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Abstract1

Background: Feline cytauxzoonosis is a highly fatal tick-borne disease caused by a2

hemoparasitic protozoan, Cytauxzoon felis. This disease is a leading cause of mortality for3

cats in the Midwestern United States, and no vaccine or effective treatment options exist.4

Prevention based on knowledge of risk factors is therefore vital. Associations of different5

environmental factors, including recent climate were evaluated as potential risk factors for6

cytauxzoonosis using Geographic Information Systems (GIS).7

8

Methods: There were 69 cases determined to be positive for cytauxzoonosis based upon9

positive identification of C. felis within blood film examinations, tissue impression smears,10

or histopathologic examination of tissues. Negative controls totaling 123 were selected11

from feline cases that had a history of fever, malaise, icterus, and anorexia but lack of C.12

felis within blood films, impression smears, or histopathologic examination of tissues.13

Additional criteria to rule out C. felis among controls were the presence of regenerative14

anemia, cytologic examination of blood marrow or lymph node aspirate, other causative15

agent diagnosed, or survival of 25 days or greater after testing. Potential environmental16

determinants were derived from publicly available sources, viz., US Department of17

Agriculture (soil attributes), US Geological Survey (land-cover/landscape, landscape18

metrics), and NASA (climate). Candidate variables were screened using univariate logistic19

models with a liberal p-value (0.2), and associations with cytauxzoonosis were modeled20

using a global multivariate logistic model (p < 0.05). Spatial heterogeneity among21

significant variables in the study region was modeled using a geographically weighted22

regression (GWR) approach.23

24

Results: Total Edge Contrast Index (TECI), grassland-coverage, humidity conditions25

recorded during the 9th week prior to case arrival, and an interaction variable, diurnal26
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temperature range percent mixed forest area were significant risk factors for27

cytauxzoonosis in the study region. TECI and grassland areas exhibited significant28

regional differences in their effects on cytauxzoonosis outcome, whereas others were29

uniform.30

31

Conclusions: Land-cover areas favorable for tick habitats and climatic conditions that32

favor the tick life cycle are strong risk factors for feline cytauxzoonosis. Spatial33

heterogeneity and interaction effects between landcover and climatic34

variables may reveal new information when evaluating risk factors for vector-borne diseases.35

36

37

Keywords: Cytauxzoonosis – Feline – Geographical Information Systems (GIS) –38

Geographically Weighted Regression (GWR) – Multivariate logistic – Climate – Humidity39

– Diurnal Temperature Range (DTR) – NASA.40
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Introduction41

Cytauxzoonosis is a commonly diagnosed tick-borne disease among domestic cats in the42

Midwestern United States and a leading reason for feline mortality. This disease is caused43

by a hemoparasitic protozoan Cytauxzoon felis, which has been isolated from several44

members of the felid family. Bobcats are the reservoir hosts and could remain45

nonsymptomatic carriers after recovering from acute illness. Ticks that feed blood from46

bobcats or other wild felids could later transmit the disease to domestic cats.47

48

Amblyomma americanum (lone star tick) is a known tick vector for cytauxzoonosis49

(Reichard et al. 2009), and Dermacentor variabilis (American dog tick) has been shown50

capable of transmitting the protozoa under experimental conditions (Blouin et al.1984).51

Cytauxzoonosis has a rapid disease course with high morbidity and high mortality, and52

most infections result in a disease state. Clinical symptoms can be noticed within 2353

weeks. Currently, there is no vaccine available for this disease, and treatment options are54

very limited, which usually leads to fatal results in most infections. Prevention mainly55

relies on understanding and avoiding different risk factors, many of which could be found56

in a cats living environment.57

58

Cytauxzoonosis has been reported primarily from the south-central and southeastern59

parts of the United States and it is particularly a concern in the quad-state region60

covering Kansas, Missouri, Oklahoma, and Arkansas where relatively high numbers of61

infections are diagnosed each year. Using ecological niche models, Mueller et al. (2013)62

reported that the potential distribution of C. felis is likely to expand in the region;63

however, this study did not include areas in Kansas. Reichard et al. (2009) identified64

several environmental risk factors for cytauxzoonosis in a study that enrolled infected cats65

from Oklahoma. The risk factors identified in that study primarily included having66

residences in areas that are suitable for ticks, for instance, wooded areas and living in67

proximity to natural, unmanaged landscapes. Environmental risk factors for vector-borne68

diseases are subject to changes with geographic areas due to the natural differences in the69

landscape and climatic conditions.70

71

Occurrences of tick-borne and other diseases among domestic companion animals are very72

often correlated with certain land-cover areas (Reichard et al. 2009, Raghavan et al.73

2011), as well as prior climatic and pet owner socioeconomic conditions (Colwell et al.74

2011; Raghavan et al. 2013a). However, the kinds of landscape features and climatic75

parameters associated with different diseases could vary based on their tick vectors. Other76

influential factors that have often shown to be associated with tick-borne and wildlife77

diseases are the different landscape metrics, such as habitat fragmentation and patch78

density surrounding a pet owners residence (Uuema et al. 2009, Halos et al. 2010).79

80
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Climatic conditions play an important role in a ticks life cycle, which indirectly affects the81

prevalence and spatial distribution of the diseases they help transmit. While the82

individual effects (or main effects) of different environmental factors have been83

documented, knowledge of climate land-cover interactive effects on disease occurrences is84

generally lacking. In addition, influential factors affecting different disease occurrences85

over large spatial extents have been shown to change, with some risk factors being more86

important in some areas than others, a phenomenon referred to as spatial heterogeneity.87

Accounting for interaction effects among influential factors and spatial heterogeneity88

therefore are important when evaluating environmental risk factors for diseases.89

Increasing availability of high-resolution, remotely sensed land-cover datasets and climatic90

data coupled with spatial analytical methods facilitated by Geographic Information91

Systems (GIS) allows us to closely examine such relationships between disease status and92

environmental factors.93

94

The objective of this study was to retrospectively verify the individual and interactive95

associations of different environmental and climatic factors with cytauxzoonosis cases96

received at Kansas State Veterinary Diagnostic Laboratory (KSVDL) between the years97

2005–2012. Candidate environmental and climatic variables were derived from publicly98

available, high resolution US Geological Survey (USGS) and National Aeronautics and99

Space Administration (NASA) sources.100

Materials and Methods101

Case selection102

103

The laboratory information management system of KSVDL was searched for any samples104

that were submitted as suspect for cytauxzoonosis or had a confirmed diagnosis from 2005105

to 2012. A sample included whole blood samples or smears formicroscopic parasite106

screening or cats submitted for necropsy. A case was defined by positive detection of C.107

felis on a microscopic blood film examination, presence of schizonts within macrophages108

on impression smears from fresh tissue (lung, spleen, or lymph node) obtained at necropsy,109

or presence of schizonts within multiple organs on histopathology. Cats with a history of110

fever, malaise, icterus, and anorexia but no C. felis on blood film examination or111

schizonts within macrophages from fresh tissue or within multiple organs were considered112

as controls. Animals with only a blood film examination were included as controls only if113

they had additional findings to rule out C. felis, which included presence of regenerative114

anemia, cytologic examination of blood marrow or lymph node aspirate, other causative115

agent diagnosed, or survival of 25 days or greater post testing.116

117

Host factors and time of case arrival118

119
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Cats were grouped based on their age (< 1 year, 1− 3years, 3− 5 years, > 5 years), sex120

(male, female, unknown), and home environment (indoor, outdoor, unknown) categories.121

Cases/ controls received at KSVDL were grouped based on the season they arrived at the122

diagnostic facility into four categories; fall (September to November), winter (December123

to February), spring (March to May), and summer ( June to August).124

125

Geocoding126

127

Client-provided street level addresses at the time of case submissions were retrospectively128

verified for their accuracy using Google Maps (Google Inc., Mountain View, CA), and129

geographic coordinates were derived using a geocoding tool in ArcMap 10.1 software. The130

geographic coordinates for unmatched addresses were obtained using Google Earth131

software (v. 6.2.2.6613) (Google Inc., Mountain View, CA). In all, there were 69 cases132

(out of 77) and 123 controls (out of 164) forwhich precise point locations of households133

could be obtained. All geospatial datasets used in this study were projected (or134

reprojected from the original coordinate systems) in to the USA Contiguous Equal Area135

Conic Projection to preserve area measurements in the data. This coordinate system is136

based on the GeographicCoordinate System NorthAmerican 1983 Geographic Datum. All137

original, intermediate, and processed geospatial data were stored in a SQL138

Server/ArcSDE 10 Geodatabase.139

140

Landscape metrics141

142

The publicly available 2006 National Land Cover Dataset (NLCD) (Homer et al. 2007,143

Multi-Resolution Land Characteristics Consortium 2013) for the study region was144

obtained from the USGS in a raster grid format. Land-cover grids surrounding individual145

casecontrol locations were extracted from the raster dataset using 2500-meter polygon146

buffers, and converted to polygon area features in ArcMap. The choice of the 2500-meter147

distance was made based on our assumption that the most influential environmental148

factors for cytauxzoonosis operated within this distance considering the host and vector149

home ranges. The risk of Modifiable Areal Unit Problem (MAUP) when making such150

choices is discussed in Raghavan et al. (2013b). The area of different land-cover types151

within an individual buffer was divided by the total area to generate percent land-cover152

values. Different land-cover classes present in NLCD are shown in Table 1, and153

descriptions of different land-cover classes can be found from their source website154

(Multi-Resolution Land Characteristics Consortium 2013). In addition to deriving percent155

land-cover areas, the following landscape metrics were derived from the NLCD dataset156

surrounding casecontrol locations. Total Edge Contrast Index (TECI), calculated by157

TECI =

[ m∑
i=1

m∑
k=i+1

eikdik

]−E∗

(1)
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where eik is the total length of edge between patch types i and k, E∗ is the total length of158

edge in landscape, dik is the dissimilarity (edge contrast weight) between patches i and k.159

Patch richness (the number of patch types present in a landscape) and the largest patch160

index (LPI) were calculated by161

LPI =

[ n∑
j=1

aij

]−A

(2)

where aij is the area of patch ij and A is the total landscape area, were estimated using162

Fragstats 4.0 (McGarigal et al. 2012). TECI captures the percentage of all edge-lengths163

between land-cover types in NLCD, which essentially represents the adjacency between164

forested areas, mixed forest, grassland, built-up areas, and other land-cover types in this165

study. The choice of these pattern metrics was made based on our interest in identifying166

case associations with habitat fragmentation or any predilection for the presence of a167

particular patch in the surrounding landscape where cats had lived.168

169

Climate170

171

The Prediction of Worldwide Renewable Energy (POWER) web portal at the NASA172

Langley Research Center (Eckman and Stackhouse 2012) makes data available that173

includes daily estimates for various biologically relevant climate parameters (daily174

maximum, minimum and average daily temperatures, dew point, relative humidity, and175

precipitation) from the year 1983 to present day. NASA satellite and meteorological data176

products redistributed through POWER web tools are validated with surface-based solar177

and meteorological measurements to quantify uncertainties (White et al. 2008, 2011).178

POWER data were converted to raster layers covering the study region in ArcGIS, and179

the weekly mean estimates of maximum, minimum and average temperatures (◦C), weekly180

mean diurnal temperature range (DTR) (difference between daily maximum and181

minimum temperature averaged over a 7-day period), precipitation (mm), and relative182

humidity (%) were derived from independent raster layers representing these climate183

parameters for up to 4 months prior to the dates on which cases were received at KSVDL.184

A representative value for each climatic parameter was derived by averaging weather185

parameter estimates to case control locations.186

187

Statistical analyses188

189

Strengths of variable associations with cytauxzoonosis status in cats and geographical190

variability in risk factor influences were evaluated in three steps. First, the relevance of191

candidate variables to be used in modeling procedures was verified using univariate192

logistic regressions, and those with p 0.2 were selected for further analysis. Care was193

taken not to remove candidate variables that were deemed clinically relevant (Hosmer and194
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Lemeshow 1990). Multicollinearity among screened variables was tested by estimating the195

variance inflation factor (VIF) using the PROC REG/TOL VIF option in SAS (SAS Cary,196

NC) in which all variables with a VIF ≥ 10 were considered to indicate multicollinearity197

(Allison 1999). Observations for all land-cover, soil, and climate variables were kept in198

their original measurement units and were continuous. In addition to testing individual199

variable effects, significance of various second-level interaction effects on the response was200

also verified. In the second step, screened variables were selected as parameters for a201

global multivariate logistic model in a stepwise (both directions) procedure which takes202

the form,203

ln

[
p̂

1− p̂

]
= β̂0 +

∑
k

β̂kxk + εi (3)

where p̂ is the predicted value of response variable p, β̂0 the intercept coefficient, and β̂k204

the coefficient for the explanatory variable xk (k = 1, .., n) and ei random error.205

Multivariate stepwise logistic regression models (global) were fitted using the significance206

level p = 0.05 for variable entry and ≥ 0.10 for a variable to be removed from the model.207

All models were ranked usingAkaike information criterion (AIC) value, and the model208

with lowest AIC value was deemed to be the best fitting model, which takes the form,209

AICc = 2nloge(σ̂) + nloge(2π) + n{ n+ tr(S)

n− 2− tr(S)
} (4)

210

where tr(S) is the trace of the hat matrix. The model performance was measured using211

deviance chi-squared goodness- of-fit test ( p ≤ 0.05 indicates poor fit). The predictive212

ability of the model was evaluated using the area under receiver operating characteristic213

(AUC) curve values. Odds ratios (OR) and 95% confidence intervals (CI) in the final214

model were used for interpreting risk factor associations with cytauxzoonosis status in cats.215

Potential confounding effects of host factors, age group of cats (< 1 year old as reference216

category), sex (female as reference category), and home environment (outdoor as reference217

category) on predictor variables were estimated by including them one at a time in the218

final logistic model. If such inclusion changed the coefficients of explanatory variables by219

at least 10% or more, then the adjusted ORs were recorded from those models.220

221

Variables retained in the final logistic model (global) were entered in a geographically222

weighted regression (GWR) model, which is a spatially explicit regression modeling223

approach for examining spatial nonstationarity of responses (disease outcomes in this224

study) by allowing model coefficients to vary continuously over space to represent local225

relationships. Because case status in this study was recorded in a binary format (0 =226

negative diagnosis for cytauxzoonosis and 1 = positive diagnosis), a logistic form of GWR227

was used, which incorporates a set of geographical locations to the models, taking the form228

log
[ pi
1− pi

]
= c+ fx(ai) + εi (5)
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229

where c is a constant, pi is the probability (expectation) of a positive diagnosis, i, ai is the230

determinant variable surrounding case–control location, fx is a function enabling the231

regression parameter associated with a to vary smoothly over the study region, and ei is232

random error. GWR estimates the parameters for each observation at location i using all233

observations with assigned weights through a weighting scheme according to spatial234

proximity, which is represented by Euclidean distances in this study. Nearer locations gain235

higher weights and vice versa. Two types of weighting functions are generally used–fixed236

and adaptive kernels. The latter ensures a certain number of nearest neighbors as local237

samples and better represents the degree of spatial heterogeneity (Fotheringham et al.238

2002, Paez et al. 2002) and was the choice in this study. The adaptive kernel method is239

based on a bi-square distance decay function as follows (Fotheringham et al. 2002),240

Wsi =

{[
1− ( dsi

dmax
)2
]2
dsi ≤ dmax

0 otherwise
(6)

where, dmax is the maximum distance from the mth farthest case–control location (m is241

the selected optimal number of neighboring points). The number of nearest neighbor242

points was chosen by AIC minimization method, which is preferable because it considers243

the possible variation in degrees of freedom among models centered on various244

observations (Fotheringham et al. 2002).245

246

The logistic GWR generates a set of parameter estimates for the determinant variables at247

each casecontrol point location,which can be used to visually analyze spatial variations in248

the risk posed by determinant variables to cytauxzoonosis infection in cats. In addition, a249

pseudo t-statistic is also calculated to indicate the significance of the parameters, which is250

obtained by dividing the parameter estimates by their standard errors (Fotheringham and251

Brunsdon 2001). Parameter estimates and t-statistics were mapped in ArcGIS to reveal252

the spatial variations of risk by different determinant variables. Although these t-values253

cannot be interpreted in a formal statistical sense (Waller et al. 2007), they are often used254

as exploratory tools to highlight local areaswhere interesting relationships appear to be255

occurring. An interpolation method, the inverse distance weighted (IDW) algorithm, was256

employed to generate parameter estimate surfaces. IDW assumes that the predictive257

spatial surface is driven by local variations that are captured through the neighborhood258

(Watson and Philip 1985), and therefore was considered to be appropriate in the context259

of this study.260

Results261

Locations of cases enrolled in the study were found predominantly in the eastern half of262

Kansas and adjacent states (Fig. 1). This region receives relatively higher rainfall than263
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the western portion of Kansas, roughly totaling 35–45 inches per annum compared with264

15–20 inches in the west (Goodin et al. 2004). This region is also relatively more densely265

populated than western Kansas. Descriptive statistics for casecontrol host factor266

characteristics are provided in Table 2. Inclusion of indoor versus outdoor cats in the267

study did not alter model performance, indicating that cats are equally at risk from all268

risk factors identified in the study regardless of their home environment.269

270

Among all the environmental and climatic variables screened with a liberal p value (0.2),271

eight were found to be significantly associated with the case status (Table 3), and were272

selected as candidate variables for multivariate logistic model (global). However, TECI, %273

grassland area within 2500 meters surrounding casecontrol locations (henceforth grassland274

area), relative humidity recorded during the 9th week prior to case arrival at the hospital275

(henceforth 9th week humidity), and a first-level interaction term, weekly mean DTR276

recorded 4 weeks prior to case arrival % mixed forest area (henceforth DTR mixed forest)277

were retained as significant variables at the final multivariate logistic model (global)278

(Table 4). The differences in statistical distribution of TECI, grassland area, and humidity279

conditions surrounding casecontrol locations are provided in Figure 2. The inclusion of280

host factors, age, sex, home environment, and time of arrival at hospital did not change281

the model parameter estimates by 10% or more. The chi-squared deviance goodness-of-fit282

test did not indicate model inadequacy ( p > 0.05), and nonlinearity in logit was not283

noted. The AIC value of the final model was noted as 354, and the predictive ability of284

the model measured by AUC value was noted as 0.72.285

286

All variables retained in the multivariate logistic model (global) were entered as287

parameters in a multivariate logistic GWR model (local), which resulted in a substantial288

reduction in AIC value (∆AIC = 44) compared to the global model. The difference289

between the local and global model AIC values was significant (p < 0.05) in an analysis of290

variance (ANOVA) F-test. The AUC value for local model was noted as 0.88, a291

substantial improvement in model sensitivity/specificity, indicating spatial heterogeneity292

in the effect of different explanatory variables on casecontrol occurrences in the region. No293

notable geographical variation in the influences of climate variables (humidity and DTR294

mixed forest) on casecontrol distribution could be seen; however, a strong positive295

relationship between TECI and casecontrol distribution was evident toward the296

southeastern region in a northwest to southeastern gradient (Fig. 3), and a positive297

relationship in the opposite direction between grassland areas and casecontrol distribution298

was present in a southeast to northwestern gradient (Fig. 4). A summary of GWR model299

parameters and their directions of association is presented in Table 5.300
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Discussion301

This study used cases received at a diagnostic laboratory, geospatial analytical methods,302

and publicly available data sources for identifying novel environmental and climatic risk303

factors for cytauxzoonosis, enhancing the current ecoepidemiological understanding of this304

disease. All of the identified risk factors can be related to the role of A. americanum ticks305

in the region, whose control is essential for managing not only cytauxzoonosis but also306

other zoonotic diseases, including tularemia (Raghavan et al. 2013b) and human307

monocytic ehrlichiosis.308

309

TECI, a measure of landscape fragmentation, is a risk factor for feline cytauxzoonosis in310

the south-central and southeastern portions of the study region bordering Oklahoma,311

Missouri, and Arkansas. Landscape fragmentation leads to more and smaller habitat312

patches, increased isolation among habitat patches, decreased complexity of patch shape,313

and higher proportions of edge habitats (Saunders et al. 2002), and studies have shown314

the risks associated with fragmented landscape for tick-borne diseases (e.g., Halos et al.315

2010, Li et al. 2012). Fragmented landscapes can support habitats for wildlife carriers of316

C. felis and influence the abundance of small mammals, many of which are potential hosts317

for young and adult ticks. Suburban developments at the edges of forest/woodland areas318

also increase human and pet exposures to infected ticks.319

320

In contrast to the geographic pattern of TECI risk to cats, grassland vegetation321

surrounding pet owner residences was a significant risk to cats in the north-central and322

northwestern areas in the study region. The spatial differences in the influences of these323

risk factors can have prevention/management implications and were identifiable thanks to324

the GWR modeling approach, which also improved the overall model predictive ability by325

applying local weights to the parameter estimates. The risk of higher grassland acreage326

surrounding homes has been identified as a significant risk for feline tularemia in Kansas327

(Raghavan et al. 2013b), one other tickborne disease that is also transmitted by A.328

americanum among other ticks. Habitats for A. americanum include grassland areas,329

although the wooded edges along fence lines in pastures and home backyards may also330

support their life cycle. Grasslands in the study region are less intensively maintained and331

are generally used only for grazing. Infection may be obtained from pathogen-carrying332

ticks while cats are outdoors, from pet owners, or from other pets in the household that333

return home after outdoor activities with infected ticks attached.334

335

Humidity conditions recorded 9 weeks prior to case arrival is a significant risk factor for336

cytauxzoonosis in the study region. The 2500-meter areas surrounding case locations337

recorded relatively higher humidity conditions during the 9th week prior to case arrival338

compared to areas surrounding their control counterparts (Fig. 2), and significant339

differences could not be seen for other weeks. This finding is similar to Raghavan et al.340
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(2013b), wherein higher humidity conditions surrounding case locations were recorded341

during the 8th week prior to feline tularemia case arrivals from the same region. Brown et342

al. (2011) noticed elevated humidity (30-year average) to be associated with higher343

numbers of human tularemia cases in Missouri, and studies from other regions have shown344

similar associations as well (Estrada-Penà 2002, Diuk-Wasser et al. 2010). Although345

humidity has been adequately shown to play an important role in a ticks life cycle, any346

biophysical mechanisms that favor cytauxzoonosis incidences following higher humidity347

conditions in the landscape are not clear. The mechanistic basis for a348

humiditycytauxzoonosis connection is likely to involve multiple pathways and needs349

further investigations. Higher humidity conditions recorded during late spring and350

summermonths also coincide with higher human outdoor activities, which may indirectly351

increase their pet exposure to ticks.352

353

When evaluating the effects of influential environmental factors, studies have typically354

treated past climate (or future climate-change scenarios) and land-cover effects on disease355

outcomes separately (Lindgren and Gustafson 2001, Jackson et al. 2006, Randolph 2010,356

Raghavan et al. 2011). However, microclimatic conditions that affect a ticks life cycle and357

perhaps its ability to sustain and later transmit different pathogens to hosts could be358

regulated by habitat type and other physical factors such as soil moisture and elevation359

(Randolph and Storey 1999). Studies that address climate land-cover interactions on360

disease outcomes can be rarely found. The significant interaction effect noted between361

DTR and mixed forest in the present study indicates a combined effect of362

climateland-cover on cytauxzoonosis outcome.363

364

Another interaction term, humidity grassland was significant at the p = 0.2 level, but365

this variable was not retained in the final multivariate logistic (global) model. In simple366

terms, the interaction between these two factors indicate that the effect of DTR on the367

odds of diagnosing positive cytauxzoonosis cases varies with different values of percent of368

mixed forest area surrounding case locations, and vice versa.369

370

The spatio-temporal changes in temperature, precipitation, and humidity that are371

expected to occur under different climate- change scenarios will affect the biology and372

ecology of vectors and intermediate hosts and consequently the risk of disease373

transmission (Githeko et al. 2000). Diurnal temperature range has been suggested as an374

index of climate change (Karl et al. 1991, Braganza et al. 2004), and DTR has been375

decreasing since the 1950s due to increasing daily minimum temperature (Tmin) at a faster376

rate than the daily maximum temperature (Tmax), and also due to Tmin decreasing at a377

slower rate than Tmax. For most parts of the United States, trends show that Tmax have378

remained constant or have increased only slightly, but Tmin values have increased at a379

faster rate (Karl et al. 1991, 1993). Host-seeking behavior of ticks (Randolph and Storey380

1999) and the survival of parasites they carry are strongly influenced by DTR (Ochanda381

11



2006). Any such effect on the vector A. americanum, or the parasites they carry, such as382

C. felis, has not been reported before and new investigations will help us understand the383

mechanical basis of such association. Humidity and DTR are correlated because higher384

humidity conditions reduce the suns ability to heat the boundary layer (roughly 2 km of385

the lowest atmosphere), which narrows temperature differences in a given day. We kept386

both of these variables in the multivariate model because the interpretation for interaction387

terms are made differently from main-effect interpretations. Unlike the direct effect of388

humidity, DTR mixed forest points to a more complex problem; i.e., how do climate and389

the physical environment interact in influencing the outcome of a disease? One plausible390

scenario could be that ticks in areas with a certain percentage of mixed forest are more391

likely to transmit C. felis when DTR conditions are within a certain range but not others.392

Identifying associations between climatic factors and disease outcomes is often challenging393

due to other confounding factors (Patz et al. 2003), but such knowledge is vital for394

quantifying any role that climate change may be playing toward the amplification and/or395

spatial expansion of disease incidences. Tick-borne diseases may share similar climate396

constraints due to the broad role climate plays in the thermoregulation of vector growth,397

as well as in tick reproduction and survival. Therefore, the identification of humidity and398

for the first time the combined DTR mixed forest effects on cytauxzoonosis potentially399

has implication in our broader efforts to understand the linkage between climate change400

and tick-borne disease. Whether there is consistency in such effects across diverse vector401

populations and geographic region needs to be studied.402

Conclusions403

TECI, a measure of habitat fragmentation, and higher grassland acreage surrounding pet404

owner residences are risk factors, with some regional variability, for feline cytauxzoonosis.405

Humidity conditions recorded 9 weeks prior to case arrival and the combined effect of406

diurnal temperature range recorded during the 4th week prior to case arrival and higher407

mixed forest acreage surrounding residences are strong predictors for cytauxzoonosis408

throughout the region. The identification of climate variable associations with409

cytauxzoonosis in this study is significant in the context of climate change impacts on410

tick-borne diseases. A. americanum is a growing concern in the study region due its411

potential to transmit many zoonotic and animal diseases. Studies on the biology,412

distribution, and ecology of important tick species in the region are generally lacking and413

are warranted.414
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Tables500

Table 1. Land cover types found in the National Land Cover Database (NLCD)

Land cover land use data Land cover types
NLCD (source, Multi-Resolution
Land Characteristics Consortium
[MRLC] 2011; years: 1992-2001;
resolution: 30 meters, spatial scale
1:100,000)

Open water, developed–open space, developed–low
intensity, developed–medium intensity, developed–
high intensity, barren land, deciduous forest, ev-
ergreen forest, mixed forest, scrub/shrub, grass-
land/herbaceous, pasture/hay, cultivated crops,
woody wetlands, emergent herbaceous wetland.

501
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Table 2. Case–Control characteristics enrolled in the study.

Number (%) of

Cases Controls
Season of arrival

Spring 13 (18.84) 21 (23.57)
Summer 22 (31.88) 46 (41.46)
Fall 28 (40.57) 47 (39.02)
Winter 6 (8.69) 9 (9.75)

Age (year)
< 1 34 (44.92) 47 (41.46)
1–3 22 (17.39) 24 (20.32)
3–5 5 (15.21) 18 (17.88)
> 5 6 (6.52) 11 (13.82)
Unknown 9 (21.73) 23 (20.32)

Sex
Male 31 (44.92) 51 (30.89)
Female 26 (37.68) 48 (28.45)
Unknown 12 (17.39) 24 (18.69)

Living environment
Indoor 21(30.43) 44(39.02)
Outdoor 33 (47.82) 68 (61.78)
Unknown 15 (21.73) 11 (13.00)

502
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Table 3. Results of Bivariate Logistic Regression Models for Feline Cytauxzoonosis Status503

with Geospatial Variables in the Study Region ( p < 0.2, n = 69 Cases, 122 Controls)

Variablea Estimate OR p 95% CI
Total Edge Contrast Index 1.85 6.37 0.00 5.25, 7.72
Grassland 0.89 2.44 0.00 1.60, 3.71
Mixed forest 1.25 3.50 0.08 1.12, 10.92
Medium intensity urban areas 0.25 1.29 0.11 0.89, 1.87
Humidity (9th week) 0.88 2.42 0.00 2.04, 2.87
Humidity (9th week) ∗ grassland 1.15 3.17 0.09 1.09, 9.15
DTR ∗ Total Edge Contrast Index 1.75 5.76 0.16 1.06, 31.08
DTR ∗ mixed forest 0.98 2.67 0.01 2.26, 3.15

504
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Table 4. Results of Multivariate Logistic Regression Models for Feline Cytauxzoonosis505

Status with Geospatial Variables in the Study Region (p ¡ 0.05, n = 69 cases, 122506

Controls)

Variable Estimate SE OR p 95% CI
Total Edge Contrast Index 1.63 0.09 5.13 0.00 4.24, 6.22
Grassland 0.88 0.21 2.42 0.03 1.59, 3.69
Humidity (9th week) 0.91 0.08 2.49 0.00 2.10, 2.95
Humidity (9th week) ∗ grassland 1.16 0.61 3.19 0.09 0.96, 10.18a

DTR∗ mixed forest 1.15 0.23 3.18 0.00 2.01, 5.03

507
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Table 5. Summary of Multivariate Geographically Weighted Regression (GWR) Model508

and Directions of Co-Variate Relationships Evaluated in the Study

Significantly related case/control locations

p < 0.05 % Positive % Negative
Total Edge Contrast Index 61% 27.8 33.2

Grassland 68% 29.4 38.6
Humidity (9 weeks prior) 57% 19.8 37.2

DTR ∗ mixed forest 76% 37.6 38.4

509
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Figures510

Figure captions:511

512

Fig. 1. Case–control locations in the study region.513

514

Fig. 2. Distribution of percentage Total Edge Contrast Index, grassland vegetation, and515

relative humidity surrounding case–control locations in the study region.516

517

Fig. 3. Interpolated (inverse distance weights) parameter estimate surface and t-values of518

Total Edge Contrast Index association with case–control location in the study region (n =519

case 69, control = 123). Color images available online at www.liebertpub.com/vbz520

521

Fig. 4. Interpolated (inverse distance weights) parameter estimate surface and t-values of522

percentage grassland area association with casecontrol location in the study region (n =523

case 69, control 123). Color images available online at www.liebertpub.com/vbz524
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