BEHAVIOR OF REINFORCED HIGHER-STRENGTH CONCRETE BEAMS IN BENDING AND SHEAR/

by
PERIAKARUPPAN NARAYANAN B.E., University of Madras, 1983

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering
KANSAS STATE UNIVERSITY
Manhattan, Kansas

1987

Approved by:

LD

TABLE OF CONTENTS

Page
LIST OF TABLES. vi
LIST of figures ix
CHAPTER 1 - INTROOUCTION. 1
Present Usage of Higher-strength Concrete. 2
Objectives 2
CHAPTER 2 - SELECTION OF MATERIALS. 3
Introduction 3
Cement 3
Coarse Aggregate 3
a.Strength 4
b. Maximum Size and Gradation 4
c. Particle Shape and Surface Texture 5
d.Mineralogy and Formation 5
e.Aggregate-Cement Bond. 6
Fine Aggregate 6
Water 7
Admixtures 7
CHAPTER 3 - STUDY OF THE COMPRESSIVE STRESS BLOCK 9
Introduction 9
Previous Work. 9
Modulus of Elasticity 11
Poisson's Ratio. 12

TABLE OF CONTENTS (continued)

Page
Test Specimens and Method of Testing 12
Strain Measurements. 14
Prediction of the Moment Capacity. 15
Under-reinforced Beam 15
a. Rectangular Stress Block 15
b. Triangular Stress Block. 16
c. Parabolic Stress Block 17
Over-reinforced Beam. 17
a. Rectangular Stress Block 18
b. Triangular Stress Block. 19
c. Parabolic Stress Block 20
CHAPTER 4 - PROPORTIONING, MIXING, AND PLACING. 21
Introduction 21
Mix Proportioning. 21
Water-Cement Ratio 22
Cement Content 23
Aggregate Content. 23
Mixing and Placing 24
Curing 25
CHAPTER 5 - BEAM TEST AND RESULTS 26
Introduction 26
Test Setup 26
Testing Procedure. 27

TABLE OF CONTENTS (continued)

Page
Results and Discussion. 27
Shear Specimen I 30.
Shear Specimen II. 30
Under-reinforced Beam. 31
Over-reinforced Beam 32
Shear Behaviour 33
UTtimate Strains 35
Modulus of Elasticity. 36
Poisson's Ratio. 36
CHAPTER 6 - SUMMARY OF RESULTS AND CONCLUSIONS 37
Summary 37
Conclusions 37
APPENDIX I - REFERENCES. 39
APPENDIX II - DETAILS OF SOME CALCULATIONS 42
Mix Proportions 43
Oesign of Steel Reinforcement 45
Design of Shear Specimen I 45
Design of Shear Specimen II 45
Design of Under-reinforced Section 46
Design of Over-reinforced Section 48
Nominal Shear Stress Calculations 5D
Calculation of Modulus of Elasticity. 53

TABLE OF CONTENTS (continued)
Page
Sample Calculations for the Ultimate Moment 54
Shear Specimen I 54
Location of Neutral Axis. 54
Triangular Stress Block Moments 54
Parabolic Stress Block Moments. 55
Shear Specimen II. 57
Location of Neutral Axis 57
Triangular Stress Block Moments 57
Parabolic Stress Block Moments 58
Under-reinforced Beam. 60
Location of Neutral Axis. 60
Rectangular Stress Block Moments 60
Triangular Stress Block Moments 61
Parabolic Stress Block Moments. 62
Over-reinforced Beam. 63
Location of Neutral Axis 63
Rectangular Stress Block Moments 64
Triangular Stress Block Moments. 64
Parabolic Stress Block Moments 65
Prediction of the Ultimate Moment Capacity 58
Under-reinforced Beam 68
Rectangular Stress Block 68
Triangular Stress Block. 69
Parabolic Stress Block 70
TABLE OF CONTENTS (continued)
Page
Over-reinforced Beam. 72
Rectangular Stress Block 72
Triangular Stress Block 73
Parabolic Stress Block 74
APPENDIX III - BASIC PROGRAMS. 78
Program for Shear Specimen 79
Program for Shear Specimen II 83
Program for Under-reinforced Specimen 87
Program for Over-reinforced Specimen. 91
APPENDIX IV - TABLES AND FIGURES 95
APPENDIX V - NOTATION. 162
ACKNOWLEDGEMENTS 165

LIST OF TA8LES

> Table

Page
3.1 Tensile Test Results for Stee 1 Reinforcing Bars 96
4.1 Compressive Strength (3 days) Test Results of 3 in. X 6 in. Cylinders Made by Regular Mixing Technique 97
4.2 Compressive Strength (3 days) Test Results of 3 in. X 6 in. Cylinders Made by Cement Slurry Method. 98
5.1 Compressive Strength (28 days) Test Results of 3 in. X 6 in. Cylinders Made from the Mix Proportions taken from Ref. 15. 99
5.2 Compressive Strength Test Results of 3 in. X 6 in. Cylinders for Beam 1 (SS1B) 100
5.3 Compressive Strength Test Results of 3 in. $X 6$ in. Cylinders for 8eam 2 (SS2B) 101
5.4 Compressive Strength Test Results of 3 in. X 6 in. Cylinders for Beam 3 (UR1). 102
5.5 Compressive Strength Test Results of 3 in. X 6 in. Cylinders for Beam 4 (OR1). 103
5.6 Load-Strain Data for Specimen 1 (SS18) 104
5.7 Load-Average Strain Data for Specimen 1 (SS18) 105
5.8 Whittemore Strain Gage Readings for Specimen 1 (SS1B). 106
5.9 Load-Strain Data for Specimen 2 (SS2B) 107
5.10 Load-Average Strain Data for Specimen 2 (SS2B) 108
5.11 Whittemore Strain Gage Readings for Specimen 2 (SS2B). 109
5.12 Load-Strain Data for Specimen 3 (UR1) 110
5.13 Load-Average Strain Data for Specimen 3 (UR1). 111
5.14 Whittemore Strain Gage Readings for Specimen 3 (UR1) 112
5.15 Load-Strain Data for Specimen 4 (OR1). 113
5.16 Load-Average Strain Data for Specimen 4 (OR1). 114

LIST OF TABLES (continued)

Table Page
5.17 Stress-Strain Relation for 3 in. X 6 in. Cylinder for Specimen 1 (S518). 116
5.18 Stress-Strain Relation andPoisson'sRatiofor 3 in. X 5 in. Cylinder for Specimen 2 (SS28) 118
5.19 Load and Stress Data for Shear Specimen I (SS18) Using Cylinder Stress-Strain Curve 2 119
5.20 Actual and Calculated Moments Using Triangular and Parabolic Stress Blocks for SS1B 120
5.21 Actual and Calculated Deflections for SS1B. 121
5.22 Load and Stress Data for Shear Specimen II (SS2B) Using Cylinder Stress-Strain Curve 2. 122
5.23 Actual and Calculated Moments Using Triangular and Parabolic Stress Blocks for SS2B 123
5.24 Actual and Calculated Deflections for 5528 124
5.25 Load and Stress Data for Under-reinforced Specimen I (UR1) Using Cylinder Stress-Strain Curve 2 125
5.26 Actual and Calculated Moments Using Triangular and Parabolic Stress Blocks for UR1. 126
5.27 Actual and Calculated Homents Using Rectangular and Parabolic Stress Blocks for UR1 127
5.28 Actual and Calculated Moments Using Rectangular and Triangular Stress Blocks for UR1 128
5.29 Actual and Calculated Deflections for UR1 129
5.30 Load and Stress Data for Over-reinforced Specimen (OR1) Using Cylinder Stress-Strain Curve 2. 130
5.31 Actual and Calculated Moments Using Triangular and Parabolic Stress Block for ORT 132
5.32 Actual and Calculated Moments Using Rectangular and Parabolic Stress 8locks for OR1. 134

LIST OF TABLES (continued)

Table Page
5.33 Actual and Caiculated Moments Using Rectangular
and Triangular Stress Blocks for OR1 135
5.34 Actual and Calculated Deflections for OR1 136
5.35 Shear Stress Values (Actual and Calculated) for Specimens SS1B and SS2B 137

LIST OF FIGURES

Figure Page
3.1. An Arbitrary Section With Reinforcing Bar Arrangement Near Mid-span for Shear Specimen I (SS1B). 138
3.2 An Arbitrary Section With Reinforcing Bar Arrangement Near Mid-span for Shear Specimen I I (SS2B) 138
3.3 An Arbitrary Section With Reinforcing Bar Arrangement Near Mid-span for Under-reinforced Specimen (UR1). 139
3.4 An Arbitrary Section With Reinforcing Bar Arrangement Near Mid-span for Over-reinforced Specimen (OR1). 139
3.S Reinforcement Layout for Specimen I (SS1B) 140
3.6 Reinforcement Layout for Specimen II (SS2B). 141
3.7 Reinforcement Layout for Under-reinforced Specimen (UR1) 142
3.8 Reinforcement Layout for Over-reinforced Specimen (OR1) 143
3.9 Test Setup and Loading Arrangement 144
3.10 Strain Gage Locations 145
S. 1 Location of Strain Gages vs. Strain for Shear Specimen 1 (SS1B). 145
S. 2 Location of Strain Gages vs. Strain for Shear Specimen II (SS2B) 147
S. 3 Location of Strain Gages vs. Strain for Under- Reinforced Specimen 1(URT) 14B
S. 4 Location of Strain Gages vs. Strain for Over- reinforced Specimen (OR1). 149
S.S Stress Block of Shear Specimen I (SSIB). 150
S. 6 Stress Block of Shear Specimen II (SS2B) 151
S. 7 Stress Block of Under-reinforced Specimen (UR1). 152

LIST OF FIGURES (continued)

Figure Page
5.8 Stress Block of Over-reinforced Specimen (OR1) 153
5.9 Failure Crack Pattern in Shear Specimen I(SS1B). 154
5.10 Failure Crack Pattern in Shear Specimen II(SS2B) 155
5.11 Failure Crack Pattern in Under-reinforced Specimen (UR1) 156
5.12 Failure Crack Pattern in Over-reinforced Specimen (OR1) 157
5.13 Compressive Stress-Strain for Cylinder 1 (SS1B)($f^{\prime}{ }_{c}=11500$ psi). 158
5.14 Compressive Stress-Strain for Cylinder 2 (SS2B)
($f^{\prime} c^{\prime}=12310 \mathrm{psi}$). 159
5.15 Poisson's Ratio vs. Compressive Stress for Cylinder 2 160
5.16 Load vs. Deflection of Test Specimens. 161

CHAPTER 1

INTROOUCTION

The term, high-strength concrete, is a relative one because the maximum strength specified has been changing over the past three decades. In the $9950^{\prime} s$, concrete with a compressive strength of 5000 psi [34.4 MPa] was considered high-strength concrete. In the $1960^{\prime} \mathrm{s}$, concrete with a 6000 to 7000 psi [41.3 to 48.6 MPal compressive strength was available commercially. In the early 1970's, a 9000 psi [62 MPa$]$ mix was being produced, and in recent years, application of high-strength concrete has increased; and now it is used in many parts of the world. This growth has been possible as a result of recent developments in materials technology and the demand for high-strength concrete.

Concrete, based on its compressive strength, is classified here as follows:

Classification	Strength Range
Normal-strength	2500-6000 psi
	(17.2 MPa-41.4MPa)
Higher-strength	6000-12000 psi
	($41.4 \mathrm{MPa}-82.7 \mathrm{MPa}$)
High-strength	greater than 12000 psi
	($>82.7 \mathrm{MPa}$)

In this report concrete with a compressive strength of 12000 psi $[82.7 \mathrm{MPa}]$ is referred to as higher-strength concrete.

Present Usage of Higher-Strength Concrete
The main advantage in using higher-strength concrete is that it has a greater load-carrying capacity:

1. It has the potential to carry more load at a lower cost.
2. Reducing the dimensions leads to a smaller deadweight of the structure, which means a more effective use of the available materials. This is particularly the case for prestressed members and compression members.

But, higher-strength concrete cannot altogether replace normal-strength concrete. For example, slabs which are made from a higher-strength mix will be very thin and will not be able to meet the ACI maximum allowable deflection specifications. [15]

Objectives
The objectives of this research project are:

1. to study the compressive and flexural behavior of higher-strength concrete (12000 psi [82.7 MPa]) made with aggregates available locally,
2. to determine the stress-strain relationship of higher-strength concrete;
3. to determine the shape of the compressive stress block of this concrete;
4. to determine the modulus of elasticity for this higher-strength concrete;
5. to determine Poisson's ratio for this higherstrength concrete.

CHAPTER 2

SELECTION OF MATERIALS

Introduction

Higher-strength concrete requires the highest quality materials. When making higher-strength concrete, one should also try to make use of the locally-available materials to ensure economy.

Cement
The choice of Portland cement for higher-strength concrete is extremely important. There are a few factors that are considered when choosing the right grade of cement, such as chemical composition (ASTM C-114), fineness(ASTM C-115), and cube strength (by the ASTM standard method of test C- 109).[7] In addition, Portland cement strength may vary from plant to plant; even in the same plant it, may vary from batch to batch. In all the operations involved, the compressive strength test results should be used as a check.

It is recommended that the final decision on the brand of cement be made based on the compressive strength of the trial mixes of the same workability at 28,56 , and 91 days. ${ }^{[4]}$

Coarse Aggregate

The selection of the coarse aggregate is the next most important item after choosing the cement. The behavior of coarse aggregate has a great influence on concrete strength.

Strength up to 5000 psi [34.5 MPa] depends essentially on the quality of the hardened cement paste holding the coarse aggregate together. [4] The aggregate has a much higher compressive strength than the cement paste. [4] It is important to consider the following factors when selecting a coarse aggregate for any concrete, and particularly so for higher-strength concrete:
a) strength,
b) maximum size and gradation,
c) particle shape and surface texture,
d) mineralogy and formation,
e) aggregate cement bond.
a. Strength

The aggregate chosen for higher-strength concrete should have a compressive strength at least equal to the hardened cement paste. [4] Since the crushing strength of many good quality aggregates available today generally exceeds 12000 psi [82.7 MPa], this factor is not a major problem for the production of higher-strength concrete.
b. Maximum Size and Gradation

Several researchers $[2,3,11]$ have shown that in higherstrength concrete the compressive strength increases when the maximum size of the aggregate decreases. However, it is obvious that there should be some limitations in order to keep drying, shrinkage, and creep to a reasonable and practical value. A maximum aggregate size of $0.4 \mathrm{in}. \mathrm{(} 10 \mathrm{~mm}$) is recommended in most
cases.[11] Generally smaller size aggregates provide the most efficient use of the cement in the concrete. [4] This is due to the increase in the surface area which increases the bond strength. However, the optimum size of aggregate varies from mix to mix, and a trial batching should be used to find the optimum value. [4]

c. Particle Shape and Surface Texture

Carrasquillo[4] indicates that the ideal coarse aggregate for higher-strength concrete appears to be clean, cubical, angular, and 100 percent crushed stone with minimum flat sizes and elongated particles. Crushed stone aggregates produce a higher-strength concrete than rounded aggregates.

Coarse aggregates used in higher-strength concrete as in all concrete, should be free of dust coating. Any dust content causes an increase in fines and a consequent increase in the mixing water to achieve required workability. [4] This decreases the strength of the mix; therefore washing of the aggregates, if possible, is recommended.

d.Mineralogy and Formation

The compressive strength of concrete increases when a crushed stone aggregate is used. [4] This is not on 7 y due to the shape of the aggregate but also due to its mineralogy. Tests made by Parrot [18] on the effect of the type of coarse aggregate on concrete revealed the following: the effect of aggregate type
upon strength was negligible at seven days; and the 28 and 90 day strengths did not appear to depend upon specific gravity, absorption, or acidity of the aggregate, but there seemed to be some dependence upon rock formation. Extrusive rocks generally have high-strength and a small grain size. It was noticed that as concrete becomes older, the incidence of aggregate fracture in broken pieces of concrete increases.[4] Therefore, the quality of an aggregate can be a significant factor governing the concrete strength.
e. Aggregate-Cement. Bond

The aggregate-cement bond is the deciding factor of strength once the material hardens. The aggregate-paste bond decreases with increasing water-cement ratio and decreases with increasing maximum size of the aggregate.

In this project, quartzite stone with $3 / 4$ in. [19 mm] maximum size, from Lincoln. Kansas was used, because this was available even though 10 mm is optimum.

Fine Aggregate
The gradation and the particle shape of fine aggregate are very important factors in production of a higher-strength concrete mix.

One of the important functions of fine aggregate in conventional concrete is its role in providing workability and good surface finish. Since the higher-strength mix has a higher cement content, the role fine aggregate plays in providing workability and good finish is not so crucial. Fine aggregates
with a fineness modulus of 2.7 to 3.2 have been most satisfactory. In this investigation. Kaw River sand passing through sieve No. 4 was used. This sand had a fineness modulus of 3.03.[15]

Water
Water that meets ASTM C-94[6] has no harmful effect on higher-strength concrete: therefore, this water is adequate. The ASTM standard C-94 gives the following specifications for the water to be used in mixing:
"The mixing water shall be clear and apparently clean. If it contains quantities which discolor it, or make it smell, taste unusual, be objectionable, or cause suspicion, it shall not be used unless a service record of concrete has been made from it or other information indicates that it is not injurious to the quality of concrete."

Admixtures
Due to an extreme ly low water-cement ratio, higher-strength concrete has an extremely iow workability and slump. A chemical admixture called super-plasticizer, or super-water reducer can be used to improve the workability of concrete. This admixture actually reduces the angle of friction between water and the solids and causes the mix to be more workable. This effect is for a limited time only. The mix returns to its original slump after a short time. This action of the super-plasticizer makes it possible to have a mix with a high workability when fresh and a high compressive strength at the hardened stage. The amount of
super-plasticizer required should be determined by trial mixes only. At any given water-cement ratio, the amount of superplasticizer required to produce the required slump can be decided from the trial mix. In this project, 240 ml to 320 ml (8 oz to 11 oz) have been used per cubic foot of concrete.

CHAPTER 3

STUDY OF THE COMPRESSIVE STRESS BLOCK

Introduction

The equivalent rectangular stress block permitted by the ACI code 318-83[1] was based on beam tests with a compressive strength of 3000 psi [20.7 MPa.] to $6000 \mathrm{psi}[41.4 \mathrm{MPa}].[15]$. The code recommends a reduction of .05 in the B_{1} value for every 1000 psi [6.9 MPa] increase in compressive strength of concrete above 4000 psi [27.6 MPa] at which $\mathrm{B}_{1}=0.85$. [The B_{1} value is used in the calculation of the depth of the stress block.] This leads to a stress block with zero depth for 21000 psi [144.7 : PPa] concrete which is an obvious fallacy. [In 1975, a lower limit of 0.65 for B_{1} for concrete with strength higher than 8000 psi [55.1 MPa] was suggested by the code. [1]] Now, concrete mixes with a compressive strength of 8000 psi [55.1 MPa] and greater are used frequently in structures. Therefore, there is a strong need to evaluate the validity of the rectangular stress block assumption for higher-strength concrete.

Previous Work
The publications concerning higher-strength concrete are not only limited, but also contradict each other in their conclusions.

For example, in the work done by Rajagopalan, Les lie, and Everard, [10] it is concluded:
(i) The ACI building code rectangular stress block does not predict the behavior of beams with f_{c}^{\prime} above 8000 psi [55.1 MPa].
(ii) Further research is warranted with respect to maximum strain in concrete when f_{c}^{\prime} exceeds 8000 psi. [From Nedderman's[10] tests, the ultimate strain for concrete was found to be in the range of 0.00225 to 0.00285 . The paper discusses these results, and it suggests that with increasing compressive strength, the maximum concrete strain becomes smaller.]
(iii) Pending further test results, a triangular stress block with extreme fiber stress at f_{c}^{\prime} and zero atthe neutral axis is recommended as a conservative model for predicting the behavior of beams with $\mathrm{f}_{\mathrm{C}}^{\prime}$ above 8000 psi [55: Pa].
a) From Nedderman's results, [10] showing the stress-strain relationships for concrete with a compressive strength of 12000 psi [83 MPa], it is observed that the stress strain curve is steeply ascending. It is almost linear up to the maximum strain, in marked contrast to the stress-strain curves of lower strength mixes which have a descending part past the maximum stress. This justifies the elastic theory and leads to the assumption of a triangular stress block.

In the work done by Nikaeen [15], he concludes:
i) "The shape of the stress block changes from rectangular to triangular as the strength increases. The centroid of the stress block lies at a distance of 0.37c from the top fiber (This value is very close to 0.33 which is the centroidal distance of the triangular stress block rather
than 0.5 which is the centroidal distance of a rectangular stress block.)"
ii) "The strain behavior in high-strength concrete is different from normal-strength concrete, because strain at the ultimate condition is less than $0.003 \mathrm{in} . / \mathrm{in}$., and it decreases drastically with time. Therefore, a more conservative strain value of $0.002 \mathrm{in} . / \mathrm{in}$. is recomended."

But, in the work done by Wang, Shah, and Maaman, [21] they conclude:

```
    1. "Rectangular stress distribution gives sufficiently
accurate predictions of the ultimate loads and moments of
reinforced concrete beams and columns made with higher-strength
concrete."
```

2. "The value of the maximum concrete compressive strain at ultimate was always higher than $0.003 \mathrm{in} . / \mathrm{in}$."

Therefore, more tests with application of different methods should be done in order to check which theory is valid, or perhaps testing of the ACI code formula's validity for higherstrength concrete should be made. One of the main objectives of this work is to determine the shape of the compressive stress block.

Modulus of Elasticity
The ACI code suggests the modulus of elasticity of normalweight concrete to be, [1]

$$
E_{c}=33 W^{3 / 2} \sqrt{f_{c}^{l}} p s i .
$$

where f_{c}^{\prime} is the 28 -day cylinder compressive strength.

In tests done at Cornell University the E_{C} values obtained were found to be lower than those given by the ACI code formula[16].

The reason for this unconservative prediction may be the following. The strength of concrete is controlled mainly by the strength of the mortar. [16] The stiffness of concrete is influenced by both the mortar and the aggregate.[6] Therefore, an increase in the quality (strength and stiffness) of the mortar will significantly increase the strength of concrete without a directly proportional increase in the stiffness.

It is intended to determine the E_{c} value of higher-strength concrete (12000 psi) using cylindrical specimens. Two 3 in. $X 6$ in. cylinders were used in this test.

Poisson's Ratio
Poisson's ratio for higher-strength concrete was determined using 3 in. X 6 in. cylindrical specimens tested at 60 days. Strains were measured using four strain gages with their axes placed at 90 degrees to each other. The ratio between the transverse strain and the longitudinal strain for any given loading was calculated to give the poissons ratio.

Test Specimens and Method of Testing
Tests were conducted on rectangular beams to study the compressive stress distribution in a sectionat midspan. Each beam spanned 7 ft . [2134 mm] (the actual length of the beam was 7.5 ft [2286 mm].) and had a cross section of $8 \mathrm{in} . X 12 \mathrm{in}$. [203 X 305 mm].

Three different types of specimens were made with varying steel ratios. One specimen was made in each type. These were:
a) two beams designed to fail in shear with $P_{\max }=0.5$ Pbal. The shear reinforcement details were varied to study the shear capacity of the higher-strength concrete.
i.) One specimen was designed with no shear reinforcement. (SS1B)
ii.) One specimen was designed with partial shear reinforcement. (SS2B)
b.) an under-reinforced section with $\mathrm{P}_{\max }=0.5 \mathrm{pba} 1$. Shear reinforcements were provided in the beam to prevent possible shear failure. (URT)
c) an over-reinforced section with $P_{\max }=1.5$ Pbal.

Shear reinforcements were provided. (OR1)
The detailed designs are given in Appendix I and the reinforcement details are given in Figs. 3.1 through 3.8.

Tension tests were done on the \#3, \#4, \#7, \#9 rebars which were used in the experiment. The results and the average tensile strength values are given in Table 3.1. These values are used in all moment calculations.
a) The beam was tested in third-point loading. It was supported on rollers at the ends to avoid any friction. The loading setup is shown in Fig. 3.9. The strains were measured with electrical strain gages chosen from the Micro Measurements Hand Book[12].

E1ectrical resistance strain gages, EA-06-7500T-120, were used on all the beams, and they were also used on the cylinders for $10 n g i t u d i n a l$ strain measurement. For transverse strain measurement in the cylinder, gages EA-06-250BB-120 were used. A high-speed data acquisition system was used to obtain and record the strain readings.
b) For determining the modulus of elasticity, cylindrical specimens of size $3 \mathrm{in} . \times 6 \mathrm{in}$. ($76 \mathrm{~mm} \times 152 \mathrm{~mm}$) were tested according to ASTM standards[6]. Two gages were used to measure the strain in each cylinder. A total number of two specimens was used.
c) To measure Poisson's ratio, cylindrical specimens of 6 in. X 12 in. ($152 \mathrm{~mm} \times 305 \mathrm{~mm}$) were used. Strains were measured using four strain gages with their axes placed at 90 degrees to each other.
d) The axial compressive strength was measured using two 6 in. $\times 12$ in. ($152 \mathrm{~mm} \times 305 \mathrm{~mm}$) cylinders and two $3 \mathrm{in} . \times 6 \mathrm{in}$. (76 mm X 152 mm) cylinders. Strains were measured using electrical resistance strain gages.

Strain Measurements

The strains in the test beams were measured with electrical resistance strain gages and mechanical straingages. The gages were placed in the locations shown in Fig. 3.10, Appendix IV.

At the middle third of the beam, there was no strain gradient in a plane parallel to the neutral axis; therefore, 0.75 in. (18 mm) long gages can be used to measure strains. Two gages
measured the extreme fiber strains and three gages measured the strain gradient along the beam's depth. A total number of eight gages was used per beam except for beam SSIB in which fourteen gages were used.

Prediction of the Moment Capacity
Under-Reinforced Beam
To predict the ultimate moment capacity of the underreinforced beam, the steel was assumed to have yielded under the load. The total tensile force was calculated using the yield stress of the $\# 7$ bars and the area of steel in the beam. The total tensile force was equated to the total compressive force. The total compressive force was calculated using the rectangular stress block assumption, triangular stress block assumption, and parabolic stress block assumption.
a. Rectangular Stress Block

The equivalent rectangular stress block based on ACI 318-83 [1] is as shown:

Equating the tatal tensile force to the total compressive force,

$$
A_{5} . f_{y}=0.85 f_{c}^{\prime} .(0.65 c) . b \quad . . .(3.1)
$$

where $A_{s}=$ area of steel,
$f_{y}=$ yield strength of steel. $f_{C}^{\prime}=$ compressive strength of concrete, $c=$ depth of neutral axis from top. $b=$ width of the beam.

Using this equation, the c value, i.e., the depth to the neutral axis, was determined from the top. The ultimate moment was calculated by the equation
$M_{u}=0.85 . f_{c}^{\prime} \cdot(0.65 . c) \cdot b \cdot(d-(0.65 . c / 2))$. . (3.2)
The calculated moment was compared to the actual moment taken by the beam.
b. Triangular Stress Block

The total tensile force was equated to the total compressive force calculated using the triangular stress black assumption. The average cylinder compressive strength and the depth of the neutral axis were used as the sides of the triangular stress block. Therefore
$A_{s} \cdot f_{y}=0.5 . f_{c}^{\prime} \cdot c \cdot b$
The depth of neutral axis was determined from this
The ultimate moment was calculated using the formula,
$M_{u}=0.5 . f_{c}^{\prime} \cdot c \cdot b(d-(c / 3) \quad . .(3.4)$
The calculated moment was compared to the actual moment.
c. Parabolic Stress Block

The shape of the stress block at the ultimate load given in Ref. 14 was used to predict the moment in the beams tested here using the assumption of a parabolic stress block. Stress values at various levels of all four beams were used to calculate the average stress values at those levels. Using these stress values, a parabolic curve was fitted to give the stress value at any given depth.

The total tensile force was equated to the total compressive force. The total compressive force was calculated by integrating the equation describing the stress block. The depth of the neutral axis was then calculated.

The centroid of the compressive stress block was also found by direct integration. The total moment was calculated using these quantities, and was compared to the actual moment taken by the beam. Detailed formulas and calculations are given in Appendix II

Over-Reinforced Beam
To predict the ultimate moment capacity of the overreinforced beam, the total compressive force was equated to the total tensile force. The total compressive force was again calculated using the rectangular stress block assumption, triangular stress block assumption, and parabolic stress block assumption.
a. Rectangular Stress Black

As before, the $A C I[1]$ method and assumptions were
used.

Equating the total tensile force to the total compressive force gives

$$
\begin{aligned}
& A_{s} \cdot f_{s}=0.85 f_{C}^{\prime} .(0.65 \mathrm{c}) \cdot b \\
& \text { where } A_{s}=\text { area of steel, } \\
& f_{S}=\text { stress in the steel, } \\
& f_{C}^{\prime}=\text { compressive strength of concrete, } \\
& c=\text { depth of neutral axis from top, } \\
& b=\text { width of the beam. }
\end{aligned}
$$

To find the tensile stress f_{s}, the strain compatibility equations are used. An ultimate concrete strain of $0.0025 \mathrm{in} . / \mathrm{in}$. was assumed.[14,15] From the strain compatibility condition shown.

Equating the total tensile force and the total compressive force by substituting eq. (3.7) in eq. (3.1)

$$
A_{s} \cdot E_{S} \cdot G_{u}((d-c) / c)=0.85 . f_{c}^{\prime} \cdot(0.65 c) . b \text {. . (3.8) }
$$

Solving this equation for c determines the depth of the neutral axis.
The moment taken by the beam was calculated from eq. 3.2 and compared to the actual moment taken by the beam. Detailed calculations are given in Appendix II.
b. Triangular Stress Block

The triangular stress block was assumed to have outer fiber stress equal to the compressive strength f_{c}^{\prime} and the stress distribution shown.

Equating the total tensile force to the total compressive force gives

$$
\begin{aligned}
A_{s} \cdot f_{s}= & 0.5 f_{c}^{\prime} \cdot c \cdot b \\
\text { where } A_{s} & =\text { area of steel } \\
& f_{s}=\text { tensile strength of stee } 1 \\
& f_{\mathrm{C}}^{\prime}=\text { compressive strength of concrete } \\
& c=\text { depth of neutral axis from top } \\
& b=\text { width of the beam. }
\end{aligned}
$$

To find the tensile stress f_{s}, the strain compatibility conditions are used as before. An ultimate concrete strain of $0.0025 \mathrm{in} . / \mathrm{in}$. was assumed $[14,15]$, and G_{s} is given by $E q 3.5$ and f_{s} is given by Eq. 3.7. As before, E_{s} is taken as 29×10^{6} psi. Equating the total tensile force and the total compressive force gives,

$$
A_{s} \cdot E_{s} \cdot \epsilon_{u}((d-c) / c)=0.5 . f_{c}^{1} \cdot c . b \quad \ldots(3.9)
$$

from which c is determined.
The moment taken by the beam was calculated from Eq. 3.4 and compared to the actual moment taken by the beam. Detailed calculations are given in Appendix II.

c. Parabolic Stress Block

The procedure described for the under-reinforced beam was used except the steel stress, fs is given by Eq. 3.7.

The centroid of the compressive stress block was found by direct integration. The total moment was calculated using these quantities and was compared to the actual moment taken by the beam. Detailed calculations are given in Appendix II.

CHAPTER 4

PROPORTIONING, MIXING, AND PLACING

Introduction

The objective in designing a concrete mix is to obtain a material which will possess certain desired properties such as workablity, finishability, etc. when plastic and required characteristics such as strength, durability, wear resistance, and water tightness when hardended, at the lowest possible cost. Proportioning of the higher-strength mix requires more accuracy than is usually needed for normal strength mixes, because optimum performance is required from each component. [4]

Mix Proportioning
Since higher-strength concrete technology is relatively new in the field, there are no conventional mix design methods available for strengths higher than 8000 psi [55.1 MPa]. A trial batch program is the most effective method for determining the suitability of the materials and their proportions for a specifc job. [4]

The factors that decide the strength of the mix are:

1) water cement ratio
2) cement content
3) aggregate content
4) admixtures.

Water-Cement Ratio
To obtain a mix with high compressive strength, using a given set of materials, the lowest possibie water-cement ratio should be used together with a minimum amount of mixing water.

According to Abram's law, [17] for any given condition of the test, the strength of a workable ${ }^{*}$ concrete mix is dependent only on the water-cement ratio. The lower limit for the amount of water will be that amount necessary to allow the hydration of Portland cement to go to completion. Portland cement requires about one-fifth to one-fourth of its weight of water to become completely hydrated. Then if the water-cement ratio is below 0.4, complete hydration cannot be secured. [17]

It has been found, nevertheless, that strength increases with a reduction in water-cement ratio to a value of 0.2 or even Tower and it appears only the outer surface of each cement particle will become hydrated.[17] Any reduction in water cement ratio up to 0.2 will increase the strength of the mix considerably. For this study, a water-cement ratio of 0.28 was used. Trial mixes were done in the region of 0.26 to 0.3 in which there is a considerable increase in strength for a small reduction in water-cement ratio. [15]

[^0]
Cement Content

The mix proportions should be determined for production of a concrete mix with the lowest water requirments and the highest required compressive strength for the specified workability. This leads to mixes with high cement factors. However, there is an optimum cement content above which addition of any amount of cement will not appreciably increase the strength. This amount depends on the aggregate type, aggregate size, mixing conditions, slump level, and the amount of air entrained. Freedman ${ }^{[7]}$ states that a trial mix for 10000 psi [68.9 MPa] can contain about 940 lb per cubic yard (557 kg per cubic meter). Any further increase in cement content above this level will not result in an appreciable increase in compressive strength. Such high cement factors are inevitable in proportioning for the high strength concrete. The mix used in this work has a cement content of 864 lb per cubic yard [512 kg per cubic meter].

Aggregate Content

To obtain a mix of reasonable workability and to retain a low water-cement ratio, the cement paste must not be combined with excess aggregate. Here, the mix used in a previous work[15] was found to have the optimum amount of aggregates to produce the required workability and the ability to give the required strength for the mix. The amount of aggregates used are given in the mix design in Appendix II.

Mixing and Placing
Since the water used in the mix is just enough to hydrate the cement, the mixing water has to be used effectively. Initially, it was decided to mix the cement and water for a minute in the mixer to make a slurry, and then aggregates were added to the slurry. This method of mixing ensures that the coment receives all the water it requires for hydration.

One batch of six 3 in. $X 6$ in. cylinders was made using this mixing technique. The average compressive strength of these cylinders was compared to the average compressive strength of the concrete made by the regular mixing process. The study showed an increase in the compressive strength of the mix. The results of the cylinder compressive strengths are given in Tables 4.1 and 4.2. It is not certain to what extent the strength is increased (the test results showed an apparent increase of 1.5 percent in the average compressive strength, but later the loads shown by the dial indicator were found to be wrong due to the failure of a high-pressure valve in the testing machine).

Later it was decided to follow the regular mixing. procedure. All the solids were mixed, including cement, for four minutes. After the complete mixing was ensured, water was added slowly over a period of two minutes, followed by vigorous mixing for two to four minutes.

Since the capacity of the mixer was three cubic feet, two batches were mixed for each beam Good compaction was ensured by using a rod vibrator. Cylinder samples of 3 in. $X 6$ in, were
made for both batches of the mix. The same operators were used in each batch of all four beams to minimize the amount of human error involved. The top surface of the beam was given a smooth finish by working it with a glass plate.

Curing
The formwork was removed after 24 hours, and the bean was cured until seven days prior to testing. The curing was done by pouring water on the beam at regular intervals and keeping it covered by a plastic drop cloth to reduce the evaporational loss. A11 four beams were tested at an age of 60 days from the day of casting.

CHAPTER 5

BEAM TEST AND RESULTS

Introduction

All four beams were tested in a universal testing machine (Tinius 01 son) with maximum loading capacity of 200,000 lb [890 kN], which can be read accurately to the nearest 2016 [89N]. A nearly uniform loading rate was applied for all the beams.

Test Setup
The beam was supported on two rocking, roller edges. To avoid the line contact which might cause higher bearing stress and a bearing failure, two plates of 3 in . X 12 in . X 1 in . $[76.2 \times 304.8 \times 25.4 \mathrm{~mm}]$ were used on the roller edges. This ensured a normal reaction from the supports at all loads. The load from the machine head was transferred to the beam at the third-points by a steel loading beam, shown in Fig. 3.9. The loading points were seated on a hydro-stone mortar coating to ensure uniform load transfer. Supports, bearing plates, the test beam, and the loading beam were checked for any possible eccentricity in two directions to avoid any possible torsion introduced into the beam.

Strain readings were obtained by eight electricalresistance strain gages placed on the beam (in the first beam, a total number of 14 gages were used, but later it was decided to
use only eight gages for each beam). The gage locations and the numbering sequence are shown in Figs. 3.5 and 3.10. The strain gages were connected to a high-speed data acquisition system. Deflections were measured by a dial gage with a least reading of $0.001 \mathrm{in} .(0.025 \mathrm{~mm}$.) at the mid point of the beam.

To measure the strain in the tensile zone, a Whittemore gage with a gage length of 8 in . was used. The gage end points were brass buttons with a concentric hole of $1 / 16 \mathrm{in}$. that were made in the lab. Buttons were glued to the beam by epoxy at 8 in. and 10 in . from the top. (see Fig. 3.5)

The 3 in. $X 6$ in. cylinder samples for each beam were tested on the same day as the beam. The first trial mix (taken from Reference 15) compressive strength results are given in Table 5.1. The cylinder compressive strength results (modified mix) for each beam are given in Tables 5.2, 5.3, 5.4 and 5.5. The proportions of the modified mix are given in Appendix II.

Testing Procedure

Suitable loading increments were used depending upon the estimated ultimate capacity of the beam. After each increment, the readings from the straingages and the dialgage were taken. The beam was checked for visible cracks and the cracks were marked up to the leading edge.

Results and Oiscussion
The strain readings obtained from the electrical-resistance gages, Whittmore gages and the corresponding load deflection
values are tabulated in Tables 5.6 through 5.16. The strain values for corresponding loads in the compression zone are plotted across the depth of the beam in Figs. 5.1, 5.2, 5.3 and 5.4, respectively, for Shear Specimen I(SS1B), Shear Specimen II (SS2B), Under-reinforced Specimen (UR1) and Over-reinforced Specimen (OR1). The depth of the neutral axis for each beam was calculated by assuming a uniform strain distribution across the depth of the section and is shown on each plot.

The 3 in . $\times 6 \mathrm{in}$. ($76 \mathrm{~mm} \times 152 \mathrm{~mm}$) concrete cylinder samples were tested at the same age as the beam; the cylinder stressstrain data are given in Tables 5.17 and 5.18. Using the cylinder stress-strain data, a third degree polynomial was fitted to determine a stress strain relation. Using this polynomial, each stress corresponding to the beam's measured strain values was calculated. These stress values are plotted through the depth of the beam, thus giving the shape of the stress block shown in Figs. 5.5, 5.6, 5.7 and 5.8.

For every loading, the total compressive force was estimated using the triangular stress block assumption. Using the extreme fiber stress as one side of the triangle and the depth of the neutral axis as the other, the area and the centroid of the triangular stress block were calculated. Neglecting the tensile strength of concrete, the lever arm up to the center of the steel reinforcements was calculated. The internal moment produced by this couple was compared with the actual moment taken by the beam at the corresponding load.

Similarly, the ACI equivalent stress block was used to calculate the internal moment at the ultimate load. For this stress block. 0.85 times the average cylinder compressive strength and 0.65 times the depth of neutral axis ($B_{\rho}=0.65$) were used. The internal moment was calculated and checked with the actual moment taken by the beam at ultimate load. Finally, the actual stress values through the depth to the neutral axis were used to fit a parabolic curve for the stress block. By integrating, the area of the stress block and the centroidal distance were calculated. Using these values, the internal resisting moment was calculated and checked with the actual moment taken by the beam

The deflections up to the flexural cracking moment for each beam were calculated using the full uncracked moment of inertia of the section. A modulus of rupture of $6.5 \sqrt{f_{c}^{\prime}}$ was used to estimate the cracking stress. Beyond this stress, the beam was treated as a cracked section and the effective moment of inertia was used to calculate the deflections. This was calculated using the formula

$$
I_{e}=\left(\frac{M c r}{M_{a}}\right)^{3} \cdot I_{g}+1-\left(\frac{M_{c r}}{H_{a}}\right)^{3} \cdot \quad I_{c r} \leq I_{g} \quad \ldots(5.1)
$$

where $\quad \mathrm{M}_{\mathrm{cr}}=$ cracking moment.

$$
M_{a}=\text { maximum moment },
$$

$$
I_{g}=\text { gross moment of inertia of the section, }
$$ $I_{c r}=$ moment of inertia of the transformed section,

$$
I_{e}=\text { equivalent moment of inertia. }
$$

Using this I_{e}, the deflections of the beam were calculated and compared to the actual deflections of the beam under load. A small program in BA5IC language was written to perform all the above mentioned calculations.

Shear 5pecimen I

The load and the corresponding stresses at the top, at two, four, and six inches from the top are given in Table 5.19. These values are plotted in Fig. 5.5. From this, it can be observed that the stress block has a negative curvature. This may be because the failure is due to shear and not flexure or it may be due to the errors in the measurement.

The actual moments, the calculated triangular stress block moments (using the actual extreme fiber stress), and the calculated parabolic stress block moments are compared in Table 5.20. From this, it can be observed that the moments calculated using the triangular stress block are found to be higher than the actual moments for higher loads. The parabolic stress block is able to predict the moment closely and conservatively with an error of 11 percent at failure.

The actual deflections and the calculated deflections are compared in Table 5.21.

5hear 5pecimen II

The load and the corresponding stresses at the top at two, four, six inches from the top are given in Table 5.22. These values are plotted in Fig. 5.6. From this it can be observed that this stress block also has a negative curvature.

The actual moments, the calculated triangular stress block moments (using the actual extreme fiber stress), and the calculated parabolic stress block moments are compared in Table 5.23. The parabolic stress block is able to predict the moment closely and conservatively with an error of 16 percent at failure. The actual deflections and the calculated deflections are compared in Table 5.24.

Under Reinforced Beam

The load and the corresponding stresses at the top, at two, four, and six inches from the top are given in Table 5.25. These values are plotted in Fig. 5.7.

The actual moments, the calculated triangular stress block moments (using the actual extreme fiber stress, and the depth of the neutral axis), and the calculated parabolic stress block moments are compared in Table 5.26. The triangular stress block estimate was in error by 9 percent at the maximum load (load 18).

The actual moment, the calculated moment using the rectangular stress block (using 0.85 times the average compressive strength of the $3 \mathrm{in} . X 6 \mathrm{in}$. cylinder samples) and the calculated parabolic stress block moments are compared in Table 5.27 for the ultimate load. It is found that the rectangular stress block assumption gives a close and conservative estimate with 3 percent error. The parabolic stress block assumption estimates the actual moment with 42 percent error. The actual moment, the calculated rectangular stress
block moment, and the triangular stress block moment are given in Table 5.28. The actual deflections and the calculated deflections are compared in Table 5.29. From the initial loading to the final failure, the neutral axis moved through a distance of nearly 2.58 inches.

Over-Reinforced Beam

The load and the corresponding stresses at the top, at two, four, and six inches from the top, are given in Table 5.30. These values are plotted in Fig. 5.6.

The actual moments, the calculated triangular stress block moments, (using the actual extreme fiber stress and the depth up to the neutral axis) and the calculated parabolic stress block moments are compared in Table 5.31. From this, it can be observed that the moments calculated using the triangular stress block are found to be much lower than the actual monents. The triangular stress block underestimates the ultimate moment of the section by 39 percent at failure. The parabolic stress block is able to predict the moment closely and conservatively with an error of 7 percent at failure.

The actual moment, the calculated moment using the rectangular stress block (using 0.85 times the average compressive strength of the 3 in. X 6 in. cylinder samples), and the calculated parabolic stress block moment at failure are compared in Table 5.32.

It is found that the rectangular stress block gives an estimate with 29 percent error. The parabolic stress block is able to give the actual moment with 7 percent error. The actual moment, the calculated rectangular stress block moment, and the triangular stress block moment at failure are given in Table 5.33. The actual deflections and the calculated deflections are compared in Table 5.34. From the initial loading to the failure, the neutral axis has moved through a distance of nearly 1.26 inch. This is due to the fact that tensile steel that has not yielded, and the very small cracks that are formed do not severely affect the location of the neutral axis.

Shear Behaviour

There have been a number of discussions on the correct relation between compressive strength and shear capacity. The current ACI code assumes that the nominal shear capacity is proportional to $\left(\mathrm{f}_{\mathrm{c}}\right)^{0.5}$. The work done by some investigators $[13]$ conclude that for high-strength concrete the shear strength is proportional to $\left(f_{c}^{\prime}\right)^{0.333 .}$

Two reinforced concrete specimens were made, one without any shear reinforcement, and the other with 62 percent of the required shear reinforcement based on the ACI (318-83)[1] method. The longitudinal reinforcement stee 1 ratio was 0.5 times the balanced steel ratio. Details of reinforcing are given in Figs. 3.1, 3.2, 3.5 and 3.6. Crack patterns are shown in Figs. 5.9 and 5.10. The total span of the beam was 7 ft . and the shear span ratio was 2.5.

Each beam was tested in the same way as the flexural specimens. The strain data obtained and the corresponding load and deflections are given in Tables 5.6, 5.7. 5.3. 5.9. 5.10 and 5.11. During the testing of the second beam, $S S 2 B$, the spreader beam failed due to buckling at 60000 lb . The beam was reloaded the next day using a new spreader beam. In the beam without shear stirrups, SSIB, the diagonal cracking load and the ultimate load were used to calculate the critical shear force, and the ultimate shear stress using the effective depth of the beam, and the width of the beam. The shear force calculated was compared with ACI equation 11-3 and 11-6 [1] and Zsutty's[13] equation.

In the second beam, the amount of shear taken by the steel stirrups was calculated by considering the number of stirrups encountered by a major diagonal crack and then assuming the stirrups have yielded. The remaining shear was assumed to be taken by the concrete.

$$
\begin{align*}
& \text { ACI Eq. }(11-3)^{[1]} \\
& \qquad V_{c r}=2 \sqrt{f_{c}^{!}} b_{w} d \tag{5.2}
\end{align*}
$$

ACI Eq. $(11-6)^{[1]}$

$$
\begin{equation*}
V_{c r}=\left(1.9 \sqrt{f_{c}^{\prime}}+2500 p \frac{V_{u} d}{M_{u}}\right) b_{w} d \ldots \tag{5.3}
\end{equation*}
$$

$$
\begin{align*}
& \text { Zsutty's Eq. }^{[13]} \\
& V_{c r}=59\left(f_{c}^{\prime} p \frac{d}{a}\right)^{0.333} \cdot b_{w} d \tag{5.4}
\end{align*}
$$

At ultimate

$$
\begin{aligned}
& \text { Zsutty's Eq. [13] } \\
& \qquad V_{c r}=63.4\left(f_{C}^{\prime} p \frac{d}{a}\right) \quad 0.333 b_{w} \quad \ldots(5.5)
\end{aligned}
$$

The values calculated using these formulas are compared in Table 5.35. The actual ultimate shear force of the beam with no web reinforcement was found to be 21000 ib [93.5 kil]. The ACI formula gave a close and conservative prediction of the ultimate shear force as $17600 \mathrm{lb}[78.3 \mathrm{kN}]$. Zsutty's equation ovarestimated the ultimate shear capacity of the section to be 23000 16 [102.35 kN].

In the second specimen, with 62 percent web reinforcement, the amount of shear taken by the concrete was found to be 19650 lb [87.4 kN], which is predicted by the ACI formula closely and conservatively as 17600 lb [78.3 kN]. However, Zsutty's equation predicted 24400 ib [108 kil].

Ultimate Strains

From the test data in Tables 5.13, and 5.16, the average strains at the ultimate load condition for the under-reinforced and over-reinforced beams are $0.0024 \mathrm{in} . / \mathrm{in}$. and $0.0026 \mathrm{in} . / \mathrm{in}$. From Table 5.18, the maximum strain in concrete cylinder $1 l 0.2$ is 0.0025 in./in. These values show that the ultimate strain in high-strength concrete is less than $0.003 \mathrm{in} . / \mathrm{in}$. Ref. 5 and 15 have indicated similar results. An ultimate strain value of $0.0025 \mathrm{in} . / \mathrm{in}$. was recommended by Carrasquillo[5] et al.

Modulus of Elasticity

The uniaxial compressive stress-strain values given in Tables 5.17 and 5.18 were plotted (Figs. 5.13 and 5.14), and the point of 0.45 times the maximum cylinder compressive strength was determined. A straight line was drawn from the origin to 0.45 f_{c}^{\prime}, and the slope of that line was used to calculate the secant modulus of concrete. The average modulus of elasticity was found to be $6.42 \times 10^{6} \mathrm{psi}$ for this higher-strength concrete. The ACI formula, ${ }^{[1]}$

$$
\begin{equation*}
E_{c}=33 \mathrm{~W} 1.5 \sqrt{f_{c}^{\prime}} \tag{5.6}
\end{equation*}
$$

where Wedry unit weight of concrete, was used to predict the modulus of elasticity. The dry unit weight was determined by weighing six 3 in. $X 6$ in. cylinders, and the average dry unit weight was 153 pef ($2470 \mathrm{~kg} / \mathrm{m}^{3}$). The predicted value was found to be $6.78 \times 10^{6} \mathrm{psi}$. Thus the ACI formula overestimates the elastic modulus by nearly 6 percent. Detailed calculations are shown in Appendix II.

Poisson's Ratio

The Poisson's ratio was calculated from the stress-strain data of Cytinder No. 2 given in Table 5.18. The Poisson's ratio was found to be constant nearly up to failure. The value is approximately 0.12. The full set of values is given in Table 5.18. Poisson's ratio values are plotted in Fig. 5.15.

CHAPTER 6

SUMMARY OF RESULTS AND CONCLUSIONS
Summary
A mix design for high-strength concrete was developed using the available data from the mix design work[15] done earlier. The proportions of the mix are given in Appendix II. A superplasticizer was used in all mixes to improve the workability. A total number of four beam specimens was made and tested to determine the shear strength, and the shape of the compressive stress block. The test results and the analysis lead to the following conclusions.

Conclusions

1. Higher-strength concrete has a brittle mode of failura. In the cylinder specimens, no cracks were observed before failure. The failure was sudden and explosive. The failure cracks were vertical, from end to end of the cylinder. The failure plane was very smooth and did not discriminate between the aggregate and the matrix.
2. The compressive stress-strain curve is nearly linear up to failure.
3. Due to the various assumptions used, the ACI equivalent rectangular stress block is able to give a closer agreement with the actual measured ultimate moment for beam UR1 than the triangular stress block. But using the ACI rectangular stress block for concrete with a compressive strength of 8000 psi [55 MPa] or greater is not recommended because the shape of the
actual stress block appears to be triangular or parabolic at ultimate loads.
4. For beam OR1, the parabolic stress block assumption gives better agreement with the measured ultimate moment than the ACI rectangular stress block assumption or triangular stress block assumption.
5. The ultimate strain values for this higher-strength concrete are different from normal-strength concrete. The strain in direct compression and flexure are found here to be lower than 0.003 in./in. used in the ACI code. Therefore, a more conservative strain value of $0.0025 \mathrm{in} . / \mathrm{in}$. is recommended.
6. Nominal shear values predicted by the ACI code formulas were found to be close to the calculated, experimental values and conservative. Zsutty's equations overestimated the nominal and ultimate shear capacity of this concrete.
7. The average value of the modulus of elasticity of this higher-strength concrete (based on two samples) was found to be less than the value predicted by the ACI code.[1] Hore work has to be done to find the exact relation between the unit weight of concrete, compressive strength, and modulus of elasticity.
8. The deflections calculated using the ACI equivalent moment of inertia were found to be lower than the actual deflections. The deflections for all beams are plotted in Fig. 5.16 in which it is seen that UR1 has a more ductile behaviour than the other beams.
9. Poisson's ratio for higher-strength concrete was found to be about 0.12

APPENDIX I
REFERENCES

REFERENCES

1."Building Code Requirements for Reinforced Concrete)." (ACI 318-83), American Concrete Institute, 1983.
2. Bloem, O. L. and Gaynor, R. D., "Effect of Aggregate Properties on High-Strength Concrete," ACI Journal, Vol. 60, October 1963, pp. 1429-1455.
3. Burgess, A. J., Rye 11, J. and Bunting, J., "High-Strength Concrete for Willows Bridge," ACI Journal Vol. 67. No. 8. August 1970, p. 611.
4. Carrasquil10, Ramon L.. "The Production of High-strength Concrete", Report No. 78-1, Depertment of Civil Engineering, Corne 11 University, Ithaca, N.Y. May 1978.
5. Carrasquillo, Ramon L., Nilson. A.H., and Slate, Floyd O., "Properties of High Strength Concrete Subject to Short Term Loading." ACI Journal, May-June 1981., pp. 171-178.
6. "Concrete and Mineral Aggregates (including Manual of Concrete Testing)," Annual Book of ASTM Standards. Part 14,1974.
7. Freedman, Sydney. "High-Strength Concrete," Modern Concrete, Vol. 34, No. 6, Oct. 197D,pp. 29-36; No. 7, Nov.1970,pp. 2832: No. 8, Dec. 1970.pp. 21-24; No. 9, Jan.1971.pp. 15-22; and No.10, Feb.1971, pp. 16-23. Also Publication No. IS176T, Portland Cement Association.
8. Hanson, J. A., "Shear Strength of Light Weight Beams," ACI Journa1. Vol. 55, No.3, September 1958, pp. 389-403.
9. Hognestad, Eivid., Hanson, N.W., and McHenry, Douglas "Concrete Stress Distribution in Ultimate Strength Design," Journal of the American Concrete Institute. Vol.27. No. 4 , Dec. 1955., pp. 455-479.
10. Leslie, Keith E., Rajagopalan,K.S., and Everad, Noel J.. "F1exural Behavior of High-Strength Concrete Beams." ACI Journal Vol.73. No. 9, Sep. 1976.,pp 517-521.
11. Hather, Katharine., "High-Strength Concrete, High density Concrete," (ACI Summary paper). ACI Journal, Proceedings. Vol. 62. No. 8, August 1965, pp. 951-962.
12. Micro Measurements Oivisoin, Measurements Group, Catalog 400, Strain Gage Listings, Raleigh, N.C. Aug. I, 1984.
13. Mphonde, Andrew G., Frantz, Gregory C., "Shear Test of Highand Low-Strength Concrete Beams Without Stirrups," ACI Journal Vol. 81, No. 4, July-August 1984, pp. 350-357.
14. Narayanbabu, Hiremagalur "Structural Behavior of Higher Strength Concrete." Master's Thesis Report, Kansas State University, 1985.
15. Nikaeen, Ali., "The Production and Structural Behavior of High-Strength Concrete." Master's Thesis Report, Kansas State University, 1982.
16. Nilson, Arthur H., Slate, Floyd 0., "Structural Properties of Very High-Strength Concrete." Second Progress. Report ENG 76-08752, Department of Structural Engineering, Cornell University, Ithaca, N.Y., January 1979.
17. Orchard, 0.F., "Concrete Mix Design and Quality Control" Concrete Technology, Fourth Edition., Vol. 1, Applied Science Publishers Ltd., London., 1979. pp. 192-193.
18. Parrot, L.J., "The Selection of Constituents and Proportions for Producing Workable Concrete With a Compressive Cube Strength of 80 to $110 \mathrm{~N} / \mathrm{mm}^{2}$ (11600 to $\left.15900 \mathrm{lbf} / \mathrm{in}^{2}\right)^{\prime \prime}$, Technical Report No. 416, Cement and Concrete Association, May 1969, Pp. 12.
19. Saucier, Kenneth L., "High Strength Concrete, Past, Present, Future, "Concrete International. ACI Vol. 2. No.6. June 1980, pp. 46-50.
20. "State-of-the Art Report on High-Strength Concrete," Report by ACI Committee 363, ACI Journal, Vol. 81, No. 4, JulyAugust 1984, pp. 364-411.
21. Wang, Pao-Tsan., Shah, Surendra P., and Naaman, A. E., "High-Strength Concrete in Ultimate Strength Oesign," Journal of the Structural Oivision, ASCE, Vol. 104. No. ST11, 1978, pp. 1761-1773.

APPENDIX II
DETAILS OF SOME CALCULATIONS

Mix Proportions

Mix proportions obtained from Ref. 15:
All weights are lb. per one cubic foot.
Materials Quantity

Cement 31.93 1b
Quartzite 49.65 lb
Sand 60.88 lb
Water 9.24 lb
Super-plasticizer 0.40 lb
Air \% (est.) 0.5
Initial Slump, in. 2.5
Specific gravity of Sand $=2.63$ (Ref. 15)
Specific gravity of Quartzite $\quad=2.54$ (Ref. 15)
Specific gravity of super-plasticer $=1.2 \quad$ (Ref. 15)
The weight of the super-plasticizer is added to the weight of the water since the super-plasticizer is considered to act as water in the mix.

So the water-cement ratio of the mix is,
$=(9.24+0.4) / 31.93$
$=0.30$
Test age, days $=47$ days
Nominal compressive strength $f_{c}^{\prime}=9400$ psi

This mix had an inadequate compressive strength and it was decided to design a mix with lower water-cement ratio. The new mix proportions are given below.

All weights are 1 b . per one cubic foot

Materials	Quantity
Cement	31.93 lb
Quartizite	49.65 lb
Sand	60.88 lb
Water	8.28 lb
Super-plasticizer	0.74 lb
Air\% (est.)	1.0

Initial STump, in. 5.5

Specific gravity of Sand $=2.63$ (Ref. 15)
Specific gravity of Quartzite $=2.54 \quad$ (Ref. 15)
Specific gravity of super-plasticer $=1.2 \quad$ (Ref. 15)
The water-cement ratio used in the project, including the weight of the super-plasticizer is calculated below;

$$
\begin{aligned}
& =(8.28+0.74) / 31.93 \\
& =0.28
\end{aligned}
$$

Water-cement ratio ($\left.f^{\prime} c=12000[83 \mathrm{MPa}]\right)=0.28$.
Test age, days $=60$ days
Nominal compressive strength $f_{c}^{\prime}=12000 \mathrm{psi}$

Design of Steel Reinforcement

Two specimens are designed to fail in shear in order to study the shear strength characteristics of higher-strength concrete.

Oesign of Shear Specimen I
$\mathrm{PMAX}_{\mathrm{M}}=0.5 \mathrm{P}_{\mathrm{ba} 1 .}=0.02279$
$A_{s}=P_{\text {max }}$.b.d.
$A_{s}=(0.022792)(8)(11)=2.005525$ sq. in.
Use three, 77 bars in a row
Area provided=1.8 sq. in.
$M_{u}=A_{s} f^{\prime}{ }_{y}(d-C / 3) d \quad C=3.0 \mathrm{in} . C / 3=1.0 \quad \mathrm{in}$.
$M_{u}=(1.8)(60)(11-1.0)$
$=1090.8 \mathrm{kip}-\mathrm{in}$.
$=90.9 \mathrm{kip}-\mathrm{ft}$.
$\mu_{u}=P 7 / 6=90.9, P=77.90 \mathrm{kip}$ (span=7')
Shear $\max _{0}=77.90 / 2=38.95 \mathrm{kips}$
Allowable shear taken by concrete $=\$ 2 \mathrm{f}_{c}^{\prime}$ bd
$=15.8 \mathrm{kips}$
No shear reinforcement is provided for the beam.
Since the maximum shear is much greater than allowable shear, the beam is going to fail in shear.

Oesign of Shear Specimen II
In this beam, the same amount of steel is used as in the previous specimen. $\left(P_{\text {max }}=0.5 P_{\text {balance }} A_{s}=1.8\right.$ sq. in.)

From the previous design,

$$
\begin{aligned}
& M_{U}=86.4 \text { kip-ft. . Ultimate load }=74.1 \text { kips } \\
& V_{U}=37.1 \text { kips. }
\end{aligned}
$$

Shear taken by concrete $\quad=\phi V_{C}=16.8 \mathrm{kips}$.
Shear to be taken by stee $1=\left(V_{u}-\phi V_{c}\right)=(37.1-16.8)$

$$
=20.3 \mathrm{kjps} .
$$

Using \# 3 bars for stirrups $A_{s}=0.11 \times 2=0.22$ sq. in.

$$
S=\frac{(1)(0.22)(60)(10.5)}{20.3}=6.83 \mathrm{in} .
$$

An equal spacing of $11 \mathrm{in} . \mathrm{c} / \mathrm{c}$. was used in the second beam.
Shear reinforcement provided $=(6.83 / 11) 100$
$=62.1$
The second speciman is designed with a shear reinforcement of about 62 percent with \#3 stirrups placed at $11 \mathrm{in} . \mathrm{c} / \mathrm{c}$.

Design of Under-Reinforced Section
The section is under-reinforted using $p=0.5 \mathrm{pbal}$. for steel as the main reinforcement in the beam
pbal. using triangular stress block
Using 60-grade stee1.

$$
\begin{aligned}
& C_{b}=d\left(\frac{\epsilon_{u}}{\epsilon_{u}+\epsilon_{y}}\right) . \\
& \epsilon_{y}=y i e l d \text { strain in steel. }
\end{aligned}
$$

$$
E_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi} .
$$

Fiultiplying the numerator and the denominator by E_{s},

$$
\begin{aligned}
& C_{b}=d \cdot\left(\frac{72.5}{72.5+60}\right) \\
& \left.c_{b}=.5471 \text { d. (when } C=C_{b}\right) \\
& A_{s} . f_{y}=.5 \cdot f_{c}^{\prime} \cdot(0.5471) b \quad b=8 i n ., d=10.5 \text { in. },
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{f}_{\mathrm{c}}^{\prime}=10000 \mathrm{psi} .[68.9 \mathrm{PPa}] \\
\mathrm{f}_{\mathrm{y}}=60000 \mathrm{psi} .[413.4 \mathrm{l:Pa}] \\
\frac{A_{s}}{\text { bd }}=0.0455975=0.0456
\end{gathered}
$$

using 0.5 Pbal.V $P_{\max }=0.0228$

area of steel.

$$
\begin{aligned}
A_{S} & =P_{\max } \cdot b \cdot d \\
& =(0.0228)(8)(10.5) \\
& =1.92 \mathrm{sq} . \mathrm{in} .
\end{aligned}
$$

Use 3, \#7 bars in a row
Area provided $=1.8 \mathrm{sq}$. in.
load calculation using triangular stress block
For third-point loading:
Bending moment maximum $=P 1 / 6$
Maximum Shear $=P / 2$
$P_{\text {max }}=0.5 P_{b a 1}$
$A_{s}=1.8 \mathrm{sc}$. in.
(Since the failure is going to be in the middle third of the beam, the steel at the top of the beam that is used to hold the stirrups in position is not present; it will not affect the design.)

$$
\begin{aligned}
& d=10.5 \mathrm{in} . \\
& c=a=\frac{A_{s} \cdot f_{y}}{0.5 . f_{c}^{\prime} \cdot b}=\frac{(1.8)(60)}{(0.5)(10)(8)}=2.7 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
& M_{u}=A_{s} . f_{y}(d-c / 3) \mathrm{d} \\
& c=2.7 \mathrm{in}, c / 3=0.9 \mathrm{in} . \\
& M_{u}=(1.8)(60)(10.5-0.9) \\
& M_{u}=1036.8 \text { kip-in. }=86.4 \mathrm{kip}-\mathrm{ft} \\
& \begin{array}{l}
\text { Max moment } \quad=P T / 6, \mathrm{l}=7.0 \mathrm{ft} \\
\text { Solving for } P, P=74.1 \mathrm{kips} \\
\text { Max shear }=P / 2 \quad=37.1 \mathrm{kips}
\end{array} .
\end{aligned}
$$

Total shear to be taken by the beam $=37.1$ kips
Shear taken by concrete $=\phi 2 \sqrt{f_{c}^{\prime}}$ bd

$$
=(1.0)(2) \sqrt{(10000)}(8)(10.5) / 1000=16.8 \mathrm{kips}
$$

stirrup design

Stirrups have to be designed for $37.1-16.8=20.3 \mathrm{kips}$. Area of one 1 eg of stirrup $=0.11 \mathrm{sq}$. in.

$$
\begin{aligned}
S & =\frac{\phi A_{v} f_{y} d}{V_{u}-\phi V_{c}} \\
& =\frac{(1.0)(0.22)(60)(10.5)}{20.30}=6.83
\end{aligned}
$$

Spacing of the \#3 stirrups $=6.83 \mathrm{in} . \mathrm{c} / \mathrm{c}$.
Use a spacing of $4 \mathrm{in} . \mathrm{c} / \mathrm{c}$. Use eight, $\frac{n}{\square} 3$ stirrups on either side.

Design of Over-Reinforced Section
From calculation pbal $=0.04559$
For a over-reinforced section use $P_{\text {max }}=7.5$ Pbal

$$
\begin{aligned}
& =(1.5)(0.04559) \\
& =0.0584
\end{aligned}
$$

Area of stee $1=P_{\max } h d=(0.0584)(8)(10.5)=5.75$ sq. in.
Use six, \#g bars in two rows.
A_{s}, Area of stee 1 provided $=6.00$ sq. in.

$$
\begin{aligned}
& 0.5 f_{c}^{\prime} b c=A_{s} E_{s} \quad\left(\frac{d-c}{c}\right) \epsilon_{u} \\
& (0.5)(10000)(8)(c)=(6.00)(29)\left(10^{6}\right)\left(\frac{10.5-c}{c}\right)(0.0025)
\end{aligned}
$$

$C=6.55 \mathrm{sq} . \mathrm{in}$.
$M_{u}=(0.5)\left(f_{c}^{\prime}\right)(b)(c)(d-c / 3)$
$=(0.5)(10)(8)(6.55)(10.5-(6.55 / 3))$
$=2178.9 \mathrm{kip}-\mathrm{in}$.
$=181.580 \mathrm{kip}-\mathrm{ft}$
$P(1 / 6)=181.5 ., P(7 / 6)=181.5 .$,
Solving for $P, P=155.64$ kips.

$$
\begin{aligned}
& V_{u}=77.820 \text { kips } \\
& V_{c}=\phi 2 \sqrt{f_{\mathrm{c}}^{\prime}}
\end{aligned}
$$

In all the shear calculations, the ϕ value is assumed to be equal to 1.

$$
\begin{gathered}
V_{c}=2 \sqrt{f_{c}^{1}} \mathrm{bd} \\
\phi V_{c}=16.800 \mathrm{kips} \\
V_{u}-\phi V_{c}=61.02 \mathrm{kips}
\end{gathered}
$$

Using ${ }^{\#} 4$ bars as stirrups the area of one leg $=0.2$ sq. in. Area of two legs of the stirrup $=(2)(0.2) \quad=0.4 \mathrm{sq}$. in.

$$
S=\frac{(1.0)(0.4)(60)(10.5)}{67.02}=4.13 \mathrm{in} .
$$

Use \#4 stirrups at 3 in. c/c.

Nominal Shear Stress Calculation
Shear Specimen I
Shear span, (a) $=28 \mathrm{in}$.
Compressive strength of concrete $=9500 \mathrm{psi}$
Oiagonal cracking load $=38000 \% \mathrm{~b}$.
Oiagonal cracking shear $\quad=19000 \mathrm{ib}$.
Nominal cracking shear stress $\quad=19000 /($ b.d $)$
$b=8$ in, $d=10.6875$ in. $\quad=19000 /((10.6875)(8))$
$=222$ psi.
Ultimate load $=42000 \mathrm{lb}$.
Ultimate shear $=210001 \mathrm{~b}$.
Ultimate shear stress $\quad=21000 /((8)(10.6875))$
$=246$ psi.
Ultimate moment $=(49)(12000) \quad=588000$ 1b-in.
Stee 1 ratio, (A $/$ bd) $\quad=0.02105$.
Shear force (ACI EQ 11-3) $V_{C}=2 \sqrt{f_{C}^{\top}} b_{W} d=(2)(\sqrt{9500})(8)(10.6875)$

$$
=16700 \mathrm{lb} .
$$

Shear force (ACI EQ 11-6)

$$
=\left(1.9 \sqrt{f_{c}^{\top}}+2500 p \frac{v_{u} d}{n_{u}}\right)\left(b_{w}\right)(d)
$$

$$
\begin{aligned}
=1.9 \sqrt{9500})+(2500)(0.02105)(& (21000)(10.6875) / 528000)\left(b_{w}\right)(\mathrm{d}) \\
& =(205)(8)(10.6875) \\
& =17600 \mathrm{lb} .
\end{aligned}
$$

Shear stress calculated using zsutty's equation:

$$
V_{c r}=59\left(f_{c}^{\prime} p-\right) \quad\left(b_{w}\right)(d)
$$

(a=shear span 28 in.$)$

$$
=(250)\left(b_{w}\right)(d)
$$

$$
\begin{aligned}
& =(250)(8)(10.6875) \\
& =21400 \mathrm{lb} . \\
\text { Ultimate shear force } \quad & =\left(63.4\left(f_{c}^{\prime} p \frac{d}{a}\right) \quad 0.333\left(b_{w}\right)(d)\right. \\
& =(269)\left(b_{w}\right)(d) \\
& =(269)(8)(10.6875) \\
& =23000 \mathrm{lb} .
\end{aligned}
$$

Shear Stress Calculation for Specimen II

A diagonal shear crack passes through the beam and make the stirrups yield. The number of stirrups yielding is given by the following equation when the angle of the crack is at 45 degrees,

where ${ }^{1}$ cr=horizontal crack length, S=spacing of stirrups.

Here $1_{\mathrm{cr}}=78.75$ inches (measured on the beam after
failure) and $S=11$ inches,

$$
N=(18.75 / 11)=1.7
$$

Shear taken by steel

$$
=(W)\left(A_{v}\right)\left(f_{y}\right),
$$

where f_{y} is the yield stress of steel. For the $\frac{2}{4} 3$ bar, the yield stress is found to be 63.5 ksi (Table 3.1)

Area of \#3, Bar=0.11 sq. in.

Ultimate load taken by the bean

$$
\begin{aligned}
& =(1.7)(0.22)(63.5) \\
& =23.7 \mathrm{kips} \\
& =86.7 \mathrm{kips}
\end{aligned}
$$

Shear stress calculated using zsutty's equation:
Critical shear force $\quad V_{c r}=\left(59\left(f_{c}^{\prime} p \cdot \frac{-}{a}\right)\right)\left(b_{w}\right)(d)$
(a=shear span 28 in .)
$\left(f_{c}^{i}=11400{ }^{p s i}\right)$
$(p=0.02105)$
($\mathrm{d}=10.6875 \mathrm{in}$.
$=(266)\left(b_{w}\right)(d)$
$=(266)(8)(10.6875)$
$=22700 \mathrm{lb}$.

Ultimate shear force

$$
\begin{aligned}
& =\left(63.4\left(f_{c}^{\prime} p \frac{d}{a}\right)\right)^{0.333}\left(b_{w}\right)(d) \\
& =(286)\left(b_{w}\right)(d) \\
& =(286)(8)(10.6875) \\
& =24400 \mathrm{lb} .
\end{aligned}
$$

Calculation of Modulus of Elasticity
To calculate the secant modulus of elasticity, 0.45 times the ultimate compressive strength was determined. A straight line was drawn connecting that point to the origin in the cylinder stress-strain curve. The slope of the line gave the secant modulus of elasticity. Two cylinder stress-strain curves were used for this purpose. The slope of the line for the first curve was found to be $6.55 \times 10^{6} \mathrm{psi}[45.1 \mathrm{GPa}$]. The slope of the line for the second curve was found to be 6.21×10^{6} psi [42.7 GPa]. The mean value of the modulus of elasticity was found to be 6.42×10^{6} psi [44.2 GPa]. The value calculated by using the ACI formula was,

$$
E_{c}=33 W^{1.5 \sqrt{f_{c}^{\top}}}
$$

where $W=$ dry unit weight of concrete
$\mathrm{f}_{\mathrm{c}}^{\prime}=m e a n$ ultimate compressive strength of concrete.
The dry unit weight was determined by weighing six 3 in. X 6 in. cylinders and the average value was foud to be 153 pCf ($2470 \mathrm{~kg} / \mathrm{m}^{3}$) and the mean ultimate compressive strength was found to be 11860 psi[82.0 MPa].

$$
E_{c}=33 \times(153)^{1.5} \times \sqrt{11860}
$$

$E_{c}=6.78 \times 10^{6} \mathrm{psi}[46.7 \mathrm{GPa}]$
The value predicted by the ACI formula was found to be higher than the actual value by nearly 6 percent.

Sample Calculations for the Ultimate Moment

Shear Specimen I

Location of Neutral Axis

To find the absolute strain values at any given load the initial strains (no load strain readings) are subtracted from the corresponding strain values.

Strain readings at	top	$\begin{aligned} & 2 \mathrm{in} . \\ & \text { from top } \end{aligned}$	$\begin{aligned} & 4 \text { in. } \\ & \text { from top } \end{aligned}$	$\begin{aligned} & 6 \text { in. } \\ & \text { from top } \end{aligned}$
Strain at no load:	3	-2	2	3
Strain at ultimate load (91.68 kips)	-543	-221	-94	-26
Absolute strain values	-546	-219	-96	-29
Strain gradient for last 2 in.	$=(-96-($	29))/2	$=-3$	$5=-34$

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber stress was used to calculate the moment (from Table. 5.19).

$$
\begin{aligned}
M_{u}= & 0.5 f_{c} \cdot c \cdot b \cdot(d-(c / 3)) \\
\text { Wheref } & =\text { extreme fiber stress calculated using cylinder } \\
& \text { stress-strain curve } 2(3430 \mathrm{psi}) \\
b= & \text { width of the beam }(3 \mathrm{in.}) \\
d= & \text { depth of the beam }(10.6875 \mathrm{in.}) \\
c= & \text { depth of the neutral axis }(6.87 \mathrm{in.})
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =(0.5)(3430)(6.87)(8)(10.6875-(6.87 / 3)) \\
& =790000 \mathrm{lb-in} . \\
& =65.8 \mathrm{kip}-\mathrm{ft} .
\end{aligned}
$$

Actual moment $=(P 1 / 6)=(42)(7) / 6$	$=49$	kip-ft.

$$
\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{49}{65.8}=0.74
$$

Parabolic 5tress Block Moments

Using the strain data the neutral axis was located. The stresses corresponding to the strains are calculated using the cylinder stress strain curve. A second degree equation was fitted to give the stress at any point at a distance x measured from the neutral axis. The equation of the curve was used to get the area of the stress block and the location of the centroid of the stress block by integration. The equation for the underreinforced beam's stress block at ultimate load is,

$$
f_{c}=\left(84.3 x^{2}-90 x\right) .
$$

where x is the distance from the neutral axis to the given fiber. The depth of the neutral axis was found to be 6.87 in. from the top of the beam (using the strain data).

The area under the curve is given by integrating between the neutral axis and the top of the beam.

$$
A_{b}=\int_{0}^{6.87}\left(84.3 x^{2}-90 x\right) d x .
$$

On integration,

$$
\begin{aligned}
& =\left(84.3\left(x^{3} / 3-90\left(x^{2} / 2\right)\right)\right]_{0}^{6.87} \\
& =6990
\end{aligned}
$$

Location of centroid is given by $=\frac{\int Y \cdot x \cdot d x}{A_{b}}$ $\frac{\int Y \cdot x \cdot d x}{A_{b}}=\frac{6.87}{\int\left(84.3 x^{2}-90 x\right) \cdot x \cdot d x} \frac{6990}{0}$

$$
=\frac{\left.\left(84.3\left(x^{4} / 4\right)-90\left(x^{3} / 3\right)\right)\right]^{6.87}}{6990}
$$

$$
=5.32 \mathrm{in} .
$$

Centroidal distance from top

$$
\begin{aligned}
\bar{X} & =(6.87-5.32) \\
& =1.55 \mathrm{in} . \\
& =\text { Ab.b. }(\mathrm{d}-\bar{X})
\end{aligned}
$$

Total moment capacity of the beam $=(6990)(8)((10.6875-1.55)$
$=510000$ lb-in.
$=42.5 \mathrm{kip}-f t$.
Actual moment capacity of the beam $=49 \mathrm{kip}-\mathrm{ft}$. calculated moment capacity of the beam $=42.5 \mathrm{kip}-f t$.
$\frac{\text { Mactual }_{\text {Mcalculated }}}{\text { Ma }^{\text {a }}}=\frac{49}{42.5}$

Shear Specimen II

Location of Neutral Axis

To find the absolute strain values at any given load the initial strains (no load strain readings) are subtracted from the corresponding strain values.

Strain readings at top	$\begin{aligned} & 2 \text { in. } \\ & \text { from top } \end{aligned}$	$\begin{aligned} & 4 \text { in. } \\ & \text { from top } \end{aligned}$
Strain at no load: 9	1	-1
Strain at ultimate load (91.68 kips) -1138	-539	-40
Absolute strain values -1147	-540	-39
Strain gradient for top 2 inches $=(-1147$	$-540)) / 2$	$\begin{aligned} & =-303.5 \\ & =-304 \mu \mathrm{in} . / \mathrm{in} . \end{aligned}$
Strain gradient for next 2 inches $=(-540$	$-39)) / 2$	$\begin{aligned} & =-250.5 \\ & =-251 \mu \mathrm{in} . / \mathrm{in} . \end{aligned}$
Average strain gradient		$=(-304+(-251)) / 2$
		$=277.5 \mu \mathrm{in} . / \mathrm{in}$.
		$=273 \mu \mathrm{in} . / \mathrm{in}$.
Location of neutral axis $=4+(-39 /-278)$		=4.14 in. (from top)

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber stress was used to calculate the moment (from Table. 5.22)

$$
\begin{aligned}
& M_{u}=0.5 f_{c} \cdot c \cdot b \cdot(d-(c / 3)) \\
& \text { where } f_{c}=\text { average cylinder compressive strength (} 7100 \text { osi), } \\
& B_{1}=0.65, \\
& b=\text { width of the beam (} B \text { in. }) .
\end{aligned}
$$

$$
\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{101}{91.2}=1.11
$$

Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The stresses corresponding to the strains were calculated using the cylinder stress strain curve. A second degree equation was fitted to give the stress at any point at a distance x measured from neutral axis. The equation of the curve was used to get the area of the stress block and the location of the centroid of the stress block by integration. The equation for the underreinforced beam's stress block at ultimate load is,

$$
f_{c}=\left(63.7 x^{2}+1451 x\right) .
$$

where x is the distance from the neutral axis to the given fiber. The depth of the neutral axis was found out to be 4.14 in . from the top of the beam (using the strain data).

$$
\begin{aligned}
& d=\text { depth of the beam (} 10.6875 \mathrm{in} .) \text {, } \\
& c=\text { depth of the neutral axis (2.12 in.). } \\
& u_{u}=(0.5)(7100)(4.14)(8)(10.6875-(4.14 / 3)) \\
& =1094000 \mathrm{lb}-\mathrm{in} \text {. } \\
& =91.2 \mathrm{kip}-\mathrm{ft} \text {. } \\
& \begin{array}{ll}
\text { Actual moment }=(\mathrm{P} 1 / 6)=(86.7)(7) / 6 & =101 \mathrm{kip}-\mathrm{ft} . \\
\text { Calculated moment } & =91.2 \mathrm{kip}-\mathrm{ft} .
\end{array}
\end{aligned}
$$

The area under the curve is given by integrating between the the neutral axis and the top of the beam.
$A_{b}=\int_{0}^{4.14}\left(63.7 x^{2}+1451 x\right) d x$.
on integration.

$$
\begin{aligned}
& =\left(63.7\left(x^{3} / 3+1451\left(x^{2} / 2\right)\right)\right]_{0}^{4} \\
& =14000
\end{aligned}
$$

Location of centroid is given by $=\frac{\int Y x \cdot d x}{A_{b}}$

$$
\begin{aligned}
\frac{\int Y x \cdot d x}{A_{b}} & =\int_{0}^{4.14}\left(63.7 x^{2}+1451 x\right) \cdot x \cdot d x \\
14000 & \left.\left(63.7\left(x^{4} / 4\right)+1451\left(x^{3} / 3\right)\right)\right]^{4.14} \\
& =\frac{(4000}{} \\
& =2.79 \mathrm{in} .
\end{aligned}
$$

$$
\text { Centroidal distance from top } \quad \begin{aligned}
\bar{X} & =(4.14-2.79) \\
& =1.35 \mathrm{in} . \\
\text { Total moment capacity of the beam } \quad & =A b . b .(d-\bar{X}) \\
& =(14000)(8)((10.5875-1.35) \\
& =1050000 \mathrm{lb}-\mathrm{in} . \\
& =87.5 \mathrm{kip}-\mathrm{ft} .
\end{aligned}
$$

Actual moment capacity of the beam $\quad=101 \mathrm{kip}-f \mathrm{ft}$. calculated moment capacity of the beam $=87.5 \mathrm{kip}-f t$.
$\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{101}{87.5}$

Under-Reinforced Beam

Location of neutral axis

To find the absolute strain values at any given load the initial strains (no load strain readings) are subtracted from the corresponding strain values.

```
    Strain readings at top from top from top
    Strain at no load: 4 1 -3
    Strain at ultimate
    load (91.68 kips) -2413 -141 502
Absolute strain values -2417 -142 505
    Strain gradient =(-142-(505))/2 =-323.5
    =-324 \mu in./in.
    Location of neutral axis=2 +(-142/-324) =2.44 in.(from top)
```

Rectangular Stress Block Moments

$$
\begin{aligned}
H_{u} & =0.85 f_{c}^{\prime} \cdot\left(B_{1} \cdot c\right) \cdot b \cdot\left(d-\left(B_{1} c / 2\right)\right. \\
\text { where } f_{c}^{\prime} & =\text { average cylinder compressive strength }(11700 \mathrm{psi}) . \\
B_{l} & =0.65, \\
b & =\text { width of the beam }(8 \mathrm{in.}), \\
d & =\text { depth of the beam }(10.6875 \mathrm{in} .), \\
c & =\text { depth of the neutral axis }(2.44 \mathrm{in} .) .
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{U}=(0.85)(11700)((0.65)(2.44))(8)(10.6875-((0.65)(2.44)) / 2) \\
& =12500001 \mathrm{~b}-\mathrm{in} \text {. } \\
& =104 \text { kip-ft. } \\
& \text { Actual moment=(P1/6)=(91.7)(7)/6 }=107 \mathrm{kip}-\mathrm{ft} \text {. } \\
& \text { Calculated moment } \quad=104 \mathrm{kip}-\mathrm{ft} \text {. }
\end{aligned}
$$

$\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{107}{104}=1.03$

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber stress was used to calculate the moment (from Table. 5.25)

$$
M_{u}=0.5 f_{c}^{\prime} \cdot c \cdot b \cdot(d-(c / 3))
$$

wheref ${ }_{c}=$ extreme fiber stress calculated using cylinder stress-strain curve 2 (12200 psi).
$b=$ width of the beam (8 in .) ,
$d=$ depth of the beam (10.6875 in.$)$,
$c=$ depth of the neutral axis (2.44 in.).
$M_{u}=(0.5)(12200)(2.44)(8)(10.6875-(2.44 / 3))$
$=11800001 \mathrm{~b}$-in.
$=98.0 \mathrm{kip}-\mathrm{ft}$.
Actual moment $=($ P1 $/ 6)=(91.7)(7) / 6 \quad=107 \mathrm{kip}-\mathrm{ft}$.
Calculated moment $\quad=98.0$ kip-ft.

$$
\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{107}{98.0}=1.09
$$

Parabolic Stress Block Morents

Using the strain data the neutral axis was located. The stresses corresponding to the strains were calculated using the cylinder stress strain curve. A second degree equation was fitted to give the stress at any point at a distance x measured from the neutral axis. The equation of the curve was used to get the area of the stress block and the location of the centroid of the stress block by integration. The equation for the under reinforced beam's stress block at ultimate load is,

$$
f_{c}=\left(1486.3 x^{2}+1379.7 x\right)
$$

where x is the distance from the neutral axis to the given fiber. The depth of the neutral axis was found out to be 2.44 in . from the top of the beam (using the strain data).

The area under the curve is given by integration between the neutral axis and the top of the beam.

$$
2.44
$$

$A_{b}=\int\left(1436.3 x^{2}+1379.7 x\right) d x$.

$$
\begin{aligned}
& \text { On integration. } \\
& \qquad \begin{aligned}
A_{b} & =\left(1486.3\left(x^{3} / 3+1379.7\left(x^{2} / 2\right)\right)^{2.44}\right. \\
& =11300 .
\end{aligned}
\end{aligned}
$$

Location of the centroid is given by $=\frac{Y x . d x}{A_{b}}$

$$
\begin{aligned}
\frac{Y . x . d x}{A_{b}} & \int_{0}^{2.44}\left(1486.3 x^{2}+1379.7 x\right) \cdot x \cdot d x \\
& =\frac{(11300}{11300} \\
& =1.76 \mathrm{in} .
\end{aligned}
$$

Centroidal distance from top

$$
\begin{aligned}
\bar{X} & =(2.44-1.76) \\
& =0.68 \mathrm{in} . \\
& =A b . b \cdot(d-\bar{X}) \\
& =(11300)(8)((10.6875-0.68) \\
& =905000 \text { 1b-in. } \\
& =75.4 \text { kip-ft. }
\end{aligned}
$$

Actual moment capacity of the beam $\quad=707 \mathrm{kip}-\mathrm{ft}$.
calculated moment capacity of the beam $=75.4 \mathrm{kip}-f t$.

Over-Reinforced Beam

Location of Neutral Axis

To find the absolute strain values at any given load, the initial strains (no load strain readings) are subtracted from the corresponding strain values.

Strain readings at top $\begin{aligned} & 2 \mathrm{in} . \\ & \text { from top } \\ & 4 \mathrm{in} . \\ & \text { from top } \\ & \text { from top }\end{aligned}$ Strain at no load: $-11 \quad 1 \quad 0$

```
    Strain at ultimate
    load (180.0 kips ) -2604 -1696 -626 1146
Absolute strain values -2587 -1697 -626 1146
    Strain gradient
        for last 2 in. =(-626-(1146))/2 =-886
Strain gradient =-886 U in./in.
Location of neutra1 axis= 4 +(-626/-886) =4.71 in.(from top)
```

Rectangular Stress Block Moments

$$
M_{u}=0.85 f_{c}^{\prime} \cdot\left(B_{1} \cdot c\right) \cdot b \cdot\left(d-\left(B_{1} / 2\right)\right.
$$

where $f_{c}^{\prime}=$ average cylinder compressive strength (12100 psi)

$$
\begin{aligned}
& B_{1}=0.65, \\
& b=\text { width of the beam }(8 \mathrm{in.}), \\
& d=\text { depth of the beam }(9.3125 \mathrm{in} .) . \\
& c=\text { depth of the neutral axis }(4.71 \mathrm{in.}) . \\
& M_{u}=(0.85)(12100)((0.65)(4.71))(8)(9.3125-((0.65)(4.71)) / 2) \\
&=1960000 \mathrm{lb-in} . \\
&=163 \mathrm{kip}-\mathrm{ft} .
\end{aligned}
$$

Actual moment $=(P] / 6)=(180.0)(7) / 6 \quad=210.0 \mathrm{kip}-\mathrm{ft}$.
Calculated moment $\quad=163$ kip-ft.

$$
\frac{M_{\text {actual }}}{\text { Mcalculated }^{163}}=\frac{210.0}{1.29}
$$

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber stress was used to culate the moment (from Table. 5.30).

$$
M_{u}=0.5 f_{c}^{\prime} \cdot c \cdot b \cdot(d-(c / 3)
$$

wheref ${ }_{c}=$ extreme fiber stress calculated using cy1inder stress-strain curve 2 (12400 psi),

$$
\begin{aligned}
& b=\text { width of the beam }(3 \mathrm{in.}), \\
& d=\text { depth of the beam }(9.3125 \mathrm{in.}), \\
& c=\text { depth of the neutral axis }(4.71 \mathrm{in} .) . \\
& H_{u}=(0.5)(12400)(4.71)(8)(9.3125-(4.71 / 3)) \\
& =1800000 \mathrm{lb-in} . \\
& =150.0 \text { kip-ft. }
\end{aligned}
$$

Actual moment $=(\mathrm{P} 1 / 6)=(180.0)(7) / 6 \quad=210.0 \mathrm{kip-ft}$.
Calculated moment

$$
\frac{M_{\text {actual }}}{M_{\text {calculated }}}=\frac{210.0}{150.0}=1.4
$$

Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The stresses corresponding to the strains were calculated using the cylinder stress strain curve. A second degree equation was fitted to give the stress at any point at a distance x measured from neutral axis. The equation of the curve was used to oet the area under the curve and the location of the centroid of the curve by integration. The equation for the under reinforced beam's stress block at ultimate load is,

$$
Y(x)=\left(-568.7 x^{2}+5296 x\right)
$$

where x is the distance from the neutral axis to the given fiber. The depth of neutral axis was found to be 4.71 in . from the top of the beam (using the strain data).

The area under the curve is given by integration between the neutral axis and the top of the beam

$$
A_{b}=\int_{0}^{4.71}\left(-568.7 x^{2} x+5295.3 x\right) d x
$$

On integration,

$$
\left.A_{b}=(-568.7)\left(x^{3} / 3\right)+(5296.3)\left(\left(x^{2} / 2\right)\right)\right]_{0}^{4.71}
$$

$=39000$
Location of centroid from neutral axis is given by $=\frac{\int y x \cdot d x}{A_{b}}$

$=\frac{\left.\left(-568.7\left(x^{3} / 3\right)+5296.3\left(x^{2} / 2\right)\right)\right]^{4.71}}{39000}$
$=2.94 \mathrm{in}$.
Centroidal distance from top

$$
\begin{aligned}
\bar{X} & =(4.71-2.94) \\
& =1.77 \mathrm{in} . \\
& =A_{b} \cdot b \cdot(d-\bar{X}) \\
& =(39000)(8)(9.3125-1.77) \\
& =2350000 \quad \text { lb-in. }
\end{aligned}
$$

$$
\begin{array}{ll}
& =196 \mathrm{kip}-\mathrm{ft} . \\
\text { Actual moment capacity of the beam } & =210 \mathrm{kip}-\mathrm{ft} . \\
\text { Calculated moment capacity of the beam } & =196 \mathrm{kip}-\mathrm{ft} .
\end{array}
$$

$$
\frac{\text { Mactual }}{M_{\text {calculated }}}=\frac{210}{196}=1.07
$$

Prediction of the Ultimate Moment Capacity

Under-Reinforced Beam

Rectangular Stress Block

$a=B_{1} c$ where $B_{1}=0.65$
$d=10.6875$ in. $f_{c}^{\prime}=11700 \mathrm{psi}$
As $=1.8$ sq. in. (three, \#7 bars)
$f_{y}=64700$ psi
$b=B$ in.
$C=0 . B 5 f_{c}^{\prime} a b$
$T=A s . f_{y}$

Equating $C=T$.
$a=\frac{(1.8)(64700)}{(0.85)(11700)(B)}=1.46 \mathrm{in}$.
${ }^{a}=B_{1} c$ where $B_{1}=0.65$
. . $c=(1.45 / 0.65)=2.25 \mathrm{in}$.
Oepth of neutral axis (calculated) $=2.25 \mathrm{in}$.
Oepth of neutral axis (Test result) $=2.44 \mathrm{in}$.
Ultimate moment $\quad=0 . B 5 f^{\prime} \cdot a \cdot b \cdot(d-a / 2)$
$=(0.85)(11700)(1.46)(B)(9.5625)$
$=1110000$ 16-in.
$=92.5 \mathrm{kip}-f \mathrm{t}$.
U1timate moment
$=107 \mathrm{kip}-f t$.

$$
\frac{\text { Mactual }}{M_{\text {calculated }}}=\frac{107}{92.6}=1.16
$$

Triangular Stress Block

Properties of the triangular stress block:
$d=10.6875 \mathrm{in}$.
$b=8 \mathrm{in}$.
$f_{c}^{\prime}=11700$ psi
As $=1.8 \mathrm{sq} . \mathrm{in}$.
$f_{y}=64700$ psi
$\mathrm{C}=0.5 \mathrm{f} \cdot \mathrm{c} \cdot \mathrm{c} . \mathrm{b}$.
$T=A s . f_{y}$
Equating $\mathrm{C}=\mathrm{T}$,

$$
c=\frac{(1.8)(64700)}{(0.5)(11700)(8)}=2.49 \mathrm{in} .
$$

Calculated depth of neutral axis. $=2.49 \mathrm{in}$.
Actual depth of neutral axis. $\quad=2.44 \mathrm{in}$.
Moment capacity calculated.

$$
\begin{aligned}
M_{u} & =(0.5)\left(f_{c}^{1}\right)(c)(b)(d-a / 3) \\
& =(0.5)(11700)(2.49)(8)(10.6875-(2.49 / 3)) \\
& =1150000 \mathrm{lb}-\mathrm{in} . \\
& =96 \text { kip-ft. }
\end{aligned}
$$

Actual moment
Calculated moment

$$
\frac{M_{\text {actual }}}{M_{\text {Calculated }}}=\frac{106.96}{95.73}=1.11
$$

Parabolic Stress Block

The shape of the stress block suggested by Ref. 14 is used to predict the ultimate moment capacity of the beam. The stress blocks at ultimate load for all the four beams tested in Ref. 14 were plotted. The average stresses at various depth were calculated. A parabolic curve was fitted through these points using the least sqaure method to give the stress at any point x measured from the neutral axis.

Bean

Using this equation the area under the stress block and the location of the centroid were calculated. The equation is,

$$
f c=\left(-9988.1(x / c)^{2}+20828.7(x / c)\right)
$$

$$
\begin{aligned}
A b & =\int_{0}^{c}\left(-9988.1(x / c)^{2}+20828.7(x / c)\right) \\
& =\left(-9988.1\left(x^{3} / 3 c^{2}\right)+20828.7\left(x^{2} / 2 c\right)^{c}\right)
\end{aligned}
$$

Total compressive force C,

$$
\left.c=(8)\left(-9988.1\left(x^{3} / 3 c^{2}\right)+20828.7\left(x^{2} / 2 c\right)\right)\right]_{0}^{6}
$$

This area is equal to As.fy'

$$
\begin{array}{ll}
\text { As.f } & =(8)((-9988.1 \quad(c / 3)+20828.7 \quad(c / 2)) \\
(1.3)(64700) & =(8)(7085)(c) .
\end{array}
$$

Solving for c,

$$
c=2.05 \mathrm{in} .
$$

Calculated depth of neutral axis $=2.05 \mathrm{in}$.
Actual depth of neutral axis. $\quad=2.44 \mathrm{in}$.
Area under the curve $A_{b} \quad=14500$
Location of the centroid

$=\frac{\int_{0}^{2.05}\left(-9988.1\left(x^{3} / c^{2}\right)+20828\left(x^{2} / c\right) \cdot d x\right.}{14500}$

$$
=1.29 \mathrm{in} .
$$

Centroidal distance from the top $\bar{x}=(2.05-1.29)$

$$
\begin{aligned}
& =0.76 \mathrm{in} . \\
& =A_{b} \cdot b \cdot(d-\bar{X}) \\
& =(14500)(8)(10.6875-0.76)
\end{aligned}
$$

$$
\begin{aligned}
& =1150000 \mathrm{ib}-\mathrm{in} . \\
& =95.8 \mathrm{kip}-\mathrm{ft} .
\end{aligned}
$$

Actual moment capacity of the beam $=107 \mathrm{kip}$-ft.

$$
\frac{M_{\text {actua }}}{M_{\text {calculated }}}=\frac{107}{95.8}=1.11
$$

Over-Reinforced Beam

Rectangular Stress Block
$\mathrm{a}=\mathrm{B}_{1} \mathrm{c}$ where $\mathrm{B}_{1}=0.65$
$d=9.3125$ in. $f_{c}^{1}=12100 \mathrm{psi}$
$A s=6.0$ sq. in.
$f_{y}=63800 \mathrm{psi} \quad E s=(29)\left(10^{6}\right)$
$b=8 \mathrm{in}$.
$\mathrm{C}=0.85 \mathrm{f}_{\mathrm{cao}}^{\mathrm{ajo}}$
$T=$ As. f_{S}, where $f_{S}=E_{S} \cdot G_{S}$
strain diagram:
An ultimate concrete strain value of 0.0025 in./in. is assumed for calculating the location of the neutral axis.

$$
\begin{aligned}
& \frac{\epsilon_{s}}{(d-c)}=\frac{\epsilon_{u}}{c} \\
& \epsilon_{s}=\frac{\epsilon_{u}(d-c)}{c} \\
& \text { As.fs }=0.85 . f_{c}^{\prime} \cdot\left(B_{1} c\right) . b \\
& \text { As. } E_{s .} . \epsilon_{s=0.85 . f_{c}^{\prime} .\left(B_{1} c\right) . b}^{\text {As.Es. }\left(\epsilon_{u}(d-c) / c\right)=(0.85)(12100)(0.05)(c)(8)} \\
& (6)(29)(106)(0.0025)((9.3125-c) / c)=(0.85)(12100)(0.65)(c)(6) \\
& \text { Solving for } c \text {. }
\end{aligned}
$$

$c=5.53 \mathrm{in}$.
Depth of neutral axis (calculated) $=5.53 \mathrm{in}$.
Depth of neutral axis (actual) $=4.71 \mathrm{in}$.
Ultimate moment.

$$
\begin{aligned}
M_{u} & =(0.85)(12100)((0.65)(5.53))(8)(9.3125-(0.65)(5.53 / 2))) \\
& =2220000 \mathrm{ib} .-\mathrm{in} . \\
& =185 \mathrm{kip}-\mathrm{ft}
\end{aligned}
$$

Actual moment taken by the beam $\quad=210 \mathrm{kip}-\mathrm{ft}$.
Calculated moment $\quad=185 \mathrm{kip}-\mathrm{ft}$.

$$
\frac{N_{\text {actual }}}{N_{\text {calculated }}}=\frac{210}{185}=1.14
$$

Trianqular Stress Block

$$
\begin{aligned}
& d=9.3125 \mathrm{in} . \\
& b=8 \mathrm{in} . \\
& f_{c}^{\prime}=12100 \mathrm{psi} \\
& A s=6.0 \mathrm{sc} . \mathrm{in} . \\
& f_{y}=63800 \mathrm{psi} \\
& C=0.5 \mathrm{f}_{\mathrm{c}}^{\prime} \cdot \mathrm{c} . \mathrm{b} . \\
& T=A s . \mathrm{f}_{\mathrm{s}}
\end{aligned}
$$

strain diagram:
An ultimate concrete strain value of $0.0025 \mathrm{in} . / \mathrm{in}$. is assumed for calculating the location of the neutral axis, c measured from the top of the beam.

$$
\frac{\epsilon_{s}}{(d-c)}=\frac{\epsilon_{u}}{c}
$$

$G_{s}=\frac{G_{u}(d-c)}{c .}$

$$
\begin{aligned}
& A_{S} \cdot f_{S}=0.5 \cdot f_{c}^{\prime} \cdot c \cdot b . \\
& A_{S} \cdot E_{S} \cdot G_{S}=0.5 \cdot f_{c}^{\prime} \cdot c \cdot b \\
& A_{S} \cdot E_{S} \cdot\left(G_{U}(d-c) / c\right)=(0.5)(12100)(c)(8) \\
& (6)(29)\left(10^{6}\right)(0.0025)((9.3125-c) / c)=(0.5)(12100)(c)(8)
\end{aligned}
$$

Solving for c,

$$
c=5.70 \mathrm{in} .
$$

Depth of neutral axis (calculated) $\quad=5.70 \mathrm{in}$.
Depth of neutral axis (actual) $=4.71 \mathrm{in}$.
Ultimate moment.

$$
\begin{aligned}
W_{u} & =(0.5)(12100)(5.70)(8)(9.3125-(5.70 / 3)) \\
& =2040000 \mathrm{lb}-\mathrm{in} . \\
& =170 \mathrm{kip}-\mathrm{in} .
\end{aligned}
$$

Actual moment taken by the beam
Calculated moment
$=210 \mathrm{kip}-f t$.
$=170 \mathrm{kip}-\mathrm{ft}$.

$$
\frac{\text { Mactual }}{\text { incalculated }}=\frac{210}{170}=1.24
$$

Parabolic Stress Block

The shape of the stress block suggested by Ref. 14 is used to predict the ultimate moment capacity of the beam. The stress block at ultimate load for all the four beams tested in Ref. 14 was plotted. The average stresses at various depth were calculated. A parabolic curve was fitted through these points using the least squares method to give the stress at any point x measured from the neutral axis.

Using this equation, the area under the stress block and the location of the centroid are calculated. The equation is,
$Y(x)=\left(-9988.1(x / c)^{2}+20828.7(x / c)\right)$
$A_{b}=\frac{c}{f}\left(-9988.1(x / c)^{2}+20828.7(x / c)\right) d x$
$=\left(-9988.1\left(x^{3} / 3 c^{2}+20828.7\left(x^{2} / 2 c\right)\right)_{0}^{c}\right.$
Total compressive force C ,

$$
C=(8)\left(-9988.1\left(x^{3} / 3 c^{2}\right)+20328.7\left(x^{2} / 2 c\right) t_{0}^{c}\right.
$$

$$
\text { As. } f_{s}=(b)(-9988.1(c / 3)+20828.7(c / 2))
$$

$$
\text { As. } f_{s}=(8)(7085)(c)=56700(c)
$$

strain diagram:
An ultimate concrete strain value of $0.0025 \mathrm{in} . / \mathrm{in}$. is assumed for calculating the location of the neutral axis.

As.Es. $\left(\frac{\epsilon_{U}(d-c)}{c}\right)=56700 \mathrm{c}$

$$
(6.0)(29)\left(10^{6}\right)(0.0025(9.3125-c) / c)=56700 c
$$

$$
c^{2}+7.675 c-71.47=0
$$

Solving for c.

$$
\mathrm{c}=5.45 \mathrm{in} .
$$

Depth of neutral axis (calculated) $\quad=5.45 \mathrm{in}$.
Depth of neutral axis (actual) $\quad=4.71 \mathrm{in}$.
Area under the curve $\quad A b=((-9988.1 / 3)+(20823 / 2))(5.45)$
$\mathrm{Ab}=38600$.
Location of the centroid from neutral axis,

$$
\begin{aligned}
C . G & =\int_{0}^{c} \frac{Y(x) \cdot x \cdot d x}{A_{b}} \\
& =\int_{0}^{c}\left(-9988.1\left(x^{3} / c^{2}\right)+20828\left(x^{2} / c\right) \cdot x \cdot d x\right. \\
& =\frac{\left(-9988.1\left(\left(x^{4} / 4\right) / c^{2}\right)+20828\left(\left(x^{3} / 3\right) / c\right)\right]}{38600} 0 \\
& =\frac{\left[\left(-9988.1\left(c^{2} / 4\right)+\left(20828\left(c^{2} / 3\right)\right]\right.\right.}{38600} \\
& =3.42 \mathrm{in} .
\end{aligned}
$$

Substituting the value of c in the equation.
Centroidal distance from neutral axis $=5.45 \mathrm{in}$.
Centroidal distance from the top $\quad \bar{x}=(5.45-3.42)=2.03 \mathrm{in}$.
The ultimate moment capacity

$$
=(38600)(3)(9.3125-2.03)
$$

$$
=2250000 \mathrm{lb}-\mathrm{in} .
$$

$$
\begin{aligned}
\text { taken by the beam } & =188 \mathrm{kip}-\mathrm{ft} . \\
& =210 \mathrm{kip}-\mathrm{ft} . \\
& =188 \mathrm{kip}-\mathrm{ft} . \\
\frac{M_{\text {actual }}}{\text { Malculated }}=\frac{210}{188} & =1.12
\end{aligned}
$$

APPENDIX III
BASIC PROGRAMS

Program for Shear Specimen 1

```
10 REM SHEAR SPECIMEN 1 NAME alishl
20 REM LPRINT "RESULT OF THE TEST DATA FOR SHEAR SPECIMEN-1"
30 REM LPRINT "NO SHEAR REINFORCEMENT ALISHI"

```

 \(\operatorname{LEV}(3,30), \operatorname{NAT}(30), \operatorname{SAl}(30), \operatorname{SA} 2(30), \operatorname{SA} 3(30), \operatorname{SAO}(30), \operatorname{STR} 3(30), \mathrm{UN}(30)\)
 \(\operatorname{COMP}(3,30), \operatorname{AB}(30), \operatorname{CM}(3,30), \operatorname{AM}(30), \operatorname{ACCU}(3,30), \operatorname{ER}(3,30), X(30), \operatorname{AS}(30), Y(30)\),
 IC(30), IS (30), IS (30),ICCR(30)
 70
$\operatorname{DEFA}(30), \mathrm{MA}(30), \mathrm{Al}(30), \mathrm{A} 2(30), \mathrm{A} 3(30), \mathrm{NX}(30), \mathrm{IT}(30), \mathrm{A}(3,4), \mathrm{XX}(3), \operatorname{TTX}(30)$
$\operatorname{TAX}(30), \operatorname{TAT}(30), X B A R(30), \operatorname{TAY}(30)$
$80 \mathrm{~N}=22$
90 FOR $I=1$ TO N
100 READ DEFA(I), W(I),ST(I),S2(I),S4(I),S6(I)
110 DATA $0,0,3,-2,2,3$
120 DATA 68,2970,-22.2,-20.75,-6.25,1.45
130 DATA $90,5925,-45.45,-16.85,-12.05,4.8$
140 DATA $98,8965,-72.05,-28.4,-19.8,5.3$
150 DATA $109,11865,-103.5,-42.5,-29.5,13.55$
160 DATA $117,14835,-134,-70.6,-34.3,18.85$
170 DATA $129,17665,-174.15,-80.6,-38.2,31.85$
180 DATA $143,20645,-231.75,-115.6,-40.15,22.2$
190 DATA $143,20000,-230.75,-117.05,-42.55,25.1$
200 DATA $161,23715,-284.0,-136.85,-44.5,36.7$
210 DATA 177,26690,-329.45,-141.75,-53.5,23.2
220 DATA 192,29700, $-374.0,-163.6,-62.7,7.7$
230 DATA $209,32710,-419.95,-203.65,-69.6,4.8$
240 DATA $218,34800,-447.05,-216.25,-73.5,-4.8$
250 DATA $226,36555,-473.1,-229.8,-79.3,-5.8$
260 DATA $234,38015,-491.55,-215.75,-79.3,-9.6$
270 DATA $243,39790,-515.75,-226.9,-83.2,-11.6$
280 DATA $661,42000,-540.45,-239,-88,-16.4$
290 DATA 661,37410,-492.55,-184.8,-75.4,-22.2
300 DATA $661,37190,-491.055,-189.15,-73.5,-24.1$
310 DATA 661,38200, -503,-192.05,-79.3, -23.2
320 DATA $668,42000,-543.3,-220.6,-93.8,-26.1$
$330 \mathrm{SA}(\mathrm{I})=\{\mathrm{S} 2(\mathrm{I})-\mathrm{S} 2(1))$
340 SA2 (I) $=(S 4(I)-S 4(1))$
350 SA3(I) $=(\mathrm{S} 6(I)-\mathrm{S} 6(1))$
360 SAO(I) $=(S T(I)-S T(1))$
370 NEXT I
390
400 LPRRINT "LOAD IN NUTERAL AXIS
40
LPRINT
KIRESS
410 FOR I=2 TO N
420 IF $\operatorname{SGN}(S A 3(I))=-1$ THEN GOTO 450
$430 \operatorname{UN}(I)=(((S A O(I)-S A 1(I)) / 2)+(S A 1(I)-S A 2(I)) / 2) / 2: P R I N T$ "UN(" $; I ; ")=" ; U N(I)$
440 NAT $(I)=(4+(S A 2(I) / U N(I))):$ PRINT"NAT ("; I ; " $)=$ "; NAT(I):GOTO 470
$450 \mathrm{UN}(\mathrm{I})=(\mathrm{SA} 2(\mathrm{I})-\mathrm{SA} 3(\mathrm{I})) / 2$
$460 \operatorname{NAT}(\mathrm{I})=(4+(\mathrm{SA} 2(\mathrm{I}) / \mathrm{UN}(\mathrm{I})))$
$470 \mathrm{~A}=1: \mathrm{BB}=1: \mathrm{CC}=1: \mathrm{DD}=1$
480 IF $\operatorname{SGN}(\operatorname{SAl}(I))=1$ THEN $A A=0$
490 IF SGN(SA2 (I))=1 THEN BB=0
500 IF SGN(SA3 (I) $=1$ THEN $\mathrm{CC}=0$
510 IF SGN(SAO(I))=1 THEN DD=0
$520 \mathrm{SAl}(\mathrm{I})=\mathrm{ABS}(\mathrm{SAl}(\mathrm{I}))$
530 SA2(I) =ABS (SA2(I))
$540 \mathrm{SA} 3(\mathrm{I})=\mathrm{ABS}(\mathrm{SA} 3(\mathrm{I}))$

```
```

550 SAO(I)=ABS(SAO(I))
560 STRO(I) =(-4.06906E-07*(SAO(I)^3)+5.619357E-04*(SAO(I)*2)+6.060692*(SAO(I))+
18.562801 \#)
570 STR1(I) =(-4.06906E-07*(SAl(I)^3)+5.619357E-04*(SAl(I)^2)+6.060692*(SAl(I))+
18.562801\#)
580 STR2(I) =(-4.06906E-07*(SA2(I)^3)+5.619357E-04*(SA2(I)^2)+6.060692*(SA2(I))+
18.562801\#)
590 STR3(I) =(-4.06906E-07*(SA3(I)^3)+5.619357E-04*(SA3(I)^2)+6.060692*(SA3(I))+
600 IF AA=0 THEN STR1(I)=-STR1(I)
6 1 0 ~ I F ~ B B = 0 ~ T H E N ~ S T R 2 (I) = - S T R 2 (I) ~
6 2 0 ~ I F ~ C C = 0 ~ T H E N ~ S T R 3 (I) ~ = - S T R 3 (I) ~
6 3 0 ~ L P R I N T ~
640 W(I)=W(I)/1000
6 4 1 ~ D V N = 1 0
642 STRO(I)=(CINT(STRO(I)/DVN))*DVN
643 STR1 (I)={CINT (STR1 (I)/DVN })*DVN
644 STR2(I)=(CINT (STR2(I)/DVN))*DVN

```

```

 STRO(I),STR1(I),STR2(I),STR3(I)
 660W(I)=W(I)=1000
6 7 0 ~ N E X T ~ I ~
6 8 0 ~ L P R I N T ~ C H R \$ (1 2) ~
690 D=10.6875
700 FC=9500
710 B=.65:WB=8
720 FOR COUNTER=0 TO 2
760 FOR I=2 TO N
770 AB(I)=(NAT(I)*B)
7 8 0 ~ I F ~ C O U N T E R = 2 ~ G O T O ~ 8 9 0 ~
790 IF COUNTER=1 GOTO }82
800 COMP(COUNTER,I)=(STRO(I)*AB(I)*WB)
8 1 0 ~ I F ~ C O U N T E R = 0 ~ G O T O ~ 8 3 0 ~
820 COMP (COUNTER,I)=(.5*STRO(I)*NAT(I)*WB)
830 PRINT "COMP(";COUNTER,I;")=";COMP(COUNTER,I)
840 IF COUNTER = 1 GOTO 870
850 LEV (COUNTER,I)=(D-(AB(I)/2))
8 6 0 ~ I F ~ C O U N T E R = 0 ~ G O T O ~ 1 2 9 0 ~
870 LEV (COUNTER,I)=(D-(NAT(I)/3))
880 IF COUNTER=0 OR 1 GOTO 1290
8 9 0 ~ R E M ~ P A R A B A L O I C ~ C U R V E ~ F I T T I N G ~
900 NP=3
910 IF NAT(I)>=4 THEN NP=4
920 X(1)=NAT(I)
930 X(2)=(NAT(I)-2)
940 IF NAT(I)<4 THEN X(3)=0:Y(3)=0:GOT0 960
950 X(3)=NAT(I)-4:X(4)=0:Y(3)=STR2(I):Y(4)=0
960 Y(1)=STRO(I)
970 Y(2)=STR1 (I)
980 SX=0:SX2=0:SX3=0:SX4=0:SY=0:SXY=0:SX2Y=0
990 FOR Ta1 T0 NP
1000 SX=SX+X(T)
1010 SY=SY+Y(T)
1020 SX2=SX2+(X(T) "2)
1030 SX3=SX3+(X(T)^3)
1040 SX4=SX4+(X(T) ^4)
1050 SXY=SXY+X(T)*Y(T)
1060 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
1070 NEXT T

```
```

$1090 \mathrm{~A}(2,2)=\mathrm{SX} 2: \mathrm{A}(2,3)=\mathrm{SX} 3$
$1100 \mathrm{~A}(3,2)=\mathrm{SX} 3: A(3,3)=S X 4$
$1110 \mathrm{~A}(2,4)=\operatorname{SXY}: A(3,4)=\mathrm{SX} 2 Y$
1120 GOSUB 1980
$1130 \mathrm{Al}(\mathrm{I})=\mathrm{XX}(1)$
1140 A 2 (I) $=\mathrm{XX}(2)$
$1150 \mathrm{~A} 3(\mathrm{I})=\mathrm{XX}(3)$
1160 NX (I) $=$ NAT (I) : PRINT $;^{\prime \prime A 1}(" ; I ; ")=" ; A 1(I), A 2(I), A 3(I)$
@1170 TIX (I) $=N X(I) / 10$
1180 FOR $\mathrm{Z}=1 \mathrm{TO} 11$
$1190 \operatorname{TAX}(Z)=N X(I)-((Z-1) * T T X(I))$
$1200 \operatorname{TAY}(Z)=\left(A 3(I) *\left(\operatorname{TAX}(Z)^{\wedge} 2\right)\right)+(A 2(I) * \operatorname{TAX}(Z))+A 3(I)$
1210 NEXT Z
1220 FOR $Z=1$ TO 10
$1230 \operatorname{TAT}(I)=\operatorname{TAT}(I)+(\operatorname{TTX}(I) *((\operatorname{TAX}(Z) * T A Y(Z))+((\operatorname{TAY}(Z)+T A Y(Z+1)) *(T A X(Z)+$
$\operatorname{TAX}(Z+1)))+(\operatorname{TAX}(Z+1) * \operatorname{TAY}(Z+1))) / 6$
1240 NEXT Z
$1250 \mathrm{AS}(\mathrm{I})=\left(\mathrm{A} 3(\mathrm{I}) *\left(\left(\mathrm{NX}(\mathrm{I})^{\wedge} 3\right) / 3\right)\right)+\left(\mathrm{A} 2(\mathrm{I})\right.$ * $\left.\left(\left(\mathrm{NX}(I)^{\wedge} 2\right) / 2\right)\right)+(\mathrm{Al}(\mathrm{I}) * N X(I))$
$1260 \operatorname{XBAR}(I)=T A T(I) / \operatorname{AS}(I): \operatorname{XBAR}(I)=N X(I)-X \operatorname{BAR}(I)$
1270 LEV (COUNTER,I) $=(D-X B A R(I))$
$1280 \operatorname{COMP}(\operatorname{COUNTER}, I)=(A S(I) * 8): P R I N T$ "COMP (";COUNTER,I;")="COMP (COUNTER, I)
1290 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1300 CM (COUNTER, I) $=$ COMP (COUNTER, I $)$ *LEV (COUNTER, I) $: L=84$
1310 AM (I) $=(W(I) * L) / 6$
1320 PRINT "CM(";COUNTER,I;")="CH(COUNTER,I),"AM("; I;")=";AM(I)
1330 ACCU(COUNTER, I) $=(A M(I) / C M(C O U N T E R, I))$
1340 ER(COUNTER, $I)=((C M(C O U N T E R, I)-A M(I)) / A M(I)) * 100$
1350 PRINT "ACCU (";COUNTER, I;")=";ACCU(COUNTER,I):PRTNT :PRINT "ER(";
COUNTER, I;")=";ER(COUNTER,I)
$1360 \mathrm{AM}(I)=\mathrm{AM}(\mathrm{I}) / 12000: \mathrm{CM}(\mathrm{COUNTER}, I)=(\mathrm{CN}($ COUNTER,$I) / 12000)$
1370 NEXT I
1380 NEXT COUNTER
1390 FOR $I=1$ TO N
$1400 W(I)=W(I) / 1000: \operatorname{DEFA}(I)=\operatorname{DEFA}(I) / 1000$
1410 NEXT I
1420 FOR COCNT=1 TO 3
1430 LPRINT :LPRINT :LPRINT :LPRINT :LPRINT :
1440 IF COUNT=1 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
$\mathrm{Mu}\left({ }^{\text {calch }} \mathrm{Mu}\right.$ (test) $\mathrm{Mu}($ test)
1450 IF COUNT $=2$ THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (" calc)
1460 IF COUNT $=3$ THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
Mu(calc) Mu (test) Mu(test)
1470 IF COUNT $=1$ THEN LPRINT " KIPS KIP-FT KIP-FT

```

```

1490 IF COUNT $=3$ THEN LPRINT " KIPS KIP-FT KIP-FT
KIP-FT Mu (!]calc) Mu(calc)
1500 LPRINT
1510 FOR I=N TO N

```


```

1530 NEXT I
1540 FOR I=2 TO N
1550 IF COUNT $=2$ THEN LPRINT USING " \#\# \#\#\#, \# \#\#\#.\# \#\#\#.\# \#\#\#, \#
\#4\#. \#\#
1560 IF $\dot{I}<\mathrm{N}^{2}$ THEN GOTO 1580°

```


```

1580 IF COUNT=2 THEN LPRINT
1590 NEXT I
1600 LPRINT CHR\$(12)
1610 NEXT COUNT
1620 FOR COUNTER=0 TO 2
1630 FOR I=1 TO N
1640 CM(COUNTER,I)=(CM(COUNTER,I)*12000)
1650 NEXT I
1660 NEXT COUNTER
1670 LPRINT :LPRINT :LPRINT :LPRINT :
1680 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1690 LPRINT " KIPS IN. IN. DEF CAL"
1700 FOR I=2 TO 18
1710 IF STRO(I)<6700 THEN EC=6216845:
1720 IF STRO(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
1730 IF STRO(I)>9700 THEN EC=3828919!
1740 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1750 MA(I)=AM(I)
1 7 6 0 ~ Y T (I) ~ = (6 - N A T (I))
1770 IC(I) =(WB* (TD^3))/12+(A*(YT(I)*2))
1780 YS(I)=(D-NAT(I)
1790 IS(I)=(((ES/EC)-1)*AS)*(YS(I)^2)
1800 IT(I) =IC(I)+IS(I):PRINT "ITCG=";IT(I)
1810 ICCR(I)=(WB*(NAT(I)^3)/12)+((WB*NAT(I))*((NAT(I)/2)^2))
1820 NS=(ES/EC)
1830 ISCR(I)=(NS*AS)*(YS(I)^2)
1840 ITCR(I) =ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1850 FCR=7.5*SQR(FC)
1860 MCR (I) = (FCR*IT(I))/(TD-NAT(I))
1870 TI (I) =((MCR(I)/(106.96*12000))`3)
1880 IE(I) =(TI(I)*IT(I))+((1-TI(I))*ITCR(I))
1890 REM IF (AM(I)*12000)<MCR(I) THEN IE(I)=IT(I)
1900 PRINT "IE=";IE(I)
1910 }\operatorname{DEFC}(I)=(23*W(I)*(84*3)*1000)/(1296*EC*IE(I)
1920 ACCD(I) =(DEFA(I)/DEFC(I))
1930 LPRINT

```

```

 W(I),DEFA(I),DEFC(I),ACCD(I)
 1950 NEXT I
1960 LPRINT CHR\$(12)
1970 END
1980 NS=3
1990 FOR K=1 TO NS
2000 C=A(K,K)
2010 FOR J=R TO (NS+I)
2020 A(K,J)=A(K,J)/C
2030 NEXT J
2040 FOR S=1 TO NS
2050 IF S=K THEN GOTO 2100
2060 C=-A(S,K)
2070 FOR J=K TO (NS+1)
2080 A(S,J)=A(S,J)+(C*A(K,J))
2090 NEXT
2100 NEXT S
2110 NEXT K
2120 XX(1)=A(1,NS+1)
2130 XX(2)=A(2,NS+1)
2140 XX(3)=A(3,NS +1)
2150 RETURN

```

\section*{Program for Shear Specimen 2}

10 REM SHEAR SPECIMEN 2 NAME NEWFISH2
20 REM LPRINT "RESULT OF THE TEST DATA FOR SHEAR SPECIMEN-2"
30 RFM LPRINT " 0.5 TIMES THE BALANCE STEEL final2"

50 LPRINT :LPRINT :LPRINT :LPRINT :LPRINT
60 DIM W(30),ST(30),S2(30),S4(30),S6(30),STRO(30),STR1(30),STR2(30),
\(\operatorname{LEV}(3,30), \operatorname{NAT}(30), \operatorname{SA1}(30), \operatorname{SA2}(30), \operatorname{SA} 3(30), \operatorname{SAO}(30), \operatorname{STR} 3(30), \operatorname{UN}(30)\) \(\operatorname{COMP}(3,30), \mathrm{AB}(30), \operatorname{CM}(3,30), \operatorname{AM}(30), \operatorname{ACCU}(3,30), \operatorname{ER}(3,30), X(30), \mathrm{AS}(30), Y(30)\), IC (30), YS (30), IS (30), ICCR (30)
70 DIM ISCR (30), ITCR (30), \(\operatorname{MCR}(30), \operatorname{TI}(30), \operatorname{IE}(30), \operatorname{DEFC}(30), \operatorname{ACCD}(30), \operatorname{IT}(30)\), \(\operatorname{DEFA}(30), \mathrm{MA}(30), \mathrm{A}(30), \mathrm{A} 2(30), \mathrm{A} 3(30), \mathrm{NX}(30), \mathrm{YT}(30), \mathrm{A}(3,4), \mathrm{XX}(3)\), TTX (30), TAX (30), TAT (30), XBAR (30), TAY (30)
\(80 \mathrm{~N}=19\)
90 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
100 READ DEFA(I), W(I),ST(I), S2(I),S4(I),S6(I)
110 DATA \(0,0,-12,-10,-16,+15\)
120 DATA \(27,7880,-81.2,-53.15,-39.15,-18.35\)
130 DATA \(60,16900,-181.4,-108.8,-56.55,-6.7\)
140 DATA \(95,23820,-298.95,-152.4,-33.35,-44.45\)
150 DATA \(138,31762.5,-423.35,-194,-28,-85.1\)
160 DATA \(138,31762,-423.35,-194,-28,-65.3\)
170 DATA \(165,39640,-534.6,-229.8,-20.3,-85.1\)
180 DATA \(217,47350,-613.45,-268,-30.9,-63.85\)
190 DATA \(250,53407,-731.1,-308.65,-36.7,-99.15\)
200 DATA \(294,59159,-817.2,-343.5,-45.4,-106.4\)
210 DATA \(336,59830,-793.5,-368.2,-37.7,7.75\)
220 DATA \(354,63850,-840.9,-391.85,-40.6,7.75\)
230 DATA \(374,67760,-896.1,-416.55,-45.4,4.85\)
240 DATA 395,71705,-947.4,-443.65,-50.3.4.35
250 DATA 418,75750, \(-994.8,-467.35,-49.3,12.1\)
260 DATA \(430,79760,-1056.7,-497.85,-56.1,12.1\)
270 DATA 460,80365,-1085.8,-505.1,-50.3,11.15
280 DATA \(472,83500,-1146.7,-532.65,-48.3,5.3\)
290 DATA \(495,86700,-1138,-538.5,-39.6,2.45\)
\(300 \mathrm{SAl}(\mathrm{I})=(\mathrm{S} 2(\mathrm{I})-\mathrm{S} 2(1))\)
\(310 \mathrm{SA} 2(\mathrm{I})=(\mathrm{S} 4(\mathrm{I})-\mathrm{S} 4(1)\)
\(320 \mathrm{SA} 3(\mathrm{I})=(\mathrm{S} 6(\mathrm{I})-\mathrm{S} 6(1)\)
\(330 \mathrm{SAO}(\mathrm{I})=(\mathrm{ST}(\mathrm{I})-\mathrm{ST}(1))\)
340 NEXT I
350 REM LPRINT "-VE SIGN INDICATES TENSION":LPRINT :LPRINT
\(\begin{array}{llcccccc}360 & \text { LPRINT "LOAD IN NUTERAL AXIS STRESS AT } & \text { STRESS AT } & \text { STRESS AT } & \text { STRESS AT" } \\ 370 \text { LPRINT " KIPS. } & \text { DEPTH IN } & \text { TOP } & 2 \text { IN. } & 4 \text { IN } & 6 \text { IN." }\end{array}\)
380 FOR \(I=2 \mathrm{TO} \mathrm{N}\)

\(400 \operatorname{NAT}(I)=(4+(\operatorname{SA2} 2(I) / \mathrm{UN}(\mathrm{I})))\)
\(410 \mathrm{~A} A=1: \mathrm{BB}=1: \mathrm{CC}=1: \mathrm{DD}=1\)
420 IF \(\operatorname{SGN}(\mathrm{SAl}(\mathrm{I}))=1\) THEN \(A A=0\)
430 IF \(\operatorname{SGN}(S A 2(I))=1\) THEN \(\mathrm{BB}=0\)
440 IF \(\operatorname{SGN}(S A 3\) (I) \()=1\) THEN \(C C=0\)
450 IF \(\operatorname{SGN}(\operatorname{SAO}(I))=1\) THEN \(\mathrm{DD}=0\)
\(460 \mathrm{SAl}(\mathrm{I})=\mathrm{ABS}(\mathrm{SAl}(\mathrm{I}))\)
470 SA2 (I) \(=\) ABS \((S A 2(I))\)
\(480 \mathrm{SA} 3(\mathrm{I})=\mathrm{ABS}(\mathrm{SA} 3\) (I) \()\)
490 SAO(I) \(=\mathrm{ABS}(\mathrm{SAO}(\mathrm{I}))\)
```

500 STRO(I) =(-4.06906E-07*(SAO(I)^3)+5.619357E-04*(SAO(I)^2)+6.060692*(SAO(I))+
18.562801\#)
510 STRl(I) =(-4.06906E-07*(SAl(I)* 3)+5.619357E-04*(SAI(I)*2)+6.060692*(SAl(I))+
18.562801\#)
520 STR2(I) =(-4.06906E-07*(SA2(I)^3)+5.619357E-04*(SA2(I)^2)+6.060692*(SA2(I))+
18.562801\#)
530 STR3(I) =(-4.06906E-07* (SA3(I)*3)+5.619357E-04*(SA3(I)*2)+6.060692*(SA3(I))+
18.562801\#)
5 4 0 ~ I F ~ A A = 0 ~ T H E N ~ S T R 1 ~ (I) = - S T R 1 ~ (I) ~
550 IF BB=0 THEN STR2(I)=-STR2 (I)
560 IF CC=0 THEN STR3(I)=-STR3(I)
570 LPRINT
580 W(I)=W(I)/1000
51 DVN=10
5 8 2 \operatorname { S T R O } (I) = (\operatorname { C I N T } (S T R O (I) / D V N)) * D V N ~
583 STR1{I = (CINT (STR1 (I)/DVN))*DVN
584 STR2(I)=(CINT(STR2(I)/DVN))*DVN

```

```

 W(I),NAT(I),STRO(I),STR1(I),STR2(I),STR3(I)
 600 W(I) =W(I)*1000
6 1 0 NEXT I
6 2 0 ~ L P R I N T ~ C H R \$ (1 2) ~
6 3 0 ~ D = 1 0 . 6 8 7 5 ~
640 FC=11400
650 B=.65:WB=8
60 FOR COUNTER=0 TO 2
6 7 0 ~ I F ~ C O U N T E R = 0 ~ T H E N ~ P R I N T ~ " A C I ~ S T R E S S ~ B L O C X ~ R E S U U T S " ~
6 8 0 ~ I F ~ C O U N T E R = 1 ~ T H E N ~ P R I N T ~ " T R I A N G U L E R ~ S T R E S S ~ B L O C K ~ R E S U L T S " '
690 IF COUNTER=2 THEN PRINT "PARABOLIC STRESS BLOCK RESULTS"
700 FOR I=1 TO N
710 AB(I)=(NAT(I)*B)
720 IF COUNTER=2 GOTO }83
730 IF COUNTER=1 GOTO 760
740 COMP (COUNTER,I) =(STRO(I)*AB(I)*WB)
750 IF COUNTER=O GOTO 770
760 COMP (COUNTER,I) =(.5*STRO(I)*NAT (I)*WB)
7 7 0 ~ P R I N T ~ " C O M P (" ; C O U N T E R , I ; ") = " ; C O M P (C O U N T E R , I) ~
7 8 0 ~ I F ~ C O U N T E R = 1 ~ G O T O ~ 8 1 0 ~
790 LEV(COUNTER,I)=(D-(AB(I)/2))
800 IF COUNTER=0 GOTO 1230
810 LEV(COUNTER,I) =(D-(NAT(I)/3))
820 IF COUNTER=O OR 1 GOTO 1230
830 REM PARABALOIC CURVE FITTING
840 NP=3
850 IF NAT(I)>=4 THEN NP=4
860 X(1)=NAT(I)
870 X (2)=(NAT(I)-2)
8 8 0 ~ I F ~ N A T (I) < 4 ~ T H E N ~ X (3) = 0 : Y (3) = 0 : G 0 T O ~ 9 0 0 ~
890 X(3)=NAT(I)-4:X(4)=0:Y(3)=STR2(I):Y(4)=0:BEEP:BEEP:BEEP:BEEP:
900 Y(1)=STRO(I)
910 Y(2)=STR1 (I)
920 SX=0:SX2=0:SX3=0:SX4=0:SY=0:SXY=0:SX2Y =0
930 FOR T=1 TO NP
940 SX=SX+X(T)
950 SY=SY+Y(T)
960 SX2=SX2+(X(T) *2)
970 SX 3=SX3+(X(T)^3)
980 SX4=SX4+(X(T)^4)

```
```

$1000 S X 2 \mathrm{Y}=\mathrm{SX} 2 \mathrm{Y}+(\mathrm{X}(\mathrm{T}) * \mathrm{X}(\mathrm{T}) * Y(\mathrm{~T}))$
1010 NEXT T
$1030 \mathrm{~A}(2,2)=\mathrm{SX} 2: \mathrm{A}(2,3)=S X 3$
$1040 \mathrm{~A}(3,2)=\mathrm{SX} 3: A(3,3)=S \times 4$
$1050 \mathrm{~A}(2,4)=S X Y: A(3,4)=S X 2 Y$
1060 GOSUB 1910
$1070 \mathrm{Al}(\mathrm{I})=\mathrm{XX}(1)$
$1080 \mathrm{~A} 2(\mathrm{I})=\mathrm{XX}(2)$
1090 A3(I) $=\mathrm{XX}(3)$
1100 NX (I) $=$ NAT (I) : PRINT $; " A 1(" ; I ; ")=" ; A 1(I), A 2(I), A 3(I)$
$1110 \mathrm{TTX}(\mathrm{I})=\mathrm{NX}(\mathrm{I}) / 10$
1120 FOR $Z=1$ TO 11
$1130 \operatorname{TAX}(Z)=\operatorname{NX}(I)-((Z-1) * T T X(I))$
$1140 \operatorname{TAY}(Z)=\left(\mathrm{A} 3(\mathrm{I}) *\left(\operatorname{TAX}(Z)^{\wedge} 2\right)\right)+(\mathrm{A} 2(I) * \operatorname{TAX}(Z))+A 3(I)$
1150 NEXT Z
1160 FOR $Z=1$ TO 10
$1170 \operatorname{TAT}(I)=\operatorname{TAT}(I)+(\operatorname{TTX}(I) *((\operatorname{TAX}(Z) * T A Y(Z))+((\operatorname{TAY}(Z)+\operatorname{TAY}(Z+1)) *$
$(\operatorname{TAX}(Z)+\operatorname{TAX}(Z+1)))+(\operatorname{TAX}(Z+1) * \operatorname{TAY}(Z+1)))) / 6$
1180 NEXT Z
$1190 \mathrm{AS}(\mathrm{I})=\left(\mathrm{A} 3(\mathrm{I})^{*}\left(\left(\mathrm{NX}(\mathrm{I})^{\wedge} 3\right) / 3\right)\right)+\left(\mathrm{A} 2(\mathrm{I})^{*}\left(\left(\mathrm{NX}(\mathrm{I})^{\wedge} 2\right) / 2\right)\right)+\left(\mathrm{Al}(\mathrm{I}) * \mathrm{NX}^{2}(\mathrm{I})\right)$
$1200 \operatorname{XBAR}(I)=\operatorname{TAT}(I) / \operatorname{AS}(I): \operatorname{XBAR}(I)=N X(I)-X \operatorname{BAR}(I): \operatorname{PRINT} \quad " X B A R(" ; I ; ")=" \operatorname{XBAR}(I)$
$1210 \operatorname{LEV}($ COUNTER,I $)=(D-X B A R(I))$
1220 COMP (COUNTER,I) $=($ AS (I) *8) :PRINT "COMP ("; COUNTER,I;")="COMP (COUNTER, I)
1230 PRINT "LEV(";COUNTER,I;")=";LEV (COUNTER,I)
1240 CM (COUNTER,$I)=\operatorname{COMP}(C O U N T E R, I) * L E V(C O U N T E R, I): L=84$
$1250 \mathrm{AM}(\mathrm{I})=(W(I) * L) / 6$
1260 PRINT" "CM ${ }^{\prime \prime}$;COUNTER, I;")="CM(COUNTER,I), "AM("; I;")=";AM(I)
1270 ACCU (COUNTER, I $=($ AM 3 I $) / \mathrm{CM}(C O U N T E R, I))$
1280 ER (COUNTER, I $)=((C M(C O U N T E R, I)-A M(I)) / A M(I)) * 100$
1290 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT'
PRINT "ER(";COUNTER,I;")=";ER(COUNTER,I)
$1300 \mathrm{AN}(I)=\mathrm{AM}(I) / 12000: \mathrm{CM}(\mathrm{COUNTER}, I)=(\mathrm{CM}(C O U N T E R, I) / 12000)$
1310 NEXT I
1320 NEXT COUNTER
1330 FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{N}$
$1340 \mathrm{~W}(\mathrm{I})=W(I) / 1000: \operatorname{DEFA}(I)=\operatorname{DEFA}(I) / 1000$
1350 NEXT I
1360 FOR COUNT $=1$ TO 3
1370 LPRINT :LPRINT :LPRINT :LPRINT
1380 IF COUNT $=1$ THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
$\mathrm{Mu}\left({ }^{\text {acalc) }} \mathrm{Mu}\right.$ (test) Mu (test)
1390 IF COUNT=2 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (" calc)
Mu(calc) Mu (test) Mu(test)
1400 IF COUNT=3 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
Mu(calc) Mu (test) Mu(test)
1410 IF COUNT $=1$ THEN LPRINT " KIPS KIP-FT RIP-FT
KIP-FT Mu ([]calc) " Mu(*calc)
1420 IF COUNT=2 THEN LPRINT " \quad KIP-FT Mu (calc) KIPS KIP-FT KIP-FT
1430 IF COUNT $=3$ THEN LPRINT " KIPS KIP-FT KIP-FT
KIP-FT Mu ([]calc) Mu("calc)
1440 LPRINT
1450 FOR $I=N$ TO N

```

```

 \#\#\#, \#\# \#\#\#.\#\#"; \(\mathrm{I}, \mathrm{W}(\mathrm{I}), \mathrm{AM}(\mathrm{I}), \mathrm{CM}(0, I), \mathrm{CM}(1, I), \operatorname{ACCU}(0, I), A C C U(1, I)\)
 1470 NEXT I
1480 FOR I=2 TO N

```


```

1500 IF I<N THEN GOTO 1520

```

```

 ###.######,###; ; ,W(I),AM(I),CM(0,I),CM(2,I),ACCU(O,I),ACCU(2,I)
 1520 IF COUNT=2 THEN LPRINT
1530 NEXT I
1540 LPRINT CHR\$(12)
1550 NEXT COUNT
1560 FOR COUNTER=0 TO 2
1570 FOR I=1 TO N
1580 CM(COUNTER,I)=(CM(COUNTER,I)*12000)
1590 NEXT I
1600 NEXT COUNTER
1610 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1620 LPRINT " KIPS IN. IN. DEF CAL"
1630 FOR I=2 TO N
1640 IF STRO(I)<6700 THEN EC=6216845!
1650 IF STRO(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
1660 IF STRO(I)>9700 THEN EC=3828919!
1670 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1680 MA (I) =AM(I)
1690 YT (I) }=(6-NAT(I)
1700 IC(I)=(WB* (TD^3))/12+(A*(YT(I)*2))
1710 YS (I) =(D-NAT(I))
1720 IS (I) =(((ES/EC)-1)*AS)*(YS(I)*2)
1730 IT(I) =IC(I)+IS(I):PRINT "ITCG=";IT(I)
1740 ICCR(I)=(WB* (NAT(I)*3)/12)+((WB*NAT(I))*((NAT(I)/2)*2))
1750 NS=(ES/EC)
1760 ISCR(I)=(NS*AS)*(YS(I)^2)
1770 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1780 FCR=7.5*SQR(FC)
1790 MCR(I)=(FCR*IT(I))/(TD-NAT(I))
1800 TI(I) =((MCR(I)/(106.96*12000))^3)
1810 IE (I) = (TI (I) wIT (I))+((1-TI (I))*ITCR(I))
1820 IF (AM(I)*12000)<MCR(I) THEN IE(I)=IT(I)
1830 PRINT "TI=";IE(I)
1840 DEFC(I)=(23*W(I)**(84^3)*1000)/(1296*EC*IE(I))
1850 ACCD(I)=(DEFA(I)/DEFC(I))

```

```

 I,W(I),DEFA(I),DEFC(I),ACCD(I)
 1880 NEXT I
1890 LPRINT CHR\$(12)
1900 END
1910 NS=3
1920 FOR K=1 TO NS
1930 C=A (K,K)
1940 FOR J=K TO (NS+1)
1950 A(K,J)=A(K,J)/C
1960 NEXT J
1970 FOR S=1 TO NS
1980 IF S=K THEN GOTO 2030
1990 C=-A(S,K)
2000 FOR J=K TO (NS+1)
2010 A(S,J) =A(S,J)+(C*A(K,J))
2020 NEXT J
2030 NEXT S
2040 NEXT K
2050 XX (1)=A(1,NS+1)
2060 XX(2)=A(2,NS+1)
2070 XX(3)=A(3,NS+1)
20s0 RETURN

```

\section*{Program for Under-reinforced Specimen}
```

10 REM SHEAR SPECIMAN 1 NAME FINALUR
20 REM LPRINT "RESULT OF THE TEST DATA FOR UNDER-REINFORCED SPECIMEN-1"
30 REM LPRINT "O.5 TIMES THE BALANCE STEEL NAME FINALUR"
60DIM W(30),ST(30),S2(30),S4(30),S6(30),STRO(30),STR1(30),STR2(30),LEV(3,30),
NAT(30),SA1 (30),SA2(30),SA3(30),SAO(30),STR3(30),UN(30), CONP(3,30),AB(30),
CM(3,30),AM(30), ACCU (3,30), ER(3,30),X(30), AS (30),Y(30),IC(30),YS(30),
IS(30),ICCR(30)
70 DIM ISCR(30), ITCR(30),MCR(30),TI (30), IE (30), DEFC(30), ACCD(30),IT(30),
DEFA(30),MA (30),A1(30),A2(30),A3(30),NX(30),YT(30),A(3,4), XX(3),TTX(30),
TAX(30),TAT(30),XBAR(30), TAY(30)
80 N=21
90 FOR I=1 T0 N
100 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
110 DATA 0,0,4,1,-3,-2
120 DATA 48,11810,-117.5,-59.95,-23.2,1.9
130 DATA 116,25000,-327.5,-124.3,-30.95,24.1
140 DATA 170,35670,-477.05,-167.85,-42.55,1.3
150 DATA 230,47820,-650.75,-217.2,47.45,9.15
160 DATA 294,59520,-810.45,-268,140.3,11.1
170 DATA 324,67570,-919.8,-306.75,161.61,7.7
180 DATA 378,75400,-1066.4,-349.8,254.5,11.15
190 DATA 424,83460,-1202.4,-397.7,315.4,12.55
200 DATA 450,87450,-1280.25,-418.5,363.8,15
210 DATA 478,89200,-1473.3,-512.4,665.8,15.0
220 DATA 582,85100,-1502.35,-371.05,561.2,7.25
230 DATA 640,85100,-1694.95,-338.2,450.9,34.85
240 DATA 685,87760,-1773.35,-325.1,387,15.45
250 DATA 755,88660,-1963.5,-254.95,492.5,51.15
260 DATA 780,91000,-2210.3,-171.25,564.1,55.15
270 DATA 780,91510,-2121.85,-138.35,530.6,24.65
280 DATA 780,91680,-2413,-140.75,502.2,15.5
290 DATA 780,90310,-2213.25,-234.15,331.9,21.3
300 DATA 780,90800,-2096.05,-310.1,160.6,41.55
310 DATA 780,87450,-1280.25,-418.5,150.35,15
320 SA1(I)=(S2(I)-S2(1))
330 SA2(I) =(S4(I)-S4(1))
340 SA3(I)=(S6(I)-S6(1))
350 SAO(I)=(ST(I)-ST(1))
360 NEXT I
370 REM4 LPRINT "-VE SIGN INDICATES TENSION":LPRINT :LPRINT
380 LPRINT "LOAD IN NEUTRAL AXIS STRESS AT STRESS AT STRESS AT STRESS AT"
390 LPRINT " KIPS. DEPTH IN TOP 2 IN.
400 FOR I=2 TO N
410 UN(I)=(SAO(I)-SAI(I))/2 :PRINT "UN(";I;")=";UN(I):PRINT
4 2 0 ~ I F ~ S G N (S A 2 (I)) = - 1 ~ T H E N ~ G O T O ~ 4 4 0
430 NAT(I)=(2+(SA1 (I)/UN(I))):PRINT"NAT(";I;")=";NAT(I):GOT0 450
440 NAT(I)=(4+(SA2(I)/UN(I)))
450 AA=1:BB=1:CC=1:DD=1
4 6 0 ~ I F ~ S G N (S A l (I)) = 1 ~ T H E N ~ A A = 0
470 IF SGN(SA2(I))=1 THEN BB=0
4 8 0 ~ I F ~ S G N (S A 3 ~ (I)) = 1 ~ T H E N ~ C C = 0 ~
490 IF SGN(SAO(I) =1 THEN DD=0
500 SAl (I)=ABS(SA1 (I))
510 SA2(I)=ABS(SA2 (I))
520 SA3(I)=ABS(SA3(I))
530 SAO(I)=ABS(SAO(I))

```
\(540 \operatorname{STRO}(I)=\left(-4.06906 E-07 *\left(S A O(I)^{\wedge} 3\right)+5.619357 E-04 *\left(S A O(I)^{\wedge} 2\right)+6.060692^{*}(S A O(I))+\right.\) \(18.562801 \frac{1}{7}\) )
\(550 \operatorname{STR1}(I)=\left(-4.06906 E-07 *(S A 1(I) * 3)+5.619357 E-04 *\left(S A 1(I)^{\wedge} 2\right)+6.060692 *(S A 1(I))+\right.\) \(18.562801 \frac{\pi}{\pi}\) )
\(560 \operatorname{STR} 2(I)=\left(-4.06906 \mathrm{E}-07 *\left(\mathrm{SA} 2(I)^{\wedge} 3\right)+5.619357 \mathrm{E}-04 *\left(\mathrm{SA} 2(\mathrm{I})^{\wedge} 2\right)+6.060692^{*}(\mathrm{SA} 2(I))+\right.\) \(\left.18.562801 \frac{14}{\#}\right)\)
\(570 \operatorname{STR} 3(I)=\left(-4.06906 E-07 *\left(S A 3(I)^{\wedge} 3\right)+5.619357 E-04^{*}\left(S A 3(I)^{\wedge} 2\right)+6.060692 *(S A 3(I))+\right.\) 18.562801 華)

580 IF AA \(=0\) THEN STR1 (I) \(=-\) STR1 (I)
590 IF \(\mathrm{BB}=0\) THEN STR2(I) \(=-S T R 2(I)\)
600 IF \(C C=0\) THEN STR3 (I) \(=-S T R 3\) (I)
610 LPRINT
\(620 W(I)=W(I) / 1000\)
621 DVN=10
622 IF STRO(I) \(>=10000\) THEN \(D V N=100\)
623 STRO (I) \(=(\) CINT (STRO (I) \(/ D V N)) * D V N: D V N=10\)
624 STR1 (I) \(=\) (CINT (STR1 (I)/DVN) \() * D V N\)
625 STR2 \(\left\{(I)=(\text { CINT }(S T R 2(I) / D V N))^{* D V N}\right.\)
 W(I), NAT(I), STRO(I),STR1 (I) ,STR2(I), STR3(I)
\(640 \mathrm{~W}(\mathrm{I})=\mathrm{W}(\mathrm{I})=1000\)
650 NEXT I
660 LPRINT CHRS(12)
\(670 \mathrm{D}=10.6875\)
\(680 \mathrm{FC}=11700\)
\(690 \mathrm{~B}=.65: \mathrm{WB}=8\)
700 FOR COUNTER=O TO 2
710 IF COUNTER=0 THEN PRINT "ACI STRESS BLOCX RESULTS"
720 IF COUNTER=1 THEN PRINT "TRIANGULER STRESS BLOCX RESULTS"
730 IF COUNTER=2 THEN PRINT "PARABOLIC STRESS BLOCK RESULTS"
740 FOR I=1 TO N
\(750 \mathrm{AB}(I)=(\operatorname{NAT}(I) * B)\)
760 IF COUNTER \(=2\) GOTO 870
770 IF COUNTER=1 GOTO 800
780 CONP (COUNTER, I) \(=\left(.85 * \mathrm{FC}^{*} \mathrm{AB}(I) * W B\right)\)
790 IF COUNTER=O GOTO 810
800 COMP \((C O U N T E R, I)=(.5 * S T R O(I) * N A T(I) * W B)\)
810 PRINT "COMP (";COUNTER,I;")=";COMP (COUNTER,I)
820 IF COUNTER=1 GOTO 850
\(830 \operatorname{LEV}(\operatorname{COUNTER}, I)=(D-(A B(I) / 2))\)
840 IF COUNTER=O GOTO 1270
\(850 \operatorname{LEV}(\operatorname{COUNTER}, I)=(D-(\operatorname{NAT}(I) / 3))\)
860 IF COUNTER=O OR 1 GOTO 1270
870 REU PARABALOIC CURVE FIITING
\(880 \mathrm{NP}=3\)
890 IF NAT (I) \(>=4\) THEN NP \(=4\)
\(900 \mathrm{X}(1)=\mathrm{NAT}(\mathrm{I})\)
\(910 \times(2)=(\operatorname{MAT}(\mathrm{I})-2)\)
920 IF NAT (I) <4 THEN \(X(3)=0: Y(3)=0:\) GOTO 940
\(930 \mathrm{X}(3)=\mathrm{NAT}(I)-4: X(4)=0: Y(3)=S T R 2(I): Y(4)=0:\) BEEP:BEEP:REEP:BEEP;
\(940 \mathrm{Y}(1)=\mathrm{STRO}(\mathrm{I})\)
\(950 \mathrm{Y}(2)=\mathrm{STP} .1\) (I)
\(960 \mathrm{SX}=0: S X 2=0: S X 3=0: S X 4=0: S Y=0: S X Y=0: S X 2 Y=0\)
970 FOR T=1 TO NP
\(980 \mathrm{SX}=\mathrm{SX}+\mathrm{X}\) (T)
\(990 S Y=S Y+Y(T)\)
\(1000 S \times 2=S X 2+\left(X(T)^{\wedge} 2\right)\)
\(1010 S X 3=S X 3+\left(X(T)^{\wedge} 3\right)\)
1020 SK \(4=S X 4+\left(X(T) \wedge \frac{4}{4}\right)\)
```

1030 SXY=SXY+X(T)*Y(T)
1040 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
1050 NEXT T
1070 A(2,2)=SX2:A(2,3)=SX3
1080 A (3,2)=SX3:A (3,3)=SX4
1090 A(2,4)=SXY:A(3,4)=SX2Y
1100 GOSUB 1970
1110 Al(I) = XX(1)
1120 A2(I) = XX(2)
1130 A3(I) = XX(3)
1140 NX(I)=NAT(I):PRINT ;"A1(";I;")=";A1(I),A2(I),A3(I)
1150 TTX(I)=NX(I)/10
1160 FOR Z=1 TO 11
1170 TAX (Z)=NX(I)-((Z-1)*TTX(I)):REM LPRINT "TAX (";Z;"')=";TAX(Z)
1180 TAY(Z) =(A3(I)*(TAX(Z)^2))+(A2(I)*TAX(Z))+A1(I):REM LPRINT
1190 NEXT Z
1200 FOR Z=1 TO 10
1210 TAT (I) =TAT(I)+(TTX(I)*((TAX (Z)*TAY(Z))+((TAY(Z)+TAY(Z +)))*
(TAX(Z)+TAX}(Z+1)))+(\operatorname{TAX}(Z+1)*TAY(Z+1))))/
1220 NEXT Z
1230 AS(I) =(A3(I)*((NX(I)^3)/3))+(A2(I)*((NX(I)*2)/2))+(A1(I)*NX(I)):
1240 XBAR(I)=TAT(I)/AS(I):XBAR(I)=NX(I)-XBAR(I)
1250 LEV (COUNTER,I)=(D-XBAR(I))
1260 COMP(COUNTER,I)=(AS(I)*8):PRINT "COMP(";COUNTER,I;")="COMP(COUNTER,I)
1270 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1280 CM(COUNTER,I)=CONP (COUNTER,I)*LEV (COUNTER,I):L=84
1290 AM(I)=(W(I)*L)/6
1300 PRINT "CM(";COUNTER,I;")="CM(COUNTER,I),"AM(";I;")=";AM(I)
1310 ACCU(COUNTER,I)=(AM(I)/CN(COUNTER,I))
1320 ER(COUNTER,I)=((CM(COUNTER,I)-AM(I))/AN(I))*100
1330 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT
PRINT "ER(";COUNTER,I;")=";ER(COUNTER,I)
1340 AMI (I) =AM(I)/12000:CM(COUNTER,I) =(CM(COUNTER,I)/12000)
1350 NEXT I
1360 NEXT COUNTER
1370 FOR I=1 TO N
1380 W(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1390 NEXT I
1400 FOR COUNT=1 TO 3
1410 LPRINT :LPRINT :LPRINT:LPRINT :LPRINT :LPRINT :LPRINT ;
1420 IF COUNT = 1 THEN LPRINT "LOAD NO. LOAD IN Nu (test) Nu ([]calc)
Mu("calc) Mu (test) Mu(test)
1430 IF COUXT=2 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (^ calc)
Mu(calc) Nu (test) Mu(test)
1440 IF COUNT=3 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Nu ([]calc)
Mu(calc) Mu (test) Mu(test) (t)
1450 IF COUNT=1 LPRINT ""
1480 LPRINT
1490 FOR I=18 TO 18

```


```

1510 NEXT I
1520 FOP. I= 2 TO N
1530 IF COUNT=2 THEN LPRINT USING " \#

```

```

1540 IF COUNT =2 THEN LPRINT
1550 NEXT I

```
```

1560 FOR I=18 T0 18

```

```

1580 NEXT I
1590 LPRINT CHR$(12)
1600 NEXT COUNT
1610 FOR COUNTER=0 TO 2
1620 FOR I=1 TO N
1630 CM(COUNTER, I)=(CM(COUNTER, I)*12000)
1640 NEXT I
1650 NEXT COUNTER
1660 LPRINT :LPRINT :LPRINT :LPRINT :LPRINT :LPRINT :LPRINT
1670 LPRINT "LDAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1690 FOR I=2 TO 16
1700 IF STRO(I)<6700 THEN EC=6216845!
1710 IF STRO(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
1720 IF STRO(I)>9700 THEN EC=3828919!
1730 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1740 MA(I)=Ais(I)
1750 YT(I) = 6-NAT(I))
1760 IC (I) =(WB* (TD^3))/12+(A*(YT(I)^2))
1770 YS(I) = (D-NAT(I))
1780 IS(I)=(((ES/EC)-1)*AS)*(YS(I)^2)
1790 IT(I)=IC(I)+IS(I):PRINT "ITCG=";IT(I)
1800 ICCR(I)=(WB*(NAT(I)`3)/12)+((WB*NAT(I))*((NAT(I)/2)^2))
1810 NS=(ES/EC)
1820 ISCR(I)=(NS*AS)*(YS(I)^2)
1830 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1840 FCR=7.5#SQR(FC)
1850 MCR(I)=(FCR*IT(I))/(TD-NAT(I)):PRINT "&&&&&&&&";MCR(I)
1860 TI (I) =((MCR(I)/(106.96*12000))^3)
1870 IE(I)=(TI (I)*IT(I))+((1-TI(I))*ITCR(I))
1880 IF (AM(I)*12000)<MCR(I) THEN IE (I)=IT(I)
1890 PRINT "TI=";IE(I):PRINT "EC="EC
1900 DEFC(I)=(23*W(I)*(84*3)*1000)/(1296*EC*TE(I))
1910 ACCD (I) =(DEFA(I)/DEFC(I))
1920 LPRINT
1930 LPRINT USING "## ##.# #.### #.### #.##";I,W(I),DEFA(I),DEFC(I),ACCD(I)
1940 NEXT I
1950 LPRINT CHR$(12)
1960 END
1970 NS=3
1980 FOR K=1 TO NS
1990 C=A(K,\mathbb{K}
2000 FOR J=K TO (NS+1)
2010 A(K,J)=A(K,J)/C
2020 NEXT J
2030 FOR S=1 TO NS
2040 IF S=K THEN GOTO 2090
2050 C=-A(S,K)
2060 FOR J=K TO (NS+1)
2070 A(S,J)=A(S,J) +(C**A(K,J))
2080 NEXT J
2090 NEXT S
2100 NEXT K
2110 XX(1)=A(1,NS+1)
2120 XX(2)=A(2,NS+1)
2130 XX(3)=A(3,NS+1)
2140 RETURN

```

\section*{Program for Over-reinforced Specimen}

10 REM OVR-REIN SPECIMAN 1 NAME FINAL2
20 REM LPRINT "RESULT OF THE TEST DATA FOR OVER-REINFORCED PCIMEN-1"
30 REM LPRINT " 1.5 TTMES THE BALANCE STEEL final2"
\(50 \operatorname{DIM} \mathrm{~W}(30), \mathrm{ST}(30), \mathrm{S} 2(30), \mathrm{S} 4(30), \mathrm{S} 6(30), \mathrm{STRO}(30), \mathrm{STR} 1(30), \mathrm{STR} 2(30)\), \(\operatorname{LEV}(3,30), \operatorname{NAT}(30), \operatorname{SA1}(30), \operatorname{SA} 2(30), \operatorname{SA} 3(30), \operatorname{SAO}(30), \operatorname{STR} 3(30), \mathrm{UN}(30)\) \(\operatorname{COMP}(3,30), \operatorname{AB}(30), \operatorname{CM}(3,30), \operatorname{AM}(30), \operatorname{ACCU}(3,30), \operatorname{ER}(3,30), \mathrm{X}(30), \operatorname{AS}(30), \mathrm{Y}(30)\),
\(\operatorname{IC}(30), Y \mathrm{YS}(30), \operatorname{IS}(30), \operatorname{ICCR}(30)\)
\(60 \operatorname{DIM} \operatorname{ISCR}(30), \operatorname{ITCR}(30), \mathrm{MCR}(30), \mathrm{TI}(30), \mathrm{IE}(30), \operatorname{DEFC}(30), \operatorname{ACCD}(30), \mathrm{IT}(30)\),
\(\operatorname{DEFA}(30), \mathrm{MA}(30), \operatorname{Al}(30), \mathrm{A} 2(30), \mathrm{A} 3(30), \mathrm{NX}(30), \mathrm{YT}(30), \mathrm{A}(3,4), \mathrm{XX}(3), \mathrm{TTX}(30)\), \(\operatorname{TAX}(30), \operatorname{TAT}(30), \mathrm{XBAR}(30), \operatorname{TAY}(30)\)
\(70 \mathrm{~N}=27\)
80 FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{N}\)
90 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
100 DATA \(0,0,-0.9,-1.0,-0.4,0\)
110 DATA 132,10800,-112.73,-76.93,-39.18,5.79
120 DATA \(162,19770,-202.23,-135.47,-60.47,14.02\)
130 DATA \(200,30000,-319.825,-208.05,-83.69,35.315\)
140 DATA \(232,40000,-442.73,-284.51,-107.89,126.765\)
150 data \(268,50000,-563.21,-359.025,-128.7,274.38\)
160 DATA \(306,60000,-658.63,-435.47,-149.025,412.25\)
170 data \(342,70000,-810.47,-513.375,-173.7,530.315\)
130 DATA \(378,80000,-943.545,-596.125,-198.85,382.89\)
190 DATA \(418,90000,-1078.05,-680.79,-229.35,731.125\)
200 DATA \(440,99500,-1213.535,-769.35,-259.35,820.635\)
210 DATA 461,105620,-1305.465,-828.455,-279.665,865.64
220 DATA \(486,112000,-1391.6,-884.99,-303.86,902.9\)
230 DATA \(504,118000,-1480.63,-994.02,-324.67,923.38\)
240 DATA \(532,124000,-1571.08,-1004.025,-345.75,964.34\)
250 DATA \(558,136000,-1668.34,-1067.89,-370.63,986.6\)
260 DATA 583,142000,-1758.8,-1126.92,-392.4,1016.6
270 Data \(583,148000,-1857.53,-1192.24,-418.54,1038.37\)
280 DATA \(583,154000,-1972.665,-1334.99,-474.66,1073.216\)
290 DATA 583,160000,--2073.33,-1334.99,-474.66,1073.216
300 DATA \(583,166000,-2174.41,-1398.86,-500.315,1101.275\)
310 DATA 583,170000,-2291.5,-1474.35,-531.28,1119.185
320 DATA \(583,172000,-2382.5,-1535.31,-554.51,1131.75\)
330 DATA \(583,174000,-2440.58,-1574.99,-573.85,1132.24\)
340 DATA \(583,176000,-2497.67,-1613.669,-590.79,1132.25\)
350 DATA 583,178000,-2561.98,-1681.44,-609.665,1130.3
360 DATA \(583,180000,-2504.415,-1695.94,-625.635,1145.79\)
370 SA1 (I) \(=(\) S2 (I) - S2 \(2(1)\)
380 SA2(I) \(=(S 4(I)-S 4(1)\)
390 SA3(I) \(=(S 6(I)-S 6(1)\)
400 SAO(I) \(=(\) ST(I) - ST(1) \()\)
410 NEXT I
420 REM LPRINT "-VE SIGN INDICATES TENSION":LPRINT :LPRINT
430 LPRINT "LOAD IN NEUTRAL AXIS STRESS AT STRESS aT STRESS aT STRESS AT"
440 LPRINT "RIPS. DEPTH IN TOP 2 IN. 4 IN 6 IN."
460 FOR I=2 TO N
\(470 \mathrm{UN}(\mathrm{I})=(((\mathrm{SAO}(\mathrm{I})-\mathrm{SAl}(\mathrm{I})) / 2+(\mathrm{SA}(\mathrm{I})-\mathrm{SA} 2(\mathrm{I})) / 2)) / 2:\) PRINT "UN("; ; " \({ }^{(1)=" ; \mathrm{UN}(\mathrm{I})}\)

\(510 \mathrm{AA}=1: \mathrm{BB}=1: \mathrm{CC}=1: \mathrm{DD}=1\)
520 IF \(\operatorname{SGN}(\operatorname{SAl}(I))=1\) THEN \(A A=0\)
530 IF SGN(SA2(I))=1 THEN BE=0
540 IF \(\operatorname{SGN}(S A 3(I))=1\) THEN CC=0
550 IF SGN(SAO(I))=1 THEN DD=0
```

560 SAl(I)=ABS(SAl(I))
50 SA2(I)=ABS(SA2(I))
580. SA3(I)=ABS(SA3 (I))
590 SAO(I)=ABS(SAO(I))
600 STRO(I) =(-4.06906E-07* (SAO(I)^3)+5.619357E-04*(SAO(I)^2)+6.060692*(SAO(I))+
18.562801市)
610 STR1(I)=(-4.06906E-07*(SA1(I)^3)+5.619357E-04%(SAl(I)^2)+6.060692**)
18.562801\#)
620 STR2(I) =(-4.06906E-07* (SA2(I)^3)+5.619357E-04*(SA2(I)^2)+6.060692*(SA2(I))+
18.5528014)
630 STR3(I)=(-4.06906E-07* (SA3(I)* 3)+5.619357E-04* (SA3(I)^2)+6.060692*(SA3(I))+
18.562801\#)
640 IF AA=0 THEN STR1(I)=-STR1(I)
660 IF CC=0 THEN STR3(I)=-STR3(I)
6 7 0 ~ N E X T ~ I ~
6 8 0 ~ F O R ~ I = 2 ~ T O ~ N ~
690 W(I)=W(I)/1000
6 9 1 ~ D V N = 1 0
6 9 2 ~ I F ~ S T R O (I) > = 1 0 0 0 0 ~ T H E N ~ D V N ~ = 1 0 0 ~
693 STRO(I)=(CINT (STRO(I)/DVN))*DVN:DVN =10
694 STR1 (I) =(CINT(STR1 (I)/DVN))*DVN
695 STR2(I)=(CINT(STR2(I)/DVN))*DVN

```

```

 NAT(I),STRO(I),STR1(I),STR2(I),STR3(I)
 720 W(I)=W(I)*1000
7 3 0 NEXT I
7 4 0 ~ L P R I N T ~ C H R S (1 2)
750 D=9.3125
760 FC= 12100
770 B=.65:WB=8
780 FOR COUNTER=0 TO 2
790 IF COUNTER=0 THEN PRINT "ACI STRESS BLOCK RESULTS"
800 IF COUNTER=1 THEN PRINT "TRIANGULER STRESS BLOCK RESULTS"
810 IF COUNTER=2 THEN PRINT "PARADOLIC STRESS BLOCK RESULTS"
820 FOR I=1 TO N
830 AB(I)=(NAT}(I)*B
8 4 0 ~ I F ~ C O U N T E R = 2 ~ G O T O ~ 9 5 0 ~
850 IF COUNTER=1 GOTO }88
860 COMP(COUNTER,I) =(.85*FC*AB(I)*WB)
870 IF COUNTER=0 GOTO }89
880 CONP(COUNTER,I)=(.5%STRO(I)*NAT(I)*NB)
890 PRINT'"COMP(";COUNTER,I;")=";CONP(COUNTER,I)
900 IF COUNTER=1 GOTO 930
910 LEV (COUNTER,I)=(D-(AB(I)/2))
920 IF COUNTER=O GOTO 1350
930 LEV (COUNTER,I)=(D-(NAT (I)/3))
940 IF COUNTER=O OR 1 GOTO 1350
950 REM PARABALOIC CURVE FITTING
960 NP=3
970 IF NAT(I)>=4 THEN NP=4
980 X (1) =NAT(I)
990 X(2)=(NAT(I)-2)
1000 IF NAT(I)<4 THEN X(3)=0:Y(3)=0:GOTO 1020
1010 X(3)=NAT(I) -4:X(4)=0:Y(3)=STR2(I):Y(4)=0:BEEP:BEEP:BEEP:BEEP:
1020 Y(1)=STRO(I)
1030 Y(2)=STRR1 (I)
1040 SX=0:SX2=0:SY 3=0:SX4=0:SY=0:SXY=0:SX2Y=0
1050 FOR T=1 TO NP

```
```

1060 SX=SX+X(T)
1070 SY=SY+Y(T)
1080 SX2=SX2+(X(T)* 2)
1090 SX3 =SX3+(X(T)^3)
1100 SX4=SX4+(X(T)^4)
1110 SXY=SXY+X(T)*Y(T)
1120 SX2Y=SX2Y+(X(T) \#X(T)*Y(T))
1130 NEXT T
1155 A(2,2)=SX2:A(2,3)=SX3
1165 A(3,2)=SX3:A(3,3)=SX4
1170 A(2,4)=SXY:A(3,4)=SX2Y
1180 GOSUB 2040
1190 Al (I) =XX(1)

```

```

1220 NX(I)}=\textrm{NAT}(\textrm{I}):PRINT ;"A1(";I;")=";A1(I),A2(I),A3(I
1230 TTX(I)=NX(I)/10
1240 FOR Z=1 TO 11
1250 TAX (Z)=NX(I)-((Z-1)*TTXX(I))
1260 TAY(Z)=(A3(I)*(TAX(Z)*2))+(A2(I)*TAX(Z))+A1(I)
1270 NEXT Z
1280 FOR Z=1 TO 10
1290 TAT(I) =TAT(I)+(TTX (I)*((TAX (Z)*TAY(Z))+((TAY(Z)+TAY(Z+1))*
(TAX(Z)+TAX(Z+1)))+(TAX(Z+1)*TAY(Z+1))))>6
1300 NEXT Z
1310 AS(I) =(A3(I)*((NX(I)^3)/3))+(A2(I)*((NX(I)*2)/2))+(A1(I)*NX(I))
1320 XBAR(I)=TAT(I)/AS(I): XBAR}(I)=NX(I)-XBAR(I
1330 LEV(COUNTER,I)=(D-XBAR(I))
1340 COMP(COUNTER,I)=(AS(I)*8):PRINT "COMP(";COUNTER,I;")="CONP(COUNTER,I)
1350 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1360 CM(COUNTER,I) =COATP(COUNTER,I)*LEV(COUNTER,I):L=84
1370 AM(I) = (W (I) \#L)/6
1380 PRINT "CM(";COUNTER,I;")="CM(COUNTER,I),"AM(";I;")=";AM(I)
1390 ACCU(COLNTER,I)=(AM(I)/CM(COUNTER,I))
1400 ER(COUNTER,I)=((CM(COUNTER,I)-AM(I))/AM|(I))*100
1410 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT :
PRINT "ER(";COUNTER,I;")=";ER(COUNTER,I)
1420 AM(I)=AM(I)/12000:C.I(COUNTER,I)=(CMI(COUNTER,I)/12000)
1430 NEXT I
1440 NEXT COUNTER
1450 FOR I=1 TO N
1460W(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1470 NEXT I
1480 FOR COJNT=1 TO 3
1500 IF COUNT=1 THEN LPRINT "LOAD NO. LOAD IN Mu (test) :lu ([]calc)
Mu(*calc) Mu (test) Mu(test)
1510 IF COUNT=2 TIEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (* calc)
1520 IF COUNT=3 THEN LPRINT "IOAD NO. LOAD IN Yu (test) Mu ([]calc)
Mu(calc) Mu (test) Mu(test)
1530 IF COUNT=1 THEN LPRINT "' KIPS KIP-FT KIP-FT
1540 IF COUNT=2 THEN LPRINT " Mu(*calc) KIPS KIP-FT KTP ([lcalc) KIP-FT
1550 IF COUNT=3 THEN LPRINT " Mu(calc)" KIPS KIP-FT K KIP-FT
1570 FOR I=N TO N

```

```

 I,W(I),AM(I),CNI(0,I), CIL(1,I),ACCU(0,I),ACCU(1,I)
 1590 NEXT I

```
```

1600 FOR I=2 TO N

```

```

 I,W(I),AM(I),CM(1,I),CH(2,I),ACCU (1,I), ACCU(2,I)
 1620 IF I<N THEN GOTO 1640
    ```

```

 I,W(I),AM(I),CH}(0,I),Ci(2,I),ACCU(0,I),ACCU(2,I
 1640 IF COUNT = 2 THEN LPRINT
 1650 NEXT I
 1670 NEXT COUNT
 1680 FOR COUNTER=0 TO 2
 1690 FOR I=1 TO N
 1700 CM(COUNTER,I)=(CM(COUNTER,I)*12000).
 1710 NEXT I
 1720 NEXT COUNTER
 1740 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
 1750 LPRINT "
 1760 FOR I=2 TO 17
 1770 IF STRO(I)<6700 THEN EC=6216845!
 1780 IF STRO(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
 1790 IF STRO(I)>9700 THEN EC=3828919!
 1800 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
 1810 MA (I) =AM(I)
 1820 YT (I) = (6-NAT(I))
1830 IC(I)=(WB*(TD^3))/12+(A*(YT(I)^2))
1840 YS(I)=(D-NAT(I))
1850 IS(I)=(((ES/EC)-1)*AS)*(YS(I)^2)
1860 IT(I) =IC(I)+IS(I):PRINT "ITCG=";IT(I)
1870 ICCR (I) =(NB**(NAT(I)^3)/12)+((WB*NAT}(I))**((NAT(I)/2)^2)
1830 NS=(ES/EC)
1890 ISCR(I)=(NS*AS)*(YS(I)* 2)
1900 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1910 FCR=7. 5*SQR(FC)
1920 MCR (I) = (FCR*IT (I))/(TD-NAT(I))
1930 TI (I) =(`MCR(I) /(106.96*12000) * 3)
1940 IE (I) =(TI (I)*IT (I))+((1-TI(I) *ITCR(I))
1950 IF AM(I)*12000<MCR(I) THEN IE(I)=IT(I)
1960 PRINT "TI=";IE(I)
1970 DEFC(I)=(23*N(I)**(84*3)*1000)/(1296*EC*IE(I))
1980 ACCD(I)=(DEFA(I)/DEFC(I))

```

```

2010 NEXT I
2030 END
2040 NS=3
2050 FOR K=1 TO NS
2060 C=A(K,K)
2070 FOR J=K TO (MS+1)
2080 A(K,J)=A(R,J)/C
2090 NEXT J
2100 FOR S=1 TO NS
2110 IF S=K THEN GOTO 2160
2120 C=-A(S,K)
2130 FOR J=K TO (NS+1)
2140 A(S,J)=A(S,J)+(C*A(R,J))
2150 NEXT J
2160 NEXT S
2170 NEXT K
2180 XX(1)=A(I,NS+1)
2190 XX(2)=A(2,NS+1)
2200 XX(3)=A(3,NS+1)
2210 REIURN

```

\section*{APPENDIX IV}
tables and figures

Toble 3.1: Tensile Test Results for Steel Reinforcing Bars.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Bar } \\
& \text { No. }
\end{aligned}
\] & Area sq. in. & \[
\begin{aligned}
& \text { Yield } \\
& \text { Load } \\
& \text { in lbs. }
\end{aligned}
\] & Ultimate Load in lba. & Yield Stress in psi & Ultimate Stress in pai \\
\hline 3 & 0.11 & 6625 & 7600 & 60000 & 69100 \\
\hline 3 & 0.11 & 7400 & 10300 & 57000 & 93600 \\
\hline 4 & 0.20 & 12400 & 16450 & 62000 & 82200 \\
\hline 4 & 0.20 & 12150 & 16050 & 61000 & 80200 \\
\hline 7 & 0.60 & 38800 & 63600 & 54700 & 106000 \\
\hline 7 & 0.60 & 38000 & 63600 & 64700 & 105000 \\
\hline 9 & 1.00 & 63800 & 97300 & 63800 & 97300 \\
\hline Kean & Yield Stre & 55 of \#3 & bars & \(=63500 \mathrm{psi}\) & \\
\hline Mean & Yield Stze & 55 of \#4 & \(b=r 5\) & \(=61500 \mathrm{psi}\) & \\
\hline Mean & Yieid Stre & 5s of \#7 & bars & \(=64700 \mathrm{psi}\) & \\
\hline көaл & Yield Stre & 5s of \#9 & bars & \(=63900 \mathrm{psi}\) & \\
\hline 115. & \(=4.45 \mathrm{~N}\) & & & & \\
\hline 1 psi & \(=6.89 \mathrm{kF}\) & & & & \\
\hline
\end{tabular}

Table 4.1: Compressive Strength (3 days) Test Results of 3 in. X 6 in. Cyilnders Made By Regular Mixing Technique
\begin{tabular}{ccc}
\begin{tabular}{c} 
Cylinder \\
No.
\end{tabular} & Crushing Load & Crushing Strength \\
1 & 44400 & psi \\
2 & 50500 & 6300 \\
3 & 51500 & 7100 \\
4 & 43000 & 7300 \\
2 & & 6100
\end{tabular}
\begin{tabular}{ll} 
Average Cylinder Compressive 5trength fóc & \(=6700 \mathrm{psi}\) \\
Population Standard Deviation. & \(6=590 \mathrm{psi}\) \\
Coefficient of Variation & \(V=8.8 x\)
\end{tabular}

1 1b. \(=4.45 \mathrm{~N}\)
\(1 \mathrm{psi}=6.89 \mathrm{kPa}\)
Table 4.2: Compressive Strength (3 days) Test Results of 3 in. X 6 in. Cylinders Made by Cenent Sluryy Method
```


Cylinder

```
Crushing Load 1 bs .
```

Grushing Strength pal

```
1
\begin{tabular}{ll}
48500 & 6500 \\
45000 & 6400 \\
48000 & 6800 \\
51500 & 7300
\end{tabular}
```

Average Cylinder Compressive Strength fó $=6800 \mathrm{psi}$
Population Standard Deviation. $s=370 \mathrm{psi}$
Coefficient of Variation $v=5.0 \%$

$1 \mathrm{lb}=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPs}$

Table 5.1: Compressive Strength (28 days) Test Results of 3 1n. X 6 in. Cylinders Made from the Mix Proportiona taken from Ref. 15

| CyIinder
 No. | Crushing Load
 lba. | crushing St |
| :---: | :---: | :---: |
| 1 | 60700 | 8600 |
| 2 | 63500 | 9000 |
| 3 | 65700 | 9300 |
| 4 | 63700 | 9000 |
| 5 | 60000 | 8500 |
| 6 | 60100 | 8500 |

```
Average Cylinder Compressive Strength fíc 8800 psi
```

Population Standard Deviation.
Coefficient of Variation $5=330 \mathrm{psi}$
$v=4.0 \%$

1 Ib. $=4.45 \mathrm{~N}$
$1 \mathrm{pEi}=6.89 \mathrm{kPa}$

Table 5.2: Compressive Strength Test Results of 3 in. X 6 in. Cylinders for Beam 1 (SSiB)


```
Average Cylinder Compressive Strength f'e = 9500 psi
Population Standard Deviation. }\quad6=1180 ps
Coefficient of Variation V = 12.5*
```

1 lb. $=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kpa}$. Cylindera for Beam 2 (SS2B)

| Cylinder
 No. | Crushing Load
 Ibs. | Crushing Strength |
| :---: | :---: | :---: |
| psi | | |

$11 \mathrm{~b} .=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

Table 5.5: Compressive Strength Test Results of 3 in. $X 6 i n$. Cylindere for Beam 4 (OR1)

| Cylinder
 No. | Crushing Load
 lbs. | crushing Strength |
| :--- | :---: | :---: |
| OR1-1 | 83500 | 11800 |
| OR1-2 | 94000 | 11900 |
| OR1-3 | 83000 | 11700 |
| OR1-4 | 91000 | 12900 |
| OR1-5 | 76000 | 10800 |
| OR1-6 | 93000 | 13200 |
| OR1-7 | 93500 | 13200 |
| OR1-8 | 75600 | 10700 |
| OR1-9 | 91300 | 12900 |

Average Cylinder Compressive Strength fó= 12100 psi
Population Standard Deviation. $\quad 6=980$ psi
Coefficient of Variation
$v=8.1 \%$
$1 \mathrm{lb}=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$
TABLE 5.6 Load-Strain Data for Specimen (SSlB)

| Load No. | Load ill lbs. | 41 | \#2 | \$3 | 44 | \#5 | Strain Readings ($\mu \in$) | | | | $\# 10$ | \#11 | 412 | \#13 | 114 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | 16 | 47 | \#8 | *9 | | | | | |
| 1 | 0 | 0 | 7 | -7 | 2 | 4 | 2 | 0 | 0 | -3 | 9 | 7 | 2 | 2 | 3 |
| 2 | 2970 | -22 | -22 | -28 | -13 | -4 | 3 | 11 | 18 | 21 | 25 | 15 | 7 | 0 | -14 |
| 3 | 5925 | -44 | -47 | -7 | -23 | -3 | 10 | 29 | 21 | 41 | 41 | 25 | 13 | -1 | -27 |
| 4 | 8965 | -70 | -75 | 5 | -34 | -5 | 19 | 49 | -2 | 59 | 41 | 36 | 15 | -6 | -42 |
| 5 | 11865 | -99 | -108 | -28 | -49 | -7 | 23 | 64 | -15 | -16 | -9 | 63 | 34 | -10 | -57 |
| 6 | 14835 | -129 | -139 | 76 | -57 | -5 | 36 | 59 | -18 | -20 | -66 | 64 | 43 | -12 | -71 |
| 7 | 17665 | -164 | -185 | 50 | -69 | 4 | 46 | 15 | -39 | -26 | -81 | 29 | 60 | -8 | -86 |
| 8 | 20645 | -209 | -255 | -146 | -85 | 22 | 70 | -31 | -49 | -25 | -102 | -40 | 819 | 33 | -85 |
| 3 | 20000 | -210 | -253 | -149 | -80 | 25 | 48 | -43 | -52 | -25 | -112 | -41 | 93 | 36 | -85 |
| 10 | 23715 | -259 | -309 | -174 | -77 | 37 | 9 | -58 | -46 | 1 | -124 | -38 | 1406 | 45 | -100 |
| 11 | 26690 | -299 | -360 | -176 | -69 | 23 | -8 | -70 | -45 | 47 | -161 | -43 | 1895 | 39 | -107 |
| 12 | 29700 | -336 | -412 | -214 | -73 | 8 | -18 | -78 | -49 | 81 | -175 | -43 | 2319 | 8 | -112 |
| 13 | 32710 | -372 | -468 | -289 | -70 | 5 | -12 | -85 | -57 | 112 | -209 | -29 | 2689 | -7 | -118 |
| 14 | 34800 | -393 | -501 | -314 | -74 | -5 | -23 | -91 | -64 | 145 | -221 | -8 | 2947 | -21 | -119 |
| 15 | 36555 | -413 | -533 | -337 | -79 | -6 | -20 | -92 | -65 | 170 | -224 | -14 | 3131 | -26 | -123 |
| 16 | 38015 | -428 | -555 | -307 | -79 | -10 | -24 | -98 | -67 | 193 | -230 | -15 | 3265 | -31 | -125 |
| 11 | 39790 | -448 | -584 | -323 | -83 | -12 | -25 | -99 | -69 | 214 | -235 | -1 | 3423 | -33 | -131 |
| 18 | 42000 | -467 | -614 | -342 | -88 | -16 | -27 | -100 | -72 | 240 | -246 | -2 | 3581 | -37 | -136 |
| 19 | 37410 | -429 | -556 | -247 | -75 | -22 | -33 | -102 | -81 | 219 | -238 | 4 | 3343 | -43 | -123 |
| 20 | 37190 | -427 | -555 | -256 | -74 | -24 | -37 | -102 | -81 | 217 | -236 | 3 | 3317 | -44 | -122 |
| 21 | 38200 | -436 | -570 | -256 | -79 | -23 | -37 | -105 | -81 | 218 | -240 | 3 | 3345 | -45 | -128 |
| 22 | 42006 | $-4,68$ | -618 | -299 | -94 | -26 | -41 | -106 | -79 | 234 | -248 | 1 | 3521 | -44 | -142 |

[^1]| Load in kips | $\begin{aligned} & \text { Deflection } \\ & \text { in. } \times 10^{-3} \end{aligned}$ | $\begin{aligned} & \text { Avg. } 5 \text { train } \\ & \text { at top. } \\ & \text { in./in. Xio } \\ & \text { (gages } 162 \text {) } \end{aligned}$ | $\begin{aligned} & \text { Avg.Strain } \\ & \text { at } 2 \text { in. } \\ & \text { in./in. } \times 10^{-6} \\ & \text { (gages } 3614 \text {) } \end{aligned}$ | $\begin{aligned} & \text { Avg. } 5 \text { train } \\ & \text { at } 4 \text { in. } \\ & \text { in./in. } \times 10^{-6} \\ & \text { (gages } 4 \& 13 \text {) } \end{aligned}$ | $\begin{aligned} & \text { Avg. } 5 \text { train } \\ & \text { at } 6 \text { in. } \\ & \text { in./in. X10 } \\ & (9 a 9 e s ~ 5612) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0 | 3 | -2 | 2 | 3 |
| 3.0 | 68 | -22 | -21 | -6 | 1 |
| 5.9 | 90 | -45 | -17 | -12 | 5 |
| 9.0 | 98 | -72 | -28 | -20 | 5 |
| 11.9 | 109 | -104 | -43 | -30 | 14 |
| 14.8 | 117 | -134 | -71 | -34 | 19 |
| 17.7 | 129 | -17c | -81 | -38 | 32 |
| 20.6 | 143 | -232 | -116 | -40 | 22 |
| 20.0 | 143 | -231 | -117 | -43 | 25 |
| 23.7 | 161 | -284 | -137 | -45 | 37 |
| 26.7 | 177 | -329 | -142 | -54 | 23 |
| 29.7 | 192 | -374 | -164 | -63 | 8 |
| 32.7 | 209 | -420 | -204 | -70 | 5 |
| 34.8 | 218 | -447 | -216 | -74 | -5 |
| 36.6 | 226 | -473 | -230 | -79 | -6 |
| 38.0 | 234 | -492 | -216 | -79 | -10 |
| 39.8 | 243 | -516 | -227 | -83 | -12 |
| 42.0 | 661 | -540 | -239 | -88 | -16 |
| 37.4 | 661 | -493 | -185 | -75 | -22 |
| 37.2 | 661 | -491 | -189 | -74 | -24 |
| 38.2 | 661 | -503 | -192 | -79 | -23 |
| 42.0 | 668 | -543 | -221 | -94 | -26 |

TA BLE 5.8 Whittemore Strain Gage Readinga for Specimen 1 (SS1B)

| $1 \mathrm{lb} .=4.45 \mathrm{~N}$ |
| :--- |
| 1 in. |
| 125.4 mun. |

TABIE 5.9 Load-Strain Data for Specimen 2 (SS2B)

| $\begin{gathered} \text { load } \\ \text { No. } \end{gathered}$ | Average
 lood in lbs. | Strain Gage Readinga ($\mu \epsilon$) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 41 | * 2 | 3 | 84 | 45 | 96 | \# | 8 |
| 1 | 0 | -11 | $\therefore-13$ | -12 | -18 | -14 | -16 | -14 | -8 |
| 2 | 7880 | -87 | -75 | -51 | -37 | -14 | -23 | -42 | -55 |
| 3 | 16900 | -192 | -171 | -102 | -54 | -4 | -10 | -59 | -115 |
| 4 | 23820 | -318 | -280 | -137 | -39 | -40 | -49 | -28 | -167 |
| 5 | 31762 | -451 | -396 | -172 | -28 | -39 | -92 | 159 | -216 |
| 6 | 39640 | -574 | -495 | -200 | -20 | -64 | -106 | 453 | -259 |
| 7 | 47350 | -693 | -597 | -239 | -31 | -69 | -119 | 578 | -297 |
| 8 | 53407 | -783 | -679 | -275 | -37 | -69 | -130 | 610 | -343 |
| 9 | 59159 | -869 | -765 | -316 | -45 | -73 | -140 | 688 | -371 |
| 10 | 0 | | 9 | 5 | 1 | 0 | 1 | -3 | -3 |
| 11 | 59830 | - | -794 | -368 | -38 | 22 | -7 | 423 | -369 |
| 12 | 63850 | - | -841 | -394 | -41 | 22 | -7 | 446 | -390 |
| 13 | 67760 | - | -896 | -421 | -4, | 20 | -11 | 468 | -412 |
| 14 | 11705 | - | -947 | -451 | -50 | 21 | -13 | 483 | -436 |
| 15 | 75750 | - | -995 | -474 | -49 | 31 | -7 | 493 | -461 |
| 16 | 79760 | - | -1057 | -508 | -56 | 31 | -7 | 508 | -488 |
| $1 /$ | 80365 | - | -1086 | -517 | -50 | 29 | -7 | 557 | -494 |
| 18 | 83500 | - | -1147 | -540 | -48 | 22 | -12 | 585 | -525 |
| 11) | 862700 | - | -1138 | -525 | -40 | 20 | -15 | 507 | -552 |

A The spreater beam failed at 60000 lbs. The beam was reloaded using a new spreader beam. The new no load reating was nead in further calcalations

$$
\begin{aligned}
& 111 .=4.45 \mathrm{~N} \\
& 1 \mathrm{in.}=23.4 \text { nan. }
\end{aligned}
$$

Table 5.10: Load-Average Strain Data for Specimen 2 (5528)

| $\begin{aligned} & \text { Lood in } \\ & \text { kios } \end{aligned}$ | $\begin{aligned} & \text { Deflection } \\ & \text { in. } \times 10^{-3} \end{aligned}$ | Avg. Strain at top. in./in. $\times 10^{-6}$ (gages 1\&2) | Avg.5train at 2 in . in. $/$ in. $\times 10^{-6}$ (gaces 3\&8) | Avg.5train at 4 in . in./in. X10-6 (gages 487) | $\begin{aligned} & \text { Avg. } 5 t r a i n \\ & \text { at in. } \\ & \text { in. } / i n . X 10^{-6} \\ & (9 a g e s ~ 566) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0 | -12 | -10 | -16 | : 5 |
| 7.9 | 27 | -81 | -53 | -39 | -13 |
| 16.9 | 60 | -181 | -109 | -57 | -7 |
| 23.8 | 95 | -259 | -152 | -33 | -44 |
| 31.8 | 138 | -423 | -194 | -23 | -85 |
| 31.8 | 138 | -423 | -194 | -28 | -55 |
| 39.6 | 165 | -535 | -230 | -20 | -85 |
| 47.4 | 217 | -613 | -268 | -31 | -64 |
| 53.4 | 260 | -731 | -30゙3 | -37 | -95 |
| 59.2 | 294 | -817 | -344 | -45 | -105 |
| 0 | -- | 9 | 1 | -1 | \pm |
| 59.8 | 336 | -794 | -368 | - 38 | 4 |
| 63.9 | 354 | -841 | -392 | -41 | is |
| 67.8 | 374 | -896 | -417 | -45 | 5 |
| 71.7 | 395 | -947 | -444 | -50 | 4 |
| 75.8 | 418 | -995 | -457 | -49 | : 2 |
| 73.8 | 430 | -1057 | -498 | -56 | 2" |
| 80.4 | 460 | -1086 | -505 | -50 | -i |
| 83.5 | 472 | -1147 | -533 | --8 | 5 |
| 86.7 | 495 | -1138 | -539 | -40 | 3 |
| $1 \mathrm{kip}=$ | . 45 N | | | | |

TAble 5.11 Whittemore Strain Gage Readings for Shear Specimen 2 (SS2B)

| Load in lbs. | Whittemore Strain Gage | | Readings $\left(10^{-5}\right.$ | $i n / i n)$ | Average Straín Gage Readinga | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\# 1$ at 8 " | \#2 at 10" | \#3 at 10" | \#4 at 8" | At 8" Depth | At 10" Depth |
| 0 | 0 | 0 | 0 | 0 | 0 | |
| 7880 | 10 | 12 | 1 | 12 | 11 | 7 |
| 16900 | 15 | 17 | 6 | 11 | 13 | 12 |
| 23820 | 28 | 54 | 18 | 28 | 28 | 36 |
| 31762 | 45 | 72 | 30 | 39 | 42 | 51 |
| 39640 | 60 | 107 | 48 | 43 | 52 | 78 |
| 47350 | 78 | 117 | 67 | 62 | 70 | 87 |
| 53407 | 88 | 131 | 81 | 78 | 83 | 106 |
| 59159 | 97 | 142 | 96 | 87 | 92 | 119 |
| 61000 | 98 | 137 | 100 | 90 | 94 | 119 |
| 6.1150 | 78 | 137 | 105 | 81 | 80 | 121 |
| 63125 | 90 | 137 | 112 | 82 | 86 | 125 |

TAble 5.12 Load-Strain Data for Specimen 3 (URI)

| $\begin{gathered} \text { Load } \\ \text { No. } \end{gathered}$ | Average Load in 1bs. | Strain Gage Readings ($M E$) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 11 | 12 | 43 | 14 | 45 | 46 | 47 | $\# 8$ |
| 1 | 0 | 4 | 3 | 2 | -4 | -3 | -1. | -1 | -1 |
| 2 | 11810 | -98 | -137 | -60 | -28 | 0 | 13 | -23 | -58 |
| 3 | 25000 | -280 | -375 | -116 | -5 | -18 | 30 | -31 | -133 |
| 4 | 35670 | -412 | -542 | -155 | 5 | -22 | 25 | -43 | -181 |
| 5 | 47820 | -569 | -733 | -207 | 1 | -36 | 54 | 47 | -227 |
| 6 | 59520 | -710 | -911 | -258 | -6 | -36 | 58 | 140 | -278 |
| 7 | 67570 | -809 | -1031 | -296 | -5 | -42 | 57 | 162 | -317 |
| 8 | 75400 | -945 | -1188 | -337 | 0 | -44 | 66 | 255 | -363 |
| 9 | 83460 | -1067 | -1337 | -386 | -2 | -45 | 70 | 315 | -409 |
| 10 | 87450 | -1138 | 1423 | -403 | 1 | -45 | 75 | 364 | -435 |
| 11 | 89200 | -1327 | -1620 | -359 | 20 | -61 | 91 | 666 | -391 |
| 12 | 85100 | -1352 | -1653 | -357 | 15 | -61 | 75 | 561 | -385 |
| 13 | 85100 | -1545 | -1845 | -335 | 3 | -74 | 143 | 451 | -342 |
| 14 | 87760 | -1609 | -1937 | -329 | -18 | -72 | 103 | 387 | -321 |
| 15 | 88660 | -1786 | -2141 | -277 | -21 | -79 | 182 | 493 | -233 |
| 16 | 91000 | -2019 | -2402 | -209 | -30 | -82 | 193 | 564 | -134 |
| 11 | 91510 | -2187 | -2606 | -156 | -27 | -77 | 127 | 531 | -121 |
| 18 | 91680 | -2198 | -2628 | -158 | -27 | -78 | 109 | 502 | -124 |
| 19 | 90310 | -2002 | -2420 | -287 | -25 | -72 | 29 | 332 | -181 |
| 20 | 90800 | -1885 | -2307 | -348 | -36 | -82 | 1 | 161 | -272 |

Table 5.13: Load-Average 5train Data for Specimen 3 (UR1)

| Load in | $\begin{aligned} & \text { Deflection } \\ & \text { in. } \times 10^{-3} \end{aligned}$ | Avg.5train
 at too.
 in. $/$ in. $\times 10^{-6}$
 (cages 162) | Avg. Strain
 at 2 in.
 in. $/$ in. $\times 10^{-6}$
 (gages 368) | Avg. Strain
 at 4 in .
 in./in. $\times 10^{-6}$
 (gages 4\&7) | $\begin{aligned} & \text { Avg.Strain } \\ & \text { st } 6 \text { in. } \\ & \text { in. } 1 \text { in. } \times 10^{-5} \\ & \text { (gages } 5 \& 6 \text {) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

| 0.0 | 0 | 4 | 1 | -3 | -2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11.8 | 48 | -218 | -59 | -25 | 6 |
| 25.0 | 116 | -328 | -124 | -31 | 24 |
| 35.7 | 170 | -477 | -168 | -43 | 2 |
| 47.8 | 230 | -651 | -237 | 47 | 9 |
| 59.5 | 294 | -810 | -258 | 140 | 13 |
| 67.6 | 324 | -920 | -307 | 162 | 8 |
| 75.4 | 378 | -1066 | -350 | 255 | 11 |
| 83.5 | 424 | -1202 | -398 | 315 | 13 |
| 87.5 | 450 | -1280 | -419 | 364 | -5 |
| 89.2 | 478 | -1473 | -512 | 665 | :5 |
| 85.1 | 582 | -1502 | -371 | 561 | 7 |
| 85.1 | 640 | -1695 | -338 | 451 | -5 |
| \$7.9 | 685 | -1773 | -325 | 357 | 15 |
| 88.7 | 755 | -1964 | -255 | 493 | 51 |
| 91.0 | 780 | -2210 | -171 | 564 | 55 |
| 91.5 | 780 | -2396 | -138 | 51 | 25 |
| 91.7 | 780 | -2413 | -141 | 502 | 15 |
| 90.3 | 780 | -2211 | -234 | 332 | -2 |
| 90.8 | 780 | -2096 | -310 | $16 i$ | -42 |
| 1 kip | (N | | | | |

Table 5.14 Wiftemore Strain Gage Readings for Specimen 3 (UR1)

| Load in lbs. | Whittemore Strain Gage Readinga ($10^{-5} \mathrm{in} / \mathrm{in}$) | | | | Average Strain Gage Readinga | | |
|---|---|---|---|---|---|---|---|
| | $\\| 1 \mathrm{at} 8^{\prime \prime}$ | 02 at $10^{\prime \prime}$ | 3 at $10^{\prime \prime}$ | 44 at $8^{\prime \prime}$ | At 8" Depth | At 10" Depth |
| 0 | - | 0 | 0 | - | - | 0 |
| 11810 | - | 14 | 51 | - | - | 33 |
| 25000 | - | 57 | 110 | - | - | 84 |
| 35670 | - | 84 | 126 | - | - | 105 |
| 47820 | - | 110 | 175 | - | - | 143 |
| 59520 | - | 124 | 160 | - | - | 142 |
| 67570 | - | 121 | 165 | - | - | 143 |
| 75400 | - | 147 | 176 | - | - | 162 |
| 83460 | - | 158 | 203 | - | - | 181 |
| 87450 | - | 160 | 204 | - | - | 182 |

$1 \mathrm{lb}=4.45 \mathrm{~N}$
$1 \mathrm{in} .=25.4 \mathrm{man}$.
TABAE 5.15 Load-Strain Data for Specimen 4 (ORI)

| $\begin{aligned} & \text { Load } \\ & \text { No. } \end{aligned}$ | Average Load in 1 bs . | \# | \# | Strain Gage Readinga ($\mu \boldsymbol{\epsilon}$) | | | | 77 | \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 13 | 4 | 4. | 46 | | |
| 1 | 0 | -12 | 10 | -11 | 7 | 2 | -2 | -7 | 9 |
| 2 | 10800 | -101 | -125 | -76 | -40 | 10 | 2 | -39 | -77 |
| 3 | 19770 | -181 | -224 | -131 | -60 | 16 | 12 | -61 | -140 |
| 4 | 30000 | -285 | -355 | -196 | -78 | 35 | 36 | -89 | -220 |
| 5 | 40008 | -395 | -491 | -266 | -99 | 105 | 148 | -117 | -303 |
| 6 | 50900 | -504 | -622 | -337 | -117 | 181 | 368 | -140 | -381 |
| 7 | 60008 | -615 | -757 | -407 | -133 | 301 | 524 | -165 | -464 |
| 8 | 200008 | -727 | -894 | -480 | -154 | 411 | 649 | -194 | -547 |
| 9 | 80004 | -847 | -1041 | -560 | -176 | 515 | 751 | -223 | -633 |
| 10 | 90000 | -967 | -1186 | -641 | -201 | 618 | 844 | -257 | -721 |
| 11 | 99504 | -1092 | -1335 | -726 | -226 | 716 | 925 | -292 | -813 |
| 12 | 105620 | -1373 | -1438 | -784 | -246 | 768 | 963 | -314 | -873 |
| 13 | 1120108 | -1250 | -1533 | -837 | -266 | 813 | 993 | -342 | -933 |
| 14 | 118000 | -1328 | -1634 | -896 | -285 | 850 | 1015 | -364 | -992 |
| 15 | 126000 | -1409 | -1733 | 954 | -303 | 892 | 1036 | -388 | -1054 |
| 16 | 1360100 | -1494 | -1843 | -1017 | -327 | 925 | 1048 | -414 | -1119 |
| 17 | 142000 | -1572 | -1946 | -11375 | -345 | 968 | 1065 | -439 | -1179 |
| 13 | 148000 | -1658 | -2051 | -1138 | -369 | 999 | 1078 | -468 | -1246 |
| 19 | 1340003 | -1756 | -2189 | -1211 | -398 | 1024 | 1081 | -501 | -1322 |
| 20 | 16.00000 | -1844 | -2.103 | -1218 | -420 | 1056 | 1091 | -529 | -1392 |
| 21 | 1660000 | -1932 | -2411 | -1339 | -442 | 1095 | 1107 | -558 | -1458 |
| 22 | 1/0000) | -2032 | -25s 1 | -1414 | -471 | 1129 | 1109 | -591 | -1535 |
| 21 | $1 / 2060$ | -2101 | -26.58 | -1471 | -492 | 1156 | 1107 | -617 | -1600 |
| 24 | 1/4006 | -2152 | -2729 | -1508 | -508 | 1167 | 1097 | -640 | -1642 |
| 2') | 1160000 | -2197 | -2799 | -1545 | -524 | 1179 | 1086 | -658 | -1683 |
| 26 | $1 / 16046$ | -2244 | -2830 | -1635 | $-54,43$ | 11186 | (1)74 | -679 | -1728 |
| 21 | 186000) | -2284 | -2925 | -1618 | -531 | 1229 | 11063 | -699 | -1774 |
| ${ }^{28}$ | | -1142 | -1721 | -2419 | -921 | 401 | 484 | -1012 | -2122 |

Table 5．16：Load－Average Strain Data for 5pecimen 4 （OR1）

| 0.0 | 0 | －1 | －1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10.8 | 132 | －113 | －77 | －39 | 6 |
| 19.8 | 162 | －202 | －135 | －50 | 14 |
| 30.0 | 200 | －320 | －208 | －84 | 35 |
| 40.0 | 232 | －443 | －285 | －108 | 127 |
| 50.0 | 268 | －563 | －359 | －129 | 274 |
| 60.0 | 306 | －659 | －435 | －149 | 422 |
| 70.0 | 342 | －810 | －513 | －174 | 530 |
| 80.0 | 378 | －944 | －596 | －199 | 383 |
| 90.0 | 418 | －1078 | －681 | －229 | 731 |
| 99.5 | 440 | －1214 | －769 | －259 | 53° |
| 105.6 | 461 | －1305 | －828 | －280 | 855 |
| 112.0 | 486 | －1392 | －895 | －304 | 903 |
| 118.0 | 504 | －1481 | －954 | －325 | 523 |
| 124.0 | 532 | －1571 | －1004 | －346 | 95 |
| 136.0 | 558 | -1668 | －1068 | －371 | 947 |
| 142.0 | 583 | －1759 | -1127 | －352 | 10：7 |
| 148.0 | 583 | －1858 | －1192 | -419 | 10ジャ |
| 154.0 | 583 | －1973 | －1335 | －475 | 1075 |
| 160.0 | 583 | －2073 | -1335 | －475 | 1073 |
| 165.0 | 583 | -2174 | －1399 | －500 | 1101 |
| 170.0 | 583 | －2292 | －1474 | －531 | －119 |

| 172.0 | 583 | -2383 | -1535 | -555 | 1132 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 174.0 | 583 | -2441 | -1575 | -574 | 1132 |
| 176.0 | 583 | -2498 | -1614 | -591 | $1: 32$ |
| 178.0 | 583 | -2562 | -1681 | -610 | 1130 |
| 180.0 | 583 | -2604 | -1696 | -626 | 1146 |

$1 \mathrm{kip}=4.45 \mathrm{~N}$
$1 \mathrm{in} .=25.4$ mп

Table 5.17: gtress strain relation far 3 in. X 6 in. eylincer for Specimen-1 (SSI8)

| $\begin{gathered} \text { Load in } \\ \text { lbs. } \end{gathered}$ | Stress pai | Longitudinsl Strain Feadinga UG | | Average Longitudinal Strain Readings U6 |
| :---: | :---: | :---: | :---: | :---: |
| | | Gage \#1 | Gage \#2 | |
| 0 | 0 | 0 | -1 | 1 |
| 5000 | 700 | -37 | -165 | -101 |
| 10000 | 1400 | -164 | -243 | -203 |
| 15000 | 2100 | -297 | -328 | -313 |
| 20000 | 2800 | -413 | -421 | -417 |
| 25000 | 3500 | -535 | -524 | -529 |
| 30000 | 4200 | -650 | -523 | -637 |
| 33000 | 4700 | -728 | -689 | -708 |
| 36000 | $5: 00$ | -804 | -755 | -779 |
| 39000 | 5500 | -882 | -823 | -852 |
| 42000 | 5900 | -952 | -886 | -919 |
| 45000 | 5400 | -1024 | -951 | -988 |
| 48000 | 5800 | -2103 | -1024 | -1064 |
| 52000 | 7400 | -1202 | -1116 | -1159 |
| 55:00 | 7800 | -1283 | -1:92 | -1238 |
| 58000 | 8200 | -1369 | -1275 | -1322 |
| 61000 | 8600 | $-1 \leqq 42$ | -1348 | - 1395 |
| 64000 | 9100 | -1519 | -1425 | -1472 |
| 67400 | 5500 | -2511 | -1522 | -1557 |
| 70000 | 5900 | -1685 | -1597 | -1541 |

(Table 5.17 continued)

| $\begin{gathered} \text { Load in } \\ \text { 1bs. } \end{gathered}$ | Stress pal | Longitudinal Strain Readings UG | | Average Strain | Longitudinal Readings UG |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Gage \# | Gage \#2 | | |
| 73000 | 10300 | -1787 | -1710 | | -1747 |
| 75000 | 10800 | -1884 | -1811 | | -1847 |
| 78200 | 11100 | -1953 | -1889 | | -1921 |
| 81000 | 11500 | -2058 | -2014 | | -2037 |

$11 b=4.45 \mathrm{~N}$
$1 \mathrm{pai}=6.89 \mathrm{kPa}$
TABLE 5.18 Stresestrain Relation and Poisson's Ratio for

| l.oad
 in
 I Des. | | Longitudins (ULE) | | Tranmerse ($\mu \in$) | | AverageLongitudinalStrain(Mt) | Average Transverae Strain ($\mu \epsilon$) | Paísaon'a Racio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Strain | leadings | Strain | Resdinga | | | |
| | Stress
 pis. | 1 | 12 | 13 | 14 | | | |
| 2000 | 0 | 2 | 1 | 3 | 3 | - 1 | -- $\frac{(\mu \mathrm{C})}{3}$ | |
| 2000 5000 | 280 | -50 | -50 | 28 | 3 | -50 | 16 | 0.320 |
| 5000 10009 | 710 | -89 | -128 | 37 | 5 | -109 | 21 | 0.192 |
| 10008 150004 | 1400 | -192 | -261 | 50 | 17 | -227 | 14 | 0.149 |
| 1501001 20000 | 2100 | -294 | -383 | 58 | 31 | -339 | 44 | 0.149 0.131 |
| 20000 250001 | 2820 | -392 | -507 | 65 | 45 | -450 | 55 | |
| 250001 30000 | 3540 | -491 | -640 | 78 | 59 | -506 | 69 | 0.122 0.121 |
| 30000 330000 | 4240 | -586 | -7611 | 92 | 71 | -673 | 82 | 0.121 |
| 33000 360000 | 4670 | -650 | -835 | 100 | 79 | -743 | 90 | 0.121 |
| 360000 390100 | 51290 | -712 | -915 | 109 | 88 | -814 | 99 | 0.121 |
| 39010
 42000 | 5520 | -779 | -995 | 119 | 98 | -887 | 109 | 0.122 |
| 42000 45000 | 5940 | -838 | -1065 | 125 | 106 | -952 | 116 | 0.121 |
| 45000 400000 | 6370 | -907 | -1148 | 136 | 115 | -1028 | 126 | 0.121 |
| 400000 51000 | 6790 | -968 | -1222 | 143 | 124 | -1095 | 134 | 0.122 |
| S1000 S4000) | 7220) | -11135 | -1313 | 151 | 137 | -1169 | 144 | 0.123 |
| 54000 $3 / 0000$ | 7640 | -1102 | -1385 | 163 | 145 | -1244 | 154 | 0.123 |
| 37000 600000 | 8060 | -1169 | -1466 | 175 | 159 | -1318 | 167 | 0.126 |
| 600000 61000 | 8490 | -1242 | -1550 | 184 | 171 | -1396 | 178 | |
| 610000 62000 | 8910 | -1319 | -163H | 192 | 183 | -14, 79 | 188 | 0.128 0.127 |
| 6621001 690008 | 9141 | -1395 | -1727 | 203 | 196 | -1561 | 200 | 0.128 |
| 6900001 12000 | 9760 | -1482 | -1824 | 214 | 221 | -1653 | 218 | 0.132 |
| 120100 160600 | 10190 | -1541 | -1932 | 225 | 230 | -1756 | 228 | (1.130 |
| 1501800 17000 | 106111 | -167\% | -2011 | 236 | 213 | -1855 | 225 | 0.121 |
| 17000 19000 | 18890) | -1/59 | -211/ | 247 | 171 | -1938 | 209 | 0.108 |
| 19000 810000 | 11180 | -1845 | -22015 | 257 | 150 | -2025 | 204 | 0.101 |
| 810060 115006 | 11960 | -1931 | -229 | 269 | 115 | -2114 | 202 | 0.096 |
| 1310000 B2ano | $11 / 40$ | -2014 | -2194 | 286 | 140 | -2206 | 213 | 11.097 |
| B2000 $8 / 000$ | 12110 | -2114 | -2199 | 121 | 217 | -2711 | 279 | 1.097 0.121 |
| 010000 | 12110 | -2240 | -2114 | 326 | - | -24.77 | 2 | 0.121 |
| | | | | | | | | |

3 in. x 6 in. Cylinder for Specimen 2 (Ss20)

Table. 5.20: Actual and Calculated Moments using Triangular and Parabolic Stress Blocks for 5518

Load no. Load in Mu (test) Mu (^calc) Mu("calc) Mu (test) Mu(test) kips kip-ft kip-ft kip-ft Mu (^cale) Mu("cale)

| 2 | 3.0 | 3.5 | 3.1 | 3.3 | 1.11 | 1.04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5.9 | 6.9 | 5.1 | 4.1 | 1.35 | 1.67 |
| 4 | 9.0 | 10.5 | 7.9 | 6.5 | 1.32 | 1.61 |
| 5 | 11.9 | 13.8 | 11.2 | 9.2 | 1.24 | 1.51 |
| 6 | 14.8 | 17.3 | 13.8 | 12.7 | 1.25 | 1.36 |
| 7 | 17.7 | 20.6 | 17.2 | 15.0 | 1.20 | 1.38 |
| 8 | 20.6 | 24.1 | 21.6 | 19.7 | 1.11 | 1.22 |
| 9 | 20.0 | 23.3 | 21.7 | 19.9 | 1.07 | 1.17 |
| 10 | 23.7 | 27.7 | 25.9 | 23.5 | 1.07 | 1.18 |
| 11 | 25.7 | 31.1 | 30.3 | 26.0 | 1.03 | 1.20 |
| 12 | 29.7 | 34.7 | 34.5 | 29.7 | 1.00 | 1.17 |
| 13 | 32.7 | 38.2 | 38.6 | 34.9 | 0.99 | 1.09 |
| 14 | 34.8 | 40.6 | 50.4 | 38.3 | 0.81 | 1.06 |
| 15 | 36.6 | 42.6 | 53.5 | 40.6 | 0.80 | 1.05 |
| 16 | 38.0 | 44.4 | 56.4 | 40.5 | 0.79 | 1.10 |
| 17 | 39.8 | 46.4 | 59.6 | 42.6 | 0.78 | 1.09 |
| 18 | 42.0 | 49.0 | 63.3 | 44.8 | 0.77 | 1.09 |
| 19 | 37.4 | 43.6 | 60.4 | 38.1 | 0.72 | 1.14 |
| 20 | 37.2 | 43.4 | 61.2 | 38.3 | 0.71 | 1.13 |
| 21 | 38.2 | 44.6 | 61.7 | 39.4 | 0.72 | 1.13 |
| 22 | 42.0 | 49.0 | 66.0 | 44.1 | 0.74 | 1.11 |

$1 \mathrm{kip}=4.45 \mathrm{~N}$
$1 \mathrm{kip}-\mathrm{ft}=1.36 \mathrm{kN}-\mathrm{m}$

Table 5.22: Load and Stress Data for Shear Specimen II (552B) Using Cyiinder 5trese-5train Curve 2

| Load in kips | Noutral axis Depth in. | Stress at top,psi | Stress at 2 in.,psi | Stress at 4 in.,psi | 5tress at 6 in.,psi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7.9 | 6.01 | -440 | -280 | -160 | -220 |
| 6.9 | 5.26 | -1060 | -620 | -270 | -150 |
| 3.8 | 4.26 | -1790 | -890 | -120 | -380 |
| 1.8 | 4.12 | -2580 | -1150 | -90 | -630 |
| 1.8 | 4.12 | -2580 | -1150 | -90 | -510 |
| 9.6 | 4.03 | -3280 | -1370 | -40 | -630 |
| 7.4 | 4.10 | -3780 | -1610 | -110 | -500 |
| 3.4 | 4.12 | -4520 | -1870 | -140 | -720 |
| 9.2 | 4.15 | -5050 | -2090 | -200 | -760 |
| 9.8 | 4.11 | -4900 | -2240 | -150 | -60 |
| 3.9 | 4.20 | -5330 | -2460 | -260 | 70 |
| 7.8 | 4.21 | -5660 | -2620 | -290 | 50 |
| 1.7 | 4.22 | -5970 | -2790 | -320 | 40 |
| 5.8 | 4.20 | -6260 | -2940 | -310 | 90 |
| 9.8 | 4.22 | -6620 | -3130 | -350 | 90 |
| 0.4 | 4.19 | -6790 | -3180 | -320 | 90 |
| 3.5 | 4.17 | -7150 | -3350 | -310 | 50 |
| 6.7 | 4.14 | -7100 | -3390 | -250 | 30 |
| $1 \mathrm{kip}=4.45 \mathrm{kN}$ | | | | | |
| $1 \mathrm{pri}=6.89 \mathrm{kPa}$ | | | | | |
| $1 \mathrm{in}=$ | 25.4 mm | | | | |

Table. 5.23: Actual and Calculated Moments Using Triangular and Parabolic Stress Blacks for SS2B

| Load no. | Load in kips | Mu (test)
 kip-ft | $\begin{aligned} & \text { Mu (ealc) } \\ & \text { kip-ft } \end{aligned}$ | $\begin{aligned} & \text { Mu(`calc) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Hu (^ calc) | Mu(test)
 Mu("calc) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 7.9 | 9.2 | 7.7 | 7.6 | 1.20 | 1.21 |
| 3 | 16.9 | 19.7 | 16.6 | 16.3 | 1.19 | 1.21 |
| 4 | 23.8 | 27.8 | 23.5 | 22.7 | 1.18 | 1.22 |
| 5 | 31.8 | 37.1 | 33.0 | 30.5 | 1.12 | 1.22 |
| 6 | 31.8 | 37.1 | 33.0 | 30.5 | 1.12 | 1.22 |
| 7 | 39.6 | 46.2 | 41.2 | 37.2 | 1.12 | 1.24 |
| 8 | 47.4 | 55.2 | 48.2 | 43.5 | 1.15 | 1.27 |
| 9 | 53.4 | 62.3 | 57.8 | 51.3 | 1.08 | 1.21 |
| 10 | 59.2 | 69.0 | 65.0 | 57.5 | 1.06 | 1.20 |
| 11 | 59.8 | 69.8 | 62.6 | 58.7 | 1.11 | 1.19 |
| 12 | 63.9 | 74.5 | 69.2 | 64.6 | 1.08 | 1.15 |
| 13 | 67.8 | 79.1 | 73.7 | 68.7 | 1.07 | 1.15 |
| 14 | 71.7 | 83.7 | 77.9 | 73.0 | 1.07 | 1.15 |
| 15 | 75.8 | 88.4 | 81.4 | 76.6 | 1.09 | 1.15 |
| 16 | 79.8 | 93.1 | 86.4 | 81.4 | 1.08 | 1.14 |
| 17 | 80,4 | 93.8 | 88.1 | 82.9 | 1.06 | 1.13 |
| 18 | 83.5 | 97.4 | 92.4 | 87.1 | 1.05 | 1.12 |
| 19 | 86.7 | 101.2 | 91.2 | 87.2 | 1.11 | 1.16 |
$1 \mathrm{kip}=4.45 \mathrm{kN}$
$1 \mathrm{kip}-f \mathrm{t}=1.36 \mathrm{kN}-\mathrm{m}$

Table 5.24: Actual and Calculated Deflections for 5S2B

| Load in kips | $\begin{aligned} & \text { Actual Def. } \\ & \text { in. } \end{aligned}$ | Cal. Def. in. | Actual Def. Ca1.Def. |
| :---: | :---: | :---: | :---: |
| 7.9 | 0.027 | 0.011 | 2.471 |
| 16.9 | 0.060 | 0.052 | 1.161 |
| 23.8 | 0.095 | 0.073 | 1.306 |
| 31.8 | 0.138 | 0.097 | 1.419 |
| 31.8 | 0.138 | 0.097 | 1.419 |
| 39.6 | 0.165 | 0.121 | 1.363 |
| 47.4 | 0.217 | 0.145 | 1.497 |
| 53.4 | 0.260 | 0.163 | 1.593 |
| 59.2 | 0.294 | 0.181 | 1.624 |
| 59.8 | 0.336 | 0.183 | 1.838 |
| 63.9 | 0.354 | 0.195 | 1.812 |
| 67.8 | 0.374 | 0.207 | 1.804 |
| 71.7 | 0.395 | 0.219 | 1.802 |
| 75.8 | 0.418 | 0.232 | 1.804 |
| 79.8 | 0.430 | 0.244 | 1.762 |
| 80.4 | 0.460 | 0.246 | 1.871 |
| 83.5 | 0.472 | 0.255 | 1.849 |
| 86.7 | 0.495 | 0.265 | 1.867 |

[^2]Table 5.25: Load and Stress Data for Under-Reinforced Specimen I (UR1) Using Cylinder Stress-Strain Curve 2

| Load in kips | Neutral Axis Depth in. | Stress at top,psi | Stress at 2 in..psi | Stress at
 4 in.,psi | Stress at 6 in., psi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11.8 | 4.99 | -760 | -390 | -140 | 40 |
| 25.0 | 4.57 | -2070 | -790 | -190 | 180 |
| 35.7 | 4.61 | -3020 | -1060 | -260 | 40 |
| 47.8 | 3.62 | -4110 | -1360 | 330 | 90 |
| 59.5 | 3.30 | -5110 | -1680 | 900 | 100 |
| 67.6 | 3.30 | -5780 | -1930 | 1030 | 80 |
| 75.4 | 3.15 | -6650 | -2200 | 1610 | 100 |
| 83.5 | 3.11 | -7430 | -2500 | 1990 | 110 |
| 87.5 | 3.07 | -7870 | -2630 | 2300 | 120 |
| 89.2 | 2.87 | -8890 | -3220 | 4200 | 120 |
| 85.1 | 2.79 | -9030 | -2330 | 3540 | 70 |
| 85.1 | 2.86 | -9940 | -2120 | 2850 | 240 |
| 87.8 | 2.91 | -10300 | -2040 | 2440 | 120 |
| 88.7 | 2.68 | -11000 | -1600 | 3110 | 340 |
| 91.0 | 2.47 | -11800 | -1080 | 3560 | 370 |
| 91.5 | 2.41 | -11500 | -870 | 3350 | 180 |
| 91.7 | 2.44 | -12200 | -890 | 3170 | 120 |
| 90.3 | 2.83 | -11800 | -1470 | 2100 | 160 |
| 90.8 | 3.31 | -11500 | -1950 | 1020 | 280 |
| 87.5 | 3.46 | -7870 | -2630 | 960 | 120 |

$1 \mathrm{kip}=4.45 \mathrm{kN}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

Table 5.26 : Actual and Calculated Moments Using Triangular and Parabolic Stress 8locks for UR1

| Load no. | Load in kips | ```Mu (test) kip-ft``` | $\begin{gathered} \text { Mu (~ calc) } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { Muर"calc) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Mu (" calc) | Mu(test)
 Mu("cale) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 11.8 | 13.8 | 11.4 | 10.4 | 1.21 | 1.32 |
| 3 | 25.0 | 29.2 | 28.9 | 23.0 | 1.01 | 1.27 |
| 4 | 35.7 | 41.6 | 42.5 | 32.1 | 0.98 | 1.29 |
| 5 | 47.8 | 55.8 | 47.1 | 40.1 | 1.19 | 1.39 |
| 6 | 59.5 | 69.4 | 54.0 | 49.3 | 1.29 | 1.41 |
| 7 | 67.6 | 78.8 | 61.0 | 56.2 | 1.29 | 1.40 |
| 8 | 75.4 | 88.0 | 67.4 | 64.2 | 1.31 | 1.37 |
| 9 | 83.5 | 97.4 | 74.4 | 72.3 | 1.31 | 1.35 |
| 10 | 87.5 | 102.0 | 77.8 | 76.3 | 1.31 | 1.34 |
| 11 | 89.2 | 104.1 | 82.7 | 90.1 | 1.26 | 1.16 |
| 12 | 85.1 | 99.3 | 82.1 | 78.7 | 1.21 | 1.25 |
| 13 | 85.1 | 99.3 | 92.1 | 80.1 | 1.08 | 1.24 |
| 14 | 87.8 | 102.4 | 97.1 | 80.7 | 1.05 | 1.27 |
| 15 | 88.7 | 103.4 | 96.3 | 73.8 | 1.07 | 1.31 |
| 16 | 91.0 | 106.2 | 95.7 | 76.3 | 1.11 | 1.39 |
| 17 | 91.5 | 106.8 | 91.5 | 71.7 | 1.17 | 1.49 |
| 18 | 91.7 | 107.0 | 97.9 | 75.3 | 1.09 | 1.42 |
| 19 | 90.3 | 105.4 | 108.3 | 80.5 | 0.97 | 1.31 |
| 20 | 90.8 | 105.9 | 121.6 | 85.5 | 0.87 | 1.24 |
| 21 | 87.5 | 102.0 | 86.6 | 76.8 | 1.18 | 1.33 |
| 1 kip | $=4.45$ | | | | | |
| 1 kip-ft | $=1.36$ | -m | | | | |

Table 5.27 : Actual and Calculated Moments Using Rectangular and Parabolic Stress Blocks for UR1

| Load no. | Load in kips | Mu (test) kip-ft | $\begin{gathered} \text { Mu (IJcalc) } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { Mu("calc) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Mu (iJcalc) | Mu(test)
 Mu("cale) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 91.7 | 107.0 | 104.0 | 75.3 | 1.03 | 1.42 |

```
1 kip =4.45 kN
1 kip=ft = 1.36 kN-m
```


Table 5.28 : Actual and Calculated Moments Using Rectangular and Triangular Stresss Blocks for UR1

| Load no. | Load in kips | $\begin{aligned} & \text { Mu (test) } \\ & \text { kip-ft } \end{aligned}$ | $\begin{gathered} \text { Hu ([Jcale) } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { Mu(^calc) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Mu (TJealc) | Mu(test)
 Mu("calc) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 91.7 | 107.0 | 103.97 | 97.9 | | |

$1 \mathrm{kip}=4.45 \mathrm{kN}$
$1 \mathrm{kjp-ft}=1.36 \mathrm{kN}-\mathrm{m}$

| Table 5 | : Load and Stress Data for Over-Reinforced Specimen (OR1) Using Gylinder Stress-Strain Curve 2 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Load in kips | Neutral Axis Depth in. | Stress at top.psi | Stress at 2 in.,psi | 5tress at 4 in..psi | Stress at 6 in., psi |
| 10.8 | 5.74 | -700 | -480 | -250 | 50 |
| 19.8 | 5.62 | -1260 | -840 | -380 | 100 |
| 30.0 | 5.40 | -2000 | -1290 | -530 | 230 |
| 40.0 | 4.92 | -2770 | -1770 | -680 | 800 |
| 50.0 | 4.64 | -3530 | -2240 | -800 | 1720 |
| 60.0 | 4.53 | -4130 | -2720 | -930 | 2580 |
| 70.0 | 4.49 | -5080 | -3220 | -1080 | 3330 |
| 80.0 | 4.68 | -5890 | -3740 | -1240 | 2400 |
| 90.0 | 4.48 | -6690 | -4270 | -1430 | 4590 |
| 99.5 | 4.48 | -7470 | -4820 | -1620 | 5150 |
| 105.6 | 4.49 | -7980 | -5190 | -1750 | 5420 |
| 112.0 | 4.50 | -8440 | -5530 | -1900 | 5650 |
| 118.0 | 4.52 | -8900 | -6190 | -2030 | 5770 |
| 124.0 | 4.53 | -9350 | -6250 | -2160 | 6020 |
| 136.0 | 4.55 | -9800 | -6630 | -2320 | 6150 |
| 142.0 | 4.56 | -10200 | -6970 | -2460 | 6330 |
| 148.0 | 4.57 | -10600 | -7350 | -2620 | 6460 |
| 154.0 | 4.61 | -11000 | -8140 | -2980 | 6670 |
| 160.0 | 4.61 | -11400 | -8140 | -2980 | 6670 |
| 166.0 | 4.62 | -11700 | -8480 | -3140 | 6830 |
| 170.0 | 4.64 | -12000 | -8870 | -3330 | 6940 |
| 172.0 | 4.66 | -12100 | -9170 | -3480 | 7010 |
| 174.0 | 4.67 | -12200 | -9360 | -3600 | 7010 |

(Table 5.30 continued)

| Load in kips | Neutral Axis Depth in. | 5tress at top, psi | Stres5 at 2 in..psi | Stress at 4 in. ppi | Stress at 6 in..psi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 176.0 | 4.69 | -12300 | -9550 | -3710 | 7010 |
| 178.0 | 4.70 | -12400 | -9860 | -3830 | 7000 |
| 180.0 | 4.71 | -12400 | -9920 | -3930 | 7090 |
| 1 kip | $=4.45 \mathrm{kN}$ | | | | |
| 1 psi | $=6.89 \mathrm{kPa}$ | | | | |

Table 5.31 : Actual and Calculated Moments Using Triangular and Parabolic Stress Blacks for OR1

| Load no. | $\begin{aligned} & \text { Load in } \\ & \text { kips } \end{aligned}$ | $\begin{aligned} & \text { Mu (test) } \\ & \text { kip-ft } \end{aligned}$ | $\begin{gathered} \text { Mu (^ cale) } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { Mu(~cale) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Mu (^ ealc) | $\begin{aligned} & \text { Mu(test) } \\ & \text { Mu(-calc) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 10.8 | 13 | 10 | 10 | 1.27 | 1.20 |
| 3 | 19.8 | 23 | 18 | 18 | 1.31 | 1.28 |
| 4 | 30.0 | 35 | 27 | 27 | 1.29 | 1.27 |
| 5 | 40.0 | 47 | 35 | 37 | 1.34 | 1.25 |
| 6 | 50.0 | 58 | 42 | 47 | 1.38 | 1.25 |
| 7 | 60.0 | 70 | 49 | 56 | 1.44 | 1.25 |
| 8 | 70.0 | 82 | 59 | 67 | 1.37 | 1.22 |
| 9 | 80.0 | 93 | 71 | 78 | 1.31 | 1.20 |
| 10 | 90.0 | 105 | 78 | 88 | 1.34 | 1.19 |
| 11 | 99.5 | 116 | 87 | 99 | 1.33 | 1.17 |
| 12 | 105.6 | 123 | 93 | 107 | 1.32 | 1.15 |
| 13 | 112.0 | 131 | 99 | 114 | 1.32 | 1.15 |
| 14 | 118.0 | 138 | 105 | 125 | 1.32 | 1.11 |
| 15 | 124.0 | 145 | 110 | 128 | 1.31 | 1.13 |
| 16 | 136.0 | 159 | 116 | 135 | 1.37 | 1.17 |
| 17 | 142.0 | 166 | 121 | 142 | 1.37 | 1.17 |
| 18 | 148.0 | 173 | 126 | 149 | 1.37 | 1.16 |
| 19 | 154.0 | 180 | 132 | 163 | 1.37 | 1.11 |
| 20 | 160.0 | 187 | 136 | 164 | 1.37 | 1.14 |
| 21 | 166.0 | 194 | 140 | 171 | 1.38 | 1.14 |
| 22 | 170.0 | 198 | 144 | 178 | 1.38 | 1.12 |
| 23 | 172.0 | 201 | 146 | 183 | 1.38 | 1.10 |
| 24 | 174.0 | 203 | 147 | 186 | 1.38 | 1.09 |

(Table 5.31 continued)

| Load no. | Load in kips | $\begin{gathered} \text { Mu (test) } \\ \text { kip-ft } \end{gathered}$ | $\begin{gathered} \text { Mu (~ caic) } \\ \text { kip-ft } \end{gathered}$ | $\begin{aligned} & \text { Mu("calc) } \\ & \text { kip-ft } \end{aligned}$ | Mu (test)
 Mu (* calc) | Mu(test)
 Mu("calc) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 176.0 | 205 | 149 | 189 | 1.38 | 1.08 |
| 26 | 178.0 | 208 | 150 | 194 | 1.38 | 1.07 |
| 27 | 180.0 | 210 | 151 | 195 | 1.39 | 1.07 |

$1 \mathrm{kip}=4.45 \mathrm{kN}$.
1 kip-ft $=1.36 \mathrm{kN}-\mathrm{m}$

```
Table 5.32 : Actual and Calculated Moments Using Rectangular
        and Parabolic Strbss Blocks for OR1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Load no. & Load in kips & \[
\begin{aligned}
& \text { Mu (test) } \\
& \text { kip-ft }
\end{aligned}
\] & \[
\begin{gathered}
\text { Mu ([]calc) } \\
\text { kip-ft }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Mu("cale) } \\
& \text { kip-ft }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Mu (test) } \\
& \text { Mu ([Jcalc) }
\end{aligned}
\] & \begin{tabular}{l}
Mu(test) \\
Mu("eale)
\end{tabular} \\
\hline 27 & 180.0 & 210 & 163 & 195 & 1.29 & 1.07 \\
\hline
\end{tabular}
    I kip = 4.45 kN.
    1 kip-ft=1.36 kN-m
```


| Load in kips | ```Actual Def, in.``` | $\begin{gathered} \text { Cal.Def. } \\ \text { in. } \end{gathered}$ | A든ug 1 Def, Cal.Def. |
| :---: | :---: | :---: | :---: |
| 10.8 | 0.132 | 0.014 | 9.106 |
| 19.8 | 0.162 | 0.038 | 4.272 |
| 30.0 | 0.200 | 0.057 | 3.481 |
| 40.0 | 0.232 | 0.077 | 3.029 |
| 50.0 | 0.268 | 0.096 | 2.799 |
| 60.0 | 0.306 | 0.115 | 2.663 |
| 70.0 | 0.342 | 0.134 | 2.551 |
| 80.0 | 0.378 | 0.153 | 2.467 |
| 90.0 | 0.418 | 0.172 | 2.425 |
| 99.5 | 0.440 | 0.191 | 2.309 |
| 105.6 | 0.461 | 0.202 | 2.280 |
| 112.0 | 0.486 | 0.214 | 2.266 |
| 118.0 | 0.504 | 0.226 | 2.230 |
| 124.0 | 0.532 | 0.237 | 2.240 |
| 136.0 | 0.558 | 0.260 | 2.142 |
| 142.0 | 0.583 | 0.272 | 2.144 |

$1 \mathrm{kip}=4.45 \mathrm{~N}$
$1 \mathrm{in}=.25.4 \mathrm{~mm}$

| Specimen | $\mathrm{f}^{\prime} \mathrm{c}$ | Measured Shear
 Force 1 bs
 Cracking Ultimate | Prodict ACI equ $11-3$ | ed Shear
 ations $11-6$ | Force Zsut Crack. | 5
 timate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5518 | 9500 | 2900021000 | 16700 | 17600 | 21400 | 23000 |
| 552B | 11400 | 19650 | 18300 | 19000 | 22700 | 24400 |

$11 \mathrm{~b}=4.45 \mathrm{~N}$
$1 \mathrm{psi}=6.89 \mathrm{kPa}$

Fig. 3.1: An Arbitrary Section with Reinforcing Bar Arrangement Near Mid-span for Shear Specimen I (SS1B) ($1 \mathrm{in} .=25.4 \mathrm{~mm}$)

Fig. 3.2: An Arbitrary Section with Peinforcinc Sar Arrengenent fiear hid-span for Shear Soecimen II (SS2B) (1 $\mathrm{in} .=25.4 \mathrm{~mm}$)

Fig. 3.3: An Arbitrary Section with Reinforcing Bar Arrangement Near liid-span for Under-reinforced Specimen (URT)
(1 in. $=25.4 \mathrm{~mm}$)

Fig. 3.4: An Arbitrary Section with Peiniorcing Ber frrangement :lear ind-span for Over-reinforcec Spaci-en (OR1)
$(1 \mathrm{in} .=25.4 \mathrm{~nm})$

Fig. 3.6: Reinforcement Layout for Shear Specimen 2 (SS2B)

Fig. 3.7: Reinforcement Layout for Inder-reinf@rced Specimen (UR1)
$\longrightarrow-10 \begin{aligned} & \text { 14 at 1rrupa at } 3^{\prime \prime} \mathrm{c} / \mathrm{c} \\ & \text { Symaictric about the center } 1 \text { ine }\end{aligned}$

Fig. 3.10: Strain fage Locations

Fig. 5.1: Location of Strain Sages vs. Stratn for Shear Seecimen I (SSib)
(corresponding to Table 5.2)
($1 \mathrm{kip}=4.45 \mathrm{kil}$)

Fig. 5.2: Locacion of Strain Sages vs, Surain for Snaar Soecten (I) (SEzE) ($7 \mathrm{k} 1 \mathrm{p}=4.45 \mathrm{kil}$)

Fig. S.3: Location of Strain Gages vs. Strain Eor Under-rainforsad
(corrasponding to iable E.b)
($1 \mathrm{kip}=4.45 \mathrm{kit}$)

Fig. 5.4: Location of S=rain Gages vs. Strsin for Over-reinforead Specimen (ORT)
(corresponding to Table 5.3)
$(1 \mathrm{kpp}=4.45$ (in)

Fig. 5.5: Stress 510ch of Shear Soeclimen : (5513)
(corresoonding to Tacle 5.19)
($1 \mathrm{hn} .=25.4 \mathrm{~mm}, 1 \mathrm{psi}=6.39 \mathrm{kPa}\rangle$

\qquad

Fig. E.3: Stress Block of Over-reinforced specimen (CRT)
(corresponding :0 Tavie ミ.30)
(i) $1 \mathrm{n} .=25.4 \mathrm{~mm}, 1 \mathrm{2s}=5.99 \mathrm{kPa}$)
North
Side
South
Side

Horth
Side

孚券
空步

Fig. 5.13:
Compressive Strass-Strain for Gyipnoer 1 (5 (SR)

Fig. 5.14: Comoressive Stross-Strain for Milincer 2 (ss2B) $\left(f_{c}^{\prime}=1221025 i\right),(1$ ir. $=25.4$ ui, $1[51=6.89 \mathrm{f}=1)$

Fic. E.15: Poisson's Ratio vs. Compresslve Stress for Cylinder ?

Fig. 5.16: Load vs. Deffersion of Tes: Soegmens ($1 \mathrm{in} .=25.4$ 而. $1 \times 12 * 4.45 \mathrm{~N}$)

APPENDIX V
NOTATION

```
B
        block.
\phi = strength reduction factor.
p = steel ratio.
pmax maximum steel ratio.
Pbal= balanced steel ratio.
Gs = strain in steel.
Gu}=\mathrm{ strain in concrete.
Ab}=\mathrm{ area of the parabolic stress block.
Av}=\mathrm{ area of the shear reinforcement.
As}=\mathrm{ area of steel reinforcement.
b = width of the beam.
c = depth of neutral axis.
C = total compressive force.
d = effective depth of the beam.
D = total depth of the beam.
E
Es}=\mathrm{ modulus of elasticity for steel.
f
f
fs}=\mathrm{ stress in the steel reinforcement.
fy = yield stress of steel reinforcement.
l = length of the test beam.
l
```

$M_{u}=$ actual moment in the beam (calculated using the load).
$M_{u}{ }^{2}=$ triangular stress block moments.
$M_{u}[]=$ rectangular stress block moments.
$M_{u} \S=$ parabolic stress block moments.
$N=$ no. of stirrups.
$P=$ load on the beam.
$S=$ spacing of stirrups.
$T=$ total tensile force in the beam.
$V_{c}=$ shear force taken by concrete.
$V_{c r}=$ shear stress at inclined cracking.
$V_{u}=$ ultimate shear force in the beam.
W = unit weight of concrete.
$x=$ distance measured from neutral axis.
$\bar{x}=$ centroidal distance of the stress block from the top of the beam.

ACKNOWLEDGEMENTS

The author is greatly indebted to his major professor, Or. Stuart E. Swartz, for his invaluable advice and guidance during his study at Kansas State University and while carrying out this investigation.

Heart-felt appreciation is expressed to the other committee member, Dr. Teddy O. Hodges.

Special thanks to Mr. Ali Nikaeen and my other friends for their valuable comoperation to make this project a success.

Special appreciation is expressed to Mr. Russell L. Gillespie, Givil Engineering Technician, for, his timely suggestions and help in using the facilities.

Finally, the author wishes to express his words of deepest appreciation to his parents, for the legacy of expectations they passed on to him. He will always remember and be grateful.

BEHAVIOR OF REINFORCED HIGHER STRENGTH CONCRETE BEAMS IN BENDING AND SHEAR

by
PERIYAKARUPPAN NARAYANAN
B.E., University of Madras, 1983

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Civil Engineering

KAMSAS STATE UNIVERSITY
Manhattan, Kansas
1987

ABSTRACT

Higher-Strength concrete has been defined as that which has a compressive strength in the range of 8000 to 12000 psi. The purpose of this thesis is to obtain further information on the shape of the compressive stress block at failure for higherstrength concrete beams and to check the validity of the ACI rectangular stress block for higher-strength concrete. The ACI formula for the critical and the ultimate shear was also checked.

Four reinforced beams with nominal strength of 12000 psi were tested in four-point bending. Each beam spanned 7.0 ft . and had the cross-sectional dimensions of 8 in . by 12 in . The beams were reinforced with Grade 60 stee 1 at 0.5 Pb and 1.5 Pb (Pb based on an assumed trianguler stress distribution at failure) and had either no stirrups. or $1 / 2$ the required stirrup area or the full stirrup area. From the strain values obtained, the stress was calculated using the uniaxial stress-strain data. These stress values were used to plot the shape of the stress block and to calculate the maximum moments using triangular. ACI equivalent rectangular, and parabolic stress blocks.

From the results, it was concluded that the shape of the stress block is triangular at low laads and it becomes parabolicor may remain triangular-at ultimate loads. Therefore the ACI equivalent rectangular stress block should not be used in moment calculations for higher-strength concrete even though it may give a close and conservative estimate of the ultimate moment capacity. The ACI formula for critical and ultimate shear was found to be safe and economical.

[^0]: * The term workable refers to the ability of the mix to be compacted to such an extent that the air content is less than 2 percent, which is easily made possible with the use of superplasticizers even in the very low water-cement ratio mixes.

[^1]: $111 .=4.45 \mathrm{~N}$
 1 i11. $=23.4 \mathrm{nmi}$

[^2]: $1 \mathrm{kip}=4.45 \mathrm{~N}$
 $1 \mathrm{in} .=25.4 \mathrm{~mm}$

