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INTRODUCTION

In the theory of linear differential equations of the

elliptic type, boundary-value problems play a basic role. Such

problems involve the determination of the solution of a given

differential equation within a given domain on the boundary of

which given conditions must be fulfilled.

Partial differential equations in two variables involve a

domain of application in a two-dimensional plane. Boundary

values may be assigned in various ways along curves in the plane

to determine the solution elsewhere in the plane. For second-

order equations, a classification into three basic types is

useful in distinguishing boundary value problems.

Consider a second order partial differential equation of

the form

[1] a(x,y)<j>
xx

+ b(x,y)<t> + 0<x,y)6 + f (x,y .*x >*
y

3 = 0.

i.e., one that is linear in the second-order partial derivatives.

It is possible to classify this equation on the basis of the

2
expression b - tac, where a, b and c are the coefficients of

the second order terms of the equation. The classification is

as follows

:

2
1. Parabolic Type: (if b - 4ac = at all points of the

region considered). An example of this type is the one-dimen-

sional heat-flow equation.

2
2. Hyperbolic Type: (if b - 4ac > for all points of

the region). A basic problem of this type is the one-dimensional



wave equation.

3. Elliptic Type: (if b - 4ac < at all points of the

region). The most fundamental equation of this type is Laplace's

equation. The elliptic equation will be considered in this

report. If, in the elliptic type equation,, b and f are both

zero and a = c = 1, the equation is called Laplace's equation in

two dimensions and its solution is referred to as a harmonic

function.

Any elliptic equation with f = can be reduced to Laplace's

equation. First of all, a rotation of axes can be used to

remove the mixed partial term. A common transformation to

accomplish this is

x Xcos <j> - Ysin <j> , y = Xsin $ + Ycos <t>

2
where <j> is the angle of rotation.

The general equation then reduces to the form

a'(X,Y)<C
xx

+ c'(X,YHYV = 0.

Then a change of scale can be used to make the coefficients of

the second partials equal.

Boundary-value problems of this type involve specifying

values of the function or of its partial derivatives of first

1. A solution of Laplace's equation (in any number of
dimensions) is called a harmonic function.

2. Derived in Calculus , Tom. M. Apostol, Blaisdell
Publishing Company, New York, London, 1961, pp. 318-320.



order along the closed boundary of the region. Then solutions

are determined for all interior points of the region. A typical

boundary value problem for elliptic equations is the Dirichlet

problem which may be defined as follows:

DEFINITION: (Dirichlet Problem): "Let f be a continuous function

prescribed on the boundary B of some finite region G of the space

(x-,, x,, ... , x ). We are to find a function $(x^, x
2

, ... , x
n

)

which is harmonic in the interior of G and equal to f on B."

In general, numerical methods of solution of all Dirichlet

boundary-value problems depend on the use of a grid of points in

the domain. At the nodes of this grid, approximations to the

solution are determined. With an infinitely fine mesh, the

solution would converge to the solution of the partial differen-

tial. Various coordinate meshes may be used in the two dimen-

sional system; however, the configuration in this report is

restricted to a square lattice;

Laplace's equation in two dimensions,

2 2
9 <t> + 3 <fr _ n

2 2 " '

Sx 3y

2 2
is sometimes written 7 0=0. The expression v ^ > whether

referring to a rectangular coordinate system as above , in two

or more dimensions, or the corresponding expression in some other

system of coordinates, is called the Laplacian.

In a square lattice the two-dimensional Laplacian can be

approximated by replacing the second derivatives by their



expressions in terms of finite differences. It is customary to

use only the approximation to the Laplacian obtained by neglect-

ing the fourth and higher differences. If a single subscript is

used to designate the relative position of the <j>
' s in the lattice,

the expression to evaluate the potential function <t> at each

interior point looks simpler, compared with using double sub-

scripts. However, a system must be defined for a consistent

numbering pattern of the lattice points. Then the Laplacian,

3
expressed in terms of finite differences, may be written as

'^ = i/h
2
(^ + *

2
+ <p

3
+

<s> K
- m <e ),

where <t>, , <)>-, «, and <K are the mesh points h units from 41-.

In symbolic notation

'h*0 ' 1/h ' < *3 -» '

This report is based on the Liebmann method of solving

Laplace's equation. In general, the Liebmann method is a

process for evaluating the potential function at an interior

point in terms of its neighboring points. The method and its

extensions are illustrated in the following sections.

3. Kaiser S. Kunz, Numerical Analysis , McGraw-Hill Book
Company, Inc., New York, London, Toronto, 1957, pp. 278-79.



LIEBMANN METHOD - TWO DIMENSIONAL

The method of Liebmann can best be illustrated by a simple

example, derived with the use of Laplace's equation. Assume

that the potential * , satisfying Laplace's equation, is required

for the region contained within a given square boundary (see

figure 1). The potential
<f>

is zero on three sides of the square.

On the fourth side <j> .«'. 1 at the middle and drops off linearly

to zero at the corners

.

fg(x)
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Fig. 1
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<j> =



In this example, a square net of 25 lattice points is used

to approximate the behavior of <(>. The potential at the interior

lattice points can be designated by <|> where s = 1, 2, ... ,9;

the potential at the boundary points by <j> , t = 10, 11, ... , 25.

The problem then is to determine a numerical solution of the
<J> g

in terms of the $.

.

It has already been shown that Laplace's equation can be

approximated by the partial difference equation indicated sym-

bolically by

V
2

,), = l/h
2 < 1 -4 0,

h Y
s

1

where h is the net spacing. Consider the potential at interior

point $. . The difference equation which expresses the potential

for this point is written

l/h
2

(<|>
1;L

+ 4>
25

+ <j>

2
+

<t> 4
- 4 <j>

1
) = 0.

We can solve this equation for 4 <j>, and write it as

4 *1 = *ll
+

*25 * *2
+ U '

or write it in the following form which allows only the boundary

points on the right hand side of the equation:

[3] -4 #j +
<t>

2
+ 'c^ = - (*X1

+ *2 g)

Equation 3 gives the potential at the first interior point

$ = 1. As we consider the remaining interior points,



s=2,3, ... ,9, we have eight additional equations.

*1
- 14

*2
+

*3
+

*5
= " *12

*2
" 4

*3
+

*6 = " ( *13
+ W

i ' H K + h + h '- ~ *24

*2
+ \ " 4

*5
+

*6
+

*8 = °

*3
+

*5
" 4 *6

+
*9 = " *16

\ " 4 *7
+

*8 = " ( *21
+

*23 )

*5
+

*7
" 4

*s'
+

*9 = " *20

*6
+

*8
~ H *9 = " ( *17

+
*19 )

Notice that the right hand sides of these equations are

known as they represent values at the boundary points which are

constant. We have a system of nine equations in as many unknowns

which can be solved by standard methods. However, if the system

should be expanded and a large number of interior points con-

sidered, the method would become an exercise in "busy work".

For this reason we look to other methods.

Consider the set of linear equations : equation 3 and the

eight additional equations for this problem. The matrix of the

coefficients for this system of equations has -4 as the elements

of its principal diagonal. Notice that all of the other elements

are either or 1. Hence, the diagonal elements are dominant.

In fact, the absolute value of any element on the diagonal is at

least as large as the sum of the remaining elements in that row

or column. The nature of this coefficient matrix indicates that



we can safely look to some method of successive approximations

for our solution. One such method is introduced by Liebmann.

If the symbolic difference equation expressed above is

rewritten, we have , symbolically

,

[4] <j>

a
= 1/4 \ :

This equation states that $ is just an average of the values of

cj> at the four neighboring points. Neighboring points are defined

as those points a distance h away from <j> . Liebmann 's method

consists of improving the value initially guessed for $ by

repeated application of this process over the set of points.

One passes from point to point in the lattice replacing

the previous values of <f at each point by the average of the cj> ' s

for the four closest neighboring points. All points in the

interior of the region must be included in the process , although

it does not matter what sort of a pattern is originally set up

for each region.

As illustrated in figure 1, one possible pattern for

numbering the lattice points is to begin at the upper left

interior point. Number consecutively along the rows, not includ-

ing any point falling on the boundary of the lattice. The

4. Ibid. , pg. 296.

5. H. Liebmann, Die Angenaherte Ermittlung Harmonischer
Funktionen und Konformer Abbildungen , Sitzber, Math. Physik, kl.
Boyer. Alcad . Wiss. Munchen, 47: 385-416 (1918).



potential is evaluated for $. . Then the potential is evaluated

for the interior, point of next higher index. The process con-

tinues in the defined order throughout the entire interior of the

lattice. When the potential at all points has been improved once,

these new values are substituted for the values of the previous

iteration and the process begins again at <j>, .

The process converges since each application of the method

averages the errors of the four neighboring points . If the

errors are not all of the same sign, they will tend to average

out and <f will be improved. In several cases, one or more of

the four neighboring points is actually a boundary point which

has no error. Although the process converges, in some problems

the convergence is rather slow.

The Liebmann process is well suited to a large scale

computer: however, the requirement that values for all <j> ' s in

the lattice must be made available over and over again places

restrictions on the number of lattice points used. With today's

bulk storage computers this problem is reduced to a minimum.

One other preliminary must be disposed of before a problem

of this type can be read into a computer for calculation. We

must have a starting point. An initial guess must be made for

the values of <j> at the interior points. A typical boundary-

value problem for elliptic equations is stated in the definition

of the Dirichlet problem on page 3. Using this definition, we

will prove the following theorem:

THE MINIMUM-MAXIMUM THEOREM: Consider a harmonic function <t>(x,y),

continuous in some closed bounded region G = G + B. Then the
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values of ij) in G cannot exceed its maximum on the boundary B nor

can they be less than its minimum on B.

PROOF: Let m denote the maximum of $ on B. Assume that, at

some points of G , <$> assumes values greater than m. Then the

maximum M of <J> in G must also be greater than m, and this maxi-

mum must be assumed at some interior point Q of G. We now

translate the origin to the point Q. Under this transformation

(J>
remains harmonic. Now consider the function

v(x,y) i <J>(x,y) + ,—(x + y ),
2d

where d is equal to the least upper bound of the distances

between pairs of points of B (the maximum distance across the

2 2 2
region). If (x,y) is in G, then x + y < d . From the above

equation, we can see that v(0,0) = $(0,0) which is equal to M.

On the other hand, if a point (x,y) belongs to the boundary B of

G, then

v(x,y) < m + (1/2)(M - m) = (l/2)(m + M) < M.

This can be obtained by noting that <J>(x,y) <^ m and since

2 2 2 .

x + y < d , it follows that

2
4.

2
x v < 1.

Consequently, v(x,y), like <(>(x,y), must attain its maximum at an

interior point of G. However, for all points of G, we have
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3 v 3 v _ 3
<J> . 3 <t> . 2(M - m)

n
2

2"
2 2 2

3x 3y 3x 3y d

This contradicts the fact that for a maximum, none of the second

derivatives of a function can be positive

.

To prove the minimum part of the theorem, apply the above

result to -<J>(x,y). This means that the maximum value of -<j>(x,y)

is the minimum value of $(x,y) and hence, the minimum cannot

occur at an interior point.

The initial values assigned to <£ could be zero. However,

the theorem indicates that the guesses should lie somewhere

between the minimum and maximum observed on the boundary. When

we intend to find a solution for such a problem using a computer,

the accuracy of the guess is not of major significance. At

worst, a bad guess would only require more iterations. After

approximating the potential at all interior points once (one

complete iteration)-, we have a set of values as shown in table 1,

appendix A. The final solution for this example, along with a

FORTRAN program, is also illustrated in appendix A.

The approximation to the Laplacian, as defined above, is

derived by neglecting fourth and higher differences in a

difference equation. If this same difference equation is

considered, neglecting only sixth and higher differences, we have

another approximation to the Laplacian. Thus, the Laplacian may

6. This discussion is illustrated in detail in Numerical
Analysis by K. S. Kunz, pp. 279-80.



be expressed as

'h^OO
=

^ (6
x*00 " T7 6

x*00
+ 6

J*00
" 17 ^OO 5

12

12h
2

[ - (<i) 20
+

*02
+

*-20
+ *0-2> + 16( *10

+

'01 -10
+

*0-l } - 50 *nn^ .>*00 J

or, symbolically,

h-00 ^T
16

16 -60 16

16

This approximation should yield better results than the

Laplacian derived for four neighboring points. It is very

seldom used, however, due to the added complications. We now

must know the potential at points adjacent to, but outside the

boundary or we must assign weights other than those illustrated

in the equation above. In figure 1, for example, we do not have

two boundary points defined to the left of $,

.
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LIEBMANN METHOD - THREE DIMENSIONAL

It would be suitable to consider next the potential when

the system is extended to three coordinates. It turns out that

for a simple three-dimensional region it is not always possible

to solve the Dirichlet problem. A restriction, as stated by I.

G. Petrovsky, is that the function have a sufficient number of

continuous derivatives on the bounding surface. This condition

can be stated that the function at the bounding surface be

sufficiently smooth.

The Laplacian of <t> expressed in Cartesian coordinates in

three dimensions is written as

a
2
* a

2
*

h
T

3x 3y 3z

Therefore we can use an approximation similar to that used for

(x ,y ,z )

Fig-
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the two dimensional case. In a three dimensional lattice this

Laplacian can be approximated by replacing the second derivatives

by their expressions in terms of finite differences.

The Liebmann derivation of a formula for two dimensions is

discussed in detail in chapter 12 of Numerical Analysis by K. S.

Kunz. This is known as the Laplacian for two dimensions and is

also mentioned briefly in the introduction of this report. The

following discussion is analogous to that of Kunz. The only

significant difference is that we now have a three dimensional

array.

Suppose the Laplacian is desired at (x
Q ,y Q

,z
Q

) in figure 2.

We can define u, v and w by the following equations:

x - x
Q y - y Q

z - z
Q

u = —c v = —, w = —c

Let

*rst " * (x
r'y S '

z
t

)
•

7Then by the use of Stirling's interpolation formula.

'^'Vo'V s
*ooo

+ u^x*ooo
+ (1/2!)u26x*ooo

+

(l/3!)u(u
2

- 1)U«1#000
UA!)u 2

(u
2

- 1)«> 000

and hence,

7. Kaiser S. Kunz, Numerical Analysis , McGraw-Hill Book
Company, Inc., New, London, Toronto, 1957, pg. 71.
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,2
3 ij>(x,y ,2 )

3x

,2

1
<0(x,y

o
,z

o
)

2 2
x = x_ h 3u | u =

" 77 "x^OOO - T7 6x*000
+ — )

h

where the subscript x on the <5 indicates that the differences

are formed with respect to x.

and

6x*ooo " *-100 "^OOO +
""100

6
x*000

=
*-200 " 4<1> -100

+ 6<|)
000 - 4 *100

+
*200

Since the second derivatives with respect to y and z can be

handled similarly, the following equation can be obtained.

/s
2
* 3

2
<j> 3

2
<J>\ . 1 A. 2. 1 .1,

,
\.

(—7 + 77 + 77? " 77l (6x*000 " 17 Sx*000
+ ~"

>)
+

\3x 3y 3z / x ,y ,z
Q

h \ /

[5]

M (6y*000 " 17 6
J*000

+ 1 + ^("z^OOO - T7 5
z*000

+ "~
>)

It is customary to use only the approximation to the

Laplacian obtained by neglecting the fourth and higher differences

in Eq. 5. The results in other cases would be similar. If the

lattice is set up so that all net spacings are the same, h = j = k.

Therefore

3
2
* 3% 3

2
<f>\ 2 2

7T 7~2" 7T _ Vooo
3x oy 3z / x ,y Q

,z
Q
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"here _2 _ 1 , .2, j. r 2 a ,c
2 a ~iVh*000 " 75 (6

x*000
+ 6y*000

+ <5

z <i) 000
)

h

72
( *100

+
^OlO

+
*001

+
*-100

+
*0-10

+
*00-l " ^ooo*'

n

Then, in symbolic notation,

vh v 000

Using single subscripts to designate the relative position of the

i>
' s in the net, the expression can be written as

vh* (

If one should choose to neglect only the sixth and higher

differences

,

12h

- 1 X^A 6„*nnn>
- 1 * 4 A

i2h
2 y

v
° 00 ' i2h

2 z¥ ° 00

would be evaluated.
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Hence

,

5 2, -2, ,2.

2 2 2
3x 3y oz x 0> y ,z

Q

= V'h*000

72 C *-100 " 2 *000
+

*1C0 ' If (<1) -200 " ^-100

5 *000 " 4<i,ioo
+

*200 ) +
*0-10 " 2

*000
+

*010

12
C*0-20 ^o-io

+ 5
*ooo - 4

*oio
+

*o2o
) +

*oo-a

2 *00O
+

*001 - 12
( *00-2 -

4
*00-l

+ 6 *000 " 4<l> 001

*002 )]

12h
2

[
-

C(i,-200
+

*0-20
+

*00-2
+

*200
+

*020
+

<f> 002
)

+ "(*_10Q
+ * _10 *QQ ;X * 100 * 010

+ *001 )

90 *000 ]

In symbolic notation,

As mentioned previously, this approximation is very seldom used

because of the additional values required at points adjacent to



but outside the boundary.

Now consider a simple problem similar to the one discussed

for the two-dimensional case. Assume that the lattice for this

example forms a cube extending a distance of 4h in each dimension.

Hence, we have a lattice of 125 points including 27 interior

points. These interior points can be numbered in turn beginning

at the upper left hand corner of the first interior plane. Move

to the right to the last interior point in this row. Then con-

tinue to the second row, the third and so on. When this plane

is completed, continue to the second interior plane.

The lattice points on the exterior are also numbered

beginning at the upper left. Number the first plane by rows

moving from left to right. The planes' containing interior points

will be numbered clockwise, beginning in the upper left hand

corner. The last plane will be numbered using the same pattern

used on the first plane. See figure 4 for an example of the

numbering of lattice points.

Fie. 3
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In the future, lattice points will be referred to using

single subscript notation. The single subscript will refer to

the point designated by this subscript in figure 4.

'28 '29 '3'0

.0

'33

.0

+ 33

.25

+ 34

.5

+ 35

.75

*36

.0

+ 38

.25

+ 39

.5

+40

.75

.0

+ 43

.25

*v 44

.5

+45

.5

+46

•0

*4S

.25

*4-9

.25

+ 50

.25

+ 51
.0

1 st

.0 .0

Plane

32
1.

*37

.75

r42
.5

r 47

.25

r 52
.0

'53 54 '55 '56

.0

+ 68

.25

+1

.5

(j)

2

.75

*3

.0

+ 67 *4 + 5 + 6

.0

v 66 + 7 H + 9

.0

+65 + 64 + 63 + 62
.0 .0 .0

2 nd Plane

'57

.75

+ 58

.75

'59

.5

60
25

61

'69 '70 '71 '72

.0

*84

.25

^10

.5

+11

.5

4>12

.0

+ 83 +13 w +15

.0

+ 82 +16 +17 +18
.0

'; 31 + 80 + 79 + 78

'7 3 '85 '86 '87

.0

3 rd

.0 .0

Plane

<P74

.5

'75

*7S
.25

v 77

.0

.0

*100

.25

+19

.25

$20

.25

*21

.0

+ 99 + 22 + 23 + 24

.0

+ 98 + 25 + 26 + 27

.0

+ 97 + 96 + 95 + 94
.0 .0 .0

4 th Plane

.0

89
.25

'90

25

»91

.25

92

25

^93

.0

Fig. 4



20

Assume that we have a function defined on the boundary which

gives a maximum potential of one at ij>

32
(see figure 3), and the

values at other points of the boundary as given in figure 4.

Label the edges of the region from 1 through 12. Let the poten-

tial at all points on edges 1, 3, 4, 5, 8, 9, 10, 11 and 12 be

zero. Also, let all points on the three planes determined by

these edges have a potential of zero. The potential at the

remaining boundary points can be defined by imagining the poten-

tial as the thickness in the walls of the region. Note, at

point 32, the thickness is one. The fifth plane is not shown as

the potential at each point is zero. The lattice points are

numbered following the same pattern used to number the first

plane

.

To demonstrate the procedure using the three-dimensional

Laplacian, determine the first approximation to <j>.. Since the

maximum is one and the minimum is zero on the boundary, let the

initial guess again by 0.5 for all interior points. From the

formula derived for the three-dimensional Laplacian, we need the

values for six neighboring points. For $. the six points are 34,

54 and 58 on the boundary and 2, 4 and 10 from the interior.

Hence

,

[5] *
x

= 1/6 <*
2

+ * 4
+ * 1Q 34 ? S4 * B8

)

= 1/6 (.5 + .5 + .25 + .5 + .25 + 0) = 0.333

This same procedure will be used on all interior points, in order.

For this problem, there will be a total of 27 equations, one for
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each interior point. Equation 6 can be written in the form:

-6^ + *
2

+ *
4

*1Q
= - (* 34 *

51+ *68
).

Consider the matrix of the coefficients of the system of equa-

tions . Again, the matrix is strongly diagonal. The absolute

value of each diagonal element is at least as large as the sum

of the remaining elements in that row or column.

When the values at all interior points have been corrected,

the process begins over again at <j. . When the value of the

potential at all interior points converges , to a specified accur-

acy , the solution has been obtained. It is obvious that by hand,

this method would prove to be very tedious and slow, even for

this relatively "small" problem. However, the method is easily

adapted to a computer and the FORTRAN program along with the

results are given in appendix B. Note, that only the second,

third and fourth planes of lattice points are listed, as the

first and fifth consist only of boundary points with constant

values. Observe also that the values at the boundary points of

the planes illustrated remain constant.
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EXTENSION OF GAUSS-SEIDEL METHOD

The Liebmann improvement matrix techrr' i is nothing more

than the Gauss-Seidel method applied to a particular problem.

The first extension of the Gauss-Seidel takes a set of equations

with a strongly diagonal matrix, and uses the latest approxima-

tions for all variables. It can also be done using matrices, but

it does require inversion of a triangular matrix.

To illustrate the method, refer to the two-dimensional

problem discussed on page 5. From the first two difference

equations for the system, we can obtain the following by

rearranging and solving for <j>
.

, where j is the index of the

lattice point:

* x
= 1/4 ($

2
+

<t> 4
+ <j) 11

+ * 25
)

<f> 2
= 1/4 (^ + <J>

3
+ 4>

5
+ * 12

5 •

Remember that $ . , j = 10, 11, ... , 25, are boundary points with

constant ' alues.

Consider the equation for the potential 4>
2 > which is a

linear combination of <j>. , <j>-, $,. and <j>-,

2
- Note that <j>, appears

in the expression for (j>„. The newest approximation for <|>, could

be used. Similarly, by the time we determine the potential at

the third interior point, we have a new value for cj>„. The value

of the potential at all interior points, except the first, can

be expressed in terms of some already corrected potential values.

In this example, use of the expression <j> will represent

the newest approximation for the potential of the internal
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lattice points, s = 1, 2, ... ,9. The approximation immediately

preceding if)

1
will be represented by (j> .

With this notation in mind, we can now rewrite the nine

equations for this example as

:

>;
+i

.i+1 1
^2

=
¥

i+1 . 1

ii+1 - 1

k
i+1 - 1

.i+l

i+1 1
i>

7 4

,i+l 1

*8
=
¥

..i+1

*2
+

* +

i+1

ll +
*25 )

i + 1

i+1
'2

i+1

+ *
6

+

s
i+1

K 13

12'

"21

15'

)

+ <j>

i+1

'21 K 23

16'

)

r
i+1

.i+1
>7

.i+1

>9
+

*20 )

l»17
+ *19>

Expressed in matrix form, these equations can be written as

6< i+1 > = A*
(i)

+ B6
(i+1)

+ H

where K is a constant vector derived from the values of the

potential at the boundary points. The method is similar to that

used to obtain the matrix coefficients A and B. These matrices

are illustrated on the following two pages.
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0±00000000 i

00^-000000
000^0^-0000000000
ooooooooooooooio
0000000000
000000-000000000
OOOOOOOOOOoioi-OO

0'

000^0000
oioioOOOOO

- -

5

1

5

G

Q 1

0.

-

.125

.250

.125

.000

.000

.000

.000

.000

.000

This product is evaluated by using the boundary values for

10 , 11 , . . . , 25 . By assigning letters to these matrices,

we can simplify the appearance of the expression on the previous

page.

V 3

-V
(i+1) »«» . *<*> ,(i+l)

+ H
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(I - B)<j>

(I -

s
A*'

1
' * H

C B)
_1

H

*< i+1) - t#<"

This matrix T is an "improvement" matrix for the Gauss-Seidel

process. It is necessary, first, to calculate T and G.

After carrying out the calculations indie. :ed above, the

improvement matrix T and the new constant vector G appear as

shown below. Again we can choose the initial approximation for

the interior points as 0.5. For this example, then

.(i+1)

1

4

1

4
.5

J

.125 375

1

16
1

4

1

IF
1

4
.5 .281 593

1 1

TF
1

64
1

TF
1

4
.5 .196 .399

1

16
1

TF
1

4

1

4
.5 .031 .343

1

37
1

TF
1

T2
1

8

1

4

1

TF
1

4
.5 + .079 = .484

3

TFF
1

32
3

IFF
3

F4
1

8

1
Ftr

1

TF
1

4
.5 .068 .346

1

F4
1

64
1

16
i

16
1

4
.5 .008 .211

3

T5F
1

64
3

7FF
3

64
1

IB
1

32
1

8

1

4
.5 .022 .298

3

512
3

256
3

512
3

128

(T)

3

64
3

TFF
3

64
1

8 _

it

.5

i°)
s

.023

(G)

.163

(J)
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Compare these values, using the Gauss-Seidel method, with

the values shown for this example in appendix A, after the first

iteration. Note, since the values using the improvement matrix

are nearer to the solution, we would expect that this method

would converge faster than does the ordinary Liebmann method. A

FORTRAN program is illustrated in appendix C and the results are

shown for the 1
st

, 5
th and 13

th iterations.
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EXTENSION OF THE GAUSS-SEIDEL METHOD - THREE DIMENSIONAL CASE

It is also possible to apply the improvement matrix to the

three dimensional example discussed earlier. We will use the

numbering system previously described on page 18 . In the pre-

vious section, we considered a problem in two dimensions. It

was a relatively simple matter to find a system of equations to

express the potential at the interior points. We then looked at

the coefficients in these equations and placed these values in

the proper locations in one of the matrices A, B or H.

In three dimensions, the method is very similar; we usually

have more interior points and larger matrices to work with. The

major requirement is that we have a specified pattern for number-

ing the lattice points. We will again have a system of equations,

one equation for each interior point. By analyzing the coeffi-

cients in these equations, we can again form the matrices A, B

or H by placing the values of these coefficients in the proper

locations

.

st
The values at the newest iteration, the (i + 1) , can be

expressed in terms of the values at the i iteration, and the

matrices A, B and H can be defined as follows:

[7] I«
(i+1)

= »
(i+1)

= A*
(i)

B*
(i+1)

H.
s s s s

As an example, consider the equation for the potential <j)^, which

is <j>

4
= 1/6 ($

1
+

<t>

b
+ <j>

7
+

(f> 13
+ <|>

3g
+

<J> 67
).

The number of the lattice point considered determines the row of

the matrix in which the coefficients are placed; i.e., for the
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equation above, the 4 indicates which row the coefficients are

placed in. For this equation, we are placing coefficients in

the fourth row of the matrices A, B and H. Since there are six

neighboring points for this equation, we will place six coeffi-

cients in the fourth rows of these matrices. The matrix in

which each of these six coefficients is placed is determined by

the nature of each of the six points. If they are boundary

points, the coefficients are placed in the fourth row of H. If

they are interior points, they have either been improved in this

particular iteration or they have not. If they have been im-

proved in this iteration, the index is less than the index of

the point being improved; i.e.,
<t> 1

, $
2

, and 4>
3
have already been

improved when we reach <jv. Thus, these coefficients will be

placed in the fourth row of B. If they have not been improved

in this iteration, their indices are greater than four. These

coefficients, then, will be placed in the fourth row of A.

The columns in which these six coefficients are placed are

determined by the indices of the six neighboring points. For

example, the 13 of <J>13
implies that the coefficient of

<t> 13
in

the expression for <k will be placed in column 13. We already

know that this coefficient is also in row 4 of matrix A by the

above discussion. Note that the coefficients of the six neigh-

boring points are one-sixth, for all equations.

Similarly, this method car. be extended to four or more

dimensions. The most important precaution is that the lattice

Doints be numbered in order. Secondly, the value at each point

must be improved, in order, before returning to the starting
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point. When the values at all interior points have been evaluated

in terms of the six surrounding neighbors, equation 7 can be

simplified to

(i+l)
= T

^(i)
+ Q

where T = (I - B)
_1
A and G = (I - B)

-1
H.

Substituting the values for the boundary points into the

expression above and choosing . 5 as the original guess for the

values at the interior points,
<J>

(i = 0) can be written as:

(i+1)
s

= 0.3334 = 0.3473 = 0.2663

0.4723 0.4700 0.3311

0.6205 0.5152 0.3078

0.3473 0.3658 0.2721

0.4700 0.4677 0.3452

0.5152 0.4998 0.3172

0.2663 0.2721 0.1741

0.3311 0.3452 0.2275

0.3078 0.3172 0.1853

s = 1, ••-, 9; 10, ..., 18;

FIRST ITERATION

19, ..., 27

These are the values obtained from the FORTRAN program in appen-

dix D. The matrices A, B, (I - B)~ , T and G are not shown since

all but G have dimensions 27 x 27, and would take up unnecessary

space. If, however, these matrices should be required, a state-

ment in the proper place in the FORTRAN program would cause this

information to be printed or punched.
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EXTENSION OF THE GAUSS-SEIDEL METHOD - WITHOUT MATRICES

The two methods used up to this point are the Liebmarm

method and an extension of the Gauss-Seidel method. The Liebmann

method averages the four neighboring values , without talcing into

consideration the newest values. The extension of the Gauss-

Seidel method makes use of the system of equations for the value

of the potential at the interior points . From these equations

,

we manipulate matrices and finally come up with an improvement

matrix. Clearly, from the preceding work, the extension of the

Gauss-Seidel method should converge much faster than does the

Liebmann method

.

Consider, again, the two-dimensional Liebmann method dis-

cussed earlier. Use the same numbering system and the same

pattern for improving the potential. In the FORTRAN program for

the Liebmann method for this example (appendix A) , there is a

statement analogous to

,(k+l) _ 1/k ,.(k) . ,(k) . .(JO . ,(k) ,
9 = 1/4 L9- -, . + 9. . . + d> . .,, + . .-. .J
s l-l.: 1.3-1 1.3+1 i + l=j

where s = 1 , 2 , . .
.

, 9 ; i = row index; j = column index. This

says simply that at each interior point the value for the poten-

st
tial of the (1 + 1) iteration is equal to the average of the

values of the four neighboring points at the i iteration.

Notice, that by altering this expression only slightly, we

have another method for approximating the value of the potential.

This method is to use the newest values as they are available;

i.e., by the time we correct the value of the potential 9 ?
, we
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already have new values for the potential at points 1 through 6.

Hence, the expression would now appear as

*Ck+l) _ 1/1+ [(f
(k+l)

+
^Ck+1)

+
^Ck)

+
^(k)

£ i-l, J i 5 j-l i>3 + l i + l,

3

As the procedure implies, this is the method of successive

displacements, sometimes called the Gauss-Seidel method. A

<^t th th
FORTRAN program with the values after the 1,5' and 13

iterations appears in appendix E. Compare these values with

those shown in appendix C for the method using the improvement

matrix. Note, the respective values are exactly the same in

like numbered iterations.

The significance of this observation is if matrix techniques

are utilized, then the Gauss-Seidel method should be used for

computer work. This method does not depend on the inversion of

matrices. However, if matrices are not used, it is better to

use the extension of the Gauss-Seidel because it requires less

storage then the Gauss-Seidel and converges faster than does the

Liebmann method.
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UNEQUAL ARM METHOD

The methods described in the previous pages are all well

adapted to calculating the value of the potential at the interior

points of lattices in which all points lie exactly on the nodes

of the lattice. However, the boundary points of the region under

observation will, in general, fall between lattice points.

This presents a new problem. We may have several points

that have one or more of their neighboring lattice points lying

outside the boundary (i.e., 1, 3, 5, 7 and 8 in figure 5). The

potential at the interior points must be expressed using boundary

points. For example, <(>. would be expressed in terms of $ . , (J)^,

<j>

2
and $ 4

.

1

9"^

2

a

3\b

4 5 6
1

11

1

7 f s /
A

Jg
e\

10

s.h
—}

s
k
h

*1 S
?
h

Fig. 5

s
4
h

f 4

Fig. 6

Figure 6 illustrates the position of <j>, and its neighbors. The

conceot which must be developed here relies on the different dis-

tances from <f>, to each of its neighboring points.
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Before a solution of this type of problem can be attempted,

a method must be developed to express the potential at points

for which the "arms" are unequal. To do this we must consider

8
the first and second divided differences

.

f( Xl ) - f(x
Q

) fU
x

) f(x
Q

)

1 »»• *<* »*1> -

Xl -x
Q

=x-^l^-x7^-

f(x ,x
n

) - f(x ,x )

2
nd

D.D. f(VXl , 2
) - x - x

2

'

f(x
a

) f(x
Q

) f(x
2

)

" - <x
x

- x )lx
2

- x^ - (x
Q

- x
2
)(x

1
- x

Q
J - (x - x

2
Ux

2
- x

±
)

We want a solution for Laplace's equation at all points in the

region. Hence, we must have

2 2

L_i + ±A
3x

2
3y"

11* + i'* - - 2

2 • ~T - V * = 0.

If we approximate our function <j)(x,0) by Newton's divided

9
difference interpolating formula, we can write

<j>(x,0) f(x,0) = f(x
Q

) + (x - x
Q
)fCx ,x

1
) +

(x - x
Q
)(x - x

1
)f (x

Q
,x

1
,x

2
)

Hence

,

,2
i

3x
Z£^X«,X-, ,x„j,

8. Kaiser S. Kunz , Numerical Analysis , McGraw-Hill Book
Company, Inc., New York, London, Toronto, 1957, chapter 5.

9. Ibid.
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In the definition for f (x
Q
,x

x
,x

2
) , let x

±
- 4>-, *

2
" *

2
and

x n
= $. . See figure 6 for an illustration of the points $.,

i = 1, 2, t, j, k. Note,

*i " x
o

=
*j " *i

= " s
j

h

x
1

= ((>„ - if. - s„h - (-s.h) = s„h + s.h

« - *
2 * *1 " *2 " " S

2
h

Then

3x

(x,o) .
:
r -^ h h \

2 \ -s.hCs h + s.h) -s
2
h(-s.h) ^s^hTs^h + sThTJ

2
r 2 <,< 2 * x __lil_l

Similarly,

2

3 <KQ,y) = 1/h
2 r

2 h 2 h
+

2

ft >
\V S

k
+ V S

4
S
k

S
k
tS
k

+ VJ3y

Hence

,

7 7 (
2 *4 2

*i
2

*k^7 +
s.(s

2
+ s.)

+
s
k
(s

k
+ s ^)

r
2 n

t
s
4
(s

k
+ s

i 2 _ p i_vA^^
l
S
j

S
2

s
k
s
4/

X

J
i

2
I¥

2

For an example, consider a region defined by the function

2 2
f(x,y) =x/9+y/4-l=0. This is a very specialized sample

problem; however, it makes use of the formulas developed above.

In this case only two arms are shortened for <j>.. If we let s„ =

s„ = 1 ; s . = s ; s, = t and consider figure 7, equation 8 reduces
4 j k °
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FiE. 7

to

[9] 1/h' ?K +
|r-T-t*6

+
s(l + s)*j

+
t(l I tT*k

(s + t) A \ _

~it *lj
"

1 + s
r
2

Since <j> • and <j>, are values at boundary points, they have constant
3 k

values and equation 9 can be further simplified to

^ = A(J)
2

+ Bcj)
6

+ C

where A, B and C are constants that are calculated once and for

all for that particular "star".

Assume that a function has been defined so that the boundary

points take on the values <j>„ = <j> = 0.25; $ = <j> = 0.50;

*31
=

*17
= °- 75; *16

= 1- ° and a11 other °-°-
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Then the values of the unequal "arms" can be computed from

the equation for the curve. For example, at point 29, f(x) = 1.

When we determine the "x" we can compute the distance s . Using

this method, then, we have s = 0.5980 and t = 0.4906. Equation 9

then becomes <t>, = 0.1637 <J> + 0.1808 <i> + 0.2548. Hence, if our12b
initial guess for all interior points of the ellipse is 0.5, our

first approximation for * is *, = 0.1687 (.5) + 0.1808 (.5) +

0.2548 = 0.4296.

From the symmetry of the boundary values for this example,

we would expect that the potential at the interior points would

also be symmetrical. That is, the potential would be the same at

points symmetric to the y-axis . Table 15 of appendix F illus-

trates this.

For this potential, figure 6Consider the potential

would become:

14'

'13

9

s, h
k

K

s.h
3 *14

s.h
<i>

S|| h = s

*23

15

Then s_ = s, = s.
2 k

= 1:

Fig-

s . From equation 8 , we have

/
2 *23

+

2 ^13
+

2 ^9
+

2
*15_ / 2 + 2 \ . 1

jTMl + s) 1(1+1) 1(1 + s) 1(1 + 1) ^1-1 l-sj^j

This reduces to:
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From the conditions on the boundary, we have that (
t
>

23
= 0. Then

the first term can be eliminated and we have

2 2s + 2 , _ n

*i3
+
IT-IT *

9
+

*is
"—— ht - °-

It follows that

*14 = 2TT~2 (*13
+ Hhf *9

+ lSj

which is in the form

*14
= A*13

+ B *9
+ C*15

•

From the equation x
2
/9 + y

2
/4 - 1 = , we can find the value of

y = f(x,y) = 1.3856 at point 23. So s = 1.8856 - 1.0 = 0.8856.

Hence

,

(j> = 0.2348<j>
13

+ 0.2491<j>
g

+ .23i+8cf.
15

.

The FORTRAN program for this example makes use of the newest

values as they are available. Hence, for $ ln , we have already

found new values for <t>

g
and <j>

13
. Combining these values with

the initial guess of 0.5 in the first iteration, we have

A = 0.2348^ + 0.2491cj>
g

+ 0.2348 CO. 5)

= 0.2348(j>
13

+ 0.2491((>
g

+ 0.1174

See ap^-r.dix F for the FORTRAN program and potential values.
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PURPOSE
TG DETERMINE THE POTENTIAL FOH ALL INTERIOR POINTS
OF A TWO DIMENSIONAL LATTICE.

PARAMETERS
V - NUMBER OF POINTS IN THE X DIRECTION.
N - NUMBER OF POINTS IN THE Y DIRECTION
G - INITIAL GUESS FOR THE INTERIOR POINTS

REMARKS
IN THE OIMENSION STATEMENT. FIRST SUBSCRIPT IS A

COUNTER. THIS COUNTS THE NUMBER OF ITERATIONS
REQUIRED TO OBTAIN THE ACCURACY DESIRED BY
STATEMENT 53.

METHOD
USES THE LIEBMANN METHOD

XPHI ( 30.5.5)DIMENSION PHK30.5.5),
1 FCRMAT ( 12

)

2 FCRMAT (F8. 4)
3 FCRMAT (5FS.2)

1 I FORMAT (SF8.4//)
1=0
READ ( I . 1 )M

READ( 1. I )N

READ! 1 ,2)G
RFAD(1.3)((PHI(I.J.K),K=1,N),J=1.M)
M l=M-l
M=N-1
00 2 1 J=2.M1
DO 21 K=2,N1

2 1 PHI ( I ,J.K)=G
22 1=1+1
23 IFU.GE.21) GO TO 42

DO 31 J=l ,M
DC 31 K=l ,N
[F( J.EQ.l )GO TO 51
IF(K.E0.1)GD TO 51
IF(J.EO.M)GO TO 51
IF (K.EC.N)GO TO 51
PHI(I,J,K)=(PHI(I-1,J-1,K)+PHI(I-1,J,K+1)+PHI(I-1.J+1,K)+

1PHI ( 1-1 . J.K-1 ) )/4.
31 CONTINUE
32 WRITE (3. 11 ) ( (PHI ( I . J.K) ,K=1 ,N) , J=l ,M)

GC TO 52
51 PH I < I . J,K)=PHI ( 1-1 , J.K

)

GO TO 31

52 DC 4 1 J=2. M

I

CC 41 K=2.Nl
XPHI(I,J,K)=ABS(PHI(I,J,K)-PHI(I-1,J,K))

53 IF (XPHI ( I, J.K) .GE. .000 1 )GU TO 22
41 CONTINUE
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42 STOP

0.0000 0.5000 1.0000 0.5000 0.0000

0.0000 0.3750 0.6250 0.3750 0.0000

0.0000 0.3750 O.5C0O 0.3750 0.0000

0.0000 0.2500 0.3750 0.2500 0.0000

0.0000 0.0000 0.0C00 0.0000 0.0000

TABLE I 1 ST ITERATION

0.0000 0.5000 1.0000 0.5000 0.0000

0.0000 0.2712 0.4383 ' 0.2712 0.0000

0.0000 0.1348 0.2031 0.1348 0.0000

0.0000 0.0569 0.0812 0.0569 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 2 10 TH ITERATION

0.0000

O.COOO

0.0000

0.0000

0.0000

0.5000

0.2636

0. 1253

0.0494

0.0000

TABLE 3

1 .0000

0.4289

0. 1QQ0

0.0717

. 0000

0.5000

0.2636

0. 1253

0.0494

0.0000

0.0000

0.0000

0. 0000

0.0000

0. 0000

20 TH ITERATION
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APPENDIX B-
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C PURPOSE
C TO DETERMINE THE PGTfcNTIAL FOR ALL INTERIOR POINTS
C OF A THREE DIMENSIONAL LATTICE.
C

C PARAMETERS
C N - NUMBER OF POINTS IN THE Y DIRECTION
C M - NUMBER OF POINTS IN THE X DIRECTION
C MN - NUMUER OF POINTS IN THE Z DIRECTION
C G - INITIAL GUESS READ IN
C

C REMARKS
C IN THE DIMENSION STATEMENT. FIRST SUBSCRIPT IS A

C COUNTER. THIS KEEPS TRACK OF THE NUMBER OF
C ITERATIONS REQUIRED TO OBTAIN THE ACCURACY
C DESIRED BY STATEMENT 53. THE REMAINING SUBSCRIPTS
C ARE FOR THE COMMON X.Y.Z. DIRECTION IN SPACE.
C

C METHOD
C USES THE LIEBMANN METHOD
C

DIMENSION PHI (30. 5.5. S) . XPH I ( 30. 5.5 .5

)

1 FQHMAT(I2)
2 FCRMATCF8.4)
3 FQRMAT(SF5.2)

11 FCRMAT(SF12.4/)
14 FORMAT! IH1. 14, 12HTH ITERATION/)'

1=0
READC I. I )M
READ( 1. 1 )N
READ! 1. 1 )MN
:ad( i ,2)g

read! 1 .3) ( ( (phk i. j,k.mk),k=1.n) . j=1.m) ,mk=l .mn)
1=0
M1=M-1
Ni=N-l
MM=MN-l
DO 21 J=2.Ml
DO 21 K=2,Nl
DO 21 MK=2.MN1

21 PHI ( I . J,K.MK)=G
22 1=1+1
23 IF< I. GE. 21)00 TO 42

DO 31 MK=1.MN
DO 31 J= 1 ,M
OQ 31 K=1.N
IFIMK.EQ.l )GQ TO 51
:F( J.EO. 1 )G0 TO 51
IF(K.EQ.1)G0 TO 51
IF( J.E0.M)G0TO51
IF(K.E0.N)GO TO 51
IF(MK.EQ.MN)GO TO 51
PHI ( I, J,K.MK)=(PHI { 1-1. J-l .K.NK1+PHI

(

1-1, J+l .K.MK1+PHK I-
1-1 . J.K-l,KK)+PHI ( I-l. J.K+1 .MKJ+PHI I 1-1 , J.K.MK-1 1+PHI ( 1-1

.
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2J.K, MK-t-1 ) )/6.
31 CONTINUE

WRITEC3, 14)

I

32 WRI TE<3, 1 t ) ( < (PHI ( I . J.K.MK) .K=l ,N) . J=l .M) .MK=l . MN>

GO TO 52
51 PHI ( I .J.K.MK )-PHl ( 1-1. J.K.MK)

GO TO 31

52 00 41 J=2,M1
DO 41 MK=2.MK1
DO 41 K=2.N1
XPHI ( I . J.K.MK )=ABS( PHI (I. J.K.MK)-PHI (1-1. J.K.MK))

53 IFCXPHI ( I. J.K.MK). GE.. 0001 >GO TO 22
41 CONTINUE
42 STOP

END

0.0000 0.2500 0.5000 0.7500 0.7500

0.0000 0.3333 0.5000 0.6250 0.7500

0.0000 0.3750 0.5000 0.5000 0.5000

0.0000 0.2917 0.3750 0.3333 0.2500

0.0000 0.0000 0.0000 0.0000 0.0000

2 ND PLANE

0.0000 0.2500 0.5000 0.5000 0.5000

0.0000 0.3750 0.5000 0.5000 0.5000

0.0000 0.4167 0.5000 0.5000 0.5000

0.0000 0.3333 0.4167 0.3750 0.2500

0.0000 0.0000 0.0000 0.0000 0.0000

3 HO PLANE

0.0000 0.2500 0.2500 0.2500 0.2500

0.0000 0.2917 0.3750 0.3333 0.2500

0.0000 0.3333 0.4167 0.3750 0.2500

0.0000 0.2500 0.3333 0.2917 0.2500

0.0000 0.0000 0.0000 0.0000 0.0000

4 TH PLANE

TABLE 4 1 ST ITERATION
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0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.2500

0.Z037

0.1620

O. 1055

0.0000

0.2500

0. 1620

0. 1080

0.0586

0.0000

0.2500

0.105S

0.0586

0.0293

0.0000

TABLE

0.5000

0. J978

0.3045

0. 1620

0.0000

2 NO PLANE

0.5000

0.3045

0.2064

0. 1080

0.0000

3 RD PLANE

0.2500

0. 1620

0. 1080

0.0586

0.0000

4 TH PLANE

S 20 TH

0.7500

0.5740

0.3978

0.2037

0.0000

0.5000

0.3978

0.3045

0. 1620

0.0000

0.2500

0.2037

0.1620

0.1055

0.0000

ITERATION

0.7500

0.7500

0.5000

0.2500

0.0000

0.5000

0.5000

0.5000

0.2500

0.0000

0.2500

0.2500

0.2500

0.2500

0.0000
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US

c PURPOSE
C TO DETERMINE THE POTENTIAL FOR ALL INTERIOR POINTS

C OF A TWO DIMENSIONAL LATTICE.

C

C PARAMETERS
c M - NUMBER OF POINTS IN THE X DIRECTION

C N - NUMBER OF POINTS IN THE Y DIRECTION

C GU - INITIAL GUESS
C
C REMARKS
C SUBROUTINE TO INVERT MATRIX REOUIRED.

C

C METHOD
C USES THE LIEBMANN IMPROVEMENT MATRIX.

C
DIMENSION TN(9) .XPHI (20.9) .PPHI (20.9)
DIMENSION XID(9.9).BIB(10.9.9),BIBI(1,9.9).T(9.9).G(9)
DIMENSION PHI<25).A(9,9).BC9,9),H<9,25> ,ALAT{5.5) .HP(9)

1 FORMAT! 12)

2 F0RMATIF8.4)
3 ~CRMAT( 16FS.2/9F5.2)

=0RMAT(SF5.2)
19 ?0RMAT(F16.4

>

211 F0RMATI5X, 14. 12HTH ITERATION/)
READ! 1 . 1 )M
READ! 1 . I )N

READ( . ,2)GU
MN=M*N

C QOUNDARY POiNTS
READ! I .3) (PHK JA), JA=1,MN)
READ! 1 ,4) ( (ALAT( I . J > . J= 1 .N ) . 1= I . M )

f>N=N*N
JMAX=(M-2) *(N-2)
DO 22 I=1.JMAX
00 22 J=1.JMAX
At I . J)=0.

22 B( I. J )=0.
MNAX=MN-JMAX
DO 23 I=I.JMAX
DO 23 J=1.MNAX

23 H( I . J)=0.
Ml=M-l
N1=N-1
MM=1
DO 61 1=2. Ml
DO 61 J=2,N1 l

PHHHK ,-ULATi I-'l. J J+ALATI -
. J-l )+ALAT(I . J + l 1+ALATC I + t . J)

1 )/4.
IF< { I-D.EO.DGO TO 62
I l =MM-{N-£

)

B(MM, II )=.25
65 :F( ( J-l ).EQ. 1 >G0 TO 63

I2=MM-l
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H(MM. I 2) = . 25
66 IFl I J+l ) .eQ.NlGO TO 64

I3=MM+

I

A(MM.I3)=.2b
67 IF( ( 1+1 ) .EQ.M)GO TO 69

A (MM. I 4)=. 25
GO TO 61

62 1 1=JMAX+J
H(M«, I 1 )=.2S
GO TO 6b

63 I2 = NN-I<-2
H(KM, I2)=.25
GO TO 66

64 I 3=JMAX+N+ [-1

H(MM, I3)=.25
GO TO 67

69 :4=JMAX+M+2*N-J-1
H(MM. 14 )=.2S

6 1 MM=MM+1
JMl=JMAX+l
J=l
OC 101 I=1,JMAX
HP( I )=0.
DO 101 K=JM1,MN
HP( I )=HP( I )+H( I,K)*PHI (K)

101 CONTINUE
DO 111 1=1 . JMAX
DO III J=I. JMAX
IF( l.EO. J) GO TO 102
XIOC I . J)=0.
GO TO 111

102 XID< I. J)=l.
ill CONTINUE

SUBTRACT D FROM I

DO 121 J=1.JMAX
DO 121 K=1,JMAX

121 aiac i.j.k)=xid< j,k)-b( j.k:

CALL MINV(BIB, JMAX.BIBI )

MULTIPLY I-B INVERSE AND A
DO 131 1=1, JMAX
DC 131 J=1,JMAX
T( I . J )=0.
DO 131 K=1,JMAX
TCI.J)=T(I.J)+BIBI(1,I,K)*A(K.J)

131 CONTINUE
DO 141 1=1. JMAX
GC I )=0.
DO 141 K=1,JMAX
G(I)=GII)+BIBI(1.I.K)*HP(K)

141 CONTINUE
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IC=l
DO 151 1=1, JMAX

151 PPMI ( IC. I )=CU
152 DO 171 1=1. JMAX

TNI I )=0.
DC 171 K=1.JMAX
TN( I )=TN( I >+T< I.K)*PPHI ( :C.K

)

171 CONTINUE
tC=iC+l
DO 1-31 1=1. JMAX

191 PPHI ( IC, I >=TN( I)+G( I

)

i :c=ic-i
toSUTE(3.21l>IIC
WRITE(3,19)(PPHI< IC. I ). 1 = 1. JMAX)
DO 192 1=1. JMAX
XPHI ( I C.I )=AOS(PPHI ( I C.I )-PPHI( IC-I.I)

)

IFCXPHI ( IC.I J.GE..OO01 )GO TO 152
192 CONTINUE

..TCP

END

SUBROUTINE M INV( AI , N I . AIBI

)

C FINDING THE INVERSE OF AN NXN MATRIX USING THE L.F.
C METHOD.

DIMCNSION AU10.9.9),ai(9.9.9).CI(9.9.9).DI<9.9.9)
DIMENSION A I 61 ( 1.9,9) .TKACEC 10) ;OETA( 10) ,DETAIN( 10)
DIMENSION B:BI(1,9.9) . ADJ( 9.9.9)
DO 406 1=1. NI
DO 36 J=1.NI
DO 36 K=1.NI
IF(J.EQ.K)GO TO 35
Did , J,K>=0.
GO TO 36

35 Dill. J.K)=I.
36 CONTINUE

S=I
TRACE( I 1=0.
DO 106 J=l.NI
DO 106 K=1.NI
IF{ J-K ) 106,50. 106

50 TRACEC I )=THACE( I >+AI ( I. J.K)
106 CONTINUE

TRACE ( I )=THACE( I )/S
DO 206 J=l.NI
DO 206 K=1.NI
CI ( I , J,K)=0.
CI ( I, J,K)=CI(I.J,K)+TRACE( I ) *D I ( I. J.K)

206 CONTINUE
DO 306 J=l.NI
DO 306 K=1,NI
Bid. J.K)=0.
:j I C i . . . :.)=BI ( I . J.K)* A I ( I . J.K) -CI ( I . J.K)

306 CONTINUE
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00 356 J=l.NI
00 356 K=1.NI
AM I + l . J.K ) = 0.

00 356 KJ=1.NI
' AM I+l.J.K)=AMI + l. J.K)+AM 1,J,KJ)*BMI.KJ.K)

356 CONTINUE
406 CONTINUE

1 = 1

DC S06 J--l.NI
DO 506 K=1.NI
ADJ ( I . J,K)=0.
ADJ( I,J,K)=ADJ(I.J.K) + ((-l.)**(NI-l) )tBIINI-l,J.K)

506 CONTINUE
DETA( I )=( C-1.)**(NI-1> >*TRACECNI >

DETAIN! I > = '../DETA( I )

DO 606 J=1.NI
DC 606 K=1.NI
AISI ( 1, J.K)=0.
AIBM1.J.K>=AIBM1.J.K)+DETAIN( I )*ADJ(I.J.K)

606 CONTINUE
RETURN
END

PHI(I) 0.3750 0.2855 0.2635

PHM2) 0.5938 0.4509 0.4287

PHI (3) 0.3984 0.2746 0.2634

PHK4) 0.3438 0.1474 0-1251

PHM5) 0.4844 0.2100 0.1876

PHI16) 0.3457 0.1362 0.1250

PHM7) 0.2109 0.0603 0.0492

PHM8) 0.2988 0.0827 0.0715

PHM9) 0.1611 0.0547 0.0491

TABLE 6 TABLE 7 TABLE 8

l

ITERATION 1 ST 5 TH 13 TH
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c purpose
C TU DETERMINE THE POTENTIAL FOR ALL INTERIOR POINTS
C OF A THREE DIMENSIONAL LATTICE

C PARAMETERS
C M - NUMOER OF POINTS IN THE X DIRECTION
C N .— NUMOER OF POINTS IN THE Y DIRECTION
C MN - NUMOER OF POINTS IN THE Z DIRECTION
C GU - INITIAL GUESS
C

C REMARKS
C SUBROUTINE REQUIRED TO INVERT MATRIX
C

C METHOD
C USES THE LIEBMANN IMPROVEMENT MATRIX.
C

DIMENSION TN( 27 ) ,XPH I (20,27) ,PHI ( 125). XI 0(27,27)
DIMENSION A( 27,27) ,B( 27,27 ) ,H( 27, 125) ,ALAT(5»5.5) .HP (27)
DIMENSION a 10(27.27) ,T(27.27) ,G(27),PPHI (20.27)
DIMENSION IP(27),V(27)
COMMON BIB, IP.V

1 FORMAT; 12)
2 FCRMAT(Fa.4)
3 rORMAT( 16F5.2)
4 F0RMAT(SF5.2>

19 FORMAT( 1X,F8.4)
211 F0RMAT(SX,I4.12HTH ITERATION/)

READ( 1 • I )M
READ( 1 , 1 )N
READ* 1 ,1 )MN
READ( 1,2)GU
MN2=M*N*MN

C BOUNDARY POINTS
READ( 1 ,3) (PHI ( JA). JA=1,MN2)
READ! 1 .4 ) ( (( ALAT( I • J.K) . J=1,N) , 1=1 ,M) ,K=1 ,MN)
JMAX=(M-2)*(N-2)*(MN-2)

22 I=1.JMAX
DO 22 J=l,JMAX
A ( I , J )=0.

22 B( I. J)=0.
DO 23 I=1.JMAX
DO 23 J=1.MN2

23 HCI.J)=0.
M1=M-1
N1=N-1
MN1=MN-1
: .'-' = i

DO 61 K=2,MNl
DG 61 1=2, Ml
-D 61 J=2,N1
PHI (MM) =( ALAT( I. J,K-1 )+ALAT( I- 1 , J, !<) +ALAT ( I , J-l ,K)+ALAT(1

1 . J+l

,

Ki+ALAT ( 1+1, J.K i+ALAT( I . J.K+1 ) )/6.
IF( (K-l)-EQ. 1 )G0 TO 72
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I l=NM-(N-2)*(M-2)
B(MM. I 1)= . 1667

63 IF( ( 1-1 l.EO. 1 )G0 TO 73
:a=KM-(N-2)
B(MM, 12)=. 1667

64 :F(U-1I.E0.1)GQ TO 7*
I3=MM-1
H(CM. I3)=.1667

66 IF( ( J+l ).EQ.N)GO TO 75
1 4 = M M + 1

A (KM, I 4) = . 1667
:f( ( 1+1) .eq.m1go to 76
:l, = mm+cn-2 )

A(MM. IS)=.1667
67 IF< i K+l ) .EQ.KN1GO TO 77

I6=V'M+(N-2)* !M-2)
A(MM, I6>=.1667
GO TO 61

72 !1=JMAX+N+N*C I-21+J
H(MM. t 1 )=. 1667
GC TO 63

73 I2=JMAX+M*N+(K-2)*(2*N+2*(M-2> )+J
H(MM, I 2) = . 1667
GO TO 64

74 ;3=j;',AX*HSNi;K-n*{2»Nt2«(«-2))-H2
H(«K, I 3) = . 1667
GO TO 65

75 I4=JMAX+M*N+(K-2)*(2*N+2*(M-2> )+N+I-l
H<MM, I 4) = . 1667
GO TO 66

76 IS = j;-iAX + M*N+(K-2)*(2*N+2*(M-2> )+2*N+M-l-J
H(MM, 15)=. 1667
GO TO 67

77 I6 = JMAX +M*N-MK-1 ) * < 2*N+2* ( M-2 > ) + ( 1-1 )*N+J-1
H(MM, I6)=.1667

6 1 . M=MM+l
JM1=JMAX+1
DO 101 I=1.JMAX

• HP( I )=0.
DO' 101 K=JM1,MN2
HP( I )=HP( I )+H( I.K>*PHI (i<)

101 CONTINUE
DO 111 I=1.JMAX
DO 111 J=l.j;-IAX
[F(I.EQ.J) GO TO 102
XID( I ,J)=0,
GO TO 111

102 X :0I I , J)=l.
Ill CONTINUE

SUBTRACT B FROM I

DC 121 J=..JMAX
DO 121 K=1,JHAX

121 BIBC J.K)=XIO( J.K)-8( J,K)
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CALL CRAM(JMAX.I)
CALL INVERS(JMAX)

C
C MULTIPLY I-H INVERSE AND A

00 131 I=1,JMAX
DO 131 J=l,JMAX
T( I . J)=0.
DQ 131 K=1.JMAX
T( I . J )=T( I . J )<-DIb{ I .K)*A(K. J )

131 CONTINUE
00 Ml I=1.JMAX
C; I 1=0.
00 141 K=1.JMAX
G( I )=G( I )+alO( I.K)*HP(K)

141 CONTINUE
IC=1
DO 151 I=1.JMAX

151 PPHI ( IC. I )=GU
152 DO 171 I=1,JMAX

TNI ; )=0.
00 171 K=l,.IMAX
TN{ ! )=TN( I ) + T{ l.K)*PPHI< IC.K)

171 CONTINUE
IC=IC+1
DO 191 l=l,JMAX

191 PPHI ( IC, I )=TN( I )+GC I)

1 1 C= ic-l
WRIT£(3.21D I IC
'..RITE (3, 19) {PPHI (IC.I).I=1.JMAX)
00 192 I=1.JMAX
XPHI i IC, I )=ABS<PPHI ( IC, I )-PPHI ( IC-l.I >

1

IFtXPHKIC.I J.GE..0001 )G0 TD 152
192 CONTINUE

STOP
END

SUBROUTINE CRAM(N.I)
C CROUT REDUCTION OF AUGMENTED MATRICES
C THIS PROGRAM PERFORMS A CROUT REDUCTION ON A MATRIX
C WITH 1=1. THE CROUT REDUCTION IS PERFORMED V.ITH ROW
C :.\TtRCHANGES. WITH 1=2, THE CROUT REDUCTION IS
C PERFORMED WITHOUT ROW CHANGES.

DIMENSION ANC27.27). IP(27) .VC27)
COMMON AN.IP.V

2240 FORMATCX .5HP1 VOT , 13. 19H I S LESS THAN l.E-08)
2241 FORMATCIX .SHP I VOT . I 3.7HIS ZERO)

GO TO (2200.2201),!
2200 IDM' - .

G0T02202
22 1 I0MV=2

C . ZDbCTION OF MATRIX
2202 DO 2204 IDK=1.N

V< IOK)=ABS{ AN( IDK. 1 )

)



56

D02204 IDI=2,N
IF(V( IDK)-ABS< AN I I OK . I DI ) ) ) 2203. 2204 , 2204

2203 VC tDK )=AeiS( AN( I DK . IDI ) }

2204 CONTINUE
00 2222 IDK=l.N

\
0ETR=-1

.

IDKI--I0K-1
00221*. IDI=IDK.N
DETPR=0.0
IPC IDK-l ) 2208. 2208. 2206

2200 002207 IDJ=l.IDKl
22 7 DETPR = DETPR-i-AN< IOI.IDJ)*AN( 10 J. IDK)
2208 AN( 10 I. IDK )=AN( IDI . IDK)-DETPR

GO T0(2212.2225) . IDMV
22 1 .J OcTS=ABS< AN( IDI, I OK > )/V< IDI

)

IF(DETS-DETR)2214,2214,2213
2213 DETR=0£TS

IP( IDK)=IOK-IDI
GO TO 2214

2225 IP(IDK>-=0
2214 CONTINUE

I0K2=I0K-tP( IDK)
DE7R=ANC IDK2. IDKJ/VC IDK2)
;F(ABS(DETl-t)-l.E-08>2230. 2230.2232

2230 WRITEO.2240 )IDK
iF(ANUDK2. IDK) 12232.2231.2232 '

2231 write. 3, 2241 )idk
call e;:it

2232 VC 10K2)=V( IDK)
V( IDK J--DETR
002222 IDJ=1.N
OETR=AN( IOK. IOJ)
IF ( IOJ- IDK )22IS, 2215.2216

2215 AN I IDK, IDJ > =AN(IDK2. IDJ)
GO TO 2220

2216 Dl£TPR=0.0
IFC IDK-l ) 22 19. 22 19. 22 I 7

2217 D02218 101=1. IDK1
2218 DETPR=DETPR+ANUDK.IDI )*AN( IDI . IDJ)
2219 AN( IDK. IDJ )=( AN< IDK2, I DJ J-DETPR ) /AN ( IDK, IDK)
2220 IF{ IP( IDK ) )222l. 2222, 2222
2221 AN( IDK2, IDJ)=DETR J

2222 CONTINUE
RETURN
END

SUBROUTINE INVERS (N)
C AFTER CALLING THE CRAM SUBROUTINE THIS SUBROUTINE WILL
C COMPUTE THE INVERSE OF THE MATRIX AN AND STORE THE
C INVERSE OF AN IN AN.

DIMENSION AN (27, 27) . IP ( 27 ) . V ( 27

)

CCMMON AN, IP.

V

DO 2280 :0K2=1.N
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IDK = N+1-I0K2
1CKI = IOK+1
DO 2272 IDJ = IDK1.N
V( IDJ )=AN( IDK, IDJ

)

2272 AN< IDK. IDJ >=0.0
AN ( IDK. IDK >=1./AN( I OK. IDK)
IF(IDK-l) 2276. 2276, 2273

227i IDK3 = IDK-1
DO 2276 IDJ2 = 1. IDK3
IDJ - IDK3-H-IDJ2
DdTPR = 0-0
IDJ1 = IDJ + 1

IF(N-IDJ) 2275, 2275. 2279
2270 DO 2274 IDI = IDJl.IOK
2274 DETPR=DETPR«-AN( IDK. IDI )*AN( IDI , IDJ)
22 75 AN< IDK, I D J >=-DETPR/AN ( IDJ, IDJ)
2276 DO 2278 IDJ=1.N

QETPR =0.0
IF(N-IDK) 2278. 2278, 2284

2284 00 2277 IDI = IDK1.N
2277 QSTPR=OETPR+V( IDI )«AN( IDI , IDJ)
2278 AN ( IDK, IDJ ) = AN ( IDK. IDJ J-OETPR
2260 CONTINUE

DO 2283 I0K2=1.N
I0K = N+I-IDK2
IDKP = IDK - IP( IDK)
IF(IPIIDK)) 22dl, 2283. 2283

2281 DO 2282 IDI = I.N
DETK=AN( IDI . IDK)
AN{ IDI . IDK)=AN( IDI. IDKP)

2262 AN( IDI, IDKP)=DETR
2263 CONTINUE

RETURN
END

PHI ( 1

)

0.2037 PHI ( 10

)

0. 1620

PHI (2) 0.3979 PHI

(

1 1

)

0.3044

PHI (3) 0.S74I PHK 12) 0.3978

PHI (4) 0.1620 PHI (13) 0. 1079

PHI (5) 0.3044 PHI ( 14/ 0.2062

TABLE 9 —

PHI (24) 0.1619

PHK25) 0.0292

PHI (26) 0.0584

PHI (27) 0.1054

TION
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C PURPOSE
C TO DETERMINE THE POTENTIAL FOR ALL INTERIOR POINTS
C OF A TWO DIMENSIONAL LATTICE.
C

C PARAMETERS
C M - NUMBER OF POINTS IN THE X DIRECTION.
C N - NUMf.lER OF POINTS IN THE Y DIRECTION
C G - INITIAL GUESS FOR THE INTERIOR POINTS
C

C REMARKS
C IN THE DIMENSION STATEMENT. FIRST SUBSCRIPT IS A

C COUNTER. THIS COUNTS THE NUMBER OF ITERATIONS
C REQUIRED TO OBTAIN THE ACCURACY DESIRED BY
C STATEMENT S3.
C

C METHOD
C USES THE EXTENSION OF THE GAUSS-SEIDEL METHOD
C

DIMENSION PHII2I .5.5) . XPHK21.5.5)
1 FORMAT (12)
2 FCRMAT (F8.4)
3 FORMAT <5F5.2)

II FCRMAT (5F8.4//)
1 =
READ(1.1)M
READ< I. 1 )N
READf 1.2)G
READ( 1,3) < (PHK I,J.K),K=I.N).J=1,M)
M1=M-1
N1=N-1
DO 21 J=2.Ml
DO 21 K=2.N1

21 PHI ( I.J,K)=G
22 1=1+1
23 IFCI.GE.2l) GO TO 42

DO 31 J=1,M
DO 3' K=1,N
IFCJ.EQ.DGO TO 51
IFIK.EQ.DGO TO 51
IF(J.EQ.M)GO TO 51
IF(K.EQ.N)GO TO 51
PHI ( I. J,K) = (PHI( I. J-1,K)+PHI(I-S, J.K+D+PHK 1-1 , J +1,K)+PH

1 I ( I.J.K-1) )/4.
31 CONTINUE
32 WRITE (3, 11 )((PHI( I . J , K ) . K= 1 , N) . J=l.M)

GO TO 52
51 PHI ( I. J,K)=PHI ( 1-1 . J,K)

GO TO 31
52 DO 41 J=2.M1

DO 41 K=2.Nl
XPHI ( I, J..,)=ABS(PHI ( I, J.K) -PHI (1-1. J.K) )

53 IFIXPHI ( I. J.K) .GE..000I ) GO TO 22
41 CONTINUE
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42 STOP
ENQ

0.0000 0.6000 1.0000 O.SOOO 0.0000

0.0000 0.37S0 0.5938 0.3984 0.0000

0.0000 0.3438 0.4844 0.3457 0.0000

0.0000 0.2109 0.2988 0..611 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 10 1 ST ITERATION

0.0000 O.SOOO 1.0000 0.5000 0.0000

0.0000 0.2855 0.4509 0.2746 0.0000

0.0000 0.1474 0.2100 0.1362 0.0000

0.0000 0.0603 0.0027 0.0547 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 11 5 TH ITERATION

0.0000 0.5000 1.0000 0.5000 0.0000

0.0000 0.2635 0.4287 0.2634 0.0000

0.0000 0.1251 0.1876 0.1250 0.0000

0.0000 0.0492 0.0715 0.0491 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 12 13 TH ITERATION
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C PURPOSE
C TQ DETERMINE THE POTENTIAL FOR ALL INTERIOR POINTS
C OF A TWO DIMENSIONAL LATTICE. THE BOUNDARY POINTS
C OF VHE LATTICE FORM AN ELLIPSE AND HENCE. ALL
C POINTS ARE NOT EQUIDISTANT FROM ALL OTHER POINTS.

C PARAMETERS
C M - NUMBER OF POINTS IN THE X DIRECTION.
C N - NUMBER OF POINTS IN THE Y DIRECTION.
C G - INITIAL GUESS FOR THE INTERIOR POINTS.
C

C REMARKS
C S4.S3.S2 AND SI REFER TO THE LENGTH OF THE ARMS
C ASSOCIATED WITH EACH POINT. THIS IS A PROGRAM
C WRITTEN ESPECIALLY FOR AN ELLIPSE AND MAKES USE OF

C THE SYMMETRIC PROPERTIES (I.E. - REGARDING THE
C LENGTHS OF THE 'ARMS').
C
C METHOD
C USES THE EXTENSION OF THE GAUSS-SEIDEL AS APPLIED
C TO THE PROBLEM OF UNEQUAL DISTANCES BETWEEN
C POINTS (UNEQUAL ARM-STAR).
C

DIMENSION PHI (20.5.7).XPHI (20, 5. 7). S4 (5. 7), S3 (5. 7)
DIMENSION S2(S,7),S1(5.7).S(5.7)

1 FORMAT! 12)
2 FORM AT (F8. 4)
3 F0RMAT(7F5.2)

11 FORMAT( 1H1. 14, 12HTH ITERATION/)
12 F0RMAT(7F16.4//)

READt 1 , 1 )M

R£AD( I. 1 IN

READ! 1.2JG
REAOf !. .3) ( (PHI ( I. J.K) ,K=1.N) , J=l . M)

C Y=SQRT(4.-4.*X*X/9.

)

C X=SQRT(9.-9.*Y JY/4.

)

IF(M.LE.3)G0 TO 101
IF(N.LE.3)G0 TO 101

C ALL LOOPS THROUGH STATEMENT NUMBER 51 DETERMINE
C THE VALUES OF S( I) , 1=1 , 2 , 3. 4.

W=M
HM=W/2.+l.
IM=HM
U = N
HN=U/2.+l.
IN=HN
N1=N-1
;<l = M-l
IM1=IM-1
INI=IN-1
DO 2 1 J=2.IMl
00 21 K=2.IN1
KK=K-4
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X = KK
Y=SaRT(4.-4.*X*X/9.)
IY=Y
YY=IY
S2( J.K)=Y-YV
JJ=J-3
" = J J

Y=-Y
X = SCRT(9.-9-*Y*Y/'i. )

IX=X
XX=l X

IF(K.GE.3)G0 TO 22
S3U.K)=X-XX
GO TO 23

22 S3(J.K)=l.
23 S4(J.K)=1.
21 SI ( J.K)=1

.

OG 31 K=IN. IN
30 31 J=2.IM1
S4(J.tO = l.

S3C J.K )=1.
S2< J.K )=1.
SI ( J.K)=1.

31 CONTINUE
; N 2 = I N + 1

DO 4 1 J=2.1M1
DC 41 K=IN2.N1
K2=K-2»(K-4)
S4( J.K) = S4CJ,K2)
S3( J.K)=S1 ( J.K2)
S2( J.K )=S2( J.K2)
Sll J.K)=S3( J.K2)

41 CONTINUE
DO 42 J=IM, IM
DO 42 K=2.N1
S4( J.K)=1

.

S3( J,K)=1.
S2( J,K)=1.

42 SI ( J.K)=l.
IM2=IM+1

'1 J=IM2.M1
. 1 K=2.N1

J1=J-IM
J2=J-2«J.

. , K)=S2( J2,K>
S3( J.K)=S3C J2.K)
S2( J.K)=S4{ J2,K)
SI i J.K)=S1 ( J2.K)

51 CONTINUE
DO 61 J=2.M1
CO 61 K=2.Nl

61 PHI ( . , J.K)=G
I >
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71 1=1+1
DO 81 J=l.«
DO 8 1 K=1.N
IF< J.EQ.l )GO TO 74
[F(K.EQ.l)GO TO 74

IF< J.EQ.MCO TO 74
:F{K.£C.N)GO TO 74

S( J,K)=S4(J.K)*S2< J.K)+S3( J.K)*S1 < J.K)
PHU I . J.K)«Sl ( J.K)»S2( J.K) «S3( J.K) *PHI ( I . J-l .K)/< ( S2( JtK)
1+S4(J.K))*S(J.K))+S1 ( J.K)*S2( J.K)*S4( J,K)*PHI( I . J . K- 1) / (

(

2S1 ( J.K)+S3( J.K) )*S( J.K) )+Sl( J.K)*S3< J.K)*S4( J,K)*PHI (I-l.

3J+l.K)/< (S2( J.K)+S4l J.K) )*S( J.K) ) +S2 ( J. K ) *S3 ( J , K) *S4 ( J .K

)

4:'PH1<I-1.J.K+1)/((S1(J.K)4-S3<J.K>>*S(J.K))
81 CONTINUE

'..RITE (3. 11)1
62 WHITEI3. 12>< (PHI ( I. J.K) .K=1,N) . J=1.M)

GO TO 52
74 PHI ( I . J.K)=PHI ( I-l. J.K)

CO TQ 81

i>_ DO 9 1 J=2.M1
DO 91 K=2.N1
XPhI ( I . J,;0=ABS(PHI ( I .J.K) -PHI { I-l .J.K) )

IF [XPHI ( I. J.K) .GE..0OO1 )GO TO 71

91 CONTINUE
101 CONTINUE

STOP
' END

0.5000 0.7500 1.0000 0.7SOO 0.5000

0.2500 0.4295 0.5457 0.6364 0.5943 0.44S4 0.2500

0.0000 0.3574 0.4758 0.5280 0.5306 0.2690 0.0000

0.0000 0.2160 0.3020 0.3325 0.3447 0.1941 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 13 1 ST ITERATION
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0.5000 0.7500 I. 0000 0.7500 0.5000

0.2500 0.3038 0.4700 0.5649 0.4671 0.3004 0.2500

0.0000 0.1670 0.2725 0.3143 0.2693 0.1631 0.0000

0.0000 0.0341 0.1309 0.1441 0.1290 0.0819 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 14 9 TH ITERATION

0.5000 0.7500 1.0000 0.7500 0.5000

0.2i 0.2980 0.4619 0.5574 0.4618 0.2979 0.2500

0.0000 0.1605 0.2636 0.3060 0.2635 0.1604 0.0000

0.0000 O.OS04 0.1257 0.1394 0.1257 0.0803 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 15 18 TH ITERATION
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The Liebmanri method for solving partial differential equa-

tions r.akes use of a grid of points, a lattice. The potential

at any interior point of the lattice is defined to be one-fourth

of the sue; of the potentials at the four closest neighboring

points. It is essential that the potential be known or that it

can be measured on the boundary of this lattice. For a simple

two-dimensional problem, we approximate the value of the poten-

tial at some interior point. Then we continue to approximate

its value at the remaining points , making use of any previously

corrected values.

The method does not change significantly when applied to a

three-dimensional lattice. We again require boundary conditions

to be defined. Each point must be considered, in order, as we

move through the lattice approximating the value of the potential.

The only significant difference is that we now have six, instead

of four, neighboring points which lie at a distance of h units.

We must derive an expression for the Laplacian in three dimen-

sions. This is similar to the two-dimensional Laplacian and can

also be extended to n dimensions. We again correct the value

of the potential at each grid point as we move through the

lattice. We could possibly use the second approximations to the

Laplacian. This approximation makes use of the eight closest

neighboring points in the lattice for the two-dimensional case.

We seldom use this approximation, however, because of the ad jd

complication of the additional points

.

Rather than correct the potential at each interior po_nt



individually, we may correct all points simultaneously. To do

this we use matrix operations. This " improvement ,: matrix is

derived from a matrix containing certain coefficients. The

coefficients are taken from the equations obtained when applying

the Liebmann method to the value at each point. After repeated

applications of the improvement matrix, the potential for all

points will converge to within a specified accuracy. These

values are solutions to the system of equations which approxi-

mates the partial differential equation.

If the region we are considering can not be defined so that

all boundary points fall exactly on a lattice point, we need to

develop a new method. This will enable us to approximate the

potential at the interior points in terms of the four closest

neighbors , whether or not they are lattice points . This method

is known as the "unequal arm" method. As a result, the potential

at any point can be expressed as a function of the potential at

the four closest neighbors and also the distance between each

neighbor and the point whose value is being corrected.


