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Introduction

With the rising cost and complexity of modern day
computing systems, accurate and economical performance
evaluation techniques are becoming critically important.
There are three basic reasons for conducting a performance
evaluation study. They are:

1. Sizing and selecting a new computer systen,

2. Predicting the effects of changes in the current

systenm or job strean.

3. Tuning present system performance,

All too often in the past a performance evaluation study was
undertaken only for the 1initial purchase of a computer
system. Performance monitering of an existing system is of
at least equal importance and should not be overlooked.
Monitoring provides information on the actual performance of
the existing systen. This information can be used to
forecast the impact of systen changes such as a
reconfiguration of the hardware, or a change in an operatiny
system routine, HKonitoring is also useful in isolating
bottlenecks in the flow of jobs through the systen.

0f prime importance to the efficiency of any complex
computer system or network 1is the performance of the

operating system. cften the typical job stream of a



computer system will change or evolve over a periocd of tire,
The operating system must be periodically tuned to perform
efficiently in this new environment.

Synthetic programs are rapidly becoming a valuable tool
in all of these performance evaluation studies. A synthetic
program is defined by Kernighan (10) as ‘a highly
parameterized program which uses precisely specified amounts
of computing resources, but which does no useful work'.

This paper looks at synthetic programs as théy have
been applied in drive workload construction. Synthetic
program models that have been used in performance studiés on
traditional computer systems are described in detail. Then
new synthetic program wmodels are developed for use in
workload construction on. both a back-end data base
management network and on a fully distributed computer
network., These models are then extended so that by using
synthetic‘programs we can simulate various alternative I/0
devices, local operating systems and machines in a
particular network node. This will enable us to easily
simulate one computer ccnfiquration with another similar
configquration.

Additional work still wnmust be done on the actual
mecasurement necessary to calibrate these synthetic program
models and to test the various model assunmptions. After
this is conmpleted actual experimentation must be conducted
to determine the adequacy of these models on predicting

performance in computer networks. This report only deals



with the developmznt of these synthetic models. The
measurement and experimentation need to be conducted in

future projects.



Drive Workload Construction Methods

In this chapter we will precisely define systen
workloads and discuss the various methods that have been
used to construct drive workloads 1in past performance
studies. This paper defines the system workload as any
collection of individual jobs and data that can be processed
during a specified period of time. Often it is of interest
to measure the performance of an ope;ating system under a
variety of workloads, many of which are far different from
the typical system workload. A basic problem in this type
of analysis is in assembling the desired workloads with
which to exercise the system. Once assembled, these job
streams are called drive workloads. Drive workloads are
needed for every evaluation technique be it an analytical
model, a simulation model, or a hardvare/software monitor
measurement experiment. Much of the remainder of this paper

deals with the construction of drive workloads.
2.1 Sampling Procedures
Several methods for constructing drive workloads appear

in the literature. Perhaps the simplest method is that of

using the actual job stream over some time interval as the



drive workload. This method can give the analyst a good
idea of how the current or proposed system performs under
the typical workload. However, it can provide no
information for predicting systen performance under
non-typical workloads, such as extreme CPU or I/O bound
situations. There 1is also the possibility that the time
intervals selected are not truly representative of the
typical system workload. To help alleviate this problem it
has been recommended that instead of collecting all Jjobs
over a continuous 1interval as a drive workload, a sampling
proced@re be employed to randomly select individual jobs
over a much longer time period such as a month. This method
was employed at the Iowa State University Computing Center
by Shoppe (12) to obtain a representative drive workload.
It appears to be a gcod procedure to obtain a drive workload
representative of the typical real system workload, provided

the analyst is able to sample from every job on the systen.

2.2 Benchmarking

One of the more popular methods of constructing a drive
workload is through the use of application benchmarks. The
idea of application benchmarks is really just applying a
stratified sampling technique to Shoppe's procedure (9).
The jobs in the users rcal workload are divided into classes
or categories. The classes or categories are chosen to

reflect different types of processing or different



Division

Class 1. -

Class 2. -

Progranm

Class 3. -

Program

of Jobs Into Application Classes

FORTRAN Coded Engineering Problens

Topic
Volume of Spheres of Changing Radius.

Satellite Tracking.

FORTEAN Coded Mathematical Problenms

Topic
Multiplication of Arrays.
Probability Calculations.
Matrix Inversions.

Statistical Routines.

COBQL Coded Business Problems

Topic
File Update.
Sales Forecasting.

Inventory Control.

Figure 2.1



applications. A typical division into application classes
is shown in Figure 2.1. There may be one or many programs
in a class. Joslin (9) recommends that each class should
contain at least ten percent of the total workload time and
no class should contain more than fifty percent of the total
workload time. If the drive workload is to be
representative of the real workload, typical jobs can be
chosen in each class in proportion to the total number of
jobks in that class. The chosen jobs are called benchmark
progranms, The drive worklocad constructed from these
benchmarks is called a real drive workload.

Now any workload of interest can be described as a
probability distribution over some predefined set of
classes. By varying thc number of programs selected in each
class 1t is theoretically possible to construct a drive
workload representative of any worklocad of interest. Under
ideal conditions benchmarking can be an inexpensive and
aécurate way to construct drive workloads. Unfortunately
these ideal conditions often do not exist. Since workload
conditions of interest are often described over predefined
categories, there 1is always the possibility that some of
these categories may be empty after the sample is collected.
This means any hypothetical workload giving nonzero
probability to these empty classes will be impossible to
construct. Also the sampling procedure requires that every
job in each class be equally likely to be selected. Usually

this is not the real situation. Users of most service



facilities are reluctant to supply programs, data bases and

operating instructions. Security considerations may prevent

many jobs from being considered. These problems can bias
the drive workload. Benchmarking also presents other
problems. New changes in the operating system being

evaluated make it difficult to keep complex jobs viable.
Since actual programs are being used, the data bases
referenced ty these jobs must be kept intact. Similarly,
routines to handle disk and tape operations must also be
included. This can be very expensive and impractical. As
previously stated the ﬁajor proktlem with benchmarks is
flexibility. Many workloads of interest are just impossible
to construct since tbe characteristics of each available job

are fixed.
2.3 Synthetic Progranms

To overcome many of the difficulties encountered with
benchmarks, synthetic programs have recently been utilized
in performance evaluation studies. To understand synthetic
programs one must think of a computer system as a collection
of services or resources upon which the workload places a
demand. The demands on these resources or services can be
considered the characteristics of the corresponding jobs in
the workload. Unlike a benchmark a synthetic program is not
a member of the actual job stream. However, a synthetic

program can have the characteristics of a program from the



job stream. Using the same stratified sampling procedure
which was described for benchmarks, a synthetic drive
workload can be constructed that matches the characteristics
of the real drive workload. Each benchmark program in the
real drive workload - need only be replaced by a dunmny
synthetic program wmatching the characteristics of the
corresponding real benchmark. The synthetic workload uili
be a valid representation of the real systeg workload only
in terms of the characteristics to which the synthetic model
is sensitive. Consequently, care must be taken in defining
and choosing progetr workload characteristics. The
flexibility problem of obtaining real programs to match an
nontypical workload is solved through the use of synthetic
programs, since only the Jjob characteristics are needed
instead of actual ijcbs themselvés. Similarly, since a
synthetic program does not need real data, the problem of
maintaining massive data bases is alsoc eliminated. Overall,
synthetic programs are probatly the easiest and most
economical performance evaluation technique for workload
construction. The next chapter describes actual synthetic

projram construction models.
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Synthetic Program Construction Models

In the last chapter it was stated that a synthetic
program was a dunmy program that matched the characteristics
of some corresponding real program in a real drive workload.
In this chapter we will precisely define what is meant by

the term characteristics.

3.1 Basic Model Elepments

As previously stated, a computer system can be thought
of as a collection of resources upon which each program in
the workload places a demand. Any job in the workload is
characterized by the magnitude of its demands on the systenm
resources. Examples of resources common to most computer
systens and their corresponding demands are illustrated in
Fiqgure 3.1.

We can consider the demands on these system resources
as the values of the characteristic variables of a program
in a real drive workload. So having a synthetic progranm
match the characteristics of a program in the real drive
workload simply means that the synthetic program has the
same values for its <characteristic variables as the

corresponding real program. When we define a computer
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System Resources and Corresponding Demands

Resource

Central processor.

1/0 channels.

Core memory.

Unit record devices.

Auxiliary storage.,

Memory bound instruction

repertoire.

Processor bound instruction

repertoire.

Figure 3.1

Demand

CPU seconds.

Number of I/0 activities
initiated.

Amount of core allocated.
Number of cards punched,
read, and the number of
lines printed.

Number of data transfers
to and from each type of
auxiliary storage device,
and the amount of data
transfered.

The number of each class
of memory bound commands
executed. Cléssified by
accesses.

The number of each class
of processor bound
instructions executed.
Classified by operand

type.
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system as a collection of resources, then the classification
of a program in terms cf what it does is meaningless., It is
theoretically possitle to model, in terams of these
characteristic variatles, any type of-processing with any
other type. For example, a matrix inversion program and a
sort-merge can look identical to the system in terms of

these characteristic variables.
3.2 The Service Demand Approach

Given any real program in a system workload, values can
easily be obtained for the first four characteristic
variables in the 1list in Figure 3.1. These values are
usually obtained through the system accounting data, or
through the use of hardware/software monitors (3,10,16).
However, for programs written in higher level 1languages
measurements for the last three characteristic variables may
be very difficult to obktain. To solve this problem Campbell
(3) recommends using as characteristic variables the
computing and I/0 services demanded by a job at the language
level. To illustrate this concept consider the following
FORTRAN statement:

A = B(R)sC +# 2{1,d) + D.
This statement <can bte considered to demand the following
services,

1 1Index calculation of a two dimensional array.

1 Index calculation of a one dimensional array.
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1 Real division.

1 Real assignment.

2 Heal adds.
These services are then mapped by the compiler into
corresponding resource demands. This mapping is depicted in
Pigure 3.2. Similarly, a list of typical services that can
be measured at the language level are given 1in Figure 3.,3.
For any given real program, once we have measured these
services, a synthetic program can be constructed that will
demand the same service profile. An example of such a
synthetic program construction is given in Appendix A.

Notice that the final synthetic program in this example
{Appendix A) 1is simply a reordering of the original real
example program. In order to make this type of reordering
valid for all synthetic program construction methods, vwe
will make the following assumption. It will be assumed that
only the total resource or service demands of a given
program are important and that the order of these resource
or service demands on the various resources or services is
irrelevant (3). This service demand approach is a slight
improvenment over the general resource demand approach for
simple high 1level programs 1in a typical system workload.
However, for complex programs this method can be very
difficult and time consuming., In constructing a drive
workload representative of the normal system workload, this
method requires actual access to the real workload progranms.

This means the same problems encountered with tenchmarking,



Typical Service at

Type of Services Provided

Arithmetic and logical

operations.

Procedure calls (function
or subroutines).

Array indexing.

Calls to run time

routines.

I/0

Figure 3.3

15

the Language Level

Important Characteristics

Type (i.e. integer, real
or complex), operation
{i.e. =,4,—,%,/).

Parameters passed.

Number of indexes.
Explicit (i.e. sgrt,rand,
float), implicit (data
conversion) .

Device

type, physical

characteristics of the
file, (i.e. record and
block size, access method

and organization).
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such as security also apply to this construction method.
Atypical workloads however, can be described as probability
distributions over the resource or service space of a
computer installation. With the help of the reordering
assumption, this makes the construction of non-typical
system workloads possible. Overall this service demand
model has too much detail to be of practical value. Several

less detailed models have Leen developed in the literature.
3.3 The Simple FORTRAN Loop Model

One of the simplest synthetic program construction
models was developed by Kernigjhan and Hamilton (10) of Bell
LaSoratories. This model uses only three simple
characteristic variaktles {denoted by X1,¥2,X3). They are:

X1. Total job CPU time.

X2. Total job I/0 time.

X3. Total job memory requirement.

On any sizable computer system, values for these three
characteristic variables are usually available for every job
by utilizing the system accounting data. If there 1is no
system accounting data, or if it is inaccessible, the values
for these characteristic variables for any job in the systen
can be obtained through simple hardware/software monitors
while the job 1is running. In order to simplify the
synthetic job construction, Kernighan and Hamilton made the

following assumptions:
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1. A job uses fixed core requirements.

2. I/0 goes to only one unspecified device in
unspecified amounts.

3. CPU and I/0 are distributed throughout the job in
an unspecified way, and are overlapped or not as
the generated code and operating system dictate.

A simple synthetic program can be designed to meet these
specifications, The program consists only of two nested
loops inside a larger control 1loop. Figure 3.4 helps
illustrate the structure of this synthetic program. In this
model CPU time is <consumed in the first inner loop (CPU
loop) by any null computation 1like summing numbers.
Similarly, I/0 time is consumed in the second inner loop
(I/0 loop) by reading and writing a scratch file. There are
two basic ways to match the total CPU and I/O times of a
real program to the corresponding CPU and I/O0 times of this
synthetic progran. The first method requires that the
operating systen be cooperative about giving running
programs access to the resource demands the program has used
so far, With this type of an operating system, this
synthetic program can be made self-timing. This is done by
checking with the system to match the prespecified CPU and
I/0 time ratios for the inner loops and similarly checking
for a total time requirement in the outer loop. When using
this self-timing synthetic program construction method, it
must be assumed that the system calls, for determining

resource utilization, take a negligible amount of time in



18

The FORTRAN Loop Synthetic Program

XXXXNXXXXX XXXXXXXAXXXXXXXXXXXX

X

X

X

X

X AAXKXXXXXXAXXXXXXXXX Outer CPU loop.
X X

X 4

X X

X X

X X TXXXXXXXXX

X X X

X X X Inner CPU loop.
X X X

X X X

X X IXXXXXXXXX

X X

X X

X X

X X

X XXAAXXXRXAXAXXXAXXX

X

X

X

X

X XAXX XEXXXXXKXEXXXXX Outer I/0 loope.
X X

X X

X X

X 4

X X XXAXXXXXXX

X X X

X X X Inner I/0 loop.
X X X

X X X

X X LAXXXAXXXX

X X

X X

X X

X X

X XXX XXXXXXXYXXXXXXX

X

X

X

i . :
XXAXXXXXXXXKXXX XXX XX XXXAXXXXXX Control loop.

Figure 3.4
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relation to the total Jjob time. If this assunption is
justified, very accurate models can be obtained from this
self-timing construction method.

Another approach is to calibrate both inner loops (I/0
and CPU) so that they consume the same amount of time per
replication. The specified CPU and I/0 time requiremants
can then be met by setting the loop iteration counts at
construction time., This nonself-timing construction method
has the advantage that there is no unaccounted for time due
to systenm timing calls. In an environment in which the
system does not give us access to the resource utilization
of running Jjobs, this nonself-timing approach may be the
only alternative for this type of synthetic program. 1In a
non-multiprogramming system this method can also give very
exact results. However, since 1}0 time can vary over a
considerable range from run to run in a multiprogramming
system, this nonself-timing construction method can lead to
erroneous results. Also calibrating the ¢two inner loops so
they run for the same amount of time per replication can
require a great deal of work.

In the summer of 1975 the author wrote such a
nonself-timing synthetic program in FORTRAN. This program
is given in Appendix B. The structure was similar to that
shown in Figure 3.,4. The inner CPU loop consisted of adding
and multiplying the elements of an arbitrary integer array.
Similarly, the inner 1I,/0 loop consisted of reading and

writing N words to a scratch file. It was hoped to
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calibrate the inner I/0 and CPU loops so that the outer
loops executed one iteration in one tenth of a second on an
IBM model 370-158. A trial and error search was employed to
calibrate both 1loops. On the CPU 1loop the inner 1loop
iteration count, as well as the number of operations per
iteration, was varied over a wide range. Similarly, on the
I/0 loop the number of read/writes per inner loop iteration,
as well as the number of words transfered per read/write (KN)
were varied. The cost of analyzing sufficiently replicated
combinations of these variables became unduly prohibitive.
Conscquently, this search was terminated before acceptable
values for these variatles were obtained. From this
experience the author strongly reconmends that in
constructing synthetic programs of the nonself-timing
variety, the programs be written in assembly language. By
using assembly language, the loops can be calibrated from
the manufacturer's published timing data rather than from an
experiment requiring repeated runs.

One simple refinement can be added to this simple
synthetic model. A separate I/0O loop can be included for
each type of I1/0 device. Using this refined model Kernighan
and Hamilton constructed such a self-timing synthetic
program in the FORTRAN programming language. They used this
one program to construct a synthetic drive workload. Each
copy of this synthetic program in the synthetic drive
vorkload was calibrated to match a corresponding program in

a real drive workload. The synthetic drive worklocad matched
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the real drive workload within ten percent for all
measurements taken. This is an extremely gqgood match for so

simple a model.
3.4 The File Update #Model

A discussion of synthetic program construction methods
would not be complete without a section on the original
Buchholtz synthetic proyram. Over half of the published
work the author referenced for synthetic program
construction made use of some version of this program. The
original version written by W. Buchholtz (2) first appeared
in 1969. The program was written to be used as a tool in
comparing the performance of existing computer systems. The
measure of performance used was the reciprocal of the run
time of this highly parameterized synthetic program. The
program itself is a simplified file maintance procedure.
Basically the program works as follows: The input is a file
of detail records. A file of master records is searched for
every detail record. Upon finding the corresponding master
record a compute kernel is executed a prespecified number of
times, Then both the updated master and detaii records are
written out. This proyram is cyclic in that its running
time is directly proportional to the number of detail
records processed. Since a compute kernmel of variable
length and replications is included, it is possible to

simulate both input/output and processor bound situations,
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or any combination thereof. The compute kernel in this
program is interesting in that it is self-checking. This
can be an important factor when using this program in the
evaluation of a new operating systen. It helps 1in
validating the programming of both the program and the
system. Basically the self-checking compute kernel works as
follows: The programmer has flexibility in choosing the
length and replications for the kernel by the choice of tuo
positive integers N and A. A table is initialized to
contain the first N3 integers starting with the integer A.
the kernel can be described as follows:

Denote the talle entries by T I=1, 2.« N

I'
where: A = T; and Tpyy = Tp + 1.

The kernel consists of computing S, where:

A
S=3"T
PP}
ko K
and J_ = Jg_ 3 + 6Uyx_q ¢ 1
with U = Up ; + K and J, é U, = 0.

Now it can be shown by induction that:
JK = K3 and similarly that:
N
FK3 = (SkP = aen/a? .
K=1 K=t
So we have:
N M N
s= 9T, = S(A-1+K7) = N(A-1) + 7K =
K= K Wk K=1
N(A-1) + (N(N+1)/2)2.
This means the arithemetic can be verified
'y computing B whereo:
B = (1/8) (S-(N(N+1)/2)2) + 1

and checking for A = B.
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A slightly modified version of the Buchholtz synthetic
program written by the author appears in Appendix C. The
original program is highly parameterized in that the analyst
can vary the values of the following program parameters to
obtain the proper I/0 and processor time configurations:

P1. The number of master records.

P2. The number of detail records.

P3. The number of times the compute kernel is

executed per match. (P3 is denoted by N in the
above discussion).

P4. The number of times the file update process is

repeated.

P5. The blocksize of the 1/0 buffers.

P6. The size of the records.

P7. The starting integer value A.

The major problem when using this synthetic program is
in mapping specified resource demands 1into values for these
seven program parameters. This mapping is given by the P!
map in Figure 3.5. Now the F map in this Figure can easily
be determined for any pbint in the synthetic prograa
parameter space. This 1is done by running the synthetic
program under the parameter values of the chosen point. The
problem stated above is that of finding the inverse map F'.

Wood and Forman (16) used a slight variation of this
synthetic program to construct a synthetic workload at the
Mitre Corporation. They seemed to have used a trial and

error search to find the synthetic program parameter
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settings to match the corresponding real Jjobs. Synthetic
workload construction using this program proved to be a
fairly good tool in their throughput study. However, for
general use the trail and error search seems to be a massive

drawback.
3.5 An Extension to the File Update Model

Recent work by Sreenivasan and Kleinman (13) also of
the Mitre Corporation, has resulted in a statistical
procedure which can Le used to determine these parameters.
FPirst the definition of the characteristic variables nust be
revised, 1In this study it was assumed that all jobs execute
in a given partition size. This means there 1is no
characteristic.variable for total job space as before. The
new characteristic variables are given by:

¥1. Total job time.

X2. Number of execute channel programs ({EXCP) in job.
Also we assume that PB7 = A = 1. Then the functional
dependency of X1 and X2 on P1,P2,P3,P4,P5 and P& can be

expressed as:

(12) X1 = K1 + (K2) (P4) + K3(P1+P2) + (KU) (P4) (P1+P2)
+ (KS) (P2) (P3) (P4).
(13) X2 = 2P4 + (2Pu+1) {(P1) (P6)/P5 + (P2) (P6)/P5).

The first equation is okttained by noting that X1 can be
considered proportional to the total number of instructions

executed. Therefore X1 seems to be dependent on the
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following four variables,
7« The number of times the initial code is executed.
This is denoted by P4.
2. The number of records initially created. This is
denoted by P1+P2.
3. The total number of reads and writes. This is
denoted by P4 {P1+P2).
4, The total numker of kernel executions. This is
denoted by (P2) {P3) {PU4).
The simple linear regression model of equation 12 readily
lends itself to this structure. HNow to see equation 13 we
must define.
L1. HNumber of blocks written per update. This is
given by P6 (P1+E2) /P5.
L2. VNumber of Lklocks read per update. This is given
by P6(P1+P2) /P5.
L3. Number of EXCP for closing files. This is given
by 2.
Li. Number of klocks written for initial creation.
This is given by P6{P1+P2) /P5.
Recalling that P4 is the number of times the update process
is repeated, it is easy to see that. i
X2 = 2P4 & PU(LI+L2) + L.
Since L1 = L2 = LU = P6(P1+P2)/P5 we have:
X2 = 2P4 + L1(2P4+1) = 2P4 + (2P4+1) (P6(P1+P2)/P5).
This eguation is equivalent to equation 13. Using a least

squares regression fit on experimentally derived data, the
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following estimates were obtained for equation 12:

H

K1 = .28 K4 .00138

K2 = .5 K5 . 00024

K3 = .00092
So for any given X1,X2 in the resource space we have:
X1 = .28 + .5P4 + .00092(P1+P2) + .00138P4 (P1+P2)

+ .00024 (P2) (P3) (P4).

X2 = 2P4 + (2P4+1) (P6(P1+P2)/P5).

This system of eguations can be solved for integer
values of P1,P2,P3,PF4,P5 and P6 through the use of the
following iterative technigque: First 1integral values are
chosen for P1,P2,P5 and Pé6. Then equation (13) is solved
for P4. If the estimate of P4 (denoted by ?L) is positive,
it is rounded to the nearest integer. If éh is negative,
new 1initial values are chosen fér P1,P2,P5 and Pé6. Now
using the values P1,92,PL,P5 and P6, equation 13 is solved
for ¥2. 1If this estimated value for X2 is not egual to the
given value for X2, then P1 and P2 are altered to make these
values equal. Then all these parameter values are used in
equation 12 to solve for P3. Again if P3 is negative, new
initial values are chosen. If P3 is positive it is rounded
. to the nearest integer., Then X1 is estimated using these
values. If this estimated value of X1 is not egqual to the
given value, P1,P2 are varied over a small range to make
them equal. Note that P1,P2 can vary over a small range
without altering the re~t of equation 13. These values of

P1,P2,P3,P4,P5 and P6 are then used as new starting values
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and the process is repeated until these values converge.
The final values of these program parameters that are
derived using this technique are the values that correctly
parameterize the synthetic program for the given values of
X1 and X2. It should be noted that there may not b2 a
unigue solution and that several settings of the progranm
parameters may satisfy the equations. This appears,
theoretically, to be a very good method for calibrating this
synthetic program to meet specified resource reguirements,
The main disadvantage is that although solutions for P1
through P6 always exist, there may not be a solution for
which all the parameters are integers. 1In this case we have

to be content with an approximate solution.
3.6 Conclusions

All of these synthetic modelé have been used for
workload construction in different performance studies.
Clearly the detail in the service demand model makes this
model unacceptable for general use. The file update nodel
bas been the synthetic model used most often for synthetic
workload construction. Several performance studies have
been conducted wutilizing this synthetic model for workload
construction (2,10,16). The results of these studies have
helped prove the validity of this model.

By far the easiest synthetic model to wunderstand and

use is the simple FORTRAN loop synthetic construction model.
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Unfortunately this model has only been used in one reported
performance study. Although the results from this study
showed this model to be very promising, more such studies
must be conducted before this FORTRAN loop =model can be
considered generally acceptable. The ease of synthetic
program construction via this model certainly makes such
validition desirable. If the results of these future
studies on this model do indeed validate the model, I would
strongly recommend the use of this FORTRAN loop model in
synthetic workload construction. In the next chapter we
look at possible synthetic program applications to computer

networks.
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Synthetic Program Applications to Computer Networks

In this section we will describe synthetic progran
applications to performance studies on various computer
networks. A computer network is defined as an
interconpected group of +two or more computers. Several
significant advantages are achieved through the use of a
conputer network. These include increased processing power,
economy through specialization and easy sharing of resources
and data. Various network topologies have been proposed in
the literature (14). 1In the remainder of this paper, we
discuss synthetic program applications to network topologies
currently receiving intensive study at Kansas State

University.

4.1 The Back-end Data Base Management System

One of the current topics of interest in computer
science, is the concept of a separate back-end computer for
data base management. 1In a traditional system all the major
software components, such as the operating system,
application programs, as well as the data base managenment

system will execute on a single large central computer.
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Typical Back-end Configuration
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Host Back-end Secondary

Computer Computer Storage

Back-end System

Figure 4.1
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This computer wusually has direct access to the data base
residing on secondary storage. The back-end concept
replaces this traditional systen with a two computer
network.

In a back-end network a separate computer (usually a
minicomputer) is used entirely for the data base management
function and has exclusive access to the data base. This
back-end computer serves as an interface between .the host
computer, executing application programs, and the data
residing on secondary storage. A typical back-end network
structure is illustrated in Figure 4.1. One of the major
adﬁantages with such a structure, is the increased
efficiency that can be obtained through the specialization
of both computers in the network. The front-end (host
machine) is freed from the time and space consuming data
base management functions. Meanwhile the back-end computer
has a small set of very specialized tasks which it perforass.
A list of typical back-end data base management (DBH)
conmands is given in Figure 4,2,

Now consider the workload construction problem on such
a back-end topology. A typical real drive workload of
application programs'to be executed on the front-end machine
could be assembled via the sampling and benchmarking
techniques described 1in Chapter 2. Exercising the network
under such a real drive workload would require the inclusion
of the front-end operating system as well as the back-end

operating systems and data base management software. It
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"Back-end Commands and Data Structures

Find.
Get.
Obtain.
Store,
Modify.
Insert.

Renmnove.

Figure 4.2

Typical Data Structures

1. Sequential list.

2. Inverted list,

3. Tree.

4, Single linked list.

5. Double linked list.
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would also regquire the inclusion of all data bases
referenced by the programs in this real drive workload. As
was the case 1in a centralized computer system the major
problem with such a procedure 1is a 1lack of flexibility.
Nonstandard workloads are still next to impossible to
represent by this technique,. Previously the concept of
synthetic programs was introduced to help overcome these
difficulties. Constructing a synthetic drive workload for
such a back-end confiquration requires that synthetic jobs
be created that match jobs in the real or hypothesized drive-
workload, in terms of their demands on both front-end and

back-end resources.,

4.2 A Synthetic Drive wWorkload for a Back-end

Network - Model 1

The first step in creating a synthetic drive workload
for a back-end network is defining appropriate
characteristic variatles. Suppose there are N different DBM
command types supported by the back-end software. Then the
following set of characteristic variables would be an
appropriate starting place for this model:

X1. Total local front-end CPU time for the

front-end application program, This does
not include the time spent waiting for the
DBM commands to complete.

X2. Total local front-end I/0 time or EXCPS for
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the front-end application program. This
is I/0 done directly on the host machine,
such as card reading, printing, tape
drives etc,

X3. Space requirement for the front-end
application program.

¥1. The total number of executions of DEM
command type 1 in this frcnt-end
application progranm.

X2, The total number of executions of DBM
command type 2 in this front-end

application program.

YN. The total number of executions of DBM

command type N in this front-end
application proyram.

Notice that the first three characteristic variables
are essentially the same resource variables that were
introduced in the last section. The remaining N variables
are service variables that measure the amount of
intermachine communication for a given front-end application
program in this back-end network. Like all service
variables they must be mapped into the system resource space
as shown in Fiqure 3.2.

In this chapter it still must be assumed that only the

total resource demands are important and that the order and
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relative time of the various front-end and back-end resource
demands (CPU, I,/0, etc.) is irrelevant. To develop a
synthetic program model for this back-end network, this
reordering assumption must be extended to include these DBM
commands., This means it must also be assumed that only the
total number of each type of DBM command is ismportant and
that the order and relative time at which a program
executing on the front-end issues these DBM commands to the
back-end 1is irrelevant. These assumptioﬁs enable us to
extend the synthetic program construction models developed
for a traditional system to the back-end system or any other
network topology.

With the above assumptions it is relatively easy to
construct a synthetic program that reflects any prespecified
distribution over front-end resources and DBM command types.
The synthetic program most readily extended to this is the
simple FORTRAN loop proyram. In the discussion of this
program it was recompended that a separate loop be included
for each type of I,/0 unit on the system. Similarly, it
would be a simple task to include such a loop for each type
of DBM command supported. I would recommend using a
self-timing version of this program, with all back-end DB#M
commands teing executed first. This would take into account
the extra CPU time 1inherent in the various loop overheads,
and insure that all back-end DBM commands would be completed
before program termination. This program structure |is

illustrated in Figqure 4.3.
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The file wupdate synthetic program could also be used
for this model. However, since the front-end machine
usually does not have direct access to disk files, the
temporary data sets created and accessed by this program
create a problen, We could rewrite this program to insure
that the update process actually does the required number of
each type of DBM co~.mand. Then we could let the back-end
perform the actual data base function of this update
procedure. This would require a major rewriting of this
synthetic program each time it is used. It would also
require new calibrating equations similar to those
introduced in the 1last section. A simpler solution can be
obtained ky not utilizing the back-end for the actual update
procedure. This could be done by using tape files for the
data sets being processed. Then the update procedure can be
calibrated to run entirely on the front-end machine. The
back-end DBM commands would be dummy commands that are not
relevant to the actual update process. These commands could
be executed in the update <c¢ycle, with an appropriate number
of each command type executed per cycle.

In most previous work with synthetic programs the
workloads to be modeled were defined in terms of resource
demands. However, this model contains N <characteristic
variables at the service demand 1level. The appearance of
these service variatles in this model means that we are
assuming the back-end resource utilization of any real

program, can be met in a synthetic program simply by
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executing the same number of every DBM command type. This
is equivalent to assuming that each execution of a given
back-end DBM command type uses fixed back-end resource
requirements, in terms of CPO time, I/O0 time, etc. If we
subdivide these back-end commands by the type of data
structure referenced, this assumption can probably be made
valid in the general case. This 1is because each command
type could probably be subdivided into smaller and smaller
classes, until the variance of resource utilization within
each class becomes approximately zero.

In terms of the execution of a synthetic program this
assumption is certainly acceptable. This 1is because the
synthetic program will model N executions of a DBM command
type by executing one dummy command of that type N times. So
these synthetic DBM commands uili be dummy commands that
access garbage data files. Also each execution of the sanme
copmand type should be identical in a synthetic progranm.
Therefore, each of these DBM command types executed in a
synthetic program should use fixed resource utilization

requirements.
4.3 The Use and validation of Model 1

To use this model to exercise such a back-end network,
suppose we have a typical real or hypothesized drive
workload that can be converted to a synthetic drive

workload. First we need to obtain the values of Ehe N+3
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characteristic variatbles for each application program in
this real drive workload. ‘These values can be used to
construct corresponding synthetic programs., These synthetic
programs can then be assembled into a matching synthatic
drive workload. The computer network can then be exercised
by running this synthetic drive workload under the control
of the front-end operating system, just as would be done
with any real drive workload. As with a real drive workload
each DBM command in these synthetic programs would activate
the back-end to begin processing that request.

Since a synthetic workload has never been used in a
performance study on a computer network, a validation
experiment sShould be conducted on this model. Such an
experiment would consist of the following steps: First it
is necessary to assemble various real drive workloads that
represent a wide range of front-end and back-end resource
utilization. Then each of these real drive workloads should
be run a prespecified number of times. While these real
drive worklocads are executing, measurements should be taken
to determine the values of the characteristic variables
{(x1,%2,%3,Y1,, ... YN) for each real application program in
every workload. Similarly, the front-end and back-end
performance variables of interest should be measured while
these real drive workloads are executing. These variables
include such thinys as front-end/back-end computer
efficiency, channel utilization, throughput and gqueue

lengths.
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The values of the measured characteristic variables are
used to construct a matching synthetic program for each real
application program. Once constructed these syntheatic
programs are assembled into corresponding synthetic drive
workloads. The network is again exercised, this time using
these synthetic drive «workloads. Each synthetic drive
workload is executed the same number of times as each real
drive workload. While the synthetic drive workloads are
executing, measurements are taken on the same performance
variables that were monitored with the real drive workloads.
Then a statistical analysis 1is performed to see 1if these
-performance variables behave the '~ same under both the
synthetic and real drive workloads. Since thers are
generally several correlated performance variables of
interest, a multivariate statistical procedure should be
used in this analysis,., HBelp is readily available for the
design and analysis of this statistical experiment at the
Statistical Laboratory at Kansas State.

The wvalidity of the assumption of fixed resource
requirements for each DBM command type can best be checked
by analysing the results from the previously described
experiment. In this regard care should be taken when
conducting this above experiment to insure that amoung the
back-end performance variables measured are the resource
utilization requirements of every DBM command execution.
These measurements can then be broken down by command type.

This data can then be analyzed to determine if each DB
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command type does indeed have fixed resource utilization
requirements, If this assumption of fixed resource
utilization does not hold for each command type, the data
can then be reanalyzed to determine possible subdivisions
over which this assumption is valid. It is ©possible that
this assumption will be totally impractical no matter how we
subdivide these command types., If this happens a new model
must be developed, which is free of this assumption. The

next few paragraphs describe such an alternative model.

4.4 A Synthetic Drive Workload for a Back-end

Network - Model 2

Another approach to this workload construction problenm
is to define our characteristic variables entirely in terms
of resource demands. Such set of characteristic variables
is given bLby:

X1. Total local front-end CPU time for this

front-end application program. Again this
does not include time waiting for DBHN
commands to complete.

X2. Total local front-end I/0 time or EXCPS for

this front-end application progranm.

X3. Space requirement for this front-end

application progranm.

X4. Total local back-end CPU time generated by

all of the DBM requests in this front-end
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application progyram.
X5. Total back-end I/0 time or EXCPS generated

by all of the DBM requests in this front-end

application progranm.
It will probably be noticed that there is not a
characteristic variable for the back-end space requirement.
Now any front-end application program generates a back-end
space reguirement every time it executes a DBM command.
However, this back-end space reguirement will probably
change for each DBM command type executed in a given
application program. For example, the space requirement in
the back-end machine for an execution of an obtain command
may be far different from the back-end space regquirement for
an execution of a delete command. Yet both -of these
commands can easily be included in wvarious real and
synthetic application programs. This makes it impossible to
obtain one value for a characteristic variable representing
the Dback-end space regquirement of a given front-end
application program. Also such a characteristic variable is
not necessary, since the back-end operating system will
automatically allocate an appropriate amount of space for
each type of DBM command, as it is encountered during the
execution of the workload.

Suppose there are N different back-end DBM command

types. As previously stated, each execution of a given DBM
command type in a synthetic program uses fixed resource

requirements. This fixed resource utilization can be



denoted by:
C1. Back-end local CPU time for DBM command type 1.

C2. Back-end local CPU time for DBM command type 2.

CN. Back-end local CPU time for DBM command type N.
T1. Back-end I,/0 time or EXCPS for DBM command type 1.

T2. Back-end 1,0 time or EXCPS for DBM command typzs 2.

TN. Back-end I/0 time or EXCPS for DBM command type N.
Next we try to fiNd a set of nonnegative integers B1,B2, ...
BN such that for a given set °~ of values for the
characteristic variables (X1,X2,X3,X4,X5) representing a
given application program, we have:

x4 {(B1) (C1) + (B2) (C2) + ... (BN) (CN).

]

X5 (B1) (T1) + (B2) (T2) + <..(BN) (TN).

The solution for é1,82 .«s BN in the above equations can be
obtained by the same iterative procedure described in
Chapter 3. As in that chapter there may not be such an
integer solution, and we may have to be satisfied with an
approximate solution. The total back—-end resource
requirements are met in a front-end synthetic program by
executing DBM command type I BI times, where in the
synthetic program, command type I has fixed resource
requirements CI,TI.

In this solution to the workload construction problem,
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there is another subtle probler for which we need a
different simplifying assumption. Notice that the real
application program and the synthetic program representing
it, will most probably execute each DBM command typ2 a
different number of times. Now there 1is some operating
systemn overhead (both on the front-end and back-end)
associated with each execution of a DBM command. When the
synthetic program executed the same number of each command
type as the real program it modeled, it was very reasonable
to assume that this difference in operating system overhead
between the real and synthetic programs was negligible.
However, now this assumption becomes more questionable.
This model requires that either we still accept this
assumption of negliyible operating system overhead, or that
we assume that the difference in this operating systen

overhead will average out over the entire workload.
4,5 The Use and Validation of Model 2

This model can be used to exercise the computer network
in the same manner as the previous model. As in that case a
statistical experiment must be conducted to confirm the
model, In this experiment we should be able to utilize some
of the data available from the previous experiment. Again
ve need to assemble several real driVe workloads, to be run
on the network. While these real drive workloads are

executing, measurements should be taken to determine the
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values of these new characteristic variables for every
application program in each workload. As before
measurepents must also be taken on any front-end/back-end
performance variables of interest, Included in these
measurements should ‘te some measure of the operating system
overhead associated with the various DBM commands. If all
necessary measurements on these real drive workloads were
obtained previously, in the experiment on the other model,
this data can be used directly, thus eliminating the need to
rerun the real drive workloads,

Next we should execute various synthetic drive
workloads that execute a significant number of each type of:
DBM comnmand. The purpose of such runs 1is to obtain
information on the assumed fixed resource requirements
(c1,¢2, ... CN,T1,T2, ... TN), and to test the validity of
this assumption. If it is available, this data could also
be obtained from the measurements taken on the previous
experiment. Once this is done, synthetic programs can be
constructed to match the resource’ utilization of these real
application programs in terms of these new characteristic
variables. Synthetic drive workloads are then assembled and
executed a prespecifed number of times on this computer
network. While these synthetic drive workloads are running,
measurements are taken on the performance variables of
interest. These measurements should be identical to those
taken while the real drive workloads were running. Then, as

before, a statistical analysis could be performed to
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determine if these performance variables behave the sanme

under both the real and synthetic drive workloads. Data

should also be available to test the validity of the various

model assunmptions.

4.6 Final Remarks on Models 1 and 2

Both of these models for this workload construction

problem required the introduction of simplifying
assumptions, None of thesc assumptions are 1likely to
satisfy a purist. However, I am convinced that without

these or similar assumptions this problem is not solvable
with synthetic progranms. The first major assumption of
fixed resource utilization for each DBM command type is
easily acceptable, especially 1if +we consider subdividing
these command types as previously described. The validity
of the second major assumption on negligible supervisor
overhead is going to be very dependent on the total Jjob
resource utilization as well as the total number of DBHM
commands issued in a given job. This assumption will most
probably hold for jobs with large resource requirements and
a small total numkber of DEM commands. However, there
probably exists a break-even point where the validity of
this assumption becomes gquestionable. It is possible this
assumption will remain valid in all practical situations.
It is also possible that it is hardly ever valid. The above

statistical experiments can help clarify the validity of all
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these assumptions.

4,7 Simulating the Back-end Machine With

Synthetic Programs

Often in a back-end system it is of interest to compare
the network performance under several different back-end
machines, or software implementations on the same machine.
For example, in a given back-end network we may currently be
using a Nova minicomputer as a back-end machine and a
Interdata minicomputer as the corresponding front;end
machine. In this situation it might be interesting to
analyze the change 1in network performance if both machines
were Interdata minicomputers. A model will be developed in
this section for using synthetic programs to make drive
workloads executing on the front-end computer appear to be
communicating with a different back-end. So for our above
example we will use synthetic programs in this Nova back-end
to make this machine appear like an Interdata back-end.

Now let us examine the software on a typical back-end
data base management computer. First there is the network
operating system common to both of the network machines. We
will assume that the difference in the resource utilization
of this network operating system between real and
corresponding synthetic drive workloads is negligible. Next
we have the local computer operating system and below this,

ve have the various executing DBM command routines. This
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structure is illustrated in Fiqure 4.4,

As in Section 4.2 we will again assume that all of
these DBM command routines have fixed resource utilization
requirements, We will also assume that the local operating
system resource utilization associated with each DBM command
type is similarly fixed. These assumptions will enable us
to construct synthetic programs that model the fixed
resoﬁrce requirements of these DBM command routines and
their corresponding operatinygy system cverhead.

For simplicity, assume that all intermachine
communication between the front-end and back-end machines is
achieved through the familiar send/wait message routines
described by Brinch Hansen (1). Further assume that any
time a front-end application program issues a DBM command,
the local front-end operating system'susﬁends this process
in a wait message state until an answer 1is received. Then
the only major diffenence detected by the front-end
application workload when the configuration of the back-end
machine is altered, is a change in the time these front-end
jobs must wait for DBK commands to complete. So we only
need to determine a way to get the current back-end
configuration to modél the wait times of the proposed
back-end configuration.

Suppose that in a given back-end system w2 are
currently using a configuration for the back-end node that
we will denote by (A). Also suppose that we are considering

an alternative configuration for this back-end node that
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will be denoted by (D). Now (D) could be the same machine
with a different local operating system and/or DBM command
software. (D) could also be a different machine with its
own local operating system and DBM command software. He
will assume that both the front-end computer and the (D)
confiquration can multiprograr a maximum of S processes and
that there is sufficient space in this (D) configuration so
that any cowmbination of S of these DBM command routines will
fit simultaneously.

Now suppose that we remove the back-end local operating
system and DBM command software routines. We will replace
this 1local back-end operating system with a minimal
oberating systen consisting basically of a simple
multiplexor (task switcher) and a primitive interrupt
handler. This interrupt handler fill only need to process
interrupts generated by the receiving and sending of
messages. The multiplexor will switch between at most S
parameterizable synthetic routines. Each of these synthetic
routines will be parameterized upon request to represent the
fixed resource utilization of one of the (D) configuration's
DBM command routines and corresponding 1local operating
system overhead. The assumed fixed resource utilization of
this minimal operating system must also be taken into
account when parameterizing these synthetic routines. This
is done by obtaining the following values for each DBM
command routine in the (D) configuration software.

D1. Total CPU time for this DBM command routine
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and the CEU time used in the local operating
system assocjated with this DBM command
execution.

D2. Total I/0 time or EXCPS for this DBM command
routine,

M1. The CPU time used in this minimal operating
system in executing this synthetic DBEM command
routine.

M2. The I/0 time or EXCPS used in the minimal
operating system in executing this synthetic
DBM command routine,

Then for each DBM command routine in the (D)
configuration software we will calculate synthetic progranm
parameters from the corresponding characteristic variables
X1,X2 where:

X1

D‘!_HTQ

X2 D2-K2.

The nonself-timing FORTRAN loop synthetic program is
the easiest construction model to consider for these
parameterizable synthetic routines. In this synthetic model
the program parameters are the appropriate loop indexes. We
will sliqghtly alter these wmodels so that the progran
parameters are stored in a common data area accesible to
both the synthetic routine and the minimal operating systen.
Also upon completion each of these synthetic routines will

send a message to the regquesting front-end process and then

avait a new request.
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4.8 Trace of a DBM Command in a Simulated

Back-end Configuration

Initially all these back-end synthetic routines are
suspended awaiting DBM request from the front-end
application workload. Since there are S synthetic routines
we can designate each of these synthetic routines to
correspond to a specific front-end process number (1,2, ...
S). Now suppose front-end process I issues a DBM command.
The front-end operating system will send a message to the
back-end configuration and suspend process I until an answer
is received. The text of this message need only contain the
sending process number (I) and the DBM command type. When
the message is detected by the network operating system, an
interrupt occurs. The interrupt -handler then starts
execution of a simple routine that will copy the program
parameters for this type of DBM command from a preset
protécted data area into the common program parameter data
area for synthetic routine 1. This synthetic routine is
then marked ready and control passes to the multiplexor.
The multiplexor then controls the execution of the ready
synthetic routines. When synthetic routine I completes
execution it sends a return message to front-end process I.
This send messsage command will cause another interrupt.
The network operating system will transmit this return
message. Then synthetic routine I 1is marked inactive and

control returns to the wmultiplexor. Since we have a



54

separate synthetic routine for each front-end process, we
need not worry akout one DBM request resetting the

parameters of a ready synthetic routine.
4.9 I/0 in a Synthetic Routine

In the last two sections we have purposely ignored the
consideration of I/0 in our back-end synthetic routines.
Since we have removed our local back-end operating systen,
these synthetic routines can not issue the usunal operating
system controlled I/0 commands (read, write etc.). Also the
I/0 devices on our simulated (D) configquration may be far
different from the actual devices on our existing (A)
configuration.

Recall that these synthetic routines will have a
separate I/0 loop for every device supported on the (D)
configquration. Instead of issuing actual I/0 commands in
these loops our synthetic programs will call an appropriate
I/0 device routine. This device routine will calculate the
amount of time an incoming I/0 request should take on the
device being modeled. The variable amount of time required
for head movements on direct access devices can be
calculated in these device routines by either a randonm
nunber geﬁerator or some prespecified distribution of head
movements.

After calculating this required time, this device

routine will s2nd a message to one of S micro processors.
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Each of these micro processors will contain a simple loop
synthetic program that can be parameterized to execute for a
specified amount of time. The text of this message need
only contain the synthetic program parameters (probably a
single loop index) necessary to correctly parameterize this
micro synthetic program. When this micro synthetic program
has completed, a return message is sent to the corresponding
synthetic routine. Both of these messages will cause
interrupts that basically will change the appropriate
synthetic routine from a ready to a wait state or from a
wait to a ready state respectively. It will probably be
possible to use the network operating system for the
transmission of these messages.

Notice that with S separate micro processors we can
have a separate micro for each synthetic routine, This will
solve any problemé that could occur by two device routines
trying to use the same micro simultaneously. Similarly, if
these device routines are not reentrant we could have a
separate set of device routines for each synthetic routine.

Now the actual time a synthetic routine is delayed for
an I/0 request can be partitioned into the following three
parts:

1. Running time of the device routine.

2. Running time of the micro preccessor.

3. Minimal operating system overhead associated with

completing this request,

We wish these three parts to sum to the correct I/0 delay.
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We will assume that the running time for a given device
routine and the corresponding minimal operating systenm
overhead is fixed. Then the running time of the micro
processor is calculated by subtracting this fixed time (1+3)
from the I/0 reguest time. This means we can not simulate
any I/0 request that has a delay time less than the sum of
the fixed device routine time and the corresponding minimal
operating system overhead. In most practical situations

this restriction should not be a problen.

4,10 The Use and Vvalidation of the

Synthetic Back-end Model

The use of this model 1in a performance study on a
back-end network is slightly more'involved than the use of
the previous médels. This is because we must alter the
actual back-end confiquration. The first step in this
alteration will be to develop the multiplexor and interrupt
handler for the minimal operating system. Then the actual
synthetic routines must be constructed from the construction
models discussed previously. Once developed this basic
structure will remain the same for the simulation of any
back-end configuration on the existing machine. The
synthetic program parameters corresponding to the DBH
command routines and the device routines must be changed for
each back-end configquration we wish to simulate.

Once we have our back-end correctly structured, we are
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ready to construct a front-end synthetic application
workload. As with Model 1, the first_step will be to define
the jobs in our real or hypothesized worklocad in terms of
the characteristic variables of Section 4.2, We then
construct synthetic programs from the values of these
characteristic variables. These synthetic programs can be
assembled into a synthetic drive workload. The computer
network is then exercised by running the synthetic drive
workload under the control of the front-end operating
systen.

When the programs in our synthetic workloads issue DBH
commands, the back-end configurhtion will process these
requests as described in Section 4.8. Notice that the
back-end will not return meaningful results for these DBHM
requests, This will not affect our front-end synthetic
programs since they do not depend on the results from these
DBM requests. However, if a real workload were driving this
synthetic back-end, the effect of returning nonmeaningful
results for the DBH reguests would not be predictable.
Consegquently, a synthetic drive workload must always be
utilized on the front-end when using this model.

Before accepting this model a validation experiment
should be conducted and analyized. This experiment should
consist of the same basic steps described in detail in
Section 4.3. Again several real drive workloads are run on
a given tack-end network. Then @pmatching synthetic drive

workloads are created. A different back-end machine is then
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connected to the same front-end machine that was utilized
with the real drive workloads., Then the local operating
system and DBM command tToutines on the original back-end
confiquration are simulated on this new back-end machine as
described in Sections 4.7 - 4.9, The synthetic drive
workloads are then used to exercise this simulated back-end
network. Each synthetic drive workload is executed thes sanme
nunber of times as each real drive workload. Again the
performance variables of interest are monitored with both
the synthetic and real drive workloads. A statistical
analysis is then employed to determine if these performance

variables behave the same in both of these situations.
4_.11 PFully bistributed Network

The wmost general network topology appearing in the
literature is the fully distributed network. This type of
network topoclogy can cansist of any number of computers. A
simple three coaputer fully distributed network is
illustrated in_Figure 4.5. In the most general case every
computer 1in such a network executes a general purpose
application workload. Also each network machine can
transfer some of its processing (programs or special
functions) to any other network machine. This helps keep
the total network processing balanced among the various
network computers. In addition all data bases are shared

among the network machines. It is also possible to have
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Distributed Network Structure
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some of the network computers specialized to perform certain
functions for the remaining network machines, For example,
one of the machines could be a back-end data base management
computer for the entire network. Overall, this fully
distributed network structure allows a great deal of
flexibility and has tremendous potential advantages in
increased processing power. We will now extend some of the
results derived for the back-end network to this more
general fully distrituted network. For simplicity, all
results derived in the following discussion will be based on
a three computer fully distributed topology as illustrated
in Figqure 4.5,

Now <consider the workload construction problem on a
fully distributed network. A typical real drive workload of
application programs to be executed on the total network can
be assembled via the sampling and benchmarking techniques
described in Chapter 2. Since 1in the most general case
there are three machines executing application workloads,
the total system worklcad can be partitioned as follows:

1. Application programs originating on machine A.

2. Application proygrams originating on machine B.

3. Application programs originating on machine C,

Then in any performance study these three worklcads are
simultaneous input to the appropriate machines. Exercising
the network under such real drive workloads would require
the inclusion of all network and local operating systems and

the inclusion of any special service routines that certain
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network machines may perform for the remaining network
machines., Also required would rte the data bases referenced
by the application programs in these real drive workloads.
As with the previous cases the major problem with this
procedure is a lack of flexibility. Nonstandard workloads
afe very complicated to construct wvia this technique.
Previously, the concept of synthetic programs was used to
help overcome this difficulity. Constructing a synthetic
drive workload for this fully distributed network requires
that synthetic jobs be created that match jobs in the real
or hypothesized drive workload in terms of their demands on

‘the resources of each network computer.

4,12 A Synthetic Drive Workload for a

Fully Distributed Network

We will now extend the back-end model of Section 4.2 to
a fully distributed npetwork. Suppose that in our three
conputer fully distributed network, computer A can perform N
specialized tasks or special service functions for the total
network. Similarly, assume computers B and C can perform M
and K such tasks or special service functions respectively.
The DBM commands sSupported in a back-end machine are
examples of special service functions. Then for a given
application program, the following set of characteristic
variables seem appropriate.

X1. Total local CPU time for the application
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program. This is the CPU time this
application program would take if it
executed to completion on the computer
upon which it originated. This does not
include time spent waiting on the
internal and external special service
functions to complete.

Total local I/0 time or EXCPS for the
application proyram. This is the I/0 or
EXCPS that this application program would
take if it executed to completion on the
computer upon which it originated. This
does not include I/0 related to the
internal and external special service
functions.

Space requirement for this application
program on the computer upon which it
originated.

The total number of executions of special
service function 1 on computer B that are
in this application program.

The total number of executions of special
service function 2 on computer B that are

in this application program.

The total number of executions of special
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service function M on computer B that are
in this application program.

Z1. The total number of executions of special
service function 1 on computer C that are
in this application program.

Z2. The total number of executiocns of special
service function 2 on computer C that are

in this application program.

'ZK. The total number of executions of special
service function K on computer C that are
in this application progranm.

W1. The total nunmber of executions of special
service function 1 on computer A that are
in this application program.

W2. The total number of executicns of special
service function 2 on computer A that are

in this application progranm.

WN. The total number of executions of sprcial
service function N on computer A that are
in this application program.
Notice that this model has only three resource
variables (X1,X2,%X3). The remaining N + M # K variables are

service varilables that measure some of the intermachine
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communication, Like all service variables they must be
mapped 1into the system resource space as illustrated in
Figure 3.2.

This model does not represent the intermachine
communication generated by the swapping of entire
application programs tetween network computers. Now this
program swapping is «controlled by the various operating
systems resident in the network machines. So for this model
we are assuming that program swapping generated by the real
and synthetic drive workloads is statistically equivalent.
In addition to this assumption we still need all the
‘reordering assumptions that were introduced in the
corresponding back-end case. Recall that these assumptions
basically stated that the order and relative time of both
the resource demands and special "service functions is
irrelevant. Since we are again using service variables we
are assuming that the special service function types use
fixed resource utilization requirements. This assumption
assures that by modeling the total number of each special
service function we generate the desired resource
utilization due to these special service functions. To make
this assumption more acceptable we could subdivide these
special service function types as was recommended for the
DBM command types.

Using this assumption it is relatively easy to
construct a synthetic program that reflects any prespecified

distribution over the host computer's resource space and the
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total network special service functions. These synthetic
program construction models are identical to those described
for the back-end case in Section 4.2

Once an appropriate synthetic workload is assembled
~this fully distributed network is exercised under this
synthetic workload simply by running the three synthetic
application workloads on their respective machines under the
control of the various local and network operating systems.
As with all previous results this model and the assumptions
therin should be validated through a statistical experiment.
This experiment should follow the same basic steps described
in Section 4.3,

As with the back-end network the solution presented
here for the fully distributed network required the
introduction of simplifying assumpfions. The assumption of
statistical equivalence bLketween the operating systenm
generated program swapping of real and synthetic progranms
seens fairly resonable. 1If this assumption does not hold we
could have a real probtlem. This 1is because there is no way
to control this program swapping without changing part of
the actual operating system in each affected machines. The
question of how these operating systems should be altered
cannot be answered until we know how this program swapping
differs between the real and synthetic workloads, The
assumption of fixed resource utilization requirements for
the special service functions is the most questionable. I

firmly bkelieve that this assumption can be Justified over
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some subdivision of these commands. If this does happen the
above model will prokably be adeqguate. However, if this
assumption is invalid, a new model must be developed free of
this assumption of fixed resource utilization requirements.
One possibility for a new model would be a simple extension
to Model 2 of Section b.4. This extension is very
straightforwvard and if it is needed, it should follow
immediately from the material already contained in this

report.

4.13 Using Synthetic Proyrams to Simulate a Node

in a Fullj Distributed Network

In a performance study on a fully distributed network
it is of interest to compare network performance under a
variety of interchangable computers and/or local operating
systems for a particular network node. A model will be
developed in this section for wusing synthetic programs in
one of the network machines to make the confiquration of
this machine appear different to the drive workloads on the
remaining network machines,

Now let us examine the software on a typical network
computer, First there 1is the network operating systenm
common to all the network machines, We will again assume
that the difference in the resource utilization of this
network operating system between real and matching synthetic

workloads is negligible., Next we have the 1local computer
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operating system and below this, the various executing
application programs and special service routines,

As in Section 4.7 we will assume that all these special
service functions have fixed resource utilization
requirements and fixed local operating system overhead. We
will also assume that the resource utiiization of the local
operatiny system associated with a given application program
is similarly fixed. These assumptions will enable us to
construct synthetic programs that model the resource
utilization requirements of tasks executing on a given
network machine.

Suppose that in a given three - computer fully
distributed network we are currently using a confiquration
for the 'A' node that we will denote by (A). Also suppose
that we are considering an alternative confiquration for
this 'A' pode that we will denote by (D). In the discussion
that follows we will assume that the (D) configuration can
multiprogram a maximum of S tasks.

As before we will remove the local (A) operating systenm
and resident special service routines. We will again
replace this local operafing system with a minimal operating
system consisting of a simple mnultiplexor and a primitive
interrupt handler. This interrupt handler will only need to
process interrupts generated by the receiving and sending of
messages. The multiplexor will switch between at most S
parameterizable synthetic routines. Each of these synthetic

routines will be parameterized upon request to represent the
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resource utilization requirements of one of thé following
tasks:

1. A job from the‘(D} configuration drive workload.

2. A special service function provided by this (D)

configuration.

For simplicity, we will ignore the program swapping in
this model and assume that each application program executes
to completion on the computer upon which it originates. Now
any real or hypothesized application workload (for this (D)
configuration) can be described 1in ternms of the
characteristic variatles of the last section. We will of
course wish to slightly alter the definitions of X1,X2 and
X3 so that they reflect both the local (D) operating system
and the wminimal operating system overhead associated with
given application programs. This altération is identical to
that described in Section 4.7. Then from these altered
characteristic wvariables, appropriate synthetic progranm
parameters can be determined for each job in our real or
hypothesized (D) application workload. These workload
program parameter values can be stored as a simple list in
some common data area in our 'A' node.

We need also to obtain the synthetic program parameters
for each of the - (0} configuration's special service
functions. These proyram parameters are obtained exactly as
the DBM program parameters are obtained in Section #.7. As
in that case we will again store these values in sone

protected data area.
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Our construction model for these S synthetic routines
will again be the nonself-timing FORTRAN 1loop model. We
will include a separate loop for each I)D device and =sach
network special service function. All I/0 will be done
exactly as in Section 4.9. Also upon completion of a task
these synthetic routines will send an appropriate message to

the requestor of this task.
4.14 A Trace of Interrupts in This Simulated Node

In this section we will examine the behavior of our
minimal operating system in controlling these synthstic
routines, We basically need only address the gquestion as to
when interrupts occur and what happens when they occur.
Initially we will assume that thesé S synthetic routines are
executing the first 5 proyrams in the (D) application
workload.

Suppose that an existing process on the B or C computer
issues a request for one of the (D) configuration's special
service routines. The local operating system on the B or C
computer will send an appropriate message to the 'A' node.
Then this requesting process will be suspended by the B or C
local operating system until an answer is received. This
message need only contain the special service type requested
and the requesting process 1ID. When this message 1is
received by the network operating system, an interrupt

occurs, The interrupt handler will then start a routine



70

that will interpret this message. Once the special service
function type 1is determined, the appropriate synthetic
program parameters are copied from their protected data area
into a 1list of waiting special service function regquests.,
This list 1is similar to the list of the workload program
parameters., Control then returns to the multiplexor.

If this special service request comes from one of the
internal synthetic routines, the above steps are followed;
except before returning control to the multiplexor, the
internal requesting synthetic routine is placed in a wait
state, 4

Next suppose synthetic routine I has just conpleted
executing a task that represents an application program in
the (D} drive workload. This synthetic routine will
generate an interrupt. The interrupt handler will then
start a routine that will reparameterize synthetic routine
I. Some type of simple priority scheme must be developed so
that we can determine whether to reparameterize synthetic
routine I to represent a program in the (D) drive workload
or a special service regquest. Once we have determined what
synthetic routine I should do as its next task, the
reparameterization 1is started. This reparameterization
consists of copying the synthetic program parameters fronm
the proper 1list into the program parameter area for
synthetic routine I. Then this synthetic routine is marked
ready and control returns to the multiplexor.

Now suppose the task that synthetic routine I completes



71

represents a special service function rather then an
application program., If this special service request came
from one of the internal synthetic routines, then this
regquesting synthetic routine mnust be marked ready before
control returns to the multiplexor. Similarly, if this
special service request came from an external process, then
a return message must be sent to that process. All other
steps in handling these interrupts are the same as in the
above case,

The only other interrupt to be considered takes place
when one of these S synthetic routines requests the
execution of one of the B or C computer special service
foutines. This interrupt will cause an appropriate message
to be sent to the B or C computer. Then this requesting
synthetic routine is placed in a wait state until an answer
is received. As usual control then passes to the
multiplexor. When a return message 1is detected, another
interrupt is generated which results in this synthetic
routine being marked ready.

This discussion takes into consideraiion all interrupts
that can be generated in this simulated (D) configuration.
The use and validation of this model is basically identical

to the discussion presented in Section 4.10.
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4.15 Conclusions

In this chapter several models were developed for
extending synthetic workload construction methods to various
computer networks. First a model was developed for the
construction of a synthetic drive workload on a back-end
data base management system. Then an example was given on
how to change certain model assumptions to obtain a
different model for the same purpose. This will enable us
to replace bad modeling assumptions with more acceptable
alternative assumptions. Then we 1looked at the possibility
of using synthetic programs to enable us to simulate one
back-end configuration on another back-end configuration. A
detailed synthetic model was developed as a solution to this
problen.

After these models were developed for a back-end data
base management network they were extented to encompass the
more general fully distributed computer network. No actual
measurement, calibration or experimentation was done on the
proposed models. Such work would be impossible to conduct
at this time because the current computer network facilities
at Kansas State are 1inadaquate. However, the steps
necessary for the measurcement and validation experiments are
explained in detail in this report.

It is hoped that these models will provide a valuable
starting point for future work on both obtaining the

measurements necessary to implement these synthetic models
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and on the actual experimental evaluation of these models.
Such additional work is certainly warranted by the
simplicity of running this type of computer simulation
atilizing synthetic programs vrather than by the usual

simulation techniques.
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Appendix A

An Illustration of the Service

Demand Construction Method

Exanple FORTRAN Program in System Workload

DIMENSION A (1000)

TOT=0

DO 10 I=1,1000

READ (5,500) X

FORMAT (F6.2)
TOT=TOT+SORT (A {I)) /A (I)
AVG=A (1) /2.0

DO 20 I=2,1999

AVG=AVG+ (A (L/2+1) +A(I+1)/2)) /2.0
WRITE (6,600) TOT,AVG
FORMAT (7HANSWER=, 2F10. 2)
STOP

END

17
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Appendix A

Keasurement of Services Provided By the Example Program

Type Service Measurement
1 Real assignments. 3000
1 DO loop iterations. 2998
5 Read cards. 1000
4 Implicit run-time routine to

convert character to real,. 1000
1 Real add/sub. 4996
4 Explicit run-time routine SQRT. : 1000
3 Array index calculation. ' 5997
1 Real divide. 2999
1 Integer add/sub. , 3996
1 Integer divide. 3996
5 Write printer. 1
4 Implicit run-time routine to

convert real to character, 2

* Type refers to one of the five types of services described

in Figure 3.3.
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Synthetic Program Created From the Above Measurements

DIMENSION A {1000)
A(1)y=10.
DO 10 K=1,10
po 10 1=1,100
1000 DO LCOE ITERATIONS

READ(5,500) X

1000 READ CARDS

1000 CONVERT CHARACTER TO REAL

500 FORMAT (F6.2)

Y= (SORT (2.0) +75.0) /63.5
1000 SQRT, REAL ADD, DIVIDE, ASSIGN
DO 20 J=1,2

2000 DO LCOF ITERATIONS

79
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Appendix A

20 A(J/242)=(Y+A(J))/(¥-A((T+1) /2))

LOO0 Integer ADD, DIVIDE
4000 REAL ADD/SUB
6000 ARRAY JTNDEX CALCULATION

2000 REAL DIVIDE, ASSIGNHENT

10 CONTINUE
WRITE (6,600) Y,A({1)

600 FORMAT (2F10.2)

1 WRITE PRINTER

2 REAL TO CHARACTER COBVERSIONS

STOP

END
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Measurement of Services Provided.By This Synthetic Program

Type

Service
Real assignments.
DO loop iterations.
Read cards.
Implicit run-time routine to
convert character to real.
Real add/sub.
Explicit run—timé routine SQRT.
Array index calculation.
Real divide.
Integer add/sub.
Integer divide.
Write p;inter.
Implicit run-time routine to

convert real to character.

* Type refers to one of the five types of

in Figure 3.3.

Measurement

services

3001
3000
1000

1000
5000
1000
6000
3000
4000

4000

described
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Appendix B

Simple FORTRAN Loop Synthetic Program

DECLARATIONS AND FORMATS

INTEGER IA(1500)/1500%0/,NC1/2/,NI01/2/,TCPU,TIO,
1DISK1/10/,81/1/

100 FORMAT (4I5)

READ IN THE FOLLOWING SYNTHETIC JOB PARAMETERS.

1. TCPU THIS IS THE TOTAL CPU TIME FOR THIS

JOB IN TENTHS OF SECONDS.

2. TIO THIS IS THE TOTAL I/0 TIME FOR THIS

JOB IN TENTHS OF SECONDS.

1 READ (5, 100, END=35) TCPU,T10

CAICULATION OF LOOP INDEXES
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NC: OUTER CPU LOOP INDEX.

NIO: OUTER I/0 LOOP INDEX.

N: CONTROL LOOP INDEX,

N=1

K=MINO (TCPU,TIO)
L=MAXO0 (TCPU,TIO)

DO 11 I=1,K
J=MOD (K, I)
IF(J.NE.Q) GO TO 11
J=H0D (L, I)

1F (J.NE.O) GO TO 11
NC=TCPU/I

NIO=T10/I

N=T

11 CONTINOE

START OF CONTROL LOCP

83
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DO 30 L=1,N

START OF CPU LOOP

DO 17 I=1,NC
DO 17 J=1,NC1
K=IA (J)+IA(J+1)

M=IA (J) *IA (J+1)

START OF I /0 LOGP

Do 18 I=1,NIO

DO 18 J=1,NI01

WRITE (DISK1) (IA(E1),N1=1,H7)
REWIND DISK1

READ(DISK1) (IAa(N1),N1=1,M1)

30 CONTINUE

35

GO TO 1
RETURN

END

84
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Appendix C

Modified File Update Synthetic Progranm

DECLARATIONS AND FORMATS

INTEGER MASDAT (3) ,MAST (2)/*MAST','ER '/,U,SUM,COUNT,
1CHECK,ETIME,STIME,MASTER (6)
2TABLE (1000) ,N/10/,START/100/,DISK1/10/,DISK2/11/
ECUIVALENCE (MASTER (1) ,MASKEY), (MASTER (2),HASSUM),
1(MASTER (3) ,MASCHK) , (MASTER (4) , MASDAT {1))

101 FORMAT (3110)
201 FORMAT (10X, "*#***%x#xxx THE NUMBER OF RECORDS TO BE',

1 PROCESSED‘EICEEDS THE TOTAL NUMBER OF RECORDS *%%¥x1!,
29Kk ERRR1)

202 FORMAT (10X, Y*%x*x¥kkkxkx COMPUTE ERROR HALTED JOB?',
1 ek ERRTEEERY )

205 FORMAT (10X, "*=*¥*xk*x¥x CHECK SUM ERROR HALTED JOB ',

AR EL SR 22 22 20
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Appendix C

CREATE TABLE ENTRIES

H=N*%*3

DO 1 J=

1,8

1 TABLE(J)=START +J-1

READ AND CHECK SINTHETIC JOB PARAMETERS

1.

2.

NMAS

NPRC

THIS IS THE NUMBER OF MASTER RECOKDS
TO BE CREATED. IF THE NUMBER READ IS
LESS THEN OR EQUAL TO ZERO NO MASTER

RECCRDS ARE CREATED,

THIS IS THE NUMBER OF MASTER RECORDS
TO BE PROCESSED. IF THIS NUMBER IS
LESS THEN OR EQUAL TO ZERO NO MASTER
RECORDS ARE PROCESSED ‘AND ONLY THE

COMPUTE KERNAL IS EXECUTED.
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3. NREPS THIS IS THE NUMBER OF TIMES THE
COMPUTE KERNAL IS TO BE EXECUTED PER
RECORD, THE COMPUTE KERNAL IS

EXECUTED AT LEAST ONCE PER RECORD,

2 READ(5,101,END=51) NMAS,NPRC,NREPS
CCUNT=0
CHECK=0
IF (NMAS) 3,3,5

3 IF(NPBC.LE.NHASTR) GO TO 10
WRITE(6,201)

STOP
CREATE NMASTE MASTER RECORDS

5 NMASTE=NMAS
REWIND DISK1
DO 7 J=1,NMASTR
CHECR=CHECK+J
MASSUM=0
MASKEY=J

MASCHK=CHECK
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MASDAT (1) =MAST (1)
MASDAT (2) =MAST (2)
MASDAT (3) =J

WRITE (DISK1) MASTER

GO TO 3

CHECK FOR CONPUTE ONLY

IF (NPRC.EQ.0) GO TO #1

ASSIGN 17 TO KBETRHN

READ FIRST RECORD

REWIND DISK1
REWIND DISK2

READ(DISK1) MASTER

COMPUTE KERNAL

CALL INTIME (STIME)
DO 16 I=1,NREPS
SUM=0

u=0

J=0
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DO 14 K=1,N

J=J+ (6%U+1)
SUM=SUM+TABLE (J)

U=U +K

LSUN= (N* (N+1)) /2

LSUM= (SUM-LSUM*LSUM) /N+1
IF (START.EQ.LSUM) GO TO 16
WRITE (6,202)

STOP

CONTINUE

GO TO KRETRN, (17,u45)
WRITE OUT UPDATED RECORD AND READ NEXT RECORD

MASSUM=SUN
COUNT=COUNT+1

WRITE (DISK2) MASTER

IF (COUNT.GE.NPRC) GO TO 31
READ (DISK1) MASTER

GO TO 12

CALL INTIME (ETINE)

LSUM= (COUNT* (COUNT+1)) /2

IF (MASCHK.EQ.LSUM) GO TO 35

WRITE (6,205)
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STOP

TIME= (ETIME-STIME) /100.

PRINT OQUT RESULTS

WRITE (6,209) NMAS,NPRC,NREPS,TINE
GO TO 2

ASSIGN 45 TO KRET&N

GO TO 11

CALL INTIME (ETINE)

GO TO 35

RETURN

END
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ABSTRACT

.With the rising cost and conmplexity of modern day
computing systems, accurate and economical performance
evaluation techniques are becoming c¢ritically important.
One of the most promising new techniques is the concept of
synthetic programs, A synthetic program is defined as 'a
highly parameterized progfam which uses precisely specified
amounts of computing resources, but which does no useful
work'. This type of program is valuable for fixing the
resource utilization requirements of the drive workloads,
under which a system is tested and analyzed.

This paper discusses the major advantages achieved by
using synthetic progrars in thé construction of such drive
workloads. Several actual synthétic program construction
models are presented and contrasted. Then these the
synthetic program models are extended to performance studies
on minicomputer networks. This extension includes not only
the workload construction applications, but also the
possibility of simulating operating systems and I/0 devices

through the use of synthetic programs.



