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1.0 INTRODUCTION

A lossless inductor-capacitor transmission line terminated

in its characteristic resistance delays an input signal for T

seconds. The Laplace transform of the delay operator of T

-Tqseconds is e ^'^.

This report considers some arbitrary artificial delay lines

which approximate the delay operator. These artificial lines
(2 - s)

will be motivated by the Fade approximant of e~^, ,

2 -
.

(2 + s)

and the time function (1 - e~^) . ,

•'



2.0 PREVIOUS WORK

In an. article entitled "Physical Theory of the Electric

Wave Filter", G. A. Campbell (l) gives a generalized definition

of the artificial line restricted to wave filters. It is: "An

artificial line is a chain of networks connected together in

sequence through two pairs of terminals, the networks being

identical but, otherwise, unrestricted." This generalized

artificial line possesses the well known sectional artificial

line structure but it need not be an imitation of, or a substi-

tute for, any known real transmission line connecting together

distant points. The generalized artificial line consists of

identical unrestricted networks which may contain resistance,

self-inductance, mutual inductance, and capacitance. Networks

may be either in the ladder or lattice form.

Campbell discusses the symmetric balanced lattice equiva-

lent to the generalized artificial line. When the more specific

correlation of the behavior of the generalized artificial line

at different frequencies is required, it is more convenient to

replace the ladder artificial line by the lattice artificial

line, which avoids the necessity of considering any impedances

which are not individually physically realizable. Since this

is an introductory paper, the author has chosen to give only the

fundamental characteristics of the artificial line, and the

derivation of mathematical formulas is avoided.

The investigation followed in this report was motivated by

Pade approximants. In a thesis entitled "Passive Time-delay



Networks", E. C. Bertnolll (2) investigated Fade approximants

of the one-second delay operator e~^. The more interesting

diagonal and subdiagonal approximants were realized. Diagonal

networks are Storch's (3) all-pass and have a time-delay char-

acteristic with ( 2n - 1) order flatness. Both the diagonal

Fade, and the cut-product approximant of the unit delay operator

(developed by Warfield (i|) ) , are ideally suited for cascading

to form tapped delay lines. Poor pulse responses of diagonal

networks are improved by cascading with one of the subdiagonal

networks.

Bertnolli has shown that the subdiagonal networks have both

time delay and magnitude responses with flatness of order (2n-l).

Subdiagonal networks have time delays identical with that of the

diagonal network except for %/2 radians less phase lag, but they

have an inferior magnitude response. However, the subdiagonal

networks could be utilized as a low-pass filter. This filter

has maximally flat magnitude characteristic and maximally flat

time delay.

The (1, 1) Fade approximant of e"^, (2-s)/(2+s), will be

used in this report.



3.0 FUNCTIONS S^it)

Define g (t) = (1 - e""*^) . In addition to the II, 1) Fade

approximant of e"^ mentioned previously, this report will ex-

tensively use the time function (l - e"'^) in an exemplary man-

ner. The general case is stated in Lemma 1.

Lemma 1. If gn(s) =

then g^(t) = (1 - e-t)".

nl

s(l+s) (2+s) . . . (n+s)

1]

, n = 1, 2, 3, . • •

Proof . It is true that L(l - e"^) =

ad+s)
Verifica-

tion is now required that L(l - e""^)" = gn.(s) ^or all integer;

n. If .

g^(t) = (1 - e-t)"

then

Since

gn+l(t) = gn(t) - gn(t)e-* . •
.

L(eatg^(t)) = i^Cs - a)

one obtains

gn+i(s) = g^(s) - g^(l + s) .

Verification is now possible. Calculation yields

gn+i(3)
=

n k

k=l \( s+k)

/ k \

1

n

IT
k=l (s+k)

s (s+n+1)

n+1

s( s+n+1)

k1 (n+1)
- IT
s k=l (s+k)

Q.E.D. (1)



3.1 Time-delay Normalization of gj^Ct)

For convenience in plotting, these functions are normalized

so that g^(t) = 1/2 for all integers n. We can write

(1 - e'^A^^^)^ = 1/2, for all n. Solving for T(n) , we get

1
T(n) =

-jj p—7 -7 =r- . (2)

in [2l/V(2Vn _
i)J

For a few values of n, T(n) are given in Table 1.

Table 1. Table of normalizing constants

n : T(n)

"
- ,1 i.kh

2 0.813

3 ^ 0.633

k. 0.508

5 O.I4.87

The normalized functions will be called q (s). An extremely

simple form for equation (1), normalized or unnormalized, is

possible. This form is given in Lemma 2.

Lemma 2. Delay normalized functions have a partial frac-

tion expansion .

n .

I

n\ 1
q^(s) = Z (-1) — (3)

k=0 I k s + (k/T(n))



3.2 Normalized Functions l^i^)

From equation (3)^ the normalized functions are

q-L(t) = (1 - e-0-693t)

q2(t) = (1 - e-1.23t)2

q^Ct) = (1 - e-l-^8t)3

(t) = (1 - e-l-835t)i;

q^Ct) = (1 - e-2.06t)5^5(

The normalized values of q„(t) are tabulated in Table 2,

Table 2. Normalized values of q^(t).

Time in
seconds ;

qi(t) • q2(t) • q3(t)
j

q^(t)
;

q^(t)

0.25
0.5

0.l6
. 0.29

0.07
0.212

0.036
0.162

0.0182
0.13

0.011
0.1

0.75
1.00
1.25

0.i|.6

0.5
0.58

• 0.282
0.5
0.62

0.34
0.5
0.6i4.

0.315
0.5
0.66

0.305
0.5
0.68

1.5
1.75

.

2.00 •

2.5
1^.0

0.61^8
0.704
0.75
0.821I
0.93^

0.711
0.782
0.84
0.91
0.99

0.748
0.821
0.87
0.95
0.99

0.767
0.85
0.904
0.96
0.99

0.83
0.875
0.92
0.975
0.99

Values obtained in Table 2 are plotted in Pig. 1.
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1|.0 FUNCTIONS fi^(t)

In this section.;, we investigate the time function

t 2
;r^(t) = (1 - e" ) PT,(t) which corresponds to

1 2 k (n-s) .
.

fl,(s) = - . n ik.)

3 (l+s)(2+s) n=3 (n+s)

The general form of f]^(t) is stated in Lemma 3«

Lemma 3.. If
. -,

,

_ 1 2 k (n-s)
fk(s) = - TT

s (l+s)(2+s) n=3 (n+s)

and f2(s) is defined as 2/s(l+s) ( 2+s) , then

k

^k^t) = 2 P^km ^

m=0

-mt

Proof . By partial fraction expansion, ^^^(s) can be

written as . .

_ ^kO ^kl ^2 ^3 i^km
flj.(s) = + + + + . . .

s (s+1) (s+2) (s+3) (s+k)

J. ^km
,

•
'

= 1 , k = 2, 3, ij-, . . . (5)
m=0 ( s+m)

where <S-^^ are residues of the poles. In time domain the Laplace

transform of equation (^) is written as

fk(t) = \ i-^ «-"*
(6)

m=0



4.1 Values of jzf^ for 2 ^ k ^ 6

¥e investigate values of jzf;^ for k = 1, 2, 3, k) ^> a^d 6.

These values are obtained by partial fraction expansion and are

tabulated in Table 3.

Table 3. Values of ^^^.km'

k : m : : 1 : 2 3 : i^ : 5 : 6

2 1 -2 1

3 1 -k 5 -2

i^ 1 -20/3 15 -Ik lk/3

5 1 -10 35 -56 k.2 -12

6 1 -Ik 70 -168 210 -132 33

It can be observed that for the values tabulated

6

^ ^km = ° for 2^ k^ 6 .

m=^0

The pattern obtained suggests that (l - z) is> a factor of

f^(z), for all integer values of k greater than 2.

k.2 ' Factors of f^(t)

Further investigation is required for the multiplicity of

the (1 - z) factor. From the values of 0'^^ tabulated in Table 3,

calculations show that

f2(z) = (l-z)2

f3(z) = (l-z)2 (i-2z)
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fj,(z) = (l-z)^(l z + _ z^)
^

3 3

f^(z) = (l-z)2(l - 8z + iSz^ - 12z^)

f£,(z) = (l-z)2(l - 12z + k^z^ - 6^z^ + 33z^)

•where z = e~^.

From the factors of fT.(z):. it can. be conjectured that
•k

(1-z)^ is a factor of f^lz). The proof, in general, is given

in Theorem 1. '

Theorem 1.. If 2k (n-s)

f (s) = TT
s(l+s)(2+s) n=3 (n+s)

and f2(s) is defined as = 2/s( 1+s) ( 2+s) , then f-^iz) = (1-z) P^(z)

where z = e~ .

Proof is given in sections i|.2a and [j..2b.

l4..2a (1 - z) Factors

Prom relation (i|), a recursive relation is conveniently

written as

(k+l-s)

fk+l^s) = fk(s)
(k+l+s)

2s
= fk(s) - ; ^k(^) (7)

(k+l+s)

Since the initial value of L"-^

transform of equation (7) is

-jys^-

_ (k+l+s)

_

= 0, the time -domain

fk+l(t) = fij(t) - 2(d/dt)L ^ [fj^(s)/(l+k+s)] .
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By the convolution integral theorem, this is written as

f^^,(t) = fi,(t) - 2(d/dt) f e-^^+^)^^-^^ fi,(T)dT.

^0

Substitution of fv(t) from (6) yields

k+1

k
k

(t) = T, ^km e

m=0

-mt
-t k

- 2(d/dt) f T J^kme-^^^'^'
e+(k-M-m)T^T.

Jo 111=0

Integrating and simplifying, one obtains

k (k+l+m) ,
k (k+1)

'k+l^^) - ^̂ j^i™e-^^ - 2 y.

m=0 (k+l-m)
'km'^

m=0 (k+l-m)

^,___e-<''*l'*
km

(8)

For convenience, it is desirable to define e"'^ = z; therefore

k (k+l+m)

k+1 (z) > i2^i_
•

.m
km

k (k+1)
,

2 2 iZ^

m=0 (k+l-m)
^"' m=0 (k+l-m)

Evaluating equation (9) at z = 1, one obtains

km'
,k+l

(9)

k

fk+i(i) = z ^
m=0

- (k+l+m) (k+1)
2

L (k+l-m)

Further- simplification yields

(k+l-m).

k

k+1*(1) = - I ^km= -%(1) ' ^^^ (10)

m=0

Relation (10) shov/s that (1-z) is a factor of fj^(z)'

4.2b (1 - z) Factors

Taking the derivative of (8) with respect to z, one obtains

k+1 (z) = I
k (k+l+m) k (k+1)

m=0 (k+l-m)
(2^1^ raz^""- - 2 X ^i_(k+l)z^km

m=0 (k+l-m)
km^

(11)
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At z = 1, the equation becoraes

k k m2 - (k+l)2

k+1 ^^Q ^kin ^iQ km (^^^_^)

which can be further simplified as

m=0 m=0

In terras of f, (1), and ^v+id)? this can be related as

fj^+l(l) = -^k'^l^ - 2(k+l) f^(l) . (12)

Since f^(l) and f^'(l) are equal to zero^ for some integer k,

equation (12) will be

^k+1^^^
= , for all k ^ 2 . • :.-: (13)

The additional condition necessary to prove that (l-z) is a

factor of fi^(z), is that f^+id) 7^ 0. Differentiating (9) with

respect to z and evaluating at z = 1, yields

„ k (k+l+m) (m-l)m - 2k(l+k)^
fk+i(l) = Z ^lon ; .. ilk)

m=0 (k+l-ra)

This is not equal to zero for all k ^2. Relations (13) and

(111) prove that (l-z)^ is a factor of ^1^(2). Q.E.D.

kmi|..3 Closed Form for 0'-

Lemma l^. The closed form for ^^^ is

2(-l)^ (k+m)J

^^^ = for all integers k ^ 2 . (l5)
ml (m+2)J (k-m)J

Proof. We resort to a mathematical induction proof that
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JZ^i^ is true for all k. Prom equation (9), which is rewritten

for convenience as

k (k+l+m) k (k+1)

m=0 (k+l-m) m=0 (k+l-m)

one needs to prove the following:

(k+l+m) '

-

^k+1

^i) ^(k+l,m) = ^km
•

(k+l-m)

k (k+1)
a nd (ii) i^(k+i,k+i) = -2 S^km._^^ .

' m=0 (k+l-m)

Substituting for ^-^^^ in the right-hand side of (i), one obtains

^
(k+l+m) 2(-l)^(k+m) J(k+l+m)

^' (k+l-m) m'(m+2) l(k-m) J (k+l-m) .. ;

2(-l)'"(k+l+m)i

mJ (m+2) J (k+l^m)

J

= ^(k+l,m) •

Part (i) has been proven. Proof of part (ii) is rather

difficult and has not been accomplished. It requires demonstra-

tion that

k (k+1) k (-1)"^ (k+m)I
-2 z ^km •

—— = -^(1^+1) r
m=0 (k-i-l-m) m=0 mJml (2+m) i (k+l-m) I

2(-l)^+l(2k+2)

J

(k+l).'(k+3) J
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h^.l\. Unnorraalized Functions fj^Ct)

The values for f^^Ct) are tabulated for k = 2, 3, and 5 in

Table l\.. The functions are already calculated in section l\.,2.

The values obtained in Table If. are plotted in Pig. 2.

Table 1^. Unnormalized values of fj^(t).

Time in
seconds

f2(t)
;

f3(t) : f^(t)

.

0.25 0.01^9

0.5 0.156

0.75 0.28

1.00 O.i+02

1.25 0.51

1.5 0.6l

1.75 0.688

2.00 0.75

2.5 . 81^7

0.027 0.009

0.033 -0.019

0.016 -o.03i^

0.107 . -0.032

0.218 0.021+

0.31^ 0.256

0.1^5 0.36

0.552 0.1^45

0.71 0.622

i|.5 Time Delay Normalization of fi^(t)

These functions are normalized as has been done before, so

that f^jd) = 1/2. Normalized U2(t) corresponds to normalized

function q-|_(t), section 3.1. For large values of k normaliza-

tion procedure becomes complex because it involves determining

the stable roots or zeros of higher order polynomials. Only
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two functions f^(t) and fh(t) are normalized for showing the

delay characteristics of normalized functions u^(t). Sample

calculations are shown below.

By normalization procedure, fo(l) can be written as

- = (1 - e"^/'^)(l - 2e"^/^) . (16)
2

Substitution for e" / = p in equation (l6), one obtains

kv^ - lOp^ + 8p - 1 = . (17)

In order to satisfy a stability requirement of the response, p

should be chosen such that it is less than 1. The value of p

satisfying equation. (1?) is O.llj.9, and corresponding value of T

is 0.511 as obtained from e~ / = p. The normalized function

u^(t) obtained by substituting T = O.51I into fo(t) is

U3(t) = (1 - e-l-90^t)2 (1 - 2e-l-90^t)
. (18)

By similar procedures, fj,(t) is normalized so that

f|^(l) = 1/2. This yields

i= (l-e-VT)2(, _^^-l/T,^^-2/T)
^ ,_^_ \^^^

2 3 3

Substitution for e'V^ = p i^ equation (19) yields

28p^ - 8i^p^ + 90p2 - i^Op + 3 = .
•

The required value of p is 0.09I|- and corresponding value of T

is O.ij.22. The normalized function UL(t) obtained by substitut-

ing T = 0.i^22 into fh(t) is
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u^(t) = (1 - e-2-364t)2(, _ ^ ^-2.364t ^ ^ ,-k.73t^
^

q-

3 3
(20)

Values or normalized functions are tabulated in Table $.

Table ^. Normalized values of u^(t).

Time in
seconds ; ^2(t)

: U3(t)
: ui^(t)

0,2 0.01^8 -0.037 -0.038
0.25 0.07 -0.035 -0.0301
o.k 0.153 0.016 -0.067
0.5 0.212 0.089 0.01

0.6 0.271; 0.166 0.106
0.75 0.282 0.301 0.2[i.5
0.8 0.395 0.31^ 0.3i].6
1.0 0.5 0.5 0.5
1.2 0.6 0.6ij. .0.7
1.25 0.62 0.673 0.697

- l.k 0.68 0.75 0.702
1.5 0.71 0.787 0.83
1.6 0.7l;l 0.861 0.876
1.8 0.8ij. 0.905 0.99

2.0 . 81^2 0.932 0.995
2.k. 0.9 0.96 0.997
2.5 0.915 0.983 0.99
3.0 0.95 0.99 0.99

The above normalized values are plotted in Pig. 3.
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5.0 TIME DOMAIN RESPONSES OP li^(s)

Define ]ai,(s) =
r(3-s)i^

L(3+s)J
Next consider

s(l+s) (2+s)

the functions h^(s). They are so defined that k cascaded net-

works (3-s)/(3+s) are contained in them. This compares with

the (1,1) diagonal Pade approximant of the delay operator e"^.

Responses of these functions in time domain, are investigated.

The general case is stated in Lemma ^» . .

5.1 General Form of tLj^(t)

Lemma 5* If ^i^^s) stated in section 5-0 is defined for

all integers k, then a general solution in time domain can be

written as

m=0 m=0

Proof . h|^(s) can be written in partial fraction expansion

form

, ^ 4o ^kl !2(k2 ^kl "^k2
hi^(s) = + + + + (21)

s (s+1) (s+3) (s+3)^ (s+3)^-^

• • 9 »
*^

(s+3)

The ;.irae-domain transform of equation (21) is conveniently

written as
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k-1
l^k(t) = Z ^lon

«-"* - 2„ ^"
'^lon

-"^*

m=0 m=0

5.2 Exact Form of h^^-Ct)

hT,(s) can be rewritten in the form

lii,(s) =

s(l+s) (2+s)

6 1

-1 +
(3+s)J

Binomial expansion of ii^(s) gives

iil,(s) =
2 k

I
s(l+s)(2+s) r=0

(-1)
k-r

6 ,^

(3+s)

By convolution integral, the time domain responses of h^(s)

can be written as

k / k \ ,

r=0 \ r
6^r' [l - e-(*-T)] rpr-1 Q-3T

^^

(22)

The integral in equation (22) is written in short notation as I.

I can be split into three parts.

I =
j

e-3tT^-ldT - 2e-t
f

e'^^T^-ldT + e'^^ / e"V'^dT .

^ Jo ->^0

The solution of this integral involves a standard form. Sub-

stitution of the integral value in equation (22) yields

hi .(t) = 1 - 2(k+l)e-^ + 5^6-2^ + r
j

(-1)''"''
• 6^ • P(t)e

(23)

k
-3t
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where

(r-l-n)J

5'3 Unnormalized h^(t)
I

By means of partial fraction, expansion, time-domain responses

of h^(t) for k = 0, 1, 2, and 3 are

ho(t) = 1 - 2e"^ + e"2^

hl(t) = 1 - ke~^ + 5e-2-t - 2e-3t

h2(t) = 1 - 8e-^ + 25e-2t - iSe'^^ - 12te-3^

h
3

t) = 1 - iSe"'^ + 125e"2t _ noe-^^ - 96te"3*

- 36t2e-3t

The functions hT^(t) are tabulated for different values of t in

Table 6.
"

• .

5.4 Time Delay Normalization of h^(t)

As before, the normalization procedure is such that

h^(l) = 1/2 for all integers k. In particular for k = 0, 1,

and 2, one obtains normalization constants T-,, T2, and To, re-

spectively. Prom Table 1, section 3.1, T^ = O.813, and

T2 = 0.511 was obtained in section. l^.S' To is obtained from

1/2 = 1- 8e-lA3 , 25,-2A3 . ,2/,^
^-3/T3

_ ^ae-VT3
.

Subctitution for e~ ' 3 by p, yields
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Table 6. Unnormalized values of h^(t).

Time in
seconds ;

ho(t) : hi(t) :
h2(t)

0.2 0.0332 -0.036 -0.17

0.25 O.Oij.95 -0.0273 O.Olj. .

o.k. 0.11 -0.0373 • 0.06,

0.5 0.156 -0.0331 -0.032

0.6 0.205 -0.018 0.0I|.
.

.

0.75 0.28 0.0163 -0.015

0.8 0.305 0.03 0.075

1.0 0.14.02 0.107 -0.08

1.2 0.^9 0.196 -0.027

1.25 . 51 0.218 .
. -0.0J+

l.k 0.57 0.329 0.00.7

1.5 O.ol o.3i| 0.017

1.75 0.688 o.i^5 0.18

2.0 0.75 0.552 0.32

2.5 0.85 0.71 0.5

The above values are plotted in Pig. 14-.
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21+

l8p^ - 25p2 + 8p - - - (12 -tn p)p^ = (25)

2

Considering that the value of p should be positive and less

than one, equation (2^) yields p = O.O8I. The corresponding

value of T3 = 0.399. The normalized function V2(t) is

V2(t) = 1 - 8e-2-Sl3t , 25e-S-027t - JClte'^-S^* "

- l8e-^-5* .
(26)

5.5 Normalized Functions v^(t)

The functions VQ(t) and V]_(t) correspond to q2(t) (obtained

in section 3.2) and Uo(t) (normalized in section ij..5), respec-

tively. The functional values of VQ(t) and V2_(t), for different

values of time, have been tabulated in Table 2 and Table S, re-

spectively. Calculations for different values of time for the

function V2(t), equation (26), are shown in Table ?•

Table 7. Values of normalized function V2(t).

Time in.

seconds
V2(t)

0.2 0.033
O.J± 0.0]+
0.6 0.0i|8

0.8 0.252
1.0 0.5
1.2 0.678
l.ij. 0.79ii.

2.0 . 9i|.8
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The values of normalized funotions v-^(t) for k - 0, 1,

and 2 are plotted in Fig. 5-
•

'
•

6.0 CONCLUSION

Graphs of normalized time functions (l-j^i'^) , '^]^('^) , a^^

vj^(t) versus time, indicate that the time delay responses to a

unit step input approximate a delay of one second for integers

n and k. The responses of functions q^^Ct) are smooth and

monotonically increasing. While responses to u^(t) show under-

shoots for initial values of time, these undershoots increase

for large k. The responses of normalized v^{t) , shown in

Fig. $, indicate that oscillations occur for small values of

time. It can be predicted from the graphs of normalized func-

tions that the responses of v-^(t) will have faster rise time

compared to u^(t) and qj^(t).

Campbell's suggestion that many types of artificial delay

lines are possible is specifically corroborated.
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This report considers some arbitrary artificial delay

lines -which approximate the delay operator e~^. These arti-

ficial lines will be motivated by the e"^ Fade approximant

2 - s 2
, and the time function (l - e"'*^) . The time-domain

2 + s

responses of functions g^(s), f^^^^' ^^^ '^k^^^
''^° ® unit step

input are considered. Delay normalized responses of these

functions approximate a delay of one second. Closed forms and

recursive relations of the output responses are derived as

lemmas and theorems.


