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Introduction

The growing demand for expert knowledge systems

requires that we develop a language to fulfill the sys-

tems developers' needs. Mo3t expert knowledge systems

are restricted because of the languages chosen to

implement them. Researchers in knowledge representa-

tion are looking for better ways to develop expert

knowledge systems. The trend of programming languages

has been leaning toward modular programming and the

integration of declarative and procedural knowledge.

The main characteristics of any programming language

are its representation method or syntax, the semantics

of its representation, how knowledge or data is stored

and used, and its ability or intelligence to reason

with its knowledge. In section 1.1 knowledge will be

defined and several representational forms will be

introduced. In section 1 .2 intelligence will be dis-

cussed, and in chapter 2 the representation and seman-

tics of the knowledge and language being used in this

research will be presented. Chapter 3 will discuss

modular programming and chapter t will define the for-

mal syntax for a conceptual object-oriented programming

1 anguage

.

1.1 Knowledge and its Representational forms

What is knowledge? The simplest explanation of

knowledge is that it has two types. The first type is
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"Declarative Knowledge" — real world facts that

represent some type of truth. Philosophers have been

working on the study of declarative knowledge (such as

predicate logic) for many years. The philosophers Aris-

totle, Frege, Hussell, Whitehead, and others have made

important contributions to the understanding of

knowledge.

Declarative knowledge can be defined to be true

either in terms of observations, through proof pro-

cedures, or by hypotheses. A fact such as "Fred's grass

is green" may have been observed by Mike, Fred's neigh-

bor. We could represent this statement in the form of

predicate logic. This would be represented as

green(grass) * own(Fred, grass)

Here we show that the grass is green and it is owned by

Fred. If we want to know if Fred's grass is green, we

could provide a program with the question, "Is Fred's

grass green?." The sentence would be transformed into

predicate logic and some sort of reasoning (such as

resolution, unification, or other reasoning mechanisms)

would be performed on the facts in the database. So far

we have little information about the world surrounding

Fred and Mike. Let us say that Fred and Mike both live

in Kansas. When winter comes Fred's grass would prob-

ably turn brown, making the previous observation made

by Mike false. We have shown from this that there are
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facts that have short-term truth and facts that have

long-term truth. The distinction between short-term

and long-term truth is a problem when reasoning is per-

formed on existing facts. We may need to add more

knowledge about the surrounding world along with a set

of procedures that could perform some sort of reasoning

on them. For example, we might add the following rules

location(grass, Kansas) * time(winter) — > brown(grass)

location(grass, Kansas) " time(spring) — > green(grass)

Suppose we now wanted to find out if Fred's grass is

green or brown. We could check to see where the loca-

tion of Fred's grass is, and what time of year it is.

Therefore, the above rules enable us to prove whether

or not Fred's grass is green or brown.

A clearer proof procedure would be to prove 2+2
= 1. Through a set of algebraic rules we could prove

this simple mathematical computation.

Another way to ascertain truth is to hypothesize.

We, as humans, tend to do a great deal of hypothesiz-

ing, sometimes just on simple hunches. To hypothesize

a statement let's say, for example, "President Ronald

Reagan has false teeth." We think this statement is

true because most people at his age have lost all their

permanent teeth. It is still possible, and we would not

know unless we asked him, that he may have some or all

of his permanent teeth. Until we have ample proof we



can leave this statement as a hypothesized fact of

truth.

The second type of knowledge is "Procedural

Knowledge". We have stated previously that we can

represent some knowledge in terms of facts. There are

still other types of knowledge. These are acts that are

performed as a set of procedures. We may know about

something but we still need to know how to use it. For

example, let's say we want to implement the blocks

world for a robot. The robot's actions enable it to

manipulate a set of blocks on a table. We could

describe its manipulations as separate procedures, and

the positions of the blocks as known facts. The robot

can now change its blocks world by using what it knows,

that is, its procedures and facts about the blocks.

1

A
'

1
1

1

B I

1

1
C i

i

i

Figure 1.1.1 Initial state of the blocks world

We start with a set of facts that Includes the follow-

ing, block A is supported by block B, block B is sup-

ported by block C, and block C is supported by the

table, shown in figure 1.1.1.



Figure 1.1.2 Intermediate state of the blocks world

Figure 1.1.3 Final state of the blocks world

We want the robot to perform the simple ta3k of placing

block B onto the table, as shown in figure 1.1.3. To

perform the task the robot would have to pick up block

A, put it on the table, pick up block B, and then put

it on the table. The necessary procedures for the

robot would include reasoning with the known block

positions, picking up a block, and putting a block

down. Before the robot can perform any operations it

must first determine what its world looks like. Using

figure 1.1.1 the robot finds out that to get block B on

the table, it must first remove block A from its posi-

tion. When block A is taken from its position and

placed onto the table, shown in figure 1.1.2, the robot

looks at its world again to see what it must do next to

get block B onto the table. The robot finds that it



only needs to pick up block B and put It onto the

table, thus completing its requested task.

We have described two types of knowledge, declara-

tive and procedural knowledge. In the past there have

been arguments saying that we could represent all the

procedural knowledge in a declarative representational

form. The Procedural/Declarative controversy of the

seventies addressed this issue. The following arguments

of the discussion were presented in Winograd[1975]

.

The dedarativists argued that each fact would be

stored onoe, regardless of the number of different ways

it may be used. New facts are easily added without

changing other facts or small procedures. The procedur-

alists declared that it is easy to represent knowledge

of how to perform tasks. It is also easy to represent

knowledge that does not fit well in declarative

representations, such as default and probabilistic rea-

soning. Procedures al30 represent heuristic knowledge

that does efficient problem-solving. Exceptions that

occur, these are problems not defined by formal theory,

can be handled separately in procedures. The declara-

tive representation may find it difficult to handle

exceptions not included within its knowledge.

One agreement that came out of the

Procedural/Declarative controversy was that we needed

to find some sort of bridge between the two types of
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knowledge representation. We need to integrate declara-

tive and procedural knowledge. Much of the early work

attempting to do this was through the use of semantic

networks and frames. Research using semantic networks

has pretty much been abandoned. But the use of frames

has been more promising. Knowledge representation

languages and tools that include frame representations,

have recently been developed. Some of these are KEE,

KRYPTON, and others.

It has been shown how predicate logic could

represent some types of knowledge. Current work in

knowledge representation has centered around frames and

efficient reasoning methods. All the types of knowledge

that have been described must be represented in some

representational form which will retain most of its

meaning. Also each form must be able to represent both

declarative and procedural knowledge. The representa-

tional forms presented here can be placed within the

knowledge levels. The knowledge levels consist of five

types: language, conceptual, epistemological, logical,

and physical.

At the physical level, the lowest level in the

knowledge levels, we could represent knowledge in the

form of bits in a computer (zeros and ones). For exam-

ple, 0001000100101 may represent a symbol in the

English language. This representational form is not



very meaningful to us as humans, it is very hard to

read, and only through an interpreter oould we make any

sense out of it.

The next level up is the logical level. Most pro-

gramming languages reside at this level. Languages such

as Lisp, Pascal, and PL/I are logical representational

languages.

The epistemological level begins to represent the

knowledge in a more meaningful way. Prolog can be

placed somewhere near thi3 level, although it still

resembles that of a logical language. Prolog is a

rule-based language that uses a predicate logic theorem

prover.

At the conceptual level representational forms

begin to retain more meaning of the knowledge. Some of

these representational forms are semantic networks,

scripts, frames, and conceptual dependency.

Semantic networks are the earliest form of struc-

tured representation of knowledge. They were first

developed by Quillan and Raphael in 1968. Semantic net-

works have been designed to be able to describe both

events and objects. The information in semantic net-

works is represented as a set of nodes which are con-

nected together by a set of arcs. These arcs represent

relationships between the nodes. An example of a seman-



tic network would be the following, shown in figure

1.1.4, using the sentence "John gave the book to Mary."

IGive |

USA

h + AGENT h + OBJECT ^ +

Uohn |< ! EV7
I

>|BK23 i

BENEFICIARY

I
Mary

!

USA

H +

{Book !

Figure 1.1.4 Semantic network for

"John gave the book to Mary."

It is possible for us to represent all the knowledge in

the semantic network as two-place predicates in predi-

cate logic. For example, figure 1.1.4 would have the

following two-place predicates.

ISA(Book, BK23)
AGENT(EV7,John)
0BJECT(EV7,BK23)
ISA(EV7,Give)
BENEFICIARY(EV7,Mary)

Semantic networks have been deeply explored but have

given way to better and more powerful structured

knowledge representation forms.



Scripts are another form of representing struc-

tured knowledge. Scripts are used to describe a

sequence of events. A script contains a set of slots

and each slot may contain some information about the

values that the slot may contain. Each of the slots may

also contain a default value that will be used when a

value for a slot is not available. The components of a

script consist of entry conditions, results, props,

roles, track, and scenes. Scripts seem to be useful

because they can easily represent a recurring sequence

of events. The sequence of events in a script form a

causal chain. The beginning of the chain is the event's

entry conditions and the end the chain is the results

of the script. Events contained in the causal chain

are connected to earlier events that make these events

possible to occur and to later events that let them

occur. Figure 1.1.5 and figure 1.1.6 show a sample

script, that of a library.
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Script: Library
Track: College

Library
Props: C = Card Catalog

Books
CRT
ID = Student ID

CCN = card catalog number
AI = author index
SI = subject index

TI = title index
SO = subject

Roles: S = student
L = Librarian

Entry Conditions:

S drops off book(s)
and/or

S is checking out books

S has ID

Results: S has no books
or

S has new book(s)

Figure 1.1.5 Script for a library scene.
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! Scene 1: entering
|

S enters library. |

I I

1 S drops off book(s). S moves to C. |

1
(go to scene 2) or (go to scene 2) |

! (go to scene 5) !

I
Scene 2: Choose book(s) |

1
(knows author) (knows subject) (knows title)

|

I
S moves to AI. S moves to SI. S moves to TI. |

! 1 S thinks of SU.
I !

! S pulls

1 1

out C. S pulls out C. S pulls C. I

! 1 ! 1 I !

1 i

1 !

I ! II! 1

H > I
< | > | <-+

i

1 v !
|

! I 1

I : i

V V |

! S does not find book. S writes down CCN. 1

1 (go to scene 2) or S goes to stacks.
I

1 (go to scene 4) or j

1
(go to scene 5) 1

IScene 3: Stacks !

1 S chooses correct stack. I

1 I 1 !

1 1

! S finds
i i

book. S does not find book.
!

t
! 1

i i i

(go to scene 2) or |

(go to scene 3) or |

(go to scene 4) |

1 Scene 4: Check out |

1 S gives book(s) and ID to L. |

! L enters ID and CCN onto T. |

I L gives ID and book(s) to S.
I

! Scene 5: Exiting
|

! S goes out of the library

Figure 1.1.5 Script for a library scene.
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Scripts seem to be quite effective for representing

specific kinds of knowledge that is represented as a

sequence of events. But scripts are less general than

frames, therefore making scripts unsuitable for

representing all the different kinds of knowledge.

Frames have recently been researched extensively

and have been added to many knowledge representation

systems. Frames, introduced by Marvin Minsky in 1975,

describe classes of objects. A frame contains a col-

lection of semantic net nodes and the slots together

describe an object, act, or event. Each slot may have

conditions that must be met before the slot can be

filled. The slots may also contain a default value to

be used when no information is available. Slots can

contain procedural information called procedural

attachments. Some types of procedural attachments are

IF-ADDED, IF-REMOVED, and IF-NEEDED. Frames can be used

to represent other types of knowledge, such as perspec-

tives, prototypes, and individuals. Figure 1.1.6 shows

an example of a how an object could be represented in

the frame representation form.
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(HURRICANE- BETTY
(PLACE (MIAMI-FLORIDA))
(DAY (5-23-35))
(INJURED (256))
(FATALITIES (6))
(DAMAGE (4235000))

Figure 1.1.6 A Frame that is an instance of type
Hurricane with some of its slots filled.

Thus frames are like semantic networks. They are

general -pur pose structures in which particular sets of

domain-specific knowledge can be embedded.

Conceptual dependency is the theory of represent-

ing the meaning of natural language sentences. From the

representation we should be able to draw inferences

from the sentences and its representation should be

independent of its natural language. The conceptual

dependency representation of a sentence is formed using

conceptual primitives to form the meaning in the

natural language sentence. One theory was first

described by Roger Schank in 1973. His theory said con-

ceptual dependency provides a structure and a set of

primitives from which information can be constructed.

Schank' s primitives, listed in figure 1.1.7, show the

primitive actions which may be used in a way to form

high-level meaning in its representation. An example

of Schank's theory is shown in figure 1.1.8.
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ATHAHS Transfer of an abstract relationship
PTRANS Transfer of the physical location of an object
PROPEL Application of physical force to an object
MOVE Movement of a body part by its owner
GRASP Grasping of an object by an actor
INGEST Ingesting of an object by an animal
EXPEL Expulsion of something from the body of an animal
MTRANS Transfer of mental information
MBOILD Building new information out of old
SPEAK Producing sounds
ATTEND Focusing of a sense organ toward a stimulus

Figure 1.1.7 Schank's primitive actions

to
+ > Mary

p OR
John <===> ATRANS < book <

from
h < John

Figure 1.1.8 Conceptual dependency using Schank's
primitives. It represents the sentence

"John gave Mary the book."

The arrows of the conceptual dependency in figure 1.1.8

indicate the direction of dependency; double arrows

indicate a two way link between actor and action; p

indicates past tense; ATRANS indicates transfer of pos-

session and is also one of the primitive actions; o

indicates the object case relation; and R indicates the

recipient case relation.

Schanks' representational form seems to represent

its knowledge at a low-level. The feeling of represent-

ing knowledge at a low-level is apparent because of the

low-level primitive actions used when representing

natural language sentences. Also the method does not

-15-



seem to be very easy to use because of its notation and

the use of the types attached to the conceptual depen-

dency.

Another conceptual dependency representation

method is John Sowa's theory of conceptual graphs.

There is no set of primitive actions like Schank's

method. Natural language sentences are converted to the

conceptual graphs in a way that allow the graphs to

retain the high-level meaning of the sentence. Concep-

tual graphs have been chosen as the knowledge represen-

tation method used to represent the knowledge in this

research. Conceptual graphs will be discussed in detail

in chapter 2.

The last representational form in the knowledge

levels is language. Me could choose language as our

representational form. However, there are no natural

language parsers which have been fully implemented that

will allow us to convert from, say English, to a pro-

gramming language or a representational form that could

be used by the computer. Therefore, the next best

representation level is the conceptual level. Although

at the conceptual level the knowledge represented by

the user is an arbitrary decision, it is possible to

set standards when creating new knowledge in the con-

ceptual notation.

-16-



It is the intent of this research to use a uniform

knowledge representation method for both procedural and

declarative knowledge, integrating the two types of

knowledge together. In this research the same

representation method as used by Hartley[ 1985] has been

chosen. John Sowa's conceptual graph theory is used to

represent both declarative and procedural knowledge.

The conceptual graph theory will be discussed in

greater detail in chapter 2, showing the formal nota-

tion and how the graphs are applied to real world

knowledge.

1.2. Intelligence

Am I intelligent? Are you? Can a machine be intel-

ligent? These questions and more are researched in the

fields of artificial intelligence and cognitive sci-

ence. Usually, when we try to define intelligence we

start out by trying to understand the human mind, how

it works, and what makes it work. This has proved to be

a long and enduring project for many researchers in all

scientific fields. Intelligence can be described in

many ways including how well an entity can adapt to new

environments. The entity has the ability to reason with

its existing knowledge, to come up with an optimum

solution to fulfill its present needs. This ability to

reason can be present in varying degrees. For example,

children at many times have difficulty in determining a

-17-



correct answer to a problem or the correct behavior in

a particular situation. Many of these problems stem

from the childs' lack of knowledge, but even if the

knowledge is present the child still may not have the

ability to reason or to even understand the problem.

If intelligence can be construed as the capacity

to learn, what gives us that capacity, and how much of

a capacity is needed to solve complex problems? To

begin with, an entity must contain a certain amount of

common-sense. This helps the entity to reason with its

existing knowledge. The amount of common-sense will

help with the extraction of useless answers to the

questions. Therefore, the entity can contain varying

degrees of common-sense.

Another factor that is important to intelligence

is the ability to understand the knowledge that is con-

tained within the entity. For example, many college

students pass classes by memorizing written knowledge

in a text book. Students who only memorize the material

in their text books nay never understand what they have

read. On the other hand, many college students take

the time to remember the knowledge plus they try to

understand what that knowledge means. The college stu-

dents that memorize text books will have a difficult

time if they are asked questions relating to the sub-

ject that they have memorized. It is believed that the

18-



students who have understood the knowledge will have a

better chance of answering the same set of questions

correctly.

Intelligence can now be defined in terms of our

ability to reason, the amount of common-sense avail-

able, and the understanding of stored knowledge. These

are factors that AI researchers hope to include within

their own AI expert knowledge systems. Within this

research, it is the intent to try to include some of

the intelligent characteristics present in the human

mind. In the past there have been systems built that

replicate common-sense, but the ability to reason and

to understand the knowledge are still problems, as

pointed out by Scbank and Childers[1984]

.

Intelligence is a composite or combination of

human traits, which includes a capacity for insight

into complex relationships, all of the processes

involved in abstract thinking, "adaptability in problem

solving, and capacity to acquire new capacity", Cat-

tell [1971].

1.1 XUe Problem

Researchers in artificial intelligence have been

searching for ways to design languages and systems that

allow the modeling of the knowledge and intelligence

necessary for expert problem solving. When implementing

-19-



an expert knowledge system there is a need for ways to

reason with the knowledge, and a high-level representa-

tional form that is uniform over both procedural and

declarative knowledge.

Most languages and tools do not provide the abil-

ity to clearly program in a variety of reasoning

methods thus allowing the flexibility necessary for

implementation of expert knowledge systems. There are

but a few systems that incorporate multiple reasoning

methods. Some of these are KEE, MRS, ART, and LOOPS.

The reasoning methods allowed are antecedent-

consequent, logical, heuristic, and plausible reason-

ing. Research is still advancing in this area, but no

one has yet provided a uniform syntax.

Most conventional procedural programming languages

such as Pascal, Fortran, Pl/I, do not contain a uni-

form notation that will elevate procedural knowledge to

the same representational level as declarative

knowledge, Hartley[1985] . A programming language such

as Pascal has a set of commands, and these commands can

be used to store and manipulate knowledge. The commands

and the knowledge can be represented in many different

ways making it necessary to learn and know all of the

notations. The great demand for developing systems in a

short amount of time, or at least for developing a pro-

totype, has made it clear that these procedural level

-20-



languages will not fulfill the necessary requirements.

Knowledge representation researchers are working

on the development of high-level knowledge representa-

tion languages. The problem arising out this research

is the actual representation of both the declarative

and procedural knowledge. Even though frames seem to

be quite adequate in many ways, they still do not

represent all types of knowledge necessary in expert

knowledge systems. For instance, representing a situa-

tion that is possibly true can be quite difficult. The

representation of an animate object experiencing a

state may also be difficult when representing it in

frames. Therefore, the search goes on for the perfect

representational form, or forms, needed to represent

knowledge without losing any meaning.

There have been other programming languages and

tools developed to aid in the implementation of expert

knowledge systems. These include Flavors, Loops, and

CommonLoops which have been designed to provide the

flavor of object-oriented programming. These languages

have yet to be shown useful in completely implementing

all of the knowledge necessary for development of

expert knowledge systems. However, the most promising

of these languages will probably be CommonLoops because

of the widespread concern and support to standardize

object-oriented programming languages.

-21-



Researchers have concluded that there is a need to

integrate procedural and declarative knowledge with the

addition of nodular programming constructs and tech-

niques to U3e the knowledge. This is the problem

addressed by the model and method proposed in this

paper.

1.1 Solution Approach

The approach is a high-level representational

method, uniform over both procedural and declarative

knowledge, with object-oriented programming constructs.

The knowledge representation method chosen to represent

the declarative and procedural knowledge is John Sowa's

conceptual graphs. The representational form of con-

ceptual graphs elevates the declarative knowledge to

the same level as procedural knowledge. The object-

oriented style of programming is a combination of

Loops, CommonLoops, Flavors, and KEE. There are pros

and cons associated with each system. Me attempt to

extract the best features from each of these object-

oriented languages and combine them into a uniform sys-

tem.

-22-



2

Conceptual Graphs

Perceptions made by humans form mental models in

response to some external entity or scene. The mental

models consist of percepts, the matching of each per-

cept to some part of the input, and a conceptual graph

that shows how the percepts relate to one another. For

every percept there is a concept that is the interpre-

tation of that percept. The percept is the image of a

concept. Some concepts do not have any images. The con-

cept nodes in the conceptual graphs represent entities,

attributes, states, and events, and the relation nodes

show how the concept nodes are related to each other.

Chapter 2 describes John Sowa's conceptual graph

theory. The notation, the six types of conceptual

graphs, and how they may be used in a database system

will be discussed within this chapter. During the dis-

cussion of the conceptual graph theory, the reader will

discover its ability to represent knowledge at the con-

ceptual level as discussed in section 1.1 on knowledge

and its representation.

2.1 notation

Conceptual graphs can be represented in two ways,

either by diagrams which are drawn in a display form as

linked boxes and circles, or in a linear form using

boxes represented by square brackets "[]", and circles

-23-



represented by rounded parentheses "()". The boxes or

brackets represent concepts and the circles or rounded

parentheses represent conceptual relations. The linear

conceptual graph notation will be used for all the

examples presented in this paper. The following example

is a conceptual graph of the sentence "A fiddler sit-

ting on a roof. n

[FIDDLER] <- (AGNT) <- [SIT] -> (LOC) -> [ROOF].

The concepts in above example are [FIDDLER], [SIT], and

[ROOF], The relation nodes are agent (AGNT) and loca-

tion (LOC). The period "." at the end of the graph ter-

minates the entire conceptual graph. The next example

shows how other special symbols are used in the concep-

tual graphs. The sentence "A monkey eating a walnut

with a spoon made out of the walnut's shell" would be

the following conceptual graph.

[EAT]-
(AGNT) -> [MONKEY]

(OBJ) -> [WALNUT: »x]

(INST) -> [SPOON] -> (MATR) -> [SHELL]-
(PART) <- [WALNUT: »x].

The symbol #x is a variable. It represents an unspeci-

fied individual of the concept type WALNUT. In the sen-

tence there are no individuals known at this time, but

in the conceptual graph the two concept nodes [WALNUT]
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must have the same individual referent. The reason for

the variable is because the graph contains a cycle and

any graph that contains cycles needs a variable to show

cross reference. The graphs says that there is an

agent (AGNT) that is performing the act [EAT]. The

object (OBJ) of the act [EAT] is a [WALNUT] and the

instrument (INST) being used for the act [EAT] is a

[SPOON], The [SPOON] has a material (MATR) that is made

from a [SHELL] and the [SHELL] is part (PART) of a

[WALNUT] which is the same [WALNUT] that the [MONKEY]

is eating. The hyphen "-" shows that the relations

that are connected to the concept type [EAT] are listed

on subsequent lines. The hyphen and the comma ",",

shown in the next example, form a bracketing pair that

is necessary for linearizing the graph.

When choosing a concept as the bead it is best to

pick the concept that has the most relations connected

to it. If we had chosen the concept [SPOON] as the

head, the graph would be represented as:

[SPOON]-
(INST) <- [EAT]-

(OBJ)- -> [WALNUT] -> (PART) -> [SHELL: »y]

(AGNT) -> [MONKEY],
(MATR) -> [SHELL: «y]

.

The comma in the example ends the connection of rela-

tions to the concept [EAT]. This is so the relation
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(MATH) is linked to the concept [SPOON] and not to the

concept [EAT]. The »y is a variable used as the same

individual for both concept types [SHELL],

In the graphs it is possible to represent a

specific individual of a concept type rather than an

unspecified individual. To represent a specific indivi-

dual of the concept [STUDENT] we would write it as

[STUDENT: #512643635]. The "#" symbol followed by an

integer represents the definite referent of the concept

STUDENT. If the student's name is known it can be

added to the concept STUDENT. A relation node (NAME)

would be connected to the concept [STUDENT] and a con-

cept node containing the string of the student's name

would be linked to the relation node (NAME). This graph

would be written as the following:

[STUDENT: #512643625] -> (NAME) -> ["Tim Hines"].

The above conceptual graph can be abbreviated. The

relation (NAME) can be eliminated and the string "Tim

Hines" would be placed between the ":" and the "#" sym-

bols. The abbreviated graph is shown below.

[STUDENT: Tim Hines#51 2643625]

.

Given the sentence "A gold bar weighs 400 ounces" a

conceptual graph could be constructed. The concepts of

the sentence are [GOLD], [BAR], and [WEIGHT]. The
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concept [WEIGHT] would have another concept attached to

it. The concept [MEASURE] shows the measure of the

gold bar. The concept [MEASURE] has a relation (NAME)

connected to it and (NAME) has a concept connected to

it that represents the measure's name. The graph would

be written as the following:

[GOLD] <- (COLR) <- [BAR] -> (CHRC) -> [WEIGHT]-

(MEAS) -> [MEASURE] -> (NAME) -> ["K00 ounces"].

In the student individual example we removed the rela-

tion (NAME). The above example can also be abbreviated

in the same manner. The abbreviated graph would be the

following:

[GCLD] <- (COLR) <- [BAR] -> (CHRC) -> [WEIGHT]-

(MEAS) -> [MEASURE: 400 ounces].

Since the concept node [MEASURE] is a common concept

and used quite often, the above graph can be abbrevi-

ated. The concept [MEASURE] can be eliminated and the

string "tOO ounces" representing a specific measure can

be placed in the concept [WEIGHT], This is done by

using the symbol "g", where the string immediately fol-

lowing the "S" is a numeric number with a symbol

representing the meaning of that number. In the example
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below the number H00 is placed after the "§" symbol

with the string "ounces" as the symbol representing the

meaning of the number 100. The following example shows

the measure placed in the concept [WEIGHT],

[GOLD] <- (COLR) <- [BAR]-
(CHRC) -> [WEIGHT: SWO ounces].

Conceptual graphs can have generic sets containing zero

or more elements referent to the concept type. For the

sentence "Beth sees some students" the graph would be

written as shown in the following example. The symbol

{») in the concept node [STUDENT] represents a generic

set of students where the individuals are not known.

[PERSON: BETH] <- (AGNT) <- [SEES]-
(OBJ) -> [STUDENT: (•}].

A specific set of students could be referenced by the

graphs. The definite set of individuals would be a con-

junctive set where each individual in the set is

separated by a comma. In the sentence "Beth sees the

students Randy and Tim" the graph would be represented

below.

[PERSON: Beth] <- (AGNT) <- [SEES]-
(OBJ) -> [STUDENT: {Handy, Tim)]

.
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A graph may contain a set that contains definite indi-

viduals and a generic set. The sentence "Beth sees four

students, Randy, Tim, and two others", would be

represented as in the example below. The @t says that

there are 1 students of which only two are known.

[PERSON: Beth] <- (AGNT) <- [SEES]-
(OBJ) -> [STUDENT: {Randy, Tim, »}#»] .

A disjunctive set can also be represented in the con-

ceptual graphs. For the sentence "The martian Zoolu

lives on either Mars or Venus" the disjunctive set

notation is represented in the following graph. The

elements within the brackets "{}" would be separated by

a vertical bar instead of by commas. The disjunctive

set is the set Mars or Venus.

[MARTIAN: Zoolu] -> (STAT) -> [LIVE]-
(LOC) -> [PLANET: {Mars! Venus}]

.

There are two other types of sets that can be formed in

the conceptual graphs. They are the distributive and

respective sets. A distributive set in a conceptual

graph can be shown by the sentence "Two students each

read three books". The keyword DIST is used immediately

proceeding the set in the concept type.
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[STUDENT: DIST(«}g2] <- (AGNT) <- [READ]-
(OBJ) -> [BOOK: t»}83].

The respective set uses the keyword RESP immediately

proceeding the sequence delineated by angle brackets.

The sentence "John, Dick, and Harry read three books,

Old Yeller, Foundation, and The Prophet, respectively"

would be represented by the following graph.

[STUDENT: RESP<John, Dick, Harry>] <- (AGNT) <- [READ]-
(OBJ) -> [BOOK: {Old Yeller, Foundation, The Prophet}].

A summary of the notation used in the conceptual graphs
is listed below.

• Concept nodes are represented with square
brackets as in the concept [PERSON].

• Relation nodes are represented with rounded
parentheses. The relation (AGNT) would be the

agent of some concept.

• Concepts are connected to relations with arrows
to form conceptual graphs. The following graph
says that the relationship of C0NCEPT1 is
C0NCEPT2. [C0NCEPT1] -> (REL) -> [C0NCEPT2]

• The symbol »x is a variable representing an
unspecified individual of a concept node. The
variable name can be any combination of letters
such as *abc or 'name.

• The hyphen »-• allows for relations to be listed
on subsequent lines.

• The comma "," terminates a hyphen.

• The period "." terminates the entire graph.

• The "#" symbol followed by an integer represents
a definite referent of a concept node.
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• The n §" symbol is followed by a number and a

string that represents the meaning of the

number. This number and 3tring represents a

specific measure for a concept. The string

is optional. If it is not present then the

number after the "§" is taken as the number

of items of that type.

• The symbol {•} represents a generic set of zero

or more elements referent to a concept node.

• The conjunctive set {John, Mike, Harry) represents

a specified set of individuals referent to a

concept node, where each element in the set is
separated by a comma.

« The disjunctive set (MarslVenus) represents the

set where either Mars or Venus is true. Each

element in the set is separated by the vertical
bar n

J

n
,

• The symbol "DIST" represents a distributive set

as in DISTtJonn, Harry)

.

» The symbol "RESP" represents a respective set.

The elements of the set are enclosed within
angle brackets such as RESP<John, Harry>.

The notation for the conceptual graphs has been pro-

vided in this section. In the following sections canon-

ical graphs, graphs that represent possible situations,

the six types of conceptual graphs that can be formed,

and the rules that may be applied to the graphs are

discussed.

Z.Z Canonical graphs

A conceptual graph contains concept nodes and

relation nodes where every concept in the graph is

linked to a relation node. There is an infinite number

of combinations of conceptual graphs, but not all of
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them represent a real or possible situation. The sen-

tence "Colorless green ideas sleep furiously" could be

represented by the following graph.

[SLEEP] -> (AGNT) -> [IDEA] -> (COLB) -> [GREEN].

The graph is a valid conceptual graph, but it does not

reresent a real-world situation. To eliminate the

absurd combinations of conceptual graphs, selectional

constraints are applied to valid conceptual graphs. The

constraints that are applied are observation, deriva-

tion, and insight. In the real-world we perceive

events and states. The observations that are perceived

are recognized as canonical graphs. In derivation, new

canonical graphs may be formed using formation rules

that are applied to existing canonical graphs. Insight

or creativity may be used to form new canonical graphs

that extend or replace old canonical graphs. This would

be done when a canonical graph did not adequately fit a

specific situation. The three constraint rules, obser-

vation, derivation, and insight are the same as the

three types of knowledge acquisition that were dis-

cussed in section 1.1., these knowledge acquisition

types were observation, proof procedures, and

hypotheses.

2..1 Six forms of Conceptual Graphs

There are six forms that can be produced using
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conceptual graph theory. These are: Type — which is

like function definition in Lisp, it is a method of

assigning a label to an abstraction; Relation — defin-

ing the relationship between entities; Individual — a

specific instance of a concept type; Prototype — a

generic individual of a concept type; Schema — the

basic structure for representing background knowledge

for human- like inference; and Actor — a process that

responds to messages by performing some service and

then generating messages to pass onto other actors or

concepts. In the following sections, the six forms of

conceptual graphs will be discussed and examples given

for each.

2..L1 I2E§

Type definitions are based on Aristotle's defini-

tion of genus and differentia which allows types to be

defined and placed within a type hierarchy. In the type

definition, some concept is chosen as the genus and a

canonical graph is the differentia. The syntax for a

type definition would be written as:

type type-name(argument) is
canonical-graph.

The type-name is an abstraction of some concept, type-

name(argument) is called the genus of the type, and the

canonical graph is called the differentia of the type-
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name. In the type definition any generic concept in the

canonical graph may be chosen as the genus for the type

definition.

The following type definitions are based on the

same differentia but have different concepts as the

genus. The three graph3 show how the concept ELEPHANT

can have different type labels. The first defines the

type label CIR CBS- ELEPHANT, an ELEPHANT that performs

in a CIRCOS, as a subtype of ELEPHANT.

type CIRCUS-ELEPHANT(x) is
[ELEPHANT: »x]-

(AGNT) <- [PERFORM] -> (LOC) -> [CIRCUS].

The canonical graph says there is an ELEPHANT that is

the agent (AGNT) of the action PERFORM. The ELEPHANT

has a location (LOC) which is in the CIRCDS. The sub-

type of ELEPHANT is CIRCDS-ELEPHANT where x is its

argument. The variable »x is the referent to the con-

cept ELEPHANT. In section 2.3.2 we will discuss indivi-

duals where the argument of a type-name will be filled

by a specific value.

The other two concept nodes in the canonical graph

could have been chosen as the genus for the type label

rather than ELEPHANT. Choosing another concept as the

genus would produce a different type definition. The

following graph represents a type definition where the

concept CIRCOS has been chosen as the genus. The graph
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says that tbere is a circus which has elephants per-

forming some act in that same circus.

type ELEPHANT-CIRCUS(y) is
[ELEPHANT]-

(AGNT) <- [PERFORM] -> (LOC) -> [CIRCUS: »y]

.

Had PERFORM been chosen as the type label the following

graph would be formed. The graph says that there are

performances [PERFORM] that ELEPHANT'S do, and the per-

formances [PERFORM] have a location (LOC) which is in a

[CIRCUS].

type ELEPHANT-PEHFORMANCE(z) is
[ELEPHANT]-

(AGNT) <- [PERFORM: »z] -> (LOC) -> [CIRCUS],

As you can see from the previous type definitions, a

type hierarchy becomes apparent. The type definitions

CIRCUS- ELEPHANT, ELEPHANT-CIRCUS, and ELEPHANT-

PERFORMANCE are subtypes of the concepts ELEPHANT,

CIRCUS, and PERFORM, respectively. The diagrams below

show how the type hierarchy may be formed.

MAMMAL

I

I

v

ELEPHANT

PLACE

I

v

CIRCUS

ACT

PERFORM

v

CIRCUS
ELEPHANT

ELEPHANT
CIRCUS

ELEPHANT
PERFORMANCE
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2..1.2. Individual

An individual would be defined by filling in one

or more of the generic concepts within the body of a

type definition, where the generic concepts become

individual concepts. The syntax for an individual is

shown below. The type-name would be the same as in a

type definition and the argument of the type-name is

its value.

individual type-name(argument-value) is
canonical-graph.

For an individual the type-name would need to be previ-

ously defined in a type definition. If it hasn't been

previously defined, then an individual cannot be

created. For the following example the type definition

CIRCUS-ELEPHANT will be used.

type CIRCUS-ELEFHANT(x) is
[ELEPHANT: »x] <- (AGNT) <- [PERFORM]-

(LOC) -> [CIRCUS].

If we used the CIRCUS- ELEPHANT type definition we could

create an individual by filling in one or more of its

generic concepts. To create the individual CIRCUS-

ELEPHANT we must choose a specific elephant. In the

individual definition, the elephant Jumbo has been

chosen and the location is the Barnum & Bailey circus.

The symbol {•) denotes a generic set of performances
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that is performed by the elephant Jumbo.

individual CIRCOS-ELEPHANT( JUMBO) is

[ELEPHANT: Jumbo] <- (AGNT) <- [PERFORM: {•}]-

(LOC) -> [CIRCUS: Barnum & Bailey].

To use database concepts in conceptual graphs, a

specific instance of a record type could be formed.

For example we could describe the events that take

place when reserving a room at a hotel. The type defin-

ition for the type name HOTEL-RESERVATION could be

represented in the following example.

type HOTEL-RESERVATIONC reservation- no) is
[RESERVATION: »reservation-no]-

(RCPT) -> [PERSON]

(OBJ) -> [ROOM] -> (LOC) -> [HOTEL]

(DUR) -> [TIME-PERIOD]-
(STRT) -> [ARRIVAL-DATE]
(UNTL) -> [DEPARTURE-DATE].

A specific individual of the type definition HOTEL-

RESERVATION would be created by filling in the generic

concepts within the body of the conceptual graph. A

specific hotel reservation with a unique reservation

number would be represented by the following individual

conceptual graph.

individual HOTEL- RESERVATION (#1128) is

[RESERVATION: #4128]-
(RCPT) -> [PERSON: Tim Hines]
(OBJ) -> [ROOM: 234]-

(LOC) -> [HOTEL: Doral Tuscany]

(DUR) -> [TIME-PERIOD: g 2 night]-
(STRT) -> [ARRIVAL-DATE: June 30, 1984]

(UNTL) -> [DEPARTURE-DATE: July 1, 1984].
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2..3..3. Relation

In the previous sections of chapter 2 we described

different methods of forming conceptual graphs with

concept and relation nodes. In this section original

conceptual relations are discussed. These may be

defined and used to form new conceptual graphs. The

syntax for the relation definition would be written as

the following.

relation relation-name(argument1 ,. . ,argumentnj is

canonical-graph.

The relation-name is a unique name that is an abstrac-

tion over argumentl to argumentn, where n is the number

of arcs attached to the relation-name when used in a

new conceptual graph. The body of a relation definition

must be a canonical graph that relates to the

relation- name. The example below is a new relation

called PAST which has only one argument. This means

there is only one arc attached to the relation PAST

when used in a new conceptual graph. The conceptual

graph for the relation definition PAST says there is a

situation that has occurred at some point in time where

the successor of that time is now.

relation PAST(x) is
[SITUATION: «x]-

(PTIM) -> [TIME] -> (SUCC) -> [TIME: NOW].
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For a database system we could describe the functions

that occur within the database system. For example, the

sentence "A part number is a characteristic of a set of

items, and a number is the quantity of such items

located in a stock room" could be represented by the

following relation definition.

relation Q0H(x, y) is
[PART-NO: »x] <- (CHRC) <- [ITEM: {»)]-

(QTY) -> [NUMBER: »y]

(LOC) -> [STOCKROOM].

The relation definition of QOH has two formal parame-

ters x and y. When the relation QOH is used in a con-

ceptual graph it needs two concepts linked to it. The

conceptual graph of the relation says there is a gen-

eric set of items denoted by the {•} symbol. The ITEM

concept has a characteristic that is a part number, a

location in the stockroom, and a quantity for the item.

When a relation is used it may be contracted. The rela-

tion QOH may now be contracted since it has been previ-

ously defined. The graph given below is the contracted

QOH relation.

[PART-NO] -> (QOH) -> [NUMBER].

All relation definitions used in the conceptual graphs

may be reduced to a single dyadic relation type called

LINK. For example, the relation (AGNT) that has been

used quite extensively so far can be defined by the

following relation definition. It is defined in terms
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of a concept type AGENT.

relation AGNT(x, y) is

[ACT: «x] <- (LINK) <- [AGENT]-
(LINK) -> [ANIMATE: «y]

.

Z-l-i. Schema

Schemata are used to represent plausible combina-

tions of conceptual graphs which enable human-like

inference. A schema is a perspective of a situation,

entity, or state. In turn these perspectives may form

new perspectives. For example, the concept MAN may have

several meanings depending on how the concept is used,

such as HUMAN and HOMOSAPIEN. The collection of all

these perspectives grouped together forms a schematic

cluster. In section 1.1, we discussed two knowledge

representation methods, frames and scripts, which are

very similar to schemata. The syntax for a schema would

be written as the following.

schema for concept-type(argument) is

canonical-graph.

The next example is a schema for the concept type BUS.

In the conceptual graph conditions may be used to del-

ineate concepts. The condition for the concept SPEED

states that the speed must be less than or equal to 55

miles per hour. There is also an approximation for the

number of passengers contained within the bus. The
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approximation is about 50 people. In the example below,

the schema for BUS is only one perspective. There could

be many more defined for it.

schema for BUS(x) is
[BDS: »x]-

(INST) <- [THAVEL]-
(RATE) -> [SPEED<=55mph]
(AGNT) -> [PASSENGER: {•}]-

(QTY) -> [N0MBER-=50: *y],
(CONT) -> [PASSENGER: {•}]-

(QTY) -> [NDMBER"=50: «y]

(OBJ) -> [DRIVE] -> (AGNT) -> [DRIVER].

2.1.5. Prototype

A prototype is a generic or average individual. A

prototype is derived by taking one or more schemata in

a schematic cluster and generalizing to form an average

schema, a "prototype". The prototype definition can

contain default values as referents to their concepts.

The syntax for a prototype is shown below.

prototype for coneept-type(argument) is
canonical-graph.

An example of a typical elephant could be represented
by the following prototype definition.
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prototype for ELEPHANT(x) is

[ELEPHANT: «x]-
(CHRC) -> [HEIGHT: S 3.3 "»]

CCHRC) -> [WEIGHT: § 5100 kg]

(COLR) -> [DARK-GRAY]
(PART) -> [HOSE]-

(ATTR) -> [PREHENSILE]
(IDNT) -> [TRUNK],

(PART) -> [EAR: {•}]

(QTY) -> [NUMBER: 2]

(ATTR) -> [FLOPPY],
(PART) -> [TUSK: {•}]-

(QTY) -> [NUMBER: 2]

(MATR) -> [IVORY],

(PART) -> [LEG: {•)] -> (QTY) -> [NUMBER: 4]

(STAT) -> [LIVE]-
(LOC) -> [CONTINENT: {Africa [Asia) ]

(DUR) -> [TIME: § 50 years].

In the example above, the prototype for elephant con-

tains default values which are standards for an average

elephant. The concept HEIGHT has a default value which

is 3.3 meters which is the approximate height of an

average elephant. With the prototype of an elephant,

the definition is true of a typical elephant, but it

may not be true with a specific elephant. For example,

a baby elephant would not fit the prototype given above

for a typical elephant.

2.3..iL Actors

The last type for defining conceptual graphs is an

actor graph. An actor is initiated by a set of external

messages which are called its inputs. The actor then

performs its task and generates another set of messages

called the outputs. The outputs are then passed onto

other actors or concepts. The actor message is very
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similar to message passing in object-oriented systems,

which is discussed in chapter 3. When combining several

actors together networks of dataflow graphs are formed.

The actor graphs are then used for doing computation,

solving complex problems, and/or simulating events and

processes. The syntax for the actor graph is given

below.

actor actor-name(input-args, output-args) is

co nee pt ual-gr aph

.

An actor graph could be as simple as an arithmetic

function like divide. An actor graph definition for

divide is presented below. The actors use a different

notation. They are represented by angle brackets "<>"

which distinguishes them from concept nodes. The actor

graph DIVIDE has two inputs, dividend and divisor, and

two outputs, quotient and remainder. The arrows in the

definition show which direction the data is flowing.

The arrow pointing left from the concept [DIVIDEND: *a]

shows that it is an input to the actor divide.

actor DIVIDE(in a,b; out c,d) is

<DIVIDE>-
<- [DIVIDEND: «a]
<- [DIVISOR: »b]
-> [QUOTIENT: «c]
-> [REMAINDER: «d].

A more complex example of an actor graph is provided in

the next actor graph definition which defines the

recursive factorial function.
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actor FACTORIALS in n; out x) is

[NOMBER: «n]-
-> <IDENT> -> [NUMBERzO] -> <ADD1> -> [NUMBER: «x]

-> <IDENT> -> [NUMBER>0]-
-> <MULTIPLY>-

<- [NUMBER: «z]

-> [NUMBER: »x]

,

-> <SUB1>-
-> [NUMBEH]-

-> <FACTORIAL>-
-> [NUMBER: •*].

The input to the factorial actor is a number whose

value is contained within the variable n. The output is

also a number and its value will be placed in the vari-

able x when the actor FACTORIAL has completed. The

actor3 in the graphs are <IDENT>, <ADD1>, <MULTIPLY>,

<SUB1>, and the recursive function call <FACTORIAL>.

Once actors are defined they may be used within a

schema definition. The next example defines a schema

for TRAVEL. The actor <MULTIPLY> ia contained within

the actor graph. It calculates the distance between two

points, the starting location and the destination by

using two inputs, speed and time-period, to calculate

the result.

schema for TRAVEL(x) is
[TRAVEL: *x]-

(AGNT) -> [PERSON]
(INST) -> [VEHICLE]
(RATE) -> [SPEED: §]-

-> <MULTIPLY>-
<- [TIME-PERIOD: IH]
-> [DISTANCE: g«w]-

(SHCE) -> [PLACE: "y],,
(DUR) -> [TIME-PERIOD: 0»z]
(DEST) -> [PLACE] <- (DEST) <- [DISTANCE: g»w]

(SRCE) -> [PLACE: »y].
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2..1 Database usage for Conceptual Graphs

Before ending the chapter on conceptual graphs,

possible uses of conceptual graphs for application in

database usage will be presented. Examples and descrip-

tions will be provided to show how the conceptual

graphs relate to database work.

In database design the knowledge is stored as a

set of database descriptors that describe hundreds or

thousands of records. Although this seems to be quite

adequate at the present time, database design has been

moving toward the representation of highly structured

applications. This move has made database design teams

aware of the need to add more complex relationships

with fewer descriptor items. The knowledge for present

database systems consists of the meaning of the

knowledge and the rules that are necessary for

representing the knowledge in terms of real world

situations. A field called database semantics has been

studying the meaning of the knowledge and the rules to

use it. In Sowa[1980], be listed seven kinds of

knowledge necessary for database semantics. Each of

these are present in the conceptual graph theory. A

summary of each is listed below.

1) Type Hierarchy - Entities are ordered according
to their level of generality, such as

Collie, Dog, Animal, Living-Thing,
Physical-Object, and Entity. Type defini-
tions in the conceptual graph theory are

used to represent the type hierarchy.
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2) Functional Dependencies - The notation must
show which entity types are keys and which
entity types are functionally dependent on

the keys. It must also contain quantifiers
that show whether a function is many-to-
one, one-to-one, or n-to-m. In the concep-

tual graphs actors show how referents of

concepts can be found in the database.

3) Domain Roles - The notation must describe the

role that the dependency represents.

Functional dependencies show that concepts
can be related and the domain roles show

what that relationship means.

4) Definitions - Entities, concept and relation
types, and actors must be definable in
terms of structures of other concepts. The

genus of the concept PERSON would have one

definition such as EMPLOYEE and the chara-
cteristic of EMPLOYEE would be "one who
works for a company."

5) Schemata - For each type of concept or entity,

the notation must describe the normally
occurring or default roles that it plays
with respect to other concepts. Schemata
show background information, for example a

schema for EMPLOYEE could contain an
employee number, salary amount, department
name, etc.

6) Procedural Attachments - The notation should
indicate how an external procedure may be

related to a functional dependency and

under what condition it would be invoked

to compute the function. In conceptual
graphs actors are bound to schema which
show how external procedures can compute

the referents of concepts.

7) Inferences - Rules of inference must be

included to determine implications that
follow from the explicitly 3tored data and

can detect violations of constraints on
the data.

Given the following record layout for a database

system, the database design would contain a descriptor

for each item. The descriptors for the table are NAME

-46-



(name of the owner of the policy), POLICY NUMBER

(number of the insurance policy for the person), PAY-

MENT AMOUNT (amount paid by a person for a policy), and

DATE PAID (date the amount was paid).

POLICY PAYMENT DATE
NAME NUMBER AMOUNT PAID

Tim Hines 2286 $250.00 1-16-85
Susan Brick 9248 $345.00 9-11-85
Ted Bass 1065 $275.00 2-19-85
John Sorden 837 $190.00 3-23-84
Debra Bickley 5581 $290.00 6-15-85

The table above can be represented by a schema defini-

tion with a conceptual graph representing each descrip-

tor field. The concept type for the schema would be

PAYMENT. In the schema the concepts representing the

descriptor fields of the table would be [PERSON]

representing the NAME, [POLICY-NUMBER] representing the

POLICY NUMBER, [MONEY] representing the PAYMENT AMOUNT,

and [DATE] which represents the DATE PAID. The concept

[INSURER] in the conceptual graph contains a fixed

value where the recipient of all the payments are made

to the company "Mutual of Omaha.

Schema for PAYMENT(x) is
[PAYMENT: «x]-

(AGNT) -> [PERSON]
(CHRC) -> [POL ICY- NUMBER]
(OBJ) -> [MONEY: «]

(PTIM) -> [DATE]
(RCPT) -> [INSURER: Mutual of Omaha].

With a schema defined for PAYMENT we can now ask ques-
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tior.s on our database. If we asked "How much money did

Tim Hines pay on his policy number 2286?", the follow-

ing graph would be constructed to represent the ques-

tion. The "7" symbol in the concept [MONEY] shows where

the answer of the question should go.

[PAYMENT]-
(AGNT) -> [PERSON: Tim Hines]

(CHHC) -> [POLICY-NUMBER: 2286]

(OBJ) -> [MONEY: 6 7].

The query graph shown above maps to the schema PAYMENT

and then searches the database to select a match if one

exists. The answer from the query graph would be

[MONEY: g$250.00] using the data in the table listed

above.

The previous query graph selected only one indivi-

dual as its answer. Queries that retrieve a set of

answers can also be represented by conceptual graphs.

The question, "What are the payment dates for Tim Hines

and Debra Bickley7" would be represented by the follow-

ing query graph.

[PAYMENT]-
(AGNT) -> [PERSON: {Tim Hines, Debra Bickley)]

(PTIM) -> [DATE: {7}].

The symbol {?} in the concept [DATE] asks for a "set"

of answers for the date paid. The query graph is first

mapped to the schema PAYMENT. Once the mapping has com-

pleted, searching is done on the database for all
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matching Instances of the schema query graph. The

answer returned using the table listed above would be

the following.

[PAYMENT]-
(AGNT) -> [PERSON: {Tim Hines, Debra Bickley}]
(PTIM) -> [DATE: {1-16-85,6-15-85}].

While we have shown a possible use for conceptual

graphs, there are several things that make them confus-

ing to a user who is designing conceptual graphs. In

his book, Sowa omitted the discussion of how to use the

conceptual graphs for a complete 3ystem, Sowa[1984].

He presented the theory and the representation, but

left the rest up to the knowledge representation

researcher to explore. One of the omissions is the

changes of states which are necessary in expert system

development. In recent work Hartley presented a method

to show how the states can change, Hartley[ 1985] . He

did this by defining new actors and then adding them to

schema definitions. Although his work extends the con-

ceptual graph theory, his representation has many draw-

backs. The simplicity in representing the conceptual

graphs does not hold true in his work. The issues

described here will be presented again in chapter 4 for

further discussion.

The next chapter, chapter 3, describes object-

oriented environments and their attributes. In this
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discussion similarities between the conceptual graphs

and the object-oriented languages will be discussed.

Chapter H presents a formalism for using conceptual

graphs based on the object-oriented environments and

their attributes. Examples from Hartley's paper will

be presented and changes will be made which will make

the representation simpler and easier to understand

from the user's perspective.
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3

Object- Oriented Programming

Object-oriented programming has grown in popular-

ity because of its modular programming constructs and

because of the techniques available for use with them.

In section 1.1 we discussed the Procedural/Declarative

controversy of the seventies. From the controversy

there came only one agreement. Me needed to find some

sort of bridge between the two types of knowledge

representation. The first research attempt to do so

used semantic networks and frames as the knowledge

representation method. Several knowledge programming

systems (ABE, ART, SEE, Strobe, UNITS, etc.) have

emerged from this effort. These systems included exten-

sions and variations on object-oriented programming for

creating knowledge based systems in terms of objects.

The first object-oriented programming language was

Simula created by Dahl in 1967. The first modern

founder of object-oriented programming was the language

SmallTalk, designed by Alan Kay at Xerox PARC.

SmallTalk borrowed the class concept, a form of data

abstraction, from the Simula programming language,

SmallTalk[1980]. Over the past decade other object-

oriented systems have been written that add objects to

the programming language Lisp (these include Flavors,

Loops, and Object-Lisp.) As Common Lisp has grown in
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popularity, an interest to add objects to it has

attracted widespread attention. The Common Lisp Objects

Committee was formed to standardize the integration of

objects into Common Lisp. CommonLoops is one extension

of Common Lisp for objects. Other features that have

made object-oriented programming popular have been the

artificial intelligence workstations. The workstations

environment adapts itself easily to modular programming

constructs. They have graphics packages which are

integrated together with the workstations programming

environment making for a powerful knowledge engineering

tool. In chapter 3 we will describe the attributes and

the environments of object-oriented programming.

2.1 Objects and Classes

An object is a form of data abstraction. It com-

bines the properties of procedures and data. The object

saves its local state and performs procedures. For

example, an object might be an AUTOMOBILE. The instance

variables (data) in the object might be x-position, y-

position, x-velocity, y-velocity, and mass, and the

methods (procedures) could be SPEED and DIRECTION. When

the methods SPEED and DIRECTION are executed they can

retrieve the values contained in the object's instance

variables. The methods may also have temporary vari-

ables if storage is needed to bold values when perform-

ing their operations.
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An object may reside somewhere in a class- subclass

taxonomy of objects. This is also called a type lat-

tice. An object in the type lattice may have a super-

class or a subclass. Each class will have common

features associated with its subclasses and superc-

lasses, and as you go down the type lattice the objects

begin to be more specific in terms of an object's type.

A hierarchical description of a type lattice is shown

in figure 3.1 .1

.

Physical Object

/!\
/ I \

/ I \

/ I \

/ ! \

/ I \

Vehicle Computer Building

/l\
/ ! \

/ I \

/ I \

/ I \

/ I \

Automobile Truck Boat

/l\

/ I \

/ I \

/ I \

/ I \

/ I \

Sedan Coupe Station
Wagon

Figure 3.1.1 A Hierarchical description
of a type lattice.

The type lattice shows that the highest object (class)

is the object PHYSICAL-OBJECT. The subclasses of

PHYSICAL-OBJECT are VEHICLE, COMPUTER, and BUILDING.
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The subclasses of VEHICLE are AUTOMOBILE, TRUCK, and

BOAT, and the subclasses of AUTOMOBILE are SEDAN,

COUPE, and STATION-WAGON. In the type lattice each

object may contain Its own data, and methods may be

attached to perform operations on the object's data

values. This taxonomy of objects lends itself to a

modular programming environment. Each object will be

treated as a black box. Other objects in the type lat-

tice may know what the facilities' external interfaces

guarantee, but nothing else.

An object is just a pattern of some entity. The

pattern will contain the instance variables that are

associated with the object. The methods used for per-

forming operations can then be attached to that

object's pattern. In Flavors the object AUTOMOBILE

could be defined by the following example.

(defflavor AUTOMOBILE (x-position y-position
x-veloclty y- velocity

mass)

())

The "defflavor" function in Flavors initializes a pat-

tern for the object AUTOMOBILE. The object AUTOMOBILE

contains the instance variables x-position, y-position,

x-velocity, y-velocity, and mass. Earlier we said there

may be methods in the object which perform some type of

operation. The following Flavors code shows two

methods, SPEED and DIRECTION, attached to the object
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AUTOMOBILE.

(defmethod (AUTOMOBILE :SPEED) ()

(sqrt (+ {,* x-veloeity 2)
(* y-velocity 2))))

(defmethod (AUTOMOBILE :DIRECTION) ()

(atan y-velooity x velocity))

If the method DIRECTION were executed the arc tangent

(atan) of the instance variables y-velocity and x-

velocity would be calculated. The x-velocity and y-

velocity instance variables can be found within the

object AUTOMOBILE. Methods will be discussed further in

section 3.5.

i.Z Inheritance

Instead of placing the instance variables x-

position, y-position, x-velocity, y-velocity, and mass,

and the methods SPEED and DIRECTION in the object AUTO-

MOBILE, they might placed higher in the type lattice.

This will provide efficiency and will reduce redundant

code. In figure 3.1.1 the class VEHICLE is a superclass

of AUTOMOBILE. It would be better if we were to place

the instance variables and methods (from the object

AUTOMOBILE, section 3.1) in the object VEHICLE, so that

the objects TRUCK and BOAT could inherit the same

instance variables and methods. An even better solu-

tion would be the addition of another object called

MOVING-OBJECT, as the superclass of VEHICLE. The new

type lattice with the object MOVING-OBJECT inserted
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into the type lattice of figure 3.1.1 is shown in fig-

ure 3-2.1. We will now place the instance variables

x-position, y-position, x-velocity, y-velocity, and

mass, and the methods SPEED and DIRECTION in the object

MOVING-OBJECT. The objects METEOR, VEHICLE, AUTOMOBILE,

TRUCK, BOAT, SEDAN, COUPE, and STATION-WAGON can now

inherit the instance variables and methods in the

object MOVING- OBJECT.

Physical Object
/

/

\

\

\

Moving Computer Building
Object
/ \

/ \

/ \

/ \

/ \

/ \

Vehicle Meteor

/l\
/ I \

/ I \

/ I \

/ I \

/ I \

Automobile Truck Boat

/l\
/ I \

/ I \

/ I \

/ I \

/ I \

Sedan Coupe Station
Wagon

Figure 3.2.1 The class Moving Object was added

to type lattice in figure 3.1.1.
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The objects MOV IMG-OBJECT, AUTOMOBILE, and METEOR are

defined with Flavors code in figure 3.2.2. The object

MOVING-OBJECT has the instance variables x-position,

y-position, x-velocity, y-velooity, and mass, and the

methods SPEED and DIRECTION. There are new instance

variables contained in the objects AUTOMOBILE, VEHICLE,

and METEOR.

(defflavor MOVING-OBJECT (x-position y-position
x-velocity y- velocity
mass)
(PHYSICAL-OBJECT))

(defmethod (MOVING-OBJECT :SPEED) ()

(sqrt (+ (,*. x-velocity 2)
(* y-velocity 2))))

(defmethod (MOVING-OBJECT :DIRECTION) ()

(atan y-velocity x-velocity))

(defflavor METEOR (percent-iron)
(MOVING-OBJECT))

(defflavor VEHICLE (number-of-passengers engine-power type)

(MOVING- OBJECT))

(defflavor AUTOMOBILE (color model year)

(VEHICLE))

Figure 3.2.2 Flavors code for the objects MOVING-OBJECT,
METEOR, VEHICLE, and AUTOMOBILE, and the methods SPEED
and DIRECTION in the object MOVING-OBJECT.

Subclasses can inherit properties contained within

their superclasses. For example, in figure 3.2.2 the

object AUTOMOBILE may inherit the Instance variables

and methods from the objects VEHICLE and MOVING-OBJECT.

The object METEOR can only inherit the instance vari-

ables and methods from the object MOVING-OBJECT. If
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the object METEOR were to execute the method DIRECTION,

it would be inherited from the object MOVING-OBJECT

since it is not defined within METEOR.

1.1 Instances

Once we have a pattern for an object, unique

instances can be created for that object. When an

object instance is created the instance variables in

the object can be assigned values. For example, to make

an instance in Flavors of the object AUTOMOBILE

(defined in figure 3.2.2), zero or more instance vari-

ables may be assigned a value. Some instance variables

may be inherited through its superclasses. The creation

of the object AUTOMOBILE is shown below. The new

instance name of the object AUTOMOBILE is "MY-CAR".

(setq MY-CAR
(make-instance 'AUTOMOBILE ' :x-po3ition 4.0

' :y-position 2.0
' :mass 1215.0
':number-of-passengers 4
1

: col or ' bl ue )

)

The unique instance "MY-CAR" is created with some of

its instance variables assigned to values and others

that have been left undefined. Some object-oriented

languages provide tools to help develop a system. In

Flavors there is a function to describe the contents of

an object instance. The following example shows the

Flavors function "describe" applied to the object "MY-
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CAR."

(describe MY-CAR)

An object of type AUTOMOBILE has instance variables:
x-position 4.0
y-position 2.0
x-velocity unbound
y- velocity unbound
mass 1245.0
number- of- passengers 4

engi ne- pow er unbound
type unbound
col or bl ue

model unbound
year unbound

The object A0T0M0BILE has the superclass VEHICLE.
VEHICLE has the superclass MOVING -OBJECT.

After an instance of an object is created the instance

variables that have been left undefined or that have

have been assigned a value when created, may be

assigned a new value. For example, assign a value of

"1986" could be assigned to the instance variable year

and/or a change could be made to the value of the

instance variable mass.

1.1 Defaults

Default values may be used to initialize values

for instance variables. The default values are used

when a new instance of an object is created. For exam-

ple, in the object A0T0M0BILE it may have default

values for the instance variables model and year. The

following example shows how defaults are used in Fla-

vors.
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(defflavor AUTOMOBILE ( color

(model 'corvette)
(year '1986))

(VEHICLE))

When a new Instance of the object AUTOMOBILE Is

created, the instance variables model and year will

automatically be assigned the values "corvette" and

"1986", respectively. The next example shows the new

object instance, "YOUR-CAR", using the above AUTOMOBILE

object pattern with default values. The output from the

Flavors describe function is also shown below.

(setq TOUR- CAR
(make-instance 'AUTOMOBILE ' :x-position 0.0

':y-position 2.0
1

: col or ' red )

)

(describe TOUR-CAR)

An object of type AUTOMOBILE has instance variables:
x-position 0.0
y- position 2.0
x-velocity unbound
y- velocity unbound
mass unbound
number-of-passengers unbound
engine- power unbound
type unbound
col or red

model corvette
year 1986

The object AUTOMOBILE has the superclass VEHICLE.
VEHICLE has the superclass MOVING- OBJECT.

2.5. Methods and Message Passing

Methods can be used to perform operations on the

values of an object's instance variables. After a new
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instance of an object is created, methods may be exe-

cuted to perform operations on its instance variables.

These may be contained within the instance or they may

be inherited from its superclasses. For example, lets

create the new instance "TOY-CAR" using the object

AUTOMOBILE. The instance "TOY-CAR" can now inherit the

methods SPEED and DIRECTION from the object MOVING-

OBJECT. The following Flavors code shows the new

instance "TOY-CAR" being created using the object AUTO-

MOBILE.

(setq TOY-CAR
(make-instance 'AOTOMDBILE ':x-position 0.0

':y-position 2.0
' :x-velocity U .0

•:y-velooity 3.5
':mass 1.5
': color 'brown))

To perform a method a message must be sent to the

instance of an object. A message is sent to an object

and the object will return a result. This is send and

receive message passing in object-oriented programming.

In most object-oriented languages it is the only way to

perform communication. If we wanted the method DIREC-

TION to execute for the object "TOY-CAR", a message

must be sent to the object "TOY-CAR" telling it to per-

form the method DIRECTION. The example below shows bow

a message is sent in Flavors to the instance object

"TOY-CAR".
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(send TOY-CAR ^DIRECTION)

The object "TOY-CAR" receives the message which says to

perform the method DIRECTION. If the object has the

method DIRECTION in it or in a superclass, it will exe-

cute. If it does not exist then a message would be

returned saying that it could not execute the method

DIRECTION. In the send example above, the object "TOY-

CAR" receives the message to execute the method DIREC-

TION. The object "TOY-CAR" will then inherit the method

DIRECTION from the object MOVING-OBJECT. The method

DIRECTION will now calculate the arc tangent of the y-

velocity and x-veloclty. The instance variables x-

velocity and y-velocity in the object "TOY-CAR" have

the values 4.0 and 3.5, respectively. The calculation

in the method DIRECTION would be (atan 3.5 4.0) or the

answer being 0.7188. The message returned to the caller

is the result calculated from the method DIRECTION. The

value 0.7188 is returned to the caller.

1.4 Daemons .and. Procedural Attachement3

Daemons are used differently in object-oriented

languages. Daemons are— 1) methods that may be invoked

before or after a method is executed (called before and

after daemons in Flavors); 2) called when an instance

variable's value changes or is accessed (active values

in Loops); or 3) activated when a value is needed,

created, or removed (more commonly known as procedural
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attachments.) The following example shows how the

before and after daemons are used In Flavors. The

":before" daemon is invoked before the method DIRECTION

is performed, and the ":after" daemon is invoked after

the method DIRECTION finishes its operations.

(defmethod (AUTOMOBILE :before :DIRECTION)
(print "I am moving in the direction—"))

(defmethod (AUTOMOBILE :DIRECTION)
(atan y-velocity x-velocity))

(defmethod (AUTOMOBILE :after :DIRECTION)
(print "The automobile went thataway"))

When the above method DIRECTION is invoked the "before"

daemon will fire before the execution of the method

DIRECTION. When the "before" daemon is executed it

prints the message "I am moving in the direction— ."

After the "before" daemon has finished the method

DIRECTION will be executed. In the method DIRECTION it

calculates the arc tangent of "x-velocity" and "y-

velocity." After the method DIRECTION has executed the

"after" daemon will fire. The "after" daemon prints the

message "The automobile went thataway." When the

"after" daemon finishes its execution, the result

returned from the invocation of the DIRECTION method

will be the last result computed in the DIRECTION

method. The result returned from the invocation of the

DIRECTION method will be the result computed from the

arc tangent of "x-velocity" and "y-velocity."
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1.1 Other Object- Oriented Language Syntax

In the previous sections of chapter 3, the syntax

of Flavors was used to present the constructs and tech-

niques available in object-oriented programming

languages. In this section we will present the syntax

from other object-oriented programming languages. These

include SmallTalk, Loops, and CommonLoops. Also shown

is an example from the knowledge programming system

KEE.

SMALLTALK

Figure 3.7.1 shows a SmallTalk class template of

the class DepositRecord. It has a superclass called

Object and two instance variables, "date" and "amount."

The rest of the template describes the methods that may

be used to perform operations using the values of the

instance variables. Within the class, messages may be

sent to other instances of classes or to itself. When a

message is received by a class from another class, a

method is performed using the values of its own

instance variables.
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! class name
1
DepositKecord

+——-———-—«—--+-—- ——«——.

—

! superclass | Object
4—_ ... mm —.-.4 __—.——___,.
[instance variables

I date amount

[methods
j

H »» »»»
! of :depositAmount on: depositDate

| |

I

I date <— depostDate.

I amount <— depostAmount
1

!
amount!

!

I

* amount

I

!
balanceChange

| I

I

* amount

Figure 3.7.1 A SmallTalk class definition for the
olass DepositReoord.

In figure 3.7.2, an example of a Loops class

definition called TRUCK is presented. The class TRUCK

has superclasses VEHICLE and CARGOCARRIER. The class

contains class variables that are shared by all

instances of the class along with instance variables

that are specific to a particular class instance. The

class also contains methods that may be performed on a

specific instance of the class TRUCK.
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TRUCK

MetaClass Class
EditedBy (*dgb "29-Feb-85 4:32)
doe( #* This sample class Illustrates

the syntax of classes In Loops)

Supers (VEHICLE CARGOCARHIER)

ClassVarlables
tankCapacity 79 doc(»gallons of dlesel)

InstanceVarlables
owner PIE doc(» Owner of the truck)
highway 66 doc(* Route number of the

highway)
milePost doc(» Location on the highway)
direction East doc(* One of North, East, South,

or West)
cargoList NL doc( f List of cargo descriptions)
totalWeight doc( § Current weight of cargo

in tons)

Methods
Drive Truck.Drive dooC* Moves the vehicle in

the simulation)
Park Truck. Park doc( § Parks the truck in a

double space)
Display Truck.Display doc( # Draws the truck in

the display)

Figure 3.7.2 Loops class definition for the class TRDCK

COMMOMLOOPS

CommonLoops Is similar to Flavors in the way

object-oriented programming is written. CommonLoops

uses CommonLisp to represent object-oriented constructs

similar to the way Flavors is implemented using ZetaL-

isp. The CommonLisp function "def struct" has been

extended for CommonLoops to allow for the definition of

class templates. This is similar to the Flavors "def-

flavor" function for defining classes. Methods in Com-
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monLoops are defined using the function "defmethod".

This is the sane function used for defining methods in

Flavors. The designers of CommonLoops have considered

the extension of the CommonLisp function "defun" to

allow for the definition of methods thus eliminating

the "defmethod" function in CommonLoops. An example of

CommonLoops is shown in figure 3.7.3. The example

defines the class TITLED-WINDOW and a method called

INSIDEP. The class TITLED-WINDOW includes the superc-

lasses WINDOW and TITLED-THING. The method INSIDEP

determines whether or not a point is located inside a

given window.

tdef struct (TITLED-WINDOW
(rinclude (WINDOW TITLED-THING) )))

(defmethod INSIDEP ((w WINDOW) (x INTEGER) (y INTEGER))

; code for determining if the point x y is inside
the window would go here

...)

Figure 3.7.3 A CommonLoops class definition of TITLED-WINDOW
and the definition of the method INSIDEP.

ZEE

An example from the knowledge programming system

KEE is shown in figure 3.7.1. It shows a KEE frame

definition of the class TRUCKS and procedural informa-

tion which may be performed on an instance of the class

TRUCKS. The frame shows two attributes, HEIGHT and

WEIGHT, of the class TRUCKS. The frame TRUCKS has
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procedural information to DIAGNOSE a TRUCKS electrical

faults. It also contains a slot called

ELECTRICAL. FAULTS which holds known electrical faults

found from the DIAGNOSE function.

Frame: TRUCKS in knowledge base TRANSPORTATION
Superclasses: VEHICLES
Subclasses: BIG. NON. RED. TRUCKS,

HUGE. GRAY. TRUCKS
MemberOf: CLASSES. OF. PHYSICAL. OBJECTS

MemberSlot: HEIGHT from PHYSICAL. OBJECTS
ValueClass: INTEGER
Cardinality. Min: 1

Cardinality. Max: 1

Units: INCHES
Comment: "Height in inches."
Values: Unknown

MemberSlot: LENGTH from PHYSICAL. OBJECTS
ValueClass: NUMBER
Units: METERS
Comment: "Length in meters. "

Values: Unknown

Unit: TRUCKS in knowledge base TRANSPORTATION
Superclasses: VEHICLES
Subclasses: BIG. NON. RED. TRUCKS,

HUGE. GRAY. TRUCKS
MemberOf: CLASSES. OF. PHYSICAL. OBJECTS

MemberSlot: DIAGNOSE from TRUCKS
Inheritance: METHOD
ValueClass: METHODS
Cardinality. Min: 1

Cardinality. Max: 1

Comment: "A method for diagnosing electrical faults."
Values: TRUCK.DIAGNOSIS. FUNCTION

MemberSlot: ELECTRICAL. FAULTS from TRUCKS
Comment: "Faults found by the DIAGNOSIS method."
Values: Unknown

MemberSlot: LOCATION from PHYSICAL. OBJECTS
Values: Unknown
ActiveValues: UPDATE. LOCATION

Figure 3.7.1 KEE frame definition and procedural
information for the class TRUCKS.
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The following chapter will present techniques for

using Sowa's conceptual graphs as the knowledge

representation method in an object-oriented programming

environment. Section 3.7 provided a look at several

object-oriented programming languages none of which

provide a high-level representation method needed to

represent the kind of knowledge necessary for expert

system development. The need for a high-level represen-

tation method was discussed in chapter 1. Using concep-

tual graphs in an object-oriented language it will pro-

vide the user with a high-level knowledge representa-

tion method and modular constructs and techniques to

use them.
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It

Conceptual Object- Oriented Programming

John Sowa's conceptual graph theory has been

chosen as the knowledge representation method for

representing both declarative and procedural knowledge

while applying object-oriented constructs and tech-

niques. Chapter 1 uses the same constructs and tech-

niques earlier described in Chapter 3 for object-

oriented languages with one exception. The Flavors

examples in Chapter 3 are replaced with conceptual

graph examples in Chapter 4.

The techniques and constructs using conceptual

graphs for object-oriented programming will be dis-

cussed using a partial design from the expert system

CRIB, Hartley[ 1985] . When techniques and constructs are

not easily shown by using the expert system CRIB,

smaller examples unrelated to CRIB will be presented

instead. The last example in this chapter presents one

perspective of how the reader-writer problem could be

solved using conceptual graphs and applying object-

oriented constructs and techniques to them.

1.1 Type Hierarchy

To allow for a modular system design tool, "type"

graphs will be used to perform the initial design of a

system where only the objects and classes are defined.
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The technique used here will enable the user to define

the objects in a system and each object's super and sub

objects. This definition of "type" graphs provides the

user with a tool in developing conceptual object-

oriented systems without defining the specifics of how

the objects are used. This tool can be described as a

software engineering tool to help the user clearly

define a system before actually implementing it. For

example, using the type hierarchy in Figure 4.1.1, each

node describing some object or class of objects can be

defined by a "type" graph. These will be simple graphs

containing only those concepts that represents the

object's immediate super objects. In Figure 1.1.2 some

of the objects in the type hierarchy of Figure 4.1.1

have been defined with "type" graphs.

There are two objects shown in Figure 4.1.1 that

are part of the bare system. These are OBJECT and

ABSURD. The object OBJECT is the highest in the type

hierarchy and any system being defined will come

directly under it or under other objects contained in

the type hierarchy. The lowest object is ABSURD. All

objects that do not contain any other part will

automatically contain the object ABSURD. This encloses

any system being built to make it a closed system. The

"type" graphs in Figure 4.1.2 represent part of the

CRIB expert system. Section 4.2 will describe how the

CRIB expert system tries to locate a faulty field
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replaceable unit in the computer hardware.

OBJECT

PHYSICAL
OBJECT

COMPUTER

HARDWARE SOFTWARE- SOURCE-CODE

/ \ / ! \ \

/ \ / 1 \ \

/ \ 1 1 \ \

_ / \ 1 1 \ \

/ \ / BUS
I ! \ \

! FIELD I 1 \ \

! REPLACEABLE OPERATING COMPILER INTERPRETER COMPUTER

1 / UNIT SYSTEM / 1 \ FAULT

V 1

1

/ ! \ LISP

/ 1 \ 1

FINDING

/

32 PASCAL C FORTRAN ! /

BIT Ill 1 1

CHIPS III II
\ III II

\ III II
\

\

\

\

\

1 I 1 I 1/III/III
1 1 1 1

1 II 1

ABSURD

Figure 11.1.1 Type hierarchy showing objects and classes.
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Type Objeot(x) is [].

Type Physical-Object(x) is [OBJECT],

Type Computer(x) is [PHYSICAL- OBJECT].

Type Hardware(x) is [COMPUTER],

Type Sof tw are- Sour ce-Code(x) is [COMPUTER],

Type Field-Replaoeable-Unit(x) is [HARDWARE],

Type 32-Bit-Chip(x) is [FIELD-REPLACEABLE-UNIT]

Figure 1.1.2 Type graphs defining objects and classes
from Figure 4.1.1.

The first type graph in Figure 4.1.2 is the defin-

ition of the type "Object". Notice that the concept

within the type definition is blank, and shows that

there are no other types higher in the hierarchy. This

is similar to Loops and Smalltalk programming where the

top node in the programming environment is the class

"Object." It is also similar to Flavors where the top

flavor or object is "Vanilla". Each type graph defines

itself in terms of a class or object one level higher

in the type hierarchy. In Figure 4.1.2, the class "Com-

puter" is defined in terms of the "type" graph

"Physical- Object" and the type definition of "Hardware"

is defined in terms of the class "Computer."

Multiple super objects can be defined using the

"type" graphs. Figure 4.1.3 shows a type hierarchy

that contains an object that is defined in terms of two

super objects.
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OBJECT

PERSON

/ \

/ \

/ \

FACULTY STUDENT
/ 1 \ 1 \

/ 1 \ 1 \

/ 1 I \

VISITING REGULAR UNDERGRADUATE GRADUATE
FACULTY FACULTY STUDENT STUDENT

\ /

\ /

GRADUATE
TEACHING
ASSISTANT

Figure It. 1.3 Type hierarchy showing a class with
multiple super class definitions.

The type definitions in Figure 4.1. 4 show how the

class "Graduate- Teaching-Assistant" i3 defined in terms

of multiple objects. The type definition of "Graduate-

Teaohing-Assistant" defines itself in terms of the

object "Graduate- Student" and is also a member (MMBR)

of the "Faculty". The other type definitions in Figure

4.1.3 are single type definitions defining objects with

one super object.
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Type Person(x) is [OBJECT: «x].

Type Student(x) is [PERSON: «x].

Type Faculty(x) is [PERSON: «x].

Type Graduate-Student(x) is [STUDENT: »x].

Type Graduate- Teaching-Assistant (x) is

[GRADUATE-STUDENT: «x] -> (HMBR) -> [FACULTY].

Figure 4.1.4 Type graph definitions showing multiple
type definitions using the type

hierarchy from Figure 4.1.3.

On a computer that contained a powerful graphics

package, the "type" graphs could be used to quickly

draw out a picture of a type hierarchy similar to the

one shown in Figures 4.1.1 and 4.1.3. The next section

describes how to define an object's attributes. At that

time the method(s), if any, can be denoted, see section

4.5.

1.2 Objects and Classes

The "schema" graphs will be used to describe an

object's attributes. The attributes of an object are

its super objects, parts that are other objects,

characteristics about the object, and the methods that

can be performed on the object. The "schema" graphs

shown in Figure 4.2.1 describe objects that are con-

tained within the expert system CRIB. An explanation of

how CRIB works is given next.

The strategy for CRIB is to "divide and conquer".
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Diagnostic tests are performed to discover which parts

of the machine are assumed to be faulty and which parts

are assumed to be no n- faulty. Using this scheme a

faulty field replaceable unit is searched for. The

hardware of the machine can be thought of as a hierar-

chy of field replaceable units where each field

replaceable unit may be made of zero or more field

replaceable units. The hierarchy of the machine

hardware is given and will remain fixed throughout the

diagnosis of the computer. Knowledge about past fault-

finding and their invalid symptoms will also be kept.

The following steps describe how the machine could be

diagnosed in the attempt to locate a faulty field

replaceable unit.

1) The initial start sends a message to the
hardware asking it to perform the method
"diagnose".

2) The "diagnose" method sends a message to the

field replaceable unit asking it to perform the

method "choose". The "choose" method chooses a

test which takes the least amount of time to

perform from the current field replaceable
unit's sub field replaceable units. The

"choose" method returns the test chosen to the

"diagnose" method.

3) The "diagnose" method sends a message to the

field replaceable unit to perform the test
chosen above in step 1. The "perform" method
observes the symptoms from the field replace-
able unit and returns those symptoms to the
"diagnose" method. In "diagnose" the symptoms
found are added to the current symptoms found
from previous tests.

1) The "diagnose" method sends a message to the

field replaceable unit to analyse its current
symptoms. The "analyse" method tries to deter-
mine if the field replaceable unit is faulty.

-76-



If it is, the field replaceable unit is
returned to the "diagnose" method as a faulty
unit.

5) The "diagnose" method halts if a faulty field
replaceable unit has been found. Otherwise a

message is sent to the hardware asking it to
perform the same "diagnose" method again on a

different division of the hardware.

The "type" graphs defined in Figure 4.1.2 are

further defined by "schema" graphs in Figure 4.2.1. The

objects COMPUTER, HARDWARE, and FIELD-REPLACEABLE-UNIT

are defined with "schema" graphs.

Schema for Computer(x) is
[COMPUTER: »x]-

( SUPER) -> [PHYSICAL-OBJECT]
(PART) -> [HARDWARE: {»}]

(PART) -> [SOFTWARE: {•]]

(CHRC) -> [SERIAL-NUMBER]
(MTHD) -> [OPERATMG-SYSTEM-COMMANDS]
(MTHD) -> [COMPILERS]
(MTHD) -> [INTERPRETERS].

Schema for Hardware(x) is

[HARDWARE: «x]-
( SUPER) -> [COMPUTER]
(PART) -> [FIELD-REPLACEABLE-UNIT]-

(OBJ) -> [TEST: RESP{»}]-
(DUR) -> [TIME: {»}],,

(PART) -> [BUS: {•}]

(ATTR) -> [CURRENT- SYMPTOMS: {*)]

(MTHD) -> [COMPUTER-FAULT-FINDING].

Schema for Field-Replaceable-Unit(x) is

[FIELD-REPLACEABLE-UNIT: »x]-
(SUPER) -> [HARDWARE]

-> [FIELD-REPLACEABLE-UNIT: RESP{«)]-
(OBJ) -> [TEST: RESP(»)]-

(DUR) -> [TIME: {•}],,
-> [32-BIT-CHIP: {•}]
-> [INVALID-SYMPTOMS: {*)]
-> [CURRENT-SYMPTOMS: {*)]
-> [FIELD-REPLACEABLE-UNIT-FAULT-FINDING]

.

(PART)

(PART)
(OBJ)

(ATTR)

(MTHD)

Figure 4.2.1 Schema graphs describing the objects
computer, hardware, and field-replaceable
unit.
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In Figure 4.2.1 the schema graph for "Computer"

says that it has a (SUPER) object called [PHYSICAL-

OBJECT], two parts, one being the (PART) [HARDWARE]

and the other being the (PART) [SOFTWARE], The "Com-

puter" has the characteristic (CHRC) [SERIAL-NUMBER].

The last part of the "schema" graph shows the methods

that can be called upon and used by the object "Com-

puter". The methods are [OPEHATING-SYSTEM-COMMANDS]

,

[COMPILER] (e.g., Fortran, C, etc.), and [INTERPRETERS]

(e.g. Lisp). The other two "schema" graphs "Hardware"

and "Field-Replaceable-Unit" are similar to the

"schema" graph of the object "Computer". The "schema"

graph for the object "Hardware" has the entire set of

[FIELD-REPLACEABLE-UNITS] with respective [INVALID-

SYMPTOMS] that have been previously found in prior com-

puter fault finding tests. Each of the [FIELD-

REPLACEABLE-UNITS] contains the set of tests with

respective durations (DUR) of how long it takes to per-

form each test. The "schema" graph for the object

"Field-Replaceable-Unit" will have its own set of known

[TESTS] and the duration (DUR) of how long it takes to

perform that test. The completion of the two "schema"

graphs will not be further discussed.

1.1 Inheritance

Each object that has has a (SUPER) object(s) may

inherit attributes and methods from that (SUPER)
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objeot(s). For example, the object "Hardware", defined

by the "schema" graph in Figure it .2 . 1 , may inherit the

methods and attributes, except for the (PART) objects,

contained in the object "Computer". For instance,

"Hardware" can use the [OPERATING-SYSTEM-COMMANDS] , it

can also access the [SERIAL-NUMBER] of the "Computer".

The attributes of the "Computer's" (SUPER) object,

[PHYSICAL-OBJECT] can also be inherited by the object

"Hardware".

l.i Instances

Each object defined by "3chema" graphs may have

unique instances. For example, using the schema graphs

in Figure 4.2.1, there may be many computers that can

be made, and each computer may have several pieces of

hardware attached to it. Each piece of hardware con-

tained in the computer may also have many field

replaceable units. Figure 4.1.1 shows how a unique

object can be made using an actor called <MAKE-OBJECT>.

<MAKE-OBJECT>-
<- [OBJECT]
-> [OBJECT: »loo].

<MAKE-OBJECT>-
<- [COMPUTER: Xerox-1 186-1]-

(CHRC) -> [SERIAL-NUMBER: 4692AHSN]
(PART) -> [HARDWARE: Xerox-1 1 86-1 ]

-> [COMPUTER: «loc= "Xerox-1 186-1"= #74902561].

Figure 4.4.1 Making a unique object of type "Computer"
described by the schema graph in Figure
4.2.1.
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The object being produced from Figure 4.1.1 is the

object "Computer". The input to the actor <MAKE-

0BJECT> is an object name along with any attributes

that will be set upon the creation of the object. The

value returned is the name of the object produced along

with an 8-bit address identifying the unique object and

stating its location in memory. When the actor <MAKE-

0BJECT> makes a unique object for a schema graph, an

individual graph is produced and kept in memory. Figure

4.4.2 shows the unique individual graph for the object

"Computer" that was produced from the <MAKE-OBJECT> in

Figure 4.4.1. The individual graphs for "Hardware" and

two "Field-Heplaceable-Units" are also presented.
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Individual Computer( Xerox-1 186-1 ) is
[COMPUTER: Xerox-1 186-1]-

(CHRC) -> [SERIAL-NUMBER: 4692AHSN]
(PART) -> [HARDWARE: Xerox-1 1 86-1 ]

.

Individual Hardware(Xerox-1 186-1) is

[HARDWARE: Xerox-11 86-1 ]-

(ATTR) -> [CURRENT- SYMPTOMS: {}]

(PART) -> [FIELD-REPLACEABLE-UNIT: Xerox-1 186-1-1 A]-

(OBJ) -> [TEST: RESP{D,E}]-
(DUR) -> [TIME: (3,8}ms].

Individual Fleld-Replaoeable-Unit(Xerox-1 186-1-1 A) is

[FIELD-REPLACEABLE-UNIT: Xerox-1 1 86-1-1 A]-

(OBJ) -> [TEST: RESP{D,E}]-
(DUR) -> [TIME: {3,8}ms],

(ATTR) -> [CURRENT-SYMPTOMS: {}].

(OBJ) -> [INVALID-SYMPTOMS: {A,P}]

(PART) -> [FIELD-REPLACEABLE-UNIT: Xerox-1 186-1-1 B]

(OBJ) -> [TEST: RESP{C}]-
(DUR) -> [TIME: {5)ms].

Individual Field-Replaoeable-Unit(Xerox-1186-1-1B) is

[FIELD-REPLACEABLE- UNIT: Xerox-11 86-1-1 B]-

(OBJ) -> [TEST: RESP{C}] -> (DUR) -> [TIME: [5}ms]

(ATTR) -> [CURRENT-SYMPTOMS: {}].

(OBJ) -> [INVALID-SYMPTOMS: [K}].

Figure 4.1.2 Individual graphs of objects or classes
using the schema graph definitions of

Figure 4.2.1

.

To aid in the debugging of an object-oriented sys-

tem that is currently being developed, an actor called

<DESCRIBE-OBJECT> can be used to retrieve an individual

type graph and its attributes. Figure 4.4.3 shows how

the actor <DESCRIBE-OBJECT> can be used to print the

description of the individual graph of the object "Com-

puter" with the unique object being "Xerox-1 186-1".
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<DESCRIBE-OBJECT> <- [COMPUTER: Xerox-1 1 86-1 ]

.

[COMPUTER: Xerox-1 1 86-1 ]-

(SUPER) -> [PHYSICAL-OBJECT]
(PART) -> [HARDWARE: Xerox-1 1 86-1 ]

(PART) -> [SOFTWARE]
(CHRC) -> [SERIAL-NUMBER: 4692AHSN]
(MTHD) -> [OPERATING-SYSTEM-COMMANDS]
(MTHD) -> [COMPILERS]
(MTHD) -> [INTERPRETERS].

Figure 4 .1.3 The actor describe-object being used to
print a unique object of type "Computer".

4.5. Methods and. Message Passing

The four steps described in section 1.2 for the

expert system CRIB are defined by the method graphs in

Figure 4.5.1 . These are Diagnose, Choose, Perform, and

Analyse. To define methods the keyword "Method" is used

to represent method graphs. The method may also have

the option to define a set of methods denoted by the

keyword "class" after the name "Method". In Figure

4.5.1 the method class for "Computer-Fault-Finding"

contains one method that may be called, which is DIAG-

NOSE. There is also a method class defined for the

three methods CHOOSE, PERFORM, and ANALYSE. It is the

method class "Field-Replaceable-Unit-Fault-Finding".

The definition of the method class "Computer-Fault-

Finding" will not do any operations it is merely a

place holder for other methods or method classes.
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Method class for Computer-Fault-Finding(x) is
[COMPUTER-FAULT-FINDING: »x]-

(MTHD) -> [DIAGNOSE].

Method class for Field-Replaceable-Unit-
Fault-Findlng(x) Is

[FIELD-REPLACEABLE-UNIT-FAULT-FINDING : »x]-
(MTHD) -> [CHOOSE]
(MTHD) -> [PERFORM]
(MTHD) -> [ANALYSE].

Figure 4.5.1 Defines a class of methods for computer
fault finding and for field replaceable
unit fault finding.

The method "Diagnose", in Figure t.5.2, 3ends a

message to the current [FIELD-REPLACEABLE-UNIT] asking

it to perform the method "Choose". The message passing

is denoted by the actor <MSGC> which stands for "mes-

sage controller". If the method "choose" finds a [TEST]

to "Perform" on a [FIELD-REPLACEABLE-UNIT] the test is

returned to the "Diagnose" method. The next step is to

send a message to the [FIELD-REPLACEABLE-UNIT] asking

it to perform the method "Perform" using the [TEST]

that has been sent to it. The value returned from the

"Perform" method is the [OBSERVABLE-SYMPTOMS] which are

added to the [CURRENT-SYMPTOMS] using the actor <ADD-

SETS>. The last step sends a message the [FIELD-

REPLACEABLE- UNIT] which had the [TEST] performed on it

asking it to "Analyse" itself. If the "Analyse" method

returns a "faulty" [FIELD-REFLACEABLE-UNIT] the "Diag-

nose" method "<HALTs>" and the "faulty" [FIELD-

REPLACEABLE-UNIT] is returned to its caller. Otherwise

a message is sent to itself (the hardware) asking it to
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perform the same "Diagnose" method.

Method for Diagnose(x) is

[DIAGNOSE: «x]-
(CLASS) -> [HARDWARE]
(MTHDCLASS) -> [COMPUTER-FAULT-FINDING]
<MSGC>-

<- [FIELD-HEFLACEABLE-UNIT] -> (MTHD) -> [CHOOSE]
-> [TEST: *ts]-

(OBJ) <- [FIELD-REFLACEABLE-UNIT: «fru]-

<MSGC>-
<- [FIELD-REPLACEABLE-UNIT: »fru]-

(MTHD) -> [PERFORM]

(OBJ) -> [TEST: »ts],
-> [OBSERVABLE-SYMPTOMS: •os={ # }]-

<ADD-SETS>-
<- [CURRENT-SYMPTOMS: »0S={«1]
-> [CURRENT-SYMPTOMS: »C3]-

<MSGC>-
<- [FIELD-REPLACE ABLE-UNIT: «fru]-

(MTHD) -> [ANALYSE],
-> [FIELD-REPLACEABLE-UNIT: »fru]-

(ATTR) -> [FAULTY] -> <HALT>,
-> [DIAGNOSE]-

(MTHD) <- [HARDWARE: "self] -> <MSGC>,

(RSLT) -> [FIELD-REPLACEABLE-UNIT: »fru]-
(ATTR) -> [FAULTY].

Figure 1.5.2 Method graph for the

CRIB "diagnose" method.

When the method "Choose", shown in Figure 4.5.3.

is called it chooses the [TEST] that discriminates best

between its sub [FIELD-REaACEABLE-UNIT's] [TESTs]. The

manner in which it chooses a test is done using the

actor <SRCH3>. The search actor performs a parallel

search searching on a set of [TESTs] which might yield

[INVALID-SYMPTOMS] in a partially matched set, and on a

set of respective [TIMEs] relating to the corresponding

partially matched [TESTs]. The two sets are searched

while matching them against the minimum <MIN> amount of
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[TIME] for the partially matched [TESTs]. When a

[TEST] has been found it is returned to the caller

which here is the "Diagnose" method.

Method for Choose (x) is
[CHOOSE: »x]-
( CLASS) ->[FIELD-HEPLACE ABLE- UNIT]
(MTHDa ASS) ->[FIELD-REPL ACE ABLE- UNIT-FAULT-FINDING]
(0BJ)->[TEST: «t]-
(INST)<-[DISCRIMIMATE]-

(MANR)->[BEST]
(OBJ)->[FIELD-REaACEABLE-UNIT: RESP{*}]-

(PART)<-[ FIELD-REPLACE ABLE- UNIT]
(ATTR)->[INVALID-SYMPTOMS: «is={»}],,

(DUR) -> [TIME: Hm]
,

<SRCH3>-
<-[TEST: «ts=RESP{»}]-

(CHRC)->[INVALID-SYMPTOMS: RESP{»}]-
<-<DIFF>-

<-[INVALID-SYMPTOMS: {•}]-
<-<J0IN>-

<-[INVALID-SYMPTOMS: »is],,
<- [CURRENT-SYMPTOM: {•)],,

(DOR) -> [TIME: {•}],
<-[TIME: RESPt*}]-

(DUR) <- [TEST: «ts]
-> <MIN> -> [TIME: »tra]

,

<-[TIME: «tm]
->[TEST: HJ,

(RSLT)->[TEST: «t]-

(OBJX-[FIELD-REPLACEABLE-UNIT].

Figure 4 .5 .3 Definition of the method "Choose"

The method "Perform" in Figure 1.5.4 performs a

[TEST] on a [FIELD-REPLACEABLE-UNIT]. The [OBSERVED-

SYMPTOMS] and the [TEST] are printed <PRINT> to the

user. The result returned to the caller is the

[OBSERVED-SYMPTOMS].
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Method for Perform(x) is
[PERFORM: «x]-
(CLASS)->[FIELD-REFLACEABLE-UNIT]
(0BJ)->[TEST]-

-> <PRINT> <- [OBSERVED-SYMPTOMS: »os={«}]
(RSLT)->[OBSERVED-SYMPTOMS: »os].

Figure 11.5.4 Definition of the method "Perform".

The method "Analyse", shown in Figure 4.5.5

searches through the set of [CURRENT-SYMPTOMS] trying

to make a match against the [INVALID-SYMPTOMS] known

from previous computer fault finding. If a "faulty"

[FIELD-REPLACEABLE-UNIT] is found then it is returned

to the "Diagnose" method.

Method for Analyse(x) is
[ANALYSE: »x]-

(CLASS) -> [FIELD-REPLACEABLE-UNIT]
(MTHDCL ASS) ->[FIELD-REPL ACE ABLE- UN IT-FAULT-FINDING]
(CHRC)->[INVALID-SYMPTOMS: {•}]-

(CHRC)<-[FIELD-REPLACEABLE-UNIT: *f]

-><SRCH2>-
<-[CURRENT-SYMPTOMS: {«}]-

(CHRC)<-[FIELD-REPLACEABLE-UNIT: »f]

-> [FIELD-REPLACEABLE-UNIT: »f]-
(ATTR) -> [FAULTY],,,

(RSLT) -> [FIELD-REPLACEABLE-UNIT: »f]-
(ATTH) -> [FAULTY],

Figure 4.5.5 Definition of the method "Analyse".

The initial start up of the expert system CRIB,

shown in Figure 4.5.6, would be performed by sending a

message to the [HARDWARE] asking it to perform the

method "Diagnose". The value returned from the method

would be a "faulty" [FIELD-REPLACEABLE-UNIT] if one is

found.
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<MSGC>-
<- [HARDWARE: Xerox-1186-1] -> (MTHD) -> [DIAGNOSE]
-> [FIELD-HEPLACEABLE-UNIT: ?] -> (ATTR) -> [FAULTY].

Figure 1.5.6 Sending a message to a computer asking

It to perform the method "Diagnose" and
returning a "faulty" field replaceable
unit If one Is found.

Messages can be denoted In different ways. Figure
1.5.7 shows some of the possible formations of how a

message can be sent.

<MSGC> <- [METHOD]
(a)

[METHOD: 1] -> <MSGC> -> [METHOD: 2] -> <MSGC>.
(b)

[METHOD: 1] -> <MSGC> -

-> [METHOD: 2] -> <MSGC>,
-> [METHOD: n] -> <MSGC>.

(o)

<MSGC>-
<- [METHOD: 1]

<- [METHOD: n]

-> [METHOD: n+1] -> <MSGC>.
(d)

<MSGC> -

<- [METHOD: 1]

<- [METHOD: n]

-> [METHOD: n+1] -> <MSGC>,
-> [METHOD: m] -> <MSGC>.

(e)

Figure 1.5.7 Notation for message passing where multiple
methods can fire multiple methods.

(a) A Single method being invoked.
(b) Single method invoking a single method.

(c) Single method invoking multiple methods.
(d) Multiple methods invoking a single method.
(e) Multiple methods invoking multiple methods.

It is possible to set up defaults within concepts

and section 1.6 describes how defaults can be used in
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conceptual graphs.

4_.6_ Defaults and Conditions

Defaults may be used within the schema and method

graphs. In the schema graph shown in Figure 4.6.1, the

object "Hardware" has defaults 3et up in the (PART)

[FIELD-REFLACEABLE-UNIT], the [INVALID-SYMPTOMS] for

each [FIELD-REFLACEABLE-UNIT], and the set of [TESTs]

with respective durations (DUR) of [TIME] that it takes

to perform each [TEST]. In the method graph the default

is the [TEST: C]. If, when the method "Perform" is

called, there is no test to perform it will perform the

test "C" and return the observable symptoms.

Schema for Hardware(x) is
[HARDWARE: «x]-
(SOPER) -> [COMPUTER]
(PART) -> [FIELD-REPLACEABLE-UNIT: Xerox-1 1 86-1-1 A]-

(OBJ) -> [TEST: RESP{D,E}]-
(DUR) -> [TIME: {3,8)],,

(PART) -> [BUS: {»}]

(ATTR) -> [CURRENT- SYMPTOMS: {•)]

(MTHD) -> [COMPUTER-FAULT-FINDING].

Method for Perform(x) is
[PERFORM: »x]-

(CLASS) -> [FIELD-REPLACEABLE-UNIT]
(OBJ) -> [TEST: C]-

-> <PRDIT> <- [OBSERVED-SYMPTOMS: «os={«}]

(RSLT) -> [OBSERVED-SYMPTOMS: «os].

Figure 4.6.1 Defaults shown in the schema for "Hardware"

and the method "Perform".

Conditions may be used within concepts. They may

be used to represent a range of values that a concept

may be equal to. For example, Figure 4.6.2 shows how a
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condition could be set up within a schema graph. There

are two conditions in the schema for "Person". One is

the range of possible [HEIGHTS] for any "Person". The

[HEIGHT] of a person must be greater than inches and

shorter than 96 inches. The other condition is the pos-

sible values for a person's [ HAIR- COL OH ] . The color of

a person's hair can be any value but "Green" or "Pur-

ple". The table in Figure 4.6.3 lists conditions that

can be used within concepts and a possible use for

each. Conditions are in no way restricted to schema

graphs. They may also be used in method and procedural

attachment graphs.

Schema for Per3on(x) is

[PERSON: »x]-
(PTIM) -> [BIRTHDAY]-

(CHRC) -> [YEAR]
(CHRC) -> [MONTH]

(CHRC) -> [DAI],
(CHRC) -> [HEIGHT: S >0<96 inches]

(CHRC) -> [AGE: NIL]
(CHRC) -> [HAIR-COLOR: "{GreeniPurple}]

.

Figure 4.6.2 Defining a condition in a method.
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List of Conditions

English Symbol

equal - [CITY: =Kansas City]
not equal

-
[TIME: -5:30]

greater than > [TEMP: i >90 F]
greater than or equal to >- [MONEY: § >=$100]
less than < [SPEED: 6 <=55mph]
less than or equal to <= [FINDER: <=5]
approximation ~

= [NUMBEE: "=50]

or 1 [COUNTRY: = {Asia|India}]
and

» [PERSON: = {Tom,Mike}]

Figure 4.6.3 Conditions for concepts and a possible
use for each.

1.1 Daemons and ,

There are three types of daemons as described in

section 3.6 of chapter 3. These are 1) Before and

after daemons- invoked before or after a method is per-

formed; 2) Active values- called when an instance

variable' 3 value is changed or is accessed; and 3) Pro-

cedural Attachments- activated when a value is needed,

created, or removed. The before and after daemons are

shown in Figure 4.7.1. Directly after the keyword

"Method", the type of daemon either "before" or "after"

can be specified. In Figure 4.7.1 when the diagnose

method has been called, the "before" daemon will be

performed before the diagnose method executes. When the

diagnose method has completed the "after" daemon will

be performed.
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Method before for Diagnose (x) is
[DIAGNOSE]-

(OBJ) -> ["Begin diagnosing"] -> <PRINT>.

Method after for Diagnose(x) is

[DIAGNOSE]-
(OBJ) -> ["Diagnosing complete"] -> <PRINT>.

Figure 4.7.1 Before and after daemons.

Active values will be skipped since they can actu-

ally be described as procedural attachments. The pro-

cedural attachment types for the active values are

described later. The example in Figure 1.7.2 describes

how a procedural attachment is represented. The schema

graph represents characteristics (CHRC) about a "Per-

son". The person has a [BIRTHDAY], [HEIGHT], [HAIR-

COLOR], and [AGE: NIL], Notice there is a unique sym-

bol "NIL" contained within the concept [AGE] in the

schema and individual graphs. This denotes an attach-

ment to the concept which means there is a procedural

attachment that needs to be performed if the value is

needed, removed, added, accessed, and/or replaced. The

example in Figure 4.7.2 shows the procedural attachment

if-needed for the concept [AGE], If the value for the

concept [AGE] is ever needed the value is calculated

using the conceptual graph contained within the pro-

cedural attachment for the concept [AGE]. An example

of when the value is needed is shown in Figure 4.7.2.

When the individual object [PERSON: Joe] is sent to the

actor <DESCRIBE-OBJECT> the value for the concept [AGE]
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must be calculated. The procedural attachment calcu-

lates the age for Joe which is 40 years.

Schema for Person(x) is
[PERSON: *x]-

(PTIM) -> [BIRTHDAY]-
(CHRC) -> [YEAR]
(CHRC) -> [MONTH]

(CHRC) -> [DAY],

(CHRC) -> [HEIGHT: g inches]
(CHRC) -> [HAIR- COL OR]
(CHRC) -> [AGE: NIL].

Individual Person(Joe) is
[PERSON: Joe]-

(CHRC) -> [BIRTHDAY]-
(CHRC) -> [YEAR: 1946]

(CHRC) -> [MONTH: November]
(CHRC) -> [DAY: 13],

(CHRC) -> [HEIGHT: §71 inches]

(CHRC) -> [AGE: NIL].

procedural attachment if-needed for Age(x) is

[AGE: «x]-
(CLASS) -> [PERSON]
<- <S0BTRACT> -

<- [TIME: NOW]
<- [YEAR: 1946] <- (CHRC) <- [BIRTHDAY].

<DESCRIBE-OBJECT> <- [PERSON: Joe].

[PERSON: Joe]-
(CHRC) -> [BIRTHDAY]-

(CHRC) -> [YEAR: 1946]

(CHRC) -> [MONTH: November]
(CHRC) -> [DAY: 13],

(CHRC) -> [HEIGHT: 671 inches]

(CHRC) -> [HAIR-COLOR: Brown]
(CHRC) -> [AGE: 40 years].

Figure 4.7.2 Schema graph for the object "Person",

an individual graph of a person, and

a procedural attachment that is used
when the person's age is needed.
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There are several options that can be used for the

procedural attachments and in fact active values can be

shown as procedural attachments. The active values are

of two types, if-acoessed and if-replaced. Other types

of procedural attachments allowed are if-removed and

if-added. The table below shows the allowed procedural

attachment types in conceptual object-oriented program-

ming. Each procedural attachment works on any concept

within a conceptual graph.

Types of Procedural Attachments

1) if-needed
2) if-removed

3) if-added
4) if- accessed

5) if-replaced

I.fl Fvirtqer examples

This section describes and presents a representa-

tion of the reader-writer problem using conceptual

graphs and the object-oriented constructs and tech-

niques that were described in the previous sections of

Chapter 4. Figure 4.8.1 shows a type hierarchy of how

the reader-writer problem could be set up. There are

four objects in this problem. They are "Computer",

"Card-Header", "Line-Printer", and "Buffer". The type

hierarchy in Figure 4.8,1 also shows the methods that

are used on each object. Figure 4.8.2 shows the type

graphs of the four objects in Figure 4.8.1.
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Object

Computer "'

/ 1 \ 1

/ 1 \

/ 1 \

Card Card Line Buffer
Reader"' '" Header Printer
Process "

Reader
Writer
Process

Accept- Line
Send-Line

Line- Printer- Process

Figure 4.8.1 Type hierarchy showing the objects defined
in the reader-writer process. Also shows the

methods that are performed on each object.

Type Computer(x) is [OBJECT].

Type Card-Reader(x) is [COMPUTER].

Type Line-Printer(x) is [COMPUTER].

Type Buffer(x) is [COMPUTER].

Figure 4.8. 2 Type graphs using the objects
in Figure 4.8.1.

The four objects outlined in the type hierarchy

and the type graphs are defined with schema graphs in

Figure 4.8.3. The schema for the object "Computer" con-

tains three (PARTs) [CARD-READER' s], [LINE-PRINTER' s]

,

and [BUFFER'S]. There is only one method that can be

invoked and it is the [READER-WRITER-PROCESS]. The

schema graph for the object "Card-Reader" contains

[DATA] where each piece of [DATA] has a [LINE-LENGTH]
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of 80 characters. It also has a destination which is

some unknown [BUFFER] and a (HATE) on how long it takes

to read in [DATA]. The object "Card-Reader" has a

method which is the [READER-PROCESS]. The schema for

the object "Line-Printer" is similar to the object

"Card-Reader" except that it has a different [LINE-

LENGTH], a different method [LINE-PRINTER-PHOCESS] , and

a different (RATE). The schema graph for the object

"Buffer" contains a set of [DATA] where each piece of

[DATA] has a [LINE-LENGTH] of 80 characters. The object

"Buffer" has two methods, one to accept a line

[ACCEPT-LINE] of [DATA] from the "Card-Reader- Process"

and the other one to send a line [SEND-LINE] of [DATA]

to the "Line-Printer-Process".
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Schema for Computer(x) is
[COMPUTER: »x]-

( SUPER) -> [OBJECT]
(PART) -> [CARD-HEADER: {•}]
(PART) -> [LINE- PR IN TEH: {«}]

(PART) -> [BUFFER: {•}]

(MTHD) -> [READER-WRITER- PROCESS].

Schema for Card-Reader(x) is
[CARD-READER: »x]-

( SUPER) -> [COMPUTER]
(OBJ) -> [DATA]-

(CHRC) -> [LINE-LENGTH: 680 characters]
(DEST) -> [BUFFER: »b],

(RATE) -> [LINES: 61000 lines/min]
(MTHD) -> [CARD-READER- PROCESS].

Schema for Line-Printer(x) is
[LINE-PRINTER: »x]-

( SUPER) -> [COMPUTER]
(OBJ) -> [DATA]-

(CHRC) -> [LINE-LENGTH: 6132 characters]
(DEST) -> [BUFFER: «b],

(RATE) -> [LINES: 6600 lines/min]
(MTHD) -> [LINE- PRINTER- PROCESS].

Schema for Buffer(x) is
[BUFFER: »x]-

( SUPER) -> [COMPUTER]
(OBJ) -> [DATA: (•}]-

(CHRC) -> [LINE-LENGTH: 680 characters]
(MTHD) -> [ACCEPT-LINE]
(MTHD) -> [SEND-LBJE].

Figure 4.8.3 Schema graphs defining the objects
"computer", "card-reader", "buffer",

and "line-printer".

The methods for the reader-writer problem are

defined in Figure 4.8.1. To start the reader-writer

process a message is sent to the object "Computer" ask-

ing it to perform the "Reader-Writer-Process". When

the "Reader-Writer- Process" is performed three objects

are made. These are the "Buffer", "Card-Reader", and

the "Line-Printer". The actor <ASK> found in the
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method "Reader-Writer-Process" asks the user to supply

a unique name for each object. Next the "Reader-

Writer- Process" sends a message to the [CARD-READER]

asking it to perform the method [CARD-READER-PROCESS]

and also at the same time a message is sent to the

[LINE-PRINTER] asking it to perform the method [LINE-

PRINTER-PROCESS]. The method "Card-Reader- Process"

sends a message to the object "Buffer" asking it to

accept a line [ACCEPT-LINE] of data from the "Card-

Reader-Process" when a line of [DATA] is read in from

the [CARD-READER]. After the "Buffer" has accepted the

line of [DATA] the "Card-Reader- Process" tries to read

in a line of [DATA] on the "Card-Reader" device. The

method "Line-Printer-Proeess" is similar to the "Card-

Reader-Process". It sends a message to the object

"Buffer" asking it to perform the method [SEND-LINE],

The method [SEND-LINE] will be performed when a line of

[DATA] is sent from the "Card-Reader- Process" to the

"Buffer". When is gets a line of [DATA] it will be

written to the [LINE- PR BITER] and again the "Line-

Printer-Process" sends a message to the object "Buffer"

asking it to perform the method [SEND-LINE], The method

"Accept-Line" accepts a line of [DATA] from the "Card-

Reader- Process" and adds it to its set of [DATA]. The

method "Send-Line" removes a line of [DATA] from the

set of [DATA] and sends it back to its caller which is

the "Line-Printer-Process".
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Method for Reader-Writer-Process(x) is
[READER-WRITER- PROCESS: «x]-

(CLASS) -> [COMPUTER]
<ASK> -> [BUFFER: »b] -> <MAKE-OBJECT>-
<ASK> -> [CARD-READ: »cr] -> <MAKE-OBJECT>-
<ASK> -> [LINE- PRINTER: »lp] -> <MAKE-OBJECT>-
<MSGC> -

<- [CARD-READER: «cr]-
(MTHD) -> [CARD-READEH-PROCESS]
(OBJ) -> [DATA] -> (DEST) -> [BUFFER: «b]

<- [LINE- PRINTER: »lp]-
(MTHD) -> [LINER-PRINTER-PROCESS]
(OBJ) -> [DATA] -> (DEST) -> [BUFFER: «b]

-> ["Reader Writer Process Down"] -> <PRINT>.

Method for Card-Reader-Prooess(x) is

[CARD-READER-PROCESS: «x]-
( CLASS) -> [CARD-READER]
<MSGC>-

<- [BUFFER: »b]-
(MTHD) -> [ACCEPT-LINE]
(OBJ) -> [DATA] <- <READ>,

-> [CARD-READER-PROCESS]-
(MTHD) <- [CARD-READER: 'self] -> <MSGC>.

Method for Line-Printer-Prooess(x) is
[LINE-PRINTER-PROCESS: »x]

(CLASS) -> [LIME-PRINTER]
<MSGC> -

<- [BUFFER: »b] -> (MTHD) -> [SEND-LINE]
-> [DATA]-

-> <WRITE>-
-> [LINE-PRINTER-PROCESS]-

(MTHD) <- [LINE-PRINTER: »self]-
-> <MSGC>.

Method for Accept- Line (x) is

[ACCEPT-LINE: »x]-
(CLASS) -> [BUFFER]

(OBJ) -> [DATA] -> <ADD-DATA> -

<- [DATA: «d=(»}]
-> [DATA: »d={»)].

Method for Send-Line(x) is

[SEND-LINE: »x]-
( CLASS) -> [BUFFER]
(OBJ) -> [DATA: »di] <- <HEMOVE-DATA> -

<- [DATA: »d={«}]
-> [DATA: «d={«}].

(RSLT) -> [DATA: «di].

Figure 4.8.1 The methods needed to perform the

reader-writer problem.
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Chapter 4 has shown how conceptual graphs could be

used to design an object-oriented system. Two examples

were given, the CRUS expert system and the Reader-

Writer problem. By using the conceptual graph notation

a high-level knowledge representation method has been

introduced providing object-oriented constructs and

techniques to use them. The object-oriented constructs

and techniques are not complete and the extensions and

future developments will be discussed in chapter 5.

-99-



5

Conclusions

5.1 Summary and Results

Sowa's conceptual graphs have been adapted to

allow the user programming capabilities in an object-

oriented environment. The concepts from two different

models, Sowa's conceptual graphs and object-oriented

language constructs and techniques, have been

integrated to form a method for conceptual object-

oriented programming. This method of programming with a

high-level knowledge representation method is more del-

ineated and well defined than either Sowa's conceptual

graphs or the constructs and techniques of object-

oriented languages. We are able to express knowledge

at a very high-level without losing any meaning and

while retaining the formation of a modular system.

Within the method presented, concurrent processes may

be expressed with little difficulty and without leaving

the reader in total dismay.

5..Z Future Development

The conceptual object-oriented programming

language suggested in Chapter 1 has not been imple-

mented. Existing possibilities are to use Common Lisp

as a its base language because of its open-endedness

and its ability to express data as symbols along with
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symbol manipulation techniques. The actors presented

in chapter t have not been defined. These would be

defined as presented in chapter 2 section 2.3.6. The

relationship nodes presented in chapter 1 have not been

defined with relation graphs. These would need to be

defined before development could take place. There is

another type of graph not used within the conceptual

object-oriented programming model. This is the use of

prototype graphs. Prototypes are basically used for

defaults. Since we have incorporated defaults into the

concepts themselves we have virtually eliminated the

need for prototypes. However the use of prototypes

will be left open until actual development takes place.

Some of the tools that would need to be developed are

listed in the table below. An artificial intelligence

workstation could be used to do the full implementation

of this language. They provide the standard Common Lisp

programming language, a powerful graphics package to

display type hierarchies, intelligent editors, capabil-

ities of using a browser, an interpreter, a compiler,

and capability to do interactive debugging. There is

only one problem with the artificial intelligence

workstations. They do not as yet have the capability

to do concurrent programming. The machines are very

fast and concurrency could be simulated. There are a

number of tools that will be required to make this

implementation useful including those listed below.
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Tools

1. Graphics package to show the type hierarchy.
2. Editor for program creation and modification.
3. Browser for viewing the program's objects and

their relationships.
14. Interpreter for test execution.
5. Compiler for production programs (and for

efficiency).
6. Interactive debugger for understanding faulty

programs.

5.1 Comparison _to other Research

Although there is little difference between the

basic notation of this model and other knowledge

representation methods, the notation for this model has

been modified and configured in a way to allow for

object-oriented programming. The work here is compar-

able to the work of Roger Hartley, Hartley[ 1985], in

which he uses Sowa's conceptual graphs to show pro-

cedural knowledge for expert systems. His method made

use of several actors and an extensive set of relation

nodes. The method in this research used a few actors

and a minimal amount of new relation nodes to define

the conceptual object-oriented programming environment.

This method is simpler, more understandable, and

clearer than Hartley's. In Figure 5.3.1 a 3chema graph

definition from Hartley's work is presented. The schema

graph describes how the "diagnose" for computer fault

finding is performed in the expert system CRIB.

Hartley's "diagnose" schema graph can be compared to
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the "diagnose" method graph defined by conceptual

object-oriented constructs and techniques in chapter 4.

The method graph is presented again, in Figure 5.3.2,

for comparison of Hartley's work and the work presented

in this paper.

Schema for Diagnose(x) is
[EVENT: [DIAGNOSE: »x] -

(OBJ) -> [FUNCTION: system]-
(LOC) -> [UNIT: oomputer]-

(ATTR) -> [FAULTY],
(ATTH) -> [CURRENT] ]-

(TRIG) -> <N>-
(IPC) <- [FUNCTION: system]
(THEN) ->

[EVENT: »ch=[CH00SE]-
(0BJ)->[TEST: »t]-

(INST)<-[DISCRIMDIATE]-
(MANR)->[BEST]
(0BJ)->[FUNCTI0N]-

(SUBSUMES)<-[FUNCTI0N: »f]-

(ATTR)->[CURRENT]]-
(TRIG) -> <N>-

(IPC) <- [TEST: »t]

(THEN) ->

[EVENT: [PERFORM]-
(OBJ) -> [TEST: »t]

(RLST) -> [OBSERVED-SYMPTOM: »os={»}]]-
(TRIG) -> <N>-

(IPC) <- [OBSERVED-SYMPTOM: »os]

(THEN) ->

[EVENT: [ADD]-
(OBJ) -> [OBSERVED-SYMPTOM: «os]

(DEST) -> [CURRENT-SYMPTOM: {•}]

(RSLT) -> [CURRENT-SYMTPOM: »cs={«}]]-
(TRIG) -> <N>-

(IPC) <- [CURRENT-SYMPTOM: «cs]

(THEN) ->

[EVENT: [ANALYSE]-
(INST) -> [CURRENT-SYMPTOM: »os]

(OBJ) -> [FUNCTION: »f]]-
(TRIG) -> <N> -> [EVENT: «oh].

Figure 5.3.1 Work done By Roger Hartley. Shows
inferencing for the diagnose operation.
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Method for Diagnose(x) is
[DIAGNOSE: «x]-

(CLASS) -> [HARDWARE]
(MTHDCLASS) -> [COMFUTER-FAOLT-FINDING]
<MSGC>-

<- [FIELD-REPLACEABLE-UNIT]-
(MTHD) -> [CHOOSE],

-> [TEST: Hi]-
(OBJ) <- [FIELD-REFLACEABLE-UNIT: »fru]-

<MSGC>-
<- [FIELD-REPLACEABLE-UNIT: »fru]-

(HTHD) -> [PERFORM]
(OBJ) -> [TEST: »ts],

-> [OBSERVABLE-SYMPTOMS: »os={»}] -

-> <ADD-SETS>-
<- [CURRENT- SYMPTOMS: •cs={«)]
-> [CURRENT-SYMPTOMS: «cs]-

<MSGC>-
<- [FIELD-REPLACEABLE-ONIT: »fru]-

(MTHD) -> [ANALYSE]
-> [FIELD-HEPLACEABLE-UNIT: »fru]-

(ATTR) -> [FAULTY] -> <HALT>
-> [DIAGNOSE] -> (MTHD) <- [HARDWARE: »self]-

-> <MSGC>
(RSLT) -> [FIELD-REPLACEABLE-UNIT: *fru]-

(ATTR) -> [FAULTY].

Figure 5.3.2 Conceptual Object-Oriented
method for "diagnose".

The language defined in this research can be com-

pared to the existing languages of object-oriented pro-

gramming. Smalltalk, Flavors, Loops, Common Loops and

others lack the express! bility of representing

knowledge at a very high-level. Also these languages

are limited in that they are restrictive in nature when

the user needs to express knowledge about concurrent

processes. In Figure 5.3.3 an example using Flavors is

presented. The example shows how some of the objects

from CRIB could be represented using Flavors. The

objects defined with the "defflavor" function are "com-
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puter", "hardware", and "field-replaeeable-unit". The

method for the "diagnose" operation is also defined

with the Flavors "defmethod" function. The object-

oriented programming languages Smalltalk, Loops, and

CommonLoops represent knowledge similar to that of Fla-

vors, therefore there is no need to show examples using

each language's syntax.

(defflavor computer (serial-number)
(physical-object))

(defflavor hardware (current-symptoms
test
time
fru-test ' (xerox-1 186-1 -1a)
(computer))

(defflavor field-replaceable-unit (invalid-symptoms
current- symptoms
test
time))

(defmethod (hardware :diagnose) ()

(setq fru-test (send (car fru-test) Mchoose))
(setq current- symptoms

(add-sets (send (car fru-test) ':perform)

current- symptoms))
(cond ((null (send (car fru-test) ':analyse

(cadr fru-test)))

(send (car fru-test) ':diagnose))

(t (msg "Faulty Field Replaceable Unit is "

(car fru-test)))))

Figure 5.3.3 Flavors examples describing objects and
methods that are in CRIB.

Sowa's definition of conceptual graphs is very

strong at the abstract level but lacks detail in many

areas. Clancey, Clancey[ 1985] in his review, of Sowa's

work says "Sowa has provided a clean well-grounded

notation for knowledge representation that many
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researchers will want to emulate and build upon." He

then goes on to present his views on the areas where

Sowa's book is lacking, "...but his knowledge of both

expert systems and cognitive science issues is not com-

plete..." and "...the relation of conceptual graphs to

heuristic reasoning is not adequately developed or

demonstrated by working programs." This represents the

state of Sowa's theory rather than the book itself. A

follow up to Sowa's book providing examples fulfilling

the above deficiencies is needed by those researchers

who are trying to emulate and build upon his notation.

We are unable to present any examples from Sowa's book

that would be comparable to the work defined within

this paper. The reason for this is because Sowa does

not clearly define the constructs and techniques to do

inferencing or heuristic reasoning using conceptual

graphs.
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ABSTRACT

Object-oriented programming is growing in popular-
ity because of its modular programming constructs and
of the techniques available for use with them. The
object-oriented languages available at the present time
use programming techniques that are at the logical
representation level in the knowledge levels. Languages
such as Flavors, Loops, Smalltalk, and CommonLoops are
used at the logical representation level when imple-
menting an object-oriented system, that is one are con-

strained to using a low level representation form when
programming. To represent knowledge at a higher level,

one needs to represent the knowledge in an object-
oriented programming language using either a conceptual
or natural language representation method.

The technique of designing conceptual structures
is represented at the conceptual level in the knowledge
levels. John Sowa's Conceptual Structures is the
method chosen to represent the formal constructs of the
objects and the techniques to use them. This paper
presents the formal design of the objects and their
attributes using conceptual structures. The integra-
tion within this model of object-oriented techniques
with conceptual representation methods provides the
advantages of each technique. The environment of the
system is described, with emphasis on message passing
and reasoning between objects. This system allows the
programmer more freedom designing and implementing an
object-oriented system than currently available sys-
tems.
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