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INTRODUCTION

It is widely recognized that there is at present no single

mathematical optimization technique superior to all other tech-

niques in handling every type of problem. Every method has its

own merits and shortcomings. Consequently, one may be suitable

in solving some types of problems but becomes cumbersome In solv-

ing others. Remembering that we are dealing with the optimiza-

tion of a process and that "optimizing a process" is itself a

process, we would be absent-minded if we forgot to optimize what

we are doing. The problem now facing us is to choose the most

adequate technique to solve a specific type of problem. For

some problems, the best method may be to use several techniques

jointly, as is illustrated by Lee (32) . In order to do so, a

comparative study of all available techniques is desirable.

Since many of the processes encountered in practice,

especially in the chemical industry, are so complicated that

finding the optimal design and operating plans for them chal-

lenges the ability of the best engineer, a plausible approach to

optimizing such formidable systems as complex chemical plants

and processes is to break them down into manageable subsystems

which can be optimized individually and subsequently reassemble

the optimized subsystems. However, the difficulty associated

with such an approach lies in taking proper account of the inter-

actions between the subsystems, because policies which are opti-

mal for the separate units may be disastrous for the ensemble.

The multi-level system theory describes effectives ways of



decomposing these large systems into component subsystems. The

maximum principle is a very powerful method in solving problems

of a stagewise nature. Thus we restrict our discussion to

these two techniques.

In the first part of this work, we present a review of the

literature on the multi-level approach of process optimization

and control and a critical examination of the derivation of the

multi-level optimization and control techniques.

In the second part, we discuss briefly the discrete maximum

principle and extend it to a system with inequality constraints

of a completely general form. We also propose two computational

schemes to solve the so-called two-point boundary value problem.

The comparison of the multi-level approach with the discrete

maximum principle is also included in this part.

In the final part, we develop the system model and formu-

late equations for reverse osmosis water purification for the

purpose of optimizing the process by means of the multi-level

approach and/or the discrete maximum principle.



PART ONE

A STUDY OF THE THEORY OP MULTI -LEVEL SYSTEMS
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CHAPTER I. INTRODUCTION

Daily activities of individuals, of gigantic enterprises,

and, as a matter of fact, the activities of the whole economic

system of a country have been based on a simple principle of

"optimality" . Observation of the similarity between the problems

encountered in engineering, which include optimization and con-

trol problems, and problems which arise in the macro-economic

theory should enable us to derive some mathematical techniques

for the decomposition of large optimization problems.

Large-scale optimization problems have been a constant

source of difficulty in both systems engineering and operations

research since their inception. Roughly speaking, an optimiza-

tion problem is considered "large" when the computational re-

quirement which must be satisfied in order to find the optimal

value of the manipulated variables exceeds the capacity of cur-

rent computing machinery or when the quality of the performance

of the system decays significantly in the time required to com-

pute a new control solution (31) • By adopting basic economic

concepts, we should be able to develop simultaneously a frame-

work for the synthesis of "organization-like" structures and at

the same time use the mathematical interpretation of these

"organizational structures" to develop efficient computational

algorithms for large-scale optimization problems (31).

In a multi-level system, the overall system is subdivided

into a number of subsystems, each of which is assigned a sub-

objective function (goal) and a performance equation (control).



A subsystem may represent any real or fictitious entity consist-

ing of a finite number of stages (13).

Another level of control is assigned the object of coordi-

nating several of the subsystems on the lower level and these

in turn are coordinated by a higher level, and so on. The re-

sulting structure, shown in Fig. 1.1, is triangular in form with

the apex ultimately responsible for the achievement of the over-

all system object.

The conventional problem where a given system is controlled

in a manner which satisfies some pre-defined objects is called

a single-level optimization problem. By "single level" we mean

that in general no managing or coordinating controllers are

present. A characteristic of this approach is that although the

overall system may consist of a complex of interconnected sub-

systems, the optimization technique cannot take cognizance of

this fact. As a result the solution effort usually is propor-

tional to the square or cube of the order of the problem.

A multi-level control optimization, problem is one in which

the structure of the subsystem is acknowledged. The conven-

tionally phrased problem is subdivided into levels of organiza-

tion, so that on the lowest level each subsystem can be optimized

with respect to a subgoal. The subsystems and goals are co-

ordinated at a third level, and so on (5>)«

The major advantage offered by using the multi-level ap-

proach to treat optimization problems is a reduction of dimen-

sionality which is especially significant for large systems.

In addition, the reliability of the overall system is not limited
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by that of any one portion. In principle the subsystems can be

arranged so that failure of one does not disrupt the perform-

ance of the other, since they are operating independently. How-

ever, the overall performance will be affected. A conventional

single-level problem probably would be disrupted by failure of

a subsystem since they are not operating independently. Other

additional advantages are discussed in detail in references

(13, III-).

The price we must pay for using the multi-level technique

is the cost of coordination. Each subproblem is solved not

once but many times. It is obvious that the success of multi-

level techniques for an integrated system lies in the decompo-

sition of the system.

CHAPTER II. LITERATURE SURVEY

The concept of the multi-level approach to the control of

interacting systems was first introduced by Mesarovic and

Eckman (l), Sprague (2), Sanders (3), and Coviello (14-). The

foundation of this approach is to distribute the effort for con-

trolling a system among several sub-controllers at several levels

Later Takahara (3) applied the multi-level systems theory

to linear dynamic optimization problems in much the same way as

Coviello (I4.) . A large-scale control system which performs both

the optimization function and control function is decomposed

into small subsystems by neglecting the interaction between sub-

systems. The higher-level, goal-seeking units compensate for
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the neglected interaction through successive approximation of

the intervention parameters as suggested by Sprague (2) and

Sanders ( 3)

•

Lasdon (6) introduced a technique for the discrete process

optimization by extending the concepts developed by the re-

searchers mentioned above. He treated multi-level problems by

introducing a pricing mechanism, an ideal long used by econo-

mists to achieve decentralization in economics problems. He

designed a two-level structure which allows us to solve a class

of discrete optimization problems by iterated solutions of sub-

problems. The major step in his development was the attachment

of prices to the interacting variables. The problem was solved

by iterating the prices. These prices were, in essence, the

Lagrange multipliers of the integrated problem.

Pearson and Macko (7) extended the multi-level systems

theory to a class of general dynamic optimization problems by

drawing on some of the ideas presented by Lasdon (6). A set of

intervention parameters to decouple the subsystems and their

goals is used in their approach. For an optimal choice of the

set of intervention parameters, which is determined by a

higher-level controlling unit, the subgoals of each first-level

subcontroller must be satisfied. This implies the satisfaction

of the original system goal. Pearson (8) also considered multi-

level problems from the variational point of view.

Brosilow and Lasdon (9), and Lasdon and Schoeffer (10)

studied some multi-level problems using the classical Lagrange

method. In this approach the second level uses the "price
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adjusting technique" to adjust the Lagrange parameters until a

set of parameters is found such that the subproblem solutions

solve the integrated problem (i.e., conventional single-level

problems)

.

There are several papers which apply the multi-level ap-

proach to control system design. Lefkowitz (11) used the multi-

level concept to break down a large overall problem into sim-

pler subproblems as follows: (1) the process was decomposed

into subprocesses, each being controlled according to a local

suboptimal performance criterion, and (2) each subprocess con-

troller was decomposed into a hierarchy of control functions

which distributed the load and responsibility for satisfying

the control objective.

Durbeck and Lasdon (12) presented a technique for objec-

tively simplifying complex static optimizing control models by

selecting the control model parameters and structure to maxi-

mize performance. They showed that for interconnected systems

of high dimensionality the resulting parameter search may have

computational difficulty. A two-level decomposition technique

was used profitably to reduce this difficulty. The basic par-

ameter search and decomposition techniques were also used in

the two-time scale control approach (11), in which the assumed

structure and parameters are associated directly with the con-

trol law instead of the system models.
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CHAPTER III. A MULTI-LEVEL FORMULATION OF
SIMPLE FEEDBACK PROCESSES

(OR STATIC PROCESSES)

1. The Conventional Single-level Optimization
Problem (or the Integrated Problem)

A schematical representation of the simple feedback pro-

cess is shown in Fig. 1.2. The process consists of N functional

subsystems interconnected in series. A portion of the output

from the last subsystem is fed back to the first subsystem.

The nth subsystem produces a vector of finished products

y
n

' (the so-called boundary output N + 1 indicates that it

goes out of the system) , and a vector of intermediate or state

variables xn , which serve as inputs to the (n + l)th subsystems.

• n •

It receives both the decision variables 9 and those variables

coming from (n - l)th subsystem xn .

The steady-state operation of the process is described by

the performance equations.

xn = Tn (e n^ xn-l } (l#1)

y
n,N+l = vn (0

n
, x*' 1

) (1.2)

n = 1, 2, . . ., N

where xn is an s
n-dimensional vector function, y

n > w+1 is a

^-dimensional vector function, and 8
n

is an co
n-dimensional

vector function.

The initial feed enters the system at a rate q, whereas

the feedback rate is r. The combination of the feed and the

recycle stream is described by the following equation:
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x° = M(xf , x\ q,r) (1.3)

where M is called the mixing operator.

When the flow rates, Q and r, and feed stream conditions,

x^", are constant, equation (1.3) can be rewritten as

x° = M(xN ). (1.1+)

A typical optimization problem associated with such a pro-

cess, neglecting random effects, is to find a sequence of 6n

such that the objective function

s = Z f
n
(e

n
> y

n '
N+1

) (1.5)
n=l

is maximized or minimized subject to inequality constraints

R
n
(6

n
, y

n ' N+1
, x*

1" 1
) > (1.6)

n = 1, 2, . . . , N

where Rn is an rn dimensional vector of function 9
n

, y
n

* ,

and xn_1 .

The problem of finding an optimal decision vector, 6 n
,

which satisfies at least the necessary conditions for a maximum

or minimum will be called the integrated problem (5).

We assume that all functions defined thus far are at least

twice differentiable in all arguments.

^Note that in this treatment components of x* must be con-
sidered either as parameters or, if they are free, as elements
of 6

1
.
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2. Multi-level Approach

View each subsystem as buying and selling the input xn

and output xn from and to other subsystems (6). Associate with

each xn a vector of prices (real numbers) of the same dimen-

n
sion, p , at which these transactions take place. Let each

subsystem be under the jurisdiction of a manager who views the

inputs x as being independent as the vector n is. This

enables us to separate the subsystems by cutting the relations

between them, that is, the performance equations, equation

(1.1), are ignored. In doing this, we break up the overall

problem into a number of small problems ( subproblems) , each of

which is to be solved by a real or fictitious "first level" con-

trol unit. Thus the subproblem is also called the first-level

problem. In addition we synthesize one or more "second-level

control units whose function is to coordinate two or more first-

level controllers.

By proceeding in this way we hope to achieve the following

economics. If the process is a real one, I.e., if the imagined

organizational structure can be realized, then we will enjoy

the benefits of parallel operation. This is to say that sev-

eral parts of the overall problem will be processed simul-

taneously.

If the process is imaginary, 1. e
.

, if it is simply a com-

putational device, then we have traded the task of solving a

large problem for that of solving a number of smaller ones. In

either case this procedure may lead to significant computational
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A. The Subproblem (or the First-level Problem). Regarding

p
n as parameters, the nth subproblem is for subsystem, n, de-

scribed by the relations

y
n,N+l = v

n
(Q

n^ xn-l } (l>2)

Rn (6
n

, y
n ' N+1

, xn_1 ) >
,

(1.6)

in which a set of 9
n = 9

n and xn = xn that extremizes the sub-

objective function

sn = fn (0
n^

y
n,N+l

} + (p
n

}

T
Tn (0

n^ xn-l }

- (p
n " 1

)

T xn"! (1.7)
2

is found.

The subproblem solutions 6 and x are, of course, func-

tions of the prices p
n

. Then there exist values of p
n which

are designated by p
n at which the subproblem solutions are the

optimal solution of the integrated problem.

To prove the above criterion, let us define the Lagrangian

for the integrated problem as

N

n=l

and

L =
f;

(f
n
(e

n
, y

n ' N+1
) + (p

n
)

T
(T

n
- x

n
) + (u

n
)

T
R
n
)}

(1.8)

p°x° = p
NxN (1.9)

-'-Note that n denotes the solution (or optimal value) of
the original integrated problem, and 6 n denotes the solution of
the subproblems.

(p
n

) is an s
n-dimensional vector, (p

n
) is the transpose

of (p
n
), and (p

n
)

T T (6
n

, x11 " 1
) denotes the dot product of s

n -

dimensional vectors (p
n

) and T n .
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where the vectors p
n

, n = 1, 2, ..., N, are s
n-dimensional La-

grangian multipliers for the equality constraints, equation

(1.1), and the vectors un , n. = 1, 2, ..., N, are rn-dimensional

Kuhn and Tucker multipliers (l6) for the inequality constraints,

equation (1.6)

.

By using equation (1.9), it is seen that

J- , UsT n J- / n-lvT n-1 , -, -, n xZ-Cp/x=i(p ) x . (1.10)
n.=l n.=l

Substituting equation (1.10) into equation (1.8), the La-

grangian equation becomes

L = E {fn (6
n

, y
n

) + (p
n

)

T T
n
(0

n
, x11 " 1

)

n=l

-
( P

n "!) T x*" 1 + (u
n

)

T R
n

}
(1.11)

According to Kuhn and Tucker (l6), the necessary conditions

for an extremum are that there exist un = un and p
n = p

n such

that

?L dfn m <?Tn rn <?R
n

= + (pii)l + (..n) 1 = (1.10)
n ^ Qn o a n 3 Qn3Q n dQ n d® 3Q

+ (p
n

) (pn_1 )

T

ax"" 1 ^xn_1 '

' ^x"" 1

- T ^
+ (un )

T = (1.11)

un > (1.12)

(un )

T Rn = ^
(1.13)

- on

<?un
= R 11 > (l.llf)
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— = xn - T
n
(e

n
, x11 " 1

) = o (i.i5)

for all n = 1, 2, . .
.

, N.

All quantities in equations (1.12) through (l.l£) are

evaluated at the optimum point 6n . But the conditions, equa-

tions (1.10) through (I.II4.), are equivalent to the Kuhn-Tucker

conditions for the subobjective function S
n subject to Rn ^

at the point i 6 n , y
n

> , xn \ . Thus regarding p
n as prices,

we see that at these prices the subproblems satisfy the neces-

sary conditions for an extremum at any point at which the inte-

grated problem satisfies the same necessary conditions.

B. The Second-level Problem and an Iterative Scheme ( 6) .

The fact that there exist prices p
n that decouple an integrated

problem is utilized to derive an iterative procedure for opti-

mization.

The task of finding the optimal parameters p , n = 1, 2,

..., N, is delegated to second-level units, and the solution of

the subproblems for a given set of P is the responsibility of

the first-level units. Note that since all the subproblems are

independent, the first-level units need not communicate with

each other; i.e., the constraints given by equation (1.1) can

be ignored.

With the subproblem solution 6 and x substituted into

equation (1.1), we can get the supplies from the nth subsystem,

i.e., T (6 , x ). Then from the difference between the amount

Recall that P = (p
1

: p
2

: ... : p
N

) .
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xn demanded, which is determined by the n + 1th subsystem, and

the amount Tn (6
n

, x1 -1

) supplied, which is determined by the

nth subsystem, we can define the vector of excess demand for

xn as

E
n
(P) - x

n
- T

n
(9

n
, xn_1 ) . (1.16)

It is evident that if P = P, En (P) =0, n = 1, 2, . .., N.

In addition, if En (P) = for all n, then relations given by

equations (1.10) through (1.15) are satisfied, which implies

that P = P. Thus we can state that P = P if and only if

En (P) = for all n.

The second-level adjusts the parameters P by a price ad-

justment rule suggested by Samuelson (17), i.e.,

d— p
n = En (P) (1.17)

dt

With the excess demands, En (P), formed from the lower levels by

equation (1.16) in hand, the higher level can apply a finite

difference approximation to the price-adjustment rule given by

equation (1.17), which will yield convergence to the optimal

prices P from the feasible initial guess Pq .

Now the operation of the multi-level scheme can be de-

scribed specifically. Sequentially it proceeds as follows.

1. The second-level sends to the first-level units an

initial set of parameters p , p , ..., p .

2. Each of the first-level units optimizes its sub-

problem using these parameters.

3. Inputs and outputs of the first-level units are trans-

mitted back to the second level which forms the excess
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demands En (P)

.

l|_. If these excess demands En (P) are nonzero, the second

level adjusts the parameter P by the price-adjustment

rule such that the difference will be reduced and

transmits these new parameters back to the first-

level units.

5- The process is repeated until the excess demands are

all zero, at which time the solution is optimal.

C. Convergence of the Price- ad justment Rule . It has been

shown (6, 13) that if the subobjective functions Sn and the

constraints Rn for all n are concave (for maximization problems)

in the xn and the 6
n for all real values of P and if at least

one of these functions Sn is strictly concave, then the price-

adjustment rule, equation (1.17), is asymptotically stable in

the large and convergence of P to P is monotone decreasing in

1

The stability of the price-adjustment rule is examined by

Lyapunov's second method (29, 30). A Lyapunov's function

E is the Euclidian norm and
|| 2

E is defined here as
1 I

ETE. '

Lyapunov's second method, Theorem II, states that if it
is possible to find a function V(x) which has the following
properties,

V(x) > 0, for x f x
e

(equilibrium point)

V(x) =0, for x = x~ (equilibrium point)
dV(x)

and ^ 0, except for the possible case when x = xp ,

dt
dV(x)

= 0, then the system is asymptotically stable.
dt
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dP
chosen for — = E is

dt

1
V(P) - -i|E ||

2
(1.18)

which satisfies

1.. , 2V(P) = -I |E(P) ||=0
2

'

and its first-order derivative is

dV m ^E dP— = (E)
T

. (1.19)
dt 3? dt

dP
By substituting — = E into equation (1.19),

dt

dV T «2E— = (E) — E . (1.20)
dt 3?

dV
Equation (1.20) shows that — is the matrix of a quadratic form,

dt

By Lyapunov's second method it is seen that asymptotic

stability in the large of the price-adjustment rule, equation
dV

(1.17), requires that — be negative definite or, equivalently,
dt 2E

that in equation (1.20) we should have — be negative definite
3?

for all P. We are thus led to consider in detail the elements
2E <?E

of — . In Appendix I the negative definite of — is proved.
^P 2P

D. Simple Sequential Process . The algorithm derived in

the previous section can be reduced to a simple sequential pro-

cess without feedback.

For the process without recycle, the ratio of feedback r

is equal to zero, and equation (1.3) reduces to
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x° = xf . (1.21)

It is necessary to remark here that as we define xn as an

interstage variable, re is no interstage variable entering

the first subsystem and leaving the last subsystem (Nth sub-

system) . x and x must be equal to zero, i.e., x = x = 0.

By this treatment the relationship defined by equation (1.9)

will be automatically satisfied. It is worth noting that in

this treatment any initial conditions must be treated either as

parameters in the first subsystem or, if they are free, as ele-

ments of . Similarly, fixed right-end conditions must be in-

corporated through the relations

N,N+1 VN,_N N-ls
(
- 00 ,

J ' - V (9 , x ) . (1.22)

3. Extension

Previous sections have dealt with simple sequential pro-

cesses. In this section we consider how the general non-

sequential systems may be decentralized. We shall see that the

same pricing adjustment scheme will suffice, but that one more

parameter is now required. A full treatment of this topic is

not attempted. We merely wish to indicate that an extension can

be made and to demonstrate some of its major features. A special

and yet very common case of recycle processes, which covers many

problems considered in reference (21), is treated in more detail

in section 5>.

A. The Integrated Problem . The configuration of a highly

nonsequential discrete system can be completely described by the
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equations (18)

xn = f
n
(y

n
,

n
) (1.23)

y
n = wn (xn ) (1.21].)

y
0n = a

0n (1.25)

xn,N+l = vn,N+l (y
n^ Q n) (1.26)

Dn (0
n

, y
n

, xn * N+1
) > (1.27)

n = 1, 2, . . ., N

where xn £R s are recirculated, state variables, y £R is the

total input to the nth unit from other units, and x =

( x , x , ..., x ). y = a R are given constant vectors

(that is, the values of the boundary inputs are preassigned)

.

D 6.R are inequality constraints, £R are decision varia-

bles, and x •» 6R are finished products (or boundary

outputs). A typical unit is shown in Pig. 1.3.

n
The optimization problem is to choose a set of 6 , n = 1,

2, . .., N, such that the scalar function (the objective function)

s = £T F
n
(e

n
, x

n ' N+1
) (1.28)

n=l

or, by combining with equation (1.26),

N
S = ^7 G

n
(0

n
, y

11

) (1.29)
n=l

attains its extremum values.

To derive the optimization algorithm for the problem we

shall first assume that the functions f
n
(0

n
, y

n
) , wn (x),

vn,N+l (e
n^

7
n
)t Dn (0

n^
y
n xn,N+l } and Gn (yn e n } arQ contin _

uous in their arguments and are at least twice differentiable

in all arguments. Furthermore, we assume that a set of optimal
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decisions denoted by n
, n = 1, 2, . .., N, can be found.

B. The Multi-level System Theory Approach . As previously

discussed, the original overall system is subdivided into a

number of subsystems each of which is assigned an optimal sub-

problem. An additional level of problems is assigned the goal

of coordinating several of the subsystems on the lower level and

these in turn are coordinated by a higher level, etc. A two-

level structure is treated here.

(i) Formulation of the first-level problem

For a subsystem n, described by the equations

xn,N+l = vn,N+l (y
n^ e n } (1.26)

and

Dn (0
n

, y
11

, xn >
N+1

) > (1.27)

we are to find a set of n and y
n

, such that the subobjective

function

S
n = Gn (6

n
, y

n
) + (p

n
)

T fn (y
n

, G
n

)
- (z

n
)

T
y
n (1.30)

attains its maximum for some p
n and zn given by the second

level.

(ii) Formulation of the second-level coordination

problem

With the subproblem solutions 6 and y in hand,

the second-level calculates the recirculated state variables by

equation (1.23) which is

-n = fn(jn £n.) (1.23)

n = 1 , 2 , . . . , N

.

With calculated 'xrl , a new set of the parameter z
n can be

adjusted by a price-adjustment rule



2k

dz n— = y
n

- wn (x^), n = 1, 2, ..., ... (1.3D
dt

The parameter p
n can be computed from the new set of the par-

ameter z
n as

N Jw 1

P
n = r (z^ (1.32)

x=xi=l ;>xn

The iterative scheme is as follows:

1. The second-level assumes values for z
n and p

n and

sends them to the first-level sub-problems.

2. Each of the first-level subproblems optimizes its

subproblem using these parameters.

3. The first-level solution, 6
n and y , is send to the

second level, which forms the quantities xn .

l\.. If equation (1.31) is nonzero, the second level ad-

justs the parameter z
n by equation (1.31) and computes

the new set of parameters p
n

. These new parameters

are transmitted back to the first-level units.

$. The process is repeated until equation (1.31) is

zero, at which time the solution is optimal.

The extension to dynamic problems is included in the next

chapter.
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CHAPTER IV. A MULTI -LEVEL STRUCTURE FOR
LINEAR DYNAMIC 'OPTIMIZATION PROBLEMS

Here we are concerned with the optimization of a linear

dynamic system with respect to a quadratic objective function.

For simplicity we assume that the problem is stationary, or

time invariant in the specified time period.

1. The Integrated Problem

For a system described by a linear differential equation

(5)

x(t) = Ax(t) + B6(t) + Cd(t), < t 1 T (1.32)

where x(t)fR s is the state vector, 0(t)£Rr is the decision

vector, and d(t)^R are the disturbances, which are a known

function of time t. A, B, and C are suitably defined constant

matrices

.

The boundary condition is given as

x(0) = a . (1.33)

The problem is to find a set of 0(t), £ t <z T, such that the

objective function

1 r
T

S = -
j f(x - y)

T
Q(x - y) - 9

T
e}dt (1.34)

2
J
o

attains its minimum.

^By a quadratic function we mean a homogeneous, second-
degree expression in n variables of the form

n n
F(x,y) = £f ' "£T a ± Ax±

- yi )(x i
- y-) .

f=l j=l 1J ! ^ J J
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y£R s
is a reference vector, Q is constant positive sym-

metric matrix, and xT denotes the transpose of x.

2. Canonical Equations

To obtain the solution to the problem, we assume that the

control space of Rr of control functions 9(t) is bounded and

twice continuously differentiable and that a disturbance space

R^ of disturbances d is bounded and twice continuously differ-

entiable. We also assume that a unique set of 6(t) and x(t),

which notes S minimum, exists.

By means of the calculus of variations, we define

F = - /(x - y)
T Q(x - y) + 6

T
ej + z

T (Ax + B6 + Cd - x)

2 l }
(1.35)

Then the Euler-Lagrange necessary conditions are

— p (__ F) = (1.36)
d x 2 1 <?x

and

— P - = . (1.37)

Or more specifically, we have

dz
Q(x - y) + AT z + — = (1.38)

dt

and

6 + BT z = . (1.39)

At the point where t = T the transversality conditions re-

quire that for all admissible variations dx, d0, and dt on the

surface T - t = 0, we must have (5)
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dx = 6x + xdt ; d6 = 69 . ( 1 . J4.O

)

d d
(F - xT — P - 6 T — F) , mdt

dx 2 9
t_i

+ (— P)^=T dx + (— p)^=t d9 = . (1.14-D
dx £9

Since 69 and 6x are free differentials, the above condition

becomes

•T ^ T1
d

,
d

v T1 • / , x

F - x1 — F - 9
1 — F+ (— F) 1 x = 9 at t = T (1.2+2)

^x <?9 <?x

d— F = 9 at t = T (1.2+3)
dx

^— F = 9 at t = T (I.I4I4-)

P9

j'U - y)
T Q(x - y) - 9

T
9J t=[p

= 9 (1.2+5)

or

1

2

z(T) = (1.2+6)

6(T) + BT z(T) = 9 . (1.2+7)

Combining equations (I.38), (1.39), (1.2+6), and (1.2+7) gives the

following set of equations called the canonical equations.

x = Ax - BBT z + Cd (1.2+8)

z = -Q(x - y) - AT z (1.2+9)

and

z(T) = 9 (1.50)

where 9(t) = -BT z(t), 9 £ t < T (l.£l)

and x(9) = a.

Note that these canonical equations can also be derived
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directly from the maximum principle (18).

In order to apply the maximum principle let us introduce a

new state variable xs+ -^(t).

1 A
(t) = - [ ( (x - y)

T Q(x - y) + eTe] dt (1.52)
2 In

l )
xs+l

'0

dxs+1 (t) 1 „
x .. = = - (x - y)

1 Q(x - y) + e^ (1.53)
3+1

dt 2

then xs+1 (0) = and xs+1 (T) = S . (1.5k-)

The Hamiltonian function will be

H = z
Tx + z s+1 xs+1

= zT (Ax + B0 + CD) + z s+1 - Ux - y)
TQ(x - y) + 6 Te| (1.55)

dz 2H— = z = - -A i
z - z +1 Q(x - y) (1.56)

dt #x

dz s+1 2H—5±± = z s+1 = - = o. (1.57)
dt ^xs+l

The boundary conditions are

z a+1 (T) = 1, z(T) = . (1.58)

Substituting the boundary conditions into equation (1.57)

we have

z s+1 (t) = 1, < t < T . (1.59)

The necessary condition for H to be an extremum with re-

spect to 6(t) is

dE— =0 (1.60)
29

or
1

zTB + - 29 = . (1.60a)
2
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Thus we have

0(t) = -BT z(t) . (1.61)

Substituting equation (1.59) into equation (l.j?6), we have

z = -Q(x - y) - AT z . (1.62)

The performance equation, equation (1.32), can be derived from

the Hamiltonian function as

dx ?E
x = — = — = Ax + B6 + Cd .

. dt dz

Substituting equation (1.6l) into the above equation, we

have

x = Ax - BBT z + Cd. (1.63)

Thus we have shown that the canonical functions, equations (l.£8),

(l.6l), (1.62), and (I.63) which obtained from the maximum prin-

ciple, and equations (I.J4.8) through (l.£l) which obtained from

the calculus of variations, are the same.

Now to apply the multi-level multi-goal structure, let us

partition the performance equation and the canonical functions

into N £ s subsystems.

x1\ /
A

: =

XN / AN

) +

B
l ' • '

B
N

6
1

^

B U ,N

C
1 V\ fa\°1 * ' * °N

+ (I.624.)

C
N

C
N

/ d
N
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f z
1

I .

V
z
N

Q: . Q
..

5l '
' ' %

t

1 l\ T

x
1 ^ 1

- y
K

1 ^

(1.65)

or

e
1
(t)

e
N
(t)

N
A

N

B: B1 ^
T

. . B

iW

V
z ( t)

xn = A
n

x
n

+ B
n
6
n

+ C
n
d
n

n

N

n

n i

n

+ Z (A? x1 + Bje 1
+ C^d 1

)

i=l

z
n = -Q^(xn - y

n
) - U£)

T
z
n

- E {Q^x1
- y

1
) + (A?)

T
z
1

N T
en = -(Bn )

T
z
n

- Z (B?r
i=i

1

xn (0) - n

(1.66)

(1.67)

(1.68)

(1.69)

i^n

The boundary conditions are

a
1

zn (T) = .

By introducing the direct and indirect intervention

(1.70)

(1.7D
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variables, s
n and /

n
, equations (I.67) and (1.68) are simpli-

fied to

kn = A^xn + B^e n + c£dn + E^ s
n

(1.72)

z
n = -Q£Un - j

n + 7n ) - CA^>
T

z
n

(1.73)

where

n —n. -3- , n. i n —i n i, , . >

En s = Z (A
i

x + B
i 9 + C

i
d ) (1.7W

i^n

Q£ /n = T {q? U1
- y

1
) + (A^)

1
z
1

(1.75)
i^n '

3. Multi-level Multi-goal Algorithm

The decomposition of the original integrated problem into

the two-level multi-goal problems is given below.

A. The First-level Problem . For a subsystem n, n = 1, 2,

..., N, described by a linear differential equation

xn - A*xn + B^6 n + C*dn+ E^s 11
(1.76)

we are to find a set of 6
n (t), < t < T, such that the sub-

objective function

T

sn = - / f (x
n

- y
n

+ r
n

)

T o£Un - y
n

+ yn ) + (e
n

)

T
e
n
]<at

2/0 l '(1.77)

attains its minimum for some given direct and indirect interven-

tion variables s
n (t) and y

n {t) with the initial boundary

condition

xn (0) = a
n

.
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The solution to this problem provides time functions xn (t)

and z
n (t) which are then communicated to the second level.

B. Second-level Problem . Compute a new set of sn (t)

and y
n (t) by using

E£sn = £ (aJx
1

- T (B?)(b}) T J + C^d 1
} (1.78)

^n n *~~ / n. i i. /.n.T it /, ^ oN
Qn^

= Z- JQi
(x - y ) + (A

±
) z

J
(1.79)

i=£n

with the xn (t) and z
n (t) computed from the first-level problems.

The operation of this organization is as follows (5):

1. Initially assume yn = s
n = 0. Then each subsystem is

assumed to be independent and is optimized separately.

2. The subsolutions xn (t) and z
n (t) are communicated to

the second level from which the proposed intervention

parameters, y
n and s

n
, are computed. Here xn (t) and

z
n
(t) represent the proposed time history of resources

and price levels.

3- Yn and s
n are communicated to the subsystem and each

subproblem optimized. The process is repeated until

it converges within some predefined tolerance.

Now we shall prove that for any feasible intervention par-

ameters, y
n (t) and sn (t), n = 1, 2, ..., N, the subproblems

have unique minima. Furthermore there exists an optimal inter-

vention Yn {t) and s
n (t) such that the subproblem minima co-

incide with the integrated problem minimum.

To prove this let us notice that the integrated problem and

subproblems are of the same class for which existence and unique-

ness are guaranteed by a positive definite Q, and hence Q
n

.
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Comparing equations (1.7&) and (1.77) with equations (1.72)

and (1.73), we find that the subproblem satisfies the canonical

form of the integrated problem if and only if s
n (t) = s

n (t) and

yn (t) = /n(t)/ when. 6n(t) =6 n (t).

The principal question is whether yn (t) and s
n (t) converge

to y u (t) and s
n (t) respectively. It is shown that there exists

a T > .0 such that the multi-level multi-goal algorithm produces

a convergent sequence of intervention functions fyn , s
n

T with

limits |y n
, s

n
/ for which the subproblems solve the integrated

problem ( 5)

•

By introducing a set of intervention parameters, which are

multipliers or prices in static systems, the general dynamic

system is decomposed into a collection of decoupled small sub-

systems. For an optimal choice of the set of intervention par-

ameters the satisfaction of the extremal condition of each sub-

system implies the satisfaction of the extremal condition of

the original system. Of course, the conditions which guarantee

convergence of the intervention parameters are rather stringent

when one considers nonlinear dynamic systems.
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Comparing equations (1.7&) and (1.77) with equations (1.72)

and (1.73) j,
we find that the subproblem satisfies the canonical

form of the integrated problem if and only if s
n (t) = s

n (t) and

yn (t) = 7n(t)/ when. 6n(t) =e n (t).

The principal question is whether /n (t) and s
n (t) converge

to"/n (t) and s
n (t) respectively. It is shown that there exists

a T > .0 such that the multi-level multi-goal algorithm produces

a convergent sequence of intervention functions 1yT

l

, s
n

t with

limits iy n
, s

n
/ for which the subproblems solve the integrated

problem (5)

.

By introducing a set of intervention parameters, which are

multipliers or prices in static systems, the general dynamic

system is decomposed into a collection of decoupled small sub-

systems. For an optimal choice of the set of intervention par-

ameters the satisfaction of the extremal condition of each sub-

system implies the satisfaction of the extremal condition of

the original system. Of course, the conditions which guarantee

convergence of the intervention parameters are rather stringent

when, one considers nonlinear dynamic systems.
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CHAPTER V. A TWO-LEVEL OPTIMIZATION TECHNIQUE
FOR DISCRETE NONSEQUENTIAL PROCESSES

Here we extend the multi-level systems theory to optimiz-

ing a class of general highly nonsequential discrete systems

Lch was proposed by Fan, et al. , (18). We shall make use of

e vector-matrix notation employed by Fan, e_t al. , in the

Continuous Maximum Principle (18).

1. The Integrated Problem

The configuration of a discrete system can be described by

the equations

xn = fn(yn 6 n }
(l>8o)

y
n

= r°
n
a°

n
+ T r

VnxV (1.81)
V =1

y
0n = a

0n (1.82)

y
n,N+l = vn,N+l( y

n^ e n.) {1.&3

Ln (Gn
, y

n
, y

n > N+1
) > (1.8U

n = 1, 2, . . . , N

V> = 1, 2, . . ., N

where 6 n £T s are decision variables, xn£R s are state variables

which are equal to the recirculated output y
nm

, m = 1, 2, ...,

N, y
n£R s is the total input to the nth unit, which is a linear

combination of all the inputs, and y
n ^ w+ -i'iR

s is the boundary



35

1 On soutput from the nth unit, y cR is the boundary input to the

nth unit, 'a cR s is given constant vector (that is, the values

n dnof the boundary inputs are preassigned) , D £R are inequality

constraints, and P are diagonal matrices defined as

,Vn

- Vn

oi, r-)

. . . .

vSn
. . . .

<A
\>n

, n = 1, 2, . . ., N 1.85)

ynwhere the diagonal elements -<r. , k = 1, 2, . . . , s are non-

negative scalar constants. Equation (l.8l) means that the state

variable of a unit itself is the output variable and that the

kth component of y
n

, 1 1L k < s, is a linear sum of the kth com-

ponent of all y
un

. This equation is the boundary condition for

the unit function of the system, equation (1.80).

The optimization, problem is to choose a set of 6
n

, n = 1,

2, . .
.

, N, such that the scalar function (the objective function)

N
nn/ fi

n n/N+1'
Y; Fn (Q

n
, y

IVi^ x
)

n=l
(1.86)

attains its extreme value. Substituting equation (1.83) into

equation (1.86), the objective function becomes

A stream leaving the nth unit and entering the V th unit
will be identified as n\)th stream.
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s = 2l
Gn(0n

> y
n)

•
(1 - 87)

nRL

To derive the optimization algorithm for the problem we

shall first assume that the functions fn (y
n

, 6 n ) and Gn (y
n

, G n )

are continuous in their arguments and that the first partial

derivatives exist and are piecewise continuous in the argu-

ments. Furthermore, we assume that a set of optimal decisions

denoted by 6 n can be found.

2. The Necessary Conditions

The Lagrangian for the overall system is

L = £T {an + ( P
n

)

T (fn - xn ) + (un )

T Rn

n=l l

+ (Xn )

T
(
p0n

a
0n + ^ rnVnx

V _ y
n

} j (1>Q8)
V>=1

'

where p
n and \n are the Lagrange multipliers for the equality

constraints, equations (1.80) and (1.8l),and Un are the Kuhn-

Tucker multipliers (l6) for the inequality constraints (I.8I4.).

The Un are constrained to be non-negative in

Un > . (1.89)

We can rearrange the last term in equation (1.88) into a form

which involves only the inputs and outputs of a single sub-

system (or unit) n, as follows:

T Un
)

T
(r

0n
a
0n

+ 1l r
Vn^ - y

n
)

n=l tf=l
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= jr (?v
n

)

T
r
0n

a
0n

+ r -^ uVr^V - ^ un
)

T
y
n

n=l » =1 n=l n=l

xn- r un
) (r°

n
a
0n

- y
n

) + E" T (^) r
nU

n=l n=l V=l

= IT {(^
n

)

T
(P°na0n - y

n
) + T (^)

T
p n ^xn ] . (1.90)

n=l L V^l I

Therefore equation (1.88) can be rewritten, as

l = Z Un
(Q
n

, y
n

) + (p
n

)

T
(fn (en

, y
n

)
- xn )

n=l L

+ (Un )

T
Dn(0

n
, j

n
, y

n ' N+1
) + Un

)

T
(P
0n

a
0n

- y
n

)

<-— »n /nn n n n TTn , 1 ,N* M nn n

n=l

where ^n is tiie part of the Lagrangian associated with the

nth subsystem.

Necessary conditions for a maximum of the objective func-

tion S subject to constraints, equations (1.80), (1.81)., and

(l.81|.), are that the Lagrangian be stationary with respect to

all its arguments as given by equation (1.91). These conditions

yield a set of vector equations which must be satisfied. They

are :

— = p 0n
a
0n + V; r

Vn^ - y
n = (1.92)

d\n v=i
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— = —
fG"(e

n
, y

n
) + (p

n
)

T
fn (6

n
, y

n
)

+ (U
n

)

T Dn (6
n

, y
n

, y
n * N+1

)} = (1.93)

— = — (Gn (e
n

, y
n

) + (p
n

)

T
f
n
(e

n
, y

n
)

2yn <?y
n {

+ (Un )

T Dn (0
n

, y
n

, y
n ' N+1

) - (Xn )

T
y
n

) = (1.9W

— = f
n
(0

n
, y

n
) - xn = (1.95)

ah n
, m .

= - P
n

+ ^ U ) P
ni/ = ° d-96)

= Dn (G
n

, y
n vn,N+l (en n

} }
> (1>97)

Un > (1.98)

(Un )
T Dn (0

n
, y

n
, y

n
>
N+1

) =
. (1.99)

n = 1, 2, . . . , N.

It is worth noting that equations (1.97) through (1.99) are

the Kuhn-Tucker multiplier conditions (16) for the inequality

constraint, equation (I.8I4.).

3. Formulation of the Multi-level System Approach

A complete decoupling of the subsystems is accomplished by

either relaxing the subsystem interconnecting constraints,

equation (1.8l), or considering the state variables xn as var-

iable parameters. This isolates each subsystem from other sub-

system^ and creates independent problems. In the second decom-

position method, the solutions of subproblems always satisfy the

integrated system equations. It is called the feasible
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decomposition method. In the first method, the overall system

equations are not satisfied except at the solution of the inte-

grated problem. This method is termed the nonfeasible method.

By using these two decomposition methods, the original inte-

grated problem can be decomposed into a two-level problem.

A . The Algorithm for a. Two-level Problem by a_ Feasible

Decomposition . We have seen in equation (1.91) that the La-

grangian of the system can be broken down to a collection of 2n

which contains only variables associated with a single unit.

It is easy to see that the necessary conditions for the La-

grangian to be stationary with respect to all its arguments are

identical with the necessary conditions for £ to be stationary

with respect to its arguments. This gives us a way to decompose

the whole system into small subsystems or units. In fact the

necessary conditions for 2n to be stationary with respect to

its arguments are also the necessary conditions for the subob-

jective function of the subsystem, n,

s
n = Gn (y

n^ n)
(1.100)

to have an extremum in 6 n , y
n

, subject to the constraints

xn = f
n
(y

n^
e
n

} (1.80)

n /-i0n On
,

«c— r-Ajn tf ,
, o-, \

y = r a + 2_ P x (l.ol)

DnOn
, y

n
, y

n '
N+1

)
> (1.81^.)

•J-In this method, the following assumptions are made: (a)

the vector 6
n has at least as many components as the vector xn ,

and (b) the Jacobian matrix (fn ) „ is of full rank for all 6
n

and x .
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In this formulation components of xn are regarded as variable

parameters. This suggests a two-level structure in solving

the problem.

(i) The first-level problem

For a subsystem, n, described by the equations

xn = fn (y
n^ e n) (1.80)

N

y
n = pOn

Q
On + £~ p

Vn^ (1>8l)
l)=l

y
n,x\T+l = vin,W (e

n
) y

n
} (1>Q3)

we are to find a set of 6
n with Lagrange multipliers 'pn and

\ such that the subobjective function

S
n = c-

n
(e

n
, y

n
) (1.100)

attains its maximum for some given xn and Un . Here we let the

inequality constraints be considered in the second level, that

is, the Kuhn-Tucker multipliers Un are delegated to the second

level. This yields unconstrained and therefore simplified sub-

problems. This is equivalent to a modification of previous

results.

(ii) The second-level coordination problem

The second-level adjusts values of xn and Un by

using the Lagrangian differential gradient method (19), that is,

dL
(xn ) i+1 = (xn ) i

+ k (1.101)

(Un) _ k if Un >

(Un ) i+1 =
j

(1.102)

r"n \ • .p rr'n -
(U

n
), , if Un =
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and

Dn (e
n

, y
n

, y
n ' N+1

) > o (1.103)

where

P
n + r rx

v
)

i rnV - o (i.96)

au n.

= Dn (0
n

, y
n

, y
n > N+1

) > (1.97)

k > .

The "pn
, 'X

n
,

'6 n
, and y"11 are the solutions of the first-level

problem, k is an arbitrary constant which is to be so chosen to

drive equations ( 1.101) and (1.102) to .convergence as quickly

as possible.

A computational algorithm for this two-level structure

then proceeds as follows.

1. Assume values for xn and Un and send to the first-

level units.

2. Solve the subproblems of first-level units. This yields

6
n (xn , Un ), T^x11

, Un ), p
n (xn , Un ), and y

n (xn ).

3. Send the first-level solutions 6 n , A.
n

,
pv , and y

n to

the second level, which forms the quantities

and .

9xn 3Vn

2L
.

3L
i}.. If 4 and < 0, use equations (1.101) and

^xn
,

^Un

(1.102) to generate a new set of xn and Un .

5- Send new values of xn and Un back to the first level



and iterate from steD 2 until = and > 0.

(l.lOij.)

The above algorithm is guaranteed to converge to a

global maximum of the original objective function

S(6 1
, e 2

, . ..,
N

) provided S(6 1
, 6 2

, . .., 6
N

) and Dn are con-

cave functions of 6 , 6 , . .
.

,
1

. The algorithm converges to

at least a local maximum of S provided S and Dn are locally con-

cave. The details are given in Appendix I and reference (19).

B. The Algorithm for Two-level Problem by a_ Nonfeasible

Decomposition . Now we let the conditions

= r0na
0n

+ 1C PVnx - y
11 = (1.92)

n = 1, 2, . . . , N

be relaxed. This will separate the subsystems by cutting the

links between them. Then assign arbitrary values to \n LR 3 and

U £R . Equation (1.96) defines the Pn in terms of the assumed

values of \n , equations (1.93)- through (1.97) defines G n and y
n

in terms of P , U , and A and gives x in terms of 9 and y .

If the correct values for the \ n have been chosen, then the

values found for xn and j
n from equations (1.93) through (1.9?)

will also satisfy equation (1.92). If the X n and Un chosen are

not correct, -chen equation (1.92) will not be satisfied and we

must choose a different set of multipliers X
n

, Un . This sug-

gests a two-level structure in solving the integral problems,

(i) The first-level problem

For a subsystem n described by the equations

xn = fn (

n> G n } (l#Qo)
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y
n,N+l = vn,N

+l
(Q

n^
y
n

} (1>Q3)

find a set of n
\, j

n
, xn such that the subobjective function.

s£ = Gn (e
n

, y
n

) + (p
n

)

T xn - Un
)

T y
n

(1.105)

attains its maximum for some given A.
Xi and U .

n —

n

It is evident that there exists ~k = X such that

the subproblem solutions solve the integrated problems (6).

(ii) The second-level coordination problem

n
The second-level computes a new set of \ by using

the price-adjustment method (6, l£) .

(Xn ) _. - Un
) ., + kEn (1.106)

l+l i

En = . = p0nfl
0n + ^ pvnx» _ y

n. (1.107)
^A.n V

7 =l

k >

n = 1, 2, . . . , N

where k is an arbitrary constant which is to be chosen to

drive En to zero as quickly as possible.

The adjustment of all or some of the Kuhn-Tucker multi-

pliers, Un\, is similar to the feasible method. That is,

<9L

/(Un ) . - k , if Un > -0

(Un J 1+1
- J 3Un ' (1.102)

t
, if Un =

and

Dn(e
n

, y
n
, y

n ' N+1
) > o . (1.103)

A computational algorithm for this two-level structure

then proceeds as follows.

1. Assume values for \ ', U ', n. = 1, 2, . . . , N, and send

them to the first-level subsystems.
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2. Solve the subproblems of the first-level subsystems.

This yields solutions p
n

, % Ti
{.v

n
, Xn , Un ) ,

y (p , X , U ), and x (0 , y ) .

3. Send the first-level solutions to the second level
PL

which forms the Quantities En and .

£L
. . If En r and *^ °> use eauations (1.106) and

(1.102) to generate a new set of X and U .

5. Send new values of Xn and Un back to the first level
2L

and iterate from step 2, until En = 0, > 0, for

all n.

A sufficient condition for the algorithm to converge is

that each subobjective function S
n be maximized for each A.

n and

Un . Proof of the convergence is given in Appendix II and

reference (6, 13)

.

Ij.. Discussion

A. Note that these two techniques convert an optimization

problem of high dimensionality with inequality constraints into

the iterated solution of a number of smaller unconstrained sub-

problems and simple second-level adjustment procedures. This

represents a modification of the results in section 3. Since

unconstrained problems are, in general, much easier to solve

than problems with inequality constraints, it is desirable to

delegate the Kuhn-Tucker multipliers Un to the second level

since this yields unconstrained subproblems.
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B. In the nonfeasible decomposition method we can inter-

n
pret the multipliers \ as the prices which a subsystem must

pay in. buying its feeds j
n from other subsystems. Similarly,

p
n can be interpreted as the prices that the subsystem charges

for its products which go to other subsystems. The subobjective

function St> is then the net profit a subsystem makes from all

its transactions with other subsystems and with the outside of

the system boundary with this interpretation.

xn becomes the supply of products produced by the nth sub-

system, and y
n becomes the amount which the nth subsystem de-

mands. The function En is then the excess of demand over sup-

ply. The coordination algorithm represented by equation (1.106)

is analogous to a competitive economy.

C. The feasible decomposition, methods have been used by

Mittem and Nemhauser (23), by Aris, Nemhauser, and Wilde (2I4J,

and by Nemhauser and Wilde (25) to reduce recycle problems to

sequential problems which can then be treated by dynamic pro-

gramming. It can. be shown that feasible methods are the dual

of nonfeasible methods ( li|_) . Conceptually, both feasible and

nonfeasible methods have distinct economic interpretations,

one as a perfectly competitive economic system, the other as a

monopolistic economic scheme.



PART TWO

THE MAXIMUM PRINCIPLE AND THE

MULTI-LEVEL SYSTEM THEORY
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CHAPTER I. INTRODUCTION

Despite the recent profusion of work on process optimiza-

tion, two areas still pose serious difficulties. The first of

these encompasses problems in which the optimization is subject

to inequality constraints on the process variables. Such con-

straints are often necessary to make the optimization meaning-

ful, and they appear in a variety of forms. The second area

deals with multidimensional processes of complex system. Any

optimization is here made difficult by the implicit nature of

the process model. The presence of inequality constraints

further complicates matters.

In this part we shall first present an extended version of

the discrete maximum principle for the optimization of simple

staged processes subject to Inequality constraints of a com-

pletely general form and the computational schemes to solve the

so-called two-point boundary value problem. Secondly, we shall

discuss the interrelationship between the discrete maximum prin-

ciple and the two-level structure of the multi-level system

theory. It can be shown that the adjoint variables, z
n

, Intro-

duced in the discrete maximum principle will have the same func-

tion as the Lagrange multipliers (called the prices), p , in-

troduced in the multi-level system theory, and that the adjoint
. 2E'n

function, i.e., z
n = , is a necessary condition that the

^xn"!
Lagrangian be stationary with respect to its arguments, xn .
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CHAPTER II. THE DISCRETE MAXIMUM PRINCIPLE

1. The Algorithm for the Simple
Feedback Processes

The simple feedback process described previously can be

represented by a set of the performance equations

xn = T
n
(0

n
, x11" 1

)

'

(2.1)

y
n,N+l = Vn (0n , xn -!) (2.2)

n = 1, 2, . .., N,

the mixing equation

x° = M(xN , xf ), xf = given (2.3)

and the objective function

S = Z f
n
(6

n
, y

n ' N+1
) . (2.k)

n=l

a optimization problems associated with such a process,

as shown in the previous part, can be solved by the two-level

system theory. It can also be shown that the same results can

be obtained from the discrete maximum principle.

By introducing a new state variable xn -, , such that

with

x
s+i = x£i + rn(e"> y

n
'
N+1

) ( 2 -5)

n = 1, 2, . . . , N,

s+1

Notice that in order to obtain clarity, the inequality
constraints Rn (6

n
, x"

n_
, y

n
> ) > are temporarily ignored.

These are considered at the end of this section where it is
shown that none of the main results are altered by their presence
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we can. reduce the problem to the standard form in the discrete

maximum principle.

Equations (2.1), (2.2), and (2.5) with the mixing equation,

equation (2.3), completely specify an enlarged process with

( s + 1) state variables and with x + n as its objective func-

tion, i.e.,

S = T"
1

c x
N = x

N
(2 6)b

' A, c
i
x
i

xs+l * {d ' 0}

i=l

The procedure for solving such an optimization problem by

the discrete maximum principle is to introduce an (s + 1) di-

mensional adjoint vector z
n and a Hamiltonian function Hn

satisfying ( 21)

.

Hn = (zn )

T
xn (2.7)

z
n-l = .

with the boundary conditions

s n 2M,(xN

2.8)

Z7 - \L z°. —J-^— = (2.9)
X A — I J

tr z9 —

i

j=l J 2x£

n = 1, 2, . . . , N,

and

i = 1, 2,

z
s+l

=1 (2 ' 10 >

and to determine the optimal sequence of the decision n from

the conditions

= (2.11)

n. = 1 , 2 , . . . , N

,



or, if 6
n

is constrained, the optimal decision vector 6 n is de-

termined either by solving equation (2.11) for n when 6 n is

interior to the constrained region or by searching the boundary

of the region to satisfy

Hn = maximum (2.12)

n = 1, 2, ..., N.

It may be noted that the performance equations, equations

(2.1) and (2.5), can be written in terms of the Hamiltonian

function as

(2.13)

(2.10)

z^ =~^= <+1 , n = 1, 2, ..., N. (2.14)

s+1

= xn .

2zn

In this pr oblem,

s+1

we have

= 1

and

Combining these two equations gives

z£+1
= 1 , n = 1, 2, ..., N. (2.15)

We separate the (s + l)th component from others, that is,

T

1

nH" = (,«) x" + z<<+1 xs+1

= (zn )

T
xn + x":} + fn (e

n
, y

n ' N+1
)

= (zn )

T
Tn (9

n
, x^ 1

) + xn;l + fn (6
n

, y
n > N+1

)3+1
(2.16)

ind

Note that _z
n and xn ape truncated vectors with s

dimension.
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z
11 ' 1 - = (z

n
)

± -= + . (2.17)

The necessary condition fop an interior maximum is

9En „ *Tn (0n , xn-!) 2fn
= (z^)

1 = + - . (2.18)

The optimal solution can be obtained from solving simul-

taneously equations (2.1), (2.17), and (2.l8) with the boundary

conditions (2.9)

.

2. Computational Scheme

As shown in. the preceding section, by the use of the maxi-

mum principle the optimization problem is reduced to that of

solving a set of simultaneous equations. One of the major dif-

ficulties in such work is the solution of the so-called two-

point (or split) boundary value problem, i.e., solving a set of

simultaneous equations with mixed boundary conditions. It

represents, in. fact, the major difficulty and, although numer-

ical analysts have given considerable attention to the two-

point boundary problem, the case that arises in the study of

optimization tends to be particularly difficult. One way of

solving this problem is the so-called steepest ascent iteration

method
1

(22)

.

It is recalled that according to the maximum principle,

Sometimes referred to as the "gradient method in function
space" and by Merriam (26) as the "relaxation method".
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9 n ' jsen to maximize the Plamiltonian Hn as a func i
of

maximization requires, however, knowledge of the cor-

rect z
n

. Thus there are two ways in approaching the optimal

point: one starts from guessing the decision variable 9n , and

one starts from guessing the adjoint variables z
n or state

variables xn .

Steepest Ascent of the Hamiltonian . Suppose that the

estimation of 9 n is corrected in such a direction as to increase

For example, at every time the following rule might be used

to proceed from the ith to the (i + l)th approximation (22)

:

e?,,,, = e* + k
(i+D ~ *(i) ?Qn

(2.19)

en=e?
i)

where k is a suitable positive constant. The sequence of com-

tations for one iteration would then be as follows:

(a) Given the ith estimate of G
n stored in the computer

(originally a guess), computations according to equa-

tion (2.1) are carried out subject to the specified

initial conditions, and the resulting values of xn

are stored.

(b) Given the stored values of xn , the adjoint functions,

equation (2.17), are calculated in reverse stage num-

ber with the boundary conditions, equation (2.9).

These equations are stable if the transformation-

equations are stable.

(c) At each step of numerical integration, as z
n becomes

available, 6
n is up-dated according to rule, equa-

tion (2.19)

.



53

It has been shown. (22) that for sufficiently small values

of k, the sequence of computations for this iteration would

converge to the optimal point, i.e., where

<?H
n

?Q n.

= . 2.20)

e
n
=e

n

B. Adjusting the . Ad,joint Variables . Let the performance

equation, equation (2.1), be relaxed, which means cutting of

the connection between units, and assume values of z
n

, n = 1,

2, ..., N. Then, from equations (2.17) and (2.18), we can solve

for n and x ~
. If the correct values for z

n have been chosen,

the values of n and xn which are calculated from equations

(2.17) and (2.l8) will satisfy the performance equation, equa-

tion. (2.1). If the values of z
n chosen are not correct, then

the equation. (2.1) will not be satisfied and we must choose a

different set of values for adjoint variables, z , n = 1, 2,

. . . , N.

The adjustment of the adjoint variables depends on the

amount that the performance equation (2.1) did not satisfy, i.e.,

n n r n. mn,_n. n-lx? , ,

z
( i+1 )

~ z (-\ + k jx - T (6 , x )j (2.21)

where k is a suitable positive constant. The computational

sequence for this Iterative procedure is as follows:

(a) Given the ith estimate of z
n

, n = 1, 2, ..., N stored

in the computer (originally a guess), computations

according to equations (2.17) and (2.l8) are carried

out subject to the boundary conditions (2.9), and the

resulting values of 6 and x ' variables are stored.

n. n-1
b) With the stored values of and x equation (2.21)
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adjusts a new value of z
n

.

(c) The iteration continues until equation (2.1) is

satisfied.

3. Simple Sequential Process With Constraints

or a process with constraints on both decision and state

variables, as given in the rn dimensional vector form

Rn (G n , x11" 1
, y

n
)
> (2.22)

the necessary conditions for an optimum can be obtained by

combining the Kuhn and Tucker conditions (lo) with the algo-

rithm of the discrete maximum principle (21).

The Hamiltonian is defined as

Hn = (z
n

)

T
x'
n

+ (U
n

)

T
Rn . (2.23)

—n —

n

The necessary conditions for a saddle point in 9 and u ,

(un 2" 0), that is, Hn is a maximum with respect to G
n and a

minimum with respect to un , are (l6)

(2.1)

(2.2^)

num (2.25)

(2.26)

xn = T
n (xn-i^ e

'

3 z"

n-1

B^1
- 1

ZKn

Hn = ma.— U . OP
3Q n

un >

-MSiote that there are other treatments of this problem
suggested in references (18, 27, 28).
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( un.)T Rn = (2.27)

and

Rn>: , n '= 1/ 2, . . . , N (2.28)

with the boundary conditions

xf = a

z
N =
1

3=1 j **?

Tor i = :s + 1

for i = 1, 2 , . . . , s

(2.29)

(2.30)

Note that equations (2.26) through (2.28) are the so-called

Kuhn-Tucker conditions (l6). There are a number of possible al-

gorithms for solving equations (2.1) and ( 2 . 2l\.) through (2.30).

One computational scheme suggested is a gradient search

on the surface H , which simultaneously ascends in 6 (the max-

imizing variable) and descends in u (the minimizing variable).

The technique must, of course, take account of the restrictions,

u — 0, and is given in the following form (19)

:

e
n = e

n
+ k— (2.31)

«?G
n

un = u n + k un (2.32)

where k is a suitable constant, and

r , if u? = and R. >
• n. j

' i i , ,

v
±

=
j

(2.33)
^ -R 3

? , otherwise
l

J- "~ J_ m ^—9 9 * * 9 *

The computation proceeds as follows:

n n
(a) Choose initial values for 6 and u .

(b) Find the corresponding. xn by forward solution of
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tie performance equation, equation (2.1), with the

boundary conditions, equation (2.29).

(c) Obtain the values of the adjoint variables z , by

ba -'d solution of equation ( 2 . 2L|_) with the

boundary conditions, eauation (2.30).

Evaluate and . If these values are nonzero,
8n

adjust 6
n and un by equations (2.31) and (2.32) s

return to step (b).

(e) The process is repeated until and .u are zero,

at which time the solution is optimal,

be above algorithm is guaranteed (15) to converge to a

. obal maximum of the original objective function S, provided

irid Hn are concave functions of 6 , n = 1, 2, ..., N. The

algorithm converges to at least a local maximum of S provided

S and Rn are locally concave..

To prove the above assertions it is necessary to prove

gradient of the Hamiltonian without inequality con-

straints is the same as the gradient of the objective function

S, with respect to 6
n

. Such a proof can be found in references

(30, 15) • Once we have the desired proof, we can then fall

back on the well known proofs that the Lagrangian differential

gradie Lod converges under the above conditions (29).

Another computational scheme would be to start by assuming

a set of values for z
J and u , n = 1, 2, . .

.
, N. Then compute

forward by using equations (2.25) and (2.26) together with the

boundary conditions, equations (2.29) and (2.30), to obtain 6
n

and xn , n =1, 2, ..., N. Using n
, xn in equation (2.1), we
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can check if the assumed values are correct. if not, the

assumed values are improved according to the following equations

^Hn

z n. = zn + k (xn _ ___) (2.3I4.)

n n
,

-. • n / ^ \u = u + k u (2.35)

where k is a suitable positive constant, and

if un = and Rn :>

un =
. (2.36

•R
n otherwise.

Essentially, this algorithm is the same as that described

in the previous chapter. And it has been proved to converge
N n nasymptotically to the correct set of z and u ', if such sub-

objective function is at least locally maximized for each set

of z
n

(6).

CHAPTER .III. THE INTERRELATIONSHIP BETWEEN
THE DISCRETE MAXIMUM PRINCIPLE AND

THE MULTI-LEVEL SYSTEM THEORY

We know that there exists a close relation among the maxi-

mum principle, dynamic programming, and the calculus of varia-

tions (l8). In this chapter we shall show that there also

exists a close relation between the maximum principle and the

two-level structure of the multi-level system theory.

The multi-level system theory as presented in Part One is

based on the decomposition of the Lagrangian of an integrated

system. The necessary condition for the system to be extremum

is that the Lagrangian be stationary with respect to all its

arguments, which include the Lagrange multipliers. By
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decompos i Lagrangian of the original integrated probl<.

le system is decomposed into small subsystems. Then a

coordination algorithm manipulates the Lagrangian multipliers

of the subproblems to the point where the solutions of the s

problems correspond to the solution of the original integrated

problem. On the other hand, by introducing the adjoint vari-

ables, the discrete maximum principle decomposes the overall

extremum condition into the cascaded extremum conditions. It

has been shown that for a system to attain its local extremum

value, it is necessary to choose a set of decision vectors such

Hamiltonian for each unit is stationary or extremum.

srefore if we can show that the Lagrange multipliers in the

Lti-level system theory are the same as the adjoint variables

in the maximum principle, and that the adjoint functions, i.e.,

2xfl ~ 1

are exactly the same as the necessary conditions that the La-

grangian be stationary with respect to its arguments, x , then

the discrete maximum principle can be shown to be equivalent to

the multi-level system theory. However, the multi-level system

.aory employs a price-adjustment rule for adjusting the multi-

pliers to achieve the optimum of the original integrated prob-

lem. It also gives an economic interpretation to the subprob-

lems resulting from the decomposition. But the discrete maximum

principle neither employs any method for adjusting the adjoint

variables to achieve the optimum of the problem nor makes use

of any economic interpretation to the decomposition.
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In proving that the adjoint variables and the Lagrange

multipliers are the same, considering only the simple feedback

discrete cases, there will be little loss of generality. The

simple feedback discrete cases have been treated in detail in

Chapter III, Part One, by the multi-level system theory and by

the maximum principle in. section 1, Chapter II, Part Two.

By comparing the necessary conditions derived from the dis-

crete maximum principle, equations (2.2Lj_) through (2.29), with

those derived from the multi-level system theory, equations

(1.10) through (1.15) in Part One, we see that the Lagrange

multipliers, (or the prices of xn ) , p
n

, in the multi-level

system theory are actually the adjoint variables zn in the dis-

crete maximum principle, and that the adjoint function, equa-

tion (2.2i|_), of the maximum principle Is actually a necessary

condition that the Lagrangian. be stationary with respect to

its arguments xn , equation (l.ll) in Part One.

By comparing the computational schemes, It is easy to

recognize that the price-adjustment rule, equation (1.17) in

Part One, used in. the second-level problem of the multi-level

theory Is exactly the same as the rule for adjusting the ad-

joint variables, equation (2.21), suggested in the preceding

sections

.

In the feasible decomposition method of the multi-level

system theory, derived in section 3, Chapter V, Part One, it

is assumed that the decision vector n has at least as many

components as the state vector xn and the Jacoblan matrix

(fn ) n is of full rank of all 6 n and xn . It is easy to
e
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recognize that if the components of vector n and x are exactly

the same, the feasible decomposition method and the steepest

ascent of the Hamiltonian method suggested in the preceding

section will be identical. However, if the components of the

decision vector n are fewer than the components of the state

vector xn , then the feasible decomposition method fails. This

appears to be the weak point of the feasible decomposition

method. On the other hand, if the components of the decision

vector 9
n are more numerous than the components of the state

vector xn , the steepest ascent of the Hamiltonian method fails.

This means that the system will be overdetermined when all the

decision variables are specified, that is, the number of the

decision variables will be greater than the number of the in-

dependent variables. In this case we should use the feasible

decomposition method. Or, if the state variables are inter-

changed with the decision variables, the method of the steepest

ascent in the Hamiltonian space can be used.

So far we have compared only the two-level structure of

the multi-level system theory with the discrete maximum princi-

ple for the simple feedback process. It is plausible to extend

this comparison and identification to the multi-level structure,

which is more complex than the two-level structure. However,

such an extension appears to be, if not impossible, extremely

difficult. And the use of the multi-level system theory alone

to optimize the complex multi-level structure also appears to

be very tedious if compared with the use of the maximum

principle

.
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Although the multi-level system theory and the discrete

maximum principle can be proved to be mathematically equivalent,

the way of approach to an optimization problem according to

each method is quite different. By means of the multi-level

system theory, we can decompose the whole integrated system

into subsystems with smaller dimensions. The subsystems then

may be solved by any of the existing optimization techniques.

Thus it is plausible to construct, by combining the multi-level

approach with the discrete maximum principle, a powerful method

for optimizing the highly dimensional complex system. This

should be an area for future work.



PART THREE

PROCESS ANALYSIS AND DESIGN OP A SEQUENTIAL

REVERSE-OSMOSIS WATER PURIFICATION SYSTEM
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CHAPTER I. INTRODUCTION

The reverse-osmosis water purification process consists of

raising the pressure of an aqueous solution to a pressure above

its osmotic pressure and bringing it into contact with a selec-

tive membrane which is much more permeable to water than to the

impurities (solutes).

The use of reverse osmosis for water purification is being

considered for saline water, brackish water, and process waste

xvater. The process is also being considered for water purifi-

cation in remote areas where only small quantities of water are

needed. The process analysis and design study in this paper

are primarily intended for those applications where saline and

brackish waters are to be purified.

Because of its simplicity and low energy requirements (the

water undergoes no phase change and temperature changes are

small), reverse osmosis has been drawing widespread favorable

attention as a purification technique. It is now well estab-

lished that synthetic osmotic membranes, made of cellulose ace-

tate, formamide, and acetone, can be produced which are highly

permeable to water and sufficiently impermeable to dissolved

salts. Although the reproducibility and durability of these

membranes are still in doubt, the results obtained to date are

sufficiently encouraging to warrant a closer look at the pos-

sible economics of reverse osmosis as a water-desalting process.

This study is an attempt to investigate the reverse-osmosis

process in order to find ways in which the design can be improved



'low model of the reverse-osmosis unit is d -

vised. It is based on boundary-layer theory and one-dimensional

.ion I
". A set of system equations or a system model

jh relates the flow rate, en . quirement, and cost is

It is often desirable to formulate a model

lates the behavior of the process. This model may

be used to find the optimum design and operating conditions

1 the system. The design of a system of reverse osmosis units

connected in simple sequence is investigated in this study.

The proposed sequential process is described and iLS advan-

tages are c -Datively discussed in section 2. In section 3

a boundary-layer flow model is derived and the process based on

bhis model is analyzed for calculating the flow rate of fresh

water through the membrane. In section Lj_, the power requirement

for the process Is determined and the cost function Is derived.

A conceptual design of the process is given in section $.

CHAPTER II. DESCRIPTION OP PROCESS

The simplicity of the reverse-osmosis process is apparent

upon inspection of a flowsheet of the Aerojet pilot plant (33).

Basically the process consists of a pumping system to raise the

pressure of the brine solution, and of an array of selective

membranes. The only energy consumption required by the process

is that for driving the pumps. A reduction in energy consump-

tion will reduce the cost of the fresh water produced. The

minimum energy requirement in an ideal reverse-osmosis process
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would be achieved by applying a differential pressure, A~P

,

across the membrane. In other words, the pressure difference

should be only infinite simally greater than the osmotic pressure

of the brine solution. The concentration of the brine solution

should be allowed to increase only infinitesimally in the pro-

cess. A blowdown turbine can be used to recover the energy of

the high pressure reject brine solution. However, in the real

process there is an energy loss due to increasing the pressure

of the main brine solution, above the osmotic pressure and then

rejecting it to atmospheric pressure. Therefore there is a min-

imum energy requirement for the process, which is different from

that for the ideal process. Furthermore, the fresh water flux

through the osmotic membrane is a function of the pressure dif-

ference across it, which is the so-called driving force. To

minimize the capital cost of the separating ~unit requires

separating pressures substantially above the osmotic pressure

of the most concentrated brine in the system. Thus an economic

balance between energy and capital costs must be achieved by the

proper selection, of operating pressure and reject-brine concen-

tration.

As we have just stated, the pumping work is related to the

osmotic pressure of the brine solution. The energy consumption

is proportional to the pressure required in each stage. The

higher the osmotic pressure in the separator units, the greater

the ' energy consumption. The osmotic pressure of sea water con-

taining 35^000 p. p.m. (i.e., 3.5 wt. per cent) total salts is

approximately 2l\. atm. (Lj-7) • In diluted sea water it is roughly
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proportional to the salt concentration. As fresh water is re-

moved from the brine solution the salt concentration at the

membrane boundary becomes higher than that of the bulk solu-

tion. Accordingly the effective osmotic pressure, which is the

osmotic of the solution at the membrane surface, increases.

This effect of salt build-up at the membrane surface is signif-

icant with present-day membranes. It may become an increasingly

more important problem as better membranes are developed. This

boundary-layer effect will be discussed in more detail later.

To reduce this boundary-layer effect, the concentrated brine

solution in the boundary layer should be mixed with the main

stream at frequent intervals or the bulk solution flow rate

should be increased in order to reduce the thickness of the

boundary layer. This may be accomplished by using a recycle

flow to keep the flow in a turbulent condition.

In an attempt to optimize the design of a reverse-osmosis

process, Lonsdale, et aJL. {3k-) considered a simple one-separator

unit operation. The discharge salt solution in their best re-

sult contains nearly' 6 wt per cent of salt. To reduce the

boundary-layer effect, they proposed the use of a recycle flow.

However, from the viewpoint of thermodynamics, it is unwise to

mix 6 wt per cent solution with 3 • f? wt per cent (average) sea

water. Thus we propose a multi-stage sequential system as

shown in Pig. 1.

Since the osmotic pressure is proportional to the brine

concentration in diluted brine solutions, it is advantageous to

use a low pressure in the first stage where the concentration
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of salt is the lowest. Tho brine concentration increases as

the brine solution progresses throu, e plant. Therefore we

shall use a stepwise increase in pressure from stage to s;

that is, the plant will operate at as nearly an ideal reverse-

osmosis process as possible. Thus we insert a high pressure

pump between stages, which is used to increase the pressure in

ie process from one stage to the next.

Instead of mixing the high concentration output with the

relatively lower concentration inlet, we propose to use recycle

flow at each stage. Thus we insert a bring circulation pump to

recycle the flow in each stage.

For each stage, we use a conceptual shell-and-tube design

arrangement which clearly gives a lower capital cost per unit

membrane area than does the plate-and-frame configuration.

CHAPTER III. ANALYSIS OF PROCESS

1. Boundary-layer Flow Model

Water passing through the membrane is supplied to the mem-

brane boundary by bulk flow of solution normal to the membrane.

Salt is carried along with the water. If a steady state is to

be maintained without an accumulation of the salt on the mem-

brane, this salt must diffuse back into the main bulk solution.

A salt concentration gradient is established near the membrane

boundary such that the net salt flux through the membrane is

zero. This means that the effective osmotic pressure is greatei
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than that of the bulk solution. The situation near the mem-

brane boundary is shown, in Fig. 2. If we insert a circulation

pump at each stage, it is possible to make the flow in the tubes

be in the region of fully developed turbulent flow, that is, the

bulk solution flowing parallel to the osmotic membrane surface

is well mixed, and the existence of concentration and velocity

gradients is mainly confined to the laminar boundary layer.

In the absence of chemical reaction the ratio between the

concentration boundary-layer thickness, 6 C , and the momentum

transport boundary-layer thickness, 6, is shown by Bird, _et al .

(35) to be a constant which is dependent only on the value of

the Schmidt number, i.e.,

6

or

C
= Sc"

1 /3

6
C

= 8 • Sc--7 J (1)rV3

where Sc is the Schmidt number which is equal to the kinematic

viscosity , divided by the diffusion coefficient for the

solution, D
Q , or

Sc = — . (2)

The thickness of the laminar sublayer for turbulent flow

through pipes is given in Schlichting (l\.) to be equal to

5-5— (3)
v

-::-

sq cm
where )) is the kinematic viscosity ( ) , and v# is the

sec
friction velocity defined as
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Fig. 2. Velocity and salt concentration' gradients

in boundary layer adjacent to a membrane.
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v. Y^i? • w>

in which t^ is the shearing stress at the wall. v_
;;
_ is a measure

of the intensity of turbulent eddying and of the transfer of

momentum due to these fluctuations. For turbulent flow through

pipes, the shearing stress, Tq , can be calculated from the fol-

lowing equation (I4.) :

t = .0225 /V'A (i)i/k (5)
R

where f is the density of the fluid and U the maximum velocity

which is proportional to the mean velocity u. The ratio ~
U

equals 0.8 for turbulent flow through pipes. R is the radius

of a pipe and d = 2R denotes the diameter of the pipe. Intro-

ducing d into equation (5>) and then substituting equations (I4.)

and (5) into equation (3) yields

5 D $))

s =

S /0>0225u7/^ (

JL)1A
"

d 2

5

-tf^IiF .
2i/ 8

. (
—

)
7 /8 . d

-l/8
.
v<i/8-D

0.8

5 • (0.8)?/ 8
d

0.15 • L09P d?/ 8 )T 7
/

ti

33.3 • (0.82^) d

1.09 (^j-)
7 /

8

25.2 d 25.2 d

^d~^
_

Rj7^
(

)

(6)

M-
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ud ud
where Re = — = is the Reynolds number. Substituting

equation (6) into equation (l), we obtain

25.2 d

°
C

=
Scl/3 Re7/8

' (?)

In a sequence of stages the concentration and velocity

differ from stage to stage . If the viscosity, density, and dif-

fusivity are assumed to be constant, and the diameter of the

tubes is assumed to be the same in each stage, then the velocity

will change at each stage. Thus the Reynolds number will be

different in each stage. The concentration boundary-layer

thickness at the nth stage then becomes

25.2 d -,

6" = —-7- -77; (7a)
1

C
Sc 1 ^ (Ren )7/8

From equation (7) it can be recognized that the larger

Reynolds number which can be achieved by increasing the circu-

lation rate reduces the boundary-layer thickness. Thus the in-

crease in osmotic pressure arising because of the boundary layer

will undoubtedly have to be controlled by providing adequate

circulation rates through the tubes. We have assumed that the

system is isothermal and that there is no precipitation of salt

on the membrane surface. The experimental result of Merten

(37) suggests that alternative procedures may be devised to

control salt precipitation. The effects of circulation on flow

through an osmotic carrier have been experimentally observed by

Note that the superscript number n indicates the stage
number. Exponents, where required, will be written outside of
parentheses or brackets.
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Merten (37) • His results are in good agreement with equation

(7).

2. Simple Sequential Multi-stage System

The proposed sequential reverse-osmosis water desalination

system shown in Pig. 1 is of the form of a simple sequential

multi-stage model (39) as shown in Fig. 3. Each stage, except

the last stage, includes a membrane separator unit, a recycle

pump, and a high pressure pump between stages. Figure I4. gives

a schematic representation of the nth stage. The last stage,

stage N, includes a blowdown turbine in its outlet.

Let us now define the following symbols:

x11 = the average mass fraction of salt at the nth

stage

q
n = the mass flow rate of the brine solution dis-

lbm
charged from the nth stage ( )

hr
Wn = the mass flow rate of fresh water product from

lbm
the nth stage (

)

hr
W~ = the total mass flow rate of fresh water produced

lbm
from the whole system, ( ), that is,

hr
N

wf = "ZT wn '(8)

n=l

N = the total number of stages in the sequence of

the process.

Here we assume that the salt concentration of fresh water pro-

duced is negligible. We also assume that the recirculation rate
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p.

X
n-l

-X>

&

Circulation pump

A I

j

High press.™ '
^

;
pump

L

LI

I

Fig. 4. The representation of a single stage.

Where x represents the state vector

.

represents the decision vector.
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is sufficiently high with W . Therefore we may also assume

that the salt concentration in the bulk solution is constant,

that is, x
n = xn , where xn is the salt concentration of the

brine stream leaving stage n.

Then the total material balance for the process as a

whole is

q° = q
N

+ W
f

. (9)

The salt material balance for each stage is

„0 _ „l vl _ _ ^n vn _ „u vn (m)q x — q x — . . . — qx— qx. ^ iu ;

3. The Volumetric Plow Rate of Fresh Water
Produced at the nth Stage, Fn

The volumetric flux of water, Fn , through a membrane of

constant permeability has been reported by Merten (37) as

ft3
Fn = K(APn - TtS) (

) (11)
ft 2 - hr

ft-3

where K = the membrane constant ( )

ft 2 - hr - psi

Apn = the pressure difference across the membrane of the

nth stage (psi)

7t« = the osmotic pressure of the brine solution at the

membrane surface (psi).

To relate the osmotic pressure to the brine concentration,

Merten, _et al. (!|.0), has found that the expression

Tig = 12,100 x^ (psi) (12)

fits the experimental data of Tribus, et al. (lj.1), where x is

the average mass fraction of salt concentration at the membrane
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surface of the nth stage.

Now let us apply the boundary-layer flow analysis to the

nth stage. The pressure is uniform in the high pressure chamber

if the pressure drop due to bulk flow is negligible. A salt

material balance inside the concentration boundary layer for a

plane parallel to the membrane is described as follows.

dx11 xn

-D = Fn (13)
8

dy 1 - xn

j A ndx
where D o is the rate of migration of salt component in the

8
dy

direction from the membrane surface to the main bulk solution
xn

by diffusion, and Pn is the volumetric flow rate of salt
1 - 5c

n

in the direction from the main bulk solution to the membrane

surface by bulk motion or convection.

Therefore

dxn Fn xn

dy D 1 - xn
(34)

Since

^nxu

xn <<;l, = xn

1 - xn

equation (ll\.) can be simplified to

dxn Fn

- — = — dy . (15)
.

xn Da

If we assume D to be independent of x , integrating the right-
a

n
hand side of equation (if?) from to 5

„ ^n ,
An .

_

from x„ to x yields

and the left-hand side
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An
r xs dxn

^nx
\ n

pn
n

dy

'0

or

xn Fn

/n — = — 6 .

X* D
C

a

(16)

Substituting the concentration boundary-layer thickness, equa>

tion (7a), into equation (16), we have

x^ Pn 25.2 d

x^~~ D~ (Sc)
1 /3 (Re

n
)

7 /
6 '

£n = (17)

If we use the approximation

An An

/n — = ( 1)
xri . £n

(18)

n
in equation (17) and solve for F , we obtain

xn (Sc) 1
/3 (Ren )

7 /
8

D.

Fn = (_£ . 1}
x'

(19)
25.2 D

Substituting equations (19) and (12) into equation (11) and

solving for Xo, we obtain

25.2 d
xn (1 + KAPn — -r- )

(Sc) 1
/ 3 (Ren )

7 /
6 D a

. (20)Xn =

1 + 12,100 xn K
25.2 d

(Sc) 1
/ 3 (Ren )

7 /
8

D,

Substituting equation (20) into equation (19), we obtain the

volumetric flow rate of fresh water per unit area of membrane

from the nth stage as
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/^n.'K(APn - 12,100 x
Fn = -

25.2 d

1 + 12,100 xn K
(Sc) 1 /3 (Ren )?/8 D,

K(APn - 12,100 xn ) ft3(—
) (21)

xn ft 2 - hr
1 + C

(Re*)?/8

where

25.2 d

C .= 12,100 K
(Sc)i/3 D

a

K d
= 3.0£ x 1(P ™ . (22)

(Sc) 1
/ 3 D

a

The overall material balance around the nth stage is

q
n = q

n-l _ wn # (23)

Thus the fresh water produced from the nth stage is

Wn = Fn f> S
n (23a)

where Sn is the membrane area of the nth stage (ft ) and f is

lbm
the density of the fresh water ( )

.

ft3

The salt balance around the nth stage is

n^n
q x = q x

or

xXi =

q
11

q x

q
n-l _ Fn f> sn
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q°x°

x°q°
Fn P Sn

fcn-1

X xn-1

Sn

x° - x11 " 1 FnP(—)
q°

(21+)

I4.. Relation Between the Reynolds Number Re n

and the Recycle Ratio Rn

The cross- sectional area through which the brine solution

passes at the nth stage, A n (note that this is different from

the membrane area S
n

) , depends on the design of the separator

unit at each stage. Often it is economical to use unifying

equipment at each stage; thus we use at every stage a set of

m-tubes arranged parallel to each other as a separator unit.

Then the cross-sectional area remains the same at each stage and

can be given in terms of the diameter of the tubes as

rrm(d)
2

A n = A =
, (25)

k

Similarly, Sn - S for all stages.

The fluid velocity inside the tubes of the nth stage is

q
n-l (1 + r")An

u =
AP

^q
n_1

(1 + Rn )

nm(d) 2 f
(26)

The relation between the Reynolds number Ren and the

recycle ratio Rn at the nth stage is
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du7 d/> W1 " 1
(1 + R

n
)

Ren _ =

[L u- PmJi(d)

l^q"" 1 (1 + Rn )

= . (27)
u-rrmd

n-l 1° X
°

Substituting q = into equation (27), we obtain
xn-l

i

Ren = . (1 + R
n

) . (28)
\im xn_1 dit

CHAPTER IV. COST ANALYSIS

1. Operating Cost

Energy requirements per lb of fresh water product can be

determined as follows.

Let us consider any two successive stages as shown in

n
Pig. '5- E represents the pumping work of the high pressure

n
pump at the nth stage and Ep represents the pumping work of the

circulation pump at the nth stage.

Let Y[
, h , and t\ be the mechanical, pump, and turbine

efficiencies, and Y\ - the loss factor.

A . Energy Requirement for the High Pressure Pump at the

nth Stage . The pumping work E-, is primarily used to increase

the pressure from P to P
n

. Since the velocity difference

between the two successive stages is small, the kinetic energy

losses and friction energy losses can be included in the pump

efficiency. Thus the power requirement for high pressure
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pumping at the nth stage, E-, , is

1 + Y[~ Pn - Pn_1 _ psi - ft3
E? = q

n_1
( ) . (29)

1 nm >lV e hr

Fop one lb of total fpesh water produced, we have
m

E? 1 + nr P" - P
n_1

q
n_1 P^ - ft3— = -

—

t— (
) . (30)

Wf Wp r Wf lbm

Substituting equations (9) and (10) into equation (30) yields

q x

l i + Vf P
n

- P*"
1 x^ 1

wf ^rrtfp f x°
q0(1 "^

1 +7?f

nmnP

p
n _ p

n-l x

e
1

xo

xn-l (l _ _)
XN

i + nf

>1m>?p

A? - AP*" 1 x°

f
3

x0
xn-l (l )

XN

Enepgy Requirement fop the Recycle Pump

(3D

Stage . The enepgy required, Ep, includes the enepgy of circu-

lating the q
n_1Rn lkm /hr of fluid and that of the q

11" 1 flow wopk.

The fpiction loss comes lapgely from the fluid flowing in the

membrane separator unit. This lost wopk is (lj.2)

„ (un )

2
l _ i + n f

E" = kl (-) q
n " 1 (l + Rn )

£ (32)
d

2gc
d V>?p

where f is the friction factor, L is the length of the membrane

separator unit, and d is the tube diameter of the membrane

separator unit. q
n_1 (l + Rn ) is the amount of fluid flowing
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through the membrane separator unit, which is equal to

q
n-l (l + Rn }

= m 1_ '

un (33)

k

where m is the total number of tubes inside each membrane

separator unit as mentioned previously.

As discussed before, the fluid flow within the membrane

separator chamber would be in turbulent flow. Under this con-

dition, the friction factor can be approximated by (I4.3)

0.01+6
f = o-p • (3^

(Re n )

U *^

Thus for one lb of fresh water produced, the energy re-

quired for the recycle pump is

E^ 11(0.01+6) (un )

2 L rrm(d)
2

unP 1 + >?f2 _ (-)
Wf (Re n )

' 2 2gc d l4.Wf ^m^p

0.023 dun /° . \jl _ Lrrmd P 1 + r\ r
( )

3
( )

3 —~ . (35)
(Re n )

- 2
[i dP g cWf >Zm^p

Note that Lmrcd is equal to the membrane surface area S, and

du"/9

= Ren . By using equations (9) and (10), equation (35)

becomes

-2-= 0.023 (Ren )

2 *

( )

J
. (36)

Wf d ^ n ,

x° Scttirrtp

C. Energy Recovery at Reject-brine Turbine . The equation

for the energy recovery from depressurizing the high pressure

brine solution will be of the same form as equation (30) which

gives the energy requirement to pressurize the brine solution.
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Thus we have

E, PN - P° q
N

= V*m (1 - Vf)*p'im x - ii' /)

x'

Ap j

x^

Vim (1 " *?f)
—

x°
(37)

APN x°
= %nm (1- V — -

i
—- (37)

where P is the discharge pressure (usually it is one atmos-

phere) .

If the energy required is supplied from electricity the

electrical power cost, C e , is assumed to be $0,005 per kw-hr

in all cases.

2. Capital Cost

A. Pump and Turbine Installation Cost , C p . For simplicity

the costs of pump, turbine, and motor are assumed to be directly

proportional to horsepower rating in the horsepower range of

interest. An f.o.b. cost of $100 per kw has been assumed by

Merten, et al. (3ij.) .

B. Membrane Separator Unit Cost . Because of a lack of

information about the cost of this type of equipment, the cost

equation which Merten, ' e_t al. (3^4-) derived is used. It is

W*: Pmd AV
n 0.^ 0.189 f^~°-= (— ) (— ) (1.62 +— + — f -J3L-

)

(38)
Wn crm PF* l/d L/D ' APn



86

where

Wo = the mass of the shell-and-tube membrane separator

unit of nth stage (lb)
lbm

fm = the density of the material of construction ( -)

ft3
cr = the allowable stress of the material of con-v m

struction (psi)

L /d = the overall length-to-diameter ratio of the

membrane separator unit

Wn = the fresh water produced from the nth stage.

Changing equation (38) into the cost per lbm of the fresh water

produced, we have

wS wn w^ ^md APn o.$k 0.189 /en, wn
-S = — . -§ = ( )( )(1.62 + —— + — Y — ) — .

Wf Wf Wn crm Fn f L/D L/D p
n Wf

(39)

By using equations (9), (10), and (23a), equation (39) becomes

Wo /*md AP
n

0.5J+ 0.189 / crm FnS^— - ( )( Ml.62 + —— + — J ) -
W
f °~m

FU f L
/
D L

/
D A P

n

XN

Pmd s^pn
0.5U- 0.189 / o-m

= - — (1.62 + _. + __ y-2-) . (ko)
crm jP l/d l/d 1 4p*

q "
XN

We assume that the cost of the membrane separator unit, which

includes fabrication and installation costs, is proportional to

the weight of the material used. And the unit cost of the

material of construction is C
s

$/lb.

The annual capitalization charge for these equipment items

is calculated at 0.0 71+ of the initial cost per year, as
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recommended in the Office of Saline Water Report (ijij.) . An

assumption of a load factor of 330-on-stream days per year gives

a capitalization charge, *-p , of 9.1\. x 10 of initial cost per

hour on stream.

The total cost contributions of the system are in the form

n n
N E-i N E 9

c
t

= (rc
p

+ c
e)(E —+ Z ->

n=l W^ n=l Wf

E-
rn

J3 #- W^
+ (y.C C e ) — + ^C

s 2- -2 . (1H)F W
f

n=l Wf

Substituting equations (31), (3&), (37), and ( I4.O ) into equation

(1^.]) and combining all constants, we have

x° N APn - Apn- 1

C
t = B

l n ?"
x° 1 xn-!

1

XN

S • xN . N P o N.

+ (—)(— -) (b
2 I (Ren )

2 '°
+ B. I APn

q XN _ x I
2

! J
x

1 + V?
f

where Bx = ( f C
p

+ C e ) (ll3)

^>V7p
1 + >if ^ ^

p. ^ 3

Mm'
b
2

= 0.023 (fc p + c e ) P {—t; ) (^ }

Mmfp d P

B. = — (1.62 + —--) (l&)
a~~ L/Dm

0.189^C S Pm d

Bh = —7= ; (1|6)

B
5

= (f C
p

- C e ) Yl p
Y\ m (1 - Ylf) jf> . (kl)
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CHAPTER V. CONCEPTUAL DESIGN

1. Assumptions

(a) The flow model is fixed, but the geometric parameters

of the membrane separator unit itself, i.e., the pipe

diameter d, length-to-diameter ratio L D, and the

total tubes used m, are chosen arbitrarily.

(b) Each stage is geometrically similar. The membrane

of each stage, S, is identical.

(c) Salt concentration of fresh water produced is assumed

to be equal to zero, i.e., salt components cannot

pass through the membrane.

(d) Peed saline water solution contains 3 • 5 weight per

cent of salt components (average).

(e) The system is isothermal, and there is no precipi-

tation of salts on the membrane surface.

(f) The costs of the pump, turbine, and motor are assumed

to be directly proportional to horsepower rating in

the horsepower range of interest.

(g) The cost of the membrane separator unit is propor-

tional to the weight of the material used.

(h) D , n, P are assumed to be constant in the concen-

tration range of interest.

(i) Membrane constant K is assumed to be independent of

pressure.



2. System Variables and Number of System
Variables (for the Total N Stages;

89

(a) Mass flow rate of brine solution.

12
Q > Q > 0.* • • • t m.q

N
; N + 1

(b) Salt concentration.

-A. j, A. j( • « • ^ A j 1M

(c) Operating pressure at each stage.

N

(d) Fresh water produced from each stage.

N

P
1

, p
2

, . . ., p
N

;

W1 , W 2
, .. ., ¥N ;

(e) Recycle rate of each stage.

R1 , R 2
, ..., RN ; N

(f) Membrane area of one unit.

S 1

Total number of system variables = 5>N + 2

3. Relations and Number of Relations Among
Various Variables

(a) Total material balance at each stage.

.0 _ T.rl ^ l
q- = w^ + q

q
1 = W 2 + q

N

q
N-l = wN + q

N / •

(b) Salt material balance at each stage

11
q x = q x

2 2
q x =

N N= q x ; N
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(c) Mass transfer at each stage.

Sf> KlAp 1
- 12,100 xi;

W 1 = s^F1 =
x1

1 + C

W 2 = sfF2 =

(Rel)^/ 8

Sf K(A P
2

- 12,100 x2 )

x'

1 + C

(ReO2)7/8

J N<

WN = S^N =
SpK(A P - 12,100 xiN

)

xN

1 + C
(ReN) TJa

N

The total number of relations is thus 3N. The number of inde-

pendent variables is calculated as follows:

Total variables - total relations

= 5N + 2 - 3N = 2N + 2 .

Note that from the design equations and cost function we

can see that S and q° always appear together in the term

(S/q°). If we use {S Icp) as a single variable in place of S and

q , we can reduce by one variable the total number of independent

variables. Thus the total of independent variables becomes

2N + 1. The mechanical, pump, and turbine efficiencies, Y\ ,

yi-, Y[V f are a ll treated as parameters.
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14-. Illustrative Examples

The following data are used:

Da = 1.5 x 10 ^ cm^/sec, the diffusion constant for

Nacl in water at room temperature (I4.6).

J -

ft3
K = 0.86 x 10 -^ (324.)

ft^ - hr - psi

V> = 8 x 10" 3 for the brines at 30°C (I4.7)

sec

/> = 62.24. lbm /ft3

1
d — ft

214-

L/D = 8 (3k)

P = 2.7 x 62.24. lbm ft^ density of aluminum (JL|3)

(7L = 15,000 psi, allowable stress of aluminum (I4.3)

(f = 9.2+. x 10
-6 hr" 1

C
p

= 100 $ per kw (32;)

C e
= 0.005 $ per kw-hr (324-)

C
g

= L\. t l\. $ per lb of aluminum (324-)

>?m
= 0-9

nv = \ = ° • 8

Y\f = 0.1 .

Calculation of the constants is carried out as follows:

- Scl/3 = ,JL,l/3 . (

fl3C "'3

W3 . 8.x
Da 1.5 x 10-5



92

C =
3.05 x 10-5 Kd

ScV3 D

3.05 x 10 £ psi x 0.86 x 10"^
ft-

ft
ft 2 -hr-psi 21+

8.1 x 1.5 x 10-£
cm2 36OO sec

sec
x x 0.001076

hr

ft'

cm

= 2.32 x 10 3

1 + Vj
f

B
l = CCp + C

e)

1 $
= (9.1+ x 10" 6 — x 100 —

hr lew

+ 0.005
$

kw-hr
•)

1 + 0.1

lb
in

x 3.766 x 10 -7

62.1+ x 0.9 x 0.8
f t3

kw-hr 12 in

= O.7887 x 10
-8

(

ft-lb

$

x (•
)

ft

psi-lb
in

-6B
2

= 0.023 (9.1| x 10"° x 100 + 0.005)
$

kw-hr

1 + 0.1
x

lb.p-sec
(—

)

0.9 x 0.8 x 32.2 lb™- ft

8 x 10-3
lb

rn

cm'

sec
x 62. [j. x (

ft3 1/2I+ ft

ft*
x O.OOIO76 )

,2

3

cm'

kw-hr sec
x 3.766 x 10"' x 3600

lb^-ft hr
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$
= 0.14-835 x 10" 17

( )

ft 2 -hr

Bo =
b m

(1.62 +
)J

<r l/d

A -i $ lbm 1
9.1+ x 10"° hr" 1 x I4..I4. x 2.7 x 62.1; x — ft

lbm ft3 21+

15,000 psi
0.51+

(1.62 + )

8

$
= 0.3266 x 10" 7

( )

psi-ft -hr

0.189 ifC s rm d

Y(Tm L/D

, $ lb 1
0.189 x 9.1+ x 10 -b x L|_. JL|_ x 2.7 x 62.1|. — x — ft

hr-lbm ft3 2I4.

f/l5,000 psi x 8

= 0.133 x 10" 6 (—= )

y psi-ft 2-hr

B5 = (rc p - c e ) y\
v n m ci - W^

6 $
= ( 9.1+- x 10"° x 100 - 0.005) x 0.9 x 0.8 x (1 - 0.1)

kw-hr

1 ft3 kw-hr 12 in
x x 3.766 x 10"' x ( )

d

62.14. l^m lbf-ft ft

= -0.2286 x 10- 8
( ).

lbm - psi

In this illustrative example, the average salt concentration

within the membrane separator chamber of the nth stage xn is

assumed to be equal to the salt concentration in the outlet brine
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solution of the nth stages xn .

From equation (25), we see that this assumption is valid

for high recycle ratio; thus equation (21) becomes

K(Apn - 12,100 xn )

Fn = .
. (50)

1 + C
77ft

(Ren )?/ 8

Substituting equation (50) into equation (2I|_) and simplifying,

we obtain

1 s K(Apn - 12,100 xn )

-n

xn-l q x xn

1 + C -

= i . (5D

(Re^)?/8

A. Calculation of the Cost for ja 3-stage System for

Various Recycle Ratios but with the Same Operating Pressure at

Each Stage .

The total number of independent variables is

2N + 1 = 7 •

By choosing the Reynolds number for each stage as

Re 1 = .97 x 10^

Re 2 = 1.9Z+. x 10^

Re 3 = 2.9 x 10^ ,

the operating pressure drop as

P
1 = p

2 = p3 = loll;. 7 p3 i

or AP 1 = 4P 2 = Ap3 = 1,000 psi,

and the discharged concentration as

x3 = 0.071,

then the whole system will be fixed. Note that using the Rey-

nolds number at each stage as an independent variable renders



95

the calculations easier than using the recycle ratio as an in-

dependent variable.

The values of the Reynolds number used are based on the

assumption that the fluid velocities in the separator chamber

are

U
1 = 2 ft/sec

U 2 = ij. ft/sec

Ij3 = 6 ft/sec.

The corresponding values of (Ren )
''

, n = 1, 2, 3 , are

(Re 1
)

7/8 = (0.97 x 10^) 7/8 - 3.08 x 10 3

(Re 2
)
7/ 8 = (1.91). x 10^) ?/8 = 5.61 x 10 3

(Re3 )
7/8 = (2.9 x 10 1

*-) 7/8 = 8.0X4. x 10 3 .

Substituting the known values into equation (5l), we have

lbY

.

62. k
S ft 2

(
—

)

'm

x
ft3

0.035 q° lt>m/hr

6
ft3

0.86 x 10
_b

f

t

2 -hr-psi

0.035

(1000 - 12,100 x1 )psi

= 1

1 + 2.32 x 10 3
X1

3.08 x 10

3

and

x'

ft'

62. k
lbm

ft1 S

t

xl q° lbm/hr 0.035

. ft3
0.86 x 10 "^

3

f

t

2-hr-psi

1 + 2.32 x 10

(1000 - 12,100 x2 )psi

= 1

3
xc

5.6l x 103
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and

(1 S ft
0.071 (—

)

62.14.

lb.

ft

x2 q° lbm /hr 0.035

ft3
(1000 - 12,000 x 0.07D

ft 2-hr-psi
0.86 x 10"^

= 1 .

1 + 2.32 x 10
-3

0.071

9.0[[ x 103

By trial and error we can solve these three equations with three

unknowns. The results are

S ft 2

— = 0.11
nO lbm/hr

.1 _x- = .OI4.7

x2 = 0.06 .

Then we can calculate the cost for this system. First we

calculate

Z. (Re n )

2 ' 8
= (0.97 x 10^)

2,8
+ (1.914 x 10 6 )

2 ' 8

+ (2.9 x 10^) 2 ' 8 = I4..385 x 10 12
n=l

£" (ZiP
n

) = 3,000 psi
n=l

£- (AP")
1 /2 = 3 x (lOOO)

1 '
2

= 91+..92 l/p~sl .

n=l

Substituting these values into equation ( l_j_2 ) , we have

C
t = B

l

X° N APn -APn_1 S

t : + <-r)

,N

xO 1
1 - —

XN

rn-l q° xN - x°

/ N
(b2 T ( Rem 2.8
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N N -, /o) xL

+ Bo T. APn + B, f (AP
n)V 2

/+ B . ApN
3 1 ^ 1

j ^ XN _ x

o $ 0.035 1000 psi
O.7887 x 10"° ( + + 0)

psi - lbm 0.035 0.035
1 -

0.071

ft 2 0.071 ir, $
+ 0.11 ( )(0.1j.83 5 x 10

-1
'

lb^/hr 0.071 - 0.035) ft 2 -hr

$
x I4.. 385 x 10 12 + 0.3266 x 10" 7 x 3000 psi

psi-f

t

2 -hr

* /—
+ 0.133 x 10" b -== x 914-.92 /psi

ypsi-ft 2 -hr

« $ 0.035
- 0.2286 x 10"° x 1000 psi x

lb -psi 0.071 x 0.035m

= 14-.2255 x 10"£ = 0.35^5 ( ) .

lbm 1000 gal

B. Calculation of the Cost for a_ System of Three Stages

with a_ Stepwise Increase in the Recycle Ratio and Operating

Pressure from Stage to Stage

As in (a), the system has seven independent variables.

Here we use the same values of the Reynolds number as in. (a).

However, the operating pressure is increased from stage to stage,

as follows.

AP 1 = 1000 psi

AP 2 = 1250 psi

Ap3 = 1500 psi.

The discharging concentration is

x3 = 0.07 .
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Then the system is fixed. Substituting these values into equa-

tion ( 5l) , we have

f 1 S 62. If 0.86 x 10"^ (1000 - 12,100 x1 )

- (—

)

= 1

0.035 q° 0.035 x J

1 + 2.32 x 10-

3.08 x 10 3

1 S 62. If 0.86 x 10"^ (1250 - 12,100 x2 )

x2 \ — - (— ) f

i
1 q° 0.035

1 + 2.32 x 10

3

5.6l x 10

3

0.07

f l S 62. if 0.86 x lO
-
^- (1500 - 12,100 x 0.07T

x2 q 0.035 0.07
1 + 2.32 x 10 3 •

8.OI4. x 10

3

By trial and error, we can solve these three equations with

1 2
S

three unknowns, x , x , and — . The results are

q
u

x1 = O.Olfl

x2 = 0.051

S ft 2

= 0.05 .

Calculating the cost for this system, we obtain

Y_ (APn ) = 3750 psi
n=l

3

y (APn )

1/2 = (iooo)
1/2

+ (i25o)
1/2

+ (i5oo)
1/2

n=l

= 105.7 /i/P si

4Pn - AP 11 " 1 1000 250 250
+ +

,n-l 0.035 O.Olfl 1.051

= 3.957 x 10^ psi
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IT (Ren )

2 ' 8
= 14-.385 x 10 12 .

n=l

Substituting the values computed into the cost function,

equation (l\.2) , we have

0.035
,,

C t = O.7887 3.957 x 10^
0.035

1 -

0.07

0.07 TO
+ 0.05 (

) (0.4835 x lcr 1 ? x ij-385 x 10 12

0.07 - 0.035

+ 0.3266 x 10-7 x 3750 + 0.133 x 10" 6 x 105.7)

- 0.2286 x 10
-8 x 1500

= 3.4.192 x io
_5 — = 0.284.8 (

:

) .

lbm 1000 gal

G. Calculation of the Cost for a One-stage System . We

have the total number of independent variables of this system

=2+1=3.
(i) We choose the Reynolds number as (34)

Re = 15,600

the operating pressure as

A? = 1000 psi

and the discharged concentration as (34-)

x3 = 0.051 .

Then the whole system will be fixed.

Employing equation (5l)> we obtain

1 "s 62.4
0.051 1 (—

)

0.035 q° 0.035
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. lo-^ (1000 - 12,100 x 0.05D
= 1

. 32 x 10

3

(15,600) (/0

. s 58.708I|. s

0.051 (28.57 - (—
) = 1

I q° 1.025i4- '

or

1.0251]. s

(28.57 - 19.607) = — = 0.1565 .

58.70 81+ q°

The cost function is

0.035 1000
C t = O.7887 x 10

_ ° x ( )

0.035 0.035
1 -

0.051

0.051
/ 17 p D

+ 0.1565 x (
) (o.Lj.835 x 10" ir x (15,600)^-°

0.051 - 0.035

+ 0.3266 x lO"? x 1000 + 0.133 x (1000 )

1/ 2 x 10" 6
)

a 0.035
- 0.2286 x 10"° x 1000

0.051 - 0.035

= 3.9953 x 10~£ = 0.33261 ( ) .

lbm 1000 gal

(ii) If we use the same Reynolds number and operating

pressure, but use the discharging concentration at

x1 = 0.07

we have
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( 1 S 62.1+ 0.86 x 10"^ (1000 - 12,100 x 0.07)
0.07 '! } = 1

0.035 q° 0.035 0.07
1 + 2.32 x 10 3

1^.6563 x 10

3

or

/62.1+ 0.86 x 10 _i+ x 153
(28.57 - li+. 285)/ 1

I 0.035 1 + 0.031+9
J

q°

or

S ll|.. 285— = = 0.6302 .

q° 22.668

The value of the cost function is

0.035 1000
C
t

= O.7887 x 10~ b x (
)

0.035 0.035
1 -

0.07

°' 07
C 17 9 fl

+ 0.6302 ( ) (0.I+835 x 10" 17 x (I5,600) 2 * ti

0.07 - 0.035 I

+ 0.3266 x 10~ 7 x 1000 + 0.133 x (1000) 1/2 x 10
j

« 0.035
- 0.2286 x 10"° x 1000

0.07 - 0.035

= 6.355 x 10"^ = 0.529^ ( ) .

lbm 1000 gal

From the first and second examples, we see that by using a

gradually increasing operating pressure we can get the better

result (i.e., lower cost) than by using the same operating pres-

sure throughout the system. Prom the third example we can

recognize that our proposed sequential process is better than

the others. Although the processes presented in those examples

are yet to be optimized completely, we believe that we still can
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get the qualitative conclusion that the proposed process

better than other processes operated under these similar oper-

ating conditions.

Since we have already formulated a system model or a set

of system equations in previous chapters, we should be able to

use the model to find the optimum design and operating condi-

tions of the system. And since the proposed system has a set

of well defined system equations, and the transformation func-

tions are continuously differentiable with respect to the state

variables, from the previous two parts, we see that the system

can be optimized by means of the multi-level approach and/or

the discrete maximum principle. The main difficulty in a

numerical solution is the convergence of the iteration scheme.

The choice of the step size factor, k, is a difficulty. If it

is too large, the iteration scheme will not converge. Yet, if

it is too small, convergence is extremely slow. The step size

factor, k, can only be adjusted on a trial-and-error basis to

achieve convergence. This needs a lot of computer time. This

work will be left for future work.
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NOMENCLATURE FOR PART THREE

A, An = Cross-section area normal to the streamline of any

membrane separator unit, (ft 2 ).

K . d

C = 3.0£ x 10 •? constant.
ScV3 Da

C
Q

= Electrical power cost ($/kw-hr).

C p
= Pump and turbine installed cost ($/kw).

C = The unit cost of the material for constructing mem-

brane separator unit ($/lbm )

.

C-j- = The total cost per pound of fresh water produced ($/lbm ).

d = The diameter of the tubes in the membrane separator

unit.
sq cm

D a
= Molecular diffusion coefficient of salt ( )

.

sec
n

E-, = Pump work of high pressure pump at nth stage.

nEp = Pump work of circulation pump at nth stage.

E? = Energy recovery from the blowdown turbine at the end

of the process.

f = Panning friction factor.

Pn = The volumetric flow rate of fresh water product through

ft3
the membrane of nth stage ( ) .

ft 2 - hr

pn = The volumetric flow rate of salt component through the

ft-3

membrane of nth stage ( ) .

ft 2 - hr

ft3
K = Membrane constant ( ) .

ft 2 - hr - psi
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m = The total number of tubes within each membrane

separator unit.

= Total number of stages in the sequence of the process.

Pn = Pressure within membrane separator chamber of nth

stage (psi)

.

P = Atmosphere pressure ( li-j.- 7 psi).

A?n = Pn - P = Pressure difference across the membrane at

nth stage (psi)

.

qn = Mass flow rate of brine solution discharged from nth

stage (lbm/hr)

.

q = Mass flow rate of feed saline water (lbm/hr).

R = The radius of the tubes within the membrane separator

unit = 1/2 d.

Rn = Recycle ratio of nth stage.

Ren = Average Reynolds number at nth stage.

S, Sn = Membrane area of one membrane separator unit (ft^).

Sc = Schmidt number.

U = The maximum velocity within the membrane separator unit

u = Mean velocity within the membrane separator unit

= 0.8 U (for turbulent flow).

un = Mean velocity within the membrane separator chamber

of nth stage.

v.„ = Friction velocity.

Wn . = Mass flow rate of fresh water produced from nth

stage (lbm/hr)

.

Wf = Total mass flow rate of fresh water produced from the

(ibm/hr) system.
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Wg = The mass of the she 11- and- tube membrane separator unit

of nth stage (ibm ).

xn = The stage variable; here we denote the mass fraction of

the salt component in the outlet brine solution of nth

stage

.

xn = Average mass fraction of salt concentration within

membrane separator chamber of nth stage.

Xq = Average mass fraction of salt concentration at the

membrane surface of nth stage,

y = Distance normal to membrane boundary.

Greek Letters

5 = Momentum transport boundary-layer thickness.

6 = Mass transport boundary-layer thickness.

\i sq cm
= Kinematic viscosity = —

( ) .

f sec

\i - Viscosity of brine solution.

f = Density of brine solution, (lbm/ft3).

fm = Density of material of constriction (lbm/ft-^).

n = Decision variable of nth stage.

7[
n = The osmotic pressure of the brine solution at the
s

^

membrane surface of nth stage (psi).

Tq = Shearing stress at the wall.

Ylf = Loss factor.

Y}m = Mechanical efficiency.
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>| = Pump efficiency,

y) = Turbine efficiency.

= Capitalization charge of initial cost per hour in

sure am ($/hr)

.

c^ = Allowable stress of the material of construction (psi)
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PROOF FOR THE CONVERGENCE OF THE PRICE-
ADJTJSTMENT RULE

Consider the nth. subproblem. For some prices p
n

, let those

components of Rn which are zero at the subproblem extremum be

the first r
n

, < r
n 1 /

n
. That is, to separate Rn >; into

equality and inequality parts,

R?On
, y

n > N+1
, x"" 1

) =0, i = 1, 2, .... r" (A. la)

R
n
(6
n

;

jA.H+1^ x
n-l

}
„ Q>

. = p
n

r
n

+ ^_ _ ; ^ y
n

_ (A _ lb)

Define the Lagrangian for the nth subproblem as

rn

L Ti - S
n £ u

n
R

1

} . (A.1)
j=l J J

Substituting the expression for the subobjective function. Sn ,

equation (1.7), Chapter III, Part One, into this equation, the

Lagrangian becomes

in = f
n
(e
n

y
n

} + (p
n

}

T
T (Q

n^ xn-l }
_

( p
n-l

}

T xn-l

+ (u
n

)

T Rn (0
n

, j
n

, x11" 1
) . (A. 2)

The solutions n
, xn , un to this subproblem satisfy the

following':

<?Ln 9fn m 2Tn m <^R
n

- + (p^
1

+ (unr = (A. 3)

k = 1, 2, . . ., wn
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^ xk ?x£
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= 0, i = 1, 2, . . ., r 11
. (A. 5)
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3 following independent small perturbation of p
n is

made at each subsystem,

p
n _ p

n + A p
n

^ n = 1, 2, . . .
, N ( A . 6

)

a disturbance will alter the solutions of equations (A. 3)

. (A. 5) to

3^-1 +Axn-1

%* + AG 11 " 1 (A. 7)

and

un + Aun
.

The variational equations can be obtained from equations

(A. 3) through (A. 5) as
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1

k k k
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The quantities in equations (A.8) through (A. 10) are then

expanded in the Taylor series to the first-order terms. A

representative term in this expansion has the form

?fn Zfn wn 2 2fn

(

—

)A = — + H &e n
,

2 eg <?eg 3=1 2e^aeg J

( L denotes the quantities inside the bracket and is
evaluated at the perturbed states.
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sn-l ^2 fn

+ yr — A x1?" 1 + 0(£ 2
) (A. 11)

J k

where 0(£^) denotes the term Including second-order and those

of higher order.

When all terms in equation (A. 8) are expanded in this

manner, we obtain the following:
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A similar expression is obtained by expanding equation (A. 9).

Expansion of equation (A. 10) gives

,n >n

R • + Z -AeVl
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J
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s ^ R
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>n.Since each of the first ru components of R. is zero at the

original price Pq , equation. (A. 13) reduces to
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Collecting the coefficients of A0. and x. and ignoring
j j

all terms involving the product of two or more increments,

0( ), on the assumption it all of the functions f
n
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Tn (6
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, xn_1 ), and Rn (6
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, xn_1 ) depend smoothly on x11 " 1 and

, equation (A. 12) becomes
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Prom the subob jective function S
x

, equation (2.5), it can be

seen that
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By using equations (A. 3), (A. 16), and (A. 17), we can simplify

equation (A. 15) to obtain
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An analogous development applied to equation (A. 9) gives.
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Now we define the following vectors and matrices:
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Note, since (J
n

) and (K.) are symmetric, the matrix (3
n

) is

symmetric too. Let
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Ap" - 0, for j ± i

n-i
Ap .

=0, for all j.

Then dividing equations (A.l8) and (A. 19) by Ap^1

, taking

n
tit as Ap.- —>0,.and using the definitions, equations

(A. 20) through (A. 23), we obtain
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- 0, for j # i

for all j

n-1
dividing equations (A.l8) and (A. 19) by AP-r anb passing

A n-1
Ap. ' to the limit, we obtain.
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(A. 27)

is the (w + s ) dimensional unit vector with a

one in the (wn+i)th position.

n -1
Premultiplying equations (A.2ij_) and (A. 26) by (B ) . with

the assumption Bn is nonsingular, and substituting the. expres-

,"n /.. ^n >n .n-1sions for # Q, /c? p • and 2 R /dV^~ thus obtained into equations

(A. 25) and (A. 27), we have
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and
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For simplicity, we define the following expressions:
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re C
n is an rn by r

n matrix,- G-? is an rn-dimensional column
i

n n n
vector, and so is F. . Note that since B is symmetric, C is

so symmetric. Thus the relations, equations (A. 28) and

. 29) , become
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Premultiplying by (C n )~ , equations (A. 33) and (A. 31+)
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1
[c^l (A. 35)

and

{^| ' (A. 36)
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Premultlpiying by (B ) and making use of equations

(A. 35) and (A. 36), equations (A.2I4.) and (A. 26) become
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Now, in. order to obtain the elements of — , we return to

the definition of the vector of excess demand defined as (see

equation (I.76, Chapter III, Part One),

En (P) = x
n

- T
n
(6

n
, x11 " 1

).

Taking the first partial derivatives of En (P) with respect to

p , yie±ds
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m = 1 , 2, . . . , N

.

Recall that P =. (p . p : ... : p ) is a matrix and p
n

,

n = 1, 2, . . . , N, Is a. column vector.
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tremized, equations (A. 3), (A. 4), and (A. $) , it can be recog-

Lzed th bhe nth. subproblem solutions xn , %n
, and un are the

notions of p
n and p

n
. And since the solutions xn are de-

Lned by the (n+l)th subsystem, and they are only dependent

on the values of p
n and p

rj
, and not dependent on the value of

0En

Thus the only nonvanishing terms of are those where
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n = 2, 3, ..., N.

By using the definition of Q
n

, equation (A. 20), the ele-

ments of equations (A.40), (A. 41), and (A. 42) become
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3y substituting the matrices C , G^, and F-^ into equations

(A.lj.6), (A.ij.7), and (A.i;8), and noting that C n and Bn are sym-

metric, it can be seen that
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That means that and — are symmetric matrices. This enables

d Pm 3 V

dE
us to consider the entire matrix of — rather than just its sym-

metric part.
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To prove that is negative definite, let us introduce a

quadratic form defined as
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and i Xn j is a column vector with elements of s
n arbitrary real

numbers. When equations (A.I4.9) and (A.^O) are combined, the

quadratic form becomes
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)

^pn ?pn-!
C

j

/V- 1
}

T
(
-^-) T

(b-)
t (^-) fx^/r . (a. 51:

1 J
• ^P 11 " 1 2 V

11 - 1

Since (B) is a symmetric matrix and



a scalar quantity, their transpose should be identical,

is

(Bn )

T
= (Bn) ,

Lt > o Pn ,?pn-l <• J
J

= An-ll* (Z^L)*
( B

n) T
ffi fx*/ . (A. 52)

< J ^pn-1 apn J

Thus equation (A. 51) becomes

T (M (— )

T
(B

n
)

T (— ) (x*
n=l *« ^pn 7Pn

+ 2{xn-l}* (

Z*L,* (Bn }

T
(

ftf|
£x„)

,n ^n
+ Un_1

( r)
T (bV ( -) (A"" 1

. (A. 53)( r)
T (bV (

—

Is is a quadratic form of X's, which can be written as

p = (X} T
(A) |X] (A. 54)

where

)

l s s

fx}
T =({xl} T

(x2j
T

...
{
X»1

T
J

N
y sn

n=l

dimensional row vector.

We shall now prove that
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(a) = — . (a. 55:

Equation (A. 55) will be proved if we can show that the co-

T
0EU

efficient of {/Vn ) f^j i-n P ^ s an& t^-*3 coefficient of

\XU
}

T

l^"
1
]

in p is
^pn-l

(a) Proof that the coefficient of (\n ) fxn 1
|

in (3 is

^En
equal to . Prom equation (A.5l), "the coefficient of

(Xn
]

T
[An_1 } term is

2Qn j> Qn
(

) (.B
11

)

1
(

3Vn ^Pn-1

Taking the transpose of the equation (A. 21).) we have

Bn ) ( ) = ( )

X
(F/V

^pn i
<? p

n

- - ( ) -
( ) ( ) . (A. 56)

Postmultiplying equation (A. 5&) "by

(

T
}

we obtain

(
)

T
(B 11

)

1
( -)

<?pn 2pn_1



= - ( ) ( -) - ( ) ( ) ( -) . (A. 57)

lon (A. 2?) is substituted into equation (A. 57), we

obtain

( r (bV ;— ) = - (— )
( -) . i.$Q)

This equation is exactly tbe equation needed to complete

z'm proof.

i T •

(b) Proof that the coefficient of jxn
/ j

Xn l in (3 is equal
5En J

to

Prom equation (A.5l), the coefficient of fxn
j

(

\

n
( term

is

( )

T
(Bn )

T
( ) and ( r (bV ( ) .

2Pn 5Pn ^Pn <?P
n

By postmultiplying eouation (A. 56) by ( ), we obtain

( )

X (bV ( )

d Pn 2 Pn

J1
,Tn ^ Q

n aun ?Rn ^ Q
n

= - ( ) ( )
- ( ) ( ) ( ) . (A. 59)

<?Qn dv Ti 3v
n

<?Q
n

^Pn

By using the condition, equation (A. 25), equation (A. 59) becomes

( ) (Bn ) ( ) = -
( ) ( ) . (A. 60)

<?P
n ^pn ^Qn ^pn

Taking the transpose of the equation (A. 26), we obtain
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^Qn+1 v m m ?un+1 m 5Rn+1

( r (bV = (D)
T

- (
)

X
( -) (A. 61)

where (D) is a (w + s ) by s. matrix, with as by s unit

matrix I under a wn by s"
n null matrix.

5Qn+1

Postmultiplying by ( ), equation (A. 61 becomes
<?p

n

( r (bV (
)

o ^n o v^n

= (D)
T

( ) - ( )

T
( -) ( ) . (A. 62)

2pn <?P
n 3Ql

n+1
<?V

n

By using the condition of equation (A. 27), equation (A. 62)

becomes

2Qn+1 T T ^Qn T ^Qn
"

'Bn )~
( ) = (D)~ ( ) . (A. 63)

3 pn ^ p
n

^ p
n

Combining equations (A.60) and (A. 63), the coefficient of

{\
n
}

X
{Xn)term is

(D)
T

(
) - (

) ( ) . (A.6^)

^Pn ^Qn JVn

Comparison with equation (A.ijij.) shows that this quantity is

precisely .

9Vn

Thus equation (A. 55) is proved. This means that — is the
<?p

ma trice of the quadratic form (3. But from the definition of (3,

equation (A.lj.9), the quadratic form is a sum of smaller quad-

ratic forms, \En r (Bn ) {_En ] . Thus we link the negative

definiteness of—— with the negative definiteness of the ma-

trices (Bn ) .



»n\ / cn> _1
nee (B ) (B )

' = (I), which is positive definite, the

gative Lteness of the matrices (Bn ) will guarantee the

;ative definiteness of the ma trice, (Bn )

By the definition, equation (A. 23), the matrices B are

related to the matrices of second partial derivatives of the

subobjective functions S and of the constraints R. . The

structure of the matrices B will, of course, vary with P, since

Lch constraints are active and which are not depends upon P.

This leads to the following theorem (6)

.

3 orem . If for all n, the subobjective function Sn and

all the constraints Rn are concave (for maximization problems)

in the arguments x and G
n for all real values of ?, and if

at least one of these functions is strictly concave, the price-

justment rule, equation (1.17), Chapter III, Part One, is

asymptotically stable in the large, and convergence to P is

monotone in |E .

n n
Proof . 3y the hypotheses, the matrices J and K. m equa-

tions (A. 21) and (A. 22) are negative semidefinite, with at least

one negative definite, for ail P, , and x
J

, n = 1, 2, . .
.

,

N : = n 2 v
n

J-i % -*- -j- * 9 * • * 9 *

Then by equation (A. 23) all Bn , and hence (Pn ) , are

jative semidefinite, with at least one negative definite.

.is implies that in the expression, equation (A.Lj_9), the quad-

ratic form [3 is negative definite for all \ and P, which guar-
2E

antees the negative definite of the matrice — .
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It Is shown in section. 2, Chapter III, Part One, that

asymptotic stability in. the large of price-ad justment rule,
dV

equation (1.17), Chapter III, Part One, requires that — be
dt

negative definite for all P or, eouivalently, that in the

expression (1.20), Chapter III, Part One, — should be negative

definite for all P. Thus the proof is completed.
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A comparative and critical study of the multi-level system

theory and the maximum principle was carried out. While the

two-level structure of the multi-level theory was proved to be

identical to the discrete maximum principle for simple recycle

processes, it- appears to be extremely difficult, if not impos-

sible, to equate the multi-level theory to the discrete maximum

principle for> systems which are more complex than the two-level

structure. However, it is plausible that we can develop an

optimization technique in which both the multi-level theory and

the discrete maximum principle can be jointly used. In. an

attempt to develop such a method the maximum principle was

extended to systems with inequality constraints by using the

Kuhn and Tucker complementary slackness principle which is one

of the tools employed in developing the multi-level theory.

The system model and performance equations of the reverse-

osmosis water -purification process were developed for the pur-

pose of optimizing the process by means of the multi-level

approach and/or the discrete maximum principle.


