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I. Introduction

An outlier (outlying data point) can be roughly defined as an odd
point which is far away from or inconsistent with the rest of the data
points. Techmically, outlying data points lie near the boundary of the
smallest convex set that contains all the data points. In figure la,
set A is the smallest convex set containing all the data points. Points

Pl, P2, and P3 are outlying data points.

Figure 1.a

Outlying data points may contain gross error due to, for example,
malfunction of the instrument taking the measurements, the presence of
extreme conditions under which the measurements were taken, or the
sudden presence of unexpected external factor or events altering the
conditions under which the measurements were taken. These outlying
data points often have strong impact on parameter estimation, on hypo-
thesis testing and on statistical inferences in general. In this report,
we propose a diagnostic procedure for identifying multivariate outlying

observations.



Recently, the problems of detecting influential observations have
received great attention in the statistical literature (see e.g., Hoaglin
and Welsch (1978), Belsley, and et. al (1980) and Cook (1977, 1979)). An
influential observation is one which has large influence on the estimated
parameters. Specifically, deleting an influential observation in the
calculation of the estimator will produce an estimator which is substan-
tially different from the estimator based on all the data points. An
outlier may or may not be an influential data point. For example, in
figure 1lb, point C is an outlier, but it is not an influential observation.
Most of the diagnostic procedures for identifying influential observations
considered in the literature are in the framework of regression analysis
(i.e., a model is postulated and is fitted by the data). The diagnostic
procedure proposed here is a model independent. It is intended to be

as a diagnostic procedure for identifying outlying observations.

b 4

Figure 1.b



In Chapter 3, we show that the proposed diagnostic statistic is
related to quantities such as studentized residuals and residual variances.
Hence, we also hope that the proposed diagnostic procedure will be comple-
mentary to procedures for detecting influential observation when a medel
is postulated.

In Chapter 2, Cook's (1977) diagnostic method for detecting influent-
ial observations is reviewed. In Chapter 3, the proposed diagnostic
procedure is developed. This procedure is applied to Longley's (1967)
and Brownlee's (1965) data. A graphical method, based on multidimen-
sional scaling technique, in representing the data points is also

presented.



II. Cook's Method for Detecting Influential Observations

Cook (1977) developed a method for detecting influential data points
in estimation of the parameters B8 of the following linear model,
Y=XB+e : (2.1)
where Y is an nxl vector of observed responses, X is an nxp full rank
matrix of known constants, 8 is a pxl vector of unknown parameters and

e is an nxl vector of randomly distributed error such that E(e) = 0 and

E(e e') = 0?I. Here (2.1) is written in detail

71 =31 0 o
¥ x 8 e
Y = 2 X = 2 8 = 1 o= 2
L
_yn_ | —n _| _Bp—l_ _en_
The least squares estimate of B, is given by
B =X @l xy (2.2)

The normal theory (1-a)100% confidence ellipsoid for the unknown para-
meter vector B is given by the set of vector B* that satisfy

(8% - B)' (X'X) (B* - B)

2
p s

Fi o n-p) (2.3)

where 52 is the mean square error for fitting model (2.1) and Fl—a(p’ n-p)
is the (l-a) percentage point of the F-distribution with p and n-p
degrees of freedom.

Let E(i) denote the least squares estimate of B8 with the ith data

point being deleted. In view of (2.3), Cook (1977) suggested the weighted

distance between E(i) and B,
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(2.4)

as a measure of degree of influence that the ith data point has on the

estimate B of B. This provides a measure of the distance between B(i)

and é_in terms of level of significance of a F-distribution. Suppose,
for example that Di = Fl_a(p,n-p). Then it implies that the removal of
the ith data point moves the least squares estimate to the edge of the

(1-a)100% confidence region for B based on B. Cook (1977) felt that

~

for an uncomplicated analysis, one would like each B(i) to stay well

within a 10% confidence region.

1

Let H=X(X'X)- X', the projection matrix for fitting the linear

model (2.1). H is also called the hat matrix. Let vij be an element

of the ith row and the jth column of H, then clearly the ith diagomal

-1 A~
= ! ' —
element of H, Vi T Eg (X'X) X, - Let ¥y and Y, - ¥ be respectively

the predicted value and residual corresponding to the ith data point.

Then it can be shown that,

Var (ri) =g (1 - vii) (2.5)

Trace (H) = p (2.6)

0<Max v,, <1 2.7)
= i1 =

~

If Vi is close to 1, Var(ri) ~ 0 and thus Vi is essentially determined

by i alone, Vi (and thus the ith data point) may have an undue influence
on the determination of certain parameters of B. Design point with
relative to other data points) lie on (near) the

= Max v,. (large v

Vii PR ii
boundary of the smallest convex set containing all the design points.
Cook (1979) called it independent variable hull (IVH). 1In figure l.c,

the convex set A is an example if IVH when the number of independent

variables is two, point P has the largest T



Figure 1.c

In fitting the simple linear regression model,

(=; = %2

v, = =+ @ . (2.8)
z (xj - x)

3=1
Hence, the design point X, that is farthest away from x has the largest
; 5 . 4
Vg In figure 1.d, we see that Vii 7 Vi The ith data point (xi, yi)
has more influence on estimating the slope of the regression line than the

kth data point (xk, yk).
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Figure 1.d

The studentized residual is defined as:

r.
£, = =

i
ys2a - v, ) (2.9)

Hence ]tilmeasure how far the ith data point is away from the hyperplane
defined by the fitted regression equation, and large |ti| indicates that

the ith data point is potentially a critical observation. For example,

in figure l.e, point B has small Vig but large Itil.

Y
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Figure 1.e



Cook showed that,

v

D=t2'-"—""i"—'}_'_'

i i
l—vii

1
P (2.10)

Hence D i provide a combined measure which enables us to jugde simul-

taneously the measure |t1| and Vgt

The distance measure D1 can easily be extended to accommodate the

situation in which q(< = p) linear independent combinations of the
elements of B are of interest (Cook, 1977). Let 9 = CB where C is a

~

gxp rank q matrix. The distance Di(@’ between ¢ = CB and ¢(i) = Cﬁ(i)
is defined to be:

. 4ol B
(¢ - ¢, D'CEXX) Cl (& - $,:y)
D, (®) = (1) — () (2.11)
q s

When ¢ consists of a subset of, EZ of B' = (Ei,ﬁé), Cook found that,

- &
(i — Vi)
1 - vii

D, (8,) = (2.12)

(ng
QH- N

where V’i‘i . 0% is the variance of the ith predicted value from the

regression on the first p-q variables.



ITII. A Diagnostic Procedure Based on Prediction Region

3.1 Description of Procedure

In this chapter, we propose a diagnostic method for identifying
outlying multivariate observations. This method unlike Cook's method,
has no model assumption, and is based on only the relationship between
a single data point and the rest of the data points. Therefore, it
will be useful for data screening before any model is postulated for
the data. It will be shown that the proposed procedure is related to
Cook's method. Hence, we hope that the present procedure will be
complementary to Cook's method and other diagnostic procedures for

regression analysis.

-
Let z =| 21 3.1)
zl

N =

b

.o

Suppose Z1s Zgs ceen Zg are n random vectors from p-variate distribution
with mean vector U and covariance matrix £ of rank p, 1et_§ and S described

below be the usual sample mean vector and sample covariance matrix. i.e.,

n
| ahE
= = 3.2)
- n
1 ¢ = .
S= =7 1(z-2 (z -2
i=1

2 .
Under the normality assumption, the Hotelling T -statistic

¥ =aG-w sTE-w
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is distributed as %ﬁ:;;l-F, where F denoted an F-distribution with degrees

of freedom p and (n-p).

Let Z(i) be a (n-1)xp matrix obtained by deleting the ith row
z; from Z. Let Eji) and S{(i) be the sample mean and covariance matrix
based on the data matrix Z(i). A measure of the degree of influence the
ith data point z, has on the centroid (sample mean) of the data set

may be based on the Mahalanobis distance between z(i) and z:

T2 = a(a-1) (z(1) - 2)' s(1) 7

i (z(1) - z) (3.4)

Therefore, a data point with exceptionally large Ti—value relative to

those of other data points is potentially an outlying observation.

Since (z(i) - z) = (z(1) - Ei) Ti can also be written as

n

2 n-1 1

TV = == (g, = 2())" 5E)

(z; - z(1) {3.53
A (1-0)100% normal theory prediction region for a new observation z*

based on the data set Z(i) is the set of all z* values satisfying

2L a2t @ @ - 2@ <BER e

where Fl_a(p,n—p-l) is the (1-a)x100 percentage point of the F-distribution
with p and (n-p-1) degrees of freedom. Therefore, this also provides a
measure of the distance between z, and z(i) in terms of descriptive level
of significance. Suppose; for example, that the ith data point_gi lies
outside of its 95% prediction region (i.e., Ti > %é%g%%3 F'gs(p,n—p—l).
Such a situation may be cause for concern. For an uncomplicated

situation, we would like each data point 2z to stay well within its 90%

prediction region.



Ti is related to the diagnostic statistic A(i) suggested by
Belsley, Kuh, and Welsch (1980, p.27). A(i) is the Wilk's A-statistic
for testing the differences in mean between two populations where one
such population is represented by the ith data point and the second by

the rest of data points. It can be shown that,

- @2 1325 3.7

11



3.2. Computation Formulae for Ti

Ti can be expressed in terms of z and S as defined in (3.2) and

(3.3). The following two equations are useful:

(nz - z.)
2(1) = — (3.8)
n-1
(-2) S(1) = (-1) 8 - =27 (z; - 2) (z; - D' (3.9)
Therefore,
z, - z2(1) = (g - 2 (3.10)
——EL—q 1
o, EDEsTE -DE -2

S(i)-l =?—I S + (3.11)

il = =
1 - To=1)2 (z; - 2)'s (z; -2

Now using (3.10) and (3.11), we may write

2 1
Ty = (0-2) . = 1 (3.12)
l - &0 %
ahera 0., = fa, ~ B 50 (2, =2 (3.13)
ii = = = =

. ; 2
Hence, we only need to invert the matrix S for computing Ti

(for i=1,2,...,n)

12
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3.3 Outlying Observations

In general we would like each data point to stay well within a 90%

prediction region. However, data points with-exceptionally large Ti

relative to those of other data points should also be cause for concern.

Since Ti > = 0 and by equation (3.12),

2
0<=C (=M.
i n

T% is an increasing function of C,. and T? = o when C,, = (n—l)zjn.
i ii i ii

Since Cii is the Mahalanobis 'distance between 2z andlé, large values of
2

Ti indicate "outlying" data points - data points which occur near the

boundary of the smallest convex set containing all the data points.

Furthermore,
-1 =7
x'S '
Max 22 X - X5 X o, (3.14)
x EE XX
=00

where A is the largest eigenvalue of S-'1 and X, is its corresponding
eigenvector. Hence a data point lying in the direction along which the
data has the least variability is more likely to yield large Cii than
those lying in the direction along which the data has large variability.
A data point with the largest Cii need not be the one whose Euclidean
distange from the centroid z of the data is the greatest. If z; is any

data point with k replicates, then

-1 2 1
€11 = %(in)_} k

This suggests that data point corresponding to large Cii will tend to
lie in a region near the boundary of the smallest convex set containing

all the data points where the density of the data points is low.
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3.4 Relation to Studentized Residuals and Residual Variances in

Regression Analysis.

Let X =| x!

n

b

. ' = .
where Vi is the ith response depending on X (xil’xiz""’xip) which
is the corresponding vector of p explanatory variables. Here we

are fitting a linear model,

= 8, + EBJ x4t (3.15)

for i=1,2,..., n where the ei are uncorrelated random errors with
zero means and common variance o2,

Let Z = (X,Y) be nx(p+l) data matrix. It is shown that (Belsley,

Kuh, and Welsch, 1980, p.27)

2 _ 1 - AL
Ti = (n-2) -_TTEIT—— (3.16)
and
B .-
AD) =57 (- vyy) A+ o= (3.17)

where v , is the ith diagonal element of the hat matrix of X. t; is

the ith residual standardized by its estimated standard deviation and is

given by
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T4
t; = 3 (3.18)
s(i)” (1 - vii)
where r, is the ith residual and s(i)2 is the mean square error for
fitting the linear model (3.15) without the ith data point z, = (§i, yi).
Since, rz
9 .
(n-p-1) s(i)” = (n-p) sz-l_—t (3.19)
ii
equation (3.17) can be expressed as,
. ‘]
AL = =7 (1 - vii) (1 - E_T) (3.20)

where ti is the usual studentized residual as defined in (2.5).
We have observed in Chapter II that a potentially influential data

point will tend to have large v,

*
11 and/or large ty (or ti)' Therefore,

a small value of A(i) (large value of Ti) indiéated the critical nature
of the ith data point z;- Note that if (n-p-1) is large, then the size
of t, (or tg) has very little effect on the value of A(i) which
suggests the model independent nature of this procedure. Hence, the
present approach sometimes will identify outliers which may not be
influential in fitting the postulated linear model. However, when the
"ocorrectness" of the postulated model is in doubt, the present approach
will identify the critical nature of a data point that may be overlooked
by Cook's method or other regression diagnostic method.

To illustrate this point, two examples are considered below. In
figure 3.a, point A will have a large Ti but a small Di' Point A is an
outlier rather than an influential data point. In figure 3.b, point B
is an outlying data point. If the data is fitted by a simple regression

line, then point B will not be an influential point. However, if
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the data is fitted by a quadratic function of X, then point B will be
influential. In particular, it will have a strong impact on estimating
the regression coefficient of Xz. This point will be further examplified

in Section 3.5 when we consider Brownlee's data (1965).

Y
i

Figure 3.a



Figure 3.b
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3.5 Consequence of Deleting a Data Point

In this section, we shall examine the effect on Ti when an
outlying observation is deleted. Suppose an outlying data pointgi is
deleting from the data set, let ij(i) be the ij—value computed without

the outlying data point z;- As in Section 3.2, we can show that:

n
_n=2 mn: Cy* 52 1
s@ =57 3% ¥ - = (3.21)

C
j
where

Define the correlation between two data points 2z, and iy 88

C,.
- 1] (3.22)

p
ij
Vi1 %
Then from equation (3.21), we see that deleting an outlying data point

-1)2
z, with Cii being close to its upper bound £Egll_ and being highly corre-

i
lated to Ej (in the sense of (3.22)), will substantially increase the
ij-value (and thus the T?—value) for data point Ej' Hence, in general
when one of two highly correlated outlying observations is deleted, the

remaining observation is likely to become extremely critical as an

outlier.



3.6 Consequence of Deleting a Subset of Variables.

Partition an nxm data matrix Z into

& = riil z,

(3.23)

where Z1 and 22 have dimensions p and (m-p) respectively. Corresponding

to this partition, write

zZ, -z = z -
i il 1 (3.24)

Zyy £
for i=1,2,...,n

5= St 512
(3.25)
1
512 S22

The inverse of this partition matrix in terms of its submatrices

is given by
=l
S = | A Ap
(3.26)
1
Ao Ay
where
_ —1 —1 1- -1 "'1 ] -l
Ajp =Sy + Sy 819055, = 8157811815 815 8 (3.27)
A =-sts (s.. -5 .'sTis )7t (3.28)
12 1151222 = 812 81152
1571g 5L (3.29)

Ayg = (855 = 815 811519)
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Therefore,
- ;| -
- - 1 -
Cig = (2gy =2 8y;(2y ~ 2p)
L ok - =y
* 8810y -2y - (25~ 2p)) Ay
1 -1 - - '
(512 S11(-511 - 51) B (512 - EQ)) (3.30)
Note that (SIiSlz) is the estimated regression coefficients of

(25 = 2p) om (z5)= 2))-
S | &
12 511¢24; -2 - (24

obtained from regressing 22 on Zl. If p = m-1, z: is a scalar, then

(s —_22)) is the ith residual vector

(3.30) can be expressed as:

= -1 - n-1 2
= - 1 - ——— -—
Ciy = (25 - 281y - 2)) + o (L= e) (3.31)
where Vig is the ith diagonal element of the hat matrix of Zl, ti is

the ith studentized residual of Z2 regressing on Zl. From equation (3.30),
we see that deleting a subset of (m-p) variables in Z2 will decrease the
Cii-value. Suppose that the deletion of (m-p) variables in 22 reduces

the Cii-value of an outlying data point i to such an extent that it is

no longer an outlier. In this case, we may conclude that the (m-p)
measurements of z,, of the ith data point z, is responsible for the ith
data point_gi to bé an outlier. Also if the (m-p) variables in 22

are included as part of the independent variables used in fitting a

linear model involving the variables in the data set Z, then the ith

data point z, will likely have strong influence on the estimated

i
regression coefficients associated with 22. That is deletion of z, may
substantially change the estimated regression coefficients associated

with the (m-p) variables in 22.
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3.7 Examples

Example 1
Longley (1967) considered a data set (table 3.1) relating six
economic variables to total derived employment for the years 1947 to
1962. Cook (1977) applied his diagnostic method to this data set
yields the conclusion that the data points corresponding to 1951 and 1962
have the largest impact on the estimation of regression coefficients 8.
Removal of these points moves the least squares estimate of B outside
of the 10% confidence region for B based on E, Cook also observed that
the data point corresponding to 1956 although has the largest studentized
residual, the effect of this point on estimating_é is not significant.
The method based on the Hotelling statistic Ti shows that the
data points corresponding to 1951 and 1962 fall outside of the 90%

2-values are large

prediction region (see table 3.2). Also, their Ti

relative to those of the rest of the data points.
Example 2

The data set in table 3.3 is from Brownlee (1965). It contains
21 successive days of operation of a plant oxidizing ammonia to nitric
acid. Factor Xl is the flow of air to the plant, factor X2 is the
temperature of the cooling water entering the countercurrent nitric
oxide absorption tower, factor X3 is the concentration of nitric acid
in the absorbing liquid (it is not presented in the table) and the
response value of Y is ammonia lost as unabsorbed nitric oxides.

After a detail analysis Daniel and Wood (1971) concluded a linear

model which relates a linear and quadratic term for variable Xl'and a

linear term for variable X2 to the response variable Y. The fitting of



the model is based on 17 "wvalid" observations, where lst, 3rd, 4th and 22

21lst observations were declared outliers.

Cook (1979) used the same model with all 21 observations to illus-
trate the interesting results he obtained. Cook's diagnostic statistic
Di suggests that observations 1, 2, 4 and 21 are influential observations.
Observations 4 and 21 are the two most influential ones (see table 3.4).
We shall use the data set (excluding the variable K3) to illustrate the
results of the previous sections.

First we shall consider Brownlee's data set containing variables
1 X% and Xz. From Table 3.4, we see that observations 1, 2, 4

and 21 lie outside of their 907% prediction regions. Their Ti-values

Y, X

are large relative to those of other observations. Observation 21
being outside of the 99% prediction region is clearly the most extreme
outlying observation. Table 3.5 gives the correlation between observations
1, 2, 3, 4 and 21. The correlations between observations 1 and 2, 1 and 3,
4 and 21 are respectively .821, .798 and -.766. We should anticipate
that 2 and 3 will become extremely critical when 1 is deleted, and 4
will become extremely critical when 21 is deleted. Also, since the
correlation.between 2 and 3 is low, we expect that the deletion of 3
will have very little effect on observation 2. The 3rd, 4th and 5th
columns of Table 3.2 show the effect of deletion of observation 1, 3 and
21.

Now we shall consider Brownlee's data set containing variables Y,
Xl and XZ' Table 3.7 shows that observations 1 and 21 lie outside of the
90% prediction region. Again 21 is an extreme outlying observationm.

Observations 2, 3 and 4 lie just outside of the 80% prediction region. From

table 3.8, we see that 2 and 3 will become critical when 1 is deleted,



and 4 will become extremely critical when 21 is deleted (see column 3 23
and 4 of table 3.9). Column 4 to column 8 of table 3.9 also shows the
effects of deleting observations 21, 4, 1, 3 and 2 sequentially until
all five observations are deleted. It is interesting to note that there
is no data point in the remaining data set that has exceptionally large
Tg-value.
i

From tables 3.4 and 3.7, we see that the Ti—value for observation
2 decreases from 13.79 to 6.47 and observation 4 decreases when
the wvariable X% is deleted. Therefore, we should expect that deletion
of observations 2 and 4 will have strong influence on the estimate of
the regression coefficient associated with Xf. This can be seen by
Cook's (1979) analysis based on the partial F statistics and the diag-
nostic statistics Di corresponding to the regression coefficient
associated with X? (see table 4 of Cook (1979) and the last paragraph
of Cook's (1979) article). In fact, Cook (1979) felt that "for the
final data set of Daniel and Wood, the quadratic term is needed to
model a single observation".

From tables 3.7 and 3.10, we see that the Ti—value for observation
21 decreases from 23.7 to 0.13375. This suggests that the
measurement of variable Xl in observation 21 is responsible for its being
an extreme outlying observation. From the data set in table 3.3, we
see that observations 9, 10, 11 and 20 are alike. Observation 21 has the
3rd largest measurement on Xl, and its other two measurements on X2
and Y are the same as that of observation 20. Observations 1 and 2 have

the largest measurement on Xl, but their measurements on X2 and especially

Y are quite different from that of observations 9, 10, 11, 20 and 21.



This may explain why measurement on Xl in observation 21 has such a

strong impact on observation 2 being an extreme outlying observation.

24



Table 3.1

25
The Total Derived Employment and 6 Related Economic Variables
Presented by Longley (1967)

Obs. Xl X2 X3 X, XS 'X6 Y
1 83.0 234,289 2,356 1,590 107,608 1947 60,323
2 88.5 259,426 24325 1,456 108,632 1948 681,122
3 88.2 253,054 3,682 1,616 109,773 1949 60,171
4 89.5 284,599 34331 1,650 110,929 1950 61,187
5 96.2 328,975 2,099 3,099 112,075 1951 63,221
) 98.1 346,999 1,932 3,594 113,270 1952 63,639
72 99.0 365,385 1,870 3,547 115,094 1953 64,989
8 100.0 363,112 3,578 3,350 116,219 1954 63,761
9 101.2 397,469 2,904 3,048 117,388 1955 66,019
10 104.6 419,180 2,822 2..857 118,734 1956 67,857
11 108.4 442,769 2,936 2,758 120,445 1957 68,169
12 110.8 444,546 4,681 2,637 121,950 1958 66,513
13 112.6 482,704 3,813 2,552 123,366 1959 68,655
14 114.2 502,601 3,931 2,514 125,368 1960 69,564
15 115.7 518,173 4,806 2,572 127,852 1961 69,331
16 116.9 554,894 4,007 2,827 130,081 1962 70,551

X1l = GNP implicit price deflater 1954 = 100.

X2 = Gross National Product.

X3 = Unemployment.

X4 = Size of Armed Forces.

X5 = Noninstitutional Population 14 years of Age and Over.

X6 = Time.

Y = Total Derived Employment.



Table 3.2

List of Values of Ti, Di and Their Associated Confidence

Coefficients Based on Longley's Data

C.C. Based on 'I'2

Ogs. Year Ti . 1 GG Baﬁ;? on Di
1 1947 12.78 52.81 .85
2 1948 16.92 67.15 .02
3 1949 6.66 21.82 .00
4 1950 16.76 66.69 3.82
5 1951 34.65 91.57*% 26.64
6 1952 9.60 38.05 21
7 1953 13.56 55.98 .15
8 1954 12.51 51.76 .00
9 1955 10.19 41.04 .00
10 1956 17.14 6777 3.48
11 1957 6.52 21.02 .00
12 1958 11.48 47.26 .00
13 1959 7.99 29.36 {01
14 1960 3.21 4.70 .00
15 1961 12.93 53,51 1.47
16 1962 36.43 92.51 16.37

*

1951 is the full year of the Korean war.

26



Table 3.3

Data from Operation of a Plant for the Oxidation of

Ammonia to Nitric Acid, Brownlee (1965)

Obs | # X‘l XZ Y
1 80 27 42
2 80 27 37
3 75 25 37
4 62 24 28
5 62 22 18
6 62 23 18
7 62 24 19
8 62 24 20
9 58 23 15
10 58 18 14
11 58 18 14
12 58 17 13
13 58 18 11
14 58 19 12
15 50 18 8
16 50 18 7
17 50 19 8
18 50 19 8
19 50 20 9
20 56 20 15
21 70 20 15
X1l = Air flow
X2 = Cooling water inlet temperature
X3 = Acid concentration (not presented here)
Y = Stack loss



Table 3.4

2
List of Values of T, , D, and Their Associated Confidence
Coefficients Based on Brownlee's Data_Containing Variables

Y, X, X, and X;?

Obs. Ti C.C. Based on Ti Di C.C. Based on Di
# (%) (%)
1 13.423 94,00 .162 4.54
2 13.790 94.45 .193 6.15
3 6.485 71.02 .125 2.88
4 13.100 93.57 .304 12.88
5 1.283 10.71 .003 .00
6 2.568 29.18 .021 .09
7 4.337 51.99 042 .36
8 3.692 44 .40 .014 .05
9 3.802 45.75 .043 .38

10 2.915 3l .028 .17
11 2.915 34.11 .028 17
12 5.292 61.59 .062 .78
13 2.048 11.59 .001 .00
14 .991 7.01 .001 .00
15 5.519 39.58 .002 .00
16 3.319 39.58 .002 .00
17 3.341 39.90 .004 .00
18 3.341 ~39.90 .004 .00
19 4.129 49.64 .008 .02
20 .856 5.47 .008 - .01

Z1 23.838 99.18 .699 39.70
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Table 3.5

Correlations Between Observations 1, 2, 3, 4, 21

2
Based on Brownlee's Data Containing Variables Y, X5 X5, X

Obs. # 1 2 3 4 21
1 1 .821 .798 .097 -.120
2 1 .383 -.377 .322
3 1 .550 -.286
4 1 -.766

21 1




Based on Brownlee's Data Containing Variables

Table 3.6

List of Values of T2

Y; Xl, X2 and X%

Ty
Obs. . Deleted
# none i 3 21
1 13.42 * 21.20 12.65
2 13.79 38.73 15.36 19.09
3 6.48 12.81 * 6.33
4 13.10 13.06 16.36 30.77
5 1.28 1:19 1.19 1.65
6 2.57 2.44 2.38 2.99
7 4.34 4.12 4.06 4.34
8 3.69 3.47 3.45 3.48
9 3.80 3.71 3.65 3.67
10 2.92 2.71 2.98 2.92
11 2.92 2.71 2.98 2.92
12 5.29 4.96 5.34 5.64
13 2.05 2:97 1.89 3.87
14 .99 .97 .89 2.00
15 332 3.13 3.10 FudZ
16 3.32 3.10 3.16 3.09
17 3.34 3.12 3.21 3.23
18 3.34 3:12 3.2} 3.23
19 4.13 3.87 3.99 4.28
20 .86 .76 .87 .94
21 23.84 22.49 22.89 *
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Table 3.7
List of Values of Ti § Di and Their Associated Confidence

Coefficients Based on Brownlee's Data Containing Variables

Ys X1 and X2

Obs. Ti C.C. Based on Ti Dy C.C. Based on D4
# (%) (%)
1 8.96 91.96 235 12.91
2 6.47 83.70 .029 .71
3 6.41 83.40 174 8.76
4 6.78 85.08 .172 8.60
5 42 5.65 .006 .06
6 1.72 32.03 .027 .61
7 3.27 57.26 .060 1.98
8 2.48 45.63 .029 .70
9 3.49 59.99 .065 2.23

10 2.33 43.17 .024 .52
it} 2.33 43.17 .024 .52
12 4.63 71.78 .059 1.95
13 1.85 34.54 .004 .04
14 .78 12.78 .004 .04
15 1.68 31.36 .010 .14
16 1.44 26.49 .001 .00
17 1.54 28.60 .000 .00
18 1.54 28.60 .000 .00
19 2.30 42.63 .000 .00
20 .62 9.55 .007 .09
21 23.70 99.73 .949 56.20
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Table 3.8

Correlations Between Observations 1, 2, 3, 4, 21

Based on Brownlee's Data Containing Variables Y, Xl and X2

Obs. # 1 2 3 4 21
1 1 .763 .961 .539 -.163
2 1 .569 -.003 374
3 1 .619 -.283
4 1 -.918

g1 ' 1




List of Values of T2

Table 3.9

i

Based on Brownlee's Data Containing Variables Y, Xl and X2

E‘i

Obs. Obs. Deleted 21, 21,4,

# none 21 21,4 21,4,1 4,1,3 1,3,2

1 8.96 * 8.45 11.73 * * *

2 6.47 10.04 9.03 8.92 12.09 37.18 *

3 6.41 12.23 6.24 10.01 34.20 * *

4 6.78 8.63 15.64 ® % ® %

5 .42 .39 .87 .90 .80 .71 1.56

6 172 1.59 2.21 2.24 2.06 2.20 2.53

7 3.27 3.06 3.37 3.15 2.91 2.75 3.59

8 2.48 2.35 2.35 2.23 2.15 2.17 4.79

9 3.49 3.28 3.39 3.15 2.94 3.27 2.99
10 2.33 2w 22 2.39 2.22 2.07 2.43 3.17
11 2.33 2.22 2.39 2.22 2.07 2.43 3.17
12 4.63 4.40 5.05 4,92 4.57 4.47 4,47
13 1.85 1.71 3.71 5.33 5.50 8.54 9.12
14 .78 .70 1.83 2.51 2.55 3.85 3.87
15 1.68 1.62 1.72 2.12 1.94 1.96 2.18
16 1.44 1.46 1..33 1.33 1.26 1.20 2.52
17 1.54 1.55 1.56 1.87 1.72 1.55 2.31
18 1.54 1.55 1.56 1.87 1.72 1.55 2.31
19 2.30 2.27 2.57 3.46 3.20 3.04 3.34
20 .62 .58 .70 1.40 1.58 4.27 6.53
21 23.70 22.40 * * * *
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Table 3.10
List of Values of Ti

Based on Brownlee's Data Containing Variables Y and X2

Obs. # Ei_
1 8.81
2 4.77
3 5.88
4 1.12
5 26
6 1.45
7 3.15
8 2.47
9 3.47

10 2+33
11 2.33
12 4.60
13 1.23
14 .45
15 1.04
16 1.16
17 1.03
18 1.03
19 1.44
20 13

[p*)
=
=
W

*
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IV. Graphical Presentation

Here we apply the classical solution of the multi&imensicnal
scaling technique (see e.g. Chatfield and Collins, 1980) to comstruct
a configuration of the nldata points in Euclidean space. This technique
is essentially based on the method of principle components. We shall
use Cij as a measure of dissimilarities (or similarities) of two data
points.

We apply this graphical technique to Brownlee's data based on
2 22 X%. For these two sets of

data, no reduction of dimension is realized. Hence the configuration of the

variables Y, Xl, X. and on wvariables Y, Kl, X
n data points is plotted on selected pairs of axes (plames). Figures
3.d - 3.j show the plots. Observations 1, 2, 3, 4 and 21 are identified
in each of these plots. The results agree with the analysis obtained

in the previous sectioms.
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Figure 3.d : Plotting data points by multidimensional

scaling method, data from Brownlee (1965) contains
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variables Y, X1 5 X2 and X1 .
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ABSTRACT

When the sample size and dimension of the data points are 1argé,
outlying multivariate data points are difficult to spot. A simple
method for identifying outlying multivariate observations is developed.
The proposed method is related to the method of detecting influential
observations in regression analysis when a linear model is postulated.
Two examples are considered to illustrate the results obtained in
this article.



