNN model training is more computationally expensive than comparable CNN models

because of necessary additional matrix multiplications. The current GNN library has

insufficient support to parallelize model training on multiple GPUs, which is crucial

96

for real-life data sets. The next step in the research would be to investigate how to

efficiently parallelize the GNN model training.

97

Bibliography

[1] Huichen Yang and William H Hsu. Named entity recognition from synthesis procedural

text in materials science domain with attention-based approach. In SDU@ AAAI, 2021.

[2] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu

Philip. A comprehensive survey on graph neural networks. IEEE transactions on

neural networks and learning systems, 32(1):4–24, 2020.

[3] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907, 2016.

[4] Quanzhi Li, Armineh Nourbakhsh, Sameena Shah, and Xiaomo Liu. Real-time novel

event detection from social media. In 2017 IEEE 33Rd international conference on

data engineering (ICDE), pages 1129–1139. IEEE, 2017.

[5] Adam Marcus, Michael S Bernstein, Osama Badar, David R Karger, Samuel Madden,

and Robert C Miller. Twitinfo: aggregating and visualizing microblogs for event ex-

ploration. In Proceedings of the SIGCHI conference on Human factors in computing

systems, pages 227–236, 2011.

[6] Sina Dabiri and Kevin Heaslip. Developing a twitter-based traffic event detection model

using deep learning architectures. Expert systems with applications, 118:425–439, 2019.

[7] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim Finin.

Cybertwitter: Using twitter to generate alerts for cybersecurity threats and vulnera-

bilities. In 2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), pages 860–867. IEEE, 2016.

[8] Amosse Edouard. Event detection and analysis on short text messages. PhD thesis,

Université Côte D’Azur, 2017.

98

[9] Rupinder Paul Khandpur, Taoran Ji, Steve Jan, Gang Wang, Chang-Tien Lu, and

Naren Ramakrishnan. Crowdsourcing cybersecurity: Cyber attack detection using

social media. In Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management, pages 1049–1057, 2017.

[10] Kuo-Chan Lee, Chih-Hung Hsieh, Li-Jia Wei, Ching-Hao Mao, Jyun-Han Dai, and

Yu-Ting Kuang. Sec-buzzer: cyber security emerging topic mining with open threat

intelligence retrieval and timeline event annotation. Soft Computing, 21(11):2883–2896,

2017.

[11] Anna Sapienza, Sindhu Kiranmai Ernala, Alessandro Bessi, Kristina Lerman, and

Emilio Ferrara. Discover: Mining online chatter for emerging cyber threats. In Com-

panion Proceedings of the The Web Conference 2018, pages 983–990, 2018.

[12] Quentin Le Sceller, ElMouatez Billah Karbab, Mourad Debbabi, and Farkhund Iqbal.

Sonar: Automatic detection of cyber security events over the twitter stream. In Pro-

ceedings of the 12th International Conference on Availability, Reliability and Security,

pages 1–11, 2017.

[13] Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt, and Richard

Zak. Relext: Relation extraction using deep learning approaches for cybersecurity

knowledge graph improvement. In Proceedings of the 2019 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining, pages 879–886, 2019.

[14] Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and Richard

Zak. Creating cybersecurity knowledge graphs from malware after action reports.

IEEE Access, 8:211691–211703, 2020.

[15] Anastasiia Sirotina and Natalia Loukachevitch. Named entity recognition in informa-

tion security domain for russian. In Proceedings of the International Conference on

Recent Advances in Natural Language Processing (RANLP 2019), pages 1114–1120,

2019.

99

[16] Varish Mulwad, Wenjia Li, Anupam Joshi, Tim Finin, and Krishnamurthy

Viswanathan. Extracting information about security vulnerabilities from web text.

In 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelli-

gent Agent Technology, volume 3, pages 257–260. IEEE, 2011.

[17] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extracting cybersecurity

related linked data from text. In 2013 IEEE Seventh International Conference on

Semantic Computing, pages 252–259. IEEE, 2013.

[18] Sachini Weerawardhana, Subhojeet Mukherjee, Indrajit Ray, and Adele Howe. Auto-

mated extraction of vulnerability information for home computer security. In Interna-

tional Symposium on Foundations and Practice of Security, pages 356–366. Springer,

2014.

[19] RH Nidhi and B Annappa. Twitter-user recommender system using tweets: A content-

based approach. In 2017 International Conference on Computational Intelligence in

Data Science (ICCIDS), pages 1–6. IEEE, 2017.

[20] Shulin Cheng, Bofeng Zhang, Guobing Zou, Mingqing Huang, and Zhu Zhang. Friend

recommendation in social networks based on multi-source information fusion. Inter-

national Journal of Machine Learning and Cybernetics, 10(5):1003–1024, 2019.

[21] Gang Zhao, Mong Li Lee, Wynne Hsu, Wei Chen, and Haoji Hu. Community-based

user recommendation in uni-directional social networks. In Proceedings of the 22nd

ACM international conference on Information & Knowledge Management, pages 189–

198, 2013.

[22] Jorge Valverde-Rebaza and Alneu de Andrade Lopes. Exploiting behaviors of commu-

nities of twitter users for link prediction. Social Network Analysis and Mining, 3(4):

1063–1074, 2013.

[23] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,

and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

100

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural

networks on graphs with fast localized spectral filtering. Advances in neural informa-

tion processing systems, 29, 2016.

[25] V. Behzadan, C. Aguirre, A. Bose, and W. Hsu. Corpus and deep learning classifier

for collection of cyber threat indicators in twitter stream. In 2018 IEEE International

Conference on Big Data (Big Data), pages 5002–5007, 2018. doi: 10.1109/BigData.

2018.8622506.

[26] Robert A Bridges, Corinne L Jones, Michael D Iannacone, Kelly M Testa, and John R

Goodall. Automatic labeling for entity extraction in cyber security. arXiv preprint

arXiv:1308.4941, 2013.

[27] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised

learning with graph embeddings. In International conference on machine learning,

pages 40–48. PMLR, 2016.

[28] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,

Stephen Soderland, Daniel S Weld, and Alexander Yates. Unsupervised named-entity

extraction from the web: An experimental study. Artificial intelligence, 165(1):91–134,

2005.

[29] David Nadeau and Satoshi Sekine. A survey of named entity recognition and classifi-

cation. Lingvisticae Investigationes, 30(1):3–26, 2007.

[30] Abdulkareem Alsudais and Hovig Tchalian. Clustering prominent named entities in

topic-specific text corpora. 2019.

[31] Angli Liu, Jingfei Du, and Veselin Stoyanov. Knowledge-augmented language

model and its application to unsupervised named-entity recognition. arXiv preprint

arXiv:1904.04458, 2019.

[32] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and

Chao Zhang. Bond: Bert-assisted open-domain named entity recognition with distant

101

supervision. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 1054–1064, 2020.

[33] J Devlin M Chang K Lee and K Toutanova. Pre-training of deep bidirectional trans-

formers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[34] S Thenmalar, J Balaji, and TV Geetha. Semi-supervised bootstrapping approach for

named entity recognition. arXiv preprint arXiv:1511.06833, 2015.

[35] Atefeh Zafarian, Ali Rokni, Shahram Khadivi, and Sonia Ghiasifard. Semi-supervised

learning for named entity recognition using weakly labeled training data. In 2015 the

international symposium on artificial intelligence and signal processing (AISP), pages

129–135. IEEE, 2015.

[36] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence

tagging. arXiv preprint arXiv:1508.01991, 2015.

[37] Houssem Gasmi, Abdelaziz Bouras, and Jannik Laval. Lstm recurrent neural networks

for cybersecurity named entity recognition. ICSEA, 11:2018, 2018.

[38] Ivan Mazharov and Boris V Dobrov. Named entity recognition for information security

domain. In DAMDID/RCDL, pages 200–207, 2018.

[39] Tiberiu-Marian Georgescu, Bogdan Iancu, and Madalina Zurini. Named-entity-

recognition-based automated system for diagnosing cybersecurity situations in iot net-

works. Sensors, 19(15):3380, 2019.

[40] Ya Qin, Guo-wei Shen, Wen-bo Zhao, Yan-ping Chen, Miao Yu, and Xin Jin. A

network security entity recognition method based on feature template and cnn-bilstm-

crf. Frontiers of Information Technology & Electronic Engineering, 20(6):872–884,

2019.

[41] Tao Li, Yuanbo Guo, and Ankang Ju. A self-attention-based approach for named entity

102

recognition in cybersecurity. In 2019 15th International Conference on Computational

Intelligence and Security (CIS), pages 147–150. IEEE, 2019.

[42] Han Zhang, Yuanbo Guo, and Tao Li. Multifeature named entity recognition in infor-

mation security based on adversarial learning. Security and Communication Networks,

2019, 2019.

[43] Shengping Zhou, Zi Long, Lianzhi Tan, and Hao Guo. Automatic identification

of indicators of compromise using neural-based sequence labelling. arXiv preprint

arXiv:1810.10156, 2018.

[44] Han Wu, Xiaoyong Li, and Yali Gao. An effective approach of named entity recognition

for cyber threat intelligence. In 2020 IEEE 4th Information Technology, Networking,

Electronic and Automation Control Conference (ITNEC), volume 1, pages 1370–1374.

IEEE, 2020.

[45] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and slow: Combining

vector spaces and knowledge graphs. arXiv preprint arXiv:1708.03310, 2017.

[46] Houssem Gasmi, Jannik Laval, and Abdelaziz Bouras. Information extraction of cy-

bersecurity concepts: an lstm approach. Applied Sciences, 9(19):3945, 2019.

[47] Valerie Mozharova and Natalia Loukachevitch. Two-stage approach in russian named

entity recognition. In 2016 International FRUCT Conference on Intelligence, Social

Media and Web (ISMW FRUCT), pages 1–6. IEEE, 2016.

[48] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text

summarization branches out, pages 74–81, 2004.

[49] Nasik Muhammad Nafi, Avishek Bose, Sarthak Khanal, Doina Caragea, and William H

Hsu. Abstractive text summarization of disaster-related document. In ISCRAM 2020

Conference Proceedings–17th International Conference on Information Systems for

Crisis Response and Management, 2020.

103

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[51] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[52] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. Advances in neural information

processing systems, 28, 2015.

[53] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to

attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

[54] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural

machine translation system: Bridging the gap between human and machine translation.

arXiv preprint arXiv:1609.08144, 2016.

[55] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,

et al. Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[56] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[57] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[58] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, 34(4):18–42, 2017.

104

[59] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,

and Michael M Bronstein. Geometric deep learning on graphs and manifolds using

mixture model cnns. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 5115–5124, 2017.

[60] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. A general framework for adap-

tive processing of data structures. IEEE transactions on Neural Networks, 9(5):768–

786, 1998.

[61] Alessandro Sperduti and Antonina Starita. Supervised neural networks for the classi-

fication of structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.

[62] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in

graph domains. In Proceedings. 2005 IEEE international joint conference on neural

networks, volume 2, pages 729–734, 2005.

[63] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se-

quence neural networks, 2017.

[64] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning

using gaussian fields and harmonic functions. In Proceedings of the 20th International

conference on Machine learning (ICML-03), pages 912–919, 2003.

[65] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard

Schölkopf. Learning with local and global consistency. Advances in neural information

processing systems, 16, 2003.

[66] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled examples. Journal of

machine learning research, 7(11), 2006.

[67] Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised

embedding. In Proceedings of the 25th international conference on Machine learning,

pages 1168–1175, 2008.

105

[68] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy

Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs

for learning molecular fingerprints. Advances in neural information processing systems,

28, 2015.

[69] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on

large graphs. Advances in neural information processing systems, 30, 2017.

[70] James Atwood and Don Towsley. Diffusion-convolutional neural networks. Advances

in neural information processing systems, 29, 2016.

[71] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional

neural networks for graphs. In International conference on machine learning, pages

2014–2023. PMLR, 2016.

[72] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks

and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[73] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-

structured data. arXiv preprint arXiv:1506.05163, 2015.

[74] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then

propagate: Graph neural networks meet personalized pagerank. arXiv preprint

arXiv:1810.05997, 2018.

[75] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[76] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,

2015.

[77] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

106

[78] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference

Proceedings, 2010.

[79] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text

classification. In Proceedings of the AAAI conference on artificial intelligence, vol-

ume 33, pages 7370–7377, 2019.

[80] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast

geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 869–877, 2018.

[81] Georgiana Ifrim, Bichen Shi, and Igor Brigadir. Event detection in twitter using ag-

gressive filtering and hierarchical tweet clustering. In Second Workshop on Social News

on the Web (SNOW), Seoul, Korea, 8 April 2014. ACM, 2014.

[82] Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. In-

terpreting tf-idf term weights as making relevance decisions. ACM Transactions on

Information Systems (TOIS), 26(3):1–37, 2008.

[83] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based al-

gorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96,

pages 226–231, 1996.

[84] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In Proceedings

of the 2004 conference on empirical methods in natural language processing, pages

404–411, 2004.

[85] Alan Ritter, Evan Wright, William Casey, and Tom Mitchell. Weakly supervised

extraction of computer security events from twitter. In Proceedings of the 24th inter-

national conference on world wide web, pages 896–905, 2015.

107

[86] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank

citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[87] Wolf Garbe. ¡wolf.garbe@faroo.com¿, (“SymSpell 6.4”).

[88] Radim Rehurek and Petr Sojka. Software framework for topic modelling with large

corpora. In In Proceedings of the LREC 2010 workshop on new challenges for NLP

frameworks. Citeseer, 2010.

[89] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine

Learning research, 12:2825–2830, 2011.

[90] Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents.

In International conference on machine learning, pages 1188–1196. PMLR, 2014.

[91] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[92] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal

of machine Learning research, 3(Jan):993–1022, 2003.

[93] Andy Piper. Potential adjustments to streaming api sample volumes. Retrieved August,

24:2019, 2015.

[94] A. Bose, V. Behzadan, C. Aguirre, and W. H. Hsu. A novel approach for detection

and ranking of trendy and emerging cyber threat events in twitter streams. In 2019

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM), pages 871–878, 2019. doi: 10.1145/3341161.3344379.

[95] Avishek Bose, Shreya Gopal Sundari, Vahid Behzadan, and William H Hsu. Trac-

ing relevant twitter accounts active in cyber threat intelligence domain by exploiting

108

content and structure of twitter network. In 2021 IEEE International Conference on

Intelligence and Security Informatics (ISI), pages 1–6. IEEE, 2021.

[96] Liming Pan, Tao Zhou, Linyuan Lü, and Chin-Kun Hu. Predicting missing links and

identifying spurious links via likelihood analysis. Scientific reports, 6(1):1–10, 2016.

[97] Iftikhar Ahmad, Muhammad Usman Akhtar, Salma Noor, and Ambreen Shahnaz.

Missing link prediction using common neighbor and centrality based parameterized

algorithm. Scientific reports, 10(1):1–9, 2020.

[98] Wolf Garbe. Symspell 6.4, 2020. URL https://github.com/wolfgarbe/symspell.

[99] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden:

guaranteeing well-connected communities. Scientific reports, 9(1):1–12, 2019.

[100] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.

Fast unfolding of communities in large networks. Journal of statistical mechanics:

theory and experiment, 2008(10):P10008, 2008.

[101] Joshua Roesslein. Tweepy documentation, 2020. URL https://docs.tweepy.org/

en/v3.10.0/.

[102] IBM. Ibm watson natural language understanding documentation, 2021. URL https:

//cloud.ibm.com/apidocs/natural-language-understanding?code=python.

[103] Jilin Chen, Werner Geyer, Casey Dugan, Michael Muller, and Ido Guy. Make

new friends, but keep the old: Recommending people on social networking sites.

In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-

tems, CHI ’09, page 201–210, New York, NY, USA, 2009. Association for Com-

puting Machinery. ISBN 9781605582467. doi: 10.1145/1518701.1518735. URL

https://doi.org/10.1145/1518701.1518735.

109

https://github.com/wolfgarbe/symspell
https://docs.tweepy.org/en/v3.10.0/
https://docs.tweepy.org/en/v3.10.0/
https://cloud.ibm.com/apidocs/natural-language-understanding?code=python
https://cloud.ibm.com/apidocs/natural-language-understanding?code=python
https://doi.org/10.1145/1518701.1518735

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Problem Statement
	Contributions
	Dissertation Outline

	Extracting Key Phrases from Short Texts for Cyber-Threat Intelligence Tasks
	Introduction
	Related Work
	Statistical Learning Approaches
	Feature-Based Heuristic Approaches
	ML/DL Based Approaches
	NE Extraction for CTI

	Cybersecurity Keyphrase Identification Framework
	Incorporating Heuristic Rules
	Adopted Statistical and Neural Network Models

	Experiment and Evaluation
	Data sets
	Environment Setup
	Compatibility of Tagging Rules
	Our Developed Tagging Rule Validation
	Analysis of Results

	Conclusion and Future Work

	Attention Aware Parametric Kernel Graph Neural Network for Classifying Cyber-Threat Types
	Introduction
	Related Work
	Deep Learning on Graphs
	Spectral and Spatial based approaches
	Parametric Kernel for Extracting Patches
	Self Attention in GNN

	Implemented Technique
	Experiments
	Data sets
	Experimental Setup

	Results and Performance Evaluation
	Discussion

	Conclusion and Future Work

	Event Detection and Ranking of Cyber-Threat Events
	Introduction
	Related Approaches
	Background
	Named Entity Recognition (NER)
	TextRank
	TFIDF
	DBSCAN

	Methods
	Tweet Collection and Early Annotation
	Tweet Pre-processing and Cleaning
	Influential Twitter User Impact
	Determining Algorithm Design Architecture
	Event Detection Heuristics and Scoring
	Annotation Approach

	Experimental Results
	Simulation
	Annotation-Based Validation

	Conclusion

	Tracing Relevant Twitter Accounts in CTI Domain
	Introduction
	Related Work
	Methods
	Graph Construction
	Text Pre-processing
	Community Detection
	Calculating Community Weight and User Weight
	Calculating Text Similarity and Community Ranking
	Scoring and Ranking User Nodes
	Validating Model Output

	Collecting and Preparing Data
	Text Rating
	Extracting Sample Network
	Annotation of Sample Network

	Experimental Setup
	Results and Discussion
	Conclusion and Future Work

	Conclusions and Future Research
	Summary of Contributions
	Future Research

	Bibliography

