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Abstract 

Thin-walled structures are major components in many engineering applications. When a 

thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by 

a combined lateral bending and twisting of cross-section, which is called lateral-torsional 

buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic 

laminated, thin-walled, rectangular cross-section composite beams under various loading 

conditions (namely, pure bending and concentrated load) and boundary conditions (namely, 

simply supported and cantilever) was developed using the classical laminated plate theory 

(CLPT), with all considered assumptions, as a basis for the constitutive equations. 

Buckling of such type of members has not been addressed in the literature.  Closed form 

buckling expressions were derived in terms of the lateral, torsional and coupling stiffness 

coefficients of the overall composite. These coefficients were obtained through dimensional 

reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 

coupled weak axis bending-twisting relationship. The stability of the beam under different 

geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, 

was investigated. The analytical formulas were verified against finite element buckling solutions 

using ABAQUS for different lamination orientations showing excellent accuracy. 
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Chapter 1 - Introduction 

1.1 Background 

Thin-walled beam structures are major components in many engineering applications. 

They are widely used as structural components in many types of systems in the field of civil, 

mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer 

(FRP) composites, are partially replacing conventional materials in these types of structural 

systems. Composites have demonstrated outstanding success in both civilian and military fields. 

Nearly half of materials, in Boing 787 Dreamliner, are made by advanced composites. The light-

weight of composites also saves 20 percent in fuel compared to other equivalents (Huang, 2013). 

2-D laminated and complex 3-D composites are being implemented in transportation systems, 

offshore structures, chemical facilities, aircraft wings, fuselages, engine blades, door frames, 

helicopter blades, rib structures, biomedical devices, and ballistic panels. 

Characterization of the mechanical behavior of composites is a growing need because of 

their expanding applications. Composite mechanical properties rely on the structure of the 

composite reinforcement, which in laminated composites is determined by the orientation of 

reinforcing fibers. A laminated composite part is made by combining reinforcing fibers and 

matrix (e.g. resin) through stacking of the fibers in different orientations. This increase in interest 

for using FRP lies in some critical advantages of this composite over conventional materials. 

Their high strength to weight ratio, high stiffness to weight ratio, their environmental 

adaptability represented by corrosion resistance, their ease of transportation and erection, and 

their fatigue resistance are some of the advantages FRP provides. The most prominent 

characteristic is the ability of tailoring the material for each particular application. Structural 

properties depend on the material system and the shape of the cross-section of the member 
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(Barbero et al., 1993). For isotropic structural shapes, it is possible to optimize the section to 

increase the bending stiffness without compromising the maximum bending strength. Unlike 

isotropic shapes, with composite members it is possible to optimize the material itself by 

choosing among a variety of resins, fiber systems, and fiber orientations. Although FRP 

structures exhibit high strength, problems of excessive deformation and instability, due to the 

slenderness of the member, are the major disadvantages in wider acceptance for structural 

engineering applications (Lin et al., 1996). Because of these limitations, the new generation of 

composite structures should be designed to work in a safe way and to experience higher 

performance than the conventional systems. Consideration of stability and deformation limits 

tend to be the governing design criteria for FRP structures before these structures reach material 

failure. Thus, the proper establishment of such criteria is an important prerequisite to the 

practical use of FRP in engineering applications. 

When a composite beam is considered sufficiently slender and undergoes bending 

moments about the strong axis, the beam may fail by sudden combined lateral bending and 

twisting of cross-section, rather than by rupture or crushing. This phenomenon is known as 

lateral-torsional buckling. The critical load is primarily dependant on the material and the 

geometry of the member. It is independent of the ultimate strength. A composite beam which is 

bent about the major principal axis may buckle laterally at a certain critical value of the load. As 

long as the load on the beam is less than the critical value, the beam will bend and stay stable. 

When the load is increased until the critical condition is reached, the beam may bifurcate from 

the main equilibrium configuration to a different state of equilibrium, which becomes likely or 

possible. The plane configuration of the beam is now unstable, and the lowest load at which the 

critical condition occurs represents the critical buckling load of the beam (Tai 2004). 
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Theory of thin-walled open section beams including axial constrains for isotropic 

materials was developed by Vlassov (1961). This classical theory neglects the shear deformation 

in the middle surface of the wall so that for such beams, the shear deformations may significantly 

increase the displacements and reduce the buckling loads for moderately thick beams.. The shear 

deformation theory for transversely loaded isotropic beams was developed by Timoshenko and 

Gere (1961). 

The lateral-torsional buckling includes two regions, elastic and inelastic lateral-torsional 

buckling, and they both depend on the slenderness ratio. A beam with higher slenderness will 

experience elastic lateral-torsional buckling, which is within the scope of this study, whereas a 

beam with intermediate slenderness ratio will experience inelastic lateral-torsional buckling, 

which is out of the scope of this study. The lateral-torsional buckling will not occur if the 

slenderness ratio of the member is low or if the member is bent about the weak principle axis of 

the cross-section. Lateral-torsional buckling is an important design criterion for higher 

slenderness ratio structures that the occurrence of it may significantly reduce the maximum load-

carrying capacity of the member. 

The lateral-torsional buckling for the isotropic materials is well developed in the past 

century. For instance, the lateral-torsional buckling of isotropic slender beams was developed by 

Vlassov (1961) as well as Timoshenko and Gere (1961) for various loading and boundary 

conditions. This limit state is also adopted by the American Institute of Steel Construction 

(AISC) design criteria for structural steel buildings and bridges and has been applied extensively 

to design safe steel structures. The use of composite materials gained popularity at the end of 

20th century and is playing an important role since then in partial replacement of many structural 

steel members. However, there hasn’t been any standard criterion established for lateral-torsional 
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buckling of composite thin-walled beams to account for it in design. There has been limited 

amount of research focusing on lateral-torsional buckling of composite I-section beams, where 

the beams were either considered to be of symmetric layup, anti-symmetric layup, orthotropic, or 

specially-orthotropic (pultruded) in nature. There hasn’t been any study recorded on the behavior 

of generally anisotropic laminated composite beams to the best knowledge of the author. 

1.2 Objectives 

The objective of present study is to develop generalized analytical models applicable to 

the lateral-torsional buckling of anisotropic laminated rectangular composite beams, subjected to 

various loading and boundary conditions. The models are based on the classical laminated plate 

theory (CLPT), and account for the arbitrary laminate stacking sequence configurations. Finite 

element models are developed in ABAQUS to predict critical buckling loads and compare them 

with the results obtained from the analytical models. The effects of fiber orientation, beam 

length/height ratios and wall thickness on the critical buckling loads are studied. 

1.3 Scope of Dissertation 

The research work in this dissertation includes a literature review of the developments on 

lateral-torsional buckling of isotropic and special composite beams which is described in chapter 

two. Lateral torsional buckling of anisotropic laminated thin-walled rectangular composite 

beams subjected to pure bending in simply supported condition is treated in chapter three. An 

analytical formula was derived to solve the lateral-torsional buckling of simply supported 

anisotropic beams under pure bending condition. The analytical solutions are validated with 

numerical results. Lateral-torsional buckling of simply supported anisotropic hybrid steel-FRP 

beams under pure bending condition is addressed in chapter four. A generalized analytical 

approach for lateral-torsional buckling of simply supported anisotropic hybrid (steel-FRP) under 
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pure bending condition is developed using the classical laminated plate theory (CLPT) as a basis 

for the constitutive equations. The analytical formula is also verified against finite element 

buckling solutions using ABAQUS for different lamination orientations as well as the location of 

the steel sheet in the composite layup. Lateral torsional buckling of anisotropic laminated thin-

walled rectangular composite cantilever beams subjected to free end loading is presented in 

chapter five. A generalized analytical solution for lateral-torsional buckling of anisotropic 

cantilever beams subjected to free end loading is developed using the classical laminated plate 

theory as a basis for the constitutive equations. The stability of the beam under different 

geometric and material parameters is investigated. The analytical formula is verified against 

finite element buckling solutions using ABAQUS for wide range of lamination orientations in 

this case as well. Analytical and numerical solutions for the lateral torsional buckling of 

anisotropic laminated thin walled simply supported beams subjected to concentrated load at mid-

span is studied in chapter six. An analytical approach for lateral-torsional buckling of simply 

supported anisotropic beams under concentrated load at mid-span and mid-height is developed 

using the classical laminated plate theory as a basis for the constitutive equations. The analytical 

solution is verified against finite element buckling solutions using ABAQUS for wide range of 

lamination orientations.  
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Chapter 2 - Literature Review 

2.1 Background 

Prandtl and Michell independently investigated the earliest theoretical analysis of lateral 

stability of beams in 1899. They constructed a beam of narrow rectangular cross-section, simply 

supported at both ends, and loaded by uniform moment (Narayanan, 1983). Since then many 

authors continued to develop and research the lateral-torsional problems, such as Timoshenko 

and Gere (1961) who considered the effect of warping on the torsional aspects of the problem for 

I-sections. The following sections in this chapter will overview the works done by other 

researchers on the lateral torsional buckling of isotropic beams and special composite beams. 

2.2 Previous Research on Isotropic Beams 

One of the first theoretical investigations on the lateral stability of thin-walled beams was 

conducted by Timoshenko and Gere (1961). Their analytical study aimed at developing critical 

load expressions for thin-walled beams under three different loading and boundary conditions: 

Simply supported beams under pure bending moments 

Cantilever beams subjected to free end load 

Simply supported beams subjected to concentrated load at mid-span. 

Timoshenko and Gere (1961) obtained the critical moment (Eq. 2.1) for pure bending 

case (1). Eqs. 2.2 and 2.3 were obtained for the loading cases (2) and (3), respectively. All of the 

three presented equations were for narrow rectangular section beams where warping effects are 

neglected, which is a major contributing factor for I-section beams.  

(𝑀𝑀0)𝑐𝑐𝑐𝑐 = 𝜋𝜋
𝐿𝐿 �𝐸𝐸𝐼𝐼𝑦𝑦′𝐺𝐺𝐺𝐺          ( 2.1) 

𝑃𝑃𝑐𝑐𝑐𝑐 =
4.013�𝐸𝐸𝐼𝐼𝑦𝑦′𝐺𝐺𝐺𝐺

𝐿𝐿2
         ( 2.2) 



 

8 

𝑃𝑃𝑐𝑐𝑐𝑐 =
16.94�𝐸𝐸𝐼𝐼𝑦𝑦′𝐺𝐺𝐺𝐺

𝐿𝐿2
         ( 2.3) 

Equations 2.2 and 2.3 were obtained by applying the loads at the shear center. They also 

presented Eqs. 2.4 and 2.5 when the load was applied at a vertical distance (a) from the shear 

center for cases (2) and (3), respectively. 

𝑃𝑃𝑐𝑐𝑐𝑐 =
4.013�𝐸𝐸𝐼𝐼𝑦𝑦′𝐺𝐺𝐺𝐺

𝐿𝐿2
�1 − 𝑎𝑎

𝐿𝐿
�𝐸𝐸𝐼𝐼𝑦𝑦′

𝐺𝐺𝐺𝐺
�       ( 2.4) 

𝑃𝑃𝑐𝑐𝑐𝑐 =
16.94�𝐸𝐸𝐼𝐼𝑦𝑦′𝐺𝐺𝐺𝐺

𝐿𝐿2
�1 − 1.74𝑎𝑎

𝐿𝐿
�𝐸𝐸𝐼𝐼𝑦𝑦′

𝐺𝐺𝐺𝐺
�       ( 2.5) 

Where E is the modulus of elasticity, Iy’ is the out of plane moment of inertia, L is the length of 

the beam, G is shear modulus of elasticity, J is torsional moment of inertia and a is the vertical 

distance of applied load from the centroid of the section. 

2.3 Previous Research on Composite Beams 

While research on lateral-torsional buckling of composite beams can be traced back to 

several decades, most analytical and experimental investigations were carried out in 1990s. A 

review of available works was presented by Stoddard (1997) and Zhang (2000). This review 

included the works performed by Mottram (1992), Barbero and Raftoyiannis (1994), Pandey et 

al (1995), Turvey and Brooks (1996), Razzaq et al (1996), and Davalos and Qiao (1997). 

Stoddard also reported an experimental investigation of 35 different fiber reinforced polymer I-

beams which were simply supported and subject to concentrated loads acting on top flanges at 

the mid-span. 

Previous analytical work performed by Mottram (1992), Pandey et al (1995) and 

Stoddard (1997) adopted the formulations developed by Bauld and Lih-Shyng (1984) who 

presented a Vlassov type theory for symmetrical laminated thin-walled composite beams with 

open cross sections. The constitutive relations between beam forces and displacements were 
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adopted by Bauld and Lih-Shyng. However, the fundamental assumptions for the derivation of 

the constitutive relations were originally made from isotropic thin plates. Volovoi et al (1999) 

pointed out that these assumptions are not suitable for composite thin plates. 

Mottram (1992) applied a finite difference approach to solve the governing differential 

equations obtained by Timoshenko and Gere (1961) to obtain a closed form expression for 

lateral-torsional buckling loads of fixed end beams subject to concentrated loads at mid-span. 

Mottram, in this formulation, replaced the isotropic material properties by the corresponding 

properties of special composite materials. He also conducted experimental test and compared the 

tests with the analytical formulation. It was found that the analytical formulations were close to 

the experimental tests. He concluded that the analysis was valid for thin-walled composite 

doubly symmetric I-beams made from mid-plane symmetric fiber reinforced laminates. His 

modified formulas might not correctly predict actual composite beam behaviors since the 

governing differential equations were originally derived for isotropic I-beams and the tested 

beams were made of orthotropic materials. 

Additional analytical investigations of fiber reinforced-polymer I-beams under various 

loading and boundary conditions were reported by Pandey et al (1995) following the work of 

Bauld and Lih-Shyng (1984) and that of Mottram (1992). The primary purpose of the study was 

to find the optimal direction of fibers in the web and flange which maximizes buckling loads. It 

was concluded that the web fiber angle had an important influence on improving the lateral-

torsional buckling load as the beam span becomes longer. A group of closed form expressions 

for I-beams with different loading and boundary conditions were obtained by using the Galerkin 

method to solve the equilibrium differential equations. They used energy method, which includes 

the two coupling terms, Hs and Hc, to obtain the equilibrium differential equations. These two 
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coupling terms were, however, ignored in the equilibrium differential equations for simplicity. 

The effects of the two terms on the lateral-torsional buckling were left unknown since no 

investigation were performed on these two coupling terms. Therefore, the composite material 

properties were not properly considered in the research. In addition, the constitutive relations 

between beam forces and beam displacements used in the research was adopted from Bauld and 

Lih-Shyng’s work, which does not consider composite material properties properly in the 

constitutive relations. Hence, there is no confidence to consider the obtained closed form 

expressions to be correct for composite I-beams. 

Davalos and Qiao (1997) employed the non-linear elastic theory to develop a stability 

solution for lateral-distortional buckling for composite wide flange beams based on the principle 

of total potential energy and used a Rayleigh-Ritz method to obtain numerical solutions. An I-

beam was divided into top, bottom and web plates in the potential energy calculation. A fifth-

order polynomial shape function was adopted for the displacement field construction. A 6x6 

matrix for the relations of panel strains and stresses was shown in the research. Since the matrix 

was quite complicated, closed form expressions were very difficult to obtain. By assuming 

Bij=0, A16 =A26=D16=D26=0, only one closed form expression for simply supported beams 

with the load applied at the centroid of mid-span was given. 

Lin et al. (1996) studied the stability of thin-walled composite member using the finite 

element method. Seven degrees of freedom at each node for each two-nodded element were used 

to model the fiber reinforced plastic. The seven degrees of freedom are the dependent 

translations in three perpendicular directions and the corresponding rotations in addition to the 

angle of warping. The stiffness matrices of a beam element were used to develop the element 

shape functions. A number of examples of thin walled-open sections were solved, different cross 
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sections like channels, I sections, and Z-sections were tested as well as different boundary 

conditions. The study concluded the importance of the influence of in-plane shear strain on the 

critical buckling load for lateral torsional buckling and combined torsional and flexural modes. It 

also minimized the significance of shear strain effect on critical buckling when the buckling 

happens in terms of a flexural mode. 

Hodges and Peter (1975) developed a general lateral buckling equation for a rectangular 

cantilever beam subjected to a concentrated load at the centroid of the free end, with the effect of 

the pre-buckling deflection included in the general equation. Kollar (2001) presented a stability 

analysis of thin walled composite columns under axial loading conditions. A closed form 

solution was derived using a modified version of Vlassov’s classical theory (1961) for isotropic 

material to account for the composite action. The effect of shear deformation in the in-plane 

displacements and in the restrained warping was examined and a shear matrix was formulated in 

addition to the bending matrix. Lee et al. (2002) studied the lateral buckling of composite 

laminated beams. An analytical approach based on the classical lamination theory was derived 

for different boundary conditions and different laminate stacking sequences. The examined 

beams were tested under various loading configurations and various locations. The beams were 

then compared against a one dimensional finite element model under different load 

configurations. The model showed a good agreement against the finite element model of simply 

supported I beam in cases of pure bending, uniformly distributed loads, and central point load. 

Yet, the model was not appropriate for pure bending with off-axis fiber orientation due to 

coupling stiffness. 

Sapkas and Kollar (2002) offered closed form solutions for simply supported and 

cantilever, thin walled, open section, orthotropic composite beams subjected to concentrated end 
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moments, concentrated forces, or uniformly distributed load. The solution indirectly accounted 

for shear deformation by adjusting the bending and warping stiffness of the composite beams. 

Qiao et al. (2003) formulated an analytical solution for flexural-torsional buckling of composite 

cantilever I beams based on an energy method developed from the non-linear plate theory. A 

good agreement against finite element method was obtained. Furthermore, four different 

cantilever beams were tested experimentally under tip loads to examine the flexural-torsional 

response. Also, good agreements were shown against the experimental results. 

Kotelko (2004) presented a theoretical analysis of local buckling which represents 

material failure. This study covered different cross sections of thin walled beams and columns. 

These cross sections varied between lipped and plain channels as well as box-section. This 

theory matched previous theories in a way that it depends on the rigid-plastic model. Yet, it 

mainly differs by considering a constitutive strain-hardening of the used material. This analytical 

approach is particularly useful in the initial phase of design process and may be applied as a 

simplified design tool at the early stage of design process, including crush-oriented design. 

Karaagac et al. (2007) tested the stability of a cantilever laminated composite beam under static 

and dynamic conditions. A linear translation spring was attached to the beam to control the 

lateral deformation. The attached elastic support location varied between the free end and the 

mid-span of the beam.  Length-to-thickness ratio, variation of cross-section in one direction, 

orientation angle, static and dynamic load parameters, stiffness and position of the elastic support 

were the main variables to study the stability of the beam.  Numerical polynomial 

approximations for the displacements and the angle of twist were derived and showed a 

reasonable accuracy against the finite element method. 
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Machado (2010) derived an analytical solution for lateral stability of cross-ply laminated 

thin-walled simply supported bisymmetric beams subjected to combined axial and bending loads. 

The presented theory included shear deformability and took into account large displacements and 

rotations; moderate bending rotations and large twisting angles. The proposed solution also 

examined the nonlinear pre-buckling geometrical deformation for more accurate representation 

of the lateral stability conditions. The buckling loads obtained analytically were, in general, in 

good agreement with the bifurcation loads observed in the post buckling response. The study 

concluded that the buckling moments computed from classical theory is overestimated. Also, it 

presented pre-buckling and post buckling displacement curves to relate the stiffness behavior of 

the beam to the applied loads and also to study the fiber orientation against the buckling loads.  

Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple expressions for 

the bending, torsional, and warping stiffness of composite laminated beams. Sherbourne and 

Kabir (1995) studied an analytical study of the transvers shear strain effect on the lateral 

buckling of thin-walled, open-section fibrous composite beams. They applied uniformly 

distributed and transverse central point loads on simply supported and clamped I-beams. They 

used an analytic-numerical moment method to solve a coupled system of differential equations 

which they obtained by considering a series function which satisfies boundary condition. They 

found out that the shear factor drops buckling load in short-span composite beams under 

concentrated load.  

 Roberts and Al-Ubaidi (2001) studied influence of shear deformation on restrained 

torsional warping of pultruded FRP bars of open cross-section by proposing an approximate 

theory. They concluded that influence of shear deformation on restrained torsional warping is 

practically negligible for thin walled pultruded FRP I-beams. They performed a series of bending 
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and torsion tests to confirm their conclusion. They suggest that full section properties should be 

used for study of the coupled bending and torsional response for such members. Tai (2004) 

studied lateral- torsional buckling of symmetrically laminated, rectangular cross-section, 

composite beams under various loading conditions. Discrepancies between his results and the 

finite element results were detected for various symmetric laminations. A formal engineering 

approach of mechanics of thin-walled laminated beams based on kinematic assumptions was 

studied by Barbero, et al. (1993). This approach was consistent with Timoshenko beam theory. 

They considered thin-walled composited beams with open or closed cross section subjected to 

bending and axial load. They obtained beam stiffness coefficients accounting for the cross 

section geometry and for the material anisotropy. They derived an explicit expression for the 

static shear correction factor of thin-walled composite beams from energy equivalence. 
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Chapter 3 - Lateral-Torsional Buckling of Anisotropic Laminated 

Thin-Walled Rectangular Composite Beams Subjected to Pure 

Bending in Simply Supported Condition 

In this chapter, a generalized analytical approach for lateral-torsional buckling of simply 

supported anisotropic, thin-walled, rectangular cross-section beams under pure bending 

condition was developed using the classical laminated plate theory (CLPT) as a basis for the 

constitutive equations. Buckling of such type of members has not been addressed in the 

literature. A closed form buckling expression is derived in terms of the lateral, torsional and 

coupling stiffness coefficients of the overall composite. These coefficients are obtained through 

dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an 

effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under 

different geometric and material parameters, like length/height ratio, layer thickness, and ply 

orientation, was investigated. The analytical formula is verified against finite element buckling 

solutions using ABAQUS for different lamination orientation showing excellent accuracy. 

3.1 Introduction 

Thin-walled beam structures are major components in many engineering applications. 

They are widely used as structural components in many types of systems in the field of civil, 

mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer 

(FRP) composites, are partially replacing conventional materials in these types of structural 

systems. Composites are being implemented in transportation systems, offshore structures, 

chemical facilities, aircraft wings and fuselage, helicopter blades, and so on. This increase in 

interest for using FRP lies in some critical advantages of FRP over conventional materials. Their 
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high strength to weight ratio, their environmental adaptability, their ease of transportation and 

erection, and their fatigue resistance are some of the advantages FRP provide. The most 

prominent characteristic is the ability of tailoring the material for each particular application. 

Structural properties depend on the material system and the shape of the cross-section of the 

member (Barbero et al., 1993). For isotropic structural shapes, it is possible to optimize the 

section to increase the bending stiffness without compromising the maximum bending strength. 

Unlike isotropic shapes, with composite beams it is possible to optimize the material itself by 

choosing among a variety of resins, fiber systems, and fiber orientations. Although FRP 

structures exhibit high strength, problems of excessive deformation and instability, due to their 

low stiffness and slenderness of the member, are the major disadvantages in wider acceptance for 

structural engineering applications (Lin et al. 1996). Because of these limitations, the new 

generation of composite structures should be designed to work in a safe way and to experience 

higher performance than the conventional systems. Consideration of stability and deformation 

limits tend to be the governing design criteria for FRP structures before these structures reach 

material failure. Thus, the proper establishment of such criteria is an important prerequisite to the 

practical use of FRP in engineering applications. 

A thin-walled slender beam subjected to bending moments about the strong axis may 

buckle by a combined lateral bending and twisting of the cross-section. This phenomenon is 

known as lateral- torsional buckling. Theory of thin-walled open section beams including axial 

constrains for isotropic materials was developed by Vlassov (1961). This classical theory 

neglects the shear deformation in the middle surface of the wall so that for the composite beams, 

the shear deformations may significantly increase the displacements and reduce the buckling 
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loads. The shear deformation theory for transversely loaded isotropic beams was developed by 

Timoshenko and Gere (1961). 

For the composite thin-walled beams, Bauld and Lih-Shyng (1984) applied Vlasov’s 

theory for open section composite beams with symmetrical laminated walls neglecting the shear 

deformation. Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple 

expressions for the bending, torsional, and warping stiffness of composite laminated beams.  

Sherbourne and Kabir (1995) studied analytically the effect of transvers shear strain on the 

lateral buckling of thin-walled, open-section fibrous composite beams. Pandey at el. (1995) 

proposed an analytical formulation for finding the optimal direction of fiber for improving the 

lateral buckling strength of thin-walled I-section composite beams. Lin et al. (1996) studied 

buckling problems of thin-walled composite structural members by finite element methods. 

Kollar (2001) suggested a closed form solution for thin-walled open section columns, made of 

orthotropic composite materials, by considering flexure, shear and the torsional warping induced 

shear deformations. Roberts and Al-Ubaidi (2001) studied the influence of shear deformation on 

restrained torsional warping of pultruded FRP bars of open cross-section by proposing an 

approximate theory. Sapkas and Kollar (2002) studied the stability analysis of thin-walled, open 

section beams, made of orthotropic composite materials under various loading conditions. Lee et 

al. (2002) presented a general analytical model applicable to the lateral buckling of composite 

laminated I-beams subjected to various types of loadings. Qiao et al (2003) presented a 

combined analytical and experiment evaluation of flexural-torsional buckling of fiber reinforced 

polymer composite I-beams. Tai (2004) studied lateral- torsional buckling of symmetrically 

laminated, rectangular cross-section, composite beams under various loading conditions. 

Karaagac et al. (2007) studied static and dynamic stability of cantilever laminated symmetric and 
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anti-symmetric composite beams having elastic support. Machado (2010) studied the stability of 

simply supported thin-walled symmetric laminated composite I-beams subjected to combined 

axial and lateral loads by approximate analytical solutions and compared them with numerical 

results. 

Most of the work, concerning the lateral- torsional stability of thin-walled composite 

beams, was focused on I-sections. The beams were either considered to be of symmetric layup, 

anti-symmetric layup, orthotropic, or pultruded nature. There hasn’t been any study recorded on 

the behavior of general anisotropic laminated composite beams to the best knowledge of the 

author. 

In the present study, a generalized analytical model applicable to the lateral-torsional 

buckling of a simply supported rectangular cross-section beam, made of anisotropic laminated 

composite material, subjected to pure bending is developed. This model is based on the classical 

laminated plate theory (CLPT), and accounts for the arbitrary laminate stacking sequence 

configurations. A finite element model is developed in ABAQUS to predict critical buckling 

moments and compare with the results obtained from the analytical model. The effects of fiber 

orientation, beam length/height ratios and wall thickness on the critical buckling moments are 

studied. 

3.2 Analytical Formulation 

A simply supported laminated composite beam with length L and a thin rectangular cross 

section is subjected to pure bending at the ends, as shown in Figure 3.1. The beam tends to 

buckle under a lateral-torsional behavior because of its small thickness. 
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Figure 3.1 A deformed laminated beam subjected to pure bending 
 

The model in this study is based on the classical laminated plate theory, Kollar and 

Springer (2003) and Barbero (1999). The following assumptions are adopted from the classical 

laminated plate theory: 

1. The normals to mid-plane (reference surface) of the laminate remain normal and 

straight after deformation. 

2. The normal to mid-plane of the laminate do not change length – in other words, the 

thickness of the laminate stays constant. 

3. The shear deformations are neglected. 

4. The laminate consists of perfectly bonded layers. 

5. The stress-strain relationships are applied under plane-stress conditions. 
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3.2.1 Kinematics 

Based on the assumptions in the classical laminated plate theory, the displacement 

components u, v, w representing the deformation of a point on the plate profile section are given 

with respect to mid-surface displacements u0, v0, and w0 as follows: 

u(x, y, z) = u0(x, y) − z ∂w0
∂x

(x, y)        ( 3.1) 

v(x, y, z) = v0(x, y) − zβ(x, y)        ( 3.2) 

w(x, y, z) = w0(x, y)          ( 3.3) 

where 𝛽𝛽 = 𝜕𝜕𝜕𝜕𝑜𝑜
𝜕𝜕𝜕𝜕

 

The strains associated with small displacements from the theory of elasticity are given by 

𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥          ( 3.4) 

𝜀𝜀𝑦𝑦 = 𝜀𝜀𝑦𝑦0 + 𝑧𝑧𝜅𝜅𝑦𝑦          ( 3.5) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥𝑥𝑥          ( 3.6) 

where 

𝜀𝜀𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

 , 𝜀𝜀𝑦𝑦0 = 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

, and 𝛾𝛾𝑥𝑥𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

      ( 3.7) 

𝜅𝜅𝑥𝑥 = − 𝜕𝜕2𝑤𝑤𝑜𝑜
𝜕𝜕𝜕𝜕2

,𝜅𝜅𝑦𝑦 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and 𝜅𝜅𝑥𝑥𝑥𝑥 = −�∂
2w0
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ ∂2w0
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� = −2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

   ( 3.8) 

3.2.2 Constitutive Equations 

The plate stiffness equations based on classical laminated plate theory, shown in Figure 

3.2, are given as follows. 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑥𝑥 = 0
𝑁𝑁𝑦𝑦 = 0
𝑁𝑁𝑥𝑥𝑥𝑥 = 0
𝑀𝑀𝑥𝑥

𝑀𝑀𝑦𝑦 = 0
𝑀𝑀𝑥𝑥𝑥𝑥 ⎭

⎪⎪
⎬

⎪⎪
⎫

= ℎ

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐵𝐵11   𝐵𝐵12   𝐵𝐵16   𝐷𝐷11   𝐷𝐷12    𝐷𝐷16
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷12   𝐷𝐷22    𝐷𝐷26
𝐵𝐵16   𝐵𝐵26   𝐵𝐵66   𝐷𝐷16   𝐷𝐷26    𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑦𝑦
𝜅𝜅𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

     ( 3.9) 
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where  

𝐴𝐴𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘                   𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extensional stiffness coefficients 

𝐵𝐵𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘                   𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extension-bending coupling stiffness 

coefficients and 

𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ (𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 �𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘2 + 𝑡𝑡𝑘𝑘
3

12
 �             𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁

𝑘𝑘=1  are called bending stiffness coefficients 

(𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 are the components of the kth layer 2D transformed constitutive matrix in the beam 

coordinate system 

𝑧𝑧𝑘̅𝑘 is the depth from the middle surface to the centroid of the kth layer, and tk is the thickness of 

kth layer. 

Knowing the zero components of externally applied forces and moments for the pure 

bending condition from Figure 3.1, which are expressed in Eq. 3.9, the stiffness matrix can be 

simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static 

condensation technique:  

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�         ( 3.10) 

where 

�𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� = �𝐷𝐷11   𝐷𝐷16
𝐷𝐷16   𝐷𝐷66

� − �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�

𝑇𝑇

�

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

�

−1

�

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�  

DY is the composite lateral stiffness coefficient, DT is the composite twisting stiffness 

coefficient, and DYT is the composite lateral-twisting coupling coefficient. In most cases, where 

the layers are symmetric, anti-symmetric, cross-ply, special angle ply, DYT coefficient will be 

zero. However, for the generally anisotropic cases, DYT coefficient is not zero and will play a 

significant role in determining the buckling moments of the beams. 
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Figure 3.2 Force and moment resultants on a beam based on classical laminated plate 
theory 
 

Referring to Figure 3.1 (structural) and Figure 3.2 (laminated), the bending moment My 

in structural coordinate is replaced by Mx in laminate coordinate, on the other hand, the shear 

moment, Mxy, in laminate coordinate is in the opposite direction of twisting moment in the 

structural coordinate system and is found by Kollar and Springer (2003) to be T= -2 Mxy. 

Substituting the curvatures in terms of displacement and rotation in Eq. 3.8 into Eq. 3.10, and 

writing the moments in structural coordinates systems, the following relation will be obtained 

�
𝑀𝑀𝑦𝑦′
−𝑀𝑀𝑇𝑇

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�        ( 3.11) 
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3.2.3 Equilibrium Equations 

Figure 3.1 shows the components of external moments before and after deformation and 

is obtained as following. 

External moments in un-deformed configuration (original axes): 

𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑜𝑜 (Applied Moment)        ( 3.12) 

𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑦𝑦 = 0          ( 3.13) 

External moments in the deformed configuration (deformed axes): 

𝑀𝑀𝑧𝑧
′ = 𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑜𝑜         ( 3.14) 

𝑀𝑀𝑦𝑦
′ = 𝛽𝛽𝑀𝑀𝑜𝑜           ( 3.15) 

𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑥𝑥
′ = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜           ( 3.16) 

The following system of differential equation is obtained after substituting the external 

moments from Eqs. 3.15 and 3.16 into Eq. 3.11: 

�
𝛽𝛽𝑀𝑀𝑜𝑜 

− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�       ( 3.17) 

−ℎ𝐷𝐷𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ = 𝛽𝛽𝑀𝑀𝑜𝑜        ( 3.18) 

-2ℎ𝐷𝐷𝑌𝑌𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ = − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜        ( 3.19) 

Writing Eqs.3.18 and 3.19 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
𝐷𝐷𝑌𝑌

[−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ − 𝛽𝛽𝑀𝑀𝑜𝑜] = 1
2𝐷𝐷𝑌𝑌𝑌𝑌

�−4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜�     ( 3.20) 

Differentiating Eq. 3.20 with respect to x and rearranging the resulting expression in terms of 

d2w
dx2

, Eq.3.21 will be obtained. 



 

26 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

= − 2𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌

𝛽𝛽′ + 4ℎ
𝑀𝑀𝑜𝑜
�𝐷𝐷𝑇𝑇 −

𝐷𝐷𝑌𝑌𝑌𝑌2

𝐷𝐷𝑌𝑌
� 𝛽𝛽′′       ( 3.21) 

Equating the left hand side of Eq.3.20, which is equal to d
2w
dx2

  in Eq. 3.18, and the right hand side 

of Eq.3.21, the resulting expression reduces to a second order ordinary differential equation with 

constant coefficients, which can be solved analytically. 

𝛽𝛽′′ + 𝑀𝑀𝑜𝑜
2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
𝛽𝛽 = 0         ( 3.22) 

Setting 𝜅𝜅2 = 𝑀𝑀𝑜𝑜
2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 , yields an equation similar to the isotropic condition when the 

warping effect is neglected. 

𝛽𝛽′′ + 𝜅𝜅2𝛽𝛽 = 0          ( 3.23) 

The general solution for this type of differential equation is known to be: 

  𝛽𝛽 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘𝑘𝑘) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘𝑘𝑘)        ( 3.24) 

Applying boundary condition for pure bending as 𝛽𝛽(0) = 𝛽𝛽(𝐿𝐿)  = 0, the critical buckling 

moment can be obtained according to the following equation. 

𝑀𝑀0𝑐𝑐𝑐𝑐 = 𝜋𝜋ℎ
𝐿𝐿
�4(𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇 − 𝐷𝐷𝑌𝑌𝑌𝑌2 )         ( 3.25) 

 

3.3 Numerical Analysis (FEA) 

The finite element method in the commercial software, ABAQUS/Standard (implicit) 

was used to simulate the problem in this study. The model was first created by using 3D planar 

shells. The shells were assembled based on the stacking arrangement that was used in the 

analytical solution. The global x-axis was used along beams length, but the local coordinate 

system was used based on the orientation of the fibers in each ply.  
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The boundary conditions for this beam were applied as follows. The four corners of the 

beam, shown in Figure 3.3, were constrained from moving in z-direction. One end of the beam 

was pinned at mid-height restraining it from all displacements, and a roller was applied at mid-

height of other end of the beam to restrain displacement in the y-direction only, as shown in the 

Figure 3.3. 

 
Figure 3.3 Applied load and boundary conditions 
 

A linear shell-edge load was applied at both ends of the beam as tension and compression 

stresses to create a pure bending moment condition in the beam, as shown in Figure 3.3. Each 

edge was partitioned into two parts to apply shell-edge load linearly in the desired direction. The 

following relation was used to determine the magnitude of the linear load. 

Fx= 20y          ( 3.26) 

There is no load applied at the mid-height of the edge and the load increases linearly by 20y, 

which will act as a pure bending moment when applied as compression above the mid-height and 

as tension below the mid-height. 

 

Figure 3.4 Applied shell element type (S8R) and mesh (element size along beam axis: 2.5 
mm)  

u=v=w=0 at mid-height v=0 at mid-height y 

F=20y 
w=0 

w=0 

w=0 

w=0 
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The beam was meshed with a standard quadratic quadrilateral shell element type of S8R 

(8-node doubly curved thick shell element with reduced integration) using six degrees of 

freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and 

h = 100 mm gives total number of 29297 nodes and 9600 elements, as shown in Figure 3.4. 

The eigenvalue buckling analysis in ABAQUS solver, which is a linear perturbation 

procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues 

and eigenvectors for symmetric stiffness matrices only. In order to symmetrize the stiffness 

matrix of the model, Lanczos iteration eigenvalue extraction method was used. To find the 

critical moment, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the 

moment which was applied at the ends of the beam in combined tension and compression line 

edge loading. 

𝑀𝑀0𝑐𝑐𝑐𝑐 = 𝜆𝜆𝜆𝜆0                                                                ( 3.27) 

 

3.4 Results 

3.4.1 Material Properties and Stacking Sequences 

An anisotropic composite material is made by stacking four layers of the lamina 

properties shown in Table 3.1 at different fiber orientations. The thickness of each layer is the 

same with the same orthotropic properties, yet it varies in terms of fiber orientation. The 

orientation of fiber in each layer can be randomly picked, including common laminate types such 

as symmetric laminates, antisymmetric laminates, balanced laminates, and so on. The stacking 

sequence starts from the back of the beam to the front of the beam to follow the same order used 

for typical laminated plates, Figure 3.5. For example, [30/0/0/-30] means that the first ply has an 

angle of 30 degrees from the x-axis of the beam is placed in the back of the beam counter 
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clockwise (towards the y-axis) and the other layers follow with the same order through the 

positive z-axis. Figure 3.5 shows the stacking sequence of the laminates. Different layer 

thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios of (2, 5, 10, 20, and 50) 

were also studied which will be presented later. 

Table 3.1 Material properties used the in laminates 

Material  FRP 

E11 142730 MPa 

E22 13790 MPa 

v12 0.3   

v21 0.028985   

G12 4640 MPa 

G13 4640 MPa 

G23 3030 MPa 

 

 

 

Figure 3.5 The stacking sequence of the laminates 
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3.4.2 Buckling Results 

For the lateral-torsional buckling of thin-walled rectangular laminated composite beams 

under pure bending conditions, an analytical approach is presented as well as FEM results. 

Figures 3.6 and 3.7 show the buckling results for different stacking sequences based on the 

proposed analytical formulation and also results from FEM model for layer thickness of 0.1 mm 

(total thickness of 0.4 mm), beam length of 500 mm and beam height of 100 mm and 25 mm (i.e. 

length to height ratio of 5 and 20), respectively. Based on the results obtained, there is an 

excellent agreement between the proposed analytical formulation and FEM, Figures 3.6 and 3.7. 

The largest error observed is 3.3%  (Figure 3.6) apart from the [04] and cross-ply layup cases, 

which buckled in a distortional mode rather than lateral-torsional mode (as will be discussed 

below) admitting an error up to 10%, see Table 3.2. 

 

Figure 3.6 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=5, and element length 2.5mm 
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Figure 3.7 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=20, and element length 2.5mm 
 

3.5 Parametric Study 

3.5.1 Effect of Length/Height Ratio 

Different Length/height (L/h) ratios of 2, 5, 10, 20, and 50 were used in the analysis to 

study their effects on the lateral-torsional buckling of simply supported laminated thin-walled 

rectangular cross-sectional beams. The results show that there is a significant drop in the value of 

the buckling moments as the L/h ratio increases. The relation between buckling moment and L/h 

ratio is defined to be a power function which can be written in Eq. 3.28 

𝑀𝑀𝑐𝑐𝑐𝑐 = (𝑀𝑀𝑐𝑐𝑐𝑐)𝑖𝑖 ∗ (𝐿𝐿
ℎ

)𝑖𝑖(
𝐿𝐿
ℎ

)−1        ( 3.28) 

where (𝑀𝑀𝑐𝑐𝑐𝑐)i is the initial calculated value of buckling moment from Eq. 3.25 with a given (𝐿𝐿
ℎ

)𝑖𝑖 
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Figure 3.8 Effect of L/h ratio on the critical moment based on analytical formula for three 
different layups and layer thickness of 0.1 mm 
 

By knowing the value of buckling moment in a selected laminate, Eq. 3.28 helps to 

calculate the buckling moment for different L/h ratios. Figure 3.8 shows the effect of L/h ratio on 

the buckling moment for three different stacking sequences of [0/0/0/0], [45/-30/-15/90], and 

[30/-30/30/-30]. Eq. 3.28 is limited to the analytical formula and is not applicable for the FEM 

results. There is a noticeable discrepancy between the analytical and numerical results in the case 
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mode, in which β is constant for a certain section transverse to the beam. Figure 3.10 shows the 
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Figure 3.9 clearly shows that the analytical and numerical buckling moments match almost 

exactly as the L/h ratio increases beyond 5. 

 

 
Figure 3.9 Comparison of buckling result obtained from analytical solution and FEM for 
the [0/0/0/0] laminate and layer thickness of 0.1 mm by changing L/h ratio 
 

 
Figure 3.10 Edge deformation of the beam under pure bending for L/h=5, (a) [0/0/0/0] (b) 
[30/-30/30/-30], and (c) [45/-30/-15/90] 
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Figures 3.9, 3.11, and 3.12 show the comparison of buckling moments between the 

analytical solution and FEM in three different laminate stacking sequences. It is obvious that in 

both analytical and FEM the buckling moments increase as the L/h ratio decrease because of the 

larger height of the beam to resist against lateral-torsional buckling. Again, it is evident from 

Figure 3.9 that the analytical and numerical results match closely beyond L/h=5 while the two 

results match up closely in Figures 3.11 and 3.12 throughout the entire range of L/h values. 

 

 
Figure 3.11 Comparison of buckling result obtained from analytical solution and FEM for 
the [45/-30/-15/90] laminate and layer thickness of 0.1 mm by changing L/h ratio 
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Figure 3.12 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and layer thickness of 0.1 mm by changing L/h ratio 
 

3.5.2 Effect of Stacking Sequence 
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for the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical 

moment among the possible stacking sequences selected for Figure 3.6. The optimal maximum 

critical moment is obtained for the balanced angle-ply layup to be 247N.mm for layup [22/-

22/22/-22]. Figure 3.13 shows the variation in critical buckling moment with the change in layup 
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Figure 3.13 Variation in critical buckling moment with the change in balanced angle-ply 
layup angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and (●) FEM; layer 
thickness of 0.1 mm and L/h of 5 
 

3.5.3 Effect of Thickness 
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same while changing the layer thickness. The results show that there is a significant increase in 

the value of buckling moments as the layer thickness increases. The relation between buckling 

moment and the thickness is defined to be a power function which can be written in Eq. 3.29. 
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total thickness of the beam or the thickness of each layer as long as all layers have the same 

constant thicknesses. 

By knowing the value of buckling moment in a selected layup, Eq. 3.29 helps to calculate 

the buckling moment for various layer or total beam thickness. Figure 3.14 shows the effect of 

layer thickness on the buckling moment based on analytical solution for three different stacking 

sequence of [0/0/0/0], [45/-30/-15/90], and [30/-30/30/-30]. Figure 3.15 shows the effect of layer 

thickness on the buckling moment based on the FEM results for the same three stacking 

sequences of [0/0/0/0], [45/-30/-15/90], and [30/-30/30/-30]. Eq. 3.29 can be obtained from FEM 

analysis with small error multipliers of (a) and (b), which are tabulated in Figure 3.15. The 

modification of Eq. 3.29 for FEM is shown in Eq. 3.30. 

𝑀𝑀𝑐𝑐𝑐𝑐 = (𝑎𝑎𝑎𝑎 + 𝑏𝑏) (𝑀𝑀𝑐𝑐𝑐𝑐)𝑖𝑖
𝑡𝑡𝑖𝑖3

𝑡𝑡3        ( 3.30) 

 

 

Figure 3.14 Effect of thickness, tk, on the critical moment based on analytical method for 
three different orientations, L/h=5 
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Figure 3.15 Effect of thickness, tk, on the critical moment based on FEM method for three 
different orientations, L/h=5 
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Figure 3.16 Comparison of buckling result obtained from analytical solution and FEM for 
the [0/0/0/0] laminate and L/h of 5 by changing layer thickness, tk 
 

 
Figure 3.17 Comparison of buckling result obtained from analytical solution and FEM for 
the [45/-30/-15/90] laminate and L/h of 5 by changing layer thickness, tk 
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Figure 3.18 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and L/h of 5 by changing layer thickness, tk 
 

3.6 Conclusions 

In this study, the lateral-torsional buckling of simply supported, thin-walled rectangular 

cross-section, anisotropic laminated composite beam under pure bending loading was 

investigated. Based on the assumptions made and the results obtained, an excellent accuracy is 

observed for a variety of stacking sequences. The applicability of this analytical formulation is 

proved by comparing the obtained results with FEM results. The study followed the classical 

laminated plate theory with all considered assumptions and determined an effective lateral-

torsional-coupling stiffness matrix. 

Based on the study, the stability of the laminated beams under pure bending is greatly 

affected by the length/height ratio of the beam as well as the thickness of the beam. The critical 

buckling moment was inversely proportional to the length/height ratios with a power function. 
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The lowest L/h ratio yields to the highest critical buckling moment. Increase in the thickness of 

the beam also plays a significant role in increasing the stability resistance of the beam. The 

importance of the stacking sequence, which does not affect the dimensions of the beam, is seen 

to greatly influence the stability of the beam. 

The critical buckling moment of balanced angle-ply fiber lamination of about [22/-

22/22/-22] is found to reach the maximum value, among this class of layups, because of its 

maximum lateral and torsional effective stiffness. The minimum critical buckling moment 

obtained from [90/90/90/90] was found to be due to orienting the fibers in the y-direction, thus 

reducing the lateral and torsional effective stiffness. 

Table 3.2 Comparison of buckling moment obtained from analytical results and FEM for 
L/h ratios of 5 and 20 and layer thickness of 0.1 mm in different stacking conditions 

Laminate 

Critical Buckling moments Mcr (N.mm) and Error (%) 
L/h =5 L/h = 20 

Analytical FEM 
(ABAQUS) 

Error 
(%) Analytical FEM 

(ABAQUS) 
Error 
(%) 

0/0/0/0 172.47 189.93 10.12 43.12 43.52 0.94 
90/90/90/90 53.61 53.97 0.67 13.40 13.45 0.32 

30/-30/30/-30 226.88 225.77 0.49 56.72 56.04 1.20 
45/-45/45/-45 155.26 156.48 0.79 38.82 38.33 1.24 
60/-60/60/-60 118.63 117.31 1.12 29.66 29.38 0.95 
60/-60/45/-45 134.39 133.43 0.72 33.60 33.33 0.79 
30/-30/45/-45 176.38 175.70 0.39 44.10 43.59 1.14 
30/-30/60/-60 146.00 146.31 0.22 36.50 36.26 0.66 

30/-30/0/0 168.14 170.76 1.55 42.04 42.01 0.06 
30/-30/0/90 118.02 118.68 0.56 29.51 29.45 0.20 
30/30/30/30 137.56 138.65 0.79 34.39 34.21 0.53 

30/-30/-30/30 197.10 197.05 0.02 49.28 48.86 0.84 
0/90/90/0 162.79 178.32 9.54 40.70 41.06 0.89 

30/-60/-60/30 163.25 168.65 3.30 40.81 40.65 0.39 
0/90/0/90 119.64 125.85 5.19 29.91 30.09 0.59 

-45/30/-30/45 156.45 156.92 0.30 39.11 38.76 0.91 
0/0/90/90 89.63 91.80 2.43 22.41 22.51 0.44 
90/0/0/90 79.12 80.76 2.08 19.78 19.86 0.43 

45/-30/-15/90 102.60 102.46 0.13 25.65 25.54 0.42 
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Chapter 4 - Lateral-Torsional Buckling of Simply Supported 

Anisotropic Steel-FRP Beams under Pure Bending Condition 

In this chapter, a generalized analytical approach for lateral-torsional buckling of simply 

supported anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams under 

pure bending condition was developed using the classical laminated plate theory as a basis for 

the constitutive equations. Buckling of such type of hybrid members has not been addressed in 

the literature. The hybrid beam, in this study, consists of a number of layers of anisotropic fiber 

reinforced polymer (FRP) and a layer of isotropic steel sheet. The isotropic steel sheet is used in 

two configurations, (i) in the mid-depth of the beam sandwiched between the different FRP 

layers and (ii) on the side face of the beam. A closed form buckling expression is derived in 

terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These 

coefficients are obtained through dimensional reduction by static condensation of the 6x6 

constitutive matrix mapped into a 2x2 coupled weak axis bending-twisting relationship. The 

stability of the beam under different geometric and material parameters, like length/height ratio, 

ply orientation, and layer thickness, was investigated. The analytical formula is verified against 

finite element buckling solutions using ABAQUS for different lamination orientations showing 

excellent accuracy. 

 

4.1 Introduction 

A thin-walled slender beam subjected to bending moments about the strong axis may 

buckle by a combined lateral bending and twisting of the cross-section. This phenomenon is 

known as lateral- torsional buckling. Theory of thin-walled open section beams including axial 

constrains for isotropic materials was developed by Vlassov (1961). This classical theory 
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neglects the shear deformation in the middle surface of the wall so that for the composite beams, 

the shear deformations may significantly increase the displacements and reduce the buckling 

loads. The shear deformation theory for transversely loaded isotropic beams was developed by 

Timoshenko and Gere (1961). 

Many researchers then started to study the lateral torsional buckling for the laminated 

composite beams using different theoretical approaches and enhancing their work with 

experimental programs and finite element models to validate the theory. Lin et al. (1996) studied 

the stability of thin-walled composite member using the finite element method. Seven degrees of 

freedom at each node for each two-nodded element were used to model the fiber reinforced 

plastic. The seven degrees of freedom are the dependent translations in three perpendicular 

directions and the corresponding rotations in addition to the angle of warping. The stiffness 

matrices of a beam element were used to develop the element shape functions. A number of 

examples of thin walled-open sections were solved, different cross sections like channels, I 

sections, and Z-sections were tested as well as different boundary conditions. The study 

concluded the importance of the influence of in-plane shear strain on the critical buckling load 

for lateral torsional buckling and combined torsional and flexural modes. It also minimized the 

significance of shear strain effect on critical buckling when the buckling happens in terms of a 

flexural mode.  Davalos and Qiao (1997) used the non-linear elastic theory to develop a stability 

solution for lateral-distortional buckling for composite wide flange beams based on the principle 

of total potential energy. A fifth-order polynomial shape function was adopted for the 

displacement field construction. Then, the proposed model was validated against two 

geometrically identical experimental beams loaded at mid-span, with different material 

characteristics. A good agreement was obtained against the experimental results and a finite 
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element model. Kollar (2001) presented a stability analysis of thin walled composite columns 

under axial loading conditions. A closed form solution was derived using a modified version of 

Vlasov’s classical theory (1961) for isotropic material to account for the composite action. The 

effect of shear deformation in in-plane displacements and in the restrained warping was 

examined and a shear matrix was formulated in addition to the bending matrix. Lee et al. (2002) 

studied the lateral buckling of composite laminated beams. An analytical approach based on the 

classical lamination theory was derived for different boundary conditions and different laminate 

stacking sequences. The examined beams were tested under various loading configurations and 

various locations. The beams were then compared against a one dimensional finite element 

model under different load configurations. The model showed a good agreement against the 

finite element model of simply supported I beam in cases of pure bending, uniformly distributed 

loads, and central point load. Yet, the model was not appropriate for pure bending with off-axis 

fiber orientation due to coupling stiffness. Sapkas and Kollar (2002) offered closed form 

solutions for simply supported and cantilever, thin walled, open section, orthotropic composite 

beams subjected to concentrated end moments, concentrated forces, or uniformly distributed 

load. The solution indirectly accounted for shear deformation by adjusting the bending and 

warping stiffness of the composite beams. Qiao et al. (2003) formulated an analytical solution for 

flexural-torsional buckling of composite cantilever I beams based on an energy method 

developed from the non-linear plate theory. A good agreement against finite element method was 

obtained. Furthermore, four different cantilever beams were tested experimentally under tip 

loads to examine the flexural-torsional response. Also, good agreements were shown against the 

experimental results. Kotelko (2004) presented a theoretical analysis of local buckling which 

represents material failure. This study covered different cross sections of thin walled beams and 
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columns. These cross sections varied between lipped and plain channels as well as box-section. 

This theory matched previous theories in a way that it depends on the rigid-plastic model. Yet, it 

mainly differs by considering a constitutive strain-hardening of the used material. This analytical 

approach is particularly useful in the initial phase of design process and may be applied as a 

simplified design tool at the early stage of design process, including crush-oriented design. 

Karaagac et al. (2007) tested the stability of a cantilever laminated composite beam under static 

and dynamic conditions. A linear translation spring was attached to the beam to control the 

lateral deformation. The attached elastic support location varied between the free end and the 

mid-span of the beam.  Length-to-thickness ratio, variation of cross-section in one direction, 

orientation angle, static and dynamic load parameters, stiffness and position of the elastic support 

were the main variables to study the stability of the beam.  Numerical polynomial 

approximations for the displacements and the angle of twist were derived and showed a 

reasonable accuracy against the finite element method. Machado (2010) derived an analytical 

solution for lateral stability of cross-ply laminated thin-walled simply supported bisymmetric 

beams subjected to combined axial and bending loads. The presented theory included shear 

deformability and took into account large displacements and rotations; moderate bending 

rotations and large twisting angles. The proposed solution also examined the nonlinear pre-

buckling geometrical deformation for more accurate representation of the lateral stability 

conditions. The buckling loads obtained analytically were, in general, in good agreement with 

the bifurcation loads observed in the post buckling response. The study concluded that the 

buckling moments computed from classical theory is overestimated. Also, it presented pre-

buckling and post buckling displacement curves to relate the stiffness behavior of the beam to 

the applied loads and also to study the fiber orientation against the buckling loads. 
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In this study, an analytical model applicable to the lateral-torsional buckling of simply 

supported anisotropic hybrid (steel-FRP), thin-walled, rectangular cross-section beams, subjected 

to pure bending is developed. This model is based on the classical laminated plate theory 

(CLPT), and accounts for the arbitrary laminate stacking sequence configurations. The analyzed 

beams consist of six layers of fiber reinforced polymer (FRP) sheets and one isotropic steel sheet 

even though the solution is applicable to any number of layers. The FRP sheets have the same 

thickness and the same mechanical properties, yet they vary in terms of fiber angle orientation. 

The location of the steel sheet was examined in order to understand its influence on the lateral 

torsional buckling critical moment. A sandwich stacking configuration (ST-I) is defined by 

placing the steel sheet in the mid-thickness of the beam. A sided stacking configuration (ST-II) is 

defined by placing the steel sheet at the side face of the beam. A series of FRP angle 

configurations were determined for comparisons against a finite element model and also to 

compare the different configurations against each other. The finite element model is developed in 

ABAQUS to predict critical buckling moments and compare with the results obtained from the 

analytical model. Also, the length of the beam to its height ratio and FRP layer thickness were 

examined to study the effect of beam size and thickness on the lateral torsional buckling 

resistance. 

 

4.2 Analytical Formulation 

A simply supported hybrid (steel-FRP) laminated composite beam with length L and a 

thin rectangular cross section is subjected to pure bending at the ends, as shown in Figure 4.1. 

The beam tends to buckle under a lateral-torsional behavior because of its small thickness. 
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The model in this study is based on the classical laminated plate theory, Kollar and 

Springer (2003) and Barbero (1999). The following assumptions are adopted from the classical 

laminated plate theory: 

1. The normals to mid-plane (reference surface) of the laminate remain normal and 

straight after deformation. 

2. The normal to mid-plane of the laminate do not change length – in other words, the 

thickness of the laminate stays constant. 

3. The shear deformations are neglected. 

4. The laminate consists of perfectly bonded layers. 

5. The stress-strain relationships are applied under plane-stress conditions. 

 

 

Figure 4.1 A deformed laminated beam subjected to pure bending (structural coordinate 
system) 
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4.2.1 Kinematics 

Based on the assumptions in the classical laminated plate theory, the displacement 

components u, v, w representing the deformation of a point on the plate profile section are given 

with respect to mid-surface displacements u0, v0, and w0 as follows: 

𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧 𝑑𝑑𝑤𝑤0
𝑑𝑑𝑑𝑑

(𝑥𝑥, 𝑦𝑦)                                        ( 4.1) 

𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧𝑧𝑧(𝑥𝑥, 𝑦𝑦)                                             ( 4.2) 

𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥, 𝑦𝑦)                                                              ( 4.3) 

where 𝛽𝛽 = 𝜕𝜕𝜕𝜕𝑜𝑜
𝜕𝜕𝜕𝜕

 

The strains associated with small displacements from the theory of elasticity are given by 

𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥                                                                          ( 4.4) 

𝜀𝜀𝑦𝑦 = 𝜀𝜀𝑦𝑦0 + 𝑧𝑧𝜅𝜅𝑦𝑦                                                                          ( 4.5) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥𝑥𝑥                                                                     ( 4.6) 

where 

𝜀𝜀𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

 , 𝜀𝜀𝑦𝑦0 = 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

, 𝛾𝛾𝑥𝑥𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

                                          ( 4.7) 

𝜅𝜅𝑥𝑥 = − 𝜕𝜕2𝑤𝑤𝑜𝑜
𝜕𝜕𝜕𝜕2

,𝜅𝜅𝑦𝑦 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and 𝜅𝜅𝑥𝑥𝑥𝑥 = −2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                              ( 4.8) 

4.2.2 Stress-Strain Equations 

The stress-strain relation for a layer is derived in the state of plane stress. For an isotropic 

material, the stress-strain relation is as follow: 

�
σx
σy
τxy

� = �
𝐸𝐸� 𝐸𝐸�𝜈𝜈 0
𝐸𝐸�𝜈𝜈 𝐸𝐸� 0
0 0 𝐺𝐺

� �
𝜖𝜖𝑥𝑥
𝜖𝜖𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥

�                                                       ( 4.9) 

where 𝐸𝐸� = 𝐸𝐸
1−𝜈𝜈2

 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈) 
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For anisotropic material, the stress-strain relation in the beam coordinate system is defined as 

follows: 

�
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
τxy

� = �
𝑄𝑄�11 𝑄𝑄�12 𝑄𝑄�16
𝑄𝑄�12 𝑄𝑄�22 𝑄𝑄�26
𝑄𝑄�16 𝑄𝑄�26 𝑄𝑄�66

� �
𝜖𝜖𝑥𝑥
𝜖𝜖𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥

�                                                    ( 4.10) 

where �𝑄𝑄�𝑖𝑖𝑖𝑖� are the components of the transformed reduced constitutive matrix which are given 

in standard textbooks like Kollar and Springer (2003) and Barbero (1999). 

 

4.2.3 Force-Strain Equation 

The plate stiffness coupling equations based on classical laminated plate theory, shown in 

Figure 4.2, are given as follows. 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑥𝑥 =  0
𝑁𝑁𝑦𝑦 =  0
𝑁𝑁𝑥𝑥𝑥𝑥 = 0
𝑀𝑀𝑥𝑥 ≠  0
𝑀𝑀𝑦𝑦 =  0
𝑀𝑀𝑥𝑥𝑥𝑥 ≠ 0⎭

⎪⎪
⎬

⎪⎪
⎫

= ℎ

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵12   𝐵𝐵22    𝐵𝐵26
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵16   𝐵𝐵26    𝐵𝐵66
𝐵𝐵11   𝐵𝐵12   𝐵𝐵16   𝐷𝐷11   𝐷𝐷12    𝐷𝐷16
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷12   𝐷𝐷22    𝐷𝐷26
𝐵𝐵16   𝐵𝐵26   𝐵𝐵66   𝐷𝐷16   𝐷𝐷26    𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑦𝑦
𝜅𝜅𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

                           ( 4.11) 

where  

𝐴𝐴𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘                   𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extensional stiffness coefficients 

𝐵𝐵𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘              𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extension-bending coupling stiffness 

coefficients and 

𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ (𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 �𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘2 + 𝑡𝑡𝑘𝑘
3

12
 �             𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁

𝑘𝑘=1  are called bending stiffness coefficients 

(𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 are the components of the kth layer 2D transformed constitutive matrix in the beam 

coordinate system 
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𝑧𝑧𝑘̅𝑘 is the depth from the middle surface to the centroid of the kth layer, and tk is the thickness of 

kth layer of the hybrid beam. 

Knowing the zero components of externally applied forces and moments for the pure bending 

condition from Figure 4.1, which are expressed in Eq. 4.11, the stiffness matrix can be simplified 

and dimensionally reduced to an effective 2x2 stiffness matrix by using the static condensation 

technique. In the static condensation technique, the zero and non-zero components of forces and 

moments from Eq. 4.11 are arranged into separate matrices as follows: 

ℎ �

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

��

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦

� + ℎ �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥� = �

0
0
0
0

�    ( 4.12) 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷11   𝐷𝐷16
𝐷𝐷16   𝐷𝐷66

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥

� + ℎ �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�

𝑇𝑇

⎩
⎨

⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦 ⎭

⎬

⎫
    

 ( 4.13) 

The reduced effective 2x2 stiffness matrix (Eq. 4.15) can be obtained by defining 

⎩
⎨

⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦 ⎭

⎬

⎫
 from 

Eq. 4.12 in terms of other components, as shown in Eq. 4.14, and substituting it into Eq. 4.13. 

�

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦

� = −�

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

�

−1

�

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�    ( 4.14) 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�                                              ( 4.15) 

where 



 

53 

�𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� = �𝐷𝐷11   𝐷𝐷16
𝐷𝐷16   𝐷𝐷66

� − �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�

𝑇𝑇

�

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

�

−1

�

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

� 

DY is the effective hybrid (steel-FRP) composite lateral stiffness coefficient, DT is the effective 

hybrid composite twisting stiffness coefficient, and DYT is the effective hybrid composite lateral-

twisting coupling coefficient. In most cases, where the layers are symmetric, anti-symmetric, 

cross-ply, special angle ply, DYT coefficient will be zero. However, for the generally anisotropic 

cases, DYT coefficient is not zero and will play a significant role in determining the buckling 

moments of the beams. 
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Figure 4.2 Force and moment resultants on a beam based on classical laminated plate 
theory (laminate coordinate system). 
 

Referring to Figure 4.1 (structural coordinate) and Figure 4.2 (laminate coordinate), the 

bending moment My in structural coordinate is replaced by Mx in laminate coordinate. On the 

other hand, the shear moment, Mxy, in laminate coordinate is in the opposite direction of twisting 

moment in the structural coordinate system and is found by Kollar and Springer (2003) to be 

MT= -2 Mxy. Table 4.1 shows the relation of moment components in structural coordinate and 

laminate composite coordinate. 
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Table 4.1 Relation of moment components in structural coordinate and laminate composite 
coordinate 

 
 

Substituting the curvatures in terms of displacement and rotation of Eq. 4.8 into Eq. 4.15, and 

writing the moments in structural coordinates systems, the following relation will be obtained 

�
𝑀𝑀𝑦𝑦′
−𝑀𝑀𝑇𝑇

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�        ( 4.16) 

 

4.2.4 Equilibrium Equations 

Figure 4.1 shows the components of external moments about the original and deformed 

axes and is obtained as follows: 

External moments in un-deformed configuration (original axes): 

𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑜𝑜 (Applied Moment)                                            ( 4.17) 

𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑦𝑦 = 0                                  ( 4.18) 

External moments in the deformed configuration (deformed axes): 

𝑀𝑀𝑧𝑧
′ = 𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑜𝑜                                   ( 4.19) 

𝑀𝑀𝑦𝑦
′ = 𝛽𝛽𝑀𝑀𝑜𝑜                             ( 4.20) 

𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑥𝑥
′ = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜                                         ( 4.21) 
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The following system of differential equations is obtained after substituting the external 

moments from Eqs. 4.20 and 4.21 into Eq. 4.16: 

�
𝛽𝛽𝑀𝑀𝑜𝑜 

− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�                                           ( 4.22) 

−ℎ𝐷𝐷𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ = 𝛽𝛽𝑀𝑀𝑜𝑜                                                ( 4.23) 

-2ℎ𝐷𝐷𝑌𝑌𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ = − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜                                             ( 4.24) 

Writing Eqs.4.23 and 4.24 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
ℎ𝐷𝐷𝑌𝑌

[−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ − 𝛽𝛽𝑀𝑀𝑜𝑜] = 1
2ℎ𝐷𝐷𝑌𝑌𝑌𝑌

�−4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑜𝑜�                          ( 4.25) 

Differentiating Eq. 4.25 with respect to x and rearranging the resulting expression in terms 

of  d
2w
dx2

 , Eq. 4.26 will be obtained. 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

= − 2𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌

𝛽𝛽′ + 4ℎ
𝑀𝑀𝑜𝑜
�𝐷𝐷𝑇𝑇 −

𝐷𝐷𝑌𝑌𝑌𝑌2

𝐷𝐷𝑌𝑌
� 𝛽𝛽′′                                        ( 4.26) 

Equating the left hand side of Eq.4.25, which is equal to d
2w
dx2

  in Eq. 4.23, and the right hand side 

of Eq. 4.26, the resulting expression reduces to a second order ordinary differential equation with 

constant coefficients, which can be solved analytically. 

𝛽𝛽′′ + 𝑀𝑀𝑜𝑜
2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
𝛽𝛽 = 0                                             ( 4.27) 

Setting 𝜅𝜅2 = 𝑀𝑀𝑜𝑜
2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 , yields an equation similar to the isotropic condition when the 

warping effect is neglected. 

𝛽𝛽′′ + 𝜅𝜅2𝛽𝛽 = 0                               ( 4.28) 

The general solution for this type of differential equation is known to be: 
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𝛽𝛽 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘𝑘𝑘) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘𝑘𝑘)                                                 ( 4.29) 

Applying boundary condition for pure bending as 𝛽𝛽(0) = 𝛽𝛽(𝐿𝐿)  = 0, the critical buckling 

moment is obtained according to the following equation. 

𝑀𝑀0𝑐𝑐𝑐𝑐 = 𝜋𝜋ℎ
𝐿𝐿
�4(𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇 − 𝐷𝐷𝑌𝑌𝑌𝑌2 )                                          ( 4.30) 

The critical moment for isotropic beam was obtained by Timoshenko and Gere (1961) as 

follows: 

 M0cr = π
L �EIy𝐺𝐺𝐺𝐺                            ( 4.31) 

where 𝐽𝐽 = 1
3
ℎ𝑡𝑡3 

For an isotropic material where DYT = 0, the following relation is obtained. 

𝐸𝐸𝐼𝐼𝑦𝑦 = 2ℎ𝐷𝐷𝑌𝑌 (Lateral stiffness coefficient)                                 ( 4.32) 

𝐺𝐺𝐺𝐺 = 2ℎ𝐷𝐷𝑇𝑇   (Torsional stiffness coefficient)                               ( 4.33) 

 

4.3 Numerical Analysis (FEA) 

 The finite element method in the commercial software, ABAQUS/Standard (implicit) 

was used to simulate the problem in this study. The model was first created by using 3D planar 

shells. The shells were assembled based on the stacking arrangement that was used in the 

analytical solution. The global x-axis was used along beams length, but the local coordinate 

system was used based on the orientation of the fibers in each ply.  

The boundary conditions for this beam were applied as follows. The four corners of the 

beam, shown in Figure 4.3, were constrained from moving in z-direction. One end of the beam 

was pinned at mid-height restraining it from all displacements, and a roller was applied at mid-



 

58 

height of other end of the beam to restrain displacement in the y-direction only, as shown in the 

Figure 4.3. 

 

Figure 4.3 Applied load and boundary conditions 
 

A linear shell-edge load was applied at both ends of the beam as tension and compression 

stresses to create a pure bending moment condition in the beam, as shown in Figure 4.3. Each 

edge was partitioned into two parts to apply shell-edge load linearly in the desired direction. The 

following relation was used to determine the magnitude of the linear load. 

Fx= 20y                   ( 4.34) 

There is no load applied at the mid-height of the edge and the load increases linearly by 20y, 

which will act as a pure bending moment when applied as compression above the mid-height and 

as tension below the mid-height. 

 
Figure 4.4 Applied shell element type (S8R) and mesh (element size along beam axis: 2.5 
mm) 
 

The beam was meshed with a standard quadratic quadrilateral shell element type of S8R 

(8-node doubly curved thick shell element with reduced integration) using six degrees of 

freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and 

u=v=w=0 at mid-height v=0 at mid-height y 

F=20y 
w=0 

w=0 

w=0 

w=0 
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h = 100 mm yields a total number of 29297 nodes and 9600 elements, as shown in Figure 4.4. 

The eigenvalue buckling analysis in ABAQUS solver, which is a linear perturbation procedure, 

determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues and 

eigenvectors for symmetric stiffness matrices only. In order to make the stiffness matrix of the 

model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical 

moment, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the moment 

which was applied at the ends of the beam in combined tension and compression line edge 

loading. 

𝑀𝑀0𝑐𝑐𝑐𝑐 = 𝜆𝜆𝜆𝜆0                                 ( 4.35) 

where M0 is calculated from applied linear edge load. 

 

4.4 Results 

4.4.1 Material Properties and Stacking Sequences 

An anisotropic hybrid (steel-FRP) composite beam is made by stacking six layers of the 

FRP of lamina properties shown in Table 4.2 at different fiber orientations and one layer of 

isotropic steel sheet given in Table 4.3. The thickness of each layer along with steel sheet is the 

same (typically 0.1 mm), yet it varies in terms of fiber orientation. The orientation of fiber in 

each layer can be randomly picked, including common laminate types such as symmetric 

laminates, antisymmetric laminates, balanced laminates, and so on. Two stacking configurations 

were considered in order to place the steel sheet: (i) sandwich stacking (ST-I) where the steel 

sheet is placed at mid-depth of the beam and (ii) sided stacking (ST-II) where the steel sheet is 

placed in the front face of the beam. The stacking sequence starts from the back of the beam to 

the front of the beam to follow the same order used for typical laminated plates, Figure 4.5. For 
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example, [30/-30/90/ST/30/-30/90] means that the first ply has an angle of 30 degrees from the 

x-axis of the beam is placed in the back of the beam counter clockwise (towards the y-axis) and 

the other layers follow with the same order through the positive z-axis, and ST indicates the 

location of isotropic steel sheet in the mid-depth. Figure 4.5 shows the stacking sequence of the 

laminates and location of steel sheet. Different length to height ratios of (5, 10, 20, and 50) were 

also studied which will be presented later. 

 

Table 4.2 Material 1 (CFRP) properties used the in laminates 

Material CFRP 

E11 142730 MPa 

E22 13790 MPa 

v12 0.3  

v21 0.028985  

G12 4640 MPa 

G13 4640 MPa 

G23 3030 MPa 
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Table 4.3 Material 2 (Steel) properties used the in laminates 

Material  Steel 

E11 200000 MPa 

E22 200000 MPa 

v12 0.3   

v21 0.3   

G12 76923.08 MPa 

G13 76923.08 MPa 

G23 76923.08 MPa 

 

 

 

Figure 4.5 The stacking sequence of the laminate and location of steel sheet (ST-I) 
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4.4.2 Buckling Results 

For the lateral-torsional buckling of thin-walled rectangular laminated composite beams 

under pure bending conditions, an analytical approach is presented as well as FEA results. 

Figures 4.6 - 4.9 show the buckling results for different stacking sequences based on the 

proposed analytical formulation as well as results from FEA model. Figures 4.6 and 4.7 show the 

results of ST-I (sandwich) configuration and ST-II (sided) configuration of 18 different laminate-

fiber orientation for beam length/height ratio of 5. Similarly, Figures 4.8 and 4.9 show the results 

of ST-I configuration and ST-II configuration of 18 different laminate-fiber orientation for beam 

length/height ratio of 20. The same comparison was held for beam length/height ratios of 10 and 

50. Based on the results obtained, there is an excellent agreement between the proposed 

analytical formulation and FEA for all the orientations with an error that does not exceed 3.5% 

except for the zero fiber orientation. The largest error observed is 8.7% (Figure 4.6) for the 

0/0/0/ST/0/0/0 case, which buckled in a distortional mode rather than lateral-torsional mode, 

which will be explained in details later in this chapter, Figure 4.12. 

 

4.5 Parametric Study 

4.5.1 Effect of Length/Height Ratio 

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to 

study their effects on the lateral-torsional buckling of simply supported laminated thin-walled 

rectangular cross-sectional hybrid beams. The results show that there is a significant drop in the 

value of the buckling moments as the L/h ratio increases. The relation between buckling moment 

and L/h ratio is defined to be a power function which can be written in Eq. 4.36. 

𝑀𝑀𝑐𝑐𝑐𝑐 = (𝑀𝑀𝑐𝑐𝑐𝑐)𝑖𝑖 ∗ (𝐿𝐿
ℎ

)𝑖𝑖(
𝐿𝐿
ℎ

)−1                                         ( 4.36) 
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where (𝑀𝑀𝑐𝑐𝑐𝑐)i is the initial calculated value of buckling moment from Eq. 4.31 with a given �𝐿𝐿
ℎ
�
𝑖𝑖
 

ratio for a specific laminate stacking sequence. 

 

 

Figure 4.6 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=5, and ST-I configuration 
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Figure 4.7 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=5, and ST-II configuration 
 

 
Figure 4.8 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=20, and ST-I configuration 
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Figure 4.9 Buckling moments at different stacking sequences: tk=0.1 mm for each layer, 
L/h=20, and ST-II configuration 
 

 

 

Figure 4.10 Effect of L/h ratio on the critical moment based on analytical formula for three 
different layups and layer thickness of 0.1 mm and ST-I arrangement 
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Figure 4.11 Effect of L/h ratio on the critical moment based on analytical formula for three 
different layups and layer thickness of 0.1 mm and ST-II arrangement 
 

By knowing the value of buckling moment in a selected laminate, Eq. 4.36 helps to 

calculate the buckling moment for different L/h ratios. Figures 4.10-4.11 show the effect of L/h 

ratio on the buckling moment for three different orientation sequences of ST-I type for 

[0/0/0/ST/0/0/0], [30/-30/30/ST/30/-30/30], and [60/-60/60/ST/60/-60/60] and ST-II type for 

[0/0/0/0/0/0/ST], [30/-30/30 /30/-30/30/ST], and [60/-60/60 /60/-60/60/ST]. Eq. 4.36 is limited to 

the analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy 

between the analytical and numerical results in the cases of [0/0/0/ST/0/0/0] and [0/0/0/0/0/0/ST] 

laminates as the ratio of L/h decreases, as shown in Figures 4.13 and 4.14. This discrepancy is 

related to the fact that the beam with zero fiber orientations buckles numerically in a distortional 

mode, in which the lateral angle of twist at a certain section transverse to the beam is not 

constant, rather than a lateral-torsional mode, in which the lateral angle of twist remains constant 

for a certain section transverse to the beam, Figure 4.12. Nevertheless, Figures 4.13 and 4.14 

clearly show that the analytical and numerical buckling moments match almost exactly as the L/h 

ratio increases beyond 5 for both stacking sequences. It is obvious that in both analytical and 
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FEM the buckling moments increase as the L/h ratio decrease because of the larger height of the 

beam to resist against lateral-torsional buckling. 

 

 
Figure 4.12 Buckling shapes showing distortional buckling mode and lateral-torsional 
buckling mode for ST-I arrangement 
 

 
Figure 4.13 Comparison of buckling results obtained from analytical solution and FEM for 
the [0/0/0/ST/0/0/0] (ST-I) laminate and layer thickness of 0.1 mm by changing L/h ratio 
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Figure 4.14 Comparison of buckling results obtained from analytical solution and FEM for 
the [0/0/0/0/0/0/0/ST] (ST-II) laminate and layer thickness of 0.1 mm by changing L/h ratio 
 

4.5.2 Effect of Stacking Sequence (ST-I and ST-II) 

The previous sections of this chapter discussed the accuracy of the proposed analytical 

solution for hybrid beams against the finite element method for lateral-torsional buckling. Also, 

the effect of beam’s size was examined against the buckling moment. In this section, and after 

verifying the accuracy of the solution, the two different stacking orders are studied. Figure 4.15 

shows the ratios of the critical lateral torsional buckling moments for ST-II and ST-I for different 

fiber orientations. The Figure shows ratios bigger than one, which leads to the conclusion that 

the ST-II, in which the steel sheet is at the side of the beam, has a higher resistance against 

lateral torsional buckling than the ST-I, in which the steel sheet is in the middle, for all examined 

fibers orientations. 
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Figure 4.15 Normalized ST-II/ST-I vs. the stacking sequence with L/h = 5 and L/h = 20 
 

4.5.3 Effect of Fiber Angle Orientation 

As shown in Figure 4.6. The stacking sequences considerably affect the buckling 

moments if the dimensions of the beam are kept the same. The lowest value for the critical 

buckling moment is obtained when the fiber is perpendicular to the beam axis while the highest 

critical value is obtained for the balanced angle-ply stacking sequence of 30 degrees which is the 

maximum critical moment among the possible stacking sequences selected for Figure 4.6. 

Furthermore, a comparison was held to study the effect of fiber angle on critical buckling 

moment. The orientation [θ/-θ/θ/ST/θ/-θ/θ] (degree) for ST-I and [θ/-θ/θ/θ/-θ/θ/ST] (degree) for 

ST-II were examined with the change in layup angle of 0 to 90 with an increment of 5 degrees, 

Figures 4.16 and 4.17. The optimal maximum critical moment is obtained for the balanced angle-

ply layup to be around 2100 N.mm for layup [20/-20/20/20/-20/20/ST]. 
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Figure 4.16 Variation in critical buckling moment with the change in layup angle of 0 to 90 
at an increment of 5 degrees. (+) Analytical and (●) FEM; layer thickness of 0.1 mm and 
L/h of 5, ST-I 
 

 
Figure 4.17 Variation in critical buckling moment with the change in layup angle of 0 to 90 
at an increment of 5 degrees. (+) Analytical and (●) FEM; layer thickness of 0.1 mm and 
L/h of 5, ST-II 
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moment for the same L/h ratio, it is essential to mathematically define this relationship. Figures 

4.19 and 4.21 present this relation graphically for three different fiber orientations of the two 

stacking sequences; ST-I and ST-II. A proportional equation (Eq.4.37) is proposed to relate the 

critical buckling load to the layer thickness for the same stacking sequence and fiber orientation 

at the same L/h ratio. This equation can predict analytically the critical buckling moment for a 

known thickness by knowing a different critical buckling moment and its corresponding 

thickness. 

�𝑀𝑀𝑐𝑐𝑐𝑐
𝑡𝑡3
�
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

= �𝑀𝑀𝑐𝑐𝑐𝑐
𝑡𝑡3
�
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛

                                                   ( 4.37) 

A linear correlation (atk+b) was needed to use this equation to predict the behavior for the finite 

element model. The parameters (a) and (b) were found numerically for three different fiber 

orientations for the two stacking sequences, Figures 4.18 and 4.20. 

 

Figure 4.18 Effect of layer thickness, tk, on the critical moment based on FEM for three 
different layups and L/h ratio of 5 and ST-I arrangement 
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Figure 4.19 Effect of layer thickness, tk, on the critical moment based on analytical formula 
for three different layups and L/h ratio of 5 and ST-I arrangement 
 

 
Figure 4.20 Effect of layer thickness, tk, on the critical moment based on FEM for three 
different layups and L/h ratio of 5 and ST-II arrangement 
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Figure 4.21 Effect of layer thickness, tk, on the critical moment based on analytical formula 
for three different layups and L/h ratio of 5 and ST-II arrangement 
 

Figures 4.22 and 4.23 show that, for any thickness and any fiber orientation, as L/h ratio 

decreases, the critical buckling moment increases for both stacking sequences, confirming the 

relationship found earlier in Figures 4.10 and 4.11. 

 

 
Figure 4.22 Critical buckling moment of three different fiber orientation of ST-I versus 
different layer thickness and L/h ratios 
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Figure 4.23 Critical buckling moment of three different fiber orientation of ST-II versus 
different layer thickness and L/h ratios 
 

4.6 Conclusions 

In this study, the lateral-torsional buckling of simply supported anisotropic hybrid (steel-

FRP), thin-walled, rectangular cross-section beams under pure bending condition was 

investigated. Based on the assumptions made and the results obtained, an excellent accuracy is 

observed for a variety of stacking sequences. The applicability of this analytical formulation is 

proved by comparing the obtained results with FEM results. The study followed the classical 

laminated plate theory with all considered assumptions and determined an effective lateral-

torsional-coupling stiffness matrix. 

Based on the study, the stability of the laminated beams under pure bending is greatly 

affected by the length/height ratio of the beam. The critical buckling moment was inversely 

proportional to the length/height ratios with a power function. The importance of the stacking 

sequence, which does not affect the dimensions of the beam, is seen to greatly influence the 

stability of the beam. The ST-II stacking type, in which the steel laminate is on the side of the 

beam, shows a higher resistance than the ST-I, in which the steel sheet is located at mid-

thickness of the beam. Accordingly, it is more effective to apply the FRP on one side of steel 

beams to strengthen them against lateral-torsional buckling. 
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The fiber angle orientation was proven to be a critical variable against the lateral torsional 

buckling. The critical buckling moment of balanced angle-ply fiber lamination of about [20/-

20/20/20/-20/20/ST] is found to reach the maximum value, among this class of layups, because 

of its maximum lateral and torsional effective stiffness. The minimum critical buckling moment 

obtained from [90/90/90/ST/90/90] was found to be due to orienting the fibers in the y-direction, 

thus reducing the torsional effective stiffness. Also, the effect of layer thickness was examined 

and a proportional equation was developed to relate the layer thickness to the critical buckling 

load for different fiber orientations and stacking sequences at a certain L/h ratio. 
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Chapter 5 - Lateral-Torsional Buckling of Anisotropic Laminated 

Thin-Walled Rectangular Composite Cantilever Beams Subjected to 

Free End Concentrated Load 

In this chapter, a generalized semi-analytical approach for lateral-torsional buckling of 

anisotropic, thin-walled, rectangular cross-section cantilever beams subjected to free end loading 

was developed using the classical laminated plate theory as a basis for the constitutive equations. 

Buckling of such type of members has not been addressed in the literature. A closed form 

buckling expression is derived in terms of the lateral, torsional and coupling stiffness coefficients 

of the overall composite. These coefficients are obtained through dimensional reduction by static 

condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis 

bending-twisting relationship. The resulting stability differential equation, along with applying 

boundary conditions, was solved numerically using Mathematica. The resulting solution was 

found to correlate with the effective lateral-flexure, torsional and coupling stiffness coefficients 

to yield a general analytical solution. The analytical formula is verified against finite element 

buckling solutions using ABAQUS for a wide range of lamination orientations showing excellent 

accuracy. The stability of the beam under different geometric and material parameters, like 

length/height ratio, layer thickness, and ply orientation, was investigated. 

5.1 Introduction 

Thin-walled beam structures are major components in many engineering applications. 

They are widely used as structural components in many types of systems in the field of civil, 

mechanical, and aerospace engineering. Advanced materials, mainly fiber reinforced polymer 

(FRP) composites, are partially replacing conventional materials in these types of structural 
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systems. Composites are being implemented in transportation systems, offshore structures, 

chemical facilities, aircraft wings and fuselage, helicopter blades, and so on. This increase in 

interest for using FRP lies in some critical advantages of FRP over conventional materials. Their 

high strength to weight ratio, high stiffness to weight ratio, their environmental adaptability, their 

ease of transportation and erection, and their fatigue resistance are some of the advantages FRP 

provide. The most prominent characteristic is the ability of tailoring the material for each 

particular application. Structural properties depend on the material system and the shape of the 

cross-section of the member (Barbero et al.1993). For isotropic structural shapes, it is possible to 

optimize the section to increase the bending stiffness without compromising the maximum 

bending strength. Unlike isotropic shapes, with composite members it is possible to optimize the 

material itself by choosing among a variety of resins, fiber systems, and fiber orientations. 

Although thin-walled FRP structures exhibit high strength, problems of excessive deformation 

and instability, due to their low stiffness and slenderness of the member, are the major 

disadvantages in wider acceptance for structural engineering applications (Lin et al. 1996). 

Because of these limitations, the new generation of composite structures should be designed to 

work in a safe way and to experience higher performance than the conventional systems. 

Consideration of stability and deformation limits tends to be the governing design criteria for 

FRP structures before these structures reach material failure. Thus, the proper establishment of 

such criteria is an important prerequisite to the practical use of FRP in engineering applications. 

A thin-walled slender beam subjected to in-plane bending moments (about the strong 

axis) may buckle by a combined lateral bending and twisting of the cross-section. This 

phenomenon is known as lateral- torsional buckling. Theory of thin-walled open section beams 

including axial constrains for isotropic materials was developed by Vlassov (1961). This 
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classical theory neglects the shear deformation in the middle surface of the wall so for thicker-

walled beams, the shear deformations may significantly increase the displacements and reduce 

the buckling loads. The shear deformation theory for transversely loaded isotropic beams was 

developed by Timoshenko and Gere (1961). 

For thin-walled beams, Bauld and Lih-Shyng (1984) applied Vlasov’s theory for open 

section composites with symmetrical laminated walls neglecting the shear deformation. Bank 

and Bednarczyk (1988) and Barbero et al. (1993) developed simple expressions for the bending, 

torsional, and warping stiffness of composite laminated beams.  Sherbourne and Kabir (1995) 

studied analytically the effect of transvers shear strain on the lateral buckling of thin-walled, 

open-section fibrous composite beams. Pandey at el. (1995) proposed an analytical formulation 

for finding the optimal direction of fiber for improving the lateral buckling strength of thin-

walled I-section composite beams. Lin et al. (1996) studied buckling problems of thin-walled 

composite structural members by finite element methods. Kollar (2001) suggested a closed form 

solution for thin-walled open section columns, made of orthotropic composite materials, by 

considering flexure, shear and the torsional warping induced shear deformations. Roberts and Al-

Ubaidi (2001) studied the influence of shear deformation on restrained torsional warping of 

pultruded FRP bars of open cross-section by proposing an approximate theory. Sapkas and 

Kollar (2002) studied the stability analysis of thin-walled, open section beams, made of 

orthotropic composite materials under various loading conditions. Lee et al. (2002) presented a 

general analytical model applicable to the lateral buckling of composite laminated I-beams 

subjected to various types of loadings. Qiao et al (2003) presented a combined analytical and 

experimental evaluation of flexural-torsional buckling of fiber reinforced polymer composite I-

beams. Tai (2004) studied lateral- torsional buckling of symmetrically laminated, rectangular 
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cross-section, composite beams under various loading conditions. Karaagac et al. (2007) studied 

static and dynamic stability of cantilever laminated symmetric and anti-symmetric composite 

beams having elastic support. Machado (2010) studied the stability of simply supported thin-

walled symmetric laminated composite I-beams subjected to combined axial and lateral loads by 

approximate analytical solutions and compared them with numerical results. 

Most of the work, concerning the lateral- torsional stability of thin-walled composite 

beams, was focused on I-sections. The beams were either considered to be of symmetric layup, 

anti-symmetric layup, orthotropic, or pultruded in nature. There hasn’t been any study recorded 

on the behavior of general anisotropic laminated composite beams to the best knowledge of the 

authors. 

In the present chapter, a generalized analytical model applicable to the lateral-torsional 

buckling of a cantilever rectangular cross-section beam, made of anisotropic laminated 

composite material, subjected to end loading is developed. This model is based on the classical 

laminated plate theory (CLPT), and accounts for the arbitrary laminate stacking sequence 

configurations. A finite element model is developed in ABAQUS to predict critical buckling 

loads and compare with the results obtained from the analytical model. The effects of fiber 

orientation, beam length/height ratios and wall thickness on the critical buckling forces are 

studied. 

5.2 Analytical Formulation 

A cantilever laminated composite beam with length L and a thin rectangular cross section 

is subjected to free end loading, as shown in Figure 5.1. The model in this study is based on the 

classical laminated plate theory, Kollar and Springer (2003) and Barbero (1999). The following 

assumptions are adopted from the classical laminated plate theory: 
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1. The normals to mid-plane (reference surface) of the laminate remain normal and 

straight after deformation. 

2. The normal to mid-plane of the laminate do not change length – in other words, the 

thickness of the laminate stays constant. 

3. The shear deformations are neglected. 

4. The laminate consists of perfectly bonded layers. 

5. The stress-strain relationships are applied under plane-stress conditions. 

The beam tends to buckle under a lateral-torsional behavior because of its small 

thickness. The buckling can occur in either clockwise or counterclockwise twisting angle based 

upon the orientation of controlling fibers in the stacking sequence, as is observed from FEM. If 

the beam buckles counterclockwise, the angle of twist, 𝛽𝛽, is considered to be positive, Figure 1a. 

On the other hand, 𝛽𝛽, is considered to be negative if the beam buckles clockwise, Figure 5.1b. 

Separate buckling equation is derived in each case based on the buckling mode shape. 
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Figure 5.1 Buckling shape of the beam; (a) buckling counterclockwise (+𝛃𝛃) and (b) 
buckling clockwise (−𝛃𝛃) 
 

5.2.1 Kinematics 

Based on the assumptions in the classical laminated plate theory, the displacement 

components u, v, w representing the deformation of a point in the beam profile section, as shown 

in Figure 5.2, are given with respect to mid-surface displacements u0, v0, and w0 as follows: 

𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝑤𝑤0
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑦𝑦)        ( 5.1) 

𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧𝑧𝑧(𝑥𝑥, 𝑦𝑦)        ( 5.2) 

𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥, 𝑦𝑦)         ( 5.3) 

where 𝛽𝛽 = 𝜕𝜕𝜕𝜕𝑜𝑜
𝜕𝜕𝜕𝜕

 (angle of twist) 
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Figure 5.2 Deformation of a point at beam profile section with respect to mid-surface 
displacement 
 

The strains associated with small displacements from the theory of elasticity are given by 

𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥          ( 5.4) 

𝜀𝜀𝑦𝑦 = 𝜀𝜀𝑦𝑦0 + 𝑧𝑧𝜅𝜅𝑦𝑦          ( 5.5) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥𝑥𝑥          ( 5.6) 

where 

𝜀𝜀𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

 , 𝜀𝜀𝑦𝑦0 = 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

, and 𝛾𝛾𝑥𝑥𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

       ( 5.7) 

𝜅𝜅𝑥𝑥 = − 𝜕𝜕2𝑤𝑤𝑜𝑜
𝜕𝜕𝜕𝜕2

 ,𝜅𝜅𝑦𝑦 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and 𝜅𝜅𝑥𝑥𝑥𝑥 = −�𝜕𝜕
2𝑤𝑤0

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝜕𝜕2𝑤𝑤0

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
� = −2𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
   ( 5.8) 

The relationship of curvature and displacement are shown in Figure 5.3a and b in the case of 𝛽𝛽 

being positive or negative, verifying Eq. 5.8. 
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Figure 5.3 Representation of curvatures with respect to displacement and angle of twist; (a) 
beam buckles counterclockwise (+𝛃𝛃) and (b) beam buckles clockwise (−𝛃𝛃) 
 

5.2.2 Constitutive Equations 

The plate stiffness coupling equations based on classical laminated plate theory, shown in 

Figure 5.4, are given as follows. 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑥𝑥 = 0
𝑁𝑁𝑦𝑦 = 0
𝑁𝑁𝑥𝑥𝑥𝑥 = 0
𝑀𝑀𝑥𝑥 ≠ 0
𝑀𝑀𝑦𝑦 = 0
𝑀𝑀𝑥𝑥𝑥𝑥 ≠ 0⎭

⎪⎪
⎬

⎪⎪
⎫

= ℎ

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐵𝐵11   𝐵𝐵12   𝐵𝐵16   𝐷𝐷11   𝐷𝐷12    𝐷𝐷16
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷12   𝐷𝐷22    𝐷𝐷26
𝐵𝐵16   𝐵𝐵26   𝐵𝐵66   𝐷𝐷16   𝐷𝐷26    𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑦𝑦
𝜅𝜅𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

    ( 5.9) 

where  

𝐴𝐴𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘                   𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extensional stiffness coefficients 
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𝐵𝐵𝑖𝑖𝑖𝑖 = ∑ �𝑄𝑄�𝑖𝑖𝑖𝑖�𝑘𝑘𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘                   𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁
𝑘𝑘=1   are called extension-bending coupling stiffness 

coefficients 

𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ (𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 �𝑡𝑡𝑘𝑘𝑧𝑧𝑘̅𝑘2 + 𝑡𝑡𝑘𝑘
3

12
 �             𝑖𝑖, 𝑗𝑗 = 1,2,6𝑁𝑁

𝑘𝑘=1  are called bending stiffness coefficients 

(𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 are the components of the kth layer 2D transformed constitutive matrix in the beam 

coordinate system 

𝑧𝑧𝑘̅𝑘 is the depth from the middle surface to the centroid of the kth layer, and tk is the thickness of 

kth layer. 

Knowing the zero components of externally applied forces and moments for the loading 

condition shown in Figures 5.5 and 5.6, which are expressed in Eq. 5.9, the stiffness matrix can 

be simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static 

condensation technique. In the static condensation technique, the zero and non-zero components 

of forces and moments from Eq. 5.9 are arranged into separate matrices as follows: 

ℎ �

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

��

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦

� + ℎ �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥� = �

0
0
0
0

�    ( 5.10) 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷11   𝐷𝐷16
𝐷𝐷16   𝐷𝐷66

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥

� + ℎ �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�

𝑇𝑇

⎩
⎨

⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦 ⎭

⎬

⎫
    ( 5.11) 

The reduced effective 2x2 stiffness matrix (Eq. 5.13) can be obtained by defining 

⎩
⎨

⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦 ⎭

⎬

⎫
 from 

Eq. 5.10 in terms of two other curvature components, as shown in Eq. 5.12, and substituting it 

into Eq. 5.11. 
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�

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑦𝑦

� = −�

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

�

−1

�

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�    ( 5.12) 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�         ( 5.13) 

where 

�𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� = �𝐷𝐷11   𝐷𝐷16
𝐷𝐷16   𝐷𝐷66

� − �

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�

𝑇𝑇

�

𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵12
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵22
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵26
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷22

�

−1

�

𝐵𝐵11   𝐵𝐵16
𝐵𝐵12   𝐵𝐵26
𝐵𝐵16   𝐵𝐵66
𝐷𝐷12   𝐷𝐷26

�  

DY is the effective composite lateral stiffness coefficient, DT is the effective composite twisting 

stiffness coefficient, and DYT is the effective composite lateral-twisting coupling coefficient. In 

most cases, where the layers are symmetric, anti-symmetric, cross-ply, special angle ply, DYT 

coefficient will be zero. However, for the generally anisotropic cases, DYT coefficient is not zero 

and will play a significant role in determining the buckling forces of the beams. 
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Figure 5.4 Force and moment resultants on a beam based on classical laminated plate 
theory 
 

Referring to Figure 5.1 (structural coordinate) and Figure 5.4 (laminate coordinate), the 

bending moment My in structural coordinate is replaced by Mx in laminate coordinate, on the 

other hand, the shear moment, Mxy, in laminate coordinate is in the opposite direction of twisting 

moment in the structural coordinate system and is found by Kollar and Springer (2003) to be 

MT= -2 Mxy. Table 5.1 shows the relation of moment components in structural coordinate and 

laminate composite coordinate systems. 
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Table 5.1 Relation of moment components in structural coordinate and laminate composite 
coordinate 

 
 

Substituting the curvatures in terms of displacement and rotation from Eq. 5.8 into Eq. 5.13, and 

writing the moments in structural coordinate system, the following relation will be obtained. 

�
𝑀𝑀𝑦𝑦′
−𝑀𝑀𝑇𝑇

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�        ( 5.14) 

 

5.2.3 Equilibrium Equations 

As discussed earlier, two configurations of buckling mode, counterclockwise and 

clockwise, were considered for the analytical formulation. The derivation of equilibrium 

equations will be discussed in the following sub-sections. 

5.2.3.1 Buckling Counterclockwise 

Figure 5.5 shows the components of external moments about original and deformed axes 

when the beam buckles counterclockwise, where 𝛽𝛽 is considered to be positive. The moment 

components are shown in the following equations: 

External moments in un-deformed configuration (original axes): 

𝑀𝑀𝑧𝑧 = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥)          ( 5.15) 
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𝑀𝑀𝑦𝑦 = 0           ( 5.16) 

𝑀𝑀𝑇𝑇 = 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤 )         ( 5.17) 

External moments in the deformed configuration (deformed axes): 

𝑀𝑀𝑧𝑧
′ = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
        ( 5.18) 

𝑀𝑀𝑦𝑦
′ = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽 + 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
       ( 5.19) 

𝑀𝑀𝑇𝑇 = −𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) + 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)        ( 5.20) 

where 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  and 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  are higher order terms which will be neglected. 

The following system of differential equations is obtained after substituting the external 

moments from Eqs. 5.19 and 5.20 into Eq. 5.14: 

�
−𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌

2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇
� �−

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�     ( 5.21) 

-ℎ𝐷𝐷𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽        ( 5.22) 

−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)     ( 5.23) 

Writing Eqs.5.22 and 5.23 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
ℎ𝐷𝐷𝑌𝑌

[−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ + 𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽] = 1
2ℎ𝐷𝐷𝑌𝑌𝑌𝑌

�−4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) + 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)�  ( 5.24) 

Differentiating Eq.5.24 with respect to x and rearranging the resulting expression in terms of 

 d
2w
dx2

, Eq.5.25 will be obtained. 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

= − 2𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌

𝛽𝛽′ − 4ℎ
𝑃𝑃(𝐿𝐿−𝑥𝑥) �𝐷𝐷𝑇𝑇 −

𝐷𝐷𝑌𝑌𝑌𝑌2

𝐷𝐷𝑌𝑌
� 𝛽𝛽′′ + 2𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽

𝑃𝑃𝐷𝐷𝑌𝑌(𝐿𝐿−𝑥𝑥)
     ( 5.25) 
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Equating the left hand side of Eq.5.24, which is equal to d
2w
dx2

  in Eq. 5.22, and the right hand side 

of Eq.5.25, the resulting expression reduces to a second order ordinary differential equation with 

non-constant coefficients. 

𝛽𝛽′′ − 2ℎ𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌
4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�

𝛽𝛽 + 𝑃𝑃2(𝐿𝐿−𝑥𝑥)2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
𝛽𝛽 = 0      ( 5.26) 

Setting 𝜓𝜓1
2 = 𝑃𝑃2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 and 𝜓𝜓2 = 2ℎ𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 , a simplified form of differential 

equation is obtained. 

𝛽𝛽′′ + (𝜓𝜓1
2(𝐿𝐿 − 𝑥𝑥)2 − 𝜓𝜓2)𝛽𝛽 = 0        ( 5.27) 

This form of differential equation is a Weber function which can be solved by a numerical 

iterative procedure in commercial software which can solve these types of equations. 
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Figure 5.5 Components of external moments about original and deformed axes of 
laminated cantilever beam subjected to free end loading, buckled counterclockwise 
 

5.2.3.2 Buckling Clockwise 

Figure 5.6 shows the components of external moments about the original and deformed 

axes when the beam buckles clockwise, where 𝛽𝛽 is considered to be negative. The moment 

components are shown in the following equations: 

External moments in un-deformed configuration (original axes): 

𝑀𝑀𝑧𝑧 = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥)          ( 5.28) 

𝑀𝑀𝑦𝑦 = 0           ( 5.29) 

𝑀𝑀𝑇𝑇 = −𝑃𝑃(𝑤𝑤1 − 𝑤𝑤 )         ( 5.30) 
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External moments in the deformed configuration (deformed axes): 

𝑀𝑀𝑧𝑧
′ = −𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
        ( 5.31) 

𝑀𝑀𝑦𝑦
′ = 𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽 − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
        ( 5.32) 

𝑀𝑀𝑇𝑇 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)        ( 5.33) 

where 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 are higher order terms which can be neglected. 

The following system of differential equations is obtained after substituting the external 

moments from Eqs. 5.32 and 5.33 into Eq. 5.14: 

�
𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽 

− 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) + 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌

2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇
� �−

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�     ( 5.34) 

-ℎ𝐷𝐷𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ = 𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽         ( 5.35) 

−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

− 4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) + 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)     ( 5.36) 

Writing Eqs. 5.35 and 5.36 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
ℎ𝐷𝐷𝑌𝑌

[−2ℎ𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽′ − 𝑃𝑃(𝐿𝐿 − 𝑥𝑥)𝛽𝛽] = 1
2ℎ𝐷𝐷𝑌𝑌𝑌𝑌

�−4ℎ𝐷𝐷𝑇𝑇𝛽𝛽′ + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝐿𝐿 − 𝑥𝑥) − 𝑃𝑃(𝑤𝑤1 − 𝑤𝑤)�  ( 5.37) 

Differentiating Eq. 5.37with respect to x and rearranging the resulting expression in terms 

of  d
2w
dx2

, Eq. 5.38 will be obtained. 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑑𝑑2

= − 2𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌

𝛽𝛽′ + 4ℎ
𝑃𝑃(𝐿𝐿−𝑥𝑥) �𝐷𝐷𝑇𝑇 −

𝐷𝐷𝑌𝑌𝑌𝑌2

𝐷𝐷𝑌𝑌
� 𝛽𝛽′′ + 2𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌𝛽𝛽

𝑃𝑃𝐷𝐷𝑌𝑌(𝐿𝐿−𝑥𝑥)
     ( 5.38) 

Equating the left hand side of Eq. 5.37, which is equal to d
2w
dx2

  in Eq. 5.35, and the right hand side 

of Eq. 5.38, the resulting expression reduces to a second order ordinary differential equation with 

non-constant coefficients. 
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𝛽𝛽′′ + 2ℎ𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌
4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�

𝛽𝛽 + 𝑃𝑃2(𝐿𝐿−𝑥𝑥)2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
𝛽𝛽 = 0      ( 5.39) 

Setting 𝜓𝜓1
2 = 𝑃𝑃2

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 and 𝜓𝜓2 = 2ℎ𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌

4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
 , a simplified form of differential 

equation is obtained. 

𝛽𝛽′′ + (𝜓𝜓1
2(𝐿𝐿 − 𝑥𝑥)2 + 𝜓𝜓2)𝛽𝛽 = 0        ( 5.40) 

This form of differential equation is a Weber function which can be solved by a numerical 

iterative procedure in commercial software which can solve these types of equations. 

 

 

Figure 5.6 Components of external moments about original and deformed axes of 
laminated cantilever beam subjected to free end loading, buckled clockwise 
 

Comparing Eqs. 5.27 and 5.40, derived from the above two cases, one can see that the 

only difference is the sign of coefficient 𝜓𝜓2, where it is negative for counterclockwise bucking 
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and positive for the case of clockwise buckling. By introducing a new coefficient, 𝐶𝐶1, which 

defines 𝜓𝜓2 in terms of 𝜓𝜓1. 

𝜓𝜓2 = 𝐶𝐶1𝜓𝜓1           ( 5.41) 

where 𝐶𝐶1 = 𝐷𝐷𝑌𝑌𝑌𝑌

��𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
  

The differential equation for two cases is as follows: 

𝛽𝛽′′ + (𝜓𝜓1
2(𝐿𝐿 − 𝑥𝑥)2 ± 𝐶𝐶1𝜓𝜓1)𝛽𝛽 = 0        ( 5.42) 

The value of 𝐶𝐶1 is positive if the coefficient 𝐷𝐷𝑌𝑌𝑌𝑌 is positive. This case was observed through 

finite element analysis to buckle in the clockwise direction making the net sign of the C1 term 

positive. On the other hand, 𝐶𝐶1 is negative if 𝐷𝐷𝑌𝑌𝑌𝑌 is negative. This case was observed through 

finite element analysis to buckle in the counterclockwise direction making the net sign of the C1 

term positive as well. Therefore, the second term of the equation, which includes 𝐶𝐶1, is always 

positive. As a result, the final form of differential equation can be presented as follows: 

𝛽𝛽′′ + (𝜓𝜓1
2(𝐿𝐿 − 𝑥𝑥)2 + 𝐶𝐶1𝜓𝜓1)𝛽𝛽 = 0        ( 5.43) 

where 𝐶𝐶1 = |𝐷𝐷𝑌𝑌𝑌𝑌|

��𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�
  

The critical buckling force is  

𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜓𝜓1ℎ�4�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇 − 𝐷𝐷𝑌𝑌𝑌𝑌2�        ( 5.44) 

A generalized buckling equation can be written by introducing a normalized coefficient to Eq. 

5.44. 

𝑃𝑃𝑐𝑐𝑐𝑐 = 𝐶𝐶2ℎ
𝐿𝐿2
�4�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇 − 𝐷𝐷𝑌𝑌𝑌𝑌2�         ( 5.45) 

where 𝐶𝐶2 = 𝜓𝜓1𝐿𝐿2  
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The value of 𝜓𝜓1 in Eq. 5.43 is solved for arbitrary stacking sequences using a numerical 

iterative procedure in Mathematica by applying the following boundary conditions: 𝛽𝛽(0) = 0 

and 𝛽𝛽′(𝐿𝐿) = 0. The general solution of Eq. 5.43 contains a nonlinear polynomial function which 

is called ParabolicCylinderD (or D) in Mathematica. In this process, the program first solves for 

the general solution of the differential equation. The boundary conditions are applied to the 

general solution. After applying the boundary conditions, a polynomial function of 𝑓𝑓𝑛𝑛(𝜓𝜓1) is 

obtained, which must be set equal to zero. This function contains real and imaginary parts. To 

obtain a numerical solution for 𝜓𝜓1, the numerical values for a certain stacking sequence and 

beam geometric parameters should be iterated until the equation converges. The process is 

repeated for each stacking sequence. Figure 5.7 shows the flowchart of the procedure used in 

Mathematica to obtain values of 𝜓𝜓1. A screenshot of the script, used in Mathematica, is shown in 

Figure 5.8. 
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Figure 5.7 Flowchart of the semi-analytical solution of the buckling equation using 
Mathematica 
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Figure 5.8 Screenshot of the script used in Mathematica to solve the buckling differential 
equation 
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The normalized coefficient, 𝐶𝐶2, is shown in the following equation by best fit of curve in 

Figure 5.9, where normalized value of C1 is obtained from a broad range of stacking sequences. 

𝐶𝐶2 = 4.0038𝑒𝑒−0.719𝐶𝐶1         ( 5.46) 

 

 

Figure 5.9 C1 vs C2 to obtain a representative equation from best fit of the data 
 

5.3 Numerical Analysis (FEM) 

The derived semi analytical formula was verified by applying finite element buckling 

analysis using the commercial software package ABAQUS/Standard (implicit) for laminated 

anisotropic cantilever beams. The model was first created by using 3D planar shells. The shells 

were assembled based on the stacking arrangement that was used in the analytical solution. The 

global x-axis was assigned along beams length, but the local coordinate system was used based 

on the orientation of the fibers in each ply.  

The beam was rotationally and translationally fixed at one end. A concentrated load of 

100 pounds was applied at mid-height of the free end of the beam. The boundary conditions and 

applied load are shown in Figure 5.10b. 
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Figure 5.10 FEM model with L/h =20 and layer thickness =0.1 mm; (a) applied shell 
element type (S8R) 
 

The beam was meshed with a standard quadratic quadrilateral shell element type of S8R 

(8-node doubly curved thick shell element with reduced integration) using six degrees of 

freedom per node and an element size of 2.5 mm along beam axis. A beam with L = 500 mm and 

h = 25 mm gives total number of 10033 nodes and 3200 elements, as shown in Figure 5.10a. 

The eigenvalue buckling analysis in ABAQUS solver, which is a linearized perturbation 

procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues 

and eigenvectors for symmetric stiffness matrices only. In order to turn the stiffness matrix of the 

model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical 

force, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the applied force 

at the mid-height free end of the beam. 

𝑃𝑃0𝑐𝑐𝑐𝑐 = 𝜆𝜆𝜆𝜆                                                                ( 5.47) 
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In addition, a nonlinear stability analysis (pre-buckling and buckling) of the laminated 

anisotropic cantilever beam was performed by adopting the nonlinear geometry analysis using 

the modified Riks approach, Al-Masri and Rasheed (2017) and Memon and Sun (2004). The 

modified Riks analysis uses the Arc-length method to follow the equilibrium path, representing 

either bifurcation points or limit points. Suitable limits of load increments are applied during the 

analysis in which the iteration converges to equilibrium along the Arc-length. 

 

5.4 Results 

5.4.1 Material Properties and Stacking Sequences 

An anisotropic composite cantilever beam is made by stacking four layers of the FRP 

lamina properties shown in Table 5.2 at different fiber orientations. The thickness of each layer 

is the same (typically 0.1 mm) with the same orthotropic properties, yet it varies in terms of fiber 

orientation. The orientation of fiber in each layer can be randomly picked, including common 

laminate types such as symmetric laminates, antisymmetric laminates, balanced laminates, and 

so on. The stacking sequence starts from the back of the beam to the front of the beam to follow 

the same order used for typical laminated plates, see Figure 5.11. For example, [30/-30/30/-30] 

means that the first ply has an angle of 30 degrees from the x-axis of the beam is placed in the 

back of the beam counterclockwise (towards the y-axis) and the other layers follow with the 

same order through the positive z-axis direction. Figure 5.9 shows the stacking sequence of the 

laminates. Different layer thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios 

of (5, 10, 20, and 50) were also studied which will be presented later. Furthermore, the effect of 

fiber orientation for antisymmetric balanced angle ply layup was studied. 
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Table 5.2 CFRP material properties used in the laminates 

Material  CFRP 

E11 142730 MPa 

E22 13790 MPa 

v12 0.3   

v21 0.028985   

G12 4640 MPa 

G13 4640 MPa 

G23 3030 MPa 

 

 

Figure 5.11 The stacking sequence of the laminates 
 

5.4.2 Buckling Results 

For the lateral-torsional buckling of thin-walled rectangular laminated composite 

cantilever beams subjected to central free end loading, a semi-analytical approach is presented as 

X 

Y 

Z 

First 

Last layer 
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well as FEM results. Figures 5.12 and 5.13 show the buckling results for different stacking 

sequences (20 different laminate-fiber orientations) based on the proposed analytical formulation 

and also results from FEM model for layer thickness of 0.1 mm (total thickness of 0.4 mm), 

beam length of 500 mm and beam height of 25 mm and 50 mm (i.e. length to height ratio of 20 

and 10), respectively. Based on the results obtained, there is an excellent agreement between the 

proposed analytical formulation and FEM with higher L/h ratio (Figure 5.12). For the lower 

value of L/h ratio (Figure 5.13), the error observed is noticeable in the cases of [04] and cross-ply 

layup, which buckled in a distortional mode rather than lateral-torsional mode admitting up to 

19% deviation, due to the beam being too deep behaving like a plate, see Table 5.3. 

 

Figure 5.12 Buckling force at different stacking sequences: tk=0.1 mm for each layer, 
L/h=20, and finite element length 2.5mm 
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Figure 5.13 Buckling force at different stacking sequences: tk=0.1 mm for each layer, 
L/h=10, and finite element length 2.5mm 
 

5.5 Parametric Study 

5.5.1 Effect of Length/Height Ratio 

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to 

study their effects on the lateral-torsional buckling of cantilever laminated thin-walled 

rectangular cross-sectional beams. The results show that there is a significant drop in the value of 

the buckling force as the L/h ratio increases. The relation between buckling force and L/h ratio is 

defined to be a power function which can be written in Eq. 5.48 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖 ∗ �
𝐿𝐿
ℎ
�
𝑖𝑖
�𝐿𝐿
ℎ
�
−1

        ( 5.48) 

where (𝑃𝑃𝑐𝑐𝑐𝑐)i is the initial calculated value of buckling force from Eq. 5.45 with a given (𝐿𝐿
ℎ

)𝑖𝑖 ratio 

for a specific laminate stacking sequence. 
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Figure 5.14 Effect of L/h ratio on the critical buckling force based on analytical formula for 
three different layups and layer thickness of 0.1 mm. 
 

By knowing the value of buckling force in a selected laminate, Eq. 5.48 helps to calculate 

the buckling force for different L/h ratios while the stacking sequence is retained the same. 

Figure 5.14 shows the effect of L/h ratio on the buckling force for three different stacking 

sequences of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Eq. 5.48 is limited to the 

analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy 

between the analytical and numerical results in the cases where L/h ratio decreases, especially 

for the case of [0/0/0/0] laminate when the ratio of L/h is 5. As shown in Figure 5.15, due to the 

fact that the beam with lower L/h ratio behaves like a plate and buckles numerically in a 

distortional mode, in which β at a certain section transverse to the beam is not constant, rather 

than a lateral-torsional mode, in which the lateral angle of twist, β, remains constant for a certain 

section transverse to the beam. Figure 5.15 shows the deformed mode shape of the beam in three 

different L/h ratios of 5, 20 and 50 comparing to the original shapes for layup of [30/-30/30/-30]. 

It is evident that the deformed shape for L/h ratio of 5 buckles numerically in a distortional mode 
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where a constant β cannot be assumed as done analytically. Nevertheless, Figures 5.16-5.18 

clearly show that the analytical and numerical buckling forces match almost exactly as the L/h 

ratio increases beyond 20. On the other hand, the discrepancy between the analytical and 

numerical results for L/h ratios lower than 20 are seen to reflect conservative predictions of the 

analytical solution. 

 

 

Figure 5.15 Buckling (deformed and un-deformed) shape of the cantilever beam for ply 
thickness of 0.1 mm and lamination orientation of [30/-30/30/-30]; (a) L/h=50, (b) L/h =20, 
and (c) L/h = 5 
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Figure 5.16 Comparison of buckling result obtained from analytical solution and FEM for 
the [15/30/-45/15] laminate and layer thickness of 0.1 mm by changing L/h ratio 
 

Figures 5.16 - 5.18 show the comparison of buckling forces between the semi-analytical 

solution and FEM in three different laminate stacking sequences. It is obvious that in both 

analytical and FEM solutions the buckling forces increase as the L/h ratio decrease because of 

the larger height of the beam to resist against lateral-torsional buckling. Again, it is evident that 

the analytical and numerical results match closely at L/h=20 while for most cases the results 

match up closely beyond L/h =10, as shown in Figures 5.17 and 5.18. 
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Figure 5.17 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/45/-45] laminate and ply thickness of 0.1 mm by changing L/h ratio 
 

 
Figure 5.18 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and ply thickness of 0.1 mm by changing L/h ratio 
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5.5.2 Effect of Stacking Sequence 

As shown in Figures 5.12 and 5.13. The stacking sequences considerably affect the 

buckling forces if the dimensions of the beam are kept the same. The lowest value for the critical 

buckling force is obtained in [90/90/90/90] layup while the highest critical value is obtained for 

the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical force 

among the possible stacking sequences selected for Figures 5.12 and 5.13. The optimal 

maximum critical force is obtained for the balanced angle-ply layup to be 0.157 N for layup [20/-

20/20/-20] and L/h =20. Figure 5.19 shows the variation in critical buckling force with the 

change in layup angle of 0 to 90 with an increment of 5 degrees. The analytical part of the curve 

is calculated using Eq. 5.46 which shows the usefulness of best fit equation obtained from Figure 

5.9. 

 

 

Figure 5.19 Variation in critical buckling force with the change in balanced angle-ply layup 
angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and (●) FEM; ply thickness 
of 0.1 mm and L/h of 20 
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5.5.3 Effect of Layer Thickness 

Different layer thickness of 0.05, 0.1, 0.15, and 0.2 mm were used in the analysis to study 

their effects on the lateral-torsional buckling of cantilever laminated thin-walled rectangular 

cross-sectional beams. The L/h ratio of 20 and the stacking sequence were kept the same while 

changing the layer thickness. The results show that there is a significant increase in the value of 

buckling force as the layer thickness increases. The relationship between buckling force and the 

thickness is defined mathematically to be a power function which can be written in Eq. 5.49. 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖
𝑡𝑡𝑖𝑖3

𝑡𝑡3          ( 5.49) 

where (𝑃𝑃𝑐𝑐𝑐𝑐)i is the initially calculated value of buckling force from Eq. 5.45 with a given 𝑡𝑡𝑖𝑖 for a 

specific laminate stacking sequence. Eq. 5.49 works either considering the thickness to be the 

total thickness of the beam or the thickness of each layer as long as all layers have the same 

constant thickness. 

By knowing the value of buckling force in a selected layup, Eq. 5.49 helps to calculate 

the buckling force for various layer or total beam thickness. Figure 5.20 shows the effect of layer 

thickness on the buckling force based on analytical solution for three different stacking sequence 

of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Figure 5.21 shows the effect of layer 

thickness on the buckling force based on the FEM results for the same three stacking sequences 

of [15/30/-45/15], [30/-30/45/-45], and [30/-30/30/-30]. Eq. 5.49 can be obtained from FEM 

analysis with small deviation multipliers of (𝑎𝑎) and (𝑏𝑏), which are tabulated in Figure 5.21 for 

each layup. The modification of Eq. 5.49 for FEM is shown in Eq. 5.50. 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑎𝑎𝑎𝑎 + 𝑏𝑏) (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖
𝑡𝑡𝑖𝑖3

𝑡𝑡3        ( 5.50) 
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Figure 5.20 Effect of thickness, tk, on the critical force based on analytical formula for 
three different orientations, L/h=20 
 

 
Figure 5.21 Effect of thickness, tk, on the critical force based on FEM method for three 
different orientations, L/h=20 
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Figures 5.22 - 5.24 show the comparison of buckling forces between the semi-analytical 

results and FEM in three different laminate stacking sequences. It is obvious that in both 

analytical and FEM solutions the buckling forces increase as the layer thickness increases 

because of the fact larger thickness of the beam can resist more against lateral-torsional buckling. 

Both analytical and FEM results have an excellent agreement on the buckling force for all three 

sequences, except for the [15/30/-45/15] case when the thickness increases. The anticipated 

reason might be tendency of distortional buckling of beam or the admission of shear deformation 

at certain orientation of fibers as the layer thickness increases while keeping L/h ratio the same. 

 

 

Figure 5.22 Comparison of buckling result obtained from analytical solution and FEM for 
the [15/30/-45/15] laminate and L/h of 20 by changing layer thickness, tk 
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Figure 5.23 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/45/-45] laminate and L/h of 20 by changing layer thickness, tk 

 

 
Figure 5.24 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and L/h of 20 by changing layer thickness, tk 
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stacking sequences of [30/-30/30/-30], [30/-30/45/-45], and [15/30/-45/15] obtained from finite 

element nonlinear Riks analysis along with the analytical solution for comparison. The results in 

Figure 5.25 for three different stacking sequences and L/h ratio of 20 show excellent agreement. 

 

 

Figure 5.25 Analytical vs numerical solutions; deflection at mid-height, L/h=20 and tk=0.1 
mm 
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Table 5.3 Comparison of buckling force obtained from analytical results and FEM for L/h 
ratios of 10 and 20 and layer thickness of 0.1 mm in different stacking conditions 

Laminate 

Critical Buckling Force Pcr (N) and Error (%) 
L/h =10 L/h = 20 

Analytical FEM  
(ABAQUS) 

Error  
(%) Analytical FEM 

(ABAQUS) 
Error 
 (%) 

0/0/0/0 0.220 0.262 18.93 0.110 0.119 8.39 
90/90/90/90 0.068 0.072 5.03 0.034 0.035 1.95 

30/-30/30/-30 0.290 0.306 5.57 0.145 0.147 1.20 
45/-45/45/-45 0.198 0.206 4.12 0.099 0.099 0.26 
60/-60/60/-60 0.152 0.155 2.26 0.076 0.076 0.06 
60/-60/45/-45 0.142 0.148 4.15 0.071 0.072 0.97 
30/-30/45/-45 0.191 0.203 6.19 0.096 0.097 1.46 
30/-30/60/-60 0.136 0.144 6.02 0.068 0.069 1.94 

30/-30/0/0 0.168 0.186 10.70 0.084 0.088 4.57 
30/-30/0/90 0.116 0.124 7.43 0.058 0.059 2.95 
30/30/30/30 0.077 0.084 8.71 0.038 0.040 3.75 

30/-30/-30/30 0.160 0.171 6.80 0.080 0.082 2.48 
0/90/90/0 0.208 0.245 17.67 0.104 0.112 7.75 

30/-60/-60/30 0.091 0.101 11.24 0.045 0.048 4.72 
0/90/0/90 0.153 0.172 12.42 0.076 0.080 5.36 

-45/30/-30/45 0.200 0.210 5.06 0.100 0.101 1.17 
0/0/90/90 0.114 0.125 8.98 0.057 0.059 3.85 
90/0/0/90 0.101 0.109 7.80 0.051 0.052 3.26 

15/0/-15/30 0.129 0.142 10.20 0.065 0.067 4.38 
30/-40/50/-60 0.122 0.132 8.22 0.061 0.063 3.19 
15/30/-45/15 0.120 0.136 13.45 0.060 0.064 5.97 
 

5.6 Conclusions 

In this study, the lateral-torsional buckling of cantilever, thin-walled rectangular cross-

section, anisotropic laminated composite beams subjected to central free end loading was 

investigated. Based on the assumptions made and the results obtained, an excellent accuracy is 

observed for a wide range stacking sequences when L/h exceeds 10. The applicability of this 

analytical formulation is proved by comparing the obtained results with FEM results. The study 
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followed the classical laminated plate theory with all considered assumptions and determined an 

effective lateral-torsional-coupling stiffness matrix. 

Based on the study, the stability of the laminated cantilever beams under free end loading 

is greatly affected by the length/height ratio of the beam as well as the thickness of the beam. 

The critical buckling force was inversely proportional to the length/height ratios with a power 

function. The lowest L/h ratio corresponds to the highest critical buckling force. Increase in the 

thickness of the beam also plays a significant role in increasing the stability resistance of the 

beam. The importance of the stacking sequence, which does not affect the dimensions of the 

beam, is seen to greatly influence the stability of the beam. 

The critical buckling force of balanced angle-ply fiber lamination of about [20/-20/20/-

20] is found to reach the maximum value, among this class of layups, because of its maximum 

lateral and torsional effective stiffness. The minimum critical buckling force obtained from 

[90/90/90/90] was found to be due to orienting the fibers in the y-direction, thus reducing the 

lateral effective stiffness. Also, a nonlinear Riks analysis was performed to indicate the existence 

of pre-buckling deformation in transverse direction while comparing favorably with analytical 

buckling limit load. 
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Chapter 6 - Lateral Torsional Buckling of Anisotropic Laminated 

Thin-Walled Simply Supported Beams Subjected to Concentrated 

Load at Mid-Span 

In this chapter, a generalized semi-analytical approach for lateral-torsional buckling of 

simply supported anisotropic, thin-walled, rectangular cross-section beams under concentrated 

load at mid-span/mid-height was developed using the classical laminated plate theory as a basis 

for the constitutive equations. A closed form buckling expression was derived in terms of the 

lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients 

were obtained through dimensional reduction by static condensation of the general 6x6 

constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting 

relationship. The resulting two coupled stability differential equations are manipulated to yield a 

single governing differential equation in terms of the twisting angle. This differential equation 

with variable coefficients, along with applying boundary conditions, was solved numerically 

using Mathematica. The resulting solution was found to correlate with the effective lateral-

flexure, torsional and coupling stiffness coefficients to yield a general analytical solution. An 

analytical formula was possible to extract, which was verified against finite element buckling 

solutions using ABAQUS for a wide range of lamination orientations showing excellent 

accuracy. The stability of the beam under different geometric and material parameters, like 

length/height ratio, layer thickness, and ply orientation, was investigated. 

6.1 Introduction 

Thin-walled beam structures are major components in many engineering applications. 

They are widely used as structural components in many types of systems in the field of 
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aerospace, mechanical, marine, and civil engineering. Fiber reinforced polymer (FRP) 

composites, are replacing conventional materials in some of these types of structural systems. 

This increase in interest for using FRP lies in some critical advantages of these materials over 

conventional counterparts. Their high strength to weight ratio, high stiffness to weight ratio, their 

corrosion resistance, their ease of transportation and erection, and their fatigue resistance are 

some of the advantages FRP offer. The most distinguished characteristic is the ability of tailoring 

the material for each particular application. Structural properties depend on the material system 

and the shape of the cross-section of the member (Barbero et al.1993). Unlike isotropic shapes, 

composite members are possible to optimize by altering the material itself through choosing 

among a variety of resins, fiber systems, and fiber orientations. Although thin-walled FRP 

structures exhibit high strength, problems of excessive deformation and instability, due to their 

low stiffness and slenderness of the member, are the major disadvantages in wider acceptance for 

structural engineering applications (Lin et al. 1996). Because of these limitations, the new 

generation of composite structures should be designed to work in a safe way and to experience 

higher performance than the conventional systems. Consideration of stability and deformation 

limits tend to be the governing design criteria for FRP structures before these structures reach 

material failure. Thus, the proper establishment of such criteria is an important prerequisite to the 

practical use of FRP in engineering applications. 

A thin-walled slender beam subjected to in-plane bending moments (about the strong 

axis) may buckle in a combined lateral bending and twisting of the cross-section. This 

phenomenon is known as lateral- torsional buckling. Theory of thin-walled open section beams 

including axial constrains for isotropic materials was developed by Vlassov (1961). This 

classical theory neglects shear deformation in the middle surface of the wall so for thicker-walled 
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beams, the shear deformations may significantly increase the displacements and reduce the 

buckling loads. The shear deformation theory for transversely loaded isotropic beams was 

developed by Timoshenko and Gere (1961). 

Many researchers have focused on studying the lateral torsional buckling of composite 

beams using different theoretical approaches while validating their work with experimental 

programs or finite element analysis. Among those, Bauld and Lih-Shyng (1984) applied Vlasov’s 

theory for open section composites with symmetrical laminated walls neglecting the shear 

deformation. Bank and Bednarczyk (1988) and Barbero et al. (1993) developed simple 

expressions for the bending, torsional, and warping stiffness of composite laminated beams.  

Sherbourne and Kabir (1995) studied analytically the effect of transvers shear strain on the 

lateral buckling of thin-walled, open-section fibrous composite beams. Pandey at el. (1995) 

proposed an analytical formulation for finding the optimal direction of fiber for improving the 

lateral buckling strength of thin-walled I-section composite beams. Lin et al. (1996) studied 

stability of thin-walled composite structural members using finite element method. Davalos and 

Qiao (1997) used the non-linear elastic theory to develop a stability solution for lateral-

distortional buckling for wide flange composite beams based on the principle of total potential 

energy. Kollar (2001) suggested a closed form solution for thin-walled open section columns, 

made of orthotropic composite materials, by considering flexure, shear and the torsional warping 

induced shear deformations. Roberts and Al-Ubaidi (2001) studied the influence of shear 

deformation on restrained torsional warping of pultruded FRP bars of open cross-section by 

proposing an approximate theory. Sapkas and Kollar (2002) studied the stability analysis of thin-

walled, open section beams, made of orthotropic composite materials under various loading 

conditions. The solution indirectly accounted for shear deformation by adjusting the bending and 
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warping stiffness of the composite beams. Lee et al. (2002) presented a general analytical model, 

based on the classical lamination theory, applicable to the lateral buckling of composite 

laminated I-beams subjected to various types of loadings. Qiao et al (2003) studied a combined 

analytical and experimental evaluation of flexural-torsional buckling of fiber reinforced polymer 

composite I-beams based on energy method developed from the non-linear plate theory. Tai 

(2004) studied lateral- torsional buckling of symmetrically laminated, rectangular cross-section, 

composite beams under various loading conditions. Kotelko (2004) studied theoretical analysis 

for local buckling of different cross section thin-walled beams and columns. Karaagac et al. 

(2007) studied stability of cantilever laminated symmetric and anti-symmetric composite beams 

under static and dynamic conditions by applying elastic support. Machado (2010) studied the 

stability of simply supported thin-walled symmetric laminated composite I-beams subjected to 

combined axial and lateral loads by approximate analytical solutions and compared them with 

numerical results. The proposed solution also examined the nonlinear pre-buckling geometrical 

deformation for more accurate representation of the lateral stability conditions. 

Most of the work, related to lateral- torsional stability of thin-walled composite beams, 

was focused on I-sections. The beams were either considered to be of symmetric layup, anti-

symmetric layup, orthotropic, or pultruded in nature. There hasn’t been any study recorded on 

the behavior of general anisotropic laminated composite beams to the best knowledge of the 

authors. 

In the present chapter, a generalized semi-analytical model applicable to the lateral-

torsional buckling of a simply supported rectangular cross-section beams, made of anisotropic 

laminated composite materials, subjected to concentrated load at mid-span/mid-height is 

developed. This model is based on the classical laminated plate theory (CLPT), and accounts for 
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the arbitrary laminate stacking sequence configurations. A finite element model is developed in 

ABAQUS to predict critical buckling loads and compare them with the results obtained from the 

analytical model. The effects of fiber orientation, beam length/height ratios and wall thickness on 

the critical buckling forces are studied. A finite element nonlinear pre-buckling geometrical 

deformation analysis was also examined and compared against semi-analytical solution to 

examine the pre-buckling deformation. 

6.2 Analytical Formulation 

A simply supported laminated composite beam with length L and a thin rectangular cross 

section is subjected to concentrated load at mid-span/mid-height, as shown in Figure 1. The 

model in this study is based on the classical laminated plate theory, Kollar and Springer (2003) 

and Barbero (1999). The following assumptions are adopted from the classical laminated plate 

theory: 

1. The normals to mid-plane (reference surface) of the laminate remain normal and 

straight after deformation. 

2. The normal to mid-plane of the laminate do not change length – in other words, the 

thickness of the laminate stays constant. 

3. The shear deformations are neglected. 

4. The laminate consists of perfectly bonded layers. 

5. The stress-strain relationships are applied under plane-stress conditions. 

The beam tends to buckle under a lateral-torsional behavior because of its small 

thickness. The beam is divided into two halves from the point of applied load (mid-span) in order 

to derive buckling equation. The coordinate system is assigned from the support end of each part 

as x-axis to be positive moving towards the center of the beam. The angle of twist, 𝛽𝛽, is positive 
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(counterclockwise buckling) in the left side of the beam (Figure 1a), while it is negative 

(clockwise buckling) to the right side of the beam (Figure 1b). The buckling equation is derived 

for each side of the beam, separately, then reconciled together. Figure 1c shows the boundary 

conditions for the beam shown from top view. 

 

 

Figure 6.1 Buckling shape of the beam; (a) left side (+𝛃𝛃), (b) right side (−𝛃𝛃), and (c) top 
view 
 

6.2.1 Kinematics 

Based on the assumptions in the classical laminated plate theory, the displacement 

components u, v, w representing the deformation of a point in the plate profile section, as shown 

in Figure 2, are given with respect to mid-surface displacements u0, v0, and w0 as follows: 
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𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑢𝑢0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥, 𝑦𝑦)        ( 6.1) 

𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑣𝑣0(𝑥𝑥, 𝑦𝑦) − 𝑧𝑧𝑧𝑧(𝑥𝑥, 𝑦𝑦)        ( 6.2) 

𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑤𝑤0(𝑥𝑥, 𝑦𝑦)         ( 6.3) 

where 𝛽𝛽 = 𝜕𝜕𝜕𝜕𝑜𝑜
𝜕𝜕𝜕𝜕

 (angle of twist) 

 

 

Figure 6.2 Deformation of a point at beam profile section with respect to mid-surface 
displacement 
 

The strains associated with small displacements from the theory of elasticity are given by 

𝜀𝜀𝑥𝑥 = 𝜀𝜀𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥          ( 6.4) 

𝜀𝜀𝑦𝑦 = 𝜀𝜀𝑦𝑦0 + 𝑧𝑧𝜅𝜅𝑦𝑦          ( 6.5) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥0 + 𝑧𝑧𝜅𝜅𝑥𝑥𝑥𝑥          ( 6.6) 

where 

𝜀𝜀𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

 , 𝜀𝜀𝑦𝑦0 = 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

 , and 𝛾𝛾𝑥𝑥𝑥𝑥0 = 𝜕𝜕𝑢𝑢0
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣0
𝜕𝜕𝜕𝜕

      ( 6.7) 

𝜅𝜅𝑥𝑥 = − 𝜕𝜕2𝑤𝑤𝑜𝑜
𝜕𝜕𝜕𝜕2

 ,𝜅𝜅𝑦𝑦 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, and 𝜅𝜅𝑥𝑥𝑥𝑥 = −�𝜕𝜕
2𝑤𝑤0

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ 𝜕𝜕2𝑤𝑤0

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
� = −2𝜕𝜕𝛽𝛽

𝜕𝜕𝜕𝜕
   ( 6.8) 

The relationship of curvature and displacement is shown in Figure 3a and b in the case of 𝛽𝛽 

being positive or negative which confirms Eq. 6.8. 
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Figure 6.3 Representation of curvatures with respect to displacement and angle of twist; (a) 
left side of the beam (counterclockwise, +𝛃𝛃) and (b) right side of the beam (clockwise, – 𝛃𝛃) 
 

6.2.2 Constitutive Equations 

The plate stiffness equations based on classical laminated plate theory, shown in Figure 

6.4, are given as follows. 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑁𝑁𝑥𝑥 = 0
𝑁𝑁𝑦𝑦 = 0
𝑁𝑁𝑥𝑥𝑥𝑥 = 0
𝑀𝑀𝑥𝑥 ≠ 0
𝑀𝑀𝑦𝑦 = 0
𝑀𝑀𝑥𝑥𝑥𝑥 ≠ 0⎭

⎪⎪
⎬

⎪⎪
⎫

= ℎ

⎣
⎢
⎢
⎢
⎢
⎡
𝐴𝐴11   𝐴𝐴12   𝐴𝐴16   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴12   𝐴𝐴22   𝐴𝐴26   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐴𝐴16   𝐴𝐴26   𝐴𝐴66   𝐵𝐵11   𝐵𝐵12    𝐵𝐵16
𝐵𝐵11   𝐵𝐵12   𝐵𝐵16   𝐷𝐷11   𝐷𝐷12    𝐷𝐷16
𝐵𝐵12   𝐵𝐵22   𝐵𝐵26   𝐷𝐷12   𝐷𝐷22    𝐷𝐷26
𝐵𝐵16   𝐵𝐵26   𝐵𝐵66   𝐷𝐷16   𝐷𝐷26    𝐷𝐷66⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝜅𝜅𝑥𝑥
𝜅𝜅𝑦𝑦
𝜅𝜅𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

     ( 6.9) 

where  

Aij = ∑ �Q�ij�ktk                   i, j = 1,2,6N
k=1   are called extensional stiffness coefficients 
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Bij = ∑ �Q�ij�ktkz�k                   i, j = 1,2,6N
k=1   are called extension-bending coupling stiffness 

coefficients and 

Dij = ∑ (Q�ij)k �tkz�k2 + tk
3

12
 �             i, j = 1,2,6N

k=1  are called bending stiffness coefficients 

(𝑄𝑄�𝑖𝑖𝑖𝑖)𝑘𝑘 are the components of the kth layer 2D transformed constitutive matrix in the beam 

coordinate system 

𝑧𝑧𝑘̅𝑘 is the depth from the middle surface to the centroid of the kth layer, and tk is the thickness of 

kth layer. 

Knowing the zero components of externally applied forces and moments for the loading 

condition shown in Figures 6.5 and 6.6, which are expressed in Eq. 6.9, the stiffness matrix can 

be simplified and dimensionally reduced to an effective 2x2 stiffness matrix by using the static 

condensation technique. In the static condensation technique, the zero and non-zero components 

of forces and moments from Eq. 6.9 are arranged into separate matrices as follows: 

h �

A11   A12   A16   B12
A12   A22   A26   B22
A16   A26   A66   B26
B12   B22   B26   D22

� �

εx
εy
γxy
κy

� + h �

B11   B16
B12   B26
B16   B66
D12   D26

� �
κx
κxy� = �

0
0
0
0

�    ( 6.10) 

�
Mx
Mxy

� = h �D11   D16
D16   D66

� �
κx
κxy

� + h �

B11   B16
B12   B26
B16   B66
D12   D26

�

T

⎩
⎨

⎧
εx
εy
γxy
κy ⎭

⎬

⎫
    ( 6.11) 

The reduced effective 2x2 stiffness matrix (Eq. 6.13) can be obtained by defining 

⎩
⎨

⎧
εx
εy
γxy
κy ⎭

⎬

⎫
 from 

Eq. 6.10 in terms of the two other curvature components, as shown in Eq. 6.12, and substituting 

it into Eq. 6.11. 
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�

εx
εy
γxy
κy

� = −�

A11   A12   A16   B12
A12   A22   A26   B22
A16   A26   A66   B26
B12   B22   B26   D22

�

−1

�

B11   B16
B12   B26
B16   B66
D12   D26

� �
κx
κxy�    ( 6.12) 

 

�
𝑀𝑀𝑥𝑥
𝑀𝑀𝑥𝑥𝑥𝑥

� = ℎ �𝐷𝐷𝑌𝑌   𝐷𝐷𝑌𝑌𝑌𝑌
𝐷𝐷𝑌𝑌𝑌𝑌   𝐷𝐷𝑇𝑇

� �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑥𝑥𝑥𝑥�         ( 6.13) 

where 

�DY   DYT
DYT   DT

� = �D11   D16
D16   D66

� − �

B11   B16
B12   B26
B16   B66
D12   D26

�

T

�

A11   A12   A16   B12
A12   A22   A26   B22
A16   A26   A66   B26
B12   B22   B26   D22

�

−1

�

B11   B16
B12   B26
B16   B66
D12   D26

�  

DY is the composite effective lateral stiffness coefficient, DT is the composite effective twisting 

stiffness coefficient, and DYT is the composite effective lateral-twisting coupling coefficient. In 

most cases, where the layers are symmetric, anti-symmetric, cross-ply, special angle ply, DYT 

coefficient will be zero. However, for the generally anisotropic cases, DYT coefficient is not zero 

and will play a significant role in determining the buckling load of the beams. 
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Figure 6.4 Force and moment resultants on a beam based on classical laminated plate 
theory 
 

Referring to Figure 6.1 (structural coordinate) and Figure 6.4 (laminated coordinate), the 

bending moment My in structural coordinate is replaced by Mx in laminate coordinate, on the 

other hand, the shear moment, Mxy, in laminate coordinate is in the opposite direction of twisting 

moment in the structural coordinate system and is found by Kollar and Springer (2003) to be 

MT= -2 Mxy, Table 6.1 shows the relation of moment components in structural coordinate and 

laminate composite coordinate systems. 
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Table 6.1 Relation of moment components in structural coordinate and laminate composite 
coordinate 

 

Substituting the curvatures in terms of displacement and rotation from Eq. 6.8 into Eq. 

6.13, and writing the moments in structural coordinates system, the following relation will be 

obtained 

�
𝑀𝑀𝑦𝑦′
−𝑀𝑀𝑇𝑇

� = ℎ � 𝐷𝐷𝑌𝑌   2𝐷𝐷𝑌𝑌𝑌𝑌
2𝐷𝐷𝑌𝑌𝑌𝑌   4𝐷𝐷𝑇𝑇

� �−
𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

−𝛽𝛽′
�        ( 6.14) 

 

6.2.3 Equilibrium Equations 

As discussed earlier, two coordinate systems were considered (one for each half from the 

point of support) for simply supported beam under concentrated load at mid-span. The 

coordinate system is arranged from the ends of the beam as x-axis to be positive moving towards 

the center of the beam. The derivation of equilibrium equations is discussed in the following sub-

sections. 

6.2.3.1 Buckling Counterclockwise (Left Side of the Beam) 

Figure 6.5 shows the components of external moments about original and deformed axes 

in the left side of the beam when it is considered to buckle counterclockwise, where 𝛽𝛽 is 

considered to be positive. The moment components are shown in the following equations: 



 

130 

External moments about original axes: 

Mz = P
2

(x)            ( 6.15) 

My = 0           ( 6.16) 

Mx = P
2

(w1 − w )         ( 6.17) 

External moments about deformed axes: 

Mz
′ = P

2
(x) − P

2
(w1 − w) dw

dx
         ( 6.18) 

My
′ = P

2
(x)β + P

2
(w1 − w) dv

dx
        ( 6.19) 

Mx
′ = P

2
(x) dw

dx
+ P

2
(w1 − w)        ( 6.20) 

where P
2

(w1 − w) dw
dx

   and P
2

(w1 − w) dv
dx

 are higher order terms which can be neglected. 

The following system of differential equations is obtained after substituting the external 

moments from Eqs. 6.19 and 6.20 into Eq. 6.14: 

�
P
2

(x)β

− P
2

(x) dw
dx
− P

2
(w1 − w)

� = h � DY   2DYT
2DYT   4DT

� �−
d2w
dx2

−β′
�     ( 6.21) 

−hDY
d2w
dx2

− 2hDYTβ′ = P
2

(x)β        ( 6.22) 

-2hDYT
d2w
dx2

− 4hDTβ′ = −P
2

(x) dw
dx
− P

2
(w1 − w)      ( 6.23) 

Writing Eqs.6.22 and 6.23 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
hDY

�−2hDYTβ′ −
P
2

(x)β� = 1
2hDYT

�−4hDTβ′ + P
2

(x) dw
dx

+ P
2

(w1 − w)�   ( 6.24) 

Differentiating Eq.6.24 with respect to x and rearranging the resulting expression in terms of 

 d
2w
dx2

, Eq.6.25 will be obtained. 
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d2w
dx2

= − 2DYT
DY

β′ + 4h
P
2

(x)
�DT −

DYT2

DY
� β′′ − PDYTβ

DY
P
2

(x)
      ( 6.25) 

Equating the left hand side of Eq.6.24, which is equal to d
2w
dx2

  in Eq. 6.22, and the right hand side 

of Eq.6.25, the resulting expression reduces to a second order ordinary differential equation with 

non-constant coefficients. 

β′′ − hPDYT
4h2�DYDT−DYT2�

β +
P2

4 (x)2

4h2�DYDT−DYT2�
β = 0      ( 6.26) 

Setting 𝜓𝜓1
2 =

𝑃𝑃2

4
4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�

and 𝜓𝜓2 = ℎ𝑃𝑃𝐷𝐷𝑌𝑌𝑌𝑌
4ℎ2�𝐷𝐷𝑌𝑌𝐷𝐷𝑇𝑇−𝐷𝐷𝑌𝑌𝑌𝑌2�

  , a simplified form of differential 

equation is obtained. 

β′′ + (ψ1
2(x)2 − ψ2)β = 0         ( 6.27) 

This form of differential equation is a Weber function which can be solved by a numerical 

iterative procedure in commercial software which can solve these types of equations. 
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Figure 6.5 Components of external forces about original and deformed axes of laminated 
simply supported beam subjected to concentrated load; coordinate system from the left end 
of the beam (counterclockwise, +𝜷𝜷) 
 

6.2.3.2 Buckling Clockwise (Right Side of the Beam) 

Figure 6.6 shows the components of external moments about the original and deformed 

axes when the right side of the beam is considered, where 𝛽𝛽 is considered to be negative. The 

moment components are shown in the following equations: 

External moments about original axes: 

Mz = P
2

(x)            ( 6.28) 

My = 0           ( 6.29) 

Mx = −P
2

(w1 − w )         ( 6.30) 

External moments about deformed axes: 
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Mz
′ = P

2
(x) − (w1 − w) dw

dx
          ( 6.31) 

My
′ = − P

2
(x)β − P

2
(w1 − w) dv

dx
        ( 6.32) 

Mx
′ = −P

2
(x) dw

dx
− P

2
(w1 − w)        ( 6.33) 

where P
2

(w1 − w) dw
dx

   and P
2

(w1 − w) dv
dx

   are higher order terms which can be neglected. 

The following system of differential equations is obtained after substituting the external 

moments from Eqs. 6.32 and 6.33 into Eq. 6.14: 

�
−P

2
(x)β

P
2

(x) dw
dx

+ P
2

(w1 − w)
� = h � DY   2DYT

2DYT   4DT
� �−

d2w
dx2

−β′
�     ( 6.34) 

−hDY
d2w
dx2

− 2hDYTβ′ = − P
2

(x)β        ( 6.35) 

-2hDYT
d2w
dx2

− 4hDTβ′ = P
2

(x) dw
dx

+ P
2

(w1 − w)      ( 6.36) 

Writing Eqs. 6.35 and 6.36 in terms of d
2w
dx2

 and equating the two expressions, the following 

relationship can be obtained. 

1
hDY

�−2hDYTβ′ + P
2

(x)β� = 1
2hDYT

�−4hDTβ′ −
P
2

(x) dw
dx
− P

2
(w1 − w)�   ( 6.37) 

Differentiating Eq. 6.37 with respect to x and rearranging the resulting expression in terms 

of  d
2w
dx2

, Eq. 6.38 will be obtained. 

d2w
dx2

= − 2DYT
DY

β′ − 4h
P
2

(x)
�DT −

DYT2

DY
� β′′ − PDYTβ

DY
P
2

(x)
      ( 6.38) 

Equating the left hand side of Eq. 6.37, which is equal to d
2w
dx2

  in Eq. 6.35, and the right hand side 

of Eq. 6.38, the resulting expression reduces to a second order ordinary differential equation with 

non-constant coefficients. 
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β′′ + hPDYT
4h2�DYDT−DYT2�

β +
P2

4 (x)2

4h2�DYDT−DYT2�
β = 0      ( 6.39) 

Setting ψ12 =
P2

4
4h2�DYDT−DYT2�

 and ψ2 = hPDYT
4h2�DYDT−DYT2�

  , a simplified form of differential 

equation is obtained. 

β′′ + (ψ1
2(x)2 + ψ2)β = 0         (6.40) 

This form of differential equation is a Weber function which can be solved by a numerical 

iterative procedure in a commercial software which can solve these types of equations. 

 

 

Figure 6.6 Components of external forces about original and deformed axes of laminated 
simply supported beam subjected to concentrated load, coordinate system from the right 
end of the beam (clockwise−𝜷𝜷) 
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Comparing Eqs. 6.27 and 6.40, derived from the above two halves of the beam, one can 

see that the only difference is the sign of coefficient 𝜓𝜓2, where it is negative for 

counterclockwise bucking (left side of the beam) and positive for the case of clockwise buckling 

(right side of the beam).  

The differential equation for two cases is as follows: 

β′′ + (ψ1
2(x)2 ∓ ψ2)β = 0         ( 6.41) 

Since Eqs. 6.27 and 6.40 come from the same configuration, a term cannot have two different 

signs. Therefore, the second term of Eq. 6.41 which is ∓𝜓𝜓2 has to vanish, and the final equation 

simplifies to  

β′′ + ψ12x2β = 0          ( 6.42) 

Thus the critical buckling force is  

P = 2ψ1h�4�DYDT − DYT
2�         ( 6.43) 

The value of 𝜓𝜓1 in Eq. 6.42 is determined by numerical iterative solution using 

Mathematica by applying the following boundary conditions: 𝛽𝛽(0) = 0 and 𝛽𝛽′ �𝐿𝐿
2
� = 0. The 

general solution of Eq. 6.42 contains a nonlinear polynomial function which is called 

ParabolicCylinderD (or D) in Mathematica. In this process, the program first solves for the 

general solution of the differential equation. The boundary conditions are applied to the general 

solution. After applying the boundary conditions, a polynomial function of 𝑓𝑓𝑛𝑛(𝜓𝜓1) is obtained, 

which must be set equal to zero. This function contains real and imaginary parts. To obtain a 

numerical solution for 𝜓𝜓1, the numerical values for a certain beam geometric parameters should 

be iterated until the equation converges. Following this procedure, Eq. 6.42 converged at a value 

of 𝜓𝜓1 = 3.38723𝐸𝐸 − 5 regardless of the lamination stacking sequence for a length of 500 mm. 



 

136 

To obtain a general solution, 𝜓𝜓1 is normalized with resepct to length yielding a constant of 

16.94. It is interesting to observe that this constant matches that of isotropic beams show by 

Timoshenko and Gere (1961). The general buckling solution is presented in Eq. 6.44. Figure 6.7 

shows the flowchart of the procedure used in Mathematica to obtain the value of 𝜓𝜓1. A 

screenshot of the script, used in Mathematica, is shown in Figure 6.8. 

 

P = 16.94h
𝐿𝐿2

�4�DYDT − DYT
2�        ( 6.44) 

 

 

Figure 6.7 Flowchart of the semi-analytical solution of the buckling equation using 
Mathematica 
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Figure 6.8 Screenshot of the script used in Mathematica to solve the buckling differential 
equation 
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6.3 Numerical Analysis (FEA) 

The finite element method through the commercial software package, 

ABAQUS/Standard (implicit) was used to simulate the problem in this study in order to verify 

the derived semi-analytical formula for simply supported beams under concentrated loads at mid-

span. The model was first created by using 3D planar shells. The shells were assembled based on 

the stacking arrangement that was used in the analytical solution. The global x-axis was assigned 

along beam’s length, but the local coordinate system was used based on the orientation of the 

fibers in each ply.  

The beam was rotationally and translationally restrained at one end. A concentrated load 

was applied at the centroid of the beam’s mid-span. The boundary condition and applied load are 

shown in Figure 6.9a. 

 

Figure 6.9 FEM model with L/h =20 and layer thickness = 0.1 mm; (a) applied load and 
boundary conditions and (b) applied shell element type (S8R) and mesh (element size along 
beam axis: 1 mm) 
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The beam was meshed with a standard quadratic quadrilateral shell element type of S8R (8-node 

doubly curved thick shell element with reduced integration) using six degrees of freedom per 

node and an element size of 1 mm along beam axis. A beam with L = 500 mm and h = 25 mm 

gives total number of 40053 nodes and 13000 elements, as shown in Figure 6.9b. 

The eigenvalue buckling analysis in ABAQUS solver, which is a linearized perturbation 

procedure, determines the eigenvalue of the buckling mode. ABAQUS extracts the eigenvalues 

and eigenvectors for symmetric stiffness matrices only. In order to turn the stiffness matrix of the 

model symmetric, Lanczos iteration eigenvalue extraction method was used. To find the critical 

force, based on the ABAQUS user guide, the lowest eigenvalue is multiplied by the applied force 

at the centroid of mid-span of the beam. 

𝑃𝑃0𝑐𝑐𝑐𝑐 = 𝜆𝜆𝜆𝜆                                                                ( 6.45) 

In addition, a nonlinear stability analysis (pre-buckling and buckling) of the laminated 

anisotropic simply supported beam was performed by adopting the nonlinear geometry analysis 

using the modified Riks approach, Al-Masri and Rasheed (2017) and Memon and Sun (2004). 

The modified Riks analysis uses the Arc-length method to follow the equilibrium path, 

representing either bifurcation points or limit points. Reasonable load increments are applied 

during the analysis in which the iteration converges to equilibrium along the Arc-length. 

 

6.4 Results 

6.4.1 Material Properties and Stacking Sequences 

An anisotropic composite material is made by stacking four layers of the lamina 

properties shown in Table 6.2 at different fiber orientations. The thickness of each layer is the 

same with the same orthotropic properties, yet it varies in terms of fiber orientation. The 
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orientation of fiber in each layer can be randomly picked, including common laminate types such 

as symmetric laminates, antisymmetric laminates, balanced laminates, and so on. The stacking 

sequence starts from the back of the beam to the front of the beam to follow the same order used 

for typical laminated plates, shown in Figure 6.10. For example, [30/-30/30/-30] means that the 

first ply has an angle of 30 degrees from the x-axis of the beam is placed in the back of the beam 

counter clockwise (towards the y-axis) and the other layers follow with the same order through 

the positive z-axis direction. Figure 6.10 shows the stacking sequence of the laminates. Different 

layer thicknesses of (0.05, 0.1, 0.15, and 0.2 mm) and length to height ratios of (5, 10, 20, and 

50) were also studied which will be presented later. Furthermore, the effect of fiber orientation 

for antisymmetric balanced angle ply, symmetric balanced angle ply, and single angle 

anisotropic layups were studied by varying angle of orientation. 

 

Table 6.2 CFRP material properties used in the laminates 

Material  CFRP 

E11 142730 MPa 

E22 13790 MPa 

v12 0.3   

v21 0.028985   

G12 4640 MPa 

G13 4640 MPa 

G23 3030 MPa 
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Figure 6.10 The stacking sequence of the laminates 
 

6.4.2 Buckling Results 

For the lateral-torsional buckling of thin-walled rectangular simply supported laminated 

composite beams under concentrated load, a semi-analytical approach is presented as well as 

FEM results. Figures 6.11 and 6.12 show the buckling solutions for different stacking sequences 

(19 different laminate-fiber orientations) based on the proposed analytical formulation as well as 

results from FEM model for layer thickness of 0.1 mm (total thickness of 0.4 mm), beam length 

of 500 mm and beam height of 50 mm and 25 mm (i.e. length to height ratio of 10 and 20), 

respectively. Based on the results obtained, there is an excellent agreement between the proposed 

analytical formulation and FEM, Figures 6.11 and 6.12. The largest error observed is 6.34% for 

L/h ratio of 10 (Figure 6.11) and 8.90% for L/h ratio of 20 from anisotropic layup of 

[30/30/30/30], see Table 6.3. From the observation of Figures 6.11 and 6.12, the analytical 

formula slightly overestimates the buckling load for higher L/h ratio (Figure 6.12). It might be 

X 

Y 

Z 

First 

Last layer 



 

142 

due to the fact the height to thickness (h/t) ratio of the beam decreases causing it to behave as a 

less-slender beam. 

 

 

Figure 6.11 Buckling forces at different stacking sequences: tk=0.1 mm for each layer and 
L/h=10 
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Figure 6.12 Buckling forces at different stacking sequences: tk=0.1 mm for each layer and 
L/h=20 
 

6.5 Parametric Study 

6.5.1 Effect of Length/Height Ratio 

Different Length/height (L/h) ratios of 5, 10, 20, and 50 were used in the analysis to 

study their effects on the lateral-torsional buckling of simply supported anisotropic laminated 

thin-walled rectangular cross-section beams. The results show that there is a significant drop in 

the value of the buckling forces as the L/h ratio increases. The relation between buckling force 

and L/h ratio is defined to be a power function which can be written in Eq. 6.46. 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖 ∗ �
𝐿𝐿
ℎ
�
𝑖𝑖
�𝐿𝐿
ℎ
�
−1

        ( 6.46) 

where (𝑃𝑃𝑐𝑐𝑐𝑐)i is the initial calculated value of buckling force from Eq. 6.44 with a given �𝐿𝐿
ℎ
�
𝑖𝑖
 ratio 

for a specific laminate stacking sequence. 
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Figure 6.13 Effect of L/h ratio on the critical buckling force based on analytical formula for 
three different layups and ply thickness of 0.1 mm 
 

By knowing the value of buckling force in a selected laminate, Eq. 6.46 helps to calculate 

the buckling force for different L/h ratios while the stacking sequence is retained the same. 

Figure 6.13 shows the effect of L/h ratio on the buckling force for three different stacking 

sequences of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Eq. 6.46 is limited to the 

analytical formula and is not applicable to the FEM results. There is a noticeable discrepancy 

between the analytical and numerical results in the cases where L/h ratio decreases, especially 

when the ratio of L/h is 5 or lower, as shown in Figures 6.15-6.17 for three different cases. The 

beam with lower L/h ratio behaves like a plate and buckles numerically in a distortional mode, in 

which β at a certain section transverse to the beam is not constant, rather than a lateral-torsional 

mode, in which the lateral angle of twist, β, remains constant for a certain section transverse to 

the beam. Figure 6.14 shows the deformed mode shape of the beam in four different L/h ratios of 

5, 10, 20 and 50 comparing to the original shapes for layup of [0/0/0/0] in isometric view. It is 

evident that the deformed shape for the cases (a), (b) and (c) buckles numerically in a lateral 
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torsional mode where a constant β can be assumed as done analytically while β cannot be 

assumed constant for L/h ratio of 5, Figure 6.14d, as it buckles numerically in a distortional 

mode. Figures 6.15 – 6.17 clearly shows that the analytical and numerical buckling loads match 

almost exactly as the L/h ratio increases beyond 5. 

 

 
Figure 6.14 Buckling (deformed and un-deformed) shape of the simply supported beam for 
ply thickness of 0.1 mm and lamination orientation of [0/0/0/0]; (a) L/h=50, (b) L/h =20,  (c) 
L/h = 10, and (d) L/h =5 
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Figure 6.15 Comparison of buckling result obtained from analytical solution and FEM for 
the [15/30/-45/15] laminate and ply thickness of 0.1 mm by changing L/h ratio 
 

Figures 6.15 – 6.17 show the comparison of buckling forces between the analytical 

solution and FEM in three different laminate stacking sequences. It is obvious that in both 

analytical and FEM the buckling forces increase as the L/h ratio decrease because of the larger 

height of the beam to resist against lateral-torsional buckling. Again, it is evident from Figures 

6.15 – 6.17 that the analytical and numerical results match closely beyond L/h=5. 
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Figure 6.16 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/0/90] laminate and ply thickness of 0.1 mm by changing L/h ratio 
 

 
Figure 6.17 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and ply thickness of 0.1 mm by changing L/h ratio 
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buckling forces is obtained in [90/90/90/90] layup while the highest critical value is obtained for 

the balanced angle-ply stacking sequence of [30/-30/30/-30] which is the maximum critical force 

among the possible stacking sequences selected for Figures 6.11 and 6.12. The optimal 

maximum critical force is obtained for the balanced angle-ply layup to be 0.663 N for layup [20/-

20/20/-20] using L/h ratio of 20. Figure 6.18 shows the variation in critical buckling force with 

the change in layup angle of 0 to 90 with an increment of 5 degrees. The analytical and FEM 

results match closely for the entire range of layup angle reaching a maximum value at about [20/-

20/20/-20]. Figure 6.19 shows the variation in critical buckling force obtained from analytical 

formula with the change in layup angle of 0 to 90 with an increment of 5 degrees for three 

different cases of antisymmetric balanced angle ply [θ/-θ/θ/-θ], symmetric balanced angle ply 

[θ/-θ/-θ/θ], and anisotropic single angle [θ/θ/θ/θ]. Again it is obvious that the optimal maximum 

critical force is obtained for the symmetric and antisymmetric balanced angle ply layups at 

around 20 degrees while for anisotropic single angle layup the maximum critical forces is 

obtained at 0 degree layup. For single angle anisotropic layup, the lateral-twisting coupling 

coefficient, DYT, is higher comparing to lateral and twisting coefficient which causes the beam to 

be critical in other angle layup rather than 0 degrees. 
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Figure 6.18 Variation in critical buckling force with the change in balanced angle-ply layup 
angle of 0 to 90 with an increment of 5 degrees. (+) Analytical and (●) FEM; ply thickness 
of 0.1 mm and L/h of 20 
 

 
Figure 6.19 Variation in critical buckling force with the change in layup angle of 0 to 90 
with an increment of 5 degrees from analytical formula for three different layups; ply 
thickness of 0.1 mm and L/h of 20 
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6.5.3 Effect of Layer Thickness 

Different layer thickness of 0.05, 0.1, 0.15, and 0.2 mm were used in the analysis to study 

their effects on the lateral-torsional buckling of simply supported laminated thin-walled 

rectangular cross-section beams. The L/h ratio of 20 and the stacking sequence were kept the 

same while changing the layer thickness. The results show that there is a significant increase in 

the value of buckling forces as the layer thickness increases. The relationship between buckling 

force and the thickness is defined to be a power function which can be written in Eq. 6.47. 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖
𝑡𝑡𝑖𝑖3

𝑡𝑡3          ( 6.47) 

where (𝑃𝑃𝑐𝑐𝑐𝑐)i is the initially calculated value of buckling force from Eq. 6.44 with a given 

𝑡𝑡𝑖𝑖 for a specific laminate stacking sequence. Eq. 6.47 works either considering the thickness to 

be the total thickness of the beam or the thickness of each layer as long as all layers have the 

same constant thickness. 

By knowing the value of buckling force in a selected layup, Eq. 6.47 helps to calculate 

the buckling force for various layer or beam thickness. Figure 6.20 shows the effect of layer 

thickness on the buckling force based on analytical solution for three different stacking sequence 

of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Figure 6.21 shows the effect of layer 

thickness on the buckling force based on the FEM results for the same three stacking sequences 

of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30]. Eq. 6.47 can be obtained from FEM 

analysis with small deviation multipliers of (a) and (b), which are tabulated in Figure 6.21 for the 

three mentioned layups. The modification of Eq. 6.47 for FEM results is shown in Eq. 6.48. 

𝑃𝑃𝑐𝑐𝑐𝑐 = (𝑎𝑎𝑎𝑎 + 𝑏𝑏) (𝑃𝑃𝑐𝑐𝑐𝑐)𝑖𝑖
𝑡𝑡𝑖𝑖3

𝑡𝑡3        ( 6.48) 



 

151 

 

Figure 6.20 Effect of thickness, tk, on the critical force based on analytical formula for 
three different orientations, L/h=20 
 

 
Figure 6.21 Effect of thickness, tk, on the critical force based on FEM method for three 
different orientations, L/h=20 
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because of the fact larger thickness of the beam can resist more against lateral-torsional buckling. 

Both analytical and FEM results have a good agreement on the buckling force for all three 

sequences, except for the [15/30/-45/15] case when the thickness increases. The anticipated 

reason might be tendency of distortional buckling of beam or the admission of shear deformation 

at certain orientation of fibers as the layer thickness increases while keeping L/h ratio the same. 

Timoshenko and Gere (1961) states that lateral buckling occurs theoretically for any value of t/h 

but it is necessary to consider lateral buckling only for in the case of a very narrow cross section 

where t/h is very small quantity. 

 

 

Figure 6.22 Comparison of buckling result obtained from analytical solution and FEM for 
the [15/30/-45/15] laminate and L/h of 20 by changing layer thickness, tk 
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Figure 6.23 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/0/90] laminate and L/h of 20 by changing layer thickness, tk 

 

 
Figure 6.24 Comparison of buckling result obtained from analytical solution and FEM for 
the [30/-30/30/-30] laminate and L/h of 20 by changing layer thickness, tk 
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sequences of [30/-30/0/90], [15/30/-45/15], and [30/-30/30/-30] obtained from finite element 

nonlinear Riks analysis along with the analytical solution for comparison. The buckling loads in 

Figure 6.25 for anisotropic layups of [30/-30/0/90] and [15/30/-45/15] show excellent agreement 

and a pre-buckling deformation. On the other hand, the antisymmetric angle ply [30/-30/30/-30] 

exhibits higher buckling load with a clear bifurcation buckling. 

 

 

Figure 6.25 Analytical versus numerical solution; deflection at mid-span, L/h=20 and tk=0.1 
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Table 6.3 Comparison of buckling force obtained from analytical results and FEM for L/h 
ratios of 10 and 20 and layer thickness of 0.1 mm in different stacking conditions 

Laminate 

Critical Buckling Forces Pcr (N.mm) and Error (%) 

L/h =10 L/h = 20 

Analytical FEM Error 
(%) Analytical FEM Error 

(%) 
0/0/0/0 0.9298 0.9602 3.27 0.4649 0.4668 0.40 

90/90/90/90 0.2890 0.2891 0.03 0.1445 0.1437 0.57 
30/-30/30/-30 1.2231 1.2376 1.19 0.6115 0.6049 1.09 
45/-45/45/-45 0.8370 0.8517 1.76 0.4185 0.4139 1.09 
60/-60/60/-60 0.6395 0.6387 0.13 0.3198 0.3154 1.37 
60/-60/45/-45 0.7245 0.7274 0.40 0.3623 0.3572 1.40 
30/-30/45/-45 0.9509 0.9622 1.20 0.4754 0.4690 1.35 
30/-30/60/-60 0.7871 0.7853 0.22 0.3935 0.3846 2.27 

30/-30/0/0 0.9064 0.9098 0.37 0.4532 0.4477 1.21 
30/-30/0/90 0.6363 0.6327 0.56 0.3181 0.3125 1.76 
30/30/30/30 0.7416 0.6946 6.34 0.3708 0.3378 8.90 

30/-30/-30/30 1.0626 1.0521 0.98 0.5313 0.5138 3.29 
0/90/90/0 0.8776 0.9027 2.87 0.4388 0.4398 0.22 

30/-60/-60/30 0.8801 0.8376 4.83 0.4400 0.4016 8.74 
0/90/0/90 0.6450 0.6542 1.43 0.3225 0.3218 0.21 

-45/30/-30/45 0.8434 0.8569 1.60 0.4217 0.4186 0.74 
0/0/90/90 0.4832 0.4866 0.70 0.2416 0.2408 0.34 
90/0/0/90 0.4265 0.4285 0.46 0.2133 0.2123 0.44 

15/30/-45/15 1.0077 0.9759 3.15 0.5038 0.4737 5.97 
 

 

6.6 Conclusions 

In this study, the lateral-torsional buckling of simply supported, thin-walled rectangular 

cross-section, anisotropic laminated composite beam under concentrated load at mid-span was 

investigated. Based on the assumptions made and the results obtained, an excellent accuracy is 

observed for a variety of stacking sequences. The applicability of this analytical formulation is 

proved by comparing the obtained results with FEM results. The study followed the classical 
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laminated plate theory with all considered assumptions and determined an effective lateral-

torsional-coupling stiffness matrix. 

Based on the study, the stability of the laminated beams under concentrated load is 

greatly affected by the length/height ratio of the beam as well as the thickness of the beam. The 

importance of the stacking sequence, which does not affect the dimensions of the beam, is seen 

to greatly influence the stability of the beam. 

The critical buckling force of symmetric and antisymmetric balanced angle-ply fiber 

lamination of about [20/-20/-20/20] and [20/-20/20/-20] are found to reach the maximum value, 

among these two classes of layups, because of their maximum lateral and torsional effective 

stiffness. On the other hand, single angle anisotropic fiber lamination of [0/0/0/0] is found to 

reach the maximum value because of its zero value of lateral-twisting coupling coefficient. The 

minimum critical buckling load obtained from [90/90/90/90] was found to be due to orienting the 

fibers in the y-direction, thus reducing the lateral effective stiffness. A finite element nonlinear 

Riks analysis was performed to indicate the existence of pre-buckling deformation in transverse 

direction for anisotropic layups while comparing favorably with analytical buckling limit loads 

in two stacking sequences. It further showed perfect bifurcation buckling for antisymmetric 

angle ply layup. 
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Chapter 7 - Conclusions and Recommendations 

7.1 Conclusions 

In this research, the lateral-torsional buckling of thin-walled rectangular cross-section, 

anisotropic laminated composite beams under various loading and boundary conditions, as well 

as hybrid steel-FRP beams under pure bending condition, are analytically and semi-analytically 

investigated. Based on the assumptions made and the results obtained, an excellent accuracy is 

observed for a variety of stacking sequences. The applicability of this analytical formulation is 

proved by comparing the obtained solutions with FEM results. The study followed the classical 

laminated plate theory with all considered assumptions and determined an effective lateral-

torsional-coupling stiffness matrix. 

Based on the study, the stability of the laminated beams under various loading and 

boundary conditions is greatly affected by the length/height ratio of the beam as well as the 

thickness of the beam. The critical buckling moment or force are inversely proportional to the 

length/height ratios with a power function. Increase in the thickness of the beam also plays a 

significant role in increasing the stability resistance of the beams. The importance of the stacking 

sequence, which does not affect the dimensions of the beam, is seen to greatly influence the 

stability of the beams. 

For the hybrid steel-FRP beams, the ST-II stacking type, in which the steel laminate is on 

the side of the beam, shows a higher resistance than the ST-I, in which the steel sheet is located 

at mid-thickness of the beam. Accordingly, it is more effective to apply the FRP on one side of 

steel beams to strengthen them against lateral-torsional buckling. 

The fiber angle orientation was proven to be a critical variable against the lateral torsional 

buckling. The critical buckling moment or force of symmetric and anti-symmetric balanced 
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angle-ply fiber lamination of about [22/-22/-22/22] and [22/-22/22/-22] are found to reach the 

maximum value, among these two classes of layups, because of their maximum lateral and 

torsional effective stiffness. For single angle anisotropic fiber lamination of [θ/ θ/ θ/ θ] is found 

to reach the maximum value with [0/0/0/0], among this class of layups, because of its zero value 

of lateral-twisting coupling coefficient and highest value of lateral coefficient at zero degrees. 

The minimum critical buckling moment or force obtained from [90/90/90/90] was found to be 

due to orienting the fibers in the y-direction, thus reducing the lateral effective stiffness 

coefficient.  

A finite element nonlinear geometrical deformation analysis, using modified Riks 

simulation by ABAQUS, is used for the cases of cantilever beams under free end loading and 

simply supported beams under concentrated load at mid-span. This analysis was examined and 

compared against analytical solution for determining the existence of pre-buckling deformation 

vs. bifurcation behavior. As a result the buckling loads showed excellent agreement with those 

predicted analytically. 

7.2 Recommendations 

From the major conclusions presented in the preceding section, additional works could be 

made in the future, as follows: 

1. Extend this approach to investigate stability of different types of rectangular laminated 

composite beams by changing the vertical location of applied load with respect to the 

centroid of cross-section 

2. Develop analytical approach for anisotropic and hybrid laminated composite I-section 

beams. 
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3. Develop an Excel based program to solve the lateral-torsional buckling of laminated 

composite rectangular beams for any loading and boundary conditions.  
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