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Abstract

A smooth affine hypersurface of complex dimension n is homotopy equivalent to a real n-dimensional

cell complex. We describe a recipe of constructing such cell complex for the hypersurfaces of dimension 1

and 2, i.e. for curves and surfaces. We call such cell complex a skeleton of the hypersurface.

In tropical geometry, to each hypersurface, there is an associated hypersurface, called tropical hyper-

surface given by degenerating a family of complex amoebas. The tropical hypersurface has a structure of a

polyhedral complex and it is a base of a torus fibration of the hypersurface constructed by Mikhalkin. We

introduce on the edges of a tropical hypersurface an orientation given by the gradient flow of some piece-

wise linear function. With the help of this orientation, we choose some sections and fibers of the fibration.

These sections and fibers constitute a cell complex and we prove that this complex is the skeleton by using

decomposition of the coemoeba of a classical pair-of-pants. We state and prove our main results for the case

of curves and surfaces in Chapters 4 and 5.
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Chapter 1

Introduction

1.1 Organization and main result

In chapter 1, we give a short introduction of the ‘skeleta’ (a cell complex)

of an smooth affine variety (in particular, an affine hypersurface) with a

brief remark of the historical works done with the skeleton dating back to

Lefschetz hyperplane theorem. We also give the brief account of recent works

done by Ruddat, Sibilla, Treumann and Zaslow. We then digress to give a

brief account of the application of skeleta in mirror symmetry and other

related areas.

Chapter 2 is focused on serving background materials from tropical geom-

etry. Starting with the definition of ‘Max-Plus’ semifield, We describe the

process of tropicalizing a polynomial giving rise to a tropical hypersurface.

We go into more details to explore the polyhedral structure of the ‘tropical

hypersurface’. We also state the fundamental theorem of tropical geometry.
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The proof of the theorem can be found anywhere in the literature, so we

skip it here. Some special properties that apply to only tropical curves are

presented with some examples.

In Chapter 3, we describe the torus fibration of affine hypersurface con-

structed by Grigory Mikhalkin. We state definitions, lemmas and theorems

from his paper [Mik04b]. For example, we define a polyhedral complex and

see that the polyhedral complex with certain properties can be realized as the

tropical hypersurface defined by a Laurent polynomial in ‘non-Archimedean

field’ K∗. Tropical hypersurfaces can be described in multiple ways: as the

non-Archimedean amoeba, as the limit of a family of complex amoebas and

as the spine of complex amoeba. We briefly explain the first two approaches

as they are more related to this work. For the third approach done by Passare

and Rullgard, we refer the reader to [PT05]. We give the definition of a topo-

logical space VM ⊂ (C∗)n+1, called ‘complex tropical hypersurface’, which is

isotopic to the original affine hypersurface V , and disscuss its properties.

Our new approach of constructing a skeleton (see Definition 4.1) using

tropical geometry is the main content of chapter 4. We describe the process

of obtaining skeleta for complex curves. The tropical curve is the balanced

trivalent graph, see Definition 2.3. We orient using the gradient flow of a piece

wise linear function the edges of the curve. Mikhalkin’s torus fibration with

base the tropical curve and the orientation on the curve give us a framework

2



to build a topological cell complex. We then state and prove our result (for

curve) that the complex is a skeleton of the curve 4.3.

We will give the similar construction as in Chapter 4 for surfaces in 5.

1.2 Historical Perspective

Thom gave a proof of Lefschetz Hyperplane theorem using Morse theory of

critical points which is attributed to Thom in the work of Andreotti and

Frankel, see [AF59]. The stronger version of the theorem is equivalent to

saying that an affine smooth variety V of complex dimension n deformation

retracts to a cell complex of real dimension at most n. We call the defor-

mation retract with this property a Skeleton of V . Let us recall Thom’s

beautiful Morse-theoretic proof of Lefschetz’s theorem. Fix an embedding

V ⊆ CN , and let ρ : V → R be the function that measures the distance to

a fixed point p ∈ CN . For a generic choice of p, this is a plurisubharmonic

Morse function, so its critical points cannot have index greater than n. The

skeleton of V is the union of stable submanifolds of the gradient flow of ρ.

However, finding an explicit description of these stable submanifolds requires

one to solve some differential equations.

3



1.3 RSTZ Version of Skeleta

Ruddat, Sibilla, Truemann and Zaslow [RSTZ] in [RSTZ14] described the

recipe for constructing skeleta for affine hypersurface in an affine toric variety.

The construction is based on the combinatorics of the Newton polytope of

the defining polynomial.

Let f : (C∗)n+1 → C be a Laurent polynomial defined by

f(z) =
∑

m∈∆⊂Zn+1

amz
m

where m = (m1, . . . ,mn+1) ∈ Zn+1 and zm = zm1
1 . . . z

mn+1

n+1 . Denote the

zero locus defined by f(z) as V (f) = {z ∈ (C∗)n+1 : f(z) = 0}. The

Newton polytope, ∆ of f is the convex hull of the set of m ∈ Zn+1 where the

coefficient am of f is non zero. If the coefficients am are chosen generically,

the diffeomorphism type of V (f) depends only on the Newton polytope of

f . In fact, it suffices that the coefficients corresponding to the vertices of the

Newton polytope are chosen generically. More precisely,

Proposition 1.1. ([GKZ94], Chapter 10, Cor 1.7). Let A ∈ Zn+1 be a finite

set whose affine span is Zn+1, and let fA be a Laurent polynomial of the form

f(z) =
∑
m∈A

amz
m

There is a Zariski open dense subset UA ⊆ C|A| such that, when the coeffi-
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cients am,m ∈ A are chosen from UA, the variety V (fA) is smooth and its

diffeomorphism type depends only on the convex hull of A.

Definition 1.1. An intersection of a finitely many linear affine half spaces in

a finite-dimensional vector space is called Polyhedron. A compact polyhedron

is called polytope. A polytope can also be defined as the convex hull of finite

number of points called vertices.

We let M denote a free abelian group isomorphic to Zn+1 and set MR =

M⊗ZR ∼= Rn+1. A polytope ∆ ⊆MR is called a lattice polytope if its vertices

are in M . Let ∂∆ denote the boundary of ∆. A lattice triangulation T∆ of a

polytope ∆ is a triangulation by lattice simplices. Such triangulation is called

regular or coherent if there is a piecewise affine convex function h : ∆ → R

such that the (maximal) closed domain where h is linear coincides with the

maximal simplex in T∆.

Definition 1.2. Let ∆ ⊆ Rn+1 be a lattice polytope with 0 ∈ ∆. Let T∆ be

a star triangulation based at 0 (that means every maximal simplex contains

origin) of ∆, and define T to be the set of simplices of T∆ not meeting 0.

Write ∂∆
′

for the support of T . Define

S∆,T ⊆ ∂∆′ × Hom(Zn+1, S1)

to be the set of pairs (x, φ) satisfying the following condition:

5



Figure 1.1: Star triangulation of ∆ and a skeleton S of f = −1 + xy + x2 + y2 in C∗ × C∗
.

φ(v) = 1 whenever v is a vertex of the smallest simplex τ ∈ T containing x.

Denote S := S∆,T .

Theorem 1.2 (RSTZ [RSTZ14]). Let ∆ and T be as in Definition 1.2.

Let V be a generic smooth hypersurface whose Newton polytope is ∆. If T

is regular, then S embeds into V as a deformation retract and is called a

skeleton of V .

Example 1.1. Consider a Laurent polynomial f = −1 + xy + x2 + y2 and

Z = V (f) in C∗ × C∗. We define φ ∈ Hom(Z2,R/Z such that φ = (α, β),

where φ(u, v) = αu + βv mod Z. At vertex (2, 0), φ(u, v) = {(α, β) : 2α =

0} ∼= Z/2× Z/2. So, α is 0 or 1/2 and β is free, which is homeomorphic to

two disjoints circles. Similarly, at vertex (0, 2), there are two disjoint circles:

α is free and β is 0 or 1/2. Along the line segment (2, 0) − (1, 1), it is two

points: (α, β) = (0, 0) or (1/2, 1/2). Over (1, 1), it is a single circle β = −α.

6



(a) Newton polytope of the quar-
tic ax + by + cz + d

xyz
+ e = 0

in C∗ × C∗ × C∗. It has a unique
star triangulation T∆ with respect
to origin.

(b) A part of the skeleton of 1.2a.
Each cylinder meeting one of the
tori S1 × S1 is attached along a
different circle. There is a sixth
cylinder and two additional trian-
gles BCD and ABD in Figure 1.2a

Figure 1.2: Skeleton of a Quartic surface.

So, S∆,T is homotopic to a bouquet of five circles, see Figure 1.1.

For proof of the theorem, they used the coherent triangulation of the New-

ton polytope, which means there is a piecewise linear function from ∆ to R.

Using this function, they constructed a degeneration of the ambient space

(C∗)n+1 and with it, the degeneration of the hypersurface V . Each compo-

nent of the degeneration is the space (C∗)n+1. The degenerated hypersurface

deformation retracts onto a simple locus which can be triangulated explicitly.

In each component, the top-dimensional simplices of this triangulation are

the non-negetive loci of the components. Then they used Log geometry to

7



account for the topological difference between the degenerated hypersurface

and the general one, see [RSTZ14].

RSTZ version of a skeleton depends on the ‘star triangulation’ of the New-

ton polytope of the defining polynomial. Our work would to some extent,

address the issues of finding skeleta that doesn’t depend on the particular

choice of the triangulation of the Newton polytope. So, our novel approach

of finding the skeleta using tropical geometry is independent of any trian-

gulation and hence makes no contact with the techniques RSTZ applied in

[RSTZ14].

1.4 Related Work

Recently skeleton of a variety has seen its appearance in mirror symme-

try which is a very active area of research in mathematics and theoretical

physics (string theory). Mirror symmetry relates the complex geometry of

one Calabi-Yau manifold to the symplectic geometry of other Calabi-Yau

(CY) manifold and vice versa. This pair of manifolds is called mirror pair.

This idea was formalized by Kontsevich [Kon94] in 1994 on the language of

homological algebra. He conjectured that mirror symmetry could be inter-

preted as an equivalence of two categories : bounded derived category of

coherent sheaf on one CY manifold and the derived Fukaya category on the

mirror manifold. Results in support of the conjecture have been found in

8



some cases such as elliptic curve, K3 surface and abelian varieties. Kontse-

vich later proposed an extension of the conjecture to cover some fano varieties

where the mirror of a fano variety is Landau-Ginzburg model i.e. an affine

variety equipped with a holomorphic function called superpotential. The

symplectic side of Landau-Ginzburg model is the Fukaya-Seidel category.

More recently, Katzarkov and others [KKOY09] proposed another extension

of the conjecture to cover some varieties of general type.

One fundamental object of interest in the mirror symmetry is Fukaya cate-

gory. This is a category associated to a sympletic manifold, whose objects are

compact lagrangian submanifolds satisfying certain transversality property

and with some additional structures. The morphism between two objects is

Floer complex generated by the intersection points between two Lagrangian

submanifolds. The Floer complex is equipped with a differential which counts

weighted holomorphic discs bounded by the Lagrangians. Several modifica-

tions have been made with the original Fukaya categories to accommodate

those modifications in homological mirror symmetry conjecture. Of partic-

ular interest is to include non-compact Lagrangian submanifolds as objects

in the Fukaya category. This modification is made by some pertubations of

Lagrangians at infinity giving rise to wrapped Fukaya categories and con-

structible sheaves.

For a Stein manifold X, Paul Seidel in his book “Fukaya Categories and

9



Picard-Lefschetz Theory” described the Fukaya category in terms of Lef-

schetz fibrations. One can analyze his construction and associate a certain

algebra A of finite type so that the Fukaya category constructed by Seidel is

a full subcategory of Fin(A), a homotopy category of dg-modules. Kontse-

vich in [Kon09] conjectured that X can be contracted to singular Lagrangian

skeleton L ⊂ X so that A depends only on L and Fin(A) is a global category

associated with constructible sheaf of smooth dg categories on the skeleton

L.

When 4 and 4∧ are a pair of reflexive polytopes, Batyrev and Borisov

[Bat94], [Bor93] explain how to construct from them a pair of smooth projec-

tive Calabi-Yau hyperserfaces . Let PM and P∧M be the associated projective

toric varieties. The skeleta and constructible sheaves appear at the large vol-

ume/large complex structure limits of these families of hypersurfaces. Let

Z and Z∧ be the ’large volume limit’ and ’large complex structure limit’, of

mirror pair. In [FLTZ11] a relation was found between coherent sheaves on a

toric variety and a subcategory of constructible sheaves on a real torus. The

subcategory is defined by conical Lagrangian ∧ in the cotangent bundle of

the torus. This conical Lagrangian is homotopy equivalent to the Legendrian

∧∞ at contact infinity of the cotangent bundle. ∧∞ is the skeleton of Z and

supports a Kashiwara-Schapira sheaf of dg categories [TZ11]. This sheaf is

equivalent to the ‘constructible plumbing model’ of [STZ11] and should be

10



equivalent to perfect complexes on Z∧ as shown in [STZ11]. It is conjectured

in [TZ11] that under homological mirror symmetry the ‘constructible plumb-

ing model’ on ∧∞ is equivalent to the sheaf of Fukaya categories, conjectured

to exist by Kontsevich [Kon09], supported on the skeleton of Z. When 4

and 4∧ are both reflexive and simplicial, it is conjectured in [TZ11] that ∧∞

is the skeleton of Z∧.
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Chapter 2

Tropical Geometry

In this chapter, we discuss the definition and some fundamendal aspects of

tropical geometry. The basic notion in tropical geometry is tropical semi-

ring, which is also called max-plus semi-ring. We can do algebraic geometry

over this semi-ring and algebraic varieties correspond to “tropical varieties”

in this geometry. Tropical varieties are combinatorial in nature and actually

are ‘polyhedral complexes’. They are assumed to retain some properties of

algebraic varieties and have been successfully used to understand more about

their counterpart in (enumerative) algebraic geometry.

For basic notions and related topics in tropical geometry, we refer to

Mikhalkin’s surveys [Mik06]. To learn introductory materials and recent

advances in tropical geometry, we refer to the book ‘Introduction to Tropical

Geometry’ by Maclagan and Sturmfels, [MS15].
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2.1 Tropical Semi-field

As a set, tropical semi-field T = (R∪{−∞},⊕,�) is the real number R, to-

gether with an extra element −∞ that represents negetive infinity. However,

the arithmatic operations of tropical addition ⊕ and tropical multiplication

� of real numbers are defined as follows:

x⊕ y := max(x, y) and x� y := x+ y.

Many of the familiar axioms remain valid in tropical operations. For instance,

both addition and multiplication are commutative: x⊕y = y⊕x and x�

y = y�x. The distributive law holds for tropical multiplication over tropical

addition: x� (x⊕ y) = x� y⊕ x� y. The neutral elements for addition and

multiplication also exist. x ⊕ −∞ = x and x � 0 = x. However, there is

no ‘subtraction’ in tropical arithmetic. There is no solution to 10 ⊕ x = 6

for all x. Tropical division is defined to be the classical subtraction. The set

T = (R ∪ {−∞},⊕,�) satisfies all axioms of field except the existance of

additive inverse. So T is called tropical semi-field. A very important feature

of the tropical semi-field is that ⊕ is idempotent, which means x⊕ x = x.
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2.2 Maslov Dequantization

The tropical semi-field arises naturally as the limit of some classical semi-

fields. This can be seen by the process known as Maslov dequantization of

positive real numbers.

Let R≥0 denote the semi-field of positive real numbers under usual addition

and multiplication. Let t be a real number greater than 1, then the logarithm

of base t provides a bijection between the sets: R≥0 and T. This bijection

induces a semi-field structure on T with the operations denoted by ⊕t and

�t and defined by:

x⊕t y = logt(t
x + ty) and x�t y = logt(t

xty) = x+ y.

The second equation above already shows classical addition arising from the

multiplication on (R≥0,+,×). All semi-fields (T,⊕t,�t) are isomorphic to

(R≥0,+,×) by construction. The inequalities max(x, y) ≤ x+y ≤ 2max(x, y)

on R≥0 together with the fact that the logarithm of base t > 1 is an increasing

function gives us the following bounds for ⊕t:

max(x, y) ≤ x⊕t y ≤ max(x, y) + logt2.

logt2 tends to 0 as t → ∞, and the operation ⊕t therefore tends to the

tropical addtition ⊕. Hence the tropical semi-field (ring) comes naturally
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from degenerating classical semi-fields (R≥0,+,×).

2.3 Tropical Polynomial

Let x1, . . . , xn be n variables that represent elements in the tropical semi-field

T. A tropical monomial is any product of these variables, where repetition is

allowed, a�xi11 �· · ·�xinn . Here the coefficient a is real number and the expo-

nents m1, . . . ,mn are integers. Tropical monomials are the linear functions

with integer coefficients because xi11 = x1 � x1 � · · · � x1(i1 factors) = i1x1.

A tropical polynomial is a finite linear combination of tropical monomials:

P (x1, . . . , xn) = a1 � xi111 � · · · � xi1nn ⊕ a2 � xi211 � · · · � xi2nn ⊕ . . .

⊕ amxim1
1 � · · · � ximn

n , ai ∈ Z

Every tropical polynomial represents a function P : Rn → R. Evaluating this

function in classical arithmetic, we get the maximum of a finite collection of

linear functions.

P (x1, . . . , xn) = max{a1 + i11x1 + · · ·+ i1nxn, a2 + i21x1 + · · ·+ i2nxn, . . . ,

am + im1x1 + · · ·+ imnxn}.

This function P : Rn → R has important properties:

• P is continuous. • P is piecewise-linear. • P is concave,
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Thus the tropical polynomials in n variables x1, x2, . . . xn are precisely the

piecewise-linear concave functions in Rn with integer coefficients. Some ex-

amples of tropical polynomials in one variable: 1⊕x = max(1, x), 1⊕x⊕

3�x2 = max(1, x, 2x+3) 1⊕x⊕3�x2⊕(−2)�x3 = max(1, x, 2x+3, 3x−2)

We define the tropical roots of the tropical polonomial P (x) =
⊕d

i=1(ai�xi)

in one variable as points x0 of T for which the graph of P (x) has a ‘corner’

(where P (x) fails to be linear) at x0. This is equivalent to P (x0) being equal

to the value of at least two of its monomials evaluated at x0. The difference

in the slopes of the two pieces adjacent to the corner gives the order of the

corresponding root.

2.4 Tropical Curve in R2

Now we describe some properties of tropical curve.

Definition 2.1. A tropical polynomial in two variables is

P (x, y) = ⊕(i,j)∈Aai,j � xi � yj = max(i,j)∈A(ai,j + ix+ jy),

where A is a finite subset of (Z≥0)
2. A tropical polynomial is a concave

piecewise linear function as stated above. The tropical curve, Γtrop defined

by P (x, y) is defined as the corner locus (where P (x, y) fails to be linear)

of this function or equivalently the set of points where the function is not
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(a) x⊕ y ⊕ 0
(b) 3 ⊕ 2 � x⊕ 2 � y ⊕ 3 � x� y ⊕
y2 ⊕ x2 ⊕ 0

Figure 2.1: A tropical line and a tropical conic

smooth. Moreover, Γtrop = {(x, y) ∈ R2 : (x, y) is achieved twice}.

Example 2.1. Consider a tropical line defined by the polynomial P (x, y) =

x⊕ y ⊕ 0. Γtrop is given by:

x = 0 ≥ y, y = 0 ≥ x, x = y ≥ 0.

We see that Γtrop consists of three standard half-lines (see Figure 2.1a):

{(x, 0) ∈ R2 : x ≤ 0}, {(0, y) ∈ R2 : y ≤ 0}. and {(x, y) ∈ R2 : x = y ≥ 0}.

The set Γtrop is a trivalent graph in R2.

Definition 2.2. Let P (x, y) be a tropical polynomial and Γtrop its associated

tropical curve. The weight of an edge of Γtrop is defined as the maximum of
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the greatest common divisor (gcd) of the numbers |i − k| and |j − l| such

that the value of P (x, y) on this edge is maximum for ai,jx
iyj and ak,lx

kyl

monomials.

So, the tropical curve Γtrop is equipped with the weight function defined

on its edges.

2.5 Newton polytope and its dual subdivision

The Newton polytope of a polynomial in two variables P (x, y) =
∑

(i,j) aijx
iyj,

denoted by ∆(P ) is given by,

∆(P ) = conv{(i, j) ∈ (Z≥0)
2 : aij 6= 0} ⊂ R2.

A tropical polynomial determines a subdivision of ∆(P ), called its dual sub-

division. Given (x0, y0) ∈ R2, let

∆(x0,y0) = conv{(i, j) ∈ Z2
≥0 : P (x0, y0) = aij � xi0 � y

j
0} ∈ ∆(P )

The tropical curve Γtrop defined by P (x, y) induces a polyhedral decomposi-

tion of R2 and the polytope ∆(x0, y0) only depends on the cell F : (x0, y0) ∈ F

of the decomposition given by Γtrop. Thus we define ∆F = ∆(x0,y0) for

(x0, y0) ∈ F .

Example 2.2. Consider the tropical line L defined by the polynomial: P (x, y) =
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(a) (b)

Figure 2.2: Subdivision dual to tropical curves depicted in Figure 2.1

x ⊕ y ⊕ 0 = max{x, y, 0}, see Figure 2.1a. For the 2-cell F1, where P (x, y)

is maximum given by monomial 0, ∆F1
= conv{(0, 0)}. Similarly, we have

∆F2
= conv{(1, 0)} and ∆F3

= conv{(0, 1)} for the cells F2 where x as-

sumes maximum value and F3 where y assumes maximum value respectively.

Along the horizontal edge e1, where P (x, y) is maximum given by 0 and y,

∆e1 = conv{(0, 0), (0, 1)}. In the same way, ∆e2 = conv{(0, 0), (1, 0)} and

∆e3 = conv{(1, 0), (0, 1)}. For the vertex v, where the monomials 0, x and y

assume maximum value, ∆v = conv{(0, 0), (1, 0), (0, 1)}.

For all cells F , the polyhedra ∆F form a subdivision of the Newton poly-

tope ∆(P ). This subdivision is dual to the tropical curve defined by P (x, y)

in the following sense.

Proposition 2.1. One has

• ∆(P ) = ∪F∆F , where the union is taken over all cells F of the polyhedral

subdivision of R2 induced by the tropical curve defined by P (x, y);

• dim F = codim ∆F ;

• ∆F ⊂ ∆F ′ if and only if F ′ ⊂ F ;
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(a) (b) ∆v

Figure 2.3: Balancing condition: the numbers 1 and 3 indicate the weight of an edge.

• ∆F ⊂ ∂∆(P ) if and only of F is unbounded.

Furthermore, one can show that the weight of an edge of a tropical curve

can be seen from the dual subdivision.

Proposition 2.2. An edge e of a tropical curve has weight w if and only if

the integer length of ∆e is w = car(∆e ∩ Z2)− 1.

Proof. See [Mik05].

2.6 Balanced graphs and tropical curves

Let v be a vertex of a tropical curve Γtrop, and let e1, . . . , ek be the edges

adjacent to v. Let their weights be w1, . . . , wk. Let vi, i = 1, . . . , k be the

primitive integral vector in the direction of ei and pointing outward from v,

see Figure 2.3.

Definition 2.3. (Balancing condition): With the above notations, at each
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vertex v of Γtrop, one has
k∑
i=1

wivi = 0.

A rectilinear graph Γ ∈ R2 whose edges have rational slopes and are

equipped with positive integer weights is called a balanced graph if Γ satisfies

the balancing condition at each vertex. We have seen that every tropical

curve is a balanced graph. The converse is also true.

Theorem 2.3 ([Mik04a]). Any balanced graph in R2 is a tropical curve.

2.7 Tropical curve as the limit of amoebas

Tropical curve can be treated as a certain limit of amoebas of algebraic curves

in (C∗)2. This is true for n-dimensional hypersurfaces which will be explained

in Chapter 3. Now we will explain the 2-dimensional case. Consider the map

(for t > 1);

Logt : (C∗)2 −→ R2

(z, w) 7−→ (logt|z|, logt|w|).

Definition 2.4 ([GKZ94]). The amoeba (in base t) of an algebraic curve

V ∈ (C∗)2 is the image Logt(V ) of V under Logt.

For example, the amoeba of the line L ⊂ (C∗)2 of the polynomial z+w+1 =

0 is shown in Figure 2.4. The amoeba has three asymptotic directions
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(−1, 0), (0,−1)and(1, 1). The amoeba of L in base t is a contraction by

a factor of log(t) of the amoeba of L in base e (see Figure 2.4). When t ap-

proaches +∞, the amoeba is contracted to the limit which is the tropical line

given as the corner locus of f(x, y) = max{0, x, y}. This process of amoebas

degeneration equally applies to any curve in (C∗)2 and to any complex affine

hypersurface in higher dimension.

Example 2.3. Here is another example of a family of amoebas defined by

1 − z − w + t2z2 − t−1zw + t−2w2 = 0 degenerating to the limiting object,

which is a tropical conic, see Figure 2.5.

2.8 Fundamental Theorem of Tropical Geometry

Consider a field K with a valuation, val : K∗ → R, where K∗ = K\{0} and

val satisfies these properties:

1. val(ab) = val(a) + val(b)

2. val(a+ b) ≤ max(val(a), val(b)). The function val can be extended to K

by defining val(0) = −∞

Example 2.4. 1. K = C with the trivial valuation, val(a) = 0 for all

a ∈ C∗.

2. K the field of Puiseux series. The elements of K are given by b ∈ K∗, b =∑
j∈R a

jtj, j → ∞, aj ∈ C∗. A valuation is given by taking a ∈ C{{t}}
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(a) Log(L) (b) Logt1
(L)

(c) Logt2
(L) (d) limt→∞Logt(L)

Figure 2.4: Degeneration of amoeba to a tropical curve in the case of 2-dimensional pair-of-pants (e < t1 <
t2).
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(a) Newton polytope of a conic
(b) Subdivision dual to tropical
curve 2.5d

(c) Amoeba of the conic (d) Tropical conic

Figure 2.5: Amoeba and tropical conic of 1− z − w + t2z2 − t−1zw + t−2w2 = 0.
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to be the lowest exponent appearing. For example val(3t−1/2 + 8t2 +

7t13/2 + . . . ) = −1/2.

Definition 2.5. The tropicalization of a Laurent polynomial f =
∑
cux

u ∈

K[x±1
1 , . . . , x±1

n ] is trop(f) : Rn → R given by:

trop(f)(w) = max(val(cu) + w.u),

where maximum is taken over all {u ∈ Zn : cu 6= 0} and w.u denotes the

standard scaler product of Rn.

For f ∈ K[x±1
1 , . . . , x±1

n ], the hypersurface V (f) is the zero set of the

polynomial f . That is V (f) = {x ∈ (K∗)n : f(x) = 0}. The tropicalization

trop(V (f)) of V (f) is the tropical hypersurface defined by trop(f). This

tropical hypersurface is the corner locus of trop(f), or equivalently,

trop(V (f)) = {w ∈ Rn : the max in trop(f) is achieved at least twice}.

The tropicalization of a variety Y ⊂ (K∗)n generated by an ideal I =<

f1, . . . , fr >, fi ∈ K[x±1
1 , . . . , x±1

n ], ∀i is

trop(Y ) =
⋂
f∈I

trop(V (f)).

Example 2.5. Let Y = V (t3x3+x2y+xy2+t3y3+x2+t−1xy+y2+x+y+t3) ⊆

(C{{t}}∗)2. The trop(V (f)) is shown in Figure 2.6 which is a “tropical
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Figure 2.6: Tropical elliptic curve

elliptic curve”.

Theorem 2.4. (Fundamental theorem of tropical geometry). Let K be an

algebraically closed field with a non trivial valuation val : K∗ → R, and let

Y be a subvariety of (K∗)n defined by an ideal I. Then the following sets

coincide.

• trop(Y ).

• The closure in Rn of {w ∈ (Im(val))n : inw(I) 6= 1}.

• The closure in Rn of {Val(y) : y ∈ Y }.

Here, inw(I) is the initial form of an ideal. Val is the map from (K∗)n to

Rn with coordinate-wise valuation map.

Proof. See [MS15]. A particular case of this theorem applied to an affine

hypersurface is known as Kapranov’s theorem [see Chapter 3].
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Example 2.6. Let Y = V (x+ y + 1) ⊆ (K∗)2, where K = C{{t}}.

Then Y = {(a,−1− a) : a ∈ K∗\{−1}}. Note that

(val(a), val(−1− a)) =



(val(a), 0) : val(a) < 0

(val(a), val(a)) : val(a) > 0

(0, val(b)) : a = −1 + b, val(b) < 0

(0, 0) : otherwise

And the graph is the same as in Figure 2.1a. This proves that the two sets;

first and third from the fundamental theorem coincide.
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Chapter 3

Torus fibration of an affine

hypersurface

In this chapter, we discuss the Mikhalkin’s construction of torus fibration

of algebraic hypersurface from his paper [Mik04b]. The base of the torus

fibration is its associated tropical hypersurface, which was defined in Chap-

ter 2. This fibration can be seen as a pair-of-pants decomposition of the

hypersurface. We first define an n-dimensional pair-of-pants Pn, the prim-

itive complex Σn and give a fibration λH : Pn → Σn. The fibration λH

gives a local picture of the pair-of-pant decomposition of the hypersurface.

We explain proper gluing conditions to put these local fibrations together

to construct a global fibration of the hypersurface.This is formulated in the

proof of Theorem 3.11.

Following [Mik04b] and [NS11], we define a complex space VM ⊂ (C∗)n+1
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called “complex tropical hypersurface” as the limit of a family of holomor-

phic hypersurfaces parametrized by the self-diffeomorphism Ht : (C∗)n+1 →

(C∗)n+1. We also describe an alternative way of defining VM , which is more

suited for our works to build the ‘skeleton’.

3.1 Polyhedral Complex

A polyhedron P in Rn is the intersection of finitely many half-spaces in Rn.

This is given by a set of linear inequalities as:

P = {x ∈ Rn : Ax ≤ b},

where A is a d× n- matrix and b ∈ Rd. We say that P is rational if A and b

have rational entries.

If b = 0, then P is called a cone, in which case there exists a finite set

of linearly independent points v1, . . . , vs such that P = conv(v1, . . . , vs) :=

{
∑s

i=1 λivi : λi ≥ 0}.

Polyhedral Complex: A subset Π ∈ Rn+1 is called a proper rational polyhe-

dral complex if it is a finite union of closed sets in Rn+1 called cells satisfying

the following properties.

• Each cell is closed (some may be semi-infinite) convex polyhedron. The
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dimension of the cell is the dimension of the smallest affine space which

contains it. We call a cell of dimension k a k-cell.

• The slope of affine span of each cell is rational

• The boundary of a k-cell is the union of (k − 1)-cells.

• The intersection of two k−cells is also a cell of the complex or empty.

• Different open cells (interiors of the cells in the corresponding affine span)

do not intersect.

Essentially, a proper polyhedral complex in Rn+1 is a cellular space where

each cell is a convex polyhedron with a rational slope. The dimension of

the complex is the maximal dimension of the affine span of its cells. If each

polyhedron in the complex is a cone, then the complex is called a fan.

Definition 3.1. A polyhedral n-complex is called weighted if there is a nat-

ural number w(F ) prescribed to each of its n-cells F .

A weighted polyhedral n-complex Π ∈ Rn+ is called balanced if for every

(n−1)-cell G ∈ Π the following condition holds: Let F1, . . . , Fk be the n-cells

adjacent to G and c(F1), . . . , c(Fm) their weights. The balancing condition

is :
k∑
j=1

c(Fj) = 0
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Example 3.1. Consider a piecewise linear function H : Rn+1 → R defined

by:

H(x1, . . . , xn+1) = max{0, x1, . . . , xn+1}

We denote the ‘corner locus’ of this function by Σn ⊂ Rn+1. Corner locust

implies the set of points where H is not smooth. Σn is a balanced proper

rational polyhedral complex in Rn+1. Its k-cell is formed by the points where

any n+ 2− k functions of n+ 2 functions, 0, x1, . . . , xn+1 achieve maximum

value for H.

Let A ⊂ Zn+1 be a finite set and let v : A → R be any function. Let

∆ ⊂ Rn+1 be the convex hull of A. The Legendre transform of v is

defined by Lv : Rn+1 → R,

Lv(y) = maxx∈A{< x, y > −v(x)}.

where x, y ∈ Rn+1 and < x, y > is the scaler product in Rn+1. Since the

maximum is taken over a finite set, Lv is a convex piecewise linear function.

We define a polyhedral complex Πv as the corner locus of Lv.

We below state some propositions from [Mik04b], which characterize the

complex Πv defined in Example 3.1.

Proposition 3.1. The set Πv is a balanced proper rational polyhedral complex

dual to a certain lattice subdivision of ∆.
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The converse of the Proposition 3.1 is also true.

Proposition 3.2. Suppose that Π ⊂ Rn+1 is a weighted balanced proper

rational polyhedral complex. Then there exists a finite set A ∈ Zn+1 and a

function v : A → R such that Π = Πv. The convex hull ∆ ∈ Rn+1 of A is

unique upto a translation in Zn+1.

Definition 3.2. We call Π a dual ∆-complex if it corresponds to Πv as

defined in Proposition 3.2. The polyhedral complex Π is called maximal if the

elements in the corresponding subdivision of ∆ are simplices of volume 1
(n+1)! .

The triangulation of ∆ with this property is called unimodular triangulation.

The following two Propositions 3.3 and 3.4 from [Mik04b] characterize and

relate Σn to the standard simplex ∆1.

Proposition 3.3. Any lattice polytope of volume 1
(n+1)! can be identified with

the standard simplex ∆1 by an element of ASLn+1(Z).

Here ASLn+1(Z) stands for the group of affine linear transformation or

Rn+1.

Proposition 3.4. Any dual ∆1-complex is the result of a translation of Σn

in Rn+1.

Proposition 3.5. Denote by Π a balanced proper maximal polyhedral com-

plex. Let Uj ⊂ Π to be a neighborhood of a vertex vj ∈ Π. For each Uj, there
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exists Mj ∈ ASLn+1(Z) such that Mj(Uj) ∈ Σn is an open set containing

origin in the primitive complex Σn.

3.2 Fibration of a pair-of-pants

The section provides the definition of an n-dimensional pair-of-pants and

the construction of a fibration of the pair-of-pants, where the base of the

fibration is Σn.

Definition 3.3. The space Pn = CPn+1\{n + 2 generic hyperplanes} is

called n-dimensional pair-of-pants. If we choose coordinates of CPn+1 as

(z0, z1, . . . , zn+1) and take coordinate planes as generic hyperplanes, Pn can

be identified with the affine hypersurface H◦ in (C∗)n+1 defined by 1 + z1 +

z2 + · · ·+ zn+1 = 0. For simplicity, we have taken z0 = 1.

Let Log : Cn+1 → Rn+1 be a map defined by

Log(z1, . . . , zn+1) = (log|z1|, . . . , log|zn+1|)

Lemma 3.6. Σn ⊂ Log(H◦)

Proof. According to [PR04], Σn is a spine of the amoeba Log(H◦)

The complement Rn+1\Σn consists of n + 2 components corresponding

to one of the functions 0, x1, . . . , xn+1 being maximal. In the component

corresponding to xj, we consider the foliation of the component into straight
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lines parallel to the gradient of xj. In the component corresponding to 0, we

consider the foliation into straight lines parallel to (1, . . . , 1). These foliations

glue together to form a foliation of Rn+1, call it F. Define a projection

πF : Rn+1 → Σn along these leaves (the straight lines).

Lemma 3.7. The map λH := πF ◦Log : H◦ → Σn is a fibration of Pn, where

λH restricted to an open n-cell of Σn is a trivial n-torus fibration, see Figure

3.1.

Definition 3.4. Now we define a Viro’s patchworking polynomial. Let v :

∆∩Zn+1 → R be any function and a(z) =
∑

j∈∆∩Zn+1 ajz
j be any polynomial.

For any t > 0, Viro’s patchworking polynomial is defined by

f vt (z) =
∑

j∈∆∩Zn+1

ajt
−v(j)zj,

where aj 6= 0 for any j ∈ ∆ ∩ Zn+1.

Consider Vf ⊂ (C∗)n+1 as the zero locus of a Laurent polynomial

f(z) =
∑
j∈∆

ajz
j, zj = zj11 . . . z

jn+1

n+1 ,

where ∆ ⊂ Zn+1 is the Newton polytope. Recalling the definition of Amoeba

Af of a variety, Vf ⊂ (C∗)n+1,

an amoeba of a variety over the non-Archimedean field can be similarly

defined. Let K be a non-Archimedean field with a valuation map val, see
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‘

Figure 3.1: fibration P1 over Σ1.
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Example 2.4. Note that eval gives a norm on K. Define the map

LogK : (K∗)n+1 → Rn+1

LogK(z1, . . . , zn+1) =(log|z1|K , . . . , log|zn+1|K),

where |.|K is the norm in K given by eval. Let VK ⊂ (K∗)n+1 be any affine

hypersurface. The amoeba of VK is the image of VK under the map LogK .

Such amoeba is called non-Archimedean amoeba. Kapranov’s theorem shows

that the non-Archimedean amoebas are balanced polyhedral complex.

Theorem 3.8. ([Kapranov]) If VK ⊂ (K∗)n+1 is a hypersurface given by f =∑
ajz

j, aj ∈ K∗, then the non-Archimedean amoeba Log(VK) is the balanced

polyhedral complex corresponding to the function v(j) = val(aj) defined on

the lattice points of the Newton polytope ∆ of VK.

Under tropicalization, the non-Archimedean amoeba is the corner locus of

the tropical polynomial defined by

f(x) = maxj∈∆{val(aj)+ < x, j >}.

Let ft =
∑

j∈∆∩Zn+1 ajt
−v(j)zj , t > 0 be a general patchworking poly-

nomial. Denote Vt := {ft = 0} ∈ (C∗)n+1. The coefficients ajt
−v(j) of ft

can be considered as elements of K, the non-Archimedean field of Puiseux

series and hence the family ft can be considered as a single polynomial in
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(K∗)n+1. It defines a hypersurface VK ∈ (K∗)n+1. Denote At := Logt(Vt) and

AK := LogK(VK). Recall that the Hausdorff distance between two closed

subsets A,B ⊂ Rn+1 is the number

max{supa∈Ad(a,B), supb∈Bd(b, A)},

where d(a,B) is the Euclidean distance between a point a and a set B in

Rn+1.

Corollary 3.9. The amoeba At converges in the Hausdorff metric to the

non-Archimedean amoeba AK when t→∞.

Proof. See [Mik04b]

Let F ⊂ Π be an open (n + 2 − k)-cell. F is dual to a k-dimensional

polytope from the subdivision of ∆. Since Π is maximal, this polytope is the

standard (k−1) - simplex upto an action of ASLn+1(Z). Then one can show

Lemma 3.10. There exists k monomials t−v(j1)zj1, . . . , t−v(jk)zjk that domi-

nate ft in a neighborhood of F . Furthermore, the hypersurface

k∑
m=1

t−v(jm)zjm = 0

is isomorphic to the hyperplane z1+· · ·+zk−1+1 = 0 under the multiplicative

change of coordinates by an element of ASLn+1(Z).

The theorem below is Mikhalkin’s pair-of-pants decomposition of Vt ⊂
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(C∗)n+1.

Theorem 3.11 (Mikhalkin). For every maximal dual ∆-complex Π there

exists a stratified T n-fibration λ : V → Π such that for each primitive piece

Uj of Π, the inverse image (λ−1(Uj) is an open pair-of-pants Pn.

Proof. See [Mik04a] for the proof.

3.3 Complex Tropical Hypersurfaces

Let t be a strictly positive real number and Ht be the self-diffeomorphism of

(C∗)n+1 defined by:

Ht : (C∗)n+1 −→ (C∗)n+1

(z1, . . . , zn+1) 7−→ (t−|z1|
z1

|z1|
, . . . t−|zn+1| zn+1

|zn+1|
).

Ht defines a new complex structure on (C∗)n+1 denoted by Jt = (dHt) ◦

J ◦ (dHt)
−1 where J is the standard complex structure. A Jt-holomorphic

hypersurface Vt is a hypersurface holomorphic with respect to the Jt complex

structure on (C∗)n+1. It is equivalent to say that Vt = Ht(V ) for some

V ⊂ (C∗)n+1 holomorphic hypersurface with respect to the standard complex

structure J .

Definition 3.5. Let V ⊂ (C∗)n+1 be a hypersurface defined by a Laurent
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polynomial f(z) =
∑

j∈∆ ajz
j, ∆ is the Newton polytope. A complex tropical

hypersurface V∞ ⊂ (C∗)n+1 is the limit (with respect to Hausdorff metric

on compact sets in (C∗)n+1) of a sequence of Jt-holomorphic hypersurfaces

Vt ∈ (C∗)n+1 when t→∞.

3.4 Phase tropical hypersurface

There is another way of describing V∞ through a pair of maps: Namely, using

the tropicalization and argument on a non-Archimedean field with a valu-

ation. Mounir Nisse and Frank Sottile in [NS11] called V∞‘Phase Tropical

Hypersurface’.

Let K∗ be a field with non-Archimedean valuation val : K∗ → R as defined

in Example 2.4. For now, let K∗ be the field of Puiseux series, K∗, which is

algebraically closed. Let b ∈ K∗ be such that b =
∑

j∈J bjt
j where bj ∈ C∗

and J ⊂ R is partially ordered and bounded below. Then val(b) = −min{j :

bj 6= 0}. Also define a map φ : K∗ → S1 by φ(b) = arg(b−val(bj)). That

means φ takes the argument of the coefficient at the lowest power of t. This

is a homomorphism from the multiplicative group K∗ to S1. Combined with

valuation map, this defines a homomorphism w : K∗ → C∗ ≈ R × S1 such

that w(b) = (val(b), φ(b)). This induces a homomomorphism W : (K∗)n+1 →

(C∗)n+1.

Lemma 3.12. If VK ⊂ (K∗)n+1 is a hypersurface given by a polynomial
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f =
∑
ajz

j, aj ∈ K∗ then W (VK) ⊂ (C∗)n+1 depends only on the values

w(aj) ∈ C∗.

Proof. Proof is easy. From Kapranov’s theorem 3.8, Log(W (VK)) = LogK(VK).

So one only needs to show that u(aj) determines the arguments of W (VK)

see [Mik04b].

Let Vt ⊂ (C∗)n+1 be a family of hypersurfaces defined by a general patch-

working polynomial ft =
∑

j∈∆ ajt
−v(j)zj. If we denote ajt

−v(j) = bj, then

bj ∈ K∗, ft can be considered as a single polynomial in (K∗)n+1. Let

VK ⊂ (K∗)n+1 be the hypersurface defined by the polynomial ft. V∞ can

be described in terms of the lifts of non-Archimedean amoebas to (C∗)n+1.

Theorem 3.13 (Mikhalkin). The sets Ht(Vt) converge in the Hausdorff met-

ric to W (VK) when t→∞.

Proof. See [Mik04b].

The map W can be understood as the product of a pair of maps, Tropi-

calization and Argument. Thus by Theorem 3.13 V∞ is seen as the closure of

the image of VK under that product map. This allows to give a more geomet-

ric description of V∞. It is a certain 2n-dimensional object in (C∗)n+1 which

projects down to tropical hypersurface under Log. And hence the diagram

below is commutative..
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If Log : (C∗)n+1 → Rn+1 be the map defined by Log(z1, . . . , wn+1) =

(log|z1|, . . . , log|wn+1|). Then we have

Log ◦Ht = Logt.

Ht corresponds to the contraction by log(t), (x1, . . . , xn+1) 7→ ( x1
log(t) , . . . ,

xn+1

log(t))

under Log.

(K∗)n+1 (C∗)n+1

Rn+1 (C∗)n+1

Val

W

Log

Ht

Logt

Let Arg : (C∗)n+1 → S1 × · · · × S1 be defined by: Arg(z1, . . . , zn+1) =

(arg(z1), . . . arg(zn+1)).

The following proposition from [Mik05] further characterizes the complex

tropical hypersurface V∞. It gives a description of local structure of V∞.

Let Vf ⊂ (C∗)n+1 be an affine hypersurface defined by: f(z) =
∑

j∈∆ a
jzj,

∆ is Newton polytope. Let Vtrop and V∞ be the corresponding tropical hyper-

surface and complex tropical hypersurface respectively. Vtrop induces a lattice

subdivision of ∆. We also have two projection maps, Log : V∞ → Vtrop and
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Figure 3.2: Complex tropical line z1 + z2 + 1 = 0.

Arg : V∞ → T n

Proposition 3.14. Let x ∈ Vtrop and τ ⊂ Vtrop be the cell of smallest dimen-

sion which contains x. Let ∆′ be the polytope in the subdivision of ∆ dual

to τ . Then Arg(Log−1(x) ∩ V∞) = Arg(V
′
) for some V

′ ⊂ (C∗)n+1 with the

Newton polytope ∆
′
.

Thus we can think of V∞ = W (V ◦K) both as the tropical hypersurface

equipped with a phase and as the limit of Jt-holomorphic hypersurfaces when

t→∞.

For example, Figure 3.2 represents a complex tropical line z1+z2+1 = 0 in

R2. Consider the dual subdivision of its Newton polytope, which is standard

2-simplex. The fiber of Log of a point on the horizontal edge is Arg(z2 + 1 =

0) ⊂ T2, on the slant edge is Arg(z1 + z2 = 0) ⊂ T2 and over the vertex is

Arg(z1 + z2 + 1 = 0) ⊂ T2. Topologically, this line is homeomorphic to P1.
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3.5 Coamoeba of Pn

Definition 3.6. The coamoeba is the image of a subvariety of a complex

torus (C∗)n+1 under the argument map Arg. The geometric and combinato-

rial structure of the coamoeba of a hypersurface with the Newton polytope

a simplex had been studied in [Nis11]. We describe below such structure of

the coamoeba of H◦ defined by z1 +z2 + · · ·+zn+1 = 0 in (C∗)n+1. The proof

of our main theorem 5.3 relies on the decomposition of this coamoeba into

polytopes.

A hypersurface H ⊂ (C∗)n+1 whose Newton polytope is a unimodular

simplex is a hyperplane and is defined by the polynomial

1 + a1z1 + · · ·+ an+1zn+1 = 0. (3.1)

Definition 3.7. The coamoeba coA(H) of H is the image of H under the

map Arg.

Changing coordinates in Equation 3.1 from aizi to xi transforms Equation

3.1 to

1 + x1 + · · ·+ xn+1 = 0 (3.2)

The coamoeba of 3.1 is the translation of the coamoeba of 3.2 by the vector

(arg(a1), arg(a2), . . . arg(n+ 1)
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Chapter 4

Construction Of Skeleta: Curve Case

Let Vf ⊂ (C∗)2 be a smooth affine curve defined by a Laurent polynomial

f(z1, z2) =
∑

(i,j)∈∆ aijz
i
1z
j
2, where ∆ is the Newton polytope. We consider a

coherent triangulation of ∆, given by upper convex hull of the graph of the

map γ : ∆∩Z2 → R. We assume that the triangulation of ∆ is unimodular.

Let ft(z1, z2) =
∑

(i,j)∈∆ aijt
−γ(i,j)zi1z

j
2 be a general patchworking polynomial.

ft gives a family of affine curves Vt and Vt gives a family of amoebas At. We

know At degenerates as t→∞ to a tropical curve Vtrop and Vt to a complex

tropical curve V∞. We put VM for V∞ for simplicity.

Vtrop is a balanced trivalent graph, where some of the edges may extend

to ∞.
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Figure 4.1: ‘v’ ‘e’ and ‘ev’ of the barycentric subdivision.

4.1 Barycentric subdivision and notation

Consider the barycentric subdivision, bsd(Vtrop) of Vtrop. Denote by ‘v’ and

‘e’ (barycenter of edge E) the vertices and by ‘ev’ or ‘ve’ the edge from ‘v’

to ‘e’ in the subdivision.

4.2 Orientation on the graph Vtrop

To construct the skeleton, we need an orientation of barycentric subdivision

of Vtrop such that

1. At each ‘v’, one of the ‘ev’ edges is oriented in (call it incoming) and the

other two oriented out (call it outgoing).

2. At each ‘e’, at most one ‘ev’ is outgoing.

3. For the infinite ends, we need them to be oriented from ∞ to ‘e’.

4. the graph is acyclic.
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4.3 Construction of the orientation

We give two constructions of the orientation with the properties described

above. We consider a generic piece-wise concave linear function Φ : R2 → R.

The gradient flow of Φ induces an orientation on the edges of the barycentric

subdivision. This orientation can have:

At ‘e’: Two incident edges can have the following possible orientations.

1. One ‘ev’ is incoming and the other outgoing. This happens when Φ gets

its maximum value at end of ‘E’.

2. Both ‘ev’ are incoming. This is possible when Φ achieves maximum value

at ‘e’. In this case, we call this ‘e’ as ‘marked e’.

3. Note that both ‘ev’ cannot be incoming at ‘e’ because Φ is concave and

has no minimum.

At ‘v’: Three ‘E’ edges (or ‘ev’ edges) incident at ‘v’ could be oriented as

follows.

1. One ‘ev’ incoming and other two outgoing. This occurs when Φ assumes

maximum value at ‘v’ for the incoming ‘E’. This is the orientation we

want to have.

2. Two ‘ev’s are incoming and the other one outgoing. This occurs when

Φ assumes maximum value at ‘v’ for two incoming ‘E’s. In this case,
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we switch the orientation of one of the incoming ‘ev’ edges. This switch

gives rise to ‘marked e’.

3. All ‘ev’s are incoming or all are outgoing. Both cannot happen due to

balancing condition Γtrop satisfies at each ‘v’.

All ‘ev’ incoming or all ‘ev’ outgoing at ‘v’ cannot happen due to balancing

condition at each ‘v’ of the tropical curve. Let e1, e2, e3 be the integral vectors

along the direction of ‘ev’s. Then Φ(e1) + Φ(e2) + Φ(e3) = Φ(e1 + e2 +

e3) = Φ(0) = 0. So, Φ(e1),Φ(e2) and Φ(e3) cannot have all positives or all

negetives.

Lemma 4.1. The graph with oriented ‘ev’ edges described above is acyclic.

Proof. There are no cycles of edges before we make switches of the orientation

of some ‘ev’s because the arrows always point towards increasing of Φ. It

won’t have such cycles either after the switch because a potential cycle cannot

pass through ‘marked e’.

Another example is‘distance function’. Let E∞1 , E
∞
2 , . . . , E

∞
r denote the

infinite edges from Vtrop. Consider a finite set of points,

P = {pi ∈ E∞i : pi is an interior point of E∞i }

Consider the function Φ : Vtrop → R which is the distance of a point in

Vtrop to the set P .
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We can choose the set P general enough so that the maximum value of

the function do not occur at vertices of the graph.

For the generic choice of P , the gradient flow of Φ induces an orientation

on Vtrop with the properties:

• One edge is incoming and the other two outgoing at each vertex.

• At an edge, there are at most one ‘ev’ is outgoing.

• We re-orient infinite edges going from ∞ to pi.

Because this orientation is given by the gradient flow of a function, it is

acyclic.

Define the set: Q := {x ∈ Vtrop : when two local gradient flows meet}.

Equivalently, Q is the set of ‘marked e’ vertices.

Proposition 4.2 ([Zha10]). The cardinality of set Q is equal to g − 1 +

{cardinality of P}.

4.4 Coamoeba of P1

P1 is a line given by az1 + bz2 + c = 0 with a, b, c ∈ C∗, replacing z1 by cz′1/a

and z2 by cz′2/b to obtain the line z′1 +z′2 +1 = 0, with coamoeba as in Figure

4.2 . This transformation rotates the coamoeba 4.2 by arg(a/c) horizontally

and arg(b/c) vertically.
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(a)

(b)

Figure 4.2: Coemoeba of x+ y + 1 = 0

4.5 Skeleton and the main theorem

Consider the fibration λ : VM → Vtrop with coamoeba fibers. The fibers of

the interior poinst of ‘E’ are the closures of coamoeba of za + zb = 0 where

the the interval (a, b) ⊂ ∆ is dual to ‘E’. The fiber over ‘v’ is the closure of

the coamoeba of za + zb + zc = 0, where ‘v’ is dual to a triangle (a, b, c) in

∆.

Over the barycentric neighborhood of a vertex ‘v’ ∈ Vtrop , there are three

canonical sections which are given by the points of mutual intersections of

three fibers over the edges incident at ‘v’, see Figure 4.3. Denote by αv, βv

and γv these 3 sections (colored Blue, Purple and Black in Figure 4.3).

We introduce two small opposite arcs Ae, Be for the fiber at ‘e’, to glue two

sections coming from neighboring vertices. In Figure 4.4 red arcs are used to

glue two sections coming from two neighboring vertices. There are two ways

to choose Ae, Be. Denote by S1
e the coamoeba circle over each ‘marked e’.
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Figure 4.3: coamoeba of P1 and 3 sections
.

Figure 4.4: Two arcs, Ae and Be
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Definition 4.1. With all the notations described above, let

S :=

{ ⋃
vertices

αv ∪ βv ∪ γv
⋃

‘marked e’

S1
e

⋃
‘non-marked e’

Ae ∪Be

}
⊂ VM .

S can also be interpreted as a fibration over Vtrop.

We state and prove our main theorem.

Theorem 4.3. With all notations as above, the set S is a deformation retract

of VM . In other words, S is a skeleton.

Proof. We have two maps Arg : VM → T 2 and Log : VM → Vtrop. The

fiber of Log over ‘v’ is the coamoeba of za + zb + zc = 0. The closure of

the coamoeba of za + zb + zc = 0 consists of two triangles, Yellow (Y) and

Orange (O), see Figure 4.5. The inverse images Arg−1(Y ) = ‘Yellow Ball’

and Arg−1(O) = ‘Orange Ball’, form 2-balls in the CW decomposition of

Log−1(U), U ⊂ Vtrop is a barycentric neighborhood of ‘v’.

We contract these 2-balls as follows. At each ‘v’, suppose the edges ‘ev’ are

oriented as shown in Figure 4.5 (right one). The incoming ‘ev’ corresponds

to the boundaries ‘ab’ of both triangles. The boundary ‘ab’, colored blue,

of the Yellow triangle corresponds to blue arc of the ‘Yellow Ball’. Similarly

for outgoing edges. We contract the ‘Yellow Ball’ starting from the part of

‘blue’ boundary. After contraction, we get a union of the red arc, the green

arc and the sections a,b and c. This union forms a part of the set S. We
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Figure 4.5: Contraction of 2-ball, ‘Yellow Ball’

contract the ‘Orange Ball’ in similar fashion.

The orientation provides a partial ordering of the vertices of Vtrop. Fol-

lowing this ordering make contraction steps described above. This gives the

skeleton.
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Chapter 5

Construction of skeleta: Surface case

Let Vf ⊂ (C∗)3 be the affine surface defined by a Laurent polynomial f(z) =∑
j∈∆∩Z3 ajz

j, where ∆ is the Newton polytope. We consider a coherent

triangulation of ∆, given by the map γ : ∆ ∩ Z3 → R. The family of

polynomials, ft(z) =
∑

j∈∆ ajt
−γ(j)zj give a family of smooth affine surfaces

Vt. As t → ∞, their amoebas At ⊂ R3 converges in Hausdorff metric to a

tropical surface Vtrop. Vtrop is a polyhedral complex. We assume that the

triangulation of ∆ is unimodular, see Definition 3.2. This is equivalent to

smoothness of the tropical surface. We also get Vt converging in Hausdorff

metric to the phase tropical surface V∞. From now onwards, we call V∞ as

VM for simplicity.

The family of polynomials, ft can be considered as a single polynomial in

K∗. Let VK be the affine surface defined by ft in (K∗)3. Recall the map,

w := (val, arg) : K∗ → C∗ and the multiplicative group homomorphism
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W := Val×Arg : (K∗)n+1 → (C∗)n+1. VM is the image of VK under the map

W , that is VM = W (VK).

Consider V ′M described as a fibration, VM → Vtrop where the fiber over

x ∈ Vtrop is a closure of the coamoeba of the polynomial whose Newton

polytope is ∆′, where ∆′ is the polytope in the subdivision of ∆ dual to the

smallest strata in Vtrop, which contains x.

Lemma 5.1. V ′M = VM .

Proof. We have a projection Val : VM → Vtrop. Let x ∈ Vtrop and τ∆′ ⊂ Vtrop

containing x, where ∆′ is the cell in the subdivision of ∆, dual to τ∆′. Suppose

∆′ ∩ Z3 = {α, β, γ}, then equation of Vf reduces to aα + aβ + aγ over (C∗)3

because the lower powers of a in aα, a
β, aγ are the same.

5.1 Barycentric subdivision and orientation

Consider the first barycentric subdivision of Vtrop. We make the following

notations.

For Vtrop:

• v = vertex, E = edge and F = face.

For barycentric subdivision of Vtrop:

• For vertices: v = vertex, e = barycenter of E, f = barycenter of F.
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• For edges : ev = edge from e to v, ef = edge from e to f. Ordering of

letters is not important, for example ev is the same as the ve.

To define a skeleton, we need an orientation on the edges of the barycentric

subdivision. The orientation should satisfy the following properties:

1. At each v, edges ev’s should be oriented such that one of the four ev’s

is incoming and the other three are outgoing from v.

2. At each e, if both ev incident at e are incoming to e, we call this

‘marked e’. There are 3 ef’s incident at e. We call ef incident at

‘marked e’ a ‘marked ef’. We orient ‘marked ef’ edges such that,

• one is incoming and other two outgoing from ‘marked e’.

• no more than one ev incident at e is oriented as outgoing from e.

3. We call f as ‘marked f’ if all ‘marked ef’ are oriented incoming at f.

No more than one ‘marked ef’ should be oriented as outgoing from f.

4. Infinite ev edges are oriented from ∞ to e.

Lemma 5.2. The orientation with the properties 1, 2 and 3 mentioned above

exists and the graphs of evs and the graph of ‘marked ef’s are acyclic.

Proof. First we construct an orientation with the desired properties 5.1. We

take a generic piecewise linear concave function Φ : R3 → R. The gradi-

55



(a) Tropical surface of z1+z2+z3+
1 = 0

(b) First barycentric subdivision

Figure 5.1: Σ2 in Figure 5.3a and subdivision in Figure 5.3b

ent flow of Φ induces an orientation on the edges ev’s of the barycentric

subdivision. When we restrict Φ to any F, we have the following cases.

• Case I: When Φ assumes maximum value at an interion point of F. We

take this point as baricenter of F and call it f.

• Case II: When Φ assumes maximum value at an interior point of E. We

take this point the barycenter of E and call it ‘marked e’.

• Case III: When Φ assumes maximum value at a vertex v. There are two

ways it could happen:

– Subcase i : When Φ assumes maximum value at a vertex for a face

F. Let v be the vertex. Two Es, say E1 and E2 incident at v are

incoming at a vertex and other two, say E3 and E4 are outgoing from

v. Let F12 be the face for which Φ assumes maximum value at v. Let

e1, e2 and f12 be the baricenters of E1,E2 and F12 respectively. We
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take any one of {E1,E2}, say E1 and switch the orientation of the

edge e1v making it going from v to e1. After the switch, both ev’s

incident at e1 are oriented towards e1. Thus e1 becomes ‘marked e’.

– Subcase ii: When Φ has maximum value at v for three Fs. Let v

be the vertex. Then, three edges, say E1,E2 and E3 are incoming

and E4 is outgoing from v2. Let e1, e2, e3 be the barycenters of of

E1,E2,E3 respectively. Let F12,F23 and F13 be the faces with edges

{E1,E2}, {E2,E3} and {E1,E3} respectively and f12, f23, f13 be their

baricenters. We choose any one combination out of

{E1,E2}, {E2,E3}, {E1,E3}.

For example, we take {E1,E2}. We make a switch in the orientation

of e1v so that it is oriented from v to e1. Similarly for edge E2. These

two switches of the orientation give rise to two new ‘marked e’s.

Note that other possibilities: all Es are incoming or all are outgoing at v

cannot happen due to balancing condition Vtrop should satisfy at a vertex.

Orientation of ef edges:

1. When we make a switch as in Subcase i for E1. At e1, we orient e1f1

going from f1 to e1 and other two oriented out from e1.

2. When we make two switchs of two edges E1 and E2 as in Subcase ii.
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Figure 5.2: Orientation of ‘marked ef’.

At e1: We orient e1f13 as going from f13 to e1, and orient the other two

as outgoing.

At e2: We orient e2f23 as going from f23 to e2 and orient the other two

as outgoing.

3. When two F’s achieve maximum value at e so that two ef’s are incoming

at e. In this case, we switch the orientation of one of these two incoming

ef’s.

Next, we prove the claim that the graph with this orientation is acyclic.

In particular, there are no cycles of ‘marked ef’ edges.

Before the switch, we claim that there are no cycles of oriented ev edges.

This is done by ordering such that ef’s are oriented according to values of Φ.

After the switch, there are no cycles of E edges since we make switch of
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(a) One of the three possible orien-
tations at v.

(b) After the switch of orientation.
Here enew = eN
.

Figure 5.3: Illustrating 3 incoming and 1 outgoing from a vertex

only half of E.

We next claim that the graph of ‘marked ef’ edges has no cycle. For

Case II, we choose the barycenter f1,2 of F1,2 far from vertex v2 and the

barycenter eN of E1 close to v2 so that Φ(f1,2) < Φ(eN). For Case III, we

choose f1,2 very close to the vertex v3 and eN1 and eN2 such that Φ(f1,2) >

Φ(eN1) and Φ(f1,2) > Φ(eN2). Similarly we choose f1,3 far away from eN1

such that Φ(f1,3) < Φ(eN1) and choose f2,3 and eN2 such that Φ(f2,3) <

Φ(eN2). So, we have the inequalities, Φ(f1,3 < Φ(eN1) < Φ(f1,2) and Φ(f2,3) <

Φ(eN2) < Φ(f1,2). These choices make the graph of ‘marked ef’’s to be

oriented according to the values of Φ. So it is acyclic.

It is possible that two ef’s are oriented towards e when two F’s have
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maximum values at e. We make a switch in the orientation of one of them.

This switch doesn’t produce any new cycle of ‘marked ef’ edges since the

switched ‘marked ef’ is oriented to a sink, f.

5.2 Sections of Log : VM → Vtrop

The inverse image of a neighborhood of each v ∈ Vtrop of Log : VM → Vtrop

is the closure of the coamoeba of P2. The coemoeba is the image under the

map Arg : (C∗)3 → T 3 defined by

Arg(z1, z2, z3) = (arg|z1|, arg|z2|, arg|z3|).

The closure of the coamoeba of P2 is cut out by six planes in the cube, see

Figure 5.4. The inverse images of these planes under the map Arg are 2−tori.

Put arg(z1) = x, arg(z2) = y and z3 = z. These six planes are algebraically

given by:

1. x = π or plane SZJL,

2. y = π or plane IHXQ,

3. z = π or plane EGNU,

4. y = x ± π or planes SZXQ and

IHJL,

5. z = y ± π or planes EIQU and

GHXN,

6. z = x ± π or planes ESXL and

JNZU.
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Below, we have listed the points of intersecton among these planes (T 2).

These points will be the seven sections αiv, i = 1, . . . , 7 we are going to use

later for v.

1. The intersection point of the planes: 1, 2 and 3 is O.

2. The intersection point of the planes: 2, 4 and 5 is I = H = X = Q.

3. The intersection point of the planes: 3, 5 and 6 is E=G = N = U.

4. The intersection point of the planes: 1, 4 and 6 is J =L = S = Z.

5. The intersection point of the planes: 1, 2, 5 and 6 is A = Y.

6. The intersection point of the planes: 2, 3, 4 and 6 is F = V.

7. The intersection point of the planes: 1, 3, 4 and 5 is K = T.

Each plane has 4 points out of those 7 points listed above. The following

4 points are associated with the plane z = π.

1. Point of intersection of planes 3, 2 and 1 is O;

2. Point of intersection of planes 3, 1, 4 and 5 is K = T

3. Point of intersection of planes 3, 2, 4 and 6 is F = V.

4. Point of intersection of planes 3, 5 and 6 is E = G = N = U.

Similarly, we can get 6 points over an interior point of E. These are the

points on the coamoeba over the edge E. In Figure 5.7, we pair same colored
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dots to get those points.

5.3 Skeleta and main theorem

Definition 5.1. We have the fibration Log : VM → Vtrop. Recall the nota-

tions, v = vertex, E = edge and F = face of Vtrop.

1. Over every baricentric neighborhood of a vertex v, we have 7 local sec-

tions, αiv, i = 1, . . . , 7, 6 local sections αiE, i = 1, . . . , 6 (out of those 7

sections) over an E and 4 local sections αiF , i = 1, . . . , 4 (out of those 7

sections) over a face, F.

2. The fiber over ‘marked f’ is a torus, T 2
f .

3. The fiber over non-marked e is 6 arcs, Ai
e, i = 1, . . . , 6 to connect 6

sections on either side of e along E, see Figure 5.7.

4. The fibers over interior points of non-marked ef are 4 arcs Ai
ef , i =

1, . . . , 4 from the above 6 arcs to connect sections on either side of ef.

For example, consider two neighboring vertices v1 and v2 as shown in

Figure 5.10. Three affine planes 1, 2 and 3 are common to both ver-

tices. On the left side of ef i. e. towards v1, the four sections are

given by: {1, 3, B}, {1, 2, C}, {1, 3, A, C}, {1, 2, A,B}. On right side,

these are given by {1, 3, B′}, {1, 2, C ′}, {1, 3, A′, C ′}, {1, 2, A′, B′}. We

connect them in the order they are written down and introduce 4 little
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Figure 5.4: 7 sections over a vertex.

Figure 5.5: 4 local sections indicated as colored dots for the torus z = π.
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Figure 5.6: Two prisms: ALIHYJ and AQSXYZ and 6 sections: Red, Blue, Purple, Black, Orange and
Green

Figure 5.7: 6 Sections over vertex e
.
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arcs Ai
ef , i = 1, . . . , 4, parallel to ef to connect if they don’t agree, see

Figure 5.11. There are two ways to connect these sections.

5. At ‘marked e’ we choose a fiber T 2 transversal to the edge ev. The fiber

over ‘marked e’ is three circles Sipe, i = 1, . . . , 3 parallel to the edge ev

and a transversal 2-dimensional coamoeba (intersection of transversal T 2

with original fiber at e), C2 over ‘marked e’.

6. Over interior point of ‘marked ef’, the fiber is two circles S1
pef parallel

to ef and a transversal circle S1
tef . By parallel and transversal circles,

we mean, for example see Figure 5.11 those circles in the 2-torus, which

don’t intersect and the ones which intersect to each other.

7. Over non-marked f, two circles parallel to outgoing edge ‘marked e’

from f and a transversal circle divide the fiber over f into 2 components,

call them A and B. There are many other circles on the fiber, coming

from ef edges and these circles further subdivide the fiber into many

components. We pick two components A′ and B′, one lying in A and the

other lying in B, see Figure 5.9. The fiber T 2
R over non-marked f is the

complement of A′ and B′ in T 2 over f.

Definition 5.2. With all notations as described in Defintion 5.1, we denote
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Figure 5.8: a possibile orientation at f
.

Figure 5.9: fiber over f, two vertical red circles and horizontal black circle divide T 2 into 2 components
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Figure 5.10: Two neighboring vertices

.

Figure 5.11: 4 arcs over non marked ef to connect 4 sections (a red, a black, a purple and a green) from
either side of the ef. The black should connect to black by an arc parallel to ef and similar arcs to connect
red to red, purple to purple and green to green.
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by

S :=

{⋃
v

αiv
⋃
f

T 2
R

⋃
e

Ai
e

⋃
‘marked f’

T 2
f

⋃
‘marked e’

Sipe ∪ C2

⋃
‘marked ef’

Sipef ∪ S1
tef

}
.

S ⊂ VM . The index i for each component is defined above.

We now are going to state the main theorem.

Theorem 5.3 (main theorem). The set S ⊂ VM is a deformation retract of

VM .

Before proving the theorem, we need to explain the decomposition of the

coamoeba of 2-dimensional pair-of-pants P2. The decomposition induces a

CW structure on the ‘tropical’ pair-of-pants.

5.4 Decomposition of coamoeba of pair-of-pants

Let T 3 = (R/2πZ)3 be the 3-dimensional ‘phase’ torus. Let P2 be the pair-

of-pants, z3 + z2 + z1 + 1 = 0. Take the coamoeba of P2, Arg(P2). Now we

decompose this coamoeba into polytopes (octahedra).

We arrange the variables z1, z2, z3 such that their arguments are non-

decreasing:

0 ≤ arg(z1) ≤ · · · ≤ arg(z3) ≤ 2π. (5.1)

For any ordering 5.1, we denote the closure in T 3 of the set defined by these

inequalities by Oσ ⊂ C2, where σ is a permuation of the set {1, 2, 3}. For
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example, in Figure 5.12, the octahedra EFIAOL is O0123, HFOKGL is

O0321. There are 4 more octahedra, HOY JKN,ESTOAQ,QTUV OZ and

NOVXY Z. Since there are 6 permutations of the set {1, 2, 3}, so are six

octahedra.

The lower dimensional faces of these octahedra correspond to some equali-

ties of the arguments in Equation 5.1. For example, Oσ, σ = (01)23, 0(12)3, 01(23)

where (12) means arg(z1) = arg(z2) give the three faces of O0123, namely

EIF,AOE and LOF respectively. There are 12 such faces, which are listed

below.

1. ∆LOF

2. ∆HOK

3. ∆EOA

4. ∆NOY

5. ∆OQT

6. ∆V OZ

7. ∆AIL = ∆HJY,

8. ∆EFI = ∆UV Q,

9. ∆ASQ = ∆XY Z,

10. ∆FHG = ∆NVX,

11. ∆GLK = ∆EST,

12. ∆JKN = ∆TUZ.

The vertices correspond to all variables arg(zi) being real.

Lemma 5.4 (ref. Ilia Zharkov). • Let uv be a baricentric neighborhood of

v. The preimage of octahedra Oσ, σ a permutation of {1, 2, 3}, in Log−1(uv)

in VM is a shellable PL 4-ball.

69



Figure 5.12: Decomposition of the Coamoeba of 1 + z1 + z2 + z3 = 0

Figure 5.13: An octahedron EFIAOL
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• The preimage of the triangles listed in Section 5.4 in Log−1(uv) in VM is

a shellable 3-ball.

Now we give the proof of the Theorem 5.3

Proof. Contraction at v: Let v be a vertex of Vtrop. Let the orientation of

ev edges at v be as shown in Figure 5.14b. The affine planes, 01, 02, 12 in

Figure 5.14b are dual to lines 01, 02, 12 in Figure 5.14a respectively. They

further correspond to planes (or T 2) SLJZ : x = π, HIQX : y = π,

IHJL and SQXZ : y = x± π respectively from Figure 5.12.

Consider the octahedra σ0123 = EFIAOL. The inverse image Log−1(σ0123) =

B4 of this octahedra is a 4-balll, Lemma 5.4). The part of the boundary

of this ball is shown in Figure 5.15. This boundary lies in the closure of

coamoeba of the edge 012 , see Figure 5.14b and is open to contract along

with the 4-ball. Following the orientation at v, we contract B4 starting from

the boundary given by intersection of inverse image of nbd of e with B4, see

Figure 5.15. The other balls given by the inverse images of the octahedra are

contracted in the similar fashion. We perform this contraction at all vertices

ordered by the value of Φ.

The 3-balls given by Arg−1(triangle), where ‘triangle’ means one of the

twelve triangles listed above are contracted thereafter.

Contraction over ‘marked ef’: Recall that ‘marked e’ is the vertex in

71



(a) Newton polytope (A standard
simplex) of P2

(b) Σ2 of P2

Figure 5.14

the barycentric subdivision where two evs are incoming. Moreover, ‘marked e’

is the vertex where one ‘marked ef’ is oriented in and the other two ori-

ented out from ‘marked e’, see Figure 5.16a. The fiber of Log over eN is the

closure of the coamoeba of za + zb + zc = 0. The coamoeba consists of two

solid prisms as shown in Figure 5.16b, bounded by the planes SLJZ,QIHX

and SQXZ, IHJL or planes C,B and D respectively. So the inverse image

of Log of the neighborhood of ‘marked e’ consists of two 3-balls. Each is

given by attaching 3 leg cylinders to the faces of prism, see Figure 5.17.

We perform contractions for ‘marked ef’ partially ordered by orientation

of the graph of ‘marked ef’. The cell complex left after the contractions is

precisely S.
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Figure 5.15: A part of the boundary of a 4-ball EFIAOL

(a) Oriented ‘marked ef’
(b) Decomposition of fiber over eN

Figure 5.16
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Figure 5.17: A 3-ball
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