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Abstract

Thin-walled structures are major components in many engineering applications. When a
thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by
a combined lateral bending and twisting of cross-section, which is called lateral-torsional
buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic
laminated, thin-walled, rectangular cross-section composite beams under various loading
conditions (namely, pure bending and concentrated load) and boundary conditions (namely,
simply supported and cantilever) was developed using the classical laminated plate theory
(CLPT), with all considered assumptions, as a basis for the constitutive equations.

Buckling of such type of members has not been addressed in the literature. Closed form
buckling expressions were derived in terms of the lateral, torsional and coupling stiffness
coefficients of the overall composite. These coefficients were obtained through dimensional
reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2
coupled weak axis bending-twisting relationship. The stability of the beam under different
geometric and material parameters, like length/height ratio, ply thickness, and ply orientation,
was investigated. The analytical formulas were verified against finite element buckling solutions

using ABAQUS for different lamination orientations showing excellent accuracy.
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Chapter 1 - Introduction

1.1 Background

Thin-walled beam structures are major components in many engineering applications.
They are widely used as structural components in many types of systems in the field of civil,
mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer
(FRP) composites, are partially replacing conventional materials in these types of structural
systems. Composites have demonstrated outstanding success in both civilian and military fields.
Nearly half of materials, in Boing 787 Dreamliner, are made by advanced composites. The light-
weight of composites also saves 20 percent in fuel compared to other equivalents (Huang, 2013).
2-D laminated and complex 3-D composites are being implemented in transportation systems,
offshore structures, chemical facilities, aircraft wings, fuselages, engine blades, door frames,
helicopter blades, rib structures, biomedical devices, and ballistic panels.

Characterization of the mechanical behavior of composites is a growing need because of
their expanding applications. Composite mechanical properties rely on the structure of the
composite reinforcement, which in laminated composites is determined by the orientation of
reinforcing fibers. A laminated composite part is made by combining reinforcing fibers and
matrix (e.g. resin) through stacking of the fibers in different orientations. This increase in interest
for using FRP lies in some critical advantages of this composite over conventional materials.
Their high strength to weight ratio, high stiffness to weight ratio, their environmental
adaptability represented by corrosion resistance, their ease of transportation and erection, and
their fatigue resistance are some of the advantages FRP provides. The most prominent
characteristic is the ability of tailoring the material for each particular application. Structural

properties depend on the material system and the shape of the cross-section of the member



(Barbero et al., 1993). For isotropic structural shapes, it is possible to optimize the section to
increase the bending stiffness without compromising the maximum bending strength. Unlike
isotropic shapes, with composite members it is possible to optimize the material itself by
choosing among a variety of resins, fiber systems, and fiber orientations. Although FRP
structures exhibit high strength, problems of excessive deformation and instability, due to the
slenderness of the member, are the major disadvantages in wider acceptance for structural
engineering applications (Lin et al., 1996). Because of these limitations, the new generation of
composite structures should be designed to work in a safe way and to experience higher
performance than the conventional systems. Consideration of stability and deformation limits
tend to be the governing design criteria for FRP structures before these structures reach material
failure. Thus, the proper establishment of such criteria is an important prerequisite to the
practical use of FRP in engineering applications.

When a composite beam is considered sufficiently slender and undergoes bending
moments about the strong axis, the beam may fail by sudden combined lateral bending and
twisting of cross-section, rather than by rupture or crushing. This phenomenon is known as
lateral-torsional buckling. The critical load is primarily dependant on the material and the
geometry of the member. It is independent of the ultimate strength. A composite beam which is
bent about the major principal axis may buckle laterally at a certain critical value of the load. As
long as the load on the beam is less than the critical value, the beam will bend and stay stable.
When the load is increased until the critical condition is reached, the beam may bifurcate from
the main equilibrium configuration to a different state of equilibrium, which becomes likely or
possible. The plane configuration of the beam is now unstable, and the lowest load at which the

critical condition occurs represents the critical buckling load of the beam (Tai 2004).



Theory of thin-walled open section beams including axial constrains for isotropic
materials was developed by Vlassov (1961). This classical theory neglects the shear deformation
in the middle surface of the wall so that for such beams, the shear deformations may significantly
increase the displacements and reduce the buckling loads for moderately thick beams.. The shear
deformation theory for transversely loaded isotropic beams was developed by Timoshenko and
Gere (1961).

The lateral-torsional buckling includes two regions, elastic and inelastic lateral-torsional
buckling, and they both depend on the slenderness ratio. A beam with higher slenderness will
experience elastic lateral-torsional buckling, which is within the scope of this study, whereas a
beam with intermediate slenderness ratio will experience inelastic lateral-torsional buckling,
which is out of the scope of this study. The lateral-torsional buckling will not occur if the
slenderness ratio of the member is low or if the member is bent about the weak principle axis of
the cross-section. Lateral-torsional buckling is an important design criterion for higher
slenderness ratio structures that the occurrence of it may significantly reduce the maximum load-
carrying capacity of the member.

The lateral-torsional buckling for the isotropic materials is well developed in the past
century. For instance, the lateral-torsional buckling of isotropic slender beams was developed by
Vlassov (1961) as well as Timoshenko and Gere (1961) for various loading and boundary
conditions. This limit state is also adopted by the American Institute of Steel Construction
(AISC) design criteria for structural steel buildings and bridges and has been applied extensively
to design safe steel structures. The use of composite materials gained popularity at the end of
20th century and is playing an important role since then in partial replacement of many structural

steel members. However, there hasn’t been any standard criterion established for lateral-torsional



buckling of composite thin-walled beams to account for it in design. There has been limited
amount of research focusing on lateral-torsional buckling of composite I-section beams, where
the beams were either considered to be of symmetric layup, anti-symmetric layup, orthotropic, or
specially-orthotropic (pultruded) in nature. There hasn’t been any study recorded on the behavior

of generally anisotropic laminated composite beams to the best knowledge of the author.
1.2 Objectives

The objective of present study is to develop generalized analytical models applicable to
the lateral-torsional buckling of anisotropic laminated rectangular composite beams, subjected to
various loading and boundary conditions. The models are based on the classical laminated plate
theory (CLPT), and account for the arbitrary laminate stacking sequence configurations. Finite
element models are developed in ABAQUS to predict critical buckling loads and compare them
with the results obtained from the analytical models. The effects of fiber orientation, beam

length/height ratios and wall thickness on the critical buckling loads are studied.
1.3 Scope of Dissertation

The research work in this dissertation includes a literature review of the developments on
lateral-torsional buckling of isotropic and special composite beams which is described in chapter
two. Lateral torsional buckling of anisotropic laminated thin-walled rectangular composite
beams subjected to pure bending in simply supported condition is treated in chapter three. An
analytical formula was derived to solve the lateral-torsional buckling of simply supported
anisotropic beams under pure bending condition. The analytical solutions are validated with
numerical results. Lateral-torsional buckling of simply supported anisotropic hybrid steel-FRP
beams under pure bending condition is addressed in chapter four. A generalized analytical

approach for lateral-torsional buckling of simply supported anisotropic hybrid (steel-FRP) under



pure bending condition is developed using the classical laminated plate theory (CLPT) as a basis
for the constitutive equations. The analytical formula is also verified against finite element
buckling solutions using ABAQUS for different lamination orientations as well as the location of
the steel sheet in the composite layup. Lateral torsional buckling of anisotropic laminated thin-
walled rectangular composite cantilever beams subjected to free end loading is presented in
chapter five. A generalized analytical solution for lateral-torsional buckling of anisotropic
cantilever beams subjected to free end loading is developed using the classical laminated plate
theory as a basis for the constitutive equations. The stability of the beam under different
geometric and material parameters is investigated. The analytical formula is verified against
finite element buckling solutions using ABAQUS for wide range of lamination orientations in
this case as well. Analytical and numerical solutions for the lateral torsional buckling of
anisotropic laminated thin walled simply supported beams subjected to concentrated load at mid-
span is studied in chapter six. An analytical approach for lateral-torsional buckling of simply
supported anisotropic beams under concentrated load at mid-span and mid-height is developed
using the classical laminated plate theory as a basis for the constitutive equations. The analytical
solution is verified against finite element buckling solutions using ABAQUS for wide range of

lamination orientations.
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Chapter 2 - Literature Review

2.1 Background

Prandtl and Michell independently investigated the earliest theoretical analysis of lateral
stability of beams in 1899. They constructed a beam of narrow rectangular cross-section, simply
supported at both ends, and loaded by uniform moment (Narayanan, 1983). Since then many
authors continued to develop and research the lateral-torsional problems, such as Timoshenko
and Gere (1961) who considered the effect of warping on the torsional aspects of the problem for
I-sections. The following sections in this chapter will overview the works done by other

researchers on the lateral torsional buckling of isotropic beams and special composite beams.
2.2 Previous Research on Isotropic Beams

One of the first theoretical investigations on the lateral stability of thin-walled beams was
conducted by Timoshenko and Gere (1961). Their analytical study aimed at developing critical
load expressions for thin-walled beams under three different loading and boundary conditions:

Simply supported beams under pure bending moments

Cantilever beams subjected to free end load

Simply supported beams subjected to concentrated load at mid-span.

Timoshenko and Gere (1961) obtained the critical moment (Eq. 2.1) for pure bending
case (1). Egs. 2.2 and 2.3 were obtained for the loading cases (2) and (3), respectively. All of the
three presented equations were for narrow rectangular section beams where warping effects are

neglected, which is a major contributing factor for I-section beams.

(Mo)er = 7 /Ely'af (2.1)

4.013,/Ely1G]

P = 20 (22)



p. = 16.94,/El,1G]
cr T 12

(2.3)
Equations 2.2 and 2.3 were obtained by applying the loads at the shear center. They also

presented Egs. 2.4 and 2.5 when the load was applied at a vertical distance (a) from the shear

center for cases (2) and (3), respectively.
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Where E is the modulus of elasticity, Iy’ is the out of plane moment of inertia, L is the length of
the beam, G is shear modulus of elasticity, J is torsional moment of inertia and a is the vertical

distance of applied load from the centroid of the section.
2.3 Previous Research on Composite Beams

While research on lateral-torsional buckling of composite beams can be traced back to
several decades, most analytical and experimental investigations were carried out in 1990s. A
review of available works was presented by Stoddard (1997) and Zhang (2000). This review
included the works performed by Mottram (1992), Barbero and Raftoyiannis (1994), Pandey et
al (1995), Turvey and Brooks (1996), Razzaq et al (1996), and Davalos and Qiao (1997).
Stoddard also reported an experimental investigation of 35 different fiber reinforced polymer I-
beams which were simply supported and subject to concentrated loads acting on top flanges at
the mid-span.

Previous analytical work performed by Mottram (1992), Pandey et al (1995) and
Stoddard (1997) adopted the formulations developed by Bauld and Lih-Shyng (1984) who
presented a Vlassov type theory for symmetrical laminated thin-walled composite beams with

open cross sections. The constitutive relations between beam forces and displacements were



adopted by Bauld and Lih-Shyng. However, the fundamental assumptions for the derivation of
the constitutive relations were originally made from isotropic thin plates. Volovoi et al (1999)
pointed out that these assumptions are not suitable for composite thin plates.

Mottram (1992) applied a finite difference approach to solve the governing differential
equations obtained by Timoshenko and Gere (1961) to obtain a closed form expression for
lateral-torsional buckling loads of fixed end beams subject to concentrated loads at mid-span.
Mottram, in this formulation, replaced the isotropic material properties by the corresponding
properties of special composite materials. He also conducted experimental test and compared the
tests with the analytical formulation. It was found that the analytical formulations were close to
the experimental tests. He concluded that the analysis was valid for thin-walled composite
doubly symmetric I-beams made from mid-plane symmetric fiber reinforced laminates. His
modified formulas might not correctly predict actual composite beam behaviors since the
governing differential equations were originally derived for isotropic I-beams and the tested
beams were made of orthotropic materials.

Additional analytical investigations of fiber reinforced-polymer I-beams under various
loading and boundary conditions were reported by Pandey et al (1995) following the work of
Bauld and Lih-Shyng (1984) and that of Mottram (1992). The primary purpose of the study was
to find the optimal direction of fibers in the web and flange which maximizes buckling loads. It
was concluded that the web fiber angle had an important influence on improving the lateral-
torsional buckling load as the beam span becomes longer. A group of closed form expressions
for I-beams with different loading and boundary conditions were obtained by using the Galerkin
method to solve the equilibrium differential equations. They used energy method, which includes

the two coupling terms, Hs and Hc, to obtain the equilibrium differential equations. These two



coupling terms were, however, ignored in the equilibrium differential equations for simplicity.
The effects of the two terms on the lateral-torsional buckling were left unknown since no
investigation were performed on these two coupling terms. Therefore, the composite material
properties were not properly considered in the research. In addition, the constitutive relations
between beam forces and beam displacements used in the research was adopted from Bauld and
Lih-Shyng’s work, which does not consider composite material properties properly in the
constitutive relations. Hence, there is no confidence to consider the obtained closed form
expressions to be correct for composite I-beams.

Davalos and Qiao (1997) employed the non-linear elastic theory to develop a stability
solution for lateral-distortional buckling for composite wide flange beams based on the principle
of total potential energy and used a Rayleigh-Ritz method to obtain numerical solutions. An I-
beam was divided into top, bottom and web plates in the potential energy calculation. A fifth-
order polynomial shape function was adopted for the displacement field construction. A 6x6
matrix for the relations of panel strains and stresses was shown in the research. Since the matrix
was quite complicated, closed form expressions were very difficult to obtain. By assuming
Bij=0, A16 =A26=D16=D26=0, only one closed form expression for simply supported beams
with the load applied at the centroid of mid-span was given.

Lin et al. (1996) studied the stability of thin-walled composite member using the finite
element method. Seven degrees of freedom at each node for each two-nodded element were used
to model the fiber reinforced plastic. The seven degrees of freedom are the dependent
translations in three perpendicular directions and the corresponding rotations in addition to the
angle of warping. The stiffness matrices of a beam element were used to develop the element

shape functions. A number of examples of thin walled-open sections were solved, different cross
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sections like channels, I sections, and Z-sections were tested as well as different boundary
conditions. The study concluded the importance of the influence of in-plane shear strain on the
critical buckling load for lateral torsional buckling and combined torsional and flexural modes. It
also minimized the significance of shear strain effect on critical buckling when the buckling
happens in terms of a flexural mode.

Hodges and Peter (1975) developed a general lateral buckling equation for a rectangular
cantilever beam subjected to a concentrated load at the centroid of the free end, with the effect of
the pre-buckling deflection included in the general equation. Kollar (2001) presented a stability
analysis of thin walled composite columns under axial loading conditions. A closed form
solution was derived using a modified version of Vlassov’s classical theory (1961) for isotropic
material to account for the composite action. The effect of shear deformation in the in-plane
displacements and in the restrained warping was examined and a shear matrix was formulated in
addition to the bending matrix. Lee et al. (2002) studied the lateral buckling of composite
laminated beams. An analytical approach based on the classical lamination theory was derived
for different boundary conditions and different laminate stacking sequences. The examined
beams were tested under various loading configurations and various locations. The beams were
then compared against a one dimensional finite element model under different load
configurations. The model showed a good agreement against the finite element model of simply
supported I beam in cases of pure bending, uniformly distributed loads, and central point load.
Yet, the model was not appropriate for pure bending with off-axis fiber orientation due to
coupling stiffness.

Sapkas and Kollar (2002) offered closed form solutions for simply supported and

cantilever, thin walled, open section, orthotropic composite beams subjected to concentrated end
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moments, concentrated forces, or uniformly distributed load. The solution indirectly accounted
for shear deformation by adjusting the bending and warping stiffness of the composite beams.
Qiao et al. (2003) formulated an analytical solution for flexural-torsional buckling of composite
cantilever I beams based on an energy method developed from the non-linear plate theory. A
good agreement against finite element method was obtained. Furthermore, four different
cantilever beams were tested experimentally under tip loads to examine the flexural-torsional
response. Also, good agreements were shown against the experimental results.

Kotelko (2004) presented a theoretical analysis of local buckling which represents
material failure. This study covered different cross sections of thin walled beams and columns.
These cross sections varied between lipped and plain channels as well as box-section. This
theory matched previous theories in a way that it depends on the rigid-plastic model. Yet, it
mainly differs by considering a constitutive strain-hardening of the used material. This analytical
approach is particularly useful in the initial phase of design process and may be applied as a
simplified design tool at the early stage of design process, including crush-oriented design.
Karaagac et al. (2007) tested the stability of a cantilever laminated composite beam under static
and dynamic conditions. A linear translation spring was attached to the beam to control the
lateral deformation. The attached elastic support location varied between the free end and the
mid-span of the beam. Length-to-thickness ratio, variation of cross-section in one direction,
orientation angle, static and dynamic load parameters, stiffness and position of the elastic support
were the main variables to study the stability of the beam. Numerical polynomial
approximations for the displacements and the angle of twist were derived and showed a

reasonable accuracy against the finite element method.

12



Machado (2010) derived an analytical solution for lateral stability of cross-ply laminated
thin-walled simply supported bisymmetric beams subjected to combined axial and bending loads.
The presented theory included shear deformability and took into account large displacements and
rotations; moderate bending rotations and large twisting angles. The proposed solution also
examined the nonlinear pre-buckling geometrical deformation for more accurate representation
of the lateral stability conditions. The buckling loads obtained analytically were, in general, in
good agreement with the bifurcation loads observed in the post buckling response. The study
concluded that the buckling moments computed from classical theory is overestimated. Also, it
presented pre-buckling and post buckling displacement curves to relate the stiffness behavior of
the beam to the applied loads and also to study the fiber orientation against the buckling loads.

Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple expressions for
the bending, torsional, and warping stiffness of composite laminated beams. Sherbourne and
Kabir (1995) studied an analytical study of the transvers shear strain effect on the lateral
buckling of thin-walled, open-section fibrous composite beams. They applied uniformly
distributed and transverse central point loads on simply supported and clamped I-beams. They
used an analytic-numerical moment method to solve a coupled system of differential equations
which they obtained by considering a series function which satisfies boundary condition. They
found out that the shear factor drops buckling load in short-span composite beams under
concentrated load.

Roberts and Al-Ubaidi (2001) studied influence of shear deformation on restrained
torsional warping of pultruded FRP bars of open cross-section by proposing an approximate
theory. They concluded that influence of shear deformation on restrained torsional warping is

practically negligible for thin walled pultruded FRP I-beams. They performed a series of bending
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and torsion tests to confirm their conclusion. They suggest that full section properties should be
used for study of the coupled bending and torsional response for such members. Tai (2004)
studied lateral- torsional buckling of symmetrically laminated, rectangular cross-section,
composite beams under various loading conditions. Discrepancies between his results and the
finite element results were detected for various symmetric laminations. A formal engineering
approach of mechanics of thin-walled laminated beams based on kinematic assumptions was
studied by Barbero, et al. (1993). This approach was consistent with Timoshenko beam theory.
They considered thin-walled composited beams with open or closed cross section subjected to
bending and axial load. They obtained beam stiffness coefficients accounting for the cross
section geometry and for the material anisotropy. They derived an explicit expression for the

static shear correction factor of thin-walled composite beams from energy equivalence.
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Chapter 3 - Lateral-Torsional Buckling of Anisotropic Laminated
Thin-Walled Rectangular Composite Beams Subjected to Pure

Bending in Simply Supported Condition

In this chapter, a generalized analytical approach for lateral-torsional buckling of simply
supported anisotropic, thin-walled, rectangular cross-section beams under pure bending
condition was developed using the classical laminated plate theory (CLPT) as a basis for the
constitutive equations. Buckling of such type of members has not been addressed in the
literature. A closed form buckling expression is derived in terms of the lateral, torsional and
coupling stiffness coefficients of the overall composite. These coefficients are obtained through
dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an
effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under
different geometric and material parameters, like length/height ratio, layer thickness, and ply
orientation, was investigated. The analytical formula is verified against finite element buckling

solutions using ABAQUS for different lamination orientation showing excellent accuracy.
3.1 Introduction

Thin-walled beam structures are major components in many engineering applications.
They are widely used as structural components in many types of systems in the field of civil,
mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer
(FRP) composites, are partially replacing conventional materials in these types of structural
systems. Composites are being implemented in transportation systems, offshore structures,
chemical facilities, aircraft wings and fuselage, helicopter blades, and so on. This increase in

interest for using FRP lies in some critical advantages of FRP over conventional materials. Their
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high strength to weight ratio, their environmental adaptability, their ease of transportation and
erection, and their fatigue resistance are some of the advantages FRP provide. The most
prominent characteristic is the ability of tailoring the material for each particular application.
Structural properties depend on the material system and the shape of the cross-section of the
member (Barbero et al., 1993). For isotropic structural shapes, it is possible to optimize the
section to increase the bending stiffness without compromising the maximum bending strength.
Unlike isotropic shapes, with composite beams it is possible to optimize the material itself by
choosing among a variety of resins, fiber systems, and fiber orientations. Although FRP
structures exhibit high strength, problems of excessive deformation and instability, due to their
low stiffness and slenderness of the member, are the major disadvantages in wider acceptance for
structural engineering applications (Lin et al. 1996). Because of these limitations, the new
generation of composite structures should be designed to work in a safe way and to experience
higher performance than the conventional systems. Consideration of stability and deformation
limits tend to be the governing design criteria for FRP structures before these structures reach
material failure. Thus, the proper establishment of such criteria is an important prerequisite to the
practical use of FRP in engineering applications.

A thin-walled slender beam subjected to bending moments about the strong axis may
buckle by a combined lateral bending and twisting of the cross-section. This phenomenon is
known as lateral- torsional buckling. Theory of thin-walled open section beams including axial
constrains for isotropic materials was developed by Vlassov (1961). This classical theory
neglects the shear deformation in the middle surface of the wall so that for the composite beams,

the shear deformations may significantly increase the displacements and reduce the buckling
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loads. The shear deformation theory for transversely loaded isotropic beams was developed by
Timoshenko and Gere (1961).

For the composite thin-walled beams, Bauld and Lih-Shyng (1984) applied Vlasov’s
theory for open section composite beams with symmetrical laminated walls neglecting the shear
deformation. Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple
expressions for the bending, torsional, and warping stiffness of composite laminated beams.
Sherbourne and Kabir (1995) studied analytically the effect of transvers shear strain on the
lateral buckling of thin-walled, open-section fibrous composite beams. Pandey at el. (1995)
proposed an analytical formulation for finding the optimal direction of fiber for improving the
lateral buckling strength of thin-walled I-section composite beams. Lin et al. (1996) studied
buckling problems of thin-walled composite structural members by finite element methods.
Kollar (2001) suggested a closed form solution for thin-walled open section columns, made of
orthotropic composite materials, by considering flexure, shear and the torsional warping induced
shear deformations. Roberts and Al-Ubaidi (2001) studied the influence of shear deformation on
restrained torsional warping of pultruded FRP bars of open cross-section by proposing an
approximate theory. Sapkas and Kollar (2002) studied the stability analysis of thin-walled, open
section beams, made of orthotropic composite materials under various loading conditions. Lee et
al. (2002) presented a general analytical model applicable to the lateral buckling of composite
laminated I-beams subjected to various types of loadings. Qiao et al (2003) presented a
combined analytical and experiment evaluation of flexural-torsional buckling of fiber reinforced
polymer composite I-beams. Tai (2004) studied lateral- torsional buckling of symmetrically
laminated, rectangular cross-section, composite beams under various loading conditions.

Karaagac et al. (2007) studied static and dynamic stability of cantilever laminated symmetric and
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anti-symmetric composite beams having elastic support. Machado (2010) studied the stability of
simply supported thin-walled symmetric laminated composite I-beams subjected to combined
axial and lateral loads by approximate analytical solutions and compared them with numerical
results.

Most of the work, concerning the lateral- torsional stability of thin-walled composite
beams, was focused on I-sections. The beams were either considered to be of symmetric layup,
anti-symmetric layup, orthotropic, or pultruded nature. There hasn’t been any study recorded on
the behavior of general anisotropic laminated composite beams to the best knowledge of the
author.

In the present study, a generalized analytical model applicable to the lateral-torsional
buckling of a simply supported rectangular cross-section beam, made of anisotropic laminated
composite material, subjected to pure bending is developed. This model is based on the classical
laminated plate theory (CLPT), and accounts for the arbitrary laminate stacking sequence
configurations. A finite element model is developed in ABAQUS to predict critical buckling
moments and compare with the results obtained from the analytical model. The effects of fiber
orientation, beam length/height ratios and wall thickness on the critical buckling moments are

studied.
3.2 Analytical Formulation

A simply supported laminated composite beam with length L and a thin rectangular cross
section is subjected to pure bending at the ends, as shown in Figure 3.1. The beam tends to

buckle under a lateral-torsional behavior because of its small thickness.
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Figure 3.1 A deformed laminated beam subjected to pure bending

The model in this study is based on the classical laminated plate theory, Kollar and
Springer (2003) and Barbero (1999). The following assumptions are adopted from the classical
laminated plate theory:

1. The normals to mid-plane (reference surface) of the laminate remain normal and

straight after deformation.

2. The normal to mid-plane of the laminate do not change length — in other words, the

thickness of the laminate stays constant.

3. The shear deformations are neglected.

4. The laminate consists of perfectly bonded layers.

5. The stress-strain relationships are applied under plane-stress conditions.
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3.2.1 Kinematics
Based on the assumptions in the classical laminated plate theory, the displacement
components u, v, w representing the deformation of a point on the plate profile section are given

with respect to mid-surface displacements u0, v0, and w0 as follows:

u(%y,7) = Uo(x,y) — 252 (x,¥) (3.1)

v(x,y,2) = vo(x,y) —zB(xy) (3.2)

w(x,y,z) = wo(x,y) (3.3)
where § = "’a”;"

The strains associated with small displacements from the theory of elasticity are given by

& = &2+ zK,, (3.4)

gy, = &y + 2K, (3.5)

Yxy = Viy T+ ZKxy (3.6)

where
0_9%% _o_%% 0 _ Ouo , 90

&y = ax,ey—(,jy,andyxy— ay+ax (3.7)
_ _Pwo . _ _0B 4 __(M+M)__2% (3.8)

K = 0x2 Ky = ay’ and Kyy = axdy = dyox) 0x )

3.2.2 Constitutive Equations
The plate stiffness equations based on classical laminated plate theory, shown in Figure

3.2, are given as follows.

(N =0y [A11 A1z A6 Bi1 Biz Big] [ &x
Ny =0 Ay; Ay Aze Bin Biz Bis (‘9 ]
{ny =0 L _ g, Aig Aze Aes Bi1 Biz Bis|)Vxy (3.9)
M, Bi1 Biz Big D11 D1z Digl| Kx '
M, =0 Bi; Biy Bys D1z Day Dag|| Ky
\ My, J [Bis Bz Bes Dis Dzs Deged \xy
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where

A = Z’,yzl(éi j)ktk i,j = 1,2,6 are called extensional stiffness coefficients
B;j = 1¥=1(Qij)ktkz_k i,j = 1,2,6 are called extension-bending coupling stiffness

coefficients and

3

Dij = YR-1(Qi)x (tkz',ﬁ + i—’;) i,j = 1,2,6 are called bending stiffness coefficients

(Q; i)k are the components of the k™ layer 2D transformed constitutive matrix in the beam
coordinate system
Z, 1s the depth from the middle surface to the centroid of the kth layer, and tx is the thickness of
k™ layer.

Knowing the zero components of externally applied forces and moments for the pure
bending condition from Figure 3.1, which are expressed in Eq. 3.9, the stiffness matrix can be
simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static

condensation technique:

M) _ , [Dy Dyr]y*x
{Mxy} B h[DYT DT] {ny} (3.10)
where
Bi1 Big|" [A11 A1z Ass Biz] " [Bun Bus
[Dy DYT] _ [Dn D16]_ Biz Bae| |A12 A2z Aze Ba Bi2 Bie
Dyr Dr D16 Des Bis Bes| |A16 Az6 Ass Bae Bis Bee
D12 Dzl LBiz Bz Bas Dy D12 D26
Dy is the composite lateral stiffness coefficient, Dt is the composite twisting stiffness
coefficient, and Dyr is the composite lateral-twisting coupling coefficient. In most cases, where
the layers are symmetric, anti-symmetric, cross-ply, special angle ply, Dyt coefficient will be

zero. However, for the generally anisotropic cases, Dyt coefficient is not zero and will play a

significant role in determining the buckling moments of the beams.
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Figure 3.2 Force and moment resultants on a beam based on classical laminated plate
theory

Referring to Figure 3.1 (structural) and Figure 3.2 (laminated), the bending moment My
in structural coordinate is replaced by Mx in laminate coordinate, on the other hand, the shear
moment, Mxy, in laminate coordinate is in the opposite direction of twisting moment in the
structural coordinate system and is found by Kollar and Springer (2003) to be T= -2 Mxy.
Substituting the curvatures in terms of displacement and rotation in Eq. 3.8 into Eq. 3.10, and
writing the moments in structural coordinates systems, the following relation will be obtained

My ) _ [ Dy 2Dyr -2y 3.11
{—MT}_ [ZDYT 4DT] _ﬁxf (3.11)
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3.2.3 Equilibrium Equations
Figure 3.1 shows the components of external moments before and after deformation and
is obtained as following.
External moments in un-deformed configuration (original axes):
M, = M, (Applied Moment) (3.12)
My =M, =0 (3.13)

External moments in the deformed configuration (deformed axes):

M, =M,=M, (3.14)
= fM, (3.15)
My =M, ="M, (3.16)

The following system of differential equation is obtained after substituting the external

moments from Eqs. 3.15 and 3.16 into Eq. 3.11:

.BMO D, 2D _dz_w
d =h|, . ] dx? 3.17
{—d—:MO} 2Dyr 4Drl| _pr (3.17)
d?w ’
2
-2hDyr S5 — 4hDrf' = =22 M, (3.19)

2
Writing Egs.3.18 and 3.19 in terms of C;T‘;v and equating the two expressions, the following
relationship can be obtained.

> L [=2hDyp ' — BM,] = — [ 4hDrf’ + 2 M, | (3.20)

2Dy

Differentiating Eq. 3.20 with respect to x and rearranging the resulting expression in terms of

d—w Eq.3.21 will be obtained.
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dZW _ 2DyT

’ 4h Dyr? "
=g +M—O[DT—;—:]ﬁ (3.21)

d2w
dx?2

Equating the left hand side of Eq.3.20, which is equal to in Eq. 3.18, and the right hand side

of Eq.3.21, the resulting expression reduces to a second order ordinary differential equation with
constant coefficients, which can be solved analytically.

P B=0 (3.22)

4h? [DyDT—DYTZ

2

Setting k? = Mo aR yields an equation similar to the isotropic condition when the

4h2[DyDr-Dy7?]
warping effect is neglected.
B" +Kk*B=0 (3.23)
The general solution for this type of differential equation is known to be:
B = Asin(kx) + Bcos(kx) (3.24)
Applying boundary condition for pure bending as $(0) = B(L) = 0, the critical buckling

moment can be obtained according to the following equation.

h
Mocr = —~/4(DyDr — D) (3.25)

3.3 Numerical Analysis (FEA)

The finite element method in the commercial software, ABAQUS/Standard (implicit)
was used to simulate the problem in this study. The model was first created by using 3D planar
shells. The shells were assembled based on the stacking arrangement that was used in the
analytical solution. The global x-axis was used along beams length, but the local coordinate

system was used based on the orientation of the fibers in each ply.
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The boundary conditions for this beam were applied as follows. The four corners of the
beam, shown in Figure 3.3, were constrained from moving in z-direction. One end of the beam
was pinned at mid-height restraining it from all displacements, and a roller was applied at mid-
height of other end of the beam to restrain displacement in the y-direction only, as shown in the

Figure 3.3.

Figure 3.3 Applied load and boundary conditions

A linear shell-edge load was applied at both ends of the beam as tension and compression
stresses to create a pure bending moment condition in the beam, as shown in Figure 3.3. Each
edge was partitioned into two parts to apply shell-edge load linearly in the desired direction. The
following relation was used to determine the magnitude of the linear load.

Fx=20y (3.26)
There is no load applied at the mid-height of the edge and the load increases linearly by 20y,
which will act as a pure bending moment when applied as compression above the mid-height and

as tension below the mid-height.

Figure 3.4 Applied shell element type (S8R) and mesh (element size along beam axis: 2.5
mm)
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The beam was meshed with a standard quadratic quadrilateral shell element type of SR
(8-node doubly curved thick shell element with reduced integration) using six degrees of
freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and
h =100 mm gives total number of 29297 nodes and 9600 elements, as shown in Figure 3.4.

The eigenvalue buckling analysis in ABAQUS solver, which is a linear perturbation
procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues
and eigenvectors for symmetric stiffness matrices only. In order to symmetrize the stiffness
matrix of the model, Lanczos iteration eigenvalue extraction method was used. To find the
critical moment, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the
moment which was applied at the ends of the beam in combined tension and compression line
edge loading.

MOCT = AMO (327)

3.4 Results

3.4.1 Material Properties and Stacking Sequences

An anisotropic composite material is made by stacking four layers of the lamina
properties shown in Table 3.1 at different fiber orientations. The thickness of each layer is the
same with the same orthotropic properties, yet it varies in terms of fiber orientation. The
orientation of fiber in each layer can be randomly picked, including common laminate types such
as symmetric laminates, antisymmetric laminates, balanced laminates, and so on. The stacking
sequence starts from the back of the beam to the front of the beam to follow the same order used
for typical laminated plates, Figure 3.5. For example, [30/0/0/-30] means that the first ply has an

angle of 30 degrees from the x-axis of the beam is placed in the back of the beam counter

28



clockwise (towards the y-axis) and the other layers follow with the same order through the
positive z-axis. Figure 3.5 shows the stacking sequence of the laminates. Different layer
thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios of (2, 5, 10, 20, and 50)
were also studied which will be presented later.

Table 3.1 Material properties used the in laminates

Material FRP

El1 142730 MPa
E22 13790 MPa
v12 0.3

v21 0.028985

G12 4640 MPa
G13 4640 MPa
G23 3030 MPa

Y
First layer
7 Last layer

Figure 3.5 The stacking sequence of the laminates
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3.4.2 Buckling Results

For the lateral-torsional buckling of thin-walled rectangular laminated composite beams
under pure bending conditions, an analytical approach is presented as well as FEM results.
Figures 3.6 and 3.7 show the buckling results for different stacking sequences based on the
proposed analytical formulation and also results from FEM model for layer thickness of 0.1 mm
(total thickness of 0.4 mm), beam length of 500 mm and beam height of 100 mm and 25 mm (i.e.
length to height ratio of 5 and 20), respectively. Based on the results obtained, there is an
excellent agreement between the proposed analytical formulation and FEM, Figures 3.6 and 3.7.
The largest error observed is 3.3% (Figure 3.6) apart from the [04] and cross-ply layup cases,
which buckled in a distortional mode rather than lateral-torsional mode (as will be discussed

below) admitting an error up to 10%, see Table 3.2.
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Figure 3.6 Buckling moments at different stacking sequences: tk=0.1 mm for each layer,
L/h=5, and element length 2.5mm
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Figure 3.7 Buckling moments at different stacking sequences: tk=0.1 mm for each layer,
L/h=20, and element length 2.5Smm

3.5 Parametric Study

3.5.1 Effect of Length/Height Ratio

Different Length/height (L/h) ratios of 2, 5, 10, 20, and 50 were used in the analysis to
study their effects on the lateral-torsional buckling of simply supported laminated thin-walled
rectangular cross-sectional beams. The results show that there is a significant drop in the value of
the buckling moments as the L/h ratio increases. The relation between buckling moment and L/h

ratio is defined to be a power function which can be written in Eq. 3.28
Ly Ly_4q
My = (Mcy); * (Z)l(;) (3.28)
where (M, ); is the initial calculated value of buckling moment from Eq. 3.25 with a given (%)l-

ratio for a specific laminate stacking sequence.
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Mcr vs L/h (Analytical)
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Figure 3.8 Effect of L/h ratio on the critical moment based on analytical formula for three
different layups and layer thickness of 0.1 mm

By knowing the value of buckling moment in a selected laminate, Eq. 3.28 helps to
calculate the buckling moment for different L/h ratios. Figure 3.8 shows the effect of L/h ratio on
the buckling moment for three different stacking sequences of [0/0/0/0], [45/-30/-15/90], and
[30/-30/30/-30]. Eq. 3.28 is limited to the analytical formula and is not applicable for the FEM
results. There is a noticeable discrepancy between the analytical and numerical results in the case
of [0/0/0/0] laminate when the ratio of L/h decreases, as shown in Figure 3.9. This discrepancy is
related to the fact that the beam with [0/0/0/0] layup buckles numerically in a distortional mode,
in which f at a certain section transverse the beam is not constant, rather than a lateral-torsional
mode, in which f is constant for a certain section transverse to the beam. Figure 3.10 shows the
deformed mode shape of the beam in three different stacking sequences looking down the beam
height. It is evident that the deformed section for the [0/0/0/0] layup buckles numerically in a

distortional mode where a constant  cannot be assumed as done analytically. Nevertheless,

32



Figure 3.9 clearly shows that the analytical and numerical buckling moments match almost

exactly as the L/h ratio increases beyond 5.

analytical vs FEM for [0/0/0/0] and t=0.1 mm
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Figure 3.9 Comparison of buckling result obtained from analytical solution and FEM for
the [0/0/0/0] laminate and layer thickness of 0.1 mm by changing L/h ratio

Figure 3.10 Edge deformation of the beam under pure bending for L/h=5, (a) [0/0/0/0] (b)
[30/-30/30/-30], and (c) [45/-30/-15/90]
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Figures 3.9, 3.11, and 3.12 show the comparison of buckling moments between the
analytical solution and FEM in three different laminate stacking sequences. It is obvious that in
both analytical and FEM the buckling moments increase as the L/h ratio decrease because of the
larger height of the beam to resist against lateral-torsional buckling. Again, it is evident from
Figure 3.9 that the analytical and numerical results match closely beyond L/h=5 while the two

results match up closely in Figures 3.11 and 3.12 throughout the entire range of L/h values.

analytical vs FEM for [45/-30/-15/90] and t=0.1 mm
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Figure 3.11 Comparison of buckling result obtained from analytical solution and FEM for
the [45/-30/-15/90] laminate and layer thickness of 0.1 mm by changing L/h ratio
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analytical vs FEM for [30/-30/30/-30] and t=0.1 mm
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Figure 3.12 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and layer thickness of 0.1 mm by changing L/h ratio

3.5.2 Effect of Stacking Sequence

As shown in Figures 3.6 and 3.7. The stacking sequences considerably affect the buckling
moments if the dimensions of the beam are kept the same. The lowest value for the critical
buckling moment is obtained in [90/90/90/90] layup while the highest critical value is obtained
for the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical
moment among the possible stacking sequences selected for Figure 3.6. The optimal maximum
critical moment is obtained for the balanced angle-ply layup to be 247N.mm for layup [22/-
22/22/-22]. Figure 3.13 shows the variation in critical buckling moment with the change in layup

angle of 0 to 90 with an increment of 5 degrees.
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Analytical vs FEM for varying balanced angle-ply layup
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Figure 3.13 Variation in critical buckling moment with the change in balanced angle-ply
layup angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and (¢) FEM; layer
thickness of 0.1 mm and L/h of §

3.5.3 Effect of Thickness

Different layer thickness of 0.05, 0.1, 0.15, and 0.2 mm were used in the analysis to study
their effects on the lateral-torsional buckling of simply supported laminated thin-walled
rectangular cross-sectional beams. The L/h ratio of 5 and the stacking sequence was kept the
same while changing the layer thickness. The results show that there is a significant increase in
the value of buckling moments as the layer thickness increases. The relation between buckling

moment and the thickness is defined to be a power function which can be written in Eq. 3.29.

Mcr)i
M, = %H (3.29)

where (M_,.); is the initial calculated value of buckling moment from Eq. 3.24 with a given ¢; for

a specific laminate stacking sequence. Eq. 3.28 works either considering the thickness to be the
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total thickness of the beam or the thickness of each layer as long as all layers have the same
constant thicknesses.

By knowing the value of buckling moment in a selected layup, Eq. 3.29 helps to calculate
the buckling moment for various layer or total beam thickness. Figure 3.14 shows the effect of
layer thickness on the buckling moment based on analytical solution for three different stacking
sequence of [0/0/0/0], [45/-30/-15/90], and [30/-30/30/-30]. Figure 3.15 shows the effect of layer
thickness on the buckling moment based on the FEM results for the same three stacking
sequences of [0/0/0/0], [45/-30/-15/90], and [30/-30/30/-30]. Eq. 3.29 can be obtained from FEM
analysis with small error multipliers of (a) and (b), which are tabulated in Figure 3.15. The

modification of Eq. 3.29 for FEM is shown in Eq. 3.30.

M, = (at + b) Eeie3 (3.30)

Mcr vs tk (analytical)
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Figure 3.14 Effect of thickness, tx, on the critical moment based on analytical method for
three different orientations, L/h=5
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Mcr vs tk (FEM)
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Figure 3.15 Effect of thickness, tk, on the critical moment based on FEM method for three
different orientations, L/h=5

Figures 3.16, 3.17, and 3.18 show the comparison of buckling moments between the
analytical results and FEM in three different laminate stacking sequences. It is obvious that in
both analytical and FEM the buckling moments increase as the layer thickness increases because
of larger thickness of the beam to resist against lateral-torsional buckling. Both analytical and
FEM have a good agreement on the buckling moment for all three sequences, except for the
[0/0/0/0] case when the thickness increases. The anticipated causing factor is discussed earlier in

a previous section.
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Figure 3.16 Comparison of buckling result obtained from analytical solution and FEM for
the [0/0/0/0] laminate and L/h of 5 by changing layer thickness, tk
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Figure 3.17 Comparison of buckling result obtained from analytical solution and FEM for
the [45/-30/-15/90] laminate and L/h of 5 by changing layer thickness, tk
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analytical vs FEM for [30/-30/30/-30] and L/h=5
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Figure 3.18 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and L/h of 5 by changing layer thickness, tk
3.6 Conclusions

In this study, the lateral-torsional buckling of simply supported, thin-walled rectangular
cross-section, anisotropic laminated composite beam under pure bending loading was
investigated. Based on the assumptions made and the results obtained, an excellent accuracy is
observed for a variety of stacking sequences. The applicability of this analytical formulation is
proved by comparing the obtained results with FEM results. The study followed the classical
laminated plate theory with all considered assumptions and determined an effective lateral-
torsional-coupling stiffness matrix.

Based on the study, the stability of the laminated beams under pure bending is greatly
affected by the length/height ratio of the beam as well as the thickness of the beam. The critical

buckling moment was inversely proportional to the length/height ratios with a power function.
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The lowest L/h ratio yields to the highest critical buckling moment. Increase in the thickness of
the beam also plays a significant role in increasing the stability resistance of the beam. The
importance of the stacking sequence, which does not affect the dimensions of the beam, is seen
to greatly influence the stability of the beam.

The critical buckling moment of balanced angle-ply fiber lamination of about [22/-
22/22/-22] is found to reach the maximum value, among this class of layups, because of its
maximum lateral and torsional effective stiffness. The minimum critical buckling moment
obtained from [90/90/90/90] was found to be due to orienting the fibers in the y-direction, thus
reducing the lateral and torsional effective stiffness.

Table 3.2 Comparison of buckling moment obtained from analytical results and FEM for
L/h ratios of 5 and 20 and layer thickness of 0.1 mm in different stacking conditions

Critical Buckling moments Mcr (N.mm) and Error (%)
Laminate L/h =5 L/h=20
Analytical FEM Error Analytical FEM Error

(ABAQUYS) (%) (ABAQUYS) (%)
0/0/0/0 172.47 189.93 10.12 43.12 43.52 0.94
90/90/90/90 53.61 53.97 0.67 13.40 13.45 0.32
30/-30/30/-30 226.88 225.77 0.49 56.72 56.04 1.20
45/-45/45/-45 155.26 156.48 0.79 38.82 38.33 1.24
60/-60/60/-60 118.63 117.31 1.12 29.66 29.38 0.95
60/-60/45/-45 134.39 133.43 0.72 33.60 33.33 0.79
30/-30/45/-45 176.38 175.70 0.39 44.10 43.59 1.14
30/-30/60/-60 146.00 146.31 0.22 36.50 36.26 0.66
30/-30/0/0 168.14 170.76 1.55 42.04 42.01 0.06
30/-30/0/90 118.02 118.68 0.56 29.51 29.45 0.20
30/30/30/30 137.56 138.65 0.79 34.39 34.21 0.53
30/-30/-30/30 197.10 197.05 0.02 49.28 48.86 0.84
0/90/90/0 162.79 178.32 9.54 40.70 41.06 0.89
30/-60/-60/30 163.25 168.65 3.30 40.81 40.65 0.39
0/90/0/90 119.64 125.85 5.19 2991 30.09 0.59
-45/30/-30/45 156.45 156.92 0.30 39.11 38.76 0.91
0/0/90/90 89.63 91.80 2.43 22.41 22.51 0.44
90/0/0/90 79.12 80.76 2.08 19.78 19.86 0.43
45/-30/-15/90 102.60 102.46 0.13 25.65 25.54 0.42
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Chapter 4 - Lateral-Torsional Buckling of Simply Supported

Anisotropic Steel-FRP Beams under Pure Bending Condition

In this chapter, a generalized analytical approach for lateral-torsional buckling of simply
supported anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams under
pure bending condition was developed using the classical laminated plate theory as a basis for
the constitutive equations. Buckling of such type of hybrid members has not been addressed in
the literature. The hybrid beam, in this study, consists of a number of layers of anisotropic fiber
reinforced polymer (FRP) and a layer of isotropic steel sheet. The isotropic steel sheet is used in
two configurations, (i) in the mid-depth of the beam sandwiched between the different FRP
layers and (ii) on the side face of the beam. A closed form buckling expression is derived in
terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These
coefficients are obtained through dimensional reduction by static condensation of the 6x6
constitutive matrix mapped into a 2x2 coupled weak axis bending-twisting relationship. The
stability of the beam under different geometric and material parameters, like length/height ratio,
ply orientation, and layer thickness, was investigated. The analytical formula is verified against
finite element buckling solutions using ABAQUS for different lamination orientations showing

excellent accuracy.

4.1 Introduction

A thin-walled slender beam subjected to bending moments about the strong axis may
buckle by a combined lateral bending and twisting of the cross-section. This phenomenon is
known as lateral- torsional buckling. Theory of thin-walled open section beams including axial

constrains for isotropic materials was developed by Vlassov (1961). This classical theory
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neglects the shear deformation in the middle surface of the wall so that for the composite beams,
the shear deformations may significantly increase the displacements and reduce the buckling
loads. The shear deformation theory for transversely loaded isotropic beams was developed by
Timoshenko and Gere (1961).

Many researchers then started to study the lateral torsional buckling for the laminated
composite beams using different theoretical approaches and enhancing their work with
experimental programs and finite element models to validate the theory. Lin et al. (1996) studied
the stability of thin-walled composite member using the finite element method. Seven degrees of
freedom at each node for each two-nodded element were used to model the fiber reinforced
plastic. The seven degrees of freedom are the dependent translations in three perpendicular
directions and the corresponding rotations in addition to the angle of warping. The stiffness
matrices of a beam element were used to develop the element shape functions. A number of
examples of thin walled-open sections were solved, different cross sections like channels, |
sections, and Z-sections were tested as well as different boundary conditions. The study
concluded the importance of the influence of in-plane shear strain on the critical buckling load
for lateral torsional buckling and combined torsional and flexural modes. It also minimized the
significance of shear strain effect on critical buckling when the buckling happens in terms of a
flexural mode. Davalos and Qiao (1997) used the non-linear elastic theory to develop a stability
solution for lateral-distortional buckling for composite wide flange beams based on the principle
of total potential energy. A fifth-order polynomial shape function was adopted for the
displacement field construction. Then, the proposed model was validated against two
geometrically identical experimental beams loaded at mid-span, with different material

characteristics. A good agreement was obtained against the experimental results and a finite

45



element model. Kollar (2001) presented a stability analysis of thin walled composite columns
under axial loading conditions. A closed form solution was derived using a modified version of
Vlasov’s classical theory (1961) for isotropic material to account for the composite action. The
effect of shear deformation in in-plane displacements and in the restrained warping was
examined and a shear matrix was formulated in addition to the bending matrix. Lee et al. (2002)
studied the lateral buckling of composite laminated beams. An analytical approach based on the
classical lamination theory was derived for different boundary conditions and different laminate
stacking sequences. The examined beams were tested under various loading configurations and
various locations. The beams were then compared against a one dimensional finite element
model under different load configurations. The model showed a good agreement against the
finite element model of simply supported I beam in cases of pure bending, uniformly distributed
loads, and central point load. Yet, the model was not appropriate for pure bending with off-axis
fiber orientation due to coupling stiffness. Sapkas and Kollar (2002) offered closed form
solutions for simply supported and cantilever, thin walled, open section, orthotropic composite
beams subjected to concentrated end moments, concentrated forces, or uniformly distributed
load. The solution indirectly accounted for shear deformation by adjusting the bending and
warping stiffness of the composite beams. Qiao et al. (2003) formulated an analytical solution for
flexural-torsional buckling of composite cantilever I beams based on an energy method
developed from the non-linear plate theory. A good agreement against finite element method was
obtained. Furthermore, four different cantilever beams were tested experimentally under tip
loads to examine the flexural-torsional response. Also, good agreements were shown against the
experimental results. Kotelko (2004) presented a theoretical analysis of local buckling which

represents material failure. This study covered different cross sections of thin walled beams and
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columns. These cross sections varied between lipped and plain channels as well as box-section.
This theory matched previous theories in a way that it depends on the rigid-plastic model. Yet, it
mainly differs by considering a constitutive strain-hardening of the used material. This analytical
approach is particularly useful in the initial phase of design process and may be applied as a
simplified design tool at the early stage of design process, including crush-oriented design.
Karaagac et al. (2007) tested the stability of a cantilever laminated composite beam under static
and dynamic conditions. A linear translation spring was attached to the beam to control the
lateral deformation. The attached elastic support location varied between the free end and the
mid-span of the beam. Length-to-thickness ratio, variation of cross-section in one direction,
orientation angle, static and dynamic load parameters, stiffness and position of the elastic support
were the main variables to study the stability of the beam. Numerical polynomial
approximations for the displacements and the angle of twist were derived and showed a
reasonable accuracy against the finite element method. Machado (2010) derived an analytical
solution for lateral stability of cross-ply laminated thin-walled simply supported bisymmetric
beams subjected to combined axial and bending loads. The presented theory included shear
deformability and took into account large displacements and rotations; moderate bending
rotations and large twisting angles. The proposed solution also examined the nonlinear pre-
buckling geometrical deformation for more accurate representation of the lateral stability
conditions. The buckling loads obtained analytically were, in general, in good agreement with
the bifurcation loads observed in the post buckling response. The study concluded that the
buckling moments computed from classical theory is overestimated. Also, it presented pre-
buckling and post buckling displacement curves to relate the stiffness behavior of the beam to

the applied loads and also to study the fiber orientation against the buckling loads.
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In this study, an analytical model applicable to the lateral-torsional buckling of simply
supported anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams, subjected
to pure bending is developed. This model is based on the classical laminated plate theory
(CLPT), and accounts for the arbitrary laminate stacking sequence configurations. The analyzed
beams consist of six layers of fiber reinforced polymer (FRP) sheets and one isotropic steel sheet
even though the solution is applicable to any number of layers. The FRP sheets have the same
thickness and the same mechanical properties, yet they vary in terms of fiber angle orientation.
The location of the steel sheet was examined in order to understand its influence on the lateral
torsional buckling critical moment. A sandwich stacking configuration (ST-I) is defined by
placing the steel sheet in the mid-thickness of the beam. A sided stacking configuration (ST-II) is
defined by placing the steel sheet at the side face of the beam. A series of FRP angle
configurations were determined for comparisons against a finite element model and also to
compare the different configurations against each other. The finite element model is developed in
ABAQUS to predict critical buckling moments and compare with the results obtained from the
analytical model. Also, the length of the beam to its height ratio and FRP layer thickness were
examined to study the effect of beam size and thickness on the lateral torsional buckling

resistance.

4.2 Analytical Formulation

A simply supported hybrid (steel-FRP) laminated composite beam with length L and a
thin rectangular cross section is subjected to pure bending at the ends, as shown in Figure 4.1.

The beam tends to buckle under a lateral-torsional behavior because of its small thickness.
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The model in this study is based on the classical laminated plate theory, Kollar and
Springer (2003) and Barbero (1999). The following assumptions are adopted from the classical
laminated plate theory:

1. The normals to mid-plane (reference surface) of the laminate remain normal and

straight after deformation.

2. The normal to mid-plane of the laminate do not change length — in other words, the

thickness of the laminate stays constant.

3. The shear deformations are neglected.

4. The laminate consists of perfectly bonded layers.

5. The stress-strain relationships are applied under plane-stress conditions.
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Figure 4.1 A deformed laminated beam subjected to pure bending (structural coordinate
system)
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4.2.1 Kinematics
Based on the assumptions in the classical laminated plate theory, the displacement
components u, v, w representing the deformation of a point on the plate profile section are given

with respect to mid-surface displacements uo, vo, and wo as follows:

u(x,y,2) = up(x,y) — 252 (x,y) (4.1)
v(x,y,2) = vo(x,y) — zB(x,y) (4.2)
w(x,y,z) = wo(x,y) (43)
where § = "’a“;"

The strains associated with small displacements from the theory of elasticity are given by

& = €2+ zk, (4.4)
gy, = &y + 2K, (4.5)
Yy = V)?y + ZKyy (4.6)
where
0_09% 0 _09% o _ 9% 9%
& = ox &y = ay ' "XV T gy ox (4.7)
. d*w, 0B _ ap
Ky =~ Ky = 5, and Ky, = — P (4.8)

4.2.2 Stress-Strain Equations

The stress-strain relation for a layer is derived in the state of plane stress. For an isotropic

material, the stress-strain relation is as follow:

Ox E Ev 0](%
{Gy}= Ev E 0 {Ey} (4.9)
Txy 0 0 GlWUxy
where E = 1—EvZ and G = > (1E+v)
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For anisotropic material, the stress-strain relation in the beam coordinate system is defined as
follows:
Ox Qi1 Q12 Qus|(€x
Oy =101z Q22 Q26)€¥ (4.10)
T hd s e
) Qs Qas Qesl T
where [Ql j] are the components of the transformed reduced constitutive matrix which are given

in standard textbooks like Kollar and Springer (2003) and Barbero (1999).

4.2.3 Force-Strain Equation
The plate stiffness coupling equations based on classical laminated plate theory, shown in

Figure 4.2, are given as follows.

(Nx i 0 [A11 A1z A6 Birx Biz Big] [ &
Ny =0 Ayp Ay Aze Biz By By (Ey]
) Nyy =0 L _ g, A6 Az Ase Bis Bz Beel| ) Yxy (4.11)
M, # 0 Bi1 Biz Bis D11 D1z Digl| ¥x '
M,=0 Bi; Biy Bys D1z Day Dag| | Ky
\M,,, # 0) [Bis B6 Bes Dis Dze Deel \Fxy
where
Ajj = ’,;’:1(@- j)ktk i,j = 1,2,6 are called extensional stiffness coefficients
B = Z’,le(éi j)ktkz_k i,j = 1,2,6 are called extension-bending coupling stiffness
coefficients and
— 3
D;; = Z’,gzl(Qij)k (tkz_,z + i—’;) i,j = 1,2,6 are called bending stiffness coefficients

(Q; i)k are the components of the k™ layer 2D transformed constitutive matrix in the beam

coordinate system
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Z, 1s the depth from the middle surface to the centroid of the kth layer, and tx is the thickness of
k™ layer of the hybrid beam.

Knowing the zero components of externally applied forces and moments for the pure bending
condition from Figure 4.1, which are expressed in Eq. 4.11, the stiffness matrix can be simplified
and dimensionally reduced to an effective 2x2 stiffness matrix by using the static condensation
technique. In the static condensation technique, the zero and non-zero components of forces and

moments from Eq. 4.11 are arranged into separate matrices as follows:

A1y Aqy Age By ((&x Bi1 Bie 0
A1z Azy Aze Baz|) &y Bi; Bae|( Kx 0

h +h = 4.12
A6 Aze Age Bag| | Vxy Bis Bse {ny} 0 ( )
Bi; Bi; B Dyl \ Ky Di; Die 0

Bi1 Bis]" (&)

{Mx }: h[Dll Dlﬁ] {Kx }+h Bi; By &y
M,y Die¢ Deel (Kxy Bis Bee Yxy

D12 D26
(4.13)

(%)
3
The reduced effective 2x2 stiffness matrix (Eq. 4.15) can be obtained by defining iyy } from
xy

Ky

Eq. 4.12 in terms of other components, as shown in Eq. 4.14, and substituting it into Eq. 4.13.

€x Ay Az Ayg Bip]7'[Bir Bis
Ey A1 Ayy Aze By Bi; Bae|( Kx
- _ 4.14
Yxy Aie Aze Ase Bae Bie Bes {ny} ( )
Ky Bi2 Byy Bye Dy Di; Dy
M) _ , [Dy Dyr]y*x
{Mxy}_h[DYT DT] {ny} (4'15)

where
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Biy Bie]' [A1x A1z Ass Biz] ™' [Biy Bie
[DY DYT] _ [Dn D16] _|Biz Bas| |A12 A2z Aze Ba Bi2 B
Dyr Dr D16 Des Bis Bss| |A16 A26 Ace Bae Bis Bss

D1z D¢l LBiz Bza Byg Dy D12 Dy
Dy is the effective hybrid (steel-FRP) composite lateral stiffness coefficient, Dt is the effective
hybrid composite twisting stiffness coefficient, and Dy is the effective hybrid composite lateral-
twisting coupling coefficient. In most cases, where the layers are symmetric, anti-symmetric,
cross-ply, special angle ply, Dyt coefficient will be zero. However, for the generally anisotropic

cases, Dyt coefficient is not zero and will play a significant role in determining the buckling

moments of the beams.
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Figure 4.2 Force and moment resultants on a beam based on classical laminated plate
theory (laminate coordinate system).

Referring to Figure 4.1 (structural coordinate) and Figure 4.2 (laminate coordinate), the
bending moment My in structural coordinate is replaced by Mx in laminate coordinate. On the
other hand, the shear moment, Myy, in laminate coordinate is in the opposite direction of twisting
moment in the structural coordinate system and is found by Kollar and Springer (2003) to be
Mrt= -2 Myy. Table 4.1 shows the relation of moment components in structural coordinate and

laminate composite coordinate.
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Table 4.1 Relation of moment components in structural coordinate and laminate composite

coordinate

The structural coordinate (deformed axes)

Laminate composite coordinate

| M ::

M; =

MT=_

Substituting the curvatures in terms of displacement and rotation of Eq. 4.8 into Eq. 4.15, and

writing the moments in structural coordinates systems, the following relation will be obtained

dZ
{My,}zh[Dy ZDYT] -
_MT ZDYT 4DT _ﬂ’

4.2.4 Equilibrium Equations

(4.16)

Figure 4.1 shows the components of external moments about the original and deformed

axes and is obtained as follows:

External moments in un-deformed configuration (original axes):

M, = M, (Applied Moment)

My =M, =0

External moments in the deformed configuration (deformed axes):

M, =M, =M,
My’ =pM,
My =M, =M,

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



The following system of differential equations is obtained after substituting the external

moments from Egs. 4.20 and 4.21 into Eq. 4.16:

ﬁMo D. 2D _dz_w
d =h|, Y T ] dx? 4.22
{—d—:MO} 2Dyr 4Drl| _pr (4.22)
d?w o
dw
-2hDYT —4hD;B' = _EMO (4.24)

2
Writing Eqs.4.23 and 4.24 in terms of C;T‘;v and equating the two expressions, the following
relationship can be obtained.

o — [=2hDyrf' — fM,) = ——— [ 4hDr B’ + =M, | (4.25)

Differentiating Eq. 4.25 with respect to x and rearranging the resulting expression in terms

of L 7 Y Eq. 4.26 will be obtained.

d*w 2DYT Dyt "
=B | Dr - Y]/; (4.26)

2
Equating the left hand side of Eq.4.25, which is equal to (:lTW in Eq. 4.23, and the right hand side

2
of Eq. 4.26, the resulting expression reduces to a second order ordinary differential equation with

constant coefficients, which can be solved analytically.

" Mo2 _
B+ 4h2[DYDT_DYT2]ﬁ =0 (4.27)

. M,? . . - . . .
Setting k? = ———2——, yields an equation similar to the isotropic condition when the
4h2[DyD-DyT?]

warping effect is neglected.
ﬁ” + KZ,B =0 (428)

The general solution for this type of differential equation is known to be:
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B = Asin(kx) + Bcos(kx) (4.29)
Applying boundary condition for pure bending as $(0) = B(L) = 0, the critical buckling

moment is obtained according to the following equation.

h
Mocr = ==+/4(DyDr — D};) (4.30)
The critical moment for isotropic beam was obtained by Timoshenko and Gere (1961) as

follows:

Mocr =E [EL,GJ (4.31)
— 1,3
where | = ;ht
For an isotropic material where Dyt = 0, the following relation is obtained.
EL, = 2hDy (Lateral stiffness coefficient) (4.32)

GJ] = 2hDr (Torsional stiffness coefficient) (4.33)

4.3 Numerical Analysis (FEA)

The finite element method in the commercial software, ABAQUS/Standard (implicit)
was used to simulate the problem in this study. The model was first created by using 3D planar
shells. The shells were assembled based on the stacking arrangement that was used in the
analytical solution. The global x-axis was used along beams length, but the local coordinate
system was used based on the orientation of the fibers in each ply.

The boundary conditions for this beam were applied as follows. The four corners of the
beam, shown in Figure 4.3, were constrained from moving in z-direction. One end of the beam

was pinned at mid-height restraining it from all displacements, and a roller was applied at mid-
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height of other end of the beam to restrain displacement in the y-direction only, as shown in the

Figure 4.3.

Figure 4.3 Applied load and boundary conditions

A linear shell-edge load was applied at both ends of the beam as tension and compression
stresses to create a pure bending moment condition in the beam, as shown in Figure 4.3. Each
edge was partitioned into two parts to apply shell-edge load linearly in the desired direction. The
following relation was used to determine the magnitude of the linear load.

Fx=20y (4.34)
There is no load applied at the mid-height of the edge and the load increases linearly by 20y,
which will act as a pure bending moment when applied as compression above the mid-height and

as tension below the mid-height.

Figure 4.4 Applied shell element type (S8R) and mesh (element size along beam axis: 2.5
mm)

The beam was meshed with a standard quadratic quadrilateral shell element type of S8R
(8-node doubly curved thick shell element with reduced integration) using six degrees of

freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and
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h =100 mm yields a total number of 29297 nodes and 9600 elements, as shown in Figure 4.4.
The eigenvalue buckling analysis in ABAQUS solver, which is a linear perturbation procedure,
determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues and
eigenvectors for symmetric stiffness matrices only. In order to make the stiffness matrix of the
model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical
moment, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the moment
which was applied at the ends of the beam in combined tension and compression line edge
loading.

Myer = AM, (4.35)

where My is calculated from applied linear edge load.

4.4 Results

4.4.1 Material Properties and Stacking Sequences

An anisotropic hybrid (steel-FRP) composite beam is made by stacking six layers of the
FRP of lamina properties shown in Table 4.2 at different fiber orientations and one layer of
isotropic steel sheet given in Table 4.3. The thickness of each layer along with steel sheet is the
same (typically 0.1 mm), yet it varies in terms of fiber orientation. The orientation of fiber in
each layer can be randomly picked, including common laminate types such as symmetric
laminates, antisymmetric laminates, balanced laminates, and so on. Two stacking configurations
were considered in order to place the steel sheet: (i) sandwich stacking (ST-I) where the steel
sheet is placed at mid-depth of the beam and (ii) sided stacking (ST-II) where the steel sheet is
placed in the front face of the beam. The stacking sequence starts from the back of the beam to

the front of the beam to follow the same order used for typical laminated plates, Figure 4.5. For
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example, [30/-30/90/ST/30/-30/90] means that the first ply has an angle of 30 degrees from the
x-axis of the beam is placed in the back of the beam counter clockwise (towards the y-axis) and
the other layers follow with the same order through the positive z-axis, and ST indicates the
location of isotropic steel sheet in the mid-depth. Figure 4.5 shows the stacking sequence of the
laminates and location of steel sheet. Different length to height ratios of (5, 10, 20, and 50) were

also studied which will be presented later.

Table 4.2 Material 1 (CFRP) properties used the in laminates

En 142730 MPa
E2 13790 MPa
vi2 0.3

V21 0.028985

G2 4640 MPa
G3 4640 MPa
G223 3030 MPa
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Table 4.3 Material 2 (Steel) properties used the in laminates

Material Steel

Eu 200000 MPa
E22 200000 MPa
vi2 0.3
Va1 0.3
G2 76923.08 MPa
Gi3 76923.08 MPa
G223 76923.08 MPa
Y
%\\:‘\Q\%\}_\ First layer
\ +
Z Last layer \\“‘-\\

\

«Steel

Figure 4.5 The stacking sequence of the laminate and location of steel sheet (ST-I)
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4.4.2 Buckling Results

For the lateral-torsional buckling of thin-walled rectangular laminated composite beams
under pure bending conditions, an analytical approach is presented as well as FEA results.
Figures 4.6 - 4.9 show the buckling results for different stacking sequences based on the
proposed analytical formulation as well as results from FEA model. Figures 4.6 and 4.7 show the
results of ST-I (sandwich) configuration and ST-II (sided) configuration of 18 different laminate-
fiber orientation for beam length/height ratio of 5. Similarly, Figures 4.8 and 4.9 show the results
of ST-I configuration and ST-II configuration of 18 different laminate-fiber orientation for beam
length/height ratio of 20. The same comparison was held for beam length/height ratios of 10 and
50. Based on the results obtained, there is an excellent agreement between the proposed
analytical formulation and FEA for all the orientations with an error that does not exceed 3.5%
except for the zero fiber orientation. The largest error observed is 8.7% (Figure 4.6) for the
0/0/0/ST/0/0/0 case, which buckled in a distortional mode rather than lateral-torsional mode,

which will be explained in details later in this chapter, Figure 4.12.

4.5 Parametric Study

4.5.1 Effect of Length/Height Ratio

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to
study their effects on the lateral-torsional buckling of simply supported laminated thin-walled
rectangular cross-sectional hybrid beams. The results show that there is a significant drop in the
value of the buckling moments as the L/h ratio increases. The relation between buckling moment

and L/h ratio is defined to be a power function which can be written in Eq. 4.36.

Moy = (Mer)i * ()i() 7 (4.36)
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where (M., ); is the initial calculated value of buckling moment from Eq. 4.31 with a given (%)
l

ratio for a specific laminate stacking sequence.
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Figure 4.6 Buckling moments at different stacking sequences: tx=0.1 mm for each layer,
L/h=5, and ST-I configuration
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Figure 4.7 Buckling moments at different stacking sequences: tx=0.1 mm for each layer,
L/h=5, and ST-II configuration
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Figure 4.8 Buckling moments at different stacking sequences: tx=0.1 mm for each layer,
L/h=20, and ST-I configuration
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Figure 4.9 Buckling moments at different stacking sequences: tx=0.1 mm for each layer,
L/h=20, and ST-II configuration
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Figure 4.10 Effect of L/h ratio on the critical moment based on analytical formula for three
different layups and layer thickness of 0.1 mm and ST-I arrangement
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Figure 4.11 Effect of L/h ratio on the critical moment based on analytical formula for three
different layups and layer thickness of 0.1 mm and ST-II arrangement

By knowing the value of buckling moment in a selected laminate, Eq. 4.36 helps to
calculate the buckling moment for different L/h ratios. Figures 4.10-4.11 show the effect of L/h
ratio on the buckling moment for three different orientation sequences of ST-I type for
[0/0/0/ST/0/0/0], [30/-30/30/ST/30/-30/30], and [60/-60/60/ST/60/-60/60] and ST-II type for
[0/0/0/0/0/0/ST], [30/-30/30 /30/-30/30/ST], and [60/-60/60 /60/-60/60/ST]. Eq. 4.36 is limited to
the analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy
between the analytical and numerical results in the cases of [0/0/0/ST/0/0/0] and [0/0/0/0/0/0/ST]
laminates as the ratio of L/h decreases, as shown in Figures 4.13 and 4.14. This discrepancy is
related to the fact that the beam with zero fiber orientations buckles numerically in a distortional
mode, in which the lateral angle of twist at a certain section transverse to the beam is not
constant, rather than a lateral-torsional mode, in which the lateral angle of twist remains constant
for a certain section transverse to the beam, Figure 4.12. Nevertheless, Figures 4.13 and 4.14
clearly show that the analytical and numerical buckling moments match almost exactly as the L/h

ratio increases beyond 5 for both stacking sequences. It is obvious that in both analytical and
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FEM the buckling moments increase as the L/h ratio decrease because of the larger height of the

beam to resist against lateral-torsional buckling.

Figure 4.12 Buckling shapes showing distortional buckling mode and lateral-torsional
buckling mode for ST-I arrangement

Analytical vs FEM for [0/0/0/ST/0/0/0]
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Figure 4.13 Comparison of buckling results obtained from analytical solution and FEM for
the [0/0/0/ST/0/0/0] (ST-I) laminate and layer thickness of 0.1 mm by changing L/h ratio
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Figure 4.14 Comparison of buckling results obtained from analytical solution and FEM for
the [0/0/0/0/0/0/0/ST] (ST-II) laminate and layer thickness of 0.1 mm by changing L/h ratio

4.5.2 Effect of Stacking Sequence (ST-I and ST-II)

The previous sections of this chapter discussed the accuracy of the proposed analytical
solution for hybrid beams against the finite element method for lateral-torsional buckling. Also,
the effect of beam’s size was examined against the buckling moment. In this section, and after
verifying the accuracy of the solution, the two different stacking orders are studied. Figure 4.15
shows the ratios of the critical lateral torsional buckling moments for ST-II and ST-I for different
fiber orientations. The Figure shows ratios bigger than one, which leads to the conclusion that
the ST-IL, in which the steel sheet is at the side of the beam, has a higher resistance against
lateral torsional buckling than the ST-I, in which the steel sheet is in the middle, for all examined

fibers orientations.
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Figure 4.15 Normalized ST-II/ST-I vs. the stacking sequence with L/h =S5 and L/h =20

4.5.3 Effect of Fiber Angle Orientation

As shown in Figure 4.6. The stacking sequences considerably affect the buckling
moments if the dimensions of the beam are kept the same. The lowest value for the critical
buckling moment is obtained when the fiber is perpendicular to the beam axis while the highest
critical value is obtained for the balanced angle-ply stacking sequence of 30 degrees which is the
maximum critical moment among the possible stacking sequences selected for Figure 4.6.
Furthermore, a comparison was held to study the effect of fiber angle on critical buckling
moment. The orientation [0/-06/6/ST/0/-6/0] (degree) for ST-I and [6/-6/6/6/-6/0/ST] (degree) for
ST-II were examined with the change in layup angle of 0 to 90 with an increment of 5 degrees,

Figures 4.16 and 4.17. The optimal maximum critical moment is obtained for the balanced angle-

ply layup to be around 2100 N.mm for layup [20/-20/20/20/-20/20/ST].
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Analytical vs FEM for varying angle ST-1
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Figure 4.16 Variation in critical buckling moment with the change in layup angle of 0 to 90
at an increment of 5 degrees. (+) Analytical and (¢) FEM; layer thickness of 0.1 mm and
L/h of 5, ST-1
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Figure 4.17 Variation in critical buckling moment with the change in layup angle of 0 to 90
at an increment of 5 degrees. (+) Analytical and (¢) FEM; layer thickness of 0.1 mm and
L/h of 5, ST-II

4.5.4 Effect of Layer Thickness

The previous comparisons in this chapter were held for one layer thickness of 0.1 mm.

Although it is clear that increasing the thickness of the layers will lead to a higher critical
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moment for the same L/h ratio, it is essential to mathematically define this relationship. Figures
4.19 and 4.21 present this relation graphically for three different fiber orientations of the two
stacking sequences; ST-I and ST-II. A proportional equation (Eq.4.37) is proposed to relate the
critical buckling load to the layer thickness for the same stacking sequence and fiber orientation
at the same L/h ratio. This equation can predict analytically the critical buckling moment for a
known thickness by knowing a different critical buckling moment and its corresponding

thickness.

(A;I;r)unknow - (%) known ( 4.37)

A linear correlation (atx+b) was needed to use this equation to predict the behavior for the finite

element model. The parameters (a) and (b) were found numerically for three different fiber

orientations for the two stacking sequences, Figures 4.18 and 4.20.
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Figure 4.18 Effect of layer thickness, tk, on the critical moment based on FEM for three
different layups and L/h ratio of 5 and ST-I arrangement
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M., vs t, (Analytical)
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Figure 4.19 Effect of layer thickness, tk, on the critical moment based on analytical formula
for three different layups and L/h ratio of 5 and ST-I arrangement
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Figure 4.20 Effect of layer thickness, tk, on the critical moment based on FEM for three
different layups and L/h ratio of 5 and ST-II arrangement
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M., vs t, (Analytical)
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Figure 4.21 Effect of layer thickness, tk, on the critical moment based on analytical formula
for three different layups and L/h ratio of 5 and ST-II arrangement

Figures 4.22 and 4.23 show that, for any thickness and any fiber orientation, as L/h ratio
decreases, the critical buckling moment increases for both stacking sequences, confirming the

relationship found earlier in Figures 4.10 and 4.11.
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Figure 4.22 Critical buckling moment of three different fiber orientation of ST-I versus
different layer thickness and L/h ratios

73



18000 12000
14000 L/h =5 (Analytical)

®L/h =5 (FEM) @ | 16000 ® 0000 L/h = 10 (Analytical) ®
12000 L/h =10 (FEM) 14000 L/h =20 (Analytical)
10000 AL/h=20 (FEM) 12000 8000 L/h =50 (Analytical)
- WL/h =50 (FEM) 10000
E 5000 6000
= 8000 A
< ; )
5 6000 s 6000 4000 °
= .
4000 -
4000 a ;
N . 2000 ) =
2000 ~ 2000 - ® = =] o ye a
ok B ol o 0 Qs a
0 BEEETE N [ 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
0.05 0.10 0.15 0.20 Layer thickness, t, (mm) Layer thickness, t, (mm)
Layer thickness, t, (mm) 30/-30/30/30/-30/30/ST]

[60/-60/60/60/-60/60/ST]
[0/0/0/0/0/0/ST]

Figure 4.23 Critical buckling moment of three different fiber orientation of ST-II versus
different layer thickness and L/h ratios

4.6 Conclusions

In this study, the lateral-torsional buckling of simply supported anisotropic hybrid (steel-
FRP), thin-walled, rectangular cross-section beams under pure bending condition was
investigated. Based on the assumptions made and the results obtained, an excellent accuracy is
observed for a variety of stacking sequences. The applicability of this analytical formulation is
proved by comparing the obtained results with FEM results. The study followed the classical
laminated plate theory with all considered assumptions and determined an effective lateral-
torsional-coupling stiffness matrix.

Based on the study, the stability of the laminated beams under pure bending is greatly
affected by the length/height ratio of the beam. The critical buckling moment was inversely
proportional to the length/height ratios with a power function. The importance of the stacking
sequence, which does not affect the dimensions of the beam, is seen to greatly influence the
stability of the beam. The ST-II stacking type, in which the steel laminate is on the side of the
beam, shows a higher resistance than the ST-I, in which the steel sheet is located at mid-
thickness of the beam. Accordingly, it is more effective to apply the FRP on one side of steel

beams to strengthen them against lateral-torsional buckling.
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The fiber angle orientation was proven to be a critical variable against the lateral torsional
buckling. The critical buckling moment of balanced angle-ply fiber lamination of about [20/-
20/20/20/-20/20/ST] is found to reach the maximum value, among this class of layups, because
of its maximum lateral and torsional effective stiffness. The minimum critical buckling moment
obtained from [90/90/90/ST/90/90] was found to be due to orienting the fibers in the y-direction,
thus reducing the torsional effective stiffness. Also, the effect of layer thickness was examined
and a proportional equation was developed to relate the layer thickness to the critical buckling

load for different fiber orientations and stacking sequences at a certain L/h ratio.
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Chapter 5 - Lateral-Torsional Buckling of Anisotropic Laminated
Thin-Walled Rectangular Composite Cantilever Beams Subjected to

Free End Concentrated Load

In this chapter, a generalized semi-analytical approach for lateral-torsional buckling of
anisotropic, thin-walled, rectangular cross-section cantilever beams subjected to free end loading
was developed using the classical laminated plate theory as a basis for the constitutive equations.
Buckling of such type of members has not been addressed in the literature. A closed form
buckling expression is derived in terms of the lateral, torsional and coupling stiffness coefficients
of the overall composite. These coefficients are obtained through dimensional reduction by static
condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis
bending-twisting relationship. The resulting stability differential equation, along with applying
boundary conditions, was solved numerically using Mathematica. The resulting solution was
found to correlate with the effective lateral-flexure, torsional and coupling stiffness coefficients
to yield a general analytical solution. The analytical formula is verified against finite element
buckling solutions using ABAQUS for a wide range of lamination orientations showing excellent
accuracy. The stability of the beam under different geometric and material parameters, like
length/height ratio, layer thickness, and ply orientation, was investigated.

5.1 Introduction

Thin-walled beam structures are major components in many engineering applications.
They are widely used as structural components in many types of systems in the field of civil,
mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer

(FRP) composites, are partially replacing conventional materials in these types of structural
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systems. Composites are being implemented in transportation systems, offshore structures,
chemical facilities, aircraft wings and fuselage, helicopter blades, and so on. This increase in
interest for using FRP lies in some critical advantages of FRP over conventional materials. Their
high strength to weight ratio, high stiffness to weight ratio, their environmental adaptability, their
ease of transportation and erection, and their fatigue resistance are some of the advantages FRP
provide. The most prominent characteristic is the ability of tailoring the material for each
particular application. Structural properties depend on the material system and the shape of the
cross-section of the member (Barbero et al.1993). For isotropic structural shapes, it is possible to
optimize the section to increase the bending stiffness without compromising the maximum
bending strength. Unlike isotropic shapes, with composite members it is possible to optimize the
material itself by choosing among a variety of resins, fiber systems, and fiber orientations.
Although thin-walled FRP structures exhibit high strength, problems of excessive deformation
and instability, due to their low stiffness and slenderness of the member, are the major
disadvantages in wider acceptance for structural engineering applications (Lin et al. 1996).
Because of these limitations, the new generation of composite structures should be designed to
work in a safe way and to experience higher performance than the conventional systems.
Consideration of stability and deformation limits tends to be the governing design criteria for
FRP structures before these structures reach material failure. Thus, the proper establishment of
such criteria is an important prerequisite to the practical use of FRP in engineering applications.
A thin-walled slender beam subjected to in-plane bending moments (about the strong
axis) may buckle by a combined lateral bending and twisting of the cross-section. This
phenomenon is known as lateral- torsional buckling. Theory of thin-walled open section beams

including axial constrains for isotropic materials was developed by Vlassov (1961). This
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classical theory neglects the shear deformation in the middle surface of the wall so for thicker-
walled beams, the shear deformations may significantly increase the displacements and reduce
the buckling loads. The shear deformation theory for transversely loaded isotropic beams was
developed by Timoshenko and Gere (1961).

For thin-walled beams, Bauld and Lih-Shyng (1984) applied Vlasov’s theory for open
section composites with symmetrical laminated walls neglecting the shear deformation. Bank
and Bednarczyk (1988) and Barbero et al. (1993) developed simple expressions for the bending,
torsional, and warping stiffness of composite laminated beams. Sherbourne and Kabir (1995)
studied analytically the effect of transvers shear strain on the lateral buckling of thin-walled,
open-section fibrous composite beams. Pandey at el. (1995) proposed an analytical formulation
for finding the optimal direction of fiber for improving the lateral buckling strength of thin-
walled I-section composite beams. Lin et al. (1996) studied buckling problems of thin-walled
composite structural members by finite element methods. Kollar (2001) suggested a closed form
solution for thin-walled open section columns, made of orthotropic composite materials, by
considering flexure, shear and the torsional warping induced shear deformations. Roberts and Al-
Ubaidi (2001) studied the influence of shear deformation on restrained torsional warping of
pultruded FRP bars of open cross-section by proposing an approximate theory. Sapkas and
Kollar (2002) studied the stability analysis of thin-walled, open section beams, made of
orthotropic composite materials under various loading conditions. Lee et al. (2002) presented a
general analytical model applicable to the lateral buckling of composite laminated I-beams
subjected to various types of loadings. Qiao et al (2003) presented a combined analytical and
experimental evaluation of flexural-torsional buckling of fiber reinforced polymer composite I-

beams. Tai (2004) studied lateral- torsional buckling of symmetrically laminated, rectangular
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cross-section, composite beams under various loading conditions. Karaagac et al. (2007) studied
static and dynamic stability of cantilever laminated symmetric and anti-symmetric composite
beams having elastic support. Machado (2010) studied the stability of simply supported thin-
walled symmetric laminated composite [-beams subjected to combined axial and lateral loads by
approximate analytical solutions and compared them with numerical results.

Most of the work, concerning the lateral- torsional stability of thin-walled composite
beams, was focused on I-sections. The beams were either considered to be of symmetric layup,
anti-symmetric layup, orthotropic, or pultruded in nature. There hasn’t been any study recorded
on the behavior of general anisotropic laminated composite beams to the best knowledge of the
authors.

In the present chapter, a generalized analytical model applicable to the lateral-torsional
buckling of a cantilever rectangular cross-section beam, made of anisotropic laminated
composite material, subjected to end loading is developed. This model is based on the classical
laminated plate theory (CLPT), and accounts for the arbitrary laminate stacking sequence
configurations. A finite element model is developed in ABAQUS to predict critical buckling
loads and compare with the results obtained from the analytical model. The effects of fiber
orientation, beam length/height ratios and wall thickness on the critical buckling forces are

studied.
5.2 Analytical Formulation

A cantilever laminated composite beam with length L and a thin rectangular cross section
is subjected to free end loading, as shown in Figure 5.1. The model in this study is based on the
classical laminated plate theory, Kollar and Springer (2003) and Barbero (1999). The following

assumptions are adopted from the classical laminated plate theory:
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1. The normals to mid-plane (reference surface) of the laminate remain normal and

straight after deformation.

2. The normal to mid-plane of the laminate do not change length — in other words, the

thickness of the laminate stays constant.

3. The shear deformations are neglected.

4. The laminate consists of perfectly bonded layers.

5. The stress-strain relationships are applied under plane-stress conditions.

The beam tends to buckle under a lateral-torsional behavior because of its small
thickness. The buckling can occur in either clockwise or counterclockwise twisting angle based
upon the orientation of controlling fibers in the stacking sequence, as is observed from FEM. If
the beam buckles counterclockwise, the angle of twist, 5, is considered to be positive, Figure 1a.
On the other hand, f3, is considered to be negative if the beam buckles clockwise, Figure 5.1b.

Separate buckling equation is derived in each case based on the buckling mode shape.
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Figure 5.1 Buckling shape of the beam; (a) buckling counterclockwise (+f) and (b)
buckling clockwise (—f8)
5.2.1 Kinematics

Based on the assumptions in the classical laminated plate theory, the displacement
components u, v, w representing the deformation of a point in the beam profile section, as shown

in Figure 5.2, are given with respect to mid-surface displacements uo, vo, and wo as follows:

u(x,y,2) = up(x,y) = 252 (x,7) (5.1)

v(x,y,2) = vo(x,y) — zB(x, ) (5.2)

w(x,y,z) = wo(x,y) (5.3)
where § = 65; ° (angle of twist)
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Undeformed
Cross Section

Middle Surface C

Figure 5.2 Deformation of a point at beam profile section with respect to mid-surface

displacement

The strains associated with small displacements from the theory of elasticity are given by

& = 2 + zK,
g, = &%+ zk
y = & y

— 1,0
Vxy = Vxy + ZKyxy

where
u v ou v

0 — 0 0 0 0 _— 0 0
Ey = = n — -0

x ax > 7Y ay’ and xy oy ox

9%w, ap (62w0

K - = ——_ and K = —

x oxz Y ay’ and xy 0xdy +

62W0
dyox

):_

ax

298

(5.4)
(5.5)

(5.6)

(5.7)

(5.8)

The relationship of curvature and displacement are shown in Figure 5.3a and b in the case of 8

being positive or negative, verifying Eq. 5.8.
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Figure 5.3 Representation of curvatures with respect to displacement and angle of twist; (a)
beam buckles counterclockwise (+f) and (b) beam buckles clockwise (—f3)

5.2.2 Constitutive Equations
The plate stiffness coupling equations based on classical laminated plate theory, shown in

Figure 5.4, are given as follows.

( Nx i 0 [A11 A1z Aie Bi1 Biz Big] [ &x
Ny =0 Ayp Ay Aze Bin Biz Bis (Ey]
) Nyy =0 L _ g, A6 Aze Ase Bi1 Biz Big| ) Vay (5.9)
M, #0 Bi1 Biz Big D11 Diz Digl | Kx ’
My:0 Biz Bay Bye Diz Dy Dyg Ky
\M,,, # 0) [Bis B26 Bes Dis Dze Deel \xy
where
Ajj = 11¥=1(Qij)ktk i,j = 1,2,6 are called extensional stiffness coefficients
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B;j = z’,ﬁzl(@ j)ktkz_k i,j = 1,2,6 are called extension-bending coupling stiffness
coefficients

3
D N_1(Q; ik (tkzk —’;) i,j = 1,2,6 are called bending stiffness coefficients

(Q; i)k are the components of the k™ layer 2D transformed constitutive matrix in the beam

coordinate system

7, is the depth from the middle surface to the centroid of the k' layer, and tx is the thickness of
k™ layer.

Knowing the zero components of externally applied forces and moments for the loading
condition shown in Figures 5.5 and 5.6, which are expressed in Eq. 5.9, the stiffness matrix can
be simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static
condensation technique. In the static condensation technique, the zero and non-zero components

of forces and moments from Eq. 5.9 are arranged into separate matrices as follows:

Ay Ay A Bip ix 311 Bie ) 0
e e o e s =10 (510
Bi2 Baz Bas Daal \ Ky Dy, Dye 0
Biy Bis]" (&x
€
%y}zh[gi o [l S o J yiyl (5.11)

Dy Dy kKyJ

Sx
€
The reduced effective 2x2 stiffness matrix (Eq. 5.13) can be obtained by defining { yy l from
xy

\x, )

Eq. 5.10 in terms of two other curvature components, as shown in Eq. 5.12, and substituting it

into Eq. 5.11.
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€y | _ _|A1z Az Az B Bi2 B {Kx} (5.12)
Vxy A6 Aze Age Bae Bieé Bee | Kxy )
Ky B12 Bzz Bze Dzz D12 D26

M, Dy DYT
{Mxy} h[DYT DT] ny} (5'13)

where

Bi1 Big]| [A11 Az Ar Biz] 7 [Bun Bus
[DY DYT] — [Dll D16] _ BlZ BZG A12 A22 A26 BZZ BlZ B26
DYT DT D16 D66 Blﬁ B66 A16 A26 A66 BZ6 B16 B66

Di; D¢l LB1z; Baz Bz Do D1, D¢
Dy is the effective composite lateral stiffness coefficient, Dr is the effective composite twisting
stiffness coefficient, and Dyt is the effective composite lateral-twisting coupling coefficient. In
most cases, where the layers are symmetric, anti-symmetric, cross-ply, special angle ply, Dyt

coefficient will be zero. However, for the generally anisotropic cases, Dyt coefficient is not zero

and will play a significant role in determining the buckling forces of the beams.
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Figure 5.4 Force and moment resultants on a beam based on classical laminated plate
theory

Referring to Figure 5.1 (structural coordinate) and Figure 5.4 (laminate coordinate), the
bending moment My in structural coordinate is replaced by Mx in laminate coordinate, on the
other hand, the shear moment, Myy, in laminate coordinate is in the opposite direction of twisting
moment in the structural coordinate system and is found by Kollar and Springer (2003) to be
M7= -2 Myy. Table 5.1 shows the relation of moment components in structural coordinate and

laminate composite coordinate systems.
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Table 5.1 Relation of moment components in structural coordinate and laminate composite
coordinate

The structural coordinate (deformed axes) Laminate composite coordinate
M. = M,

| M:: - Mx |

II|I Y? . M T — le‘J’

l %’u l

| - |

| |

z ‘ X

Substituting the curvatures in terms of displacement and rotation from Eq. 5.8 into Eq. 5.13, and
writing the moments in structural coordinate system, the following relation will be obtained.

My ) _ [ Dy 2Dyr -2y 5.14
{—MT}_ [ZDYT 4DT] _ﬁxf (5.19)

5.2.3 Equilibrium Equations

As discussed earlier, two configurations of buckling mode, counterclockwise and
clockwise, were considered for the analytical formulation. The derivation of equilibrium
equations will be discussed in the following sub-sections.
5.2.3.1 Buckling Counterclockwise

Figure 5.5 shows the components of external moments about original and deformed axes
when the beam buckles counterclockwise, where f is considered to be positive. The moment
components are shown in the following equations:

External moments in un-deformed configuration (original axes):

M, =—P(L—x) (5.15)
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M, =0 (5.16)
My =P(wy —w) (5.17)

External moments in the deformed configuration (deformed axes):

M, = —P(L—x)—P(w; —w)" (5.18)
M, = —P(L—x)ﬁ+P(w1—w)g (5.19)
My = =22P(L—x) + P(w; — w) (5.20)

where P(wy — w) 2—: and P(w; — w) Z_Z are higher order terms which will be neglected.

The following system of differential equations is obtained after substituting the external

moments from Egs. 5.19 and 5.20 into Eq. 5.14:

—P(L—x)B Dy 2Dy, 1(—L¥
{%P(L — %) — P(wy — w)} =h [ZDYYT 47)2]{ _dﬂ’i } (521)
-hDy‘fTVZV _ 2hDypB’ = —P(L — x)B (5.22)
~2hDyr £ — 4hDp’ = L P(L — x) — P(wy — w) (5.23)

2
Writing Egs.5.22 and 5.23 in terms of C;T‘;v and equating the two expressions, the following

relationship can be obtained.

— [~2hDyrf’ + P(L — )] = =——|—4hDrf’ — S P(L — x) + P(wl — w)| (5.24)

hDy 2hDyT

Differentiating Eq.5.24 with respect to x and rearranging the resulting expression in terms of

d—w Eq.5.25 will be obtained.

d’w __ 2Dyt __ Dyr " 2PDyTf
dxz Dy p - P(L x) [ Dy ]ﬁ + PDy(L—x) (5.25)
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d2w
dx?2

Equating the left hand side of Eq.5.24, which is equal to in Eq. 5.22, and the right hand side

of Eq.5.25, the resulting expression reduces to a second order ordinary differential equation with

non-constant coefficients.

" 2hPDyT P%(L—x)? _
p = 4h2[DyDr—Dyr? p 4h2[DyDr—Dy7? p=0 (5.26)
. 2 _ p? _ 2hPDyT . . . .
Setting Y, ° = 2[DyDr—Dyr7] and ¢, = 2[DyDr—Dyr7] a simplified form of differential
equation is obtained.
B+ @1’ (L—2)* —;)B =0 (5.27)

This form of differential equation is a Weber function which can be solved by a numerical

iterative procedure in commercial software which can solve these types of equations.
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Figure 5.5 Components of external moments about original and deformed axes of
laminated cantilever beam subjected to free end loading, buckled counterclockwise

5.2.3.2 Buckling Clockwise

Figure 5.6 shows the components of external moments about the original and deformed
axes when the beam buckles clockwise, where [ is considered to be negative. The moment

components are shown in the following equations:

External moments in un-deformed configuration (original axes):

M, = —P(L — x) (5.28)
M, =0 (5.29)
(5.30)

My =—-P(w;—w)
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External moments in the deformed configuration (deformed axes):

M, = —P(L—x) = P(w; —w) =" (5.31)
M, = P(L —x)B — P(w, —W)Z—z (5.32)
My =S2P(L - x) = P(w; — W) (5.33)

where P(w; — w) Z—: and P(w; —w) % are higher order terms which can be neglected.

The following system of differential equations is obtained after substituting the external

moments from Eqs. 5.32 and 5.33 into Eq. 5.14:

P(L—x)p D, 2Dy 1(—Lw

dw =h| ¥ YT] x? (5.34)

—_P(L—X)+P(W1—W) ZDYT 4DT !

dx ﬂ

d?w ’
‘hDyW — 2hDyrB" = P(L — x)pB (5.35)
d? , d
—2hDYTd—;:—4hDT,8 = —d—‘:P(L—x) + P(w; —w) (5.36)
2
Writing Egs. 5.35 and 5.36 in terms of (ZT‘;V and equating the two expressions, the following

relationship can be obtained.

— [~2hDyrf’ — P(L — )] = =——|—4hDrf’ + 2 P(L — x) — P(wy —w)| (537)

hDy 2hDyT

d

Differentiating Eq. 5.37with respect to x and rearranging the resulting expression in terms

d?w . .
of -z Ed- 5.38 will be obtained.
d*w _ _2Dyr 5, _4h _ Dvr*| pir  _2PDyrP
dxz Dy B+ P(L—x) [DT Dy ]ﬂ + PDy(L—x) (5.38)
dw

Equating the left hand side of Eq. 5.37, which is equal to in Eq. 5.35, and the right hand side

dx?

of Eq. 5.38, the resulting expression reduces to a second order ordinary differential equation with

non-constant coefficients.
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P?(L-x)?

ﬁ 4h? [DyDT_DYTZ] ﬁ 4h2 [DYDT—DYTZ] ﬁ - 0 ( 5.39)
2
Setting ;> = — L and Y, = ZhPDyT

= n2[DyDr—Dyr?] hZ[DyDr—Dyr?] a simplified form of differential

equation is obtained.

B+ WP (L—x)2+9,)B=0 (5.40)

This form of differential equation is a Weber function which can be solved by a numerical

iterative procedure in commercial software which can solve these types of equations.
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Figure 5.6 Components of external moments about original and deformed axes of
laminated cantilever beam subjected to free end loading, buckled clockwise

Comparing Eqs. 5.27 and 5.40, derived from the above two cases, one can see that the

only difference is the sign of coefficient 1,, where it is negative for counterclockwise bucking
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and positive for the case of clockwise buckling. By introducing a new coefficient, C;, which

defines 1), in terms of ;.

Y, = Gy (5.41)
where C; = Dvr
[DyDr—Dy1?]

The differential equation for two cases is as follows:

B"+ WL —x)* £ Cp1)B =0 (5.42)
The value of C; is positive if the coefficient Dy is positive. This case was observed through
finite element analysis to buckle in the clockwise direction making the net sign of the C; term
positive. On the other hand, C; is negative if Dyt is negative. This case was observed through
finite element analysis to buckle in the counterclockwise direction making the net sign of the C;
term positive as well. Therefore, the second term of the equation, which includes C;, is always
positive. As a result, the final form of differential equation can be presented as follows:

B+ (L —x)? + Cp))B = 0 (5.43)

[DyT|

[DyDr-Dy7?]

where C; =

The critical buckling force is

P, =y,h J4[DYDT — Dyr?| (5.44)

A generalized buckling equation can be written by introducing a normalized coefficient to Eq.

5.44.

Cyh
Por = =5 |4[DyDr — Dyr’] (5.45)

where C, = 1, L?
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The value of Y¥; in Eq. 5.43 is solved for arbitrary stacking sequences using a numerical
iterative procedure in Mathematica by applying the following boundary conditions: f(0) = 0
and B'(L) = 0. The general solution of Eq. 5.43 contains a nonlinear polynomial function which
is called ParabolicCylinderD (or D) in Mathematica. In this process, the program first solves for
the general solution of the differential equation. The boundary conditions are applied to the
general solution. After applying the boundary conditions, a polynomial function of f, () is
obtained, which must be set equal to zero. This function contains real and imaginary parts. To
obtain a numerical solution for 1, the numerical values for a certain stacking sequence and
beam geometric parameters should be iterated until the equation converges. The process is
repeated for each stacking sequence. Figure 5.7 shows the flowchart of the procedure used in
Mathematica to obtain values of Y;. A screenshot of the script, used in Mathematica, is shown in

Figure 5.8.
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Figure 5.7 Flowchart of the semi-analytical solution of the buckling equation using
Mathematica
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sol = DSolve[ﬁ[x] {o:d!+ e {L—x)‘J +E57[x] =0, B, xJ {# the differential equation to be solwveds)

flo= {00 2s, o T VI 007 -VTTVT 1T e 0y, eT VT 5 VT VT 145 ) )

m=scl[[1]]

{{3—)[{:{]!—}01 D, (VTVZ V8 - VT V2 VU )2 ny,  (i(V=T V2 xVy -V V2 L\-’E]}]}
1 : : 2 S .

BC1=H"[L] /. m {(# =0; first boundary conditions)

Vo1 Gﬁ‘%[l‘%”‘*“}]q Vo (—1]5-"*4?2%‘%[1'%““"7‘101\@
r[fI P+ a}] r[- i Pii+ a}]

solveC2 = Solve[{BCl1 = 0}, {C[2]}] (% sclves C[2] in terms of C[1] from first B.C.x)

710 Py r[—i £+ a))

{cﬁ F[ii[—i+a}]

BC2 - B[0] f. m (* =0 ; second boundary condition &)
abdy, (VIVIIVE)+aDy, -0V 1Y)
Jilie JitEart

(# Substitute C[2] in terms of C[1l] intoc the above eg. and egunate to zerosx)

;‘2‘%“"*’ o r[-i s(£+a)]

4
D [-=1¥V2 LV +aD, [—\."—1 \’?LV’I):&
Ex{rhn-)[ ]{ F[li{—£+a)] } —2—:(—'.Hn-)
4
(# The above eguation is defined only in terms of C[1l] and . Pull C[1]

ont of the egumation and egnation inside of the egmnation to zeors)

1 T i
o {w}pl [_(—1)‘”‘HLW]+D_1“%,[‘$?HLWJ =0
2

I‘[i;‘(—i+a)] it

iz‘:ll*"‘*’ F[—l—i(iﬂx)] 4
—4}D%i&m)[—(_1)ﬂf4#:_L\FIPD_%I_{W)[—H\I’:_LW] =0

r[j—t (i +a)]

(#xkdkktsrdsadsxadsxrsss DEFINE THE VALUES OF PARTMETERS*#4++44++kddskdtdhktsdtsss)

L = 500 (+ 1ENGTH OF THE BEAM )

500

W= 0.978344399885 % 10*-5 (+ keep changing until the eqmation comverges. )

9,78344%107°

a=0.670712669 (* this is Cl in the differential eguation and is different for each stacking sequencesx)

0.670713

.-z‘:lj*"‘*’ r[—i-i(im)] . .
el LR [T )=

r[i i(-i +a)]

13543551077 + 1263431072 i} =0

Figure 5.8 Screenshot of the script used in Mathematica to solve the buckling differential
equation

97



The normalized coefficient, C,, is shown in the following equation by best fit of curve in
Figure 5.9, where normalized value of C; is obtained from a broad range of stacking sequences.

C, = 4.0038¢7071% (5.46)

4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00

C2

C2=4.0038¢e-0.719C1
R2=0.9994

0 0.2 0.4 0.6 0.8 1 1.2
Cl

Figure 5.9 Ci vs C: to obtain a representative equation from best fit of the data

5.3 Numerical Analysis (FEM)

The derived semi analytical formula was verified by applying finite element buckling
analysis using the commercial software package ABAQUS/Standard (implicit) for laminated
anisotropic cantilever beams. The model was first created by using 3D planar shells. The shells
were assembled based on the stacking arrangement that was used in the analytical solution. The
global x-axis was assigned along beams length, but the local coordinate system was used based
on the orientation of the fibers in each ply.

The beam was rotationally and translationally fixed at one end. A concentrated load of
100 pounds was applied at mid-height of the free end of the beam. The boundary conditions and

applied load are shown in Figure 5.10b.
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Figure 5.10 FEM model with L/h =20 and layer thickness =0.1 mm; (a) applied shell
element type (S8R)

The beam was meshed with a standard quadratic quadrilateral shell element type of S8R
(8-node doubly curved thick shell element with reduced integration) using six degrees of
freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and
h =25 mm gives total number of 10033 nodes and 3200 elements, as shown in Figure 5.10a.

The eigenvalue buckling analysis in ABAQUS solver, which is a linearized perturbation
procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues
and eigenvectors for symmetric stiffness matrices only. In order to turn the stiffness matrix of the
model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical
force, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the applied force
at the mid-height free end of the beam.

Pocr = AP (5.47)
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In addition, a nonlinear stability analysis (pre-buckling and buckling) of the laminated
anisotropic cantilever beam was performed by adopting the nonlinear geometry analysis using
the modified Riks approach, Al-Masri and Rasheed (2017) and Memon and Sun (2004). The
modified Riks analysis uses the Arc-length method to follow the equilibrium path, representing
either bifurcation points or limit points. Suitable limits of load increments are applied during the

analysis in which the iteration converges to equilibrium along the Arc-length.

5.4 Results

5.4.1 Material Properties and Stacking Sequences

An anisotropic composite cantilever beam is made by stacking four layers of the FRP
lamina properties shown in Table 5.2 at different fiber orientations. The thickness of each layer
is the same (typically 0.1 mm) with the same orthotropic properties, yet it varies in terms of fiber
orientation. The orientation of fiber in each layer can be randomly picked, including common
laminate types such as symmetric laminates, antisymmetric laminates, balanced laminates, and
so on. The stacking sequence starts from the back of the beam to the front of the beam to follow
the same order used for typical laminated plates, see Figure 5.11. For example, [30/-30/30/-30]
means that the first ply has an angle of 30 degrees from the x-axis of the beam is placed in the
back of the beam counterclockwise (towards the y-axis) and the other layers follow with the
same order through the positive z-axis direction. Figure 5.9 shows the stacking sequence of the
laminates. Different layer thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios
of (5, 10, 20, and 50) were also studied which will be presented later. Furthermore, the effect of

fiber orientation for antisymmetric balanced angle ply layup was studied.
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Table 5.2 CFRP material properties used in the laminates

Material CFRP
Eu 142730 MPa
E2 13790 MPa
V12 0.3
V21 0.028985
G2 4640 MPa
G13 4640 MPa
G23 3030 MPa
Y
First
7 Last layer

Figure 5.11 The stacking sequence of the laminates

5.4.2 Buckling Results
For the lateral-torsional buckling of thin-walled rectangular laminated composite

cantilever beams subjected to central free end loading, a semi-analytical approach is presented as
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well as FEM results. Figures 5.12 and 5.13 show the buckling results for different stacking
sequences (20 different laminate-fiber orientations) based on the proposed analytical formulation
and also results from FEM model for layer thickness of 0.1 mm (total thickness of 0.4 mm),
beam length of 500 mm and beam height of 25 mm and 50 mm (i.e. length to height ratio of 20
and 10), respectively. Based on the results obtained, there is an excellent agreement between the
proposed analytical formulation and FEM with higher L/h ratio (Figure 5.12). For the lower
value of L/h ratio (Figure 5.13), the error observed is noticeable in the cases of [04] and cross-ply
layup, which buckled in a distortional mode rather than lateral-torsional mode admitting up to

19% deviation, due to the beam being too deep behaving like a plate, see Table 5.3.
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Figure 5.12 Buckling force at different stacking sequences: t<=0.1 mm for each layer,
L/h=20, and finite element length 2.5Smm
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Figure 5.13 Buckling force at different stacking sequences: tx=0.1 mm for each layer,
L/h=10, and finite element length 2.5mm

5.5 Parametric Study

5.5.1 Effect of Length/Height Ratio

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to
study their effects on the lateral-torsional buckling of cantilever laminated thin-walled
rectangular cross-sectional beams. The results show that there is a significant drop in the value of
the buckling force as the L/h ratio increases. The relation between buckling force and L/h ratio is
defined to be a power function which can be written in Eq. 5.48

L

L -1
For = (Per)i * (;)i (;) (5.48)
where (P, ); is the initial calculated value of buckling force from Eq. 5.45 with a given (%)i ratio

for a specific laminate stacking sequence.
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Figure 5.14 Effect of L/h ratio on the critical buckling force based on analytical formula for
three different layups and layer thickness of 0.1 mm.

By knowing the value of buckling force in a selected laminate, Eq. 5.48 helps to calculate
the buckling force for different L/h ratios while the stacking sequence is retained the same.
Figure 5.14 shows the effect of L/h ratio on the buckling force for three different stacking
sequences of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Eq. 5.48 is limited to the
analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy
between the analytical and numerical results in the cases where L/h ratio decreases, especially
for the case of [0/0/0/0] laminate when the ratio of L/h is 5. As shown in Figure 5.15, due to the
fact that the beam with lower L/h ratio behaves like a plate and buckles numerically in a
distortional mode, in which [ at a certain section transverse to the beam is not constant, rather
than a lateral-torsional mode, in which the lateral angle of twist, B, remains constant for a certain
section transverse to the beam. Figure 5.15 shows the deformed mode shape of the beam in three

different L/h ratios of 5, 20 and 50 comparing to the original shapes for layup of [30/-30/30/-30].

It is evident that the deformed shape for L/h ratio of 5 buckles numerically in a distortional mode
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where a constant § cannot be assumed as done analytically. Nevertheless, Figures 5.16-5.18
clearly show that the analytical and numerical buckling forces match almost exactly as the L/h
ratio increases beyond 20. On the other hand, the discrepancy between the analytical and
numerical results for L/h ratios lower than 20 are seen to reflect conservative predictions of the

analytical solution.

Figure 5.15 Buckling (deformed and un-deformed) shape of the cantilever beam for ply
thickness of 0.1 mm and lamination orientation of [30/-30/30/-30]; (a) L/h=50, (b) L/h =20,
and (¢) L/h=5
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Figure 5.16 Comparison of buckling result obtained from analytical solution and FEM for
the [15/30/-45/15] laminate and layer thickness of 0.1 mm by changing L/h ratio

Figures 5.16 - 5.18 show the comparison of buckling forces between the semi-analytical
solution and FEM in three different laminate stacking sequences. It is obvious that in both
analytical and FEM solutions the buckling forces increase as the L/h ratio decrease because of
the larger height of the beam to resist against lateral-torsional buckling. Again, it is evident that
the analytical and numerical results match closely at L/h=20 while for most cases the results

match up closely beyond L/h =10, as shown in Figures 5.17 and 5.18.
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Figure 5.17 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/45/-45] laminate and ply thickness of 0.1 mm by changing L/h ratio
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Figure 5.18 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and ply thickness of 0.1 mm by changing L/h ratio
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5.5.2 Effect of Stacking Sequence

As shown in Figures 5.12 and 5.13. The stacking sequences considerably affect the
buckling forces if the dimensions of the beam are kept the same. The lowest value for the critical
buckling force is obtained in [90/90/90/90] layup while the highest critical value is obtained for
the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical force
among the possible stacking sequences selected for Figures 5.12 and 5.13. The optimal
maximum critical force is obtained for the balanced angle-ply layup to be 0.157 N for layup [20/-
20/20/-20] and L/h =20. Figure 5.19 shows the variation in critical buckling force with the
change in layup angle of 0 to 90 with an increment of 5 degrees. The analytical part of the curve

is calculated using Eq. 5.46 which shows the usefulness of best fit equation obtained from Figure

5.9.
Analytical vs FEM for varying balanced angle-ply layup
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Figure 5.19 Variation in critical buckling force with the change in balanced angle-ply layup
angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and () FEM; ply thickness
of 0.1 mm and L/h of 20
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5.5.3 Effect of Layer Thickness

Different layer thickness of 0.05, 0.1, 0.15, and 0.2 mm were used in the analysis to study
their effects on the lateral-torsional buckling of cantilever laminated thin-walled rectangular
cross-sectional beams. The L/h ratio of 20 and the stacking sequence were kept the same while
changing the layer thickness. The results show that there is a significant increase in the value of
buckling force as the layer thickness increases. The relationship between buckling force and the

thickness is defined mathematically to be a power function which can be written in Eq. 5.49.

p, = Lerliys ( 5.49)

t3
where (P.,.); is the initially calculated value of buckling force from Eq. 5.45 with a given t; for a
specific laminate stacking sequence. Eq. 5.49 works either considering the thickness to be the
total thickness of the beam or the thickness of each layer as long as all layers have the same
constant thickness.

By knowing the value of buckling force in a selected layup, Eq. 5.49 helps to calculate
the buckling force for various layer or total beam thickness. Figure 5.20 shows the effect of layer
thickness on the buckling force based on analytical solution for three different stacking sequence
of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Figure 5.21 shows the effect of layer
thickness on the buckling force based on the FEM results for the same three stacking sequences
of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Eq. 5.49 can be obtained from FEM
analysis with small deviation multipliers of (a) and (b), which are tabulated in Figure 5.21 for

each layup. The modification of Eq. 5.49 for FEM is shown in Eq. 5.50.

Por = (at + b) E ¢ (5.50)
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Figure 5.20 Effect of thickness, tk, on the critical force based on analytical formula for
three different orientations, L/h=20
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Figure 5.21 Effect of thickness, tx, on the critical force based on FEM method for three
different orientations, L/h=20
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Figures 5.22 - 5.24 show the comparison of buckling forces between the semi-analytical
results and FEM in three different laminate stacking sequences. It is obvious that in both
analytical and FEM solutions the buckling forces increase as the layer thickness increases
because of the fact larger thickness of the beam can resist more against lateral-torsional buckling.
Both analytical and FEM results have an excellent agreement on the buckling force for all three
sequences, except for the [15/30/-45/15] case when the thickness increases. The anticipated
reason might be tendency of distortional buckling of beam or the admission of shear deformation

at certain orientation of fibers as the layer thickness increases while keeping L/h ratio the same.
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Figure 5.22 Comparison of buckling result obtained from analytical solution and FEM for
the [15/30/-45/15] laminate and L/h of 20 by changing layer thickness, tx
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Figure 5.23 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/45/-45] laminate and L/h of 20 by changing layer thickness, tk
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Figure 5.24 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and L/h of 20 by changing layer thickness, tk

5.5.4 Effect of Pre-Buckling Deformation

Furthermore, to indicate the existence of pre-buckling deformation in the transvers

direction, the load versus free end mid-height deflection curves are plotted for the different
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stacking sequences of [30/-30/30/-30], [30/-30/45/-45], and [15/30/-45/15] obtained from finite
element nonlinear Riks analysis along with the analytical solution for comparison. The results in

Figure 5.25 for three different stacking sequences and L/h ratio of 20 show excellent agreement.
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mm
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Table 5.3 Comparison of buckling force obtained from analytical results and FEM for L/h
ratios of 10 and 20 and layer thickness of 0.1 mm in different stacking conditions

Critical Buckling Force Pcr (N) and Error (%)
Laminate L/h =10 L/h =20
. FEM Error . FEM Error

Analytical (ABAQUS) (%) Analytical (ABAQUS) (%)
0/0/0/0 0.220 0.262 18.93 0.110 0.119 8.39
90/90/90/90 0.068 0.072 5.03 0.034 0.035 1.95
30/-30/30/-30 0.290 0.306 5.57 0.145 0.147 1.20
45/-45/45/-45 0.198 0.206 4.12 0.099 0.099 0.26
60/-60/60/-60 0.152 0.155 2.26 0.076 0.076 0.06
60/-60/45/-45 0.142 0.148 4.15 0.071 0.072 0.97
30/-30/45/-45 0.191 0.203 6.19 0.096 0.097 1.46
30/-30/60/-60 0.136 0.144 6.02 0.068 0.069 1.94
30/-30/0/0 0.168 0.186 10.70 0.084 0.088 4.57
30/-30/0/90 0.116 0.124 7.43 0.058 0.059 2.95
30/30/30/30 0.077 0.084 8.71 0.038 0.040 3.75
30/-30/-30/30 0.160 0.171 6.80 0.080 0.082 2.48
0/90/90/0 0.208 0.245 17.67 0.104 0.112 7.75
30/-60/-60/30 0.091 0.101 11.24 0.045 0.048 4.72
0/90/0/90 0.153 0.172 12.42 0.076 0.080 5.36
-45/30/-30/45 0.200 0.210 5.06 0.100 0.101 1.17
0/0/90/90 0.114 0.125 8.98 0.057 0.059 3.85
90/0/0/90 0.101 0.109 7.80 0.051 0.052 3.26
15/0/-15/30 0.129 0.142 10.20 0.065 0.067 4.38
30/-40/50/-60 0.122 0.132 8.22 0.061 0.063 3.19
15/30/-45/15 0.120 0.136 13.45 0.060 0.064 5.97

5.6 Conclusions

In this study, the lateral-torsional buckling of cantilever, thin-walled rectangular cross-
section, anisotropic laminated composite beams subjected to central free end loading was
investigated. Based on the assumptions made and the results obtained, an excellent accuracy is
observed for a wide range stacking sequences when L/h exceeds 10. The applicability of this

analytical formulation is proved by comparing the obtained results with FEM results. The study

114



followed the classical laminated plate theory with all considered assumptions and determined an
effective lateral-torsional-coupling stiffness matrix.

Based on the study, the stability of the laminated cantilever beams under free end loading
is greatly affected by the length/height ratio of the beam as well as the thickness of the beam.
The critical buckling force was inversely proportional to the length/height ratios with a power
function. The lowest L/h ratio corresponds to the highest critical buckling force. Increase in the
thickness of the beam also plays a significant role in increasing the stability resistance of the
beam. The importance of the stacking sequence, which does not affect the dimensions of the
beam, is seen to greatly influence the stability of the beam.

The critical buckling force of balanced angle-ply fiber lamination of about [20/-20/20/-
20] 1s found to reach the maximum value, among this class of layups, because of its maximum
lateral and torsional effective stiffness. The minimum critical buckling force obtained from
[90/90/90/90] was found to be due to orienting the fibers in the y-direction, thus reducing the
lateral effective stiffness. Also, a nonlinear Riks analysis was performed to indicate the existence
of pre-buckling deformation in transverse direction while comparing favorably with analytical

buckling limit load.
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Chapter 6 - Lateral Torsional Buckling of Anisotropic Laminated
Thin-Walled Simply Supported Beams Subjected to Concentrated

Load at Mid-Span

In this chapter, a generalized semi-analytical approach for lateral-torsional buckling of
simply supported anisotropic, thin-walled, rectangular cross-section beams under concentrated
load at mid-span/mid-height was developed using the classical laminated plate theory as a basis
for the constitutive equations. A closed form buckling expression was derived in terms of the
lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients
were obtained through dimensional reduction by static condensation of the general 6x6
constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting
relationship. The resulting two coupled stability differential equations are manipulated to yield a
single governing differential equation in terms of the twisting angle. This differential equation
with variable coefficients, along with applying boundary conditions, was solved numerically
using Mathematica. The resulting solution was found to correlate with the effective lateral-
flexure, torsional and coupling stiffness coefficients to yield a general analytical solution. An
analytical formula was possible to extract, which was verified against finite element buckling
solutions using ABAQUS for a wide range of lamination orientations showing excellent
accuracy. The stability of the beam under different geometric and material parameters, like

length/height ratio, layer thickness, and ply orientation, was investigated.
6.1 Introduction

Thin-walled beam structures are major components in many engineering applications.

They are widely used as structural components in many types of systems in the field of
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aerospace, mechanical, marine, and civil engineering. Fiber reinforced polymer (FRP)
composites, are replacing conventional materials in some of these types of structural systems.
This increase in interest for using FRP lies in some critical advantages of these materials over
conventional counterparts. Their high strength to weight ratio, high stiffness to weight ratio, their
corrosion resistance, their ease of transportation and erection, and their fatigue resistance are
some of the advantages FRP offer. The most distinguished characteristic is the ability of tailoring
the material for each particular application. Structural properties depend on the material system
and the shape of the cross-section of the member (Barbero et al.1993). Unlike isotropic shapes,
composite members are possible to optimize by altering the material itself through choosing
among a variety of resins, fiber systems, and fiber orientations. Although thin-walled FRP
structures exhibit high strength, problems of excessive deformation and instability, due to their
low stiffness and slenderness of the member, are the major disadvantages in wider acceptance for
structural engineering applications (Lin et al. 1996). Because of these limitations, the new
generation of composite structures should be designed to work in a safe way and to experience
higher performance than the conventional systems. Consideration of stability and deformation
limits tend to be the governing design criteria for FRP structures before these structures reach
material failure. Thus, the proper establishment of such criteria is an important prerequisite to the
practical use of FRP in engineering applications.

A thin-walled slender beam subjected to in-plane bending moments (about the strong
axis) may buckle in a combined lateral bending and twisting of the cross-section. This
phenomenon is known as lateral- torsional buckling. Theory of thin-walled open section beams
including axial constrains for isotropic materials was developed by Vlassov (1961). This

classical theory neglects shear deformation in the middle surface of the wall so for thicker-walled
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beams, the shear deformations may significantly increase the displacements and reduce the
buckling loads. The shear deformation theory for transversely loaded isotropic beams was
developed by Timoshenko and Gere (1961).

Many researchers have focused on studying the lateral torsional buckling of composite
beams using different theoretical approaches while validating their work with experimental
programs or finite element analysis. Among those, Bauld and Lih-Shyng (1984) applied Vlasov’s
theory for open section composites with symmetrical laminated walls neglecting the shear
deformation. Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple
expressions for the bending, torsional, and warping stiffness of composite laminated beams.
Sherbourne and Kabir (1995) studied analytically the effect of transvers shear strain on the
lateral buckling of thin-walled, open-section fibrous composite beams. Pandey at el. (1995)
proposed an analytical formulation for finding the optimal direction of fiber for improving the
lateral buckling strength of thin-walled I-section composite beams. Lin et al. (1996) studied
stability of thin-walled composite structural members using finite element method. Davalos and
Qiao (1997) used the non-linear elastic theory to develop a stability solution for lateral-
distortional buckling for wide flange composite beams based on the principle of total potential
energy. Kollar (2001) suggested a closed form solution for thin-walled open section columns,
made of orthotropic composite materials, by considering flexure, shear and the torsional warping
induced shear deformations. Roberts and Al-Ubaidi (2001) studied the influence of shear
deformation on restrained torsional warping of pultruded FRP bars of open cross-section by
proposing an approximate theory. Sapkas and Kollar (2002) studied the stability analysis of thin-
walled, open section beams, made of orthotropic composite materials under various loading

conditions. The solution indirectly accounted for shear deformation by adjusting the bending and
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warping stiffness of the composite beams. Lee et al. (2002) presented a general analytical model,
based on the classical lamination theory, applicable to the lateral buckling of composite
laminated I-beams subjected to various types of loadings. Qiao et al (2003) studied a combined
analytical and experimental evaluation of flexural-torsional buckling of fiber reinforced polymer
composite [-beams based on energy method developed from the non-linear plate theory. Tai
(2004) studied lateral- torsional buckling of symmetrically laminated, rectangular cross-section,
composite beams under various loading conditions. Kotelko (2004) studied theoretical analysis
for local buckling of different cross section thin-walled beams and columns. Karaagac et al.
(2007) studied stability of cantilever laminated symmetric and anti-symmetric composite beams
under static and dynamic conditions by applying elastic support. Machado (2010) studied the
stability of simply supported thin-walled symmetric laminated composite I-beams subjected to
combined axial and lateral loads by approximate analytical solutions and compared them with
numerical results. The proposed solution also examined the nonlinear pre-buckling geometrical
deformation for more accurate representation of the lateral stability conditions.

Most of the work, related to lateral- torsional stability of thin-walled composite beams,
was focused on I-sections. The beams were either considered to be of symmetric layup, anti-
symmetric layup, orthotropic, or pultruded in nature. There hasn’t been any study recorded on
the behavior of general anisotropic laminated composite beams to the best knowledge of the
authors.

In the present chapter, a generalized semi-analytical model applicable to the lateral-
torsional buckling of a simply supported rectangular cross-section beams, made of anisotropic
laminated composite materials, subjected to concentrated load at mid-span/mid-height is

developed. This model is based on the classical laminated plate theory (CLPT), and accounts for
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the arbitrary laminate stacking sequence configurations. A finite element model is developed in
ABAQUS to predict critical buckling loads and compare them with the results obtained from the
analytical model. The effects of fiber orientation, beam length/height ratios and wall thickness on
the critical buckling forces are studied. A finite element nonlinear pre-buckling geometrical
deformation analysis was also examined and compared against semi-analytical solution to

examine the pre-buckling deformation.
6.2 Analytical Formulation

A simply supported laminated composite beam with length L and a thin rectangular cross
section is subjected to concentrated load at mid-span/mid-height, as shown in Figure 1. The
model in this study is based on the classical laminated plate theory, Kollar and Springer (2003)
and Barbero (1999). The following assumptions are adopted from the classical laminated plate
theory:

1. The normals to mid-plane (reference surface) of the laminate remain normal and

straight after deformation.

2. The normal to mid-plane of the laminate do not change length — in other words, the

thickness of the laminate stays constant.

3. The shear deformations are neglected.

4. The laminate consists of perfectly bonded layers.

5. The stress-strain relationships are applied under plane-stress conditions.

The beam tends to buckle under a lateral-torsional behavior because of its small
thickness. The beam is divided into two halves from the point of applied load (mid-span) in order
to derive buckling equation. The coordinate system is assigned from the support end of each part

as x-axis to be positive moving towards the center of the beam. The angle of twist, £, is positive
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(counterclockwise buckling) in the left side of the beam (Figure 1a), while it is negative
(clockwise buckling) to the right side of the beam (Figure 1b). The buckling equation is derived
for each side of the beam, separately, then reconciled together. Figure 1¢ shows the boundary

conditions for the beam shown from top view.

Y A
Y F 3

z h S

> ,_ A\
- - 1 1,_Xb Z ¥

';_B"P . » = . Yp
X
Z
po=0 X p(5)=0 X
S — < < —=

7 Top view @

Figure 6.1 Buckling shape of the beam; (a) left side (+[8), (b) right side (—f), and (c) top
view
6.2.1 Kinematics

Based on the assumptions in the classical laminated plate theory, the displacement
components u, v, w representing the deformation of a point in the plate profile section, as shown

in Figure 2, are given with respect to mid-surface displacements uo, vo, and wo as follows:
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u(x,y,2) = uo(x,y) — 252 (x,)
V(x:y’z) = UO(XJ’) _Z)B(x'y)
W(X,y,Z) :WO(xry)

where f = E;—V;” (angle of twist)

Undeformed A 20

. N e

Cross Section . — B\‘\Lp
e B ZT - ‘ F

ZT X Nx M, ¢
........... —p ﬁ) e —
Middle Surface C pefo™ . n p

Cyoss sectt T
- Ug P

(6.1)

(6.2)

(6.3)

Figure 6.2 Deformation of a point at beam profile section with respect to mid-surface

displacement

The strains associated with small displacements from the theory of elasticity are given by

& = 2 + zK,
g, = &%+ zk
y = & y

— 4,0
Yxy = Vxy +'Zny

where
ou v, u v,
0 — 0 0 _ 0 0 _— 0 0
&) =——,€&) =—,an =—+=
x ax >V oy )2 d]%y oy +-6x
9%’w, ap (62Mm
K, = — K., = ——.,and K = —
x oxz Y 6y’a d xy 0xdy

62W0

dyox

):

_p 98
a0x

(6.4)
(6.5)

(6.6)

(6.7)

(6.8)

The relationship of curvature and displacement is shown in Figure 3a and b in the case of

being positive or negative which confirms Eq. 6.8.
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Figure 6.3 Representation of curvatures with respect to displacement and angle of twist; (a)
left side of the beam (counterclockwise, +) and (b) right side of the beam (clockwise, — 8)

6.2.2 Constitutive Equations
The plate stiffness equations based on classical laminated plate theory, shown in Figure

6.4, are given as follows.

( Nx i g ) [A11 A1z Aie Bii Biz Bie] {Ex\
Ny = A1z Azy Aze Bi1 Biz Bis|| &
) Nyy =0 L _ p, A6 Aze Ase Bi1 Biz Big| ) Vxy (6.9)
M, #0 Bi1 Biz Big D11 Diz Dis |Kx | '
M, =0 Bi; Baz Bze D1z Dz Dy kKy)
\M,,, # 0) [B1s Bz Bes Dig Dz Deeld \xy
where
Ay = lej:l((_zi]-)ktk I,j = 1,2,6 are called extensional stiffness coefficients
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By = Zgzl(ﬁi]-)ktkik i,j = 1,2,6 are called extension-bending coupling stiffness
coefficients and
3
Zk 1(Qu)k (tkzk + & ) i,j = 1,2,6 are called bending stiffness coefficients

(Q; i)k are the components of the k™ layer 2D transformed constitutive matrix in the beam

coordinate system

Z,, is the depth from the middle surface to the centroid of the k' layer, and tx is the thickness of
k™ layer.

Knowing the zero components of externally applied forces and moments for the loading
condition shown in Figures 6.5 and 6.6, which are expressed in Eq. 6.9, the stiffness matrix can
be simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static
condensation technique. In the static condensation technique, the zero and non-zero components

of forces and moments from Eq. 6.9 are arranged into separate matrices as follows:

A1 Aqx Age Bio] (& Bi1 Bis 0
A1z Ayy Az By Ey B2 By {KX} 0
h +h = 6.10
Aie Aze Age Basl| | Yxy Bis Bee | (Kxy 0 ( )
Bi, Baz Byg Dozl \ Ky D12 Dge 0
B11 Big T (&
My } [Dn D16] {Kx } 2 Bag| )&
=h +h 6.11
{Mxy D16 Desl (Kxy B16 Bes <ny ( )
D12 Dge \K

8X
€
The reduced effective 2x2 stiffness matrix (Eq. 6.13) can be obtained by defining { Ya l from

vy

Eq. 6.10 in terms of the two other curvature components, as shown in Eq. 6.12, and substituting

it into Eq. 6.11.
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Sy — _ A12 A22 A26 BZZ B12 B26 {KX} ( 6 12)
YXY A16 A26 A66 B26 B16 B66 KXY )
KY B12 BZZ B26 DZZ D12 D26
Mx _ DY DYT K
{Mxy} =h [DYT DT] {ny} ( 6'13)

where

Bix Bis] [An A1z Ats Biz]™ [Bur B
[DY DYT] — [Dll D16:|_ B12 BZ6 A12 A22 A26 B22 BlZ B26
DYT DT D16 D66 B16 B66 A16 A26 A66 B26 Bl6 B66

D12 D6l LBiz Bzz Bz Dy Di; Dae
Dy is the composite effective lateral stiffness coefficient, Dr is the composite effective twisting
stiffness coefficient, and Dyt is the composite effective lateral-twisting coupling coefficient. In
most cases, where the layers are symmetric, anti-symmetric, cross-ply, special angle ply, Dyt

coefficient will be zero. However, for the generally anisotropic cases, Dyt coefficient is not zero

and will play a significant role in determining the buckling load of the beams.
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Figure 6.4 Force and moment resultants on a beam based on classical laminated plate
theory

Referring to Figure 6.1 (structural coordinate) and Figure 6.4 (laminated coordinate), the
bending moment My in structural coordinate is replaced by Mx in laminate coordinate, on the
other hand, the shear moment, Myy, in laminate coordinate is in the opposite direction of twisting
moment in the structural coordinate system and is found by Kollar and Springer (2003) to be
Mrt= -2 Myy, Table 6.1 shows the relation of moment components in structural coordinate and

laminate composite coordinate systems.
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Table 6.1 Relation of moment components in structural coordinate and laminate composite
coordinate

The structural coordinate (deformed axes) Laminate composite coordinate
M, = M,
| My =M, |

Substituting the curvatures in terms of displacement and rotation from Eq. 6.8 into Eq.
6.13, and writing the moments in structural coordinates system, the following relation will be
obtained

My ) _ [ Dy 2Dyr -2y 6.14
{—MT}_ [ZDYT 4DT] _ﬁxf (6.19)

6.2.3 Equilibrium Equations

As discussed earlier, two coordinate systems were considered (one for each half from the
point of support) for simply supported beam under concentrated load at mid-span. The
coordinate system is arranged from the ends of the beam as x-axis to be positive moving towards
the center of the beam. The derivation of equilibrium equations is discussed in the following sub-
sections.
6.2.3.1 Buckling Counterclockwise (Left Side of the Beam)

Figure 6.5 shows the components of external moments about original and deformed axes
in the left side of the beam when it is considered to buckle counterclockwise, where S is

considered to be positive. The moment components are shown in the following equations:
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External moments about original axes:

M, = (x) (6.15)
M, =0 (6.16)
My =2 (W —w) (6.17)

External moments about deformed axes:

M, =560 =5 (wi—w) g (6.18)
My =2 @B +7 (wy —w) o (6.19)
My =2 () + 2 (wy = w) (6.20)

P d P d . .
where 3 (w; —w) d—‘: and 3 (w; —w) d—Z are higher order terms which can be neglected.

The following system of differential equations is obtained after substituting the external

moments from Egs. 6.19 and 6.20 into Eq. 6.14:

P d2
Z(X)B —h Dy 2DYT]{_ dx\;\/} (6.21)
P d P ' :
ST - (w—w)|  EDyr ADel{ g
d? , P
—hDYd—XVZV — 2hDyrf’ =~ (B (6.22)
d? , P d P
-2hDYTd—XV2V —4hD7p’ = —> () d—“X” — =~ (w; —w) (6.23)

2
Writing Eqgs.6.22 and 6.23 in terms of % and equating the two expressions, the following

relationship can be obtained.

[~ 2hDyrf — 2 (OB| = s [~ 4hDrp + 2O S+ (wl - w)] (6.24)

Differentiating Eq.6.24 with respect to x and rearranging the resulting expression in terms of

d?w . .
T Eq.6.25 will be obtained.
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@w _ _2yrg | sh o Dyr®lo, _ PDyrb
= = o B g [Dr | B ovFoo (6.25)

d“w

2
Equating the left hand side of Eq.6.24, which is equal to = in Eq. 6.22, and the right hand side

2
of Eq.6.25, the resulting expression reduces to a second order ordinary differential equation with

non-constant coefficients.

PZ
"o_ hPDYT T(X)Z _
B 4h2[DyDr-Dyr?] B 4h2[DyDr-Dyr?] B=0 (6.26)
P2
. 2 _ 4 _ hPDyT . . . .

Setting Y, “ = 4hZ[DyDT_DYTZ]and P, = 72 [DyDr—Dyr?] a simplified form of differential
equation is obtained.

B + (U1 * (0% — W) = 0 (6.27)

This form of differential equation is a Weber function which can be solved by a numerical

iterative procedure in commercial software which can solve these types of equations.
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Figure 6.5 Components of external forces about original and deformed axes of laminated

simply supported beam subjected to concentrated load; coordinate system from the left end
of the beam (counterclockwise, +f3)

6.2.3.2 Buckling Clockwise (Right Side of the Beam)

Figure 6.6 shows the components of external moments about the original and deformed
axes when the right side of the beam is considered, where f is considered to be negative. The
moment components are shown in the following equations:

External moments about original axes:

M, = g(x) (6.28)
M, = 0 (6.29)
My =—2(w; —w) (6.30)

External moments about deformed axes:
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’ P d

M, = > (0) — (W —w) (631)
’ P P d

M, =~ (OB~ (W —w) — (6.32)
' P, \d P

My = =2 ()5 =5 (Wi —w) (633)

P dw P dv . .
where 3 (w; —w) ™ and 3 (w; —w) T are higher order terms which can be neglected.

The following system of differential equations is obtained after substituting the external

moments from Eqgs. 6.32 and 6.33 into Eq. 6.14:

P
—z (0B _ [Py 2Dyr —dz—‘;v
P dw P =h 2D 4D dX, (6.34)
;X —+ 5 (wp —w) yr ST -B
—hDY — 2hDyrf’ = —-(x)s (6.35)
P d P
2hDyp &Y — — 4hDpB' =~ (x)d—‘: + = (wy —w) (6.36)

Writing Egs. 6.35 and 6.36 in terms of and equating the two expressions, the following

relationship can be obtained.

L [~2hDyrp + 2 0] = w)| (6.37)

Differentiating Eq. 6.37 with respect to x and rearranging the resulting expression in terms

of F’ Eq. 6.38 will be obtained.

2
dz_w — 2DYT B — _ Di] BII _ PDYTB ( 638)

dx? Dy DY%(X)

in Eq. 6.35, and the right hand side

2

Equating the left hand side of Eq. 6.37, which is equal to &Y =

of Eq. 6.38, the resulting expression reduces to a second order ordinary differential equation with

non-constant coefficients.

133



hPD P2
— + B=0 (6.39)

124
B 4h?[DyDr—Dyr?] 4h?[DyDy—Dyt?
p2
. 2 _ e _ hPDvyT . . . .
Setting Y~ = h2[DyD1—Dyr7] and y, Z[DyDy—Dyr?] ° a simplified form of differential

equation is obtained.
B + (" (0% + Yp)B =0 (6.40)
This form of differential equation is a Weber function which can be solved by a numerical

iterative procedure in a commercial software which can solve these types of equations.

yAS A
v Y y-
awp[2X)
dx
A
A
—~ 5 p
A, P
P2W /2(X)
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Figure 6.6 Components of external forces about original and deformed axes of laminated
simply supported beam subjected to concentrated load, coordinate system from the right

end of the beam (clockwise—f3)
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Comparing Egs. 6.27 and 6.40, derived from the above two halves of the beam, one can
see that the only difference is the sign of coefficient 1,, where it is negative for
counterclockwise bucking (left side of the beam) and positive for the case of clockwise buckling
(right side of the beam).

The differential equation for two cases is as follows:

B + (1" ()* F )B =0 (6.41)
Since Egs. 6.27 and 6.40 come from the same configuration, a term cannot have two different
signs. Therefore, the second term of Eq. 6.41 which is +1, has to vanish, and the final equation
simplifies to

B” + Y1 °x*p =0 (6.42)

Thus the critical buckling force is

P = 2y, h J4[DYDT — Dyr?] (6.43)
The value of ¥, in Eq. 6.42 is determined by numerical iterative solution using
Mathematica by applying the following boundary conditions: $(0) = 0 and S’ (%) = 0. The

general solution of Eq. 6.42 contains a nonlinear polynomial function which is called
ParabolicCylinderD (or D) in Mathematica. In this process, the program first solves for the
general solution of the differential equation. The boundary conditions are applied to the general
solution. After applying the boundary conditions, a polynomial function of f;, (1;) is obtained,
which must be set equal to zero. This function contains real and imaginary parts. To obtain a
numerical solution for Y, the numerical values for a certain beam geometric parameters should
be iterated until the equation converges. Following this procedure, Eq. 6.42 converged at a value

of P, = 3.38723E — 5 regardless of the lamination stacking sequence for a length of 500 mm.
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To obtain a general solution, Y; is normalized with resepct to length yielding a constant of
16.94. It is interesting to observe that this constant matches that of isotropic beams show by
Timoshenko and Gere (1961). The general buckling solution is presented in Eq. 6.44. Figure 6.7
shows the flowchart of the procedure used in Mathematica to obtain the value of ;. A

screenshot of the script, used in Mathematica, is shown in Figure 6.8.

16.94h
P=— J4[DYDT — Dyr”’] (6.44)

( GivenDE )

l 1
Obtamn general solution
1>
Applvy B.Cs.

i

- .

| Declare | 4,'f Obtain x
parameters x fo(w) =0 ,

Iterate ), —
L6
P Converged "» No
[ Yes

End process, obtain
i, from step 5

Figure 6.7 Flowchart of the semi-analytical solution of the buckling equation using
Mathematica
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sol = DSolve[[x] (¥ x°) + 67 [x] = 0, B, x|

{{,B—»([x}l—)cl D_l[ﬂ‘:(—_lﬁx\@]+c; D 1 [(-17#42 xﬁ}]}}
2 2

m = sol[1]

{,3»[{;}Hc1 D, [wil—_lﬁxﬁ)m D, [(—1)3“4?14?]]}
2 2

BC1 =A[0] /. m (# = 0 ; FIRST BOUNDARY CONDITION APPLIED=)

Vrea Vra

+

EEIRERD

solveC2 = Solve[{BC1 = 0}, {C[2]}] (* sovles C[2] in terms of C[1] from the first boundary condition)

fler = —a1l

L
BC2 = B [—] f. m (% = 0 : SECOND BOUNDARY CONDITION APPLIED%)
2

YTV [4_4?] 11T Dy (2
2w ) w0

4

n ey Vo1 vy 1P Ly
VT ave oo N i vr o e (T

1¥1 i1 ) W1 3 V1
(#xkexxrtrearrsrrexr+ 242 xCOMMENTS : substitue the value of C[2] in terms of C[1] ###dddkdtdserterrerdetrsrrtarsss)

4 H R a4
) ! L'”-l[ﬁfﬂ YT IvE CoLVE D, (] VALV
V-1V2avy 2 -D; — =DV oV 2 —Dl[ ] =0
2v2 2 V2 2V2 2 V2
{(+ COMMENT: the abowve equation is defined only in terms of C[1l] and a (psi). Pull C[1] out of the equation and
inside of the equation equal to zero.x)

4 H ¥ L
) -1 “’?D—l[%] YTive A e
TVIvY 2 b, NIV : _Dl[ ] =0
¥ il Nz 2v1 3 V1
(% *kkddddbkdddddbbibdrtbdsbsrdbdsssrssx+4DEFINE THE VALUES OF PAREMITERS ##s#%iddkddddddddidsddddiosdddrbssdss)
. = 500 {* Length of the beam+)
a00
W= 3.387226430095%x10*-5 {* Eeep changing this value until the real and imaginary parts of the equation convergess)
0.0000338723
4 ER T
) mlap_l["_l—é"; ] - gy (2l i
IVIVE 2 |2 NN 2 —D1[ ] =0
V1 1 ) 1 3 V1

[6.43496x107 = 3.6799x10™ il =0

Figure 6.8 Screenshot of the script used in Mathematica to solve the buckling differential
equation
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6.3 Numerical Analysis (FEA)

The finite element method through the commercial software package,
ABAQUS/Standard (implicit) was used to simulate the problem in this study in order to verify
the derived semi-analytical formula for simply supported beams under concentrated loads at mid-
span. The model was first created by using 3D planar shells. The shells were assembled based on
the stacking arrangement that was used in the analytical solution. The global x-axis was assigned
along beam’s length, but the local coordinate system was used based on the orientation of the
fibers in each ply.

The beam was rotationally and translationally restrained at one end. A concentrated load
was applied at the centroid of the beam’s mid-span. The boundary condition and applied load are

shown in Figure 6.9a.

Figure 6.9 FEM model with L/h =20 and layer thickness = 0.1 mm; (a) applied load and
boundary conditions and (b) applied shell element type (S8R) and mesh (element size along
beam axis: 1 mm)
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The beam was meshed with a standard quadratic quadrilateral shell element type of S8R (8-node
doubly curved thick shell element with reduced integration) using six degrees of freedom per
node and an element size of 1 mm along beam axis. A beam with L = 500 mm and h =25 mm
gives total number of 40053 nodes and 13000 elements, as shown in Figure 6.9b.

The eigenvalue buckling analysis in ABAQUS solver, which is a linearized perturbation
procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues
and eigenvectors for symmetric stiffness matrices only. In order to turn the stiffness matrix of the
model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical
force, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the applied force
at the centroid of mid-span of the beam.

Pyer = AP (6.45)

In addition, a nonlinear stability analysis (pre-buckling and buckling) of the laminated
anisotropic simply supported beam was performed by adopting the nonlinear geometry analysis
using the modified Riks approach, Al-Masri and Rasheed (2017) and Memon and Sun (2004).
The modified Riks analysis uses the Arc-length method to follow the equilibrium path,
representing either bifurcation points or limit points. Reasonable load increments are applied

during the analysis in which the iteration converges to equilibrium along the Arc-length.

6.4 Results

6.4.1 Material Properties and Stacking Sequences
An anisotropic composite material is made by stacking four layers of the lamina
properties shown in Table 6.2 at different fiber orientations. The thickness of each layer is the

same with the same orthotropic properties, yet it varies in terms of fiber orientation. The
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orientation of fiber in each layer can be randomly picked, including common laminate types such
as symmetric laminates, antisymmetric laminates, balanced laminates, and so on. The stacking
sequence starts from the back of the beam to the front of the beam to follow the same order used
for typical laminated plates, shown in Figure 6.10. For example, [30/-30/30/-30] means that the
first ply has an angle of 30 degrees from the x-axis of the beam is placed in the back of the beam
counter clockwise (towards the y-axis) and the other layers follow with the same order through
the positive z-axis direction. Figure 6.10 shows the stacking sequence of the laminates. Different
layer thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios of (5, 10, 20, and
50) were also studied which will be presented later. Furthermore, the effect of fiber orientation
for antisymmetric balanced angle ply, symmetric balanced angle ply, and single angle

anisotropic layups were studied by varying angle of orientation.

Table 6.2 CFRP material properties used in the laminates

Material CFRP

E11 142730 MPa
E22 13790 MPa
vl2 0.3

v21 0.028985

G12 4640 MPa
G13 4640 MPa
G23 3030 MPa
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First

7 Last layer

Figure 6.10 The stacking sequence of the laminates

6.4.2 Buckling Results

For the lateral-torsional buckling of thin-walled rectangular simply supported laminated
composite beams under concentrated load, a semi-analytical approach is presented as well as
FEM results. Figures 6.11 and 6.12 show the buckling solutions for different stacking sequences
(19 different laminate-fiber orientations) based on the proposed analytical formulation as well as
results from FEM model for layer thickness of 0.1 mm (total thickness of 0.4 mm), beam length
of 500 mm and beam height of 50 mm and 25 mm (i.e. length to height ratio of 10 and 20),
respectively. Based on the results obtained, there is an excellent agreement between the proposed
analytical formulation and FEM, Figures 6.11 and 6.12. The largest error observed is 6.34% for
L/h ratio of 10 (Figure 6.11) and 8.90% for L/h ratio of 20 from anisotropic layup of
[30/30/30/30], see Table 6.3. From the observation of Figures 6.11 and 6.12, the analytical

formula slightly overestimates the buckling load for higher L/h ratio (Figure 6.12). It might be
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due to the fact the height to thickness (h/t) ratio of the beam decreases causing it to behave as a

less-slender beam.

L/h=10

Stacking sequence
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Figure 6.11 Buckling forces at different stacking sequences: t<=0.1 mm for each layer and
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Figure 6.12 Buckling forces at different stacking sequences: tx=0.1 mm for each layer and
L/h=20

6.5 Parametric Study

6.5.1 Effect of Length/Height Ratio

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to
study their effects on the lateral-torsional buckling of simply supported anisotropic laminated
thin-walled rectangular cross-section beams. The results show that there is a significant drop in
the value of the buckling forces as the L/h ratio increases. The relation between buckling force

and L/h ratio is defined to be a power function which can be written in Eq. 6.46.
L\ (L\?!
Pcr - (Pcr)i * (H)l (H) ( 6.46)
where (P,,); is the initial calculated value of buckling force from Eq. 6.44 with a given (%) ratio
l

for a specific laminate stacking sequence.
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Pcr vs L/h (Analytical)
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Figure 6.13 Effect of L/h ratio on the critical buckling force based on analytical formula for
three different layups and ply thickness of 0.1 mm

By knowing the value of buckling force in a selected laminate, Eq. 6.46 helps to calculate
the buckling force for different L/h ratios while the stacking sequence is retained the same.
Figure 6.13 shows the effect of L/h ratio on the buckling force for three different stacking
sequences of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Eq. 6.46 is limited to the
analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy
between the analytical and numerical results in the cases where L/h ratio decreases, especially
when the ratio of L/h is 5 or lower, as shown in Figures 6.15-6.17 for three different cases. The
beam with lower L/h ratio behaves like a plate and buckles numerically in a distortional mode, in
which f at a certain section transverse to the beam is not constant, rather than a lateral-torsional
mode, in which the lateral angle of twist, B, remains constant for a certain section transverse to
the beam. Figure 6.14 shows the deformed mode shape of the beam in four different L/h ratios of
5, 10, 20 and 50 comparing to the original shapes for layup of [0/0/0/0] in isometric view. It is

evident that the deformed shape for the cases (a), (b) and (c) buckles numerically in a lateral
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torsional mode where a constant B can be assumed as done analytically while B cannot be
assumed constant for L/h ratio of 5, Figure 6.14d, as it buckles numerically in a distortional
mode. Figures 6.15 — 6.17 clearly shows that the analytical and numerical buckling loads match

almost exactly as the L/h ratio increases beyond 5.

Figure 6.14 Buckling (deformed and un-deformed) shape of the simply supported beam for
ply thickness of 0.1 mm and lamination orientation of [0/0/0/0]; (a) L/h=50, (b) L/h =20, (¢)
L/h =10, and (d) L/h =5
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Figure 6.15 Comparison of buckling result obtained from analytical solution and FEM for
the [15/30/-45/15] laminate and ply thickness of 0.1 mm by changing L/h ratio

Figures 6.15 — 6.17 show the comparison of buckling forces between the analytical
solution and FEM in three different laminate stacking sequences. It is obvious that in both
analytical and FEM the buckling forces increase as the L/h ratio decrease because of the larger
height of the beam to resist against lateral-torsional buckling. Again, it is evident from Figures

6.15 — 6.17 that the analytical and numerical results match closely beyond L/h=5.
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Figure 6.16 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/0/90] laminate and ply thickness of 0.1 mm by changing L/h ratio
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Figure 6.17 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and ply thickness of 0.1 mm by changing L/h ratio

6.5.2 Effect of Stacking Sequence

As shown in Figures 6.11 and 6.12. The stacking sequences considerably affect the

buckling forces if the dimensions of the beam are kept the same. The lowest value for the critical
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buckling forces is obtained in [90/90/90/90] layup while the highest critical value is obtained for
the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical force
among the possible stacking sequences selected for Figures 6.11 and 6.12. The optimal
maximum critical force is obtained for the balanced angle-ply layup to be 0.663 N for layup [20/-
20/20/-20] using L/h ratio of 20. Figure 6.18 shows the variation in critical buckling force with
the change in layup angle of 0 to 90 with an increment of 5 degrees. The analytical and FEM
results match closely for the entire range of layup angle reaching a maximum value at about [20/-
20/20/-20]. Figure 6.19 shows the variation in critical buckling force obtained from analytical
formula with the change in layup angle of 0 to 90 with an increment of 5 degrees for three
different cases of antisymmetric balanced angle ply [0/-6/6/-8], symmetric balanced angle ply
[6/-6/-6/0], and anisotropic single angle [6/6/6/0]. Again it is obvious that the optimal maximum
critical force is obtained for the symmetric and antisymmetric balanced angle ply layups at
around 20 degrees while for anisotropic single angle layup the maximum critical forces is
obtained at 0 degree layup. For single angle anisotropic layup, the lateral-twisting coupling
coefficient, Dyr, is higher comparing to lateral and twisting coefficient which causes the beam to

be critical in other angle layup rather than 0 degrees.
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Figure 6.18 Variation in critical buckling force with the change in balanced angle-ply layup
angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and () FEM; ply thickness
of 0.1 mm and L/h of 20
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Figure 6.19 Variation in critical buckling force with the change in layup angle of 0 to 90
with an increment of 5 degrees from analytical formula for three different layups; ply
thickness of 0.1 mm and L/h of 20
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6.5.3 Effect of Layer Thickness

Different layer thickness of 0.05, 0.1, 0.15, and 0.2 mm were used in the analysis to study
their effects on the lateral-torsional buckling of simply supported laminated thin-walled
rectangular cross-section beams. The L/h ratio of 20 and the stacking sequence were kept the
same while changing the layer thickness. The results show that there is a significant increase in
the value of buckling forces as the layer thickness increases. The relationship between buckling

force and the thickness is defined to be a power function which can be written in Eq. 6.47.

p, = Lerliys (6.47)

t3

where (P.,.); is the initially calculated value of buckling force from Eq. 6.44 with a given
t; for a specific laminate stacking sequence. Eq. 6.47 works either considering the thickness to
be the total thickness of the beam or the thickness of each layer as long as all layers have the
same constant thickness.

By knowing the value of buckling force in a selected layup, Eq. 6.47 helps to calculate
the buckling force for various layer or beam thickness. Figure 6.20 shows the effect of layer
thickness on the buckling force based on analytical solution for three different stacking sequence
of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Figure 6.21 shows the effect of layer
thickness on the buckling force based on the FEM results for the same three stacking sequences
of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Eq. 6.47 can be obtained from FEM
analysis with small deviation multipliers of (a) and (b), which are tabulated in Figure 6.21 for the

three mentioned layups. The modification of Eq. 6.47 for FEM results is shown in Eq. 6.48.

Por = (at + b) E ¢ (6.48)
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Figure 6.21 Effect of thickness, tk, on the critical force based on FEM method for three
different orientations, L/h=20

Figures 6.22 — 6.24 show the comparison of buckling forces between the semi-analytical
results and FEM in three different laminate stacking sequences. It is obvious that in both

analytical and FEM solutions the buckling forces increase as the layer thickness increases
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because of the fact larger thickness of the beam can resist more against lateral-torsional buckling.
Both analytical and FEM results have a good agreement on the buckling force for all three
sequences, except for the [15/30/-45/15] case when the thickness increases. The anticipated
reason might be tendency of distortional buckling of beam or the admission of shear deformation
at certain orientation of fibers as the layer thickness increases while keeping L/h ratio the same.
Timoshenko and Gere (1961) states that lateral buckling occurs theoretically for any value of t/h
but it is necessary to consider lateral buckling only for in the case of a very narrow cross section

where t/h is very small quantity.
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Figure 6.22 Comparison of buckling result obtained from analytical solution and FEM for
the [15/30/-45/15] laminate and L/h of 20 by changing layer thickness, tx
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Figure 6.23 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/0/90] laminate and L/h of 20 by changing layer thickness, tk
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Figure 6.24 Comparison of buckling result obtained from analytical solution and FEM for
the [30/-30/30/-30] laminate and L/h of 20 by changing layer thickness, tx

6.5.4 Effect of Pre-Buckling Deformation

Furthermore, to indicate the existence of pre-buckling deformation in the transverse

direction, the load versus mid-span deflection curves are plotted for the different staking
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sequences of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30] obtained from finite element
nonlinear Riks analysis along with the analytical solution for comparison. The buckling loads in
Figure 6.25 for anisotropic layups of [30/-30/0/90] and [15/30/-45/15] show excellent agreement
and a pre-buckling deformation. On the other hand, the antisymmetric angle ply [30/-30/30/-30]

exhibits higher buckling load with a clear bifurcation buckling.

07 Load vs Deflection
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Figure 6.25 Analytical versus numerical solution; deflection at mid-span, L/h=20 and tx=0.1
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Table 6.3 Comparison of buckling force obtained from analytical results and FEM for L/h
ratios of 10 and 20 and layer thickness of 0.1 mm in different stacking conditions

Critical Buckling Forces Pcr (N.mm) and Error (%)
L/h =10 L/h=20
Laminate
Analytical FEM E(f,;)‘;r Analytical FEM E(f,;)‘;r

0/0/0/0 0.9298 0.9602 3.27 0.4649 0.4668 0.40
90/90/90/90 0.2890 0.2891 0.03 0.1445 0.1437 0.57
30/-30/30/-30 1.2231 1.2376 1.19 0.6115 0.6049 1.09
45/-45/45/-45 0.8370 0.8517 1.76 0.4185 0.4139 1.09
60/-60/60/-60 0.6395 0.6387 0.13 0.3198 0.3154 1.37
60/-60/45/-45 0.7245 0.7274 0.40 0.3623 0.3572 1.40
30/-30/45/-45 0.9509 0.9622 1.20 0.4754 0.4690 1.35
30/-30/60/-60 0.7871 0.7853 0.22 0.3935 0.3846 2.27
30/-30/0/0 0.9064 0.9098 0.37 0.4532 0.4477 1.21
30/-30/0/90 0.6363 0.6327 0.56 0.3181 0.3125 1.76
30/30/30/30 0.7416 0.6946 6.34 0.3708 0.3378 8.90
30/-30/-30/30 1.0626 1.0521 0.98 0.5313 0.5138 3.29
0/90/90/0 0.8776 0.9027 2.87 0.4388 0.4398 0.22
30/-60/-60/30 0.8801 0.8376 4.83 0.4400 0.4016 8.74
0/90/0/90 0.6450 0.6542 1.43 0.3225 0.3218 0.21
-45/30/-30/45 0.8434 0.8569 1.60 0.4217 0.4186 0.74
0/0/90/90 0.4832 0.4866 0.70 0.2416 0.2408 0.34
90/0/0/90 0.4265 0.4285 0.46 0.2133 0.2123 0.44
15/30/-45/15 1.0077 0.9759 3.15 0.5038 0.4737 5.97

6.6 Conclusions

In this study, the lateral-torsional buckling of simply supported, thin-walled rectangular
cross-section, anisotropic laminated composite beam under concentrated load at mid-span was
investigated. Based on the assumptions made and the results obtained, an excellent accuracy is
observed for a variety of stacking sequences. The applicability of this analytical formulation is

proved by comparing the obtained results with FEM results. The study followed the classical
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laminated plate theory with all considered assumptions and determined an effective lateral-
torsional-coupling stiffness matrix.

Based on the study, the stability of the laminated beams under concentrated load is
greatly affected by the length/height ratio of the beam as well as the thickness of the beam. The
importance of the stacking sequence, which does not affect the dimensions of the beam, is seen
to greatly influence the stability of the beam.

The critical buckling force of symmetric and antisymmetric balanced angle-ply fiber
lamination of about [20/-20/-20/20] and [20/-20/20/-20] are found to reach the maximum value,
among these two classes of layups, because of their maximum lateral and torsional effective
stiffness. On the other hand, single angle anisotropic fiber lamination of [0/0/0/0] is found to
reach the maximum value because of its zero value of lateral-twisting coupling coefficient. The
minimum critical buckling load obtained from [90/90/90/90] was found to be due to orienting the
fibers in the y-direction, thus reducing the lateral effective stiffness. A finite element nonlinear
Riks analysis was performed to indicate the existence of pre-buckling deformation in transverse
direction for anisotropic layups while comparing favorably with analytical buckling limit loads

in two stacking sequences. It further showed perfect bifurcation buckling for antisymmetric

angle ply layup.
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Chapter 7 - Conclusions and Recommendations

7.1 Conclusions

In this research, the lateral-torsional buckling of thin-walled rectangular cross-section,
anisotropic laminated composite beams under various loading and boundary conditions, as well
as hybrid steel-FRP beams under pure bending condition, are analytically and semi-analytically
investigated. Based on the assumptions made and the results obtained, an excellent accuracy is
observed for a variety of stacking sequences. The applicability of this analytical formulation is
proved by comparing the obtained solutions with FEM results. The study followed the classical
laminated plate theory with all considered assumptions and determined an effective lateral-
torsional-coupling stiffness matrix.

Based on the study, the stability of the laminated beams under various loading and
boundary conditions is greatly affected by the length/height ratio of the beam as well as the
thickness of the beam. The critical buckling moment or force are inversely proportional to the
length/height ratios with a power function. Increase in the thickness of the beam also plays a
significant role in increasing the stability resistance of the beams. The importance of the stacking
sequence, which does not affect the dimensions of the beam, is seen to greatly influence the
stability of the beams.

For the hybrid steel-FRP beams, the ST-II stacking type, in which the steel laminate is on
the side of the beam, shows a higher resistance than the ST-I, in which the steel sheet is located
at mid-thickness of the beam. Accordingly, it is more effective to apply the FRP on one side of
steel beams to strengthen them against lateral-torsional buckling.

The fiber angle orientation was proven to be a critical variable against the lateral torsional

buckling. The critical buckling moment or force of symmetric and anti-symmetric balanced
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angle-ply fiber lamination of about [22/-22/-22/22] and [22/-22/22/-22] are found to reach the
maximum value, among these two classes of layups, because of their maximum lateral and
torsional effective stiffness. For single angle anisotropic fiber lamination of [0/ 6/ 6/ 8] is found
to reach the maximum value with [0/0/0/0], among this class of layups, because of its zero value
of lateral-twisting coupling coefficient and highest value of lateral coefficient at zero degrees.
The minimum critical buckling moment or force obtained from [90/90/90/90] was found to be
due to orienting the fibers in the y-direction, thus reducing the lateral effective stiffness
coefficient.

A finite element nonlinear geometrical deformation analysis, using modified Riks
simulation by ABAQUS, is used for the cases of cantilever beams under free end loading and
simply supported beams under concentrated load at mid-span. This analysis was examined and
compared against analytical solution for determining the existence of pre-buckling deformation
vs. bifurcation behavior. As a result the buckling loads showed excellent agreement with those

predicted analytically.
7.2 Recommendations

From the major conclusions presented in the preceding section, additional works could be
made in the future, as follows:

1. Extend this approach to investigate stability of different types of rectangular laminated
composite beams by changing the vertical location of applied load with respect to the
centroid of cross-section

2. Develop analytical approach for anisotropic and hybrid laminated composite I-section

beams.
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3. Develop an Excel based program to solve the lateral-torsional buckling of laminated

composite rectangular beams for any loading and boundary conditions.
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