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Abstract

It is proposed to create materials with a desired refraction coefficient in
a bounded domain D ⊂ R3 by embedding many small balls with constant
refraction coefficients into a given material. The number of small balls
per unit volume around every point x ∈ D, i.e., their density distribution,
is calculated, as well as the constant refraction coefficients in these balls.
Embedding into D small balls with these refraction coefficients according
to the calculated density distribution creates in D a material with a desired
refraction coefficient.
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1 Introduction

In [6]-[15] it was proposed to create material with a desired refraction coefficient
by embedding into a given material small particles with suitably chosen bound-
ary impedances. It was proved that any desired refraction coefficient n2(x),
=n2(x) ≥ 0, can be created in such a way in an arbitrary given bounded domain
D ⊂ R3. Preparing small particle with a prescribed large boundary impedance
may be a technologically challenging problem. In [1], [2] numerical results are
given. These results illustrate the efficiency of the author’s method for solving
many-body scattering problem in the case of small scatterers embedded in an
inhomogeneous medium.

By this reason we propose in this paper a new method for creating materials
with a desired refraction coefficient. We use wave scattering by many small
particles (see [10]).

This method for creating materials with a desired refraction coefficient n2(x)
consists of embedding into a given material small particles (balls) with a suitably
chosen density distribution of the embedded particles and a suitably chosen

2



constant refraction coefficients of each of the embedded particles. No boundary
impedances are necessary to use in this method. Therefore, one hopes that the
new method may be easier to implement in practice.

The density of the distribution of the embedded particles Dm and their
constant refraction coefficients ν2(xm) are calculated given the desired refraction
coefficient n2(x) and the refraction coefficient n2

0(x) of the original material in
D.

In the literature there are many papers and books (see [5] and references
therein) in which homogenization formulas of Bruggeman, Maxwell Garnett,
and their numerous modifications are used to derive approximate formulas for
the dielectric and magnetic parameters of various composite materials. Various
bounds, for example, Hashin-Shtrikman bounds, are found for these formulas
(see [5]). These formulas are, for the most part, such that the homogeneized
material is characterized by constant parameters. The inhomogeneities are as-
sumed, in most cases, randomly distributed in the medium. There are also
many mathematical papers and books dealing with homogenization theory [3],
[4]. Our approach differs from the published in several respects: we do not as-
sume periodic structure of the medium, the small parameter is not entering the
coefficients of the equations, the problems we are studying are non-selfadjoint
and the operators involved have continuous, rather than discrete, spectrum.

The problem, discussed in our paper, is also different: the small inhomo-
geneities are not distributed randomly and our goal is not to derive the prop-
erties of the homogeneized medium. On the contrary, we prescribe the desired
”property of the medium”, which in our paper is the desired potential, and we
give a method for creating a medium with the a priori prescribed ”properties”.
This method consists of embedding into a given medium many small inhomo-
geneities (particles) with constant parameters which vary from particle to parti-
cle. We prove that the density of the distribution of the embedded particles and
their parameters, as functions of the positions of the embedded particles, can
be chosen so that the limiting medium will have the desired ”properties”, i.e.,
in our case, the desired potential. This is a ”synthesis” problem, rather than an
”analysis” problem. Our results are rigorous, and not approximate. They do not
require the assumption, made in Bruggeman’s and Maxwell Garnett’s theories,
about smallness of the relative volume of the embedded inhomogeneities.

Let us compare the new method with the method originally proposed in [6]-
[11]. Let a denote the characteristic size of the small particles Dm. We assume
that all the particles have the same characteristic size. The physical properties
of these particles Dm of the characteristic size a are described in [6]-[8] by the
boundary impedances ζm of the particles Dm. The order of magnitude of ζm
is O(a−κ), as a → 0, where κ ∈ (0, 1] is a parameter a physicist can choose as
he/she wishes, and the total number N of the embedded particles is of the order
O(a−(2−κ)). For κ = 1, for example, this order is O(a−1).

In the new method, proposed in this paper, the physical properties of the
embedded small particles Dm are described by their constant refraction coeffi-
cients ν2(xm), where xm ∈ Dm is a point inside Dm. Since Dm is small, it does
not matter what point xm ∈ Dm is chosen. The boundary impedances are not
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used in the new method. The total number N of the embedded particles in the
new method is of the order O(a−3), as a→ 0. This number is much larger than
O(a−(2−κ)), as a→ 0.

A possible disadvantage of the new method, compared with the original one,
is the increase of the number of embedded small particles as a→ 0.

An advantage of the new method, compared with the original one, is, pos-
sibly, that it is easier technologically to prepare small particles with constant
refraction coefficients than small particles with desired boundary impedances
ζm.

Only experiments can show which of the two methods and for what practical
goals is better to use.

In the recent paper [14] a method, similar to the one, proposed in this paper,
has been used for creating non-relativistic quantum-mechanical potentials of a
desired form.

Let us formulate the problem precisely. Assume that a bounded domain D ⊂
R3 is filled with a material with known refraction coefficient n2

0(x), =n2
0(x) ≥ 0,

n2
0(x) = 1 in D′ := R3 \ D, n2

0(x) is piecewise-continuous. Throughout this
paper by piecewise-continuous function we mean a bounded function with the
set of discontinuities of Lebesgue measure zero in R3, and do not repeat this.

The waves satisfy the equation:

L0u0 := [∇2 + k2n2
0(x)]u0 = 0 in R3, k = const > 0, (1)

u0 = eikα·x + v. (2)

Here v is the scattered field, satisfying the radiation condition:

vr − ikv = o(r−1) r := |x| → ∞, (3)

where α ∈ S2 is the direction of the incident plane wave, and S2 is the unit
sphere in R3. It is proved in [6] that this scattering problem under the stated
assumptions on n2

0(x) has a unique solution, and the function G(x, y), satisfying
the equation

L0G(x, y) = −δ(x− y) in R3, (4)

and the radiation condition (3), does exist and is unique.
One can write

L0 = ∇2 + k2 − q0(x),

where

q0(x) := q0(x, k) := k2 − k2n2
0(x), q0(x) = 0 x ∈ D′. (5)

Let n2(x) be a desired refraction coefficient in D. We assume that n2(x) is
piecewise-continuous, =n2(x) ≥ 0, and n2(x) = 1, x ∈ D′.

We wish to create material with the refraction coefficient n2(x) in D by
embedding into D many small non-intersecting balls Bm, 1 ≤ m ≤M , of radius
a, centered at the points xm ∈ D, with constant refraction coefficients n2

m in
Bm.
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Smallness of the particles means that ka << 1.
Let ∆ ⊂ D be any subdomain of D. We assume that the number of small

particles, embedded in ∆, is given by the formula:

N (∆) :=
∑

xm∈∆

1 = V −1
a

∫
∆

N(x)dx[1 + o(1)] a→ 0, (6)

where N(x) ≥ 0 is a piecewise-continuous function in D, and

Va := 4πa3/3

is the volume of a ball of radius a.
Formula (6) gives the density distribution of the centers of the embedded

small balls in D. The total number of these balls tends to infinity as O(V −1
a ) =

O(a−3) when a→ 0.
We assume that the total volume V (D) of the embedded particles (balls) is

not greater than |D|, where |D| is the volume of D, i.e.,

V (D) = VaN (D) =
∫

D

N(x)dx[1 + o(1)] ≤ |D|, a→ 0.

This means physically that although N(x) can be large in some subdomains of
D, its average over D is not greater than 1.

The scattering problem in the case of the embedded into D particles is:

(L0 + k2
M∑

m=1

n2
mχm)U = 0 in R3, (7)

where χm is the characteristic function of the ball Bm, i.e., χm = 1 in Bm,
χm = 0 in B′

m := R3 \Bm, and

U = u0 + V, (8)

where V satisfies the radiation condition (3), u0 solves the scattering problem
in the absence of the embedded particles, i.e., when M = 0, and

n2
m = ν2(xm).

Here ν2(x) is some piecewise-continuous function in D, =ν2(x) ≥ 0.
The solution U(x) = Ua(x) to problem (7)-(8) depends on the parameter a,

and the number M of the embedded particles depends also on a,

M = O(V −1
a ) = O(a−3),

so M → ∞ at a prescribed rate as a → 0. We are interested in the limiting
behavior of U(x) = Ua(x) as a → 0. Our basic result, Theorem 1, below, says
that the limit

lim
a→0

Ua(x) := ue(x), (9)
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does exist and satisfies the integral equation (17) in Theorem 1.
From (7)-(8) one gets

U(x) = u0(x) + k2
M∑

m=1

n2
m

∫
Bm

G(x, y)U(y)dy. (10)

This integral equation we rewrite as

U(x) = u0(x) + k2
M∑

m=1

n2
m

∫
Bm

G(x, y)dyU(xm)[1 + o(1)] a→ 0. (11)

Here the continuity of U in Bm, 1 ≤ m ≤M , was used. This continuity implies

U(y) = U(xm)[1 + o(1)] a→ 0; y ∈ Bm.

The function U is twice differentiable in R3, as follows from (11), so it is con-
tinuous in D.

We need three lemmas.
Lemma 1. The following relations hold:

lim
|x−y|→0

|x− y|G(x, y) =
1
4π
, (12)

sup
|x−y|≥0

|x− y||G(x, y)| ≤ c. (13)

By c > 0 we denote various estimation constants.
Proof of Lemma 1 is given in Section 2.
Lemma 2. The following relations hold:∫

|y−xm|≤a

|x− y|−1dy = Va|x− xm|−1, |x− xm| ≥ a,∫
|y−xm|≤a

|x− y|−1dy = 2π
(
a2 − |x− xm|2

3
)
, |x− xm| ≤ a.

(14)

Proof of Lemma 2 consists of a direct routine calculation and is therefore
omitted. The result of Lemma 2 is known from the potential theory.

Lemma 3. If f is piecewise-continuous and bounded in D and the points
xm are distributed in D by formula (6), then the following limit exists:

lim
a→0

Va

M∑
m=1

f(xm) =
∫

D

f(x)N(x)dx, (15)

where N(x) is defined in (6).
This Lemma is proved in [6], see also [18] and [17].
This Lemma was recently generalized by the author to allow the function

f to be unbounded at some points or sets S of Lebesgue measure zero and of
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dimension less than the dimension of the space. For such f one considers the
set Dδ := {x : x ∈ D, dist(x,S) ≥ δ} in which f is piecewise-continuous and
bounded, and defines the sum (15) as

lim
a→0

Va

M∑
m=1

f(xm) := lim
δ→0

lim
a→0

Va

∑
xm∈Dδ

f(xm).

With this definition the conclusion of Lemma 3 remains valid for f piecewise-
continuous in D with the set W of discontinuities of Lebesgue measure zero
and the subset S ⊂ W, at which f = ∞ and satisfies the following estimate
|f(x)| ≤ c[dist(x,S)]−ρ, where c = const > 0 and 0 ≤ ρ < 3, and we assume that
the integral

∫
D
f(x)N(x)dx := limδ→0

∫
Dδ
f(x)N(x)dx exists as an improper

integral or the Cauchy principal value singular integral.
One has:∫

Bm

G(x, y)dy = VaG(x, xm)[1 + o(1)], a→ 0; |x− xm| ≥ a. (16)

From (11), (16) and (15) our basic result follows:
Theorem 1. There exists the limit (9) and

ue(x) = u0(x) + k2

∫
D

G(x, y)N(y)ν2(y)ue(y)dy. (17)

Physically the limiting field ue is interpreted as the effective (self-consistent)
field in D.

Corollary 1. The functions U(x) and ue(x) are twice differentiable in R3.
The function ue(x) solves the equation:

Lue(x) = 0, L := L0 + k2N(x)ν2(x), (18)

so
n2(x) = n2

0(x) +N(x)ν2(x). (19)

To prove this Corollary one applies the operator L0 to equation (17) and
uses equation (4).

Conclusion: To construct a material with a desired refraction coefficient
n2(x) one embeds small balls with radius a, centered at the points xm, 1 ≤ m ≤
M , distributed by formula (6), and chooses N(x) and ν2(x) so that relation (19)
holds.

The choice of N(x) and ν2(x) is therefore non-unique, because the relation
(19) can be satisfied by infinitely many ways. For example, one may fix N(x) > 0
in D and then choose

ν2(x) =
n2(x)− n2

0(x)
N(x)

.

If n2(x) = n2
0(x) in a subdomain ∆ ⊂ D, then one can take N(x) = 0 in ∆.

In Section 2 proof of Lemma 1 is given.
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2 Proofs

Proof of Lemma 1. We start with the equation:

G(x, y) = g(x, y)−
∫

D

g(x, z)q0(z)G(z, y)dz := g − TG, (20)

where q0 is defined in (5), and

g(x, y) =
eik|x−y|

4π|x− y|
. (21)

Equation (20) is of Fredholm-type in the space X of functions ψ(x, y) of the
form ψ(x, y) = φ(x,y)

|x−y| , where φ(x, y) is a continuous function of its arguments,
and the norm in X is defined as ||ψ|| = supx,y∈R3(|x− y||ψ(x, y)|).

We have ||g|| = 1
4π . The homogeneous equation (20) has only the trivial

solution (see [6]), so the operator (I+T )−1 is bounded in X. Therefore, ||G|| ≤
c||g|| = c

4π . This implies estimate (13).
To prove (12), let us multiply (20) by |x − y| and let |x − y| → 0. One

has lim|x−y|→0 g = 1
4π . The integral TG is bounded for all x, y ∈ D, so

lim|x−y|→0(|x− y|TG) = 0. Thus, relation (12) follows.
Lemma 1 is proved. 2

8



References

[1] M.Andriychuk and A.G.Ramm, Scattering by many small particles and
creating materials with a desired refraction coefficient, International Journ.
Comp.Sci. and Math. (IJCSM), 3, N1/2, (2010), 102-121.

[2] S.Indratno and A.G.Ramm, Creating materials with a desired refraction co-
efficient: numerical experiments, International Journ. Comp.Sci. and Math.
(IJCSM), 3, N1/2, (2010), 76-101.

[3] S. Kozlov, O. Oleinik and V. Zhikov, Homogenization of differential and
integral functionals, Springer, Berlin, 1994.

[4] V. Marchenko and E. Khruslov, Homogenization of partial differential equa-
tions, Birkhauser, Basel, 2006.

[5] G. Milton, The theory of composites, Cambridge Univ. Press, Cam-
bridge, 2002.

[6] A.G.Ramm, Many-body wave scattering by small bodies and applications,
J. Math. Phys., 48, N10, (2007), 103511.

[7] A.G.Ramm, Wave scattering by many small particles embedded in a
medium, Phys. Lett. A, 372/17, (2008), 3064-3070.

[8] A.G.Ramm, Preparing materials with a desired refraction coefficient and
applications, In the book ”Topics in Chaotic Systems: Selected Papers from
Chaos 2008 International Conference”, Editors C.Skiadas, I. Dimotikalis,
Char. Skiadas, World Sci.Publishing, 2009, pp.265-273.

[9] A.G.Ramm, Electromagnetic wave scattering by small bodies, Phys. Lett.
A, 372/23, (2008), 4298-4306.

[10] A.G.Ramm, Wave scattering by small bodies of arbitrary shapes,
World Sci. Publishers, Singapore, 2005.

[11] A.G.Ramm, Inverse problems, Springer, New York, 2005.

[12] A.G.Ramm, A recipe for making materials with negative refraction in
acoustics, Phys. Lett. A, 372/13, (2008), 2319-2321.

[13] A.G.Ramm, Preparing materials with a desired refraction coefficient, Non-
linear Analysis: Theory, Methods and Appl., 70, N12, (2009), e186-e190.

[14] A.G.Ramm, Creating desired potentials by embedding small inhomo-
geneities, J.Math. Phys., 50, N12, (2009).

[15] A.G.Ramm, Distribution of particles which produces a ”smart” material,
Jour. Stat. Phys., 127, N5, (2007), 915-934.

[16] A.G.Ramm, A collocation method for solving integral equations, Internat.
Journ. Comp. Sci and Math., 3, N2, (2009), 222-228.

9



[17] A.G.Ramm, Electromagnetic wave scattering by many small particles and
creating materials with a desired permeability, Progress in Electromag. Re-
search, M, (PIER M) 14, (2010), 193-206.

[18] A.G.Ramm, Electromagnetic wave scattering by many small bodies and
creating materials with a desired refraction coefficient, Progress in Electro-
magnetic Research M (PIER M), 13, (2010), 203-215.

10


	K-RExCoverPage2.pdf
	A method for creating materials with a desired refraction coefficient

	Author's revised ms

