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CHAPTER 1

INTRODUCTION

The term, high-strength concrete, is a relative one because

the maximum strength specified has been changing over the past

three decades. In the 1950's, concrete with a compressive

strength of 5000 psi [34.4 HPa] was considered high-strength

concrete. In the 1960's, concrete with a 6000 to 7000 psi [41.3

to 48.6 MPa] compressive strength was available commercially. In

the early 1970's, a 9000 psi [62 MPa] mix was being produced, and

in recent years, application of high-strength concrete has

increased; and now it is used in many parts of the world. This

growth has been possible as a result of recent developments in

materials technology and the demand for high-strength concrete.

Concrete, based on its compressive strength, is classified

here as fol lows:

Classification Strenqth Ranae

Normal-strength 2500-6000 psi

(17.2 MPa-41.4MPa)

Higher-strength 6000-12000 psi

(41.4 HPa-82.7 MPa)

High-strength greater than 12000 psi

(>82.7 MPa)

In this report concrete with a compressive strength of

12000 psi [82.7 MPa] is referred to as higher-strength concrete.



Present Usage of Higher-Strength Concrete

The main advantage in using higher-strength concrete is

that it has a greater load-carrying capacity:

1. It has the potential to carry more load at a lower

cost.

2. Reducing the dimensions leads to a smal ler dead-

weight of the structure, which means a more effective use of the

available materials. This is particularly the case for pre-

stressed members and compression members.

But, highei—strength concrete cannot altogether replace

normal-strength concrete. For example, slabs which are made from

a higher-strength mix will be very thin and will not be able to

meet the ACI maximum allowable deflection specifications.^ '

Objectives

The objectives of this research project are:

1. to study the compressive and flexural behavior of

higher-strength concrete (12000 psi [82.7 MPa]) made with

aggregates avai lable local ly,

2. to determine the stress-strain relationship of

higher-strength concrete;

3. to determine the shape of the compressive stress

block of this concrete;

4. to determine the modulus of elasticity for this

higher-strength concrete;

5. to determine Poisson's ratio for this higher-

strength concrete.



CHAPTER 2

SELECTION OF MATERIALS

Introduction

Higher-strength concrete requires the highest quality

materials. When making higher-strength concrete, one should also

try to make use of the locally-availablematerials to ensure

economy.

Cement

The choice of Portland cement for higher-strength concrete

is extremely important. There are a few factors that are

considered when choosing the right grade of cement, such as

chemical composition (ASTM C-114), fineness(ASTM C-115), and cube

strength (by the ASTM standard method of test C- 109).

I

7
1 In

addition, Portland cement strength may vary from plant to plant;

even in the same plant it, may vary from batch to batch. In all

the operations involved, the compressive strength test results

should be used as a check.

It is recommended that the final decision on the brand of

cement be made based on the compressive strength of the trial

mixes of the same workability at 28, 56, and 91 days.

L

4
J

Coarse Aggregate

The selection of the coarse aggregate is the next most

important item after choosing the cement. The behavior of coarse

aggregate has a great influence on concrete strength.



Strength up to 5000 psi [34.5 MPa] depends essentially on the

quality of the hardened cement paste holding the coarse aggregate

together.!*] The aggregate has a much higher compressive strength

than the cement pasteJ 4 J It is important to consider the

following factors when selecting a coarse aggregate for any

concrete, and particularly so for higher-strength concrete:

a) strength,

b) maximum size and gradation,

c) particle shape and surface texture,

d) mineralogy and formation,

e) aggregate cement bond.

a. Strength

The aggregate chosen for higher-strength concrete should

have a compressive strength at least equal to the hardened cement

paste. I" I Since the crushing strength of many good quality

aggregates available today generally exceeds 12000 psi

[82.7 MPa], this factor is not a major problem for the production

of higher-strength concrete.

b. Maximum Size and Gradation

Several researchers!-''''' ''
' have shown that in higher-

strength concrete the compressive strength increases when the

maximum size of the aggregate decreases. However, it is obvious

that there should be some limitations in order to keep drying,

shrinkage, and creep to a reasonable and practical value. A

maximum aggregate size of 0.4 in. (10 mm.) is recommended in most



efficient use of the cement in the concrete. L^J This is due to

the increase in the surface area which increases the bond

strength. However, the optimum size of aggregate varies from mix

to mix, and a trial batching should be used to find the optimum

value. [4]

c. Particle Shape and Surface Texture

Carrasqui 1 loL^J indicates that the ideal coarse aggregate

for higher-strength concrete appears to be clean, cubical,

angular, and 100 percent crushed stone with minimum flat sizes

and elongated particles. Crushed stone aggregates produce a

higher-strength concrete than rounded aggregates.

Coarse aggregates used in higher-strength concrete as in

all concrete, should be free of dust coating. Any dust content

causes an increase in fines and a consequent increase in the

mixing water to achieve required workabi 1 i ty.L^J This decreases

the strength of the mix; therefore washing of the aggregates, if

possible, is recommended.

d. Mineralogy and Formation

The compressive strength of concrete increases when a

crushed stone aggregate is used.t^j This is not only due to the

shape of the aggregate but also due to its mineralogy. Tests made

by Parrotf^J on the effect of the type of coarse aggregate on

concrete revealed the following: the effect of aggregate type



upon strength was negligible at seven days; and the 28 and 90 day

strengths did not appear to depend upon specific gravity,

absorption, or acidity of the aggregate, but there seemed to be

some dependence upon rock formation. Extrusive rocks generally

have high-strength and a small grain size. It was noticed that

as concrete becomes older, the incidence of aggregate fracture in

broken pieces of concrete increases. L*J Therefore, the quality

of an aggregate can be a significant factor governing the

concrete strength.

e. Aggregate-Cement Bond

The aggregate-cement bond is the deciding factor of strength

once the material hardens. The aggregate-paste bond decreases

with increasing water-cement ratio and decreases with increasing

maximum size of the aggregate.

In this project, quartzite stone with 3/4 in. [19 mm]

maximum size, from Lincoln, Kansas was used, because this was

available even though 10 mm is optimum.

Fine Aggregate

The gradation and the particle shape of fine aggregate are

very important factors in production of a highei— strength

concrete mix.

One of the important functions of fine aggregate in

conventional concrete is its role in providing workability and

good surface finish. Since the higher-strength mix has a higher

cement content, the role fine aggregate plays in providing

workability and good finish is not so crucial. Fine aggregates



with a fineness modulus of 2.7 to 3.2 have been most

satisfactory. In this investigation, Kaw River sand passing

through sieve No.4 was used. This sand had a fineness modulus of

3.03.H5]

Water

Water that meets ASTM C-94I 6
! has no harmful effect on

higher-strength concrete: therefore, this water is adequate.

The ASTM standard C-94 gives the following specifications for

the water to be used in mixing:

"The mixing water shall be clear and apparently clean. If

it contains quantities which discolor it, or make it smell, taste

unusual, beobjectionable, or cause suspicion, itshall not be

used unless a service record of concrete has been made from it or

other information indicates that it is not injurious to the

quality of concrete."

Admixtures

Due to an extremely low water-cement ratio, higher-strength

concrete has an extremely low workability and slump. A chemical

admixture called super-pl asticizer, or super-water reducer can

be used to improve the workability of concrete. This admixture

actually reduces the angle of friction between water and the

solids and causes the mix to be more workable. This effect is

for a limited time only. The mix returns to its original slump

after a short time. This action of the super-plasticizer makes

it possible to have a mix with a high workability when fresh and

a high compressive strength at the hardened stage. The amount of



super-plasticizer required should be determined by trial mixes

only. At any given water-cement ratio, the amount of super-

plasticizer required to produce the required slump can be decided

from the trial mix. In this project, 240 ml to 320 ml (8 oz to

11 oz) have been used per cubic foot of concrete.



CHAPTER 3

STUDY OF THE COMPRESSIVE STRESS BLOCK

Introduction

The equivalent rectangular stress block permitted by the

ACI code 318-83^] was based on beam tests with a compressive

strength of 3000 psi [20.7 HP*.] to 6000 psi [41.4 MPa.]^],

The code recommends a reduction of .05 in the B-] value for every

1000 psi [6.9 MPa] increase in compressive strength of concrete

above 4000 psi [27.6 MPa] at which B^O.85. [The Bt value is

used in the calculation of the depth of the stress block.] This

leads to a stress block with zero depth for 21000 psi [144.7 MPa]

concrete which is an obvious fallacy. [In 1975, a lower limit of

0.65 for B-j for concrete with strength higher than 8000 psi

[55.1 MPa] was suggested by the coda. ''•!] Now, concrete mixes

with a compressive strength of 8000 psi [55.1 MPa] and greater

are used frequently in structures. Therefore, there is a strong

need to evaluate the validityof the rectangular stress block

assumption for higher-strength concrete.

Previous Work

The publications concerning higher-strength concrete are

not only limited, but also contradict each other in their

conclusions.

For example,in the work done by Rajagopalan, Leslie, and

Everard, ['"J it is concluded:
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(i) The ACI building code rectangular stress block

does not predict the behavior of beams with f^ above 8000 psi

[55.1 MPa].

(ii) Further research is warranted with respect to

maximum strain in concrete when f£ exceeds 8000 psi. [From

Nedderman'sfO] tests, the ultimate strain for concrete was

found to be in the range of 0.00225 to 0.00285. The paper

discusses these results, and it suggests that with increasing

compressive strength, the maximum concrete strain becomes smaller.]

(iii) Pending further test results, a triangular

stress block with extreme fiber stress at fg and zero atthe

neutral axis is. recommended as a conservative model for

predicting the behavior of beams with fj| above 8000 psi [55MPa].

a) From Nedderman's results,!^] showing the stress-strain

relationships for concrete with a compressive strength of 12000

psi [83 MPa], it is observed that the stress strain curve is

steeply ascending. It is almost linear up to the maximum strain,

in marked contrast to the stress-strain curves of lower strength

mixes which have a descending part past the maximum stress. This

justifies the elastic theory and leads to the assumption of a

triangular stress block.

In the work done by Nikaeen L'5], ne concludes:

i) "The shape of the stress block changes from

rectangular to triangular as the strength increases. The

centroid of the stress block lies at a distance of 0.37c from the

top fiber (This value is very close to 0.33 which is the

centroidal distance of the triangular stress block rather



than 0.5 which is the centroidal distance of a rectangular stress

block.)"

ii) "The strain behavior in high-strength concrete is

different from normal-strength concrete, because strain at the

ultimate condition is less than 0.003 in. /in., and it decreases

drastically with time. Therefore, a more conservative strain

value of 0.002 in. /in. is recommended."

But, in the work done by Wang, Shah, and Flaaman, t'lj they

conclude:

1. "Rectangular stress distribution gives sufficiently

accurate predictions of the ultimate loads and moments of

reinforced concrete beams and columns made with higher-strength

concrete."

2. "The value of the maximum concrete compressive strain

at ultimate was always higher than 0.003 in./in."

Therefore, more tests with application of different methods

should be done in order to check which theory is valid, or

perhaps testing of the ACI code formula's validity for higher-

strength concrete should be made. One of the main objectives of

this work is to determine the shape of the compressive stress

block.

Modulus of Elasticity

The ACI code suggests the modulus of elasticity of normal-

weight concrete to be, ^ ' J

E
c=33 W^V^psi.

where fr
"> s the 28-day cylinder compressive strength.



12

In tests done at Cornell University the E c
values obtained

were found to be lower than those given by the ACI code

formula! 16 ].

The reason for this unconservati ve prediction may be the

following. The strength of concrete is controlled mainly by the

strength of the mortar. L'*J The stiffness of concrete is

influenced by both the mortar and the aggregate.l-°-l Therefore, an

increase in the quality (strength and stiffness) of the mortar

will significantly increase the strength of concrete without a

directly proportional increase in the stiffness.

It is intended to determine the E c
value of higher-strength

concrete (12000 psi) using cylindrical specimens. Two

3 in. X 6 in. cylinders were used in this test.

Poisson's Ratio

Poisson's ratio for higher-strength concrete was determined

using 3 i n. X 6 in. cylindrical specimens tested at 60 days.

Strains were measured using four strain gages with their axes

placed at 90 degrees to each other. The ratio between the

transverse strain and the longitudinal strain for any given

loading was calculated to give the poissons ratio.

Test Specimens and Method of Testing

Tests were conducted on rectangular beams to study the

compressive stress distribution in a section at midspan. Each

beam spanned 7 ft. [2134 mm] (the actual length of the beam was

7.5 ft [2286 mm],) and had a cross section of 8 in. X 12 in.

[203 X 305 mm].
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Three different types of specimens were made with varying

steel ratios. One specimen was made in each type. These were:

a) two beams designed to fail in shear with pmax =0.5

p ba 1. The shear reinforcement details were varied to study the

shear capacity of the higher-strength concrete.

i. )0ne specimen was designed with no shear

reinforcement. (SS1B)

ii.) One specimen was designed with partial shear

reinforcement. (SS2B)

b.) an under-reinforced section with Pma x
=
0-5Pbal. Shear

reinforcements were provided in the beam to prevent possible

shear failure. (UR1)

c) an over-reinforced section with pmax =l,5 p t-, a 1

.

Shear reinforcements were provided. (OR!)

The detailed designs are given in Appendix I and the

reinforcement details are given in Figs. 3.1 through 3.8.

Tension tests were done on the #3, #4, #7, #9 rebars which

were used in the experiment. The results and the average tensile

strength values are given in Table 3.1. These values are used in

all moment calculations.

a) The beam was tested in third-point loading. It was

supported on rollers at the ends to avoid any friction. The

loading setup is shown in Fig. 3.9. The strains were measured

with electrical strain gages chosen from the Micro Measurements

Hand BoolcP 2
].
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Electrical resistance strain gages, EA-O6-750DT-120, were

used on al 1 the beams, and they were also used on the cylinders

for longitudinal strain measurement. For transverse strain

measurement in the cylinder, gages EA-06-2 50BB-1 20 were

used. A high-speed data acquisition system was used to obtain

and record the strain readings,

b) For determining the modulus of elasticity, cylindrical

specimens of size 3 in. X 6 in. (76 mm X 152 mm) were tested

according to ASTM standards!^. Two gages were used to measure

the strain in each cylinder. A total number of two specimens

was used.

c) To measure Poisson's ratio, cylindrical specimens of

6 in. X 12 in. (152 mm X 305 mm) were used. Strains were

measured using four strain gages with their axes placed at 90

degrees to each other.

d) The axial compressive strength was measured using two

6 in. X 12 in. (152 mm X 305 mm) cylinders and two 3 i n. X 6 in.

(75 mm X 152 mm) cylinders. Strains were measured using

electrical resistance strain gages.

Strain Measurements

The strains in the test beams were measured with electrical

resistance strain gages and mechanical strain gages. The gages

were placed in the locations shown in Fig. 3.10, Appendix IV.

At the middle third of the beam, there was no strain

gradient in a plane parallel to the neutral axis; therefore, 0.75

in. (18 mm)long gages can be used to measure strains. Two gages
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measured the extreme fiber strains and three gages measured the

strain gradient along the beam's depth. A total number of eight

gages was used per beam except for beam SSI B in which fourteen

gages were used.

Prediction of the Moment Capacity

Under-Reinforced Beam

To predict the ultimate moment capacity of the under-

reinforced beam, the steel was assumed to have yielded under the

load. The total tensile force was calculated using the yield

stress of the #7 bars and the area of steel in the beam. The

total tensile force was equated to the total compressive force.

The total compressive force was calculated using the rectangular

stress block assumption, triangular stress block assumption, and

parabolic stress block assumption.

a. Rectangular Stress Block

The equivalent rectangular stress block based on ACI

318-83 f] is as shown:

0.85 fc

s y
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Equating the total tensile force to the total compressive

force,

A
s .fy=0.85 fc .(0.65 c).b . . . (3.1)

where A s
= area of steel,

fy= yield strength of steel,

fi ^compressive strength of concrete,

c=depth of neutral axis from top,

b= width of the beam.

Using this equation, the c value, i.e., the depth to the neutral

axis, was determined from the top. The ultimate moment was

calculated by the equation

M
u=O.85.fc .(0.65.c).b.(d-(0.65.c/2)) . . . (3.2)

The calculated moment was compared to the actual moment

taken by the beam.

b. Triangular Stress Block

The total tensile force was equated to the total

compressive force calculated using the triangular stress block

assumption. The average cylinder compressive strength and the

depth of the neutral axis were used as the sides of the

triangular stress block. Therefore

A
s
.f

y
=0.5.fc

.c.b . . . (3.3)

The depth of neutral axis was determined from this

The ultimate moment was calculated using the formula,

M
u-0.5.fc.c.b(d-(c/3) • • (3.4)

The calculated moment was compared to the actual moment.
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c. Parabolic Stress Block

The shape of the stress block at the ultimate load given

in Ref. 14 was used to predict the moment in the beams tested

here using the assumption of a parabolic stress block. Stress

values at various levels of all four beams were used to calculate

the average stress values at those levels. Using these stress

values, a parabolic curve was fitted to give the stress value at

any given depth.

The total tensile force was equated to the total

compressive force. The total compressive force was calculated by

integrating the equation describing the stress block. The depth

of the neutral axis was then calculated.

The centroid of the compressive stress block was also

found by direct integration. The total moment was calculated

using these quantities, and was compared to the actual moment

taken by the beam. Detailed formulas and calculations are given

in Appendix II

Over-Reinforced Beam

To predict the ultimate moment capacity of the over-

reinforced beam, the total compressive force was equated to the

total tensile force. The total compressive force was again

calculated using the rectangular stress block assumption,

triangular stress block assumption, and parabolic stress block

assumption.
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a. Rectangular Stress Block

As before, the AClP] method and assumptions were

I'
used.

Equating the total tensile force to the total compressive

force gives

A
s
.f

s
=0.85 f^.. (0.65 c).b

where A
s
= area of steel.

f'
=compressive strength of concrete,

c=depth of neutral axis from top,

b= width of the beam.

To find the tensile stress f
Sl the strain compatibility

equations are used. An ultimate concrete strain of 0.0025 in./in.

was assumed. H*, 1 5] From the strain compatibility condition

shown,

CTu

(d-c)

6. -
eu(d-c)

(3.5)

(3.6)

(3.7)

E
s is taken as 29 X 10 6 psi.H]
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Equating the total tensile force and the total compressive force

by substituting eq. (3.7) in eq. (3.1)

A
s
.E s .Gu ((d-c)/c)=0.85.f c

-(0.65c).b . . . (3.8)

Solving this equation for c determines the depth of the neutral

axis.

The moment taken by the beam was calculated from eq. 3.2 and

compared to the actual moment taken by the beam. Detailed

calculations are given in Appendix II.

b. Triangular Stress Block

The triangular stress block was assumed to have outer

fiber stress equal to the compressive strength f£ and the stress

distribution shown.

fe

Z-"l'

Equating the total tensile force to the total compressive

force gives

f
s
= tensile strength of steel

f^compressive strength of concrete

c=depth of neutral axis from top

b= width of the beam.
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To find the tensile stress fs. the strain compatibility

conditions are used as before. An ultimate concrete strain of

0.0025 in./in. was assumed! ' *< 1 5 1, and S s
is given by Eq 3.5 and

f
s

is given by Eq. 3.7. As before, E
s

is taken as 29 X 1
6 psi.

Equating the total tensile force and the total compressive force

gives,

A
s .E s .G u ((d-c)/c) -0.5.f£.e.b . . . (3.9)

from v/hich c is determined.

The moment taken by the beam was calculated from Eq. 3.4 and

compared to the actual moment taken by the beam. Detailed

calculations are given in Appendix II.

c. Parabolic Stress Block

The procedure described for the under-reinforced beam was

used except the steel stress, fs
is 9 iven b* Ecl- 3 - 7 -

The centroid of the compressive stress block was found by

direct integration. The total moment was calculated using these

quantities and was compared to the actual moment taken by the

beam. Detailed calculations are given in Appendix II.
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CHAPTER 4

PROPORTIONING, MIXING, AND PLACING

Introduction

The objective in designing a concrete mix is to obtain a

material which will possess certain desired properties such as

workablity, f

i

nishabi 1 i ty, etc. when plastic and required

characteristics such as strength, durability, wear resistance,

and water tightness when hardended, at the lowest possible cost.

Proportioning of the higher-strength mix requires more accuracy

than is usually needed for normal strength mixes, because optimum

performance is required from each component.'- *

Mix Proportioning

Since highei—strength concrete technology is relatively new

in the field, there are no conventional mix design methods

available for strengths higher than 8000 psi [55.1 MPa]. A trial

batch program is the most effective method for determining the

suitability of the materials and their proportions for a specifc

The factors that decide the strength of the mix are:

1) water cement ratio

2) cement content

3) aggregate content

4) admixtures.
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Water-Cement Ratio

To obtain a mix with high compressive strength, using a

given set of materials, the lowest possible water-cement ratio

should be used together with a minimum amount of mixing water.

According to Abram's law.U M for any given condition of

the test, the strength of a workable concrete mix is dependent

only on the water-cement ratio. The lower limit for the amount

of water will be that amount necessary to allow the hydration of

Portland cement to go to completion. Portland cement requires

about one-fifth to one-fourth of its weight of water to become

completely hydrated. Then if the water-cement ratio is below

0.4, complete hydration cannot be secured.!'']

It has been found, nevertheless, that strength increases

with a reduction in water-cement ratio to a value of 0.2 or even

lower and it appears only the outer surface of each cement

particle will become hydrated.U ' J Any reduction in water cement

ratio up to 0.2 will increase the strength of the mix

considerably. For this study, a watei—cement ratio of 0.28 was

used. Trial mixes were done in the region of 0.26 to 0.3 in

which there is a considerable increase in strength for a small

M51
reduction in water-cement ratio. 1 JJ

* The term workable refers to the ability of the mix to be

compacted to such an extent that the air content is less than

2 percent, which is easily made possible with the use of super-

plasticizers even in the very low watei—cement ratio mixes.



Cement Content

The mix proportions should be determined for production of

a concrete mix with the lowest water requirments and the highest

required compressive strength for the specified workability.

This leads to mixes with high cement factors. However, there is

an optimum cement content above which addition of any amount of

cement will not appreciably increase the strength. This amount

depends on the aggregate type, aggregate size, mixing

conditions, slump level, and the amount of air entrained.

Freedmant 7
] states that a trial mix for 10000 psi [68.9 MPa] can

contain about 940 lb per cubic yard (557 kg per cubic meter).

Any further increase in cement content above this level will not

result in an appreciable increase in compressive strength. Such

high cement factors are inevitable in proportioning for the high

strength concrete. The mix used in this work has a cement

content of 864 lb per cubic yard [512 kg per cubic meter].

Aggregate Content

To obtain a mix of reasonable workability and to retain a

low water-cement ratio, the cement paste must not be combined

with excess aggregate. Here, the mix used in a previous workPS]

was found to have the optimum amount of aggregates to produce the

required workability and the ability to give the required

strength for the mix. The amount of aggregates used are given in

the mix design in Appendix II.

23
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Mixing and Placing

Since the water used in the mix is just enough to hydrate

the cement, the mixing water has to be used effectively.

Initially, it was decided to mix the cement and water for a

minute in the mixer to make a slurry, and then aggregates were

added to the slurry. This method of mixing ensures that the

cement receives all the water it requires for hydration.

One batch of six 3 in. X 6 in. cylinders was made using this

mixing technique. The average compressive strength of these

cylinders was compared to the average compressive strength of the

concrete made by the regular mixing process. The study showed an

increase in the compressive strength of the mix. The results of

the cylinder compressive strengths are given in Tables 4.1 and

4.2. It is not certain to what extent the strength is increased

(the test results showed an apparent increase of 1.5 percent in

the average compressive strength, but later the loads shown by

the dial indicator were found to be wrong due to the failure of a

high-pressure valve in the testing machine).

Later it was decided to follow the regular mixing

procedure. All the solids were mixed, including cement, for four

minutes. After the complete mixing was ensured, water was added

slowly over a period of two minutes, followed by vigorous nixing

for two to four minutes.

Since the capacity of the mixer was three cubic feet, two

batches were mixed for each beam. Good compaction was ensured by

using a rod vibrator. Cylinder samples of 3 i n. X 6 in. were
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made for both batches of the mix. The same operators were used in

each batch of all four beams to minimize the amount of human

error involved. The top surface of the beam was given a smooth

finish by working it with a glass plate .

Curing

The formwork was removed after 24 hours, and the beam was

cured until seven days prior to testing. The curing was done by

pouring water on the beam at regular intervals and keeping it

covered by a plastic drop cloth to reduce the evaporational loss.

Al 1 four beams were tested at an age of 60 days from the day of

casting.



CHAPTER 5

BEAM TEST AND RESULTS

Introduction

All four beams were tested in a universal testing machine

(Tinius Olson) with maximum loading capacity of 200,000 lb

[890 kN], which can be read accurately to the nearest 20 lb

[89 N]. A nearly uniform loading rate was applied for all the

beams.

Test Setup

The beam was supported on two rocking, roller edges.

To avoid the line contact which might cause higher bearing stress

and a bearing failure, two plates of 3 in. X 12 in. X 1 in.

[76.2 X 304.8 X 25.4 mm] were used on the roller edges. This

ensured a normal reaction from the supports at al 1 loads. The

load from the machine head was transferred to the beam at the

third-points by a steel loading beam, shown in Fig. 3.9. The

loading points were seated on a hydro-stone mortar coating to

ensure uniform load transfer. Supports, bearing plates, the test

beam, and the loading beam were checked for any possible

eccentricity in two directions to avoid any possible torsion

introduced into the beam.

Strain readings were obtained by eight electrical-

resistance strain gages placed on the beam (in the first beam, a

total number of 14 gages were used, but later it was decided to

26
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use only eight gages for each beam). The gage locations and the

numbering sequence are shown in Figs. 3.5 and 3.10. The strain

gages were connected to a high-speed data acquisition system.

Deflections were measured by a dial gage with a least reading of

0.001 in. (0.025 mm.) at the mid point of the beam.

To measure the strain in the tensile zone, a Whittemore

gage with a gage length of 8 in. was used. The gage end points

were brass buttons with a concentric hole of 1/16 in. that were

made in the lab. Buttons were glued to the beam by epoxy at 8

in. and 10 in. from the top. (see Fig. 3.5)

The 3 in. X 6 in. cylinder samples for each beam were

tested on the same day as the beam. The first trial mix (taken

from Reference 15) compressive strength results are given in

Table 5.1. The cylinder compressive strength results (modified

mix) for each beam are given in Tables 5.2, 5.3, 5.4 and 5.5.

The proportions of the modified mix are given in Appendix II.

Testing Procedure

Suitable loading increments were used depending upon the

estimated ultimate capacity of the beam. After each increment,

the readings from the strain gages and the dialgage were taken.

The beam was checked for visible cracks and the cracks were

marked up to the leading edge.

Results and Discussion

The strain readings obtained from the electrical-resistance

gages, Whittmore gages and the corresponding load deflection
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values are tabulated in Tables 5.6 through 5.16. The strain

values for corresponding loads in the compression zone are

plotted across the depth of the beam in

Figs. 5.1, 5.2, 5.3 and 5.4, respectively, for Shear Specimen

I(SS1B), Shear Specimen II (SS2B), Under-reinforced Specimen

(UR1) and Over-reinforced Specimen (0R1). The depth of the

neutral axis for each beam was calculated by assuming a uniform

strain distribution across the depth of the section and is shown

on each plot.

The 3 in. X 6 in. (76 mm X 152 mm)concrete cylinder samples

were tested at the same age as the beam; the cylinder stress-

strain data are given in Tables 5.17 and 5.18. Using the

cylinder stress-strain data, a third degree polynomial was fitted

to determine a stress strain relation. Using this polynomial,

each stress corresponding to the beam's measured strain values

was calculated. These stress values are plotted through the

depth of the beam, thus giving the shape of the stress block shown

in Figs. 5.5, 5.6, 5.7 and 5.3.

For every loading, the total compressive force was.

estimated using the triangular stress block assumption. Using

the extreme fiber stress as one side of the triangle and the

depth of the neutral axis as the other, the area and the

centroid of the triangular stress block were calculated.

Neglecting the tensile strength of concrete, the lever arm up to

the center of the steel reinforcements was calculated. The

internal moment produced by this couple was compared with the

actual moment taken by the beam at the corresponding load.
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Similarly, the ACI equivalent stress block was used to

calculate the internal moment at the ultimate load. For this

stress block, 0.85 times the average cylinder compressive

strength and 0.65 times the depth of neutral axis (B 1=0.65) were

used. The internal moment was calculated and checked with the

actual moment taken by the beam at ultimate load. Finally, the

actual stress values through the depth to the neutral axis ware

used to fit a parabolic curve for the stress block. By

integrating, the area of the stress block and the centroidal

distance were calculated. Using these values, the internal

resisting moment was calculated and checked with the actual

moment taken by the beam.

The deflections up to the flexural cracking moment for each

beam were calculated using the full uncracked moment of inertia

of the section, A modulus of rupture of 5.5vf^ was used to

estimate the cracking stress. Beyond this stress, the beam was

treated as a cracked section and the effective moment of inertia

was used to calculate the deflections. This was calculated

using the formula

/
M cr\

3
,«crf

where M
C r

= cracking moment.

Icr < Ig ... (5.1)

Ig = gross moment of inertia of the section,

T = moment of inertia of the transformed section,
i cr

I
e

= equivalent moment of inertia.
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Using this I e
> the deflections of the beam were calculated

and compared to the actual deflections of the beam under load. A

small program in BASIC language was written to perform all the

above mentioned calculations.

Shear Specimen l^

The load and the corresponding stresses at the top, at

two, four, and six inches from the top are given in Table 5.19.

These values are plotted in Fig. 5.5. From this, it can be

observed that the stress block has a negative curvature. This

may be because the failure is due to shear and not flexure or it

may be due to the errors in the measurement.

The actual moments, the calculated triangular stress

block moments (using the actual extreme fiber stress), and the

calculated parabolic stress block moments dre compared in Table

5.20. From this, it can be observed that the moments calculated

using the triangular stress block are found to be higher than the

actual moments for higher loads. The parabolic stress block is

able to predict the moment closely and conservatively with an

error of 11 percent at failure.

The actual deflections and the calculated deflections are

compared in Table 5.21.

Shear Specimen II

The load and the corresponding stresses at the top at two,

four, six inches from the top are given in Table 5.22. These

values are plotted in Fig. 5.6. From this it can be observed

that this stress block also has a negative curvature.
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The actual moments, the calculated triangular stress block

moments (using the actual extreme fiber stress), and the

calculated parabolic stress block moments are compared in Table

5.23. The para bo lie stress block is able to predict the moment

closely and conservatively with an error of 16 percent at

failure. The actual deflections and the calculated deflections

are compared in Table 5.24.

Under Reinforced Beam

The load and the corresponding stresses at the top, at

two, four, and six inches from the top are given in Table 5.25.

These values are plotted in Fig. 5.7.

The actual moments, the calculated triangular stress

block moments (using the actual extreme fiber stress, and the

depth of the neutral axis), and the calculated parabolic stress

block moments are compared in Table 5.25. The triangular stress

block estimate was in error by 9 percent at the maximum load

(load 18).

The actual moment, the calculated moment using the

rectangular stress block (using 0.85 times the average

compressive strength of the 3 in. X 6 in. cylinder samples) and

the calculated parabolic stress block moments are compared in

Table 5.27 for the ultimate load. It is found that the

rectangular stress block assumption gives a close and

conservative estimate with 3 percent error. The parabolic stress

block assumption estimates the actual moment with 42 percent

error. The actual moment, the calculated rectangular stress
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block moment, and the triangular stress block moment are given in

Table 5.28. The actual deflections and the calculated

deflections are compared in Table 5.29. From the initial loading

to the final failure, the neutral axis moved through a distance

of nearly 2.58 inches.

Over-Reinforced Beam

The load and the corresponding stresses at the top, at

two, four, and six inches from the top, are given in Table 5.30.

These values are plotted in Fig. 5.3.

The actual moments, the calculated triangular stress

block moments, (using the actual extreme fiber stress and the

depth up to the neutral axis) and the calculated parabolic stress

block moments are compared in Table 5.31. From this, it can be

observed that the moments calculated using the triangular stress

block are found to be much lower than the actual moments. The

triangular stress block underestimates the ultimate moment of the

section by 39 percent at failure. The parabolic stress block is

able to predict the moment closely and conservatively with an

error of 7 percent at failure.

The actual moment, the calculated moment using the

rectangular stress block (using 0,35 times the average

compressive strength of the 3 in. X 6 in. cylinder samples), and

the calculated parabolic stress block moment at failure are

compared in Table 5.32.
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It is found that the rectangular stress block gives an

estimate with 29 percent error. The parabolic stress block is

able to give the actual moment with 7 percent error. The actual

moment, the calculated rectangular stress block moment, and the

triangular stress block moment at failure are given in Table

5.33. The actual deflections and the calculated deflections are

compared in Table 5.34. From the initial loading to the failure,

the neutral axis has moved through a distance of nearly 1.26

inch. This is due to the fact that tensile steel that has not

yielded, and the very small cracks that are formed do not

severely affect the location of the neutral axis.

Shear Behaviour

There have been a number of discussions on the correct

relation between compressive strength and shear capacity. The

current ACI code assumes that the nominal shear capacity is

proportional to (f<|)
- 5

. Tne «°rk done by some investigators'-
1 ^

conclude that for high-strength concrete the shear strength is

proportional to (f^) - 333
.

Two reinforced concrete specimens were made, one without

any shear reinforcement, and the other with 62 percent of the

required shear reinforcement based on the ACI (318-83)1 'J

method. The longitudinal reinforcement steel ratio was 0,5 times

the balanced steel ratio. Details of reinforcing are given in

Figs. 3.1, 3.2, 3.5 and 3.6. Crack patterns are shown in Figs.

5.9 and 5.10. The total span of the beam was 7 ft. and the shear

span ratio was 2.5.
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Each beam was tested in the same way as the flexural

specimens. The strain data obtained and the corresponding load

and deflections are given in Tables 5.6, 5.7, 5.3, 5.9, 5.10 and

5.11. During the testing of the second beam, SS2B, the spreader

beam failed due to buckling at 50000 lb. The beam was reloaded

the next day using a new spreader beam. In the beam without

shear stirrups, SS1B, the diagonal cracking load and the ultimate

load were used to calculate the critical shear force, and the

ultimate shear stress using the effective depth of the beam, and

the width of the beam. The shear force calculated was compared

with ACI equation 11-3 and 11-6 t
1

] and Zsutty'st^] equation.

In the second beam, the amount of shear taken by the steel

stirrups was calculated by considering the number of stirrups

encountered by a major diagonal crack and then assuming the

stirrups have yielded. The remaining shear was assumed to be

taken by the concrete.

ACI Eq.(ll-3)[ 1]

V cr=2V?Jb w d ...(5.2)

ACI Eq.(1 1-6) ^
1 J

V
u
d

\

Vcr=(l.9Vf2"+ 2500p )bwd . . . (5.3)

Zsutty's Eq.t 13
J

d 0.333
V cr=59 (fc p ) . b„d . . . (5.4)
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At ultimate

Zsutty's Eq.[ ,3 l

d 0.333

Vcr=63,4 (f^p ) . bw d . . .(5.5)

a

The values calculated using these formulas are compared in

Table 5.35. The actual ultimate shear force of the beam with

no web reinforcement was found to be 21000 lb [93.5 kll]. The ACI

formula gave a close and conservative prediction of the ultimate

shear force as 17500 lb[78.3 kN]. Zsutty's equation over-

estimated the ultimate shear capacity of the section to be

23000 lb [102.35 kfl].

In the second specimen, with 62 percent web

reinforcement, the amount of shear taken by the concrete was

found to be 19650 lb [87.4 kN], which is predicted by the ACI

formula closely and conservatively as 17600 lb [78.3 kN].

However, Zsutty's equation predicted 24400 lb [103 kN].

Ultimate Strains

From the test data in Tables 5.13, and 5.16, the average

strains at the ultimate load condition for the under-reinforced

and ovei—reinforced beams are 0.0024 in. /in. and 0.0026 in. /in.

From Table 5.18, the maximum strain in concrete cylinder Ilo.2 is

0.0025 in. /in. These values show that the ultimate strain in

high-strength concrete is less than 0.003 in./in. Ref. 5 and 15

have indicated similar results. An ultimate strain value of

0.0025 in./in. was recommended by Carrasqui 1 lot^J et al.
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Modulus of Elasticity

The uniaxial compressive stress-strain values given in

Tables 5.17 and 5.18 were plotted (Figs. 5.13 and 5.14), and the

point of 0.45 times the maximum cylinder compressive strength was

determined. A straight line was drawn from the origin to 0.45

fL, and the slope of that line was used to calculate the secant

modulus of concrete. The average modulus of elasticity was

found to be 5.42 X 10° psi for this higher-strength concrete.

The ACI formula, [^

E
c
= 33 W 1 - 5^ . . . (5.5)

where W=dry unit weight of concrete, was used to predict the

modulus of elasticity. The dry unit weight was determined by

weighing six 3 in. X 6 in. cylinders, and the average dry unit

weight was 153 pcf (2470 kg/m3). The predicted value was found

to be 5.78X10^ psi. Thus the ACI formula overestimates the

elastic modulus by nearly 5 percent. Detailed calculations are

shown in Appendix II.

Poisson's Ratio

The Poisson's ratio was calculated from the stress-strain

data of Cylinder No. 2 given in Table 5.18. The Poisson's ratio

was found to be constant nearly up to failure. The value is

approximately 0.12. The full set of values is given in Table

5.18. Poisson's ratio values are plotted in Fig. 5.15.
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CHAPTER 6

SUMMARY OF RESULTS AND CONCLUSIONS

Summary

A mix design for high-strength concrete was developed using

the available data from the mix design workHS] done earlier. The

proportions of the mix are given in Appendix II. A super-

plasticizer was used in all mixes to improve the workability. A

total number of four beam specimens was made and tested to

determine the shear strength, and the shape of the compressive

stress block. The test results and the analysis lead to the

following conclusions.

Conclusions

1. Higher-strength concrete has a brittle mode of failure.

In the cylinder specimens, no cracks were observed before

failure. The failure was sudden and explosive. The failure

cracks were vertical, from end to end of the cylinder. The

failure plane was very smooth and did not discriminate between

the aggregate and the matrix.

2. The compressive stress-strain curve is nearly linear up

to failure.

3. Due to the various assumptions used, the ACI equivalent

rectangular stress block is able to give a closer agreement with

the actual measured ultimate moment for beam UR1 than the

triangular stress block. But using the ACI rectangular stress

block for concrete with a compressive strength of S000 psi

[55 i'iPa] or greater is not recommended because the shape of the
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actual stress block appears to be triangular or parabolic at

ultimate loads.

4. For beam 0R1, the parabolic stress block assumption

gives better agreement with the measured ultimate moment than the

ACI rectangular stress block assumption or triangular stress

block assumption.

5. The ultimate strain values for this higher-strength

concrete are different from normal-strength concrete. The strain

in direct compression and flexure are found here to be lower than

0.003 in. /in. used in the ACI code. Therefore, a more

conservative strain value of 0.0025 in./in. is recommended.

5. Nominal shear values predicted by the ACI code formulas

were found to be close to the calculated, experimental values and

conservative. Zsutty's equations overestimated the nominal and

ultimate shear capacity of this concrete.

7. The average value of the modulus of elasticity of this

higher-strength concrete (based on two samples) was found to be

less than the value predicted by the ACI code. f J More work has

to be done to find the exact relation between the unit weight of

concrete, compressive strength, and modulus of elasticity.

8. The deflections calculated using the ACI equivalent

moment of inertia were found to be lower than the actual

deflections. The deflections for all beams are plotted in

Fig. 5.16 in which it is seen that UR1 has a more ductile

behaviour than the other beams.

9. Poisson's ratio for higher-strength concrete was

found to be about 0.12
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APPENDIX II

DETAILS OF SOME CALCULATIONS
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Mix Proportions

Mix proportions obtained from Ref. 15:

All weights are lb. per one cubic foot.

Materials Quantity

Cement 31.93 lb

Quartzite 49.65 lb

Sand 60.88 lb

Water 9.24 lb

Super-plasticizer 0.40 lb

Air 1 (est.) 0.5

Initial Slump, in. 2.5

Specific gravity of Sand =2.63 (Ref. 15)

Specific gravity of Quartzite 2.54 (Ref. 15)

Specific gravity of super-plasticer = 1.2 (Ref. 15)

The weight of the super-plasticizer is added to the

weight of the water since the super-plasticizer is considered

to act as water in the mix.

So the water-cement ratio of the mix is,

=(9.24+0.4)/31.93

=0.30

Test age, days = 47 days

Nominal compressive strength f' = 9400 psi

This mix had an inadequate compressive strength and it

was decided to design a mix with lower water-cement ratio. The

new mix proportions are given below.
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All weights are lb. per one cubic foot

Materials

Cement

Quartizite

Sand

Water

Super-plasticizer

Air % (est.)

Initial Slump, in.

Specific gravity of Sand

Specific gravity of Quartzite

Quantity

31.93 lb

49.65 lb

60.88 lb

8.28 lb

0.74 lb

1.0

5.5

= 2.63 (Ref. 15)

= 2.54 (Ref. 15)

Specific gravity of super-plasticer = 1.2 (Ref. 15)

The water-cement ratio used in the project, including the weight

of the super-plasticizer is calculated below;

=(8.28+0.74)/31.93

=0.28

Water-cement ratio (f c
=12000[83 MPa])=0.28.

Test age, days = 60 days

Nominal compressive strength f£
= 12000 psi
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Design of Steel Reinforcement

Two specimens are designed to fail in shear in order to study the

shear strength characteristics of higher-strength concrete.

Design of Shear Specimen I

PMAX=0.5 P ba1 . -0.02279

A s=Pmax-t>-d-

A
s
=(0.022792)(8)(ll)=2.005525 sq. in.

Use three, #7 bars in a row

Area provided=1.8 sq. in.

M
u
=A

s
f'

y
(d-C/3)d C-3.0 in. C/3-1.0 in.

M
u-(1. 8)(60)(11-1.0)

=1090.8 kip-in.

= 90.9 kip-ft.

M
u
=Pl/6= 90.9, P = 77.90 kip (span=7')

Shear max.=77.90/2=38.95 kips

Allowable shear taken by concrete=sS2 f<! bd

=16.8 kips

Ho shear reinforcement is provided for the beam.

Since the maximum shear is much greater than allowable

shear, the beam is going to fail in shear.

Design of Shear Specimen II

In this beam, the same amount of steel is used as in the

previous specimen.(Praax=0.5Pb a i ance , A
s
=1.8 sq. in.)

From the previous design,

H
u=86.4 kip-ft.. Ultimate load=74.1 kips

V=37.1 kips.
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Shear taken by concrete =^V C
-16.8 kips.

Shear to be taken by steel =(V
u -jSV c )=(37.1-16.3)

=20.3 kips.

Using #3 bars for stirrups A
s
=0.1 1 X2=0.22 sq. in.

(1)(0.22)(60)(10.5)
S =6.33 in.

20.3

An equal spacing of 11 in. c/c. was used in the second beam.

Shear reinforcement provided =(6.33/11)100

=62.1

The second speciman is designed with a shear reinforcement of

about 62 percent with #3 stirrups placed at 11 in. c/c.

Design of Under-Reinforced Section

The section is under-reinforced using p=0.5 pbal.
steel as

the main reinforcement in the beam.

pu
a i

using triangular stress block

Using 60-grade steel,

C b
=d(-^-).

eu+Gy

Gy=yield strain in steel.

ES
=29X106 pj1#

Multiplying the numerator and the denominator by E
fi

72.5

C b
=d ( )

72.5+60

ct,=.5471 d. (when C=Cb)

A
s .fy

=.5 f'
c (0.5471) b b=3in.,d=10.5in.,
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As

bd

using 0.5 pbal< .

, Pmax=°-°228

area of steel

^=10000 psi.[68.9 MPa]

f
y
=60000 psi. [413.4 HPa]

=0.0455975 =0.0456

A
s = Pmax

,trd

=(0.0228)(8)(10.5)

=1.92 sq. in.

Use 3, #7 bars in a row

Area provided =1.8 sq. in.

load calculation using triangular stress block

For third-point loading:

Bending moment maximum =Pl/5

Maximum Shear =P/2

Pmax=°-5 Pbal

A s
=1.8 sq. in.

(Since the failure is going to be in the middle third of the

beam, the steel at the top of the beam that is used to hold the

stirrups in position is not present; it will not affect the

design.

)

d=10.5 in.

My (1.8)(60)

c=a= = = 2.7 in.

0.5.^.0 (0.5)(10)(8)



M u=A s .fy
(d-c/3)d

c=2.7 in, c/3=0.9 in.

H
u
=(1.8)(60)(10.5-0.9)

Hu-1036.8 kip-in. =86.4 kip-ft

Max moment =Pl/6, 1= 7.0 ft

Solving for P, P =74.1 kips

Max shear = P/2 =37.1 kips

Total shear to be taken by the beam = 37.1 kips

Shear taken by concrete =42vf^ bd

=(1.0)(2)v(TOOOO)(3)(10.5)/1000 =16.8 kips

stirrup design

Stirrups have to be designed for 37.1-16.8 = 20.3 kips.

Area of one leg of stirrup =0.11 sq. in.

rfVyd
S= i

v u -«sv c

(1.0X0.22 )(60)(10.5)
=6.83

20.30

Spacing of the #3 stirrups =6.83 in. c/c.

Use a spacing of 4 in. c/c. Use eight, #3 stirrups on either side.

Design of Over-Reinforced Section

From calculation p^a ^"0.04559

For a over-reinforced section use pmax="|.5 p^]

*0. 5)(0.04559)

=0.0684

Area of steel =P max.b.d
=(0.0684)(8)(1 0.5)=5.75 sq. in.

Use six, #9 bars in two rows.
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A-i Area of steel provided =6.00 sq. in.

,d-c\

0.5 fgbc- A
S
E
S (— )e u

10.5-c

(0.5)(l0000)(8)(c)=(6.00)(29)(10 5
)( )(0.0025)

C=6. 55 sq. in.

M
u=(0.5)(f^)(b)(c)(d-c/3)

=(0.5)(10)(8)(6.55)(10.5-(6.55/3))

=2178.9 kip-in.

=181.530 kip-ft

P(1/5)=181.5.,P(7/6)=181.5.,

Solving for P, P=l 55.54 kips.

V77.820 ki P s

V c=«S2\/fT

In all the shear calculations, the i value is assumed to be equal

to 1.

V c=2/fTbd

«SV C
=16.800 kips

V
U
-«SV

C
=61.02 kips

Using #4 bars as stirrups the area of one leg =0.2 sq. in.

Area of two legs of the stirrup= (2)(0.2) =0.4 sq. in.

(1.0)(0.4)(60)(10.5)
S= =4.13 in.

61.02

Use #4 stirrups at 3 in. c/c.
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Nominal Shear Stress Calculation

Shear Specimen l_

Shear span, (a) =28in.

Compressive strength of concrete =9500 psi

Diagonal cracking load =38000 lb.

Diagonal cracking shear =19000 lb.

Nominal cracking shear stress =19000/(b.d)

b=8 in, d=10.6875 in. =19000/((10.6875)(8))

=222 psi.

Ultimate load =42000 lb.

Ultimate shear =21000 lb.

Ultimate shear stress =21000/((8)(10.5875))

=245 psi.

Ultimate moment= (49)(12000) =588000 lb-in.

Steel ratio, (A
s / bd ) =0.02105.

Shear force (ACI EQ 11-3) V c
= 2 \/fJb wd=(2X9500)(8)(l 0.6875)

=16700 lb.

_ V
u«

Shear force (ACI EQ 11-5) = (1.9x/f'+2500p )(b,,,)(d)

H
u

= 1.9\^9500)+(2500)(0.02105)((21000)(10.6875)/533000)(b w )(d)

=(205)(8)(10.6875)

=17600 lb.

Shear stress calculated using zsutty's equation:
d 0.333

Critial shear force V cr = 59 (f<!p ) (bw )(d)
a

(a=shear span 28 in.

)

=(250)(bw )( d )



=(250)(8)(10.6875)

=21400 lb.

d 0.333

Ultimate shear force =(63.4 (fc p ) (bw )(d)
a

=(269)(bw )(d)

=(269)(8)(10.6875)

=23000 lb.

Shear Stress Calculation for Specimen I_[

A diagonal shear crack passes through the beam and make

the stirrups yield. The number of stirrups yielding is given by

the following equation when the angle of the crack is at 45

degrees,

S

where l cr=horizontal crack length,

S=spacing of stirrups.

Here l cr=18.75 inches (measured on the beam after

failure) and S=ll inches,

!J=(18.75/11)=1.7

Shear taken by steel =('J)(A v )(fy ).

where f
y

-j s the yield stress of steel. For the #3 bar, the yield

stress is found to be 63.5 ksi (Table 3.1]l

Area of #3, Bar=0.11 sq. in.

=(1.7)(0.22)(63.5)

=23.7 kips

Ultimate load taken by the beam =86.7 kips

N=(-^)
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Ultimate shear taken by the beam =(86.7/2)

=43.35 kips

Shear taken by concrete =43.35-23.7

=19.55 kips

=19650 lb.

Ultimate Shear capacity of concrete =19650/((S)(10.6875))

=230 psi

Ultimate moment= (101)(12000) =1212000 lb-in.

Steel ratio, (A /bd) =0.02105

Shear force (AC! EQ 11-3) V c=2 ^bwd=(2) vO 1400)(8)(10.6875)

=18300 lb.

V ud

Shear force (ACI EQ 11-6) =(1.9\/fJ+2500p—

—

)(b
v/
)(d)

= 1.9v(11400)+(2500)(0.02105)((43000)(10.6875)/1212000) (b,,)(d)

=(223)(8)(10.6875)

=19000 lb.

Shear stress calculated using zsutty's equation:

d 0.333

Critical shear force V cr =(59 (f^p- — )] (bw )(d)
a

(a=shear span 28 in.

)

(f'
c

= 11400 psi) =(266)(bw )(d)
(p = 0.02105)
(d = 10.6875 in.) =(266)(8)(10.6875)

=22700 lb.

d 0.333

Ultimate shear force =(63.4 (f^p )) (bw )(d)

=(286)(b„)(d)

=(286)(8)(10.6875)

=24400 lb.
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Calculation of Modulus of Elasticity

To calculate the secant modulus of elasticity, 0.45 times

the ultimate compressive strength was determined. A straight

line was drawn connecting that point to the origin in the

cylinder stress-strain curve. The slope of the line gave the

secant modulus of elasticity. Two cylinder stress-strain curves

were used for this purpose. The slope of the line for the first

curve was found to be 6.55 X 10° psi [45.1 GPa]. The slope of the

line for the second curve was found to be 6.21 X 10^ psi [42.7

GPa], The mean value of the modulus of elasticity was found to

be 6.42 X 10 5 psi [44.2 GPa]. The value calculated by using the

ACI formula was,

E
c =33 W 1 - 5^

where W=dry unit weight of concrete

f'=mean ultimate compressive strength of concrete.

The dry unit weight was determined by weighing six

3 in. X 6 in. cylinders and the average value was foud to be

153 pcf (2470 kg/m3) and the mean ultimate compressive strength

was found to be 11860 psi[82.0 MPa],

E
c
=33 X (153) 1 - 5 XvTT860

E c
= 6.78 X 10 6 psi[46.7 GPa]

The value predicted by the ACI formula was found to be

higher than the actual value by nearly 6 percent.
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Sample Calculations for the Ultimate Moment

Shear Specimen I

Location of Neutral Axis

To find the absolute strain values at any given load the

initial strains (no load strain readings) are- subtracted from the

corresponding strain values.

2 in. 4 in. 6 in.

Strain readings at top from top from top from top

Strain at no load: 3-2 2 3

Strain at ultimate
load (91.68 kips ) -543 -221 -94 -26

Absolute strain values -546 -219 -96 -29

Strain gradient
for last 2 in. =(-96-(-29))/2 =-33.5 =-34

Location of neutral axis= 6 +(-29/-34) =6.86 in. (from top)

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber

stress was used to calculate the moment (from Table. 5.19).

M
u
- 0.5 fc .c.b.(d-(c/3))

Wheref
c
= extreme fiber stress calculated using cylinder

stress-strain curve 2 (3430 psi)

b = width of the beam (3 in.)

d = depth of the beam (10.6875 in.)

c = depth of the neutral axis (6.87 in.)
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M u
=(0.5)(3430)(6.87)(8)(10.6875-(6.87/3))

- 790000 lb-in.

- 65.8 kip-ft.

Actual moment=(P1/6)=(42)(7)/6 -49 kip-ft.

Calculated moment =65.8 kip-ft.

"actual

M.calculated

49

65.

= 0.74

Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The

stresses corresponding to the strains are calculated using the

cylinder stress strain curve. A second degree equation was

fitted to give the stress at any point at a distance x measured

from the neutral axis. The equation of the curve was used to get

the area of the stress block and the location of the centroid of

the stress block by integration. The equation for the under-

reinforced beam's stress block at ultimate load is,

f
c=(84.3 x

z -90 x),

where x is the distance from the neutral axis to the given fiber.

The depth of the neutral axis was found to be 6.87 in. from the

top of the beam (using the strain data).

Vc

ZLI'

-A .£
! 1
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The area under the curve is given by integrating between the

neutral axis and the top of the beam.

6.87
A
b=/(84.3 x 2 -90 x) dx.

On integration,
6.87

=(84.3 (x3/3 -90(x 2 /2))]

=6990

|Y .x.dx

Location of centroid is given by =—

:

6.87

/Y.x.dx= j"(84.3 x2 -90 x).x.dx

A
h 69906

6.87

(84.3 (x 4/4) - 90 (x 3/3))]
=

6990

= 5.32 in.

Centroidal distance from top X =(6.87-5.32)

=1.55 in.

Total moment capacity of the beam =Ab.b.(d-X)

=(6990)(8)((10.6875-1.55)

=510000 lb-in.

=42.5 kip-ft.

Actual moment capacity of the beam =49 kip-ft.

calculated moment capacity of the beam =42.5 kip-ft.

"actual 49
=1.15

''calculated
42 ' 5
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Shear Specimen II

Location of Neutral Axis

To find the absolute strain values at any given load the

initial strains (no load strain readings) are subtracted from the

corresponding strain values.

2 in. 4 in.

Strain readings at top from top from top

Strain at no load: 9 1 -1

Strain at ultimate
load (91.68 kips ) -1138 -539

Absolute strain values -1147 -540

Strain gradient
for top 2 inches =(-1l47-(-540))/2

Strain gradient
for next 2 inches =(-540-(-39))/2

Average strain gradient

-40

-39

=-303.5
=-304 \X in. /in.

=-250.5
=-251 (1 in. /in.

=(-304+(-251))/2

=277.5 H in. /in.

=273 H iri./in.

=4.14 in. (from top)Location of neutral axis= 4 -K-39/-278)

Triangular Stress Slock Moments

For the triangular stress block the actual extreme fiber

stress was used to calculate the moment (from Table. 5.22)

M
u
= 0.5 fc .c.b.(d-(c/3))

where f
c

= average cylinder compressive strength (7100 psi),

Bi 0.65,

b = width of the beam (8 in.).
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d = depth of the beam (10.6875 in.),

c = depth of the neutral axis (2.12 in.).

H u
=(0.5)(7100)(4.14)(8)(10.6375-(4.14/3))

= 1094000 lb-in.

- 91.2 kip-ft.

Actual moment=(Pl/6)=(86.7)(7)/6 =101 kip-ft.

Calculated moment =91.2 kip-ft.

101
1,11

"calculated 91 - 2

Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The

stresses corresponding to the strains were calculated using the

cylinder stress strain curve. A second degree equation was

fitted to give the stress at any point at a distance x measured

from neutral axis. The equation of the curve was used to get the

area of the stress block and the location of the centroid of the

stress block by integration. The equation for the under-

reinforced beam's stress block at ultimate load is,

f
c=(63.7 x

2 + 1451 x),

where x is the distance from the neutral axis to the given fiber.

The depth of the neutral axis was found out to be 4.14 in. from

the top of the beam (using the strain data).
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1

f'c

/

c X?
A .f
s y

The area under the curve is given by integrating between the

the neutral axis and the top of the beam.

4.14
A
b=/(63.7 x

2 + 1451 x) dx.

on integration,
4.14

=(53.7 (x3/3 + 1451 (x2 /2))]

=14000

Location of centroid is given by =-

4.14

JY x.dx= J(63.7 x2 + 1451 x).x.dx

jl x.dx

14000

(53.7 (x 4/4) + 1451 ( X 3/3))]

4.14

14000

2.79 in.

Centroidal distance from top X =(4.14-2.79)

=1.35 in.

Total moment capacity of the beam =Ab.b.(d-X)

=(14000)(3)((10.5875-1.35)

=1050000 Ib-in.

=87.5 kip-ft.
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Actual moment capacity of the beam =101 kip-ft.

calculated moment capacity of the beam =87.5 kip-ft.

"calculated 87 - 5

Under-Reinforced Beam

Location of neutral axis

To find the absolute strain values at any given load the

initial strains (no load strain readings) are subtracted from the

corresponding strain values.

2 in. 4 in.

Strain readings at top from top from top

Strain at no load: 4 1 -3

Strain at ultimate

load (91.68 kips ) -2413 -141 502

Absolute strain values -2417 -142 505

Strain gradient =(-142-(505))/2 =-323.5

=-324 LI in. /in.

Location of neutral axis= 2 +(-142/-324) =2.44 in. (from top)

Rectangular Stress Block Moments

M
u
= 0.85 f

(

l.(B
1
.c).b.(d-(B

1
c/2)

where f'
z

= average cylinder compressive strength (11700 psi),

B-] = 0.65,

b = width of the beam (8 in.),

d » depth of the beam (10.6875 in.),

c = depth of the neutral axis (2.44 in.).



61

i.l u
=(0.85)(11700)((0.65)(2.44))(8)(10.6875-((0.65X2.44))/2)

= 1250000 Ib-in.

= 104 kip-ft.

Actual moment=(Pl/6)=(91.7)(7)/6 =107 kip-ft.

Calculated moment =104 kip-ft.

"actual 107

"calculated 104

= 1.03

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber

stress was used to calculate the moment (from Table. 5.25)

M
u
« 0.5 f^.c.b.(d-(c/3))

wheref
c > extreme fiber stress calculated using cylinder

stress-strain curve 2 (12200 psi),

b = width of the beam (8 in.),

d = depth of the beam (10.5875 in.),

c = depth of the neutral axis (2.44 in.).

H
u
=(0.5)(12200)(2.44)(8)(10.6875-(2.44/3))

= 1180000 lb-in.

= 98.0 kip-ft.

Actual moment=(Pl/6)=(91.7)(7)/6 =107 kip-ft.

Calculated moment =98.0 kip-ft.

"actual 107
= 1.09

'"'calculated 98.0
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Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The

stresses corresponding to the strains were calculated using the

cylinder stress strain curve. A second degree equation was

fitted to give the stress at any point at a distance x measured

from the neutral axis. The equation of the curve was used to get

the area of the stress block and the location of the centroid of

the stress block by integration. The equation for the under

reinforced beam's stress block at ultimate load is,

f
c=(1486.3 x

2 + 1379.7 x).

where x is the distance from the neutral axis to the given fiber.

The depth of the neutral axis was found out to be 2.44 in. from

the top of the beam (using the strain data).

f'c

-A .£
s y

The area under the curve is given by integration between

the neutral axis and the top of the beam.

2.44

A
b=J(14S6.3 x 2 + 1379.7 x) dx.

On integration,
2.44

A h =(1486.3 (x3/3 + 1379.7 (x 2 /2))]
D

=11300.
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Y x.dx
Location of the centroid is given by =

—

2.44
Y.x.dx= J(1486.3 x2 + 1379.7 x).x.dx

11300

(1486.3 (x 4/4) + 1379.7 (x 3/3))]

2.44

11300

1.76 in.

Centroidal distance from top

Total moment capacity of the beam

X =(2.44-1.76)

=0.68in.

=Ab.b.(d-X)

=(11300)(8)((10.6875-0.68)

=905000 Ib-in.

=75.4 kip-ft.

Actual moment capacity of the beam =107 kip-ft.

calculated moment capacity of the beam =75.4 kip-ft.

"actual 107
= =1.42

''calculated 75 - 4

Over-Reinforced Beam

Location of Neutral Axis

To find the absolute strain values at any given load, the

initial strains (no load strain readings) are subtracted from the

corresponding strain values.

2 in. 4 in. 5 in.

Strain readings at top from top from top from top

Strain at no load: -11 1
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Strain at ultimate

load (130.0 kips ) -2604 -1696 -626 1146

Absolute strain values -2587 -1697 -626 1146

Strain gradient
for last 2 in. =(-626-(1146))/2 =-836

Strain gradient =-886 U in. /in.

Location of neutral axis= 4 +(-626/-886) =4.71 in.(from top)

Rectangular Stress Block Moments

M
u
= 0.35 f^.(B

1
.c).b.(d-(B

1
/2)

where f'z
" average cylinder compressive strength (12100 psi)

B, = 0.65,

b = width of the beam (8 in.),

d = depth of the beam (9.3125 in.),

c = depth of the neutral axis (4.71 in.).

Hu =(0.85)(12100)((0.65)(4.71))(8)(9.3125-((0.65)(4.71))/2)

= 1960000 Ib-in.

= 163 kip-ft.

Actual moment=(Pl/6)=(130.0)(7)/6 =210.0 kip-ft.

Calculated moment =163 kip-ft.

"actual 210-0
= ^

'•'calculated
163

Triangular Stress Block Moments

For the triangular stress block the actual extreme fiber

stress was used to culate the moment (from Table. 5.30).

f'u= 0.5 f^.c.b.(d-(c/3)

wheref
c
= extreme fiber stress calculated using cylinder

stress-strain curve 2 (12400 psi).
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b width of the beam (3 in.),

d = depth of the beam (9.3125 in.),

c = depth of the neutral axis (4.71 in.).

M
u
=(0.5)(12400)(4.71)(3)(9.3125-(4.71/3))

= 1300000 Ib-in.

= 150.0 kip-ft.

Actual moment=(Pl/6)=(130.0)(7)/6 =210.0 kip-ft.

Calculated moment =150.0 kip-ft.

"actual 210-0
= ]

150.0

Parabolic Stress Block Moments

Using the strain data the neutral axis was located. The

stresses corresponding to the strains were calculated using the

cylinder stress strain curve. A second degree equation was

fitted to give the stress at any point at a distance x measured

from neutral axis. The equation of the curve was used to get the

area under the curve and the location of the centroid of the

curve by integration. The equation for the under reinforced

beam's stress block at ultimate load is,

Y(x)=(-568.7 x2 + 5295 x)

where x is the distance from the neutral axis to the given fiber.

The depth of neutral axis was found to be 4.71 in. from the top

of the beam (using the strain data).
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The area under the curve is given by integration between

the neutral axis and the top of the beam.

4.71

A
b
= /(-568.7 x

2 x + 5296.3 x) dx

On integration.
4.71

A
b
=(-558.7)(x 3/3) + (5296.3)((x 2

/2))J

=39000

Location of centroid from neutral axis is given by =-
JY x.dx

. 4.71

J Y x.dx / (-568.7 x2 + 5296.3x).x.dx

=

A h 39000

4.71

(-568.7 (x3/3) + 5296.3 (x 2 /2))]
= _

39000

- 2.94 in.

Centroidal distance from top X =(4.71-2.94)

=1.77 in.

Total moment capacity of the beam =A
b
.b.(d-X)

=(3900O)(3)(9.3125-1.77)

=2350000 lb-in.
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=196 kip-ft.

Actual moment capacity of the beam =210 kip-ft.

Calculated moment capacity of the beam =196 kip-ft.

210
=1.07

"calculated 196
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Prediction of the Ultimate Moment Capacity

Under-Reinforced Beam

Rectangular Stress Block 0.85 f'c

a=B-]C where B-j=0. 65

d=l 0.6875 in. f£=11 700 psi

As-1.8 sq. in. (three, #7 bars)

fy=64700 psi

C=0.85 f£ab

T=As.f„

Equating C=T,

(1.8)(64700)
1.46 in.

(0.35)(11700)(8)

a=B lc tfhere B-|=0.65

.'. c=(1.46/0.65)=2.25 in.

Depth of neutral axis (calculated) =2.25 in

Depth of neutral axis (Test result) =2.44 in

Ultimate moment

I'

A .f
s y

Ultimate moment

Actual moment taken by the beam

107
''actual

=0.85f£.a.b.(d-a/2)

=(0.85)(11700)(1.46)(8)(9.5525)

=1110000 lb-in.

=92.6 kip-ft.

=107 kip-ft.

= 1.16

"calculated
92 ' 6
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Triangular Stress Block

Properties of the triangular stress block;

d=10.6875 in.

b=8 in.

fc=1 1 700 psi

As=1.8 sq. in.

f
y
=64700 psi

C=0.5 fJ.C.b.

T=As.f
y

Equating C=T,

[ I Y=7
c " —/

(1.8)(64700)
=2.49 in.

(0.5)(11700)(8)

Calculated depth of neutral axis. =2.49 in.

Actual depth of neutral axis. =2.44 in.

Moment capacity calculated,

Mu
= (0.5)(fc

)(O(b)(d-a/3)

= (0.5)(11700)(2.49)(8)(10.6875-(2.49/3))

= 1150000 lb-in.

• 96 kip-ft.

Actual moment =107 kip-ft.

Calculated moment =96 kip-ft.

Mactual

MCalculated

106.96

95.73

=1.11
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Parabolic Stress Block

The shape of the stress block suggested by Ref. 14 is used

to predict the ultimate moment capacity of the beam. The stress

blocks at ultimate load for all the four beams tested in Ref. 14

were plotted. The average stresses at various depth were

calculated. A parabolic curve was fitted through these points

using the least sqaure method to give the stress at any point x

measured from the neutral axis.

Cyllfldar Dae*

Sum Oat*

V7.T

— CyLinder Daca

— Bun D*ca
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Using this equation the area under the stress block and the

location of the centroid were calculated. The equation is,

fc = (-9988.1 (x/c) 2+ 20828.7 (x/c))

Ab = /(-9988.1 (x/c) 2+ 20828.7 (x/c))
c

= (-9988.1 (x3 /3c 2 )+ 20828.7 (x2/2c))

Total compressive force C,

c

C =(8)(-9988.1 (x 3 /3c2 )+ 20828.7 (x2 /2c))]

This area is equal to As.fy.

As.f„ (8)((- .1 (c/3) + 20828.7 (c/2))

(1.3)(64700)= (8)(7085)(c).

Solving for c,

c=2.05 in.

Calculated depth of neutral axis

Actual depth of neutral axis.

Area under the curve A^

Location of the centroid,

2.05

/ Y
(x ).x.dx

=2.05 in.

=2.44 in.

=14500

fc
~7

/ (-9983.1 (x3/c2 )+ 20823( x 2/c).dx
=

14500

=1.29 in.

Centroidal distance from the top X =(2.05-1.29)

=0.76 in.

Moment capacity of the beam =Ab- b-(d-X)

=(14500)(8)(10. 6875-0. 76)

• ' y
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=1150000 Ib-in.

=95.3 kip-ft.

Actual moment capacity of the beam =107 kip-ft.

''actual I"? ^ ^
'•'calculated 95 - 8

Over-Reinforced Beam

Rectangular Stress Block

a=B-|C where B-]=0.55

d=9.3125 in. f^=12100 psi

As=6.0 sq. in.

fy=63S00 psi Es= (29)(10 6
)

b=8 in.

C=0.85 flab

T=As.f
s , where fs=E s .G s

strain diagram:

An ultimate concrete strain value of 0.0025 in. /in. is

assumed for calculating the location of the neutral axis.

S
s _ 6u_

(d-c) c

G
u(d-c)

C ,

c

As.fs =0.35.f^.(B lc ).b

As.Es.Gs=0.S5.f,l.(Bic).b

As. Es.(G
u
(d-c)/c)=(0.35)( 12100)(0. 55) (c)(8)

(6)(29)(106)(O.0O25)((9.3125-c)/c)=(0.85)(1210O)(0.55)(c)(S)

Solving for c.
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c=5.53 in.

Depth of neutral axis (calculated) =5.53 in.

Depth of neutral axis (actual) =4.71 in.

Ultimate moment,

M
u=(0. 85X12100) ((0.65) (5. 53) )(8)(9. 31 25-(0.65)(5. 53/2)))

=2220000 lb. -in.

=185 kip-ft

Actual moment taken by the beam =210 kip-ft.

Calculated moment =185 kip-ft.

'"'actual 210

185

= 1.14

Triangular Stress Block

d=9.3125 in.

b=8 in.

f
c=12100 psi

As=6.0 sq. in.

f
y
=53800 psi

C=0.5 f^.c.b.

T=As.f
s

strain diagram:

An ultimate concrete strain value of 0.0025 in. /in. is

assumed for calculating the location of the neutral axis, c

measured from the top of the beam.

(d-c)
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Su
(d-c)

e, =

As .fs
-0.5.f£.cb.

A
s .E s .S s

=0.5.f^.c.b

A s .E s .(G u
(d-c)/c)=(0.5)(12100)(c)(8)

(6)(29)(10 5 )(0.0025)((9.3125-c)/c)=(0.5)(12100)(c)(8)

Solving for c,

c=5.70 in.

Depth of neutral axis (calculated) =5.70 in.

Depth of neutral axis (actual) =4.71 in.

Ultimate moment,

M
u
=(0.5)(12100)(5.70)(3)(9.3125-(5.70/3))

=2040000 Ib-in.

=170 kip-in.

Actual moment taken by the beam =210 kip-ft.

Calculated moment =170 kip-ft.

Mactual 210
=]

'''calculated 17°

Parabolic Stress Block

The shape of the stress block suggested by Ref. 14 is used

to predict the ultimate moment capacity of the beam. The stress

block at ultimate load for all the four beams tested in Ref. 14

was plotted. The average stresses at various depth were

calculated. A parabolic curve was fitted through these points

using the least squares method to give the stress at any point x

measured from the neutral axis.
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"A .f„

Using this equation, the area under the stress block and the

location of the centroid are calculated. The equation is,

Y (x )
= (-9988.1 (x/c) 2 + 20828.7 (x/c))

c

A
b =^(-9988.1 (x/c) 2+ 20828.7 (x/c)) dx

c

= (-9988.1 (x 3 /3c 2+ 20828.7 (x 2/2c)J

Total compressive force C,

c

C = (8)(-9988.1(x3/3c2 )+ 20323.7 (x 2/2c)f

As.fs (b)(-9988.1 (c/3) + 20828.7 (c/2))

As.f
s = (8)(7085)(c) =56700(c)

strain diagram:

An ultimate concrete strain value of 0.0025 in. /in. is

assumed for calculating the location of the neutral axis.

(d-c)

Ss =

GuCd-C)

As.fs=56680.0 c
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Gu
(d-0

As.Es.f )=56700c

(6.0)(29)(10 6)(0.0025(9.3125-c)/c)=56700c

c 2 + 7.675c -71.47=0

Solving for c,

c=5.45 in.

Depth of neutral axis (calculated) =5.45 in.

Depth of neutral axis (actual) =4.71 in.

Area under the curve Ab=((-9988.1/3)+(20823/2))(5.45)

Ab=38600.

Location of the centroid from neutral axis.

C.G= / Y/
X \.x.dx

/( -9988.1 (x3/ -J) + 20828 (x2/c).x.dx

38600

(-9988.1 ((x 4/4)/ z
2

) + 20828 ((x 3/3)/c)]

o

38600

[(-9988. 1 (c2/4) f (20828 (c2/3)]

33600

=3.42 in.

Substituting the value of c in the equation,

Centroidal distance from neutral axis =5.45 in.

Centroidal distance from the top X =(5.45-3.42) =2. C3 in.

The ultimate moment capacity =(38600)(S)(9.3125-2.03)

=2250000 lb-in.



=133 kip-ft.

Actual moment taken by the beam =210 kip-ft.

Calculated moment =188 kip-ft.

"actual 210

''calculated 188

=1.12

77
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APPENDIX III

BASIC PROGRAMS
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Program for Shear Specimen 1

10 REM SHEAR SPECIMEN 1 NAME alishl
20 REM LPRINT "RESULT OF THE TEST DATA FOR SHEAR SPECIMEN-1"
30 REM LPRINT "NO SHEAR REINFORCEMENT ALISH1"
50 LPRINT :LPRINT :LPRINT :LPRINT :LPRINT :

60 DIM W(30),ST(3O),S2(30),S4(30),S6(30),STR0(3O),STRl(3O),STR2(30),
LEV(3,30) ,NAT(30) ,SA1(30) ,SA2(30) ,SA3(30) ,SA0(30) ,STR3(30) ,UN(30)

,

C0MP(3,30),AB(30),CM(3,30),AM(30),ACCU(3,30),ER(3,30),X(30),AS(30),Y(30),
IC(30),YS(30),IS(30),ICCR(30)

70 DIM ISCR(30),ITCR(30),MCR(30),TI(30),IE(30),DEFC(30),ACCD(30),IT(30),
DEFA(30) ,MA(30) ,A1(30) ,A2(30) ,A3(30) ,NX(30) ,YT(30) ,A(3,4) ,XX(3) ,TTX(30)

,

TAX(30) ,TAT(30) ,XBAR(30) ,TAY(30)
80 N=22
90 FOR 1=1 TO N
100 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
110 DATA 0,0,3,-2,2,3
120 DATA 68,2970,-22.2,-20.75,-6.25,1.45
130 DATA 90,5925,-45.45,-16.85,-12.05,4.8
140 DATA 98,8965,-72.05,-28.4,-19.8,5.3
150 DATA 109,11865,-103.5,-42.5,-29.5,13.55

134,-70.6,-34.3,18.85
-174.15,-80.6,-38.2,31.85
-231.75,-115.6,-40.15,22.2
-230.75,-117.05,-42.55,25.1
-284.0,-136.85,-44.5,36.7
-329.45,-141.75,-53.5,23.2
-374.0,-163.6,-62.7,7.7
-419.95,-203.65,-69.6,4.8
-447.05,-216.25,-73.5,-4.8
-473.1,-229.8,-79.3,-5.8
-491.55,-215.75,-79.3,-9.6
-515.75,-226.9,-83.2,-11.6
-540.45,-239,-88,-16.4
-492.55,-184.8,-75.4,-22.2
-491.055,-189.15,-73.5,-24.
-503,-192.05,-79.3,-23.2
-543.3,-220.6,-93.8,-26.1

160 DATA 117,14835
170 DATA 129,17665
180 DATA 143,20645
190 DATA 143,20000
200 DATA 161,23715
210 DATA 177,26690
220 DATA 192,29700
230 DATA 209,32710
240 DATA 218,34800
250 DATA 226,36555
260 DATA 234,38015
270 DATA 243,39790
280 DATA 661,42000
290 DATA 661,37410
300 DATA 661,37190
310 DATA 661,38200
320 DATA 668,42000
330 SA1(I)=(S2(I)-S2(1))
340 SA2(I)=(S4(I)-S4(1))
350 SA3(I)=(S6(I)-S6(1))
360 SA0(I)=(ST(I)-ST(1))
370 NEXT I
390 LPRINT "LOAD IN NUTERAL AXIS
400 LPRINT " KIPS. DEPTH IN
410 FOR 1=2 TO N
420 IF SGN(SA3(I))=-1 THEN GOTO 450
430 UN(I)=(((SA0(I)-SAl(I))/2)+(SAl(I)-SA2m)/2)/2:PRINT "UN(";I;")
440 NAT(I)=(4+(SA2(I)/UN(I))):PRIN™T("--

'

450 UN(I)=(SA2(I)-SA3(I))/2
460 NAT(I)=(4+(SA2(I)/UN(I)))
470 AA=1:BB=1:CC=1:DD=1
480 IF SGN(SA1(I))=1 THEN AA=0
490 IF SGN(SA2(I))=1 THEN BB=0
500 IF SGN(SA3(I))=1 THEN CC=0
510 IF SGN(SA0(I))=1 THEN DD=0
520 SA1(I)=ABS(SA1(I))
530 SA2(I)=ABS(SA2(I))
540 SA3(I)=ABS(SA3(I))

STRESS AT
TOP

STRESS AT
2 IN.

STRESS AT STRESS AT"
4 IN 6 IN."

;I;'')=";NAT(I):G0T0 470
'iUN(I)
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550 SA0(I)=ABS(SA0(I))
560 STRO(I)=(-4.06906E-07*(SAO(I)"3)+5.619357E-04*(SAO(I)"2)+6.060692*(SAO(I))+

18.562801#)
570 STR1(I)=(-4.06906E-07*(SA1(I)"3)+5.619357E-04*(SA1(I)*2)+6.060692*(SA1(I))+

18.562801#)
580 STR2(I)=(-4.06906E-07*(SA2(I)-3)+5.619357E-04*(SA2(ir2)+6.060692*(SA2(I))+

18.56280U)
590 STR3(I)=(-4.06906E-07*(SA3(I)"3)+5.619357E-04*(SA3(I)

-
2)+6.060692*(SA3(I))+

18.562801#)
600 IF AA=0 THEN STR1(I)=-STR1(I)
610 IF BB=0 THEN STR2(I)=-STR2(I)
620 IF COO THEN STR3(I)=-STR3(I)
630 LPRINT
640 W(I)=W(I)/1000
641 DVN=10
642 STRO(I)=(CINT(STRO(I)/DVN))*DVN
643 STRUI)=(CINT(STR1(I)/DVN))*DVN
644 STR2(I)=(CINT(STR2(I)/DVN))*DVN
645 STR3(I)=(CINT(STR3(I)/DVN))*DVN
650 LPRINT USING" «#.# #.« ##### «### ###### #####

";W(I),NAT(I), STR0(I),STR1(I),STR2(I),STR3(I)
660 W(I)=W(I)*1000
670 NEXT I

680 LPRINT CHRS(12)
690 D=10.6875
700 FC=9500
710 B=.65:WB=8
720 FOR COUNTERS TO 2

760 FOR 1=2 TO N
770 AB(I)=(NAT(I)*B)
780 IF COUNTERS GOTO 890
790 IF COUNTERS GOTO 820
800 COMP(COUNTER,I)=(STRO(I)*AB(I)*WB)
810 IF COUNTERS GOTO 830
820 C0MP(C0UNTER,I)=(.5*STR0(I)*NAT(I)*WB)
830 PRINT "COMP(";COUNTER,I;")=";COMP(COUNTER,I)
840 IF COUNTERS GOTO 870
850 LEV(C0UNTER,I)=(D-(AB(I)/2))
860 IF COUNTERS GOTO 1290
870 LEV(C0UNTER,I)=(D-(NAT(I)/3))
880 IF COUNTER=0 OR 1 GOTO 1290
890 REM PARABALOIC CURVE FITTING
900 NP=3
910 IF NAT(I)>=4 THEN NP=4
920 X(1)=NAT(I)
930 X(2)=(NAT(I)-2)
940 IF NAT(I)<4 THEN X(3)=0:Y(3)=0:G0T0 960
950 X(3)=NAT(I)-4:X(4)=0:Y(3)=STR2(I):Y(4)=0
960 Y(1)=STR0(I)
970 Y(2)=STR1(I)
980 SX-0 : SX2=0 : SX3=0 : SX4=0 : SY=0 : SXY=0 : SX2Y=0
990 FOR T=l TO NP
1000 SX-SX+X(T)
1010 SY=SY+Y(T)
1020 SX2=SX2+(X(T)"2)
1030 SX3=SX3+(X(T)*3)
1040 SX4=SX4+(X(T)"4)
1050 SXY=SXY+X(T)*Y(T)
1060 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
1070 NEXT T
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1090 A(2,2)=SX2:A(2,3)=SX3
1100 A(3,2)=SX3:A(3,3)=SX4
1110 A(2,4)=SXY:A(3,4)=SX2Y
1120 GOSUB 1980
1130 A1(I)=XX(1)
1140 A2(I)=XX(2)
1150 A3(I)=XX(3)
1160 NX(I)=NAT(I):PRINT ; "A1(";I;")=";A1(I) ,A2(I) ,A3(I)
(=1170 TTX(I)=NX(I)/10
1180 FOR Z=l TO 11
1190 TAX(Z)=NX(I)-((Z-1)*TTX(I))
1200 TAY(Z)=(A3(I)*(TAX(Z)"2))+(A2(I)*TAX(Z))+A3(I)
1210 NEXT Z
1220 FOR Z=l TO 10
1230 TAT(I)=TAT(I)+(TTX(I)*((TAX(Z)*TAY(Z))+((TAY(Z)+TAY(Z+1))*(TAX(Z)+

TAX(Z+l)))+(TAX(Z+l)*TAY(Z+l))))/6
1240 NEXT Z
1250 AS(I)=(A3(I)*((NX(I)-3)/3))+(A2(I)*((NX(ir2)/2))+(Al(I)*NX(I))
1260 XBAR(I)=TAT(I)/AS(I):XBAR(I)=NX(I)-XBAR(I)
1270 LEV(COUNTER,I)=(D-XBAR(I))
1280 C0MP(C0UNTER,I)=(AS(I)*8):PRINT "COMP("; COUNTER, I; ")="C0MP(C0UNTER
1290 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1300 CM(C0UNTER,I)=C0MP(C0UNTER,I)*LEV(C0UNTER,I):L=84
1310 AM(I)=(W(I)*L)/6
1320 PRINT "CM(";COUNTER,I;")="CM( COUNTER, I),"AM(";I;")=";AM(I)
1330 ACCU(COUNTER,I)=(AM(I)/CM(COUNTER,I))
1340 ER(COUNTER,I) = ((CM(C0UNTER,I)-AM(I))/AM(I))*100
1350 PRIST "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT :PRINT "ER(";

COUNTER, I
; ")=";ER(COUNTER,I)

1360 AM(I)=AM(I)/12000:CM(COUNTER,I)=(CM(COUNTER,I)/12000)
1370 NEXT I

1380 NEXT COUNTER
1390 FOR 1=1 TO N
1400 W(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1410 NEXT I
1420 FOR COUNTS TO 3

1430 LPRINT :LPRINT :LPRINT :LPRINT :LPRINT :

1440 IF C0UNT=1 THEN LPRINT "LOAD NO. LOAD IN
Hu(tast)

'LOAD NO. LOAD IN
Mu(test)

'LOAD NO. LOAD IN
Mu(test)

KIPS KIP-FT
Mu(

A
calc)

' _ KIPS KIP-FT
Mu("calc)

' KIPS KIP-FT
Mu( calc)

I)

Mu('calc) Mu (test)
1450 IF C0UNT=2 THEN LPRINT

Mu( calc) Mu (test)
1460 IF C0UNT=3 THEN LPRINT

Mu( calc) Mu (test)
1470 IF C0UNT=1 THEN LPRINT

KIP-FT
1480 IF C0UNT=2

KIP-FT
1490 IF C0UNT=3

KIP-FT
1500 LPRINT
1510 FOR I=N TO
1520 IF C0UNT=1 THEN LPRINT USING

Mu ([]calc)
THEN ^ LPRINT
Mu (

A
calc)

THEN LPRINT
Mu ([Jcalc)

Mu (test) Mu ([]calc)

Mu (test) Mu (" calc)

Mu (test) Mu ([Jcalc)

KIP-FT

KIP-FT

KIP-FT

## m.
«#.##";I,W(I),AM(I),CM(0,I),CM(1,I),ACCU(0,I),ACCU(1,I)

1530 NEXT I
1540 FOR 1=2 TO N
1550 IF C0UNT=2 THEN LPRINT USING " ## ###.* ###.# ### #

###.## ###.«";I,W(I),AM(I),CM(1,I),CM(2,I),ACCU(1,I),ACCU(2
1560 IF KN THEN GOTO 1580
1570 IF C0UNT=3 THEN LPRINT USING " ii ###.#

*«.##
##*. i j; Ji -

;I,W(I),AM(I),CM(0,I),CM(2,I),ACCU(0,I),ACCU(2

I)

###
I)

'
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1580 IF COUNT=2 THEN LPRINT
1590 NEXT I
1600 LPRINT CHR$(12)
1610 NEXT COUNT
1620 FOR COUNTER=0 TO 2

1630 FOR 1=1 TO N
1640 CM( COUNTER, I)=(CM(COUNTER,I)*12000)
1650 NEXT I

1660 NEXT COUNTER
1670 LPRINT :LPRINT :LPRINT :LPRINT :

1680 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1690 LPRINT " KIPS IN. IN. DEF CAL"
1700 FOR 1=2 TO 18

1710 IF STR0(I)<6700 THEN EC=6216845!
1720 IF STR0(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
1730 IF STR0(I)>9700 THEN EC=3828919!
1740 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1750 MA(I)=AM(I)
1760 YT(I)=(6-NAT(I))
1770 IC(I)=(WB*(TD"3))/12+(A*(YT(I)"2))
1780 YS(I)=(D-NAT(I))
1790 IS(I)=(((ES/EC)-1)*AS)*(YS(I)"2)
1800 IT(I)=IC(I)+IS(I):PRINT "ITCG=";IT(I)
1810 ICCR(I)=(WB*(NAT(I)*3)/12)+((WB*NAT(I))*((NAT(I)/2)"2))
1820 NS=(ES/EC)
1830 ISCR(I)=(NS*AS)*(YS(I)*2)
1840 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=" ;ITCR(I)
1850 FCR=7.5*SQR(FC)
1860 MCR(I)=(FCR*IT(I))/(TD-NAT(I))
1870 TI(I)=((MCR(I)/(106. 96*12000) )*3)

1880 IE(I)=(TI(I)*IT(I))+((1-TI(I))*ITCR(I))
1890 REM IF (AM(I)*12000)<MCR(I) THEN IE(I)=IT(I)
1900 PRINT "IE=";IE(I)
1910 DEFC(I)=(23*W(I)*(84"3)*1000)/(1296*EC*IE(I))
1920 ACCD(I)=(DEFA(I)/DEFC(I))
1930 LPRINT
1940 LPRINT USING " ## ##.## #.#« #.### ##.##";!,

W(I),DEFA(I),DEFC(I),ACCD(I)
1950 NEXT I

1960 LPRINT CHR$(12)
1970 END
1980 NS=3
1990 FOR K=l TO NS
2000 C=A(K,K)
2010 FOR J=K TO (NS+1)
2020 A(K,J)=A(K,J)/C
2030 NEXT J
2040 FOR S=l TO NS
2050 IF S=K THEN GOTO 2100
2060 C=-A(S,K)
2070 FOR J=K TO (NS+1)
2080 A(S,J)=A(S,J)+(C*A(K,J))
2090 NEXT J
2100 NEXT S
2110 NEXT K
2120 XX(1)=A(1,NS+1)
2130 XX(2)=A(2,NS+1)
2140 XX(3)=A(3,NS+1)
2150 RETURN
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Program for Shear Specimen 2

10 REM SHEAR SPECIMEN 2 NAME NEWFISH2
20 REM LPRINT "RESULT OF THE TEST DATA FOR SHEAR SPECIMEN-2"
30 REM LPRINT "0.5 TIMES THE BALANCE STEEL final2"
40 REM LPRINT "************=?******************************"

50 LPRINT : LPRINT : LPRINT : LPRINT : LPRINT
60 DIM W(30) ,ST(30) ,S2(30) ,S4(30) ,S6(30) ,STR0(30) ,STR1(30) ,STR2(30)

,

LEV(3,30) ,NAT(30) ,SA1(30) ,SA2(30) ,SA3(30) ,SA0(30) ,STR3(30) ,UN(30)

,

COMP(3,30),AB(30),CM(3,30),AM(30),ACCU(3,30),ER(3,30),X(30),AS(30),r(30),
IC(30),YS(30),IS(30),ICCR(30)

70 DIM ISCR(30) ,ITCR(30) ,MCR(30) ,TI(30) ,IE(30) ,DEFC(30) ,ACCD(30) , IT(30)

,

DEFA(30),MA(30),A1(30),A2(30),A3(30),NX(30),YT(30),A(3,4),XX(3),
TTX(30) ,TAX(30) ,TAT(30) ,XBAR(30) ,TAY(30)

80 N=19
90 FOR 1=1 TO N

100 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
110 DATA 0,0, -12, -10, -16, +15
120 DATA 27,7880,-81.2,-53.15,-39.15,-18.35
130 DATA 60,16900,-181.4,-108.8,-56.55,-6.7
140 DATA 95,23820,-298.95,-152.4,-33.35,-44.45
150 DATA 138,31762.5,-423.35,-194,-28,-85.1
160 DATA 138,31762,-423.35,-194,-28,-65.3
170 DATA 165,39640,-534.6,-229.8,-20.3,-85.1
180 DATA 217,47350,-613.45,-268,-30.9,-63.85
190 DATA 260,53407,-731.1,-308.65,-36.7,-99.15
200 DATA 294,59159,-817.2,-343.5,-45.4,-106.4
210 DATA 336,59830,-793.5,-368.2,-37.7,7.75
220 DATA 354,63850,-840.9,-391.85,-40.6,7.75
230 DATA 374,67760,-896.1,-416.55,-45.4,4.85
240 DATA 395,71705,-947.4,-443.65,-50.3,4.35
250 DATA 418,75750,-994.8,-467.35,-49.3,12.1
260 DATA 430,79760,-1056.7,-497.85,-56.1,12.1
270 DATA 460,80365,-1085.8,-505.1,-50.3,11.15
280 DATA 472,83500,-1146.7,-532.65,-48.3,5.3
290 DATA 495,86700,-1138,-538.5,-39.6,2.45
300 SA1(I)=(S2(I)-S2(1))
310 SA2(I)=(S4(I)-S4(1))
320 SA3(I)=(S6(I)-S6(1))
330 SA0(I)=(ST(I)-ST(1))
340 NEXT 1

350 REM LPRINT "-VE SIGN INDICATES TENSION": LPRINT :LPRINT
360 LPRINT "LOAD IN NUTERAL AXIS STRESS AT STRESS AT STRESS AT STRESS AT"
370 LPRINT " KIPS. DEPTH IN TOP 2 IN. 4 IN 6 IN."
380 FOR 1=2 TO N
390 UN(I)=(((SA0(I)-SAl(I))/2)+((SAl(I)-SA2(I))/2)/2):PRINT "UN(";I;")=";UN(I)
400 NAT(I)=(4+(SA2(I)/UN(I)))
410 AA=1:BB=1:CC=1:DD=1
420 IF SGN(SA1(I))=1 THEN AA=0
430 IF SGN(SA2(I))=1 THEN BB=0
440 IF SGN(SA3(I))=1 THEN CC=0
450 IF SGN(SA0(I)) = 1 THEN DD=0
460 SA1(I)=ABS(SA1(I))
470 SA2(I)=ABS(SA2(I))
480 SA3(I)=ABS(SA3(I))
490 SA0(I)=A3S(SA0(I))
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500 STRO(I)=(-4.O69O6E-07*(SA0(I)'3)+5.619357E-O4*(SAO(I)"2)+6.O6O692*(SAO(I))+
18.562801#)

510 STRl(I)=(-4.06906E-07*(SAl(I)"3)+5.619357E-04*(SAl(I)-2)+6.060692*(SAl(I))+
18.562801#)

520 STE2(I)=(-4.06906E-07*(SA2(I)
A
3)+5.619357E-04*(SA2(I)"2)+6.060692*(SA2(I))+

18.562801#)
530 STR3(I)-(-4.06906E-07*(SA3(I)"3)+5.619357E-04*(SA3(I)"2)+6.060692*(SA3(I))+

18.562801#)
540 IF AA=0 THEN STR1(I)=-STR1(I)
550 IF BB=0 THEN STR2(I)=-STR2(I)
560 IF CC=0 THEN STR3(I)=-STR3(I)
570 LPRINT
580 W(I)=W(I)/10O0
581 DVN=10
582 STR0(I)=(CINT(STR0(I)/DVN))*DVN
583 STR1(I)=(CINT(STR1(I)/DVN))*DVN
584 STR2(I)=(CINT(STR2(I)/DVN))*DVN
585 STR3(I)=(CINT(STR3(I)/DVN))*DVN
590 LPRINT USING * ###.# #.## ##### ###### ###### ###### ";

W(I) ,NAT(I) ,STR0(I) ,STR1 (I) ,STR2(I) ,STR3(I)
600 W(I)=W(I)*1000
610 NEXT I
620 LPRINT CHR$(12)
630 D=10.6875
640 FC=11400
650 B=.65:WB=8
660 FOR COUNTER=0 TO 2

670 IF COUNTERS THEN PRINT "ACI STRESS BLOCK RESULTS"
680 IF COUNTERS THEN PRINT "TRIANGULER STRESS BLOCK RESULTS"
690 IF C0UKTER=2 THEN PRINT "PARABOLIC STRESS BLOCK RESULTS"
700 FOR 1=1 TO N
710 AB(I)=(NAT(I)*B)
720 IF COUNTER-2 GOTO 830
730 IF COUNTERS GOTO 760
740 COMP(COUNTER,I)=(STRO(I)*AB(I)*WB)
750 IF COUNTERS GOTO 770
760 C0MP(C0UNTER,I)=(.5*STR0(I)*NAT(I)*WB)
770 PRINT "COMP(";COUNTER,I;")=";COMP(COUNTER,I)
780 IF COUNTERS GOTO 810
790 LEV(C0UNTER,I)=(D-(AB(I)/2))
800 IF COUNTER=0 GOTO 1230
810 LEV(C0UNTER,I)=(D-(NAT(I)/3))
820 IF C0UMTER=0 OR 1 GOTO 1230
830 REM PARABALOIC CURVE FITTING
840 NP=3
850 IF NAT(I)>=4 THEN NP=4
860 X(1)=NAT(I)
870 X(2)=(NAT(I)-2)
880 IF NAT(I)<4 THEN X(3)=0: Y(3)=0:G0T0 900
890 X(3)=NAT(I)-4:X(4)=0:Y(3)=STR2(I):Y(4)=0:BEEP:3EEP:BEEP:BEEP:
900 Y(1)=STR0(I)
910 Y(2)=STR1(I)
920 SX=0 : SX2=0 : SX3=0 : SX4=0: SY=0 : SX"Y=0 : SX2Y=0
930 FOR T=l TO NP
940 SX=SX+X(T)
950 SY=SY+Y(T)
960 SX2=SX2+(X(T)

-
2)

970 SX3=SX3+(X(T)*3)
980 SX4=SX4+(X(T)"4)
990 SXY=SXY+X(T)*Y(T)
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1000 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
.1010 NEXT T
1030 A(2,2)=SX2:A(2,3)=SX3
1040 A(3,2)=SX3:A(3,3)=SX4
1050 A(2,4)=SXY:A(3,4)=SX2Y
1060 GOSUB 1910
1070 A1(I)=XX(1)
1080 A2(I)=XX(2)
1090 A3(I)=XX(3)
1100 NX(I)=NAT(I):PRINT ; "A1(";I;")=";A1(I) ,A2(I) ,A3(I)

1110 TTX(I)=NX(I)/10
1120 FOR Z=l TO 11

1130 TAX(Z)=NX(I)-((Z-1)*TTX(I))
1140 TAY(Z)=(A3(I)*(TAX(Z)"2))+(A2(I)*TAX(Z))+A3(I)
1150 NEXT Z
1160 FOR Z=l TO 10
1170 TAT(I)=TAT(I)+(TTX(I)*((TAX(Z)*TAY(Z)U(fTAY(Z)+TAY(Z+l))*

(TAX(Z)+TAX(Z+l)))+(TAX(Z+l)*TAY(Z+l))))/6
1180 NEXT Z
1190 AS(I)=(A3(I)*((NX(I)"3)/3))+(A2(I)*((NX(I)-2)/2))+(Al(I)*NX(I)}
1200 XBAR(I)=TAT(I)/AS(I):XBAR(I)=NX(I)-XBAR(I):PRINT "XBAR(";I;")= f

';XBAR(I)

1210 LEV(COUNTER,I)=(D-XBAR(I))
1220 C0MP(C0UNTER,I)=(AS(I)*8):PRINT "COMP(";COUNTER,I;")="COMP(COUNTER,I)
1230 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1240 CM(C0UNTER,I)=C0MP(COUNTER,I)*LEV(C0UNTER,I):L=84
1250 AM(I)=(W(I)*L)/6
1260 PRINT ,NCM('';C6UNTER,I:")="CM(C0UNTER,I),"AM(";I;")=";AH(I)
1270 ACCU(C0UNTERJ)=(AM(I)/C>1(C0UNTER,I))
1280 ER(COUNTER,I)=((CH(COUNTER,I)-AM(I))/AM(I))*100
1290 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT

PRINT "ER(";C0UNTER,I;")=";ER(C0UNTER,I)
1300 AM(I)=AM(I)/12000:CM(COUNTER,I)=(CM(COUNTER,I)/12000)
1310 NEXT I

1320 NEXT COUNTER
1330 FOR 1=1 TO N
1340 W(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1350 NEXT I

1360 FOR C0UNT=1 TO 3

1370 LPRINT :LPRINT :LPRINT :LPRINT
1380 IF C0UNT=1 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)

Mu("calc) Mu (test) Mu(test)
1390 IF C0UNT=2 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (" calc)

Mu("calc) Mu (test) Mu(test)
1400 IF C0UNT=3 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)

Mu( calc) Mu (test) Mu(test)
1410 IF COUNT=l THEN LPRINT " KIPS KIP-FT KIP-FT

KIP-FT Mu ([]calc) Mu('calc)
1420 IF C0UNT=2 THEN LPRINT " KIPS KIP-FT KIP-FT

KIP-FT Mu (" calc) Mu( calc)
1430 IF C0UNT=3 THEN LPRINT " _ KIPS KIP-FT KIP-FT

KIP-FT Mu ([]calc) Mu( calc)
1440 LPRINT
1450 FOR I=N TO N
1460IF C0UNT=1 THEN LPRINT USING " ## ###.# ###.# ###.# ###.#

UtM ###.##";I,W(I),AM(I),CM(0,I),CM(1,I),ACCU(0,I),ACCU(1,I)
1470 NEXT I

1480 FOR 1=2 TO N
1490 IF COUNT=2 THEN LPRINT USING " ## ###.# ###.# ###.#

«#.# ###.« ###.##";I,W(I),AiM(I),CM(l,I),CM(2,I),ACCU(l,I),ACCU(2,I)
1500 IF KM THEN GOTO 1520
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1510 IF C0UNT=3 THEN LPRINT USING " « if###.# ###.# ###.# *

#«.## #«.##";I,W(I),.Vi(I),CH(0,I),CM(2,I),ACCU(0,I),ACCU(2,I)
1520 IF C0UNT-2 THEN LPRINT
1530 NEXT I
1540 LPRINT CHHSC12)
1550 NEXT COUNT
1560 FOR COUNTER=0 TO 2

1570 FOR 1=1 TO N
1580 CiM(COUNTER,I)=(CM(C0UNTER,I)*12000)
1590 NEXT I

1600 NEXT COUNTER
1610 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1620 LPRINT " KIPS IN. IN. DEF CAL"
1630 FOR 1=2 TO N
1640 IF STR0(I)<6700 THEN EC=6216845!
1650 IF STR0(I)>6700 AND STR0(I)<9700 THEN EC=5467505

!

1660 IF STR0(I)>9700 THEN EC=3S28919!
1670 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1680 MA(I)=AM(I)
1690 YT(I)=(6-NAT(I))
1700 IC(I)=(WB*(TD"3))/12+(A*(YT(I)"2))
1710 YS(I)=(D-NAT(I))
1720 IS(I)=(((ES/EC)-1)*AS)*(YS(I)"2)
1730 IT(I)=IC(I)+IS(I):PRINT "ITCG=";IT(I)
1740 ICCR(I)=(WB*(NAT(I)

A
3)/12)+((WB*NAT(I))*((NAT(I)/2)"2))

1750 NS=(ES/EC)
1760 ISCR(I)=(NS*AS)*(YS(I)"2)
1770 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1780 FCR=7.5*SQR(FC)
1790 MCR(I)=(FCR*IT(I))/(TD-NAT(I))
1800 TI(I)=((HCR(I)/( 106. 96*12000) )"3)

1810 IE(I)=(TI(I)*IT(I))+((1-TI(I))*ITCR(I))
1820 IF (AM(I)*12000)<MCR(I) THEN IE(I)=IT(I)
1830 PRINT "TI-";IE(I)
1840 DEFC(I)=(23*W(I)*(84-3)*1000)/(1296*EC*IE(I))
1850 ACCD(I)=(DEFA(I)/DEFC(D)
1860 LPRINT
1870 LPRINT USING " ## ##.# #.### #.### #.##";

I,W(I),DEFA(I),DEFC(I),ACCD(I)
1880 NEXT I

1390 LPRINT CHR$(12)
1900 END
1910 NS=3
1920 FOR K=l TO NS
1930 C=A(K,K)
1940 FOR J=K TO (N'S+1)

1950 A(K,J)=A(K,J)/C
1960 NEXT J
1970 FOR S=l TO NS
1980 IF S=K THEN GOTO 2030
1990 C=-A(S,K)
2000 FOR J=K TO (NS+1)
2010 A(S,J)=A(S,J)+(C*A(K,J))
2020 NEXT J
2030 NEXT S
2040 NEXT K
2050 XX(1)=A(1,NS+1)
2060 XX(2)=A(2,NS+1)
2070 XX(3)=A(3,NS+1)
2030 RETURN
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Program for Under-reinforced Specimen

10 REM SHEAR SPECIMAN 1 NAME FINALUR
20 REM LPRINT "RESULT OF THE TEST DATA FOR UNDER-REINFORCED SPECIMEN-1"
30 REM LPRINT "0.5 TIMES THE BALANCE STEEL NAME FINALUR"
60DIM W(30),ST(30),S2(30),S4(30),S6(30),STR0(30),STR1(30),STR2(30),LEV(3,30),

NAT(30) ,SA1(30) ,SA2(30) ,SA3(30) ,SA0(30) ,STR3(30) ,UN(30) ,COMP(3,30) ,AB(30)

,

CM(3,30),AM(3O),ACCU(3,3O),ER(3,30),X(30),AS(3O),Y(3O),IC(30),YS(30),
IS(30),ICCR(30)

70 DIM ISCR(30),ITCR(30),MCR(30),TI(30),IE(30),DEFC(30),ACCD(30),IT(30),
DEFA(30),MA(30),A1(30),A2(30),A3(30),NX(30),YT(30),A(3,4),XX(3),TTX(30),
TAX(30) ,TAT(30) ,XBAR(30) ,TAY(30)

80 N=21
90 FOR 1=1 TO N
100 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
110 DATA 0,0,4,1,-3,-2
120 DATA 48,11810,-117.5,-59.95,-23.2,1.9
130 DATA 116,25000,-327.5,-124.3,-30.95,24.1
140 DATA 170,35670,-477.05,-167.85,-42.55,1.3
150 DATA 230,47820,-650.75,-217.2,47.45,9.15
160 DATA 294,59520,-810.45,-268,140.3,11.1
170 DATA 324,67570,-919.8,-306.75,161.61,7.7
180 DATA 378,75400,-1066.4,-349.8,254.5,11.15
190 DATA 424,83460,-1202.4,-397.7,315.4,12.55
200 DATA 450,87450,-1280.25,-418.5,363.8,15
210 DATA 478,89200,-1473.3,-512.4,665.8,15.0
220 DATA 582,85100,-1502.35,-371.05,561.2,7.25
230 DATA 640,85100,-1694.95,-338.2,450.9,34.85
240 DATA 685,87760,-1773.35,-325.1,387,15.45
250 DATA 755,88660,-1963.5,-254.95,492.5,51.15
260 DATA 780,91000,-2210.3,-171.25,564.1,55.15
270 DATA 780,91510,-2121.85,-138.35,530.6,24.65
280 DATA 780,91680,-2413,-140.75,502.2,15.5
290 DATA 780,90310,-2213.25,-234.15,331.9,21.3
300 DATA 780,90800,-2096.05,-310.1,160.6,41.55
310 DATA 780,87450,-1280.25,-418.5,150.35,15
320 SA1(I)=(S2(I)-S2(1))
330 SA2(I)=(S4(I)-S4(1))
340 SA3(I)=(S6(I)-S6(1))
350 SA0(I)=(ST(I)-ST(1))
360 NEXT I
370 REM LPRINT "-VE SIGN INDICATES TENSION": LPRINT : LPRINT
380 LPRINT "LOAD IN NEUTRAL AXIS STRESS AT STRESS AT STRESS AT STRESS AT"
390 LPRINT " KIPS. DEPTH IN TOP 2 IN. 4 IN 6 IN."
400 FOR 1=2 TO N
410 UN(I)=(SA0(I)-SAl(I))/2 : PRINT "UN(";I;")=";UN(I) : PRINT
420 IF SGN(SA2(I))=-1 THEN GOTO 440
430 NAT(I)=(2+(SA1(I)/UN(I))):PRINT"NAT(";I;")=";NAT(I):G0T0 450
440 NAT(I)=(4+(SA2(I)/UN(I)))
450 AA=1:BB=1:CC=1:DD=1
460 IF SGN(SA1(I))=1 THEN AA=0
470 IF SGN(SA2(I))=1 THEN BB=0
480 IF SGN(SA3(I))=1 THEN CC=0
490 IF SGN(SA0(I))=1 THEN DD=0
500 SA1(I)=ABS(SA1(I))
510 SA2(I)=ABS(SA2(I))
520 SA3(I)=ABS(SA3(I))
530 SAO(I)=ABS(SAO(I))



540 STR0(I)=(-4.06906E-07*(SA0(I)"3)+5.619357E-04*(SA0(I)
A
2)+6.060692*(SA0(I))+

16.562801:0
550 STRl(I)=(-4.06906E-07*(SAl(I)"3)+5.619357E-04*(SAl(ir2)+6.060692*(SAl(I))+

18.562801#)
560 STR2(I)=(-4.06906E-07*(SA2(I)"3)+5.619357E-04*(SA2(I)"2)+6.060692*(SA2(I))+

18.562801#)
570 STR3(I)=(-4.06906E-07*(SA3(I)"3)+5.619357E-04*(SA3(I)"2)+6.060692*(SA3(I))+

18. 562801*)
580 IF AA=0 THEN STR1(I)=-STR1(I)
590 IF BB=0 THEN STR2(I)=-STR2(I)
600 IF COO THEN STR3(I)=-STR3(I)
610 LPRINT
620 W(I)=W(I)/1000
621 DVN=10
622 IF STR0(I)>=10000 THEN DVN=100
623 STR0(I)=(CINT(STR0(I)/DVN))*DVN:DVN=10
624 STR1(I)=(CINT(STR1(I)/DVH))*DVN
625 STR2(I)=(CINT(STR2(I)/DVN))*DVN
626 STR3(I)=(CINT(STR3(I)/DVN))*DVN
630 LPRINT USING '> #«.# #.## ##### »##« ##«## #«### ";

W(I),NAT(I), STR0(I),STR1(I),STR2(I),STR3(I)
640 W(I)=W(I)*1000
650 NEXT I
660 LPRINT CHR$(12)
670 D=10.6875
680 FO11700
690 B=.65:WB=8
700 FOR COUNTERS TO 2
710 IF C0UNTER=0 THEN PRINT "ACI STRESS BLOCK RESULTS"
720 IF COUNTERS THEN PRINT "TRIANGULER STRESS BLOCK RESULTS"
730 IF C0UNTER=2 THEN PRIST "PARABOLIC STRESS BLOCK RESULTS"
740 FOR 1=1 TO N
750 AB(IMNAT(I)*B)
760 IF C0UNTER=2 GOTO 870
770 IF COUNTERS GOTO 800
780 C0MP(C0UXTER,I)=(.85*FC*AB(I)*WB)
790 IF COUNTERS GOTO 810
800 COHP( COUNTER, I )=( .5*STR0(I)*NAT(I)*WB)
810 PRINT "C0HP(";C0UNTER,I;")=";C0MP(C0UNTER,I)
820 IF COUNTERS GOTO 850
830 LEV(C0UNTER,I) = (D-(AB(I)/2))
840 IF COUNTERS GOTO 1270
850 LEV(C0UNTER,I)=(D-(NAT(I)/3))
860 IF COUNTERS OR 1 GOTO 1270
870 REM PARA3AL0IC CURVE FITTING
880 NP=3
890 IF NAT(I)>=4 THEN MP=4
900 XflVNAT(I)
910 X(2)=(NAT(I)-2)
920 IF NAT(I)<4 THEN X(3)=0:Y(3)=0:G0T0 940
930 X(3)=NAT(I)-4:X(4)=0:Y(3)=STR2(I):Y(4)=0:BEEP:BEEP:BEEP:REEP:
940 Y(1)=STR0(I)
950 Y(2)=STE1(I)
960 SX=0 : SX2=0 : SX3=0 : SX4=0 : SY=0 : SXY=0 : SX2Y=0
970 FOR T=l TO NP
980 SX=SX+X(T)
990 SY=SY+Y(T)
1000 SX2=SX2+(X(T)

-
2)

1010 SX3=SX3+(X(T)*3)
1020 SX4=SX4+(X(T)

-
4)
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1030 SXY=SXY+X(T)*Y(T)
1040 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
1050 NEXT T
1070 A(2,2)=SX2:A(2,3)=SX3
1080 A(3,2)=SX3:A(3,3)=SX4
1090 A(2,4)=SXY:A(3,4)=SX2Y
1100 GOSUB 1970
1110 A1(I)=XX(1)
1120 A2(I)=XX(2)
1130 A3(I)=XX(3)
1140 NX(I)=NAT(I):PRINT ;"A1(";I;")=";A1(I),A2(I) ,A3(I)
1150 TTX(I)=NX(I)/10
1160 FOR Z=l TO 11

1170 TAX(Z)=NX(I)-((Z-1)*TTX(I)):REM LPRINT "TAX(" ;Z; ")=";TAX(Z)
1180 pY(ZWA3(I

i
)
|

*iTAX(Z)-2))+(A2(I)*TAX(Z))+Al(I):RE'l LPRINT

1190 NEXT Z'
'

1200 FOR Z=l TO 10
1210 TAT(I)=TAT(I)+(TTX(I)*((TAX(Z)*TAY(Z))+((TAY(Z)+TAY(Z+1))*

(TAX(Z)+TAX(Z+l)))+(TAX(Z+l)*TAY(Z+l))))/6
1220 NEXT Z
1230 AS(I)=(A3(I)*((NX(I)

A
3)/3))+(A2(I)*((NX(I)-2)/2))+(Al(I)*NX(I)):

1240 XBAR(I)=TAT(I)/AS(I):XBAR(I)=NX(I)-XBAR(I)
1250 LEV(COUNTER,I)=(D-XBAR(I))
1260 C0MP(C0UNTER,I)=(AS(I)*8): PRINT "C0MP(";C0UNTER,I;")="C0MP(C0UJ!TER,I)
1270 PRINT "LEV(";COUNTER, I ;")="; LEV (COUNTER, I)
1280 CM(C0UNTER,I)=C0MP(C0m.'TER,I)*LEV(C0UNTER,I):L=84

.

1290 AM(I)=(W(I)*L)/6
1300 PRINT ,>CM(";C0UNTER,I;")="CM(C0UNTER,I),"AM(";I;")=";A!'1(I)
1310 ACCU(COUNTER,I)=(AM(I)/CM(COUKTER,I))
1320 ER(COUNTER,I) = ((CM(C0UNTER,I)-AM(I))/AM(I))*10O
1330 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRINT

PRINT "ER ( " ; COUNTER , I ;")=''; ER ( COUNTER , I

)

1340 AM(I)=AM(I)/12000:CM(C0UNTER,I)=(CM(C0UNTER,I)/12000)
1350 NEXT I

1360 NEXT COUNTER
1370 FOR 1=1 TO N
1380 K(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1390 NEXT I
1400 FOR C0UNT=1 TO 3
1410 LPRINT :LPRINT : LPRINT : LPRINT :LPRINT : LPRINT : LPRINT :

1420 IF C0UNT=1 THEN LPRINT "LOAD NO. LOAD IN Mo (test) Mu ([]calc)
Mu('calc) Mu (test) Mu(test)

1430 IF C0UNT=2 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (" calc)
Mu( calc) Mu (test) Mu(test)

1440 IF C0UNT=3 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
Mu( calc) Mu (test) Mu(test)

1450 IF COUNT-1 LPRINT " KIPS KIP-FT KIP-FT KIP-FT Mu ([]calc) Mu("calc)
1460 IF C0U>;T=2 LPRINT " KIPS KIP-FT KIP-FT KIP-FT Mu C calc) Mu('calc)
1470 IF C0UNT=3 LPRINT " KIPS KIP-FT KIP-FT KIP-FT Mu (flcalc) Mu("calc)
1480 LPRINT
1490 FOR 1=18 TO 18
1500 IF C0UNT=1 THEN LPRINT USING " ## ###.# ###.= ###.##

###.# ###.## if##.##";I,W(I),A>I(I),CM(0,I),CM(l,I),ACCU(0,I),ACCU(l,I)
1510 NEXT I
1520 FOR 1= 2 TO N
1530 IF C0UNT=2 THEN LPRINT USING " ## ###.# ###.# ###.# ####.#

;?##.## #i?#.#j";I,W(I),«l(I),C;-I(l,I),CM(2,I),ACCU(l,I),ACCU(2,I)
1540 IF C0UNT=2 THEN LPRINT
1550 NEXT I
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1560 FOR 1=18 TO 18
1570 IF C0UKT=3 THEN LPRINT USING " ## #«.# ###.# ###.# ####.#

###.## ###.»";I,W(I),.«i(I),CMC0,I),CM(2,I),ACCU(0,I),ACCU(2,I)
1580 NEXT I

1590 LPRINT CHR$(12)
1600 NEXT COUNT
1610 FOR COUNTER=0 TO 2

1620 FOR 1=1 TO N
1630 CM(COUNTER,I)=(CM(COUNTER,I)*12000)
1640 NEXT I

1650 NEXT COUNTER
1660 LPRINT : LPRINT : LPRINT : LPRINT : LPRINT : LPRINT : LPRINT
1670 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1680 LPRINT " KIPS IN. IN. DEF CAL"
1690 FOR 1=2 TO 16
1700 IF STR0(I)<6700 THEN EC=6216845!
1710 IF STR0(I)>6700 AND STR0(I)<9700 THEN EC=5467505!
1720 IF STR0(I)>9700 THEN £C=3828919!
1730 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1740 MA(I)=AK(I)
1750 YT(I)=(6-NAT(I))
1760 IC(I)=(WB*(TD"3))/12+(A*(YT(I)

A
2))

1770 YS(I)=(D-NAT(I))
1780 IS(I)=(((ES/EC)-1)*AS)*(YS(I)*2)
1790 IT(I)=IC(I)+IS(I):PRINT "ITCG=";IT(I)
1800 ICCR(I)=(WB*(NAT(I)"3)/12)+((WB*NAT(I))*((NAT(I)/2)"2))
1810 NS=(ES/EC)
1820 ISCR(I)=(NS*AS)*(YS(I)"2)
1830 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1840 FCR=7.5*SQR(FC)
1850 MCR(I)=(FCR*IT(I))/(TD-NAT(I)):PRINT "&&&&&&&&&" ;MCR( I)
1860 TI(I)=((MCR(I)/( 106. 96*12000)

)

A
3)

1870 IE(I)=(TI(I)*IT(I))+((1-TI(I))*ITCR(I))
1880 IF (AM(I)*12000)<MCR(I) THEN IE(I)=IT(I)
1890 PRINT ,vri=";IE(I):PRIXT "EC="EC
1900 DEFC(I)=(23*W(I)*(84"3)*1000)/(1296*EC*IE(I))
1910 ACCD(I)=(DEFA(I)/DEFC(I))
1920 LPRINT
1930 LPRINT USING "it ##.# #.### #.### #.##";I,W(I) ,DEFA(I) ,DEFC(I) ,ACCD(I)
1940 NEXT I

1950 LPRINT CHR$(12)
1960 END
1970 NS=3
1980 FOR K=l TO NS
1990 C=A(K,K)
2000 FOR J=K TO (NS+1)
2010 A(K,J)=A(K,J)/C
2020 NEXT J
2030 FOR S=l TO NS
2040 IF S=K THEN GOTO 2090
2050 C=-A(S,K)
2060 FOR J=K TO (NS+1)
2070 A(S,J)=A(S,J)+(C*A(K,J))
2080 NEXT J
2090 NEXT S
2100 NEXT K
2110 XX(1)=A(1,NS+1)
2120 XX(2)=A(2,NS+1)
2130 XX(3)=A(3,:.'S+1)
2140 RETURN
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Program for Over-reinforced Specimen

10 REM OVR-REIN SPECIMAN 1 NAME FINAL2
20 REM LPRINT "RESULT OF THE TEST DATA FOR OVER-REINFORCED PCIMEN-1"
30 REM LPRINT "1.5 TIMES THE BALANCE STEEL final2"
50 DIM W(30),ST(3O),S2(30),S4(30),S6(30),STR0(30),STRl(30),STR2(3O),

LEV(3,30),NAT(30),SA1(30),SA2(30),SA3(30),SAO(30),STR3(30),UN(30),
COMP(3,30),AB(3O),CM(3,30),AM(30),ACCU(3,30),ER(3,30),X(3O),AS(30),Y(30),
IC(30) ,YS(30) , IS(30) , ICCR(30)

60 DIM ISCR(30) ,ITCR(30) ,MCR(30) ,TI(30) ,IE(30) ,DEFC(30) ,ACCD(30) ,IT(30)

,

DEFA(30),MA(30),A1(30),A2(30),A3(30),NX(30),YT(30),A(3,4),XX(3),TTX(30),
TAX(30),TAT(30),XBAR(30),TAY(30)

70 N=27
80 FOR 1=1 TO N
90 READ DEFA(I),W(I),ST(I),S2(I),S4(I),S6(I)
100 DATA 0,0,-0.9,-1.0,-0.4,0
110 DATA 132,10800,-112.73,-76.93,-39.18,5.79
120 DATA 162,19770,-202.23,-135.47,-60.47,14.02
130 DATA 200,30000,-319.825,-208.05,-83.69,35.315
140 DATA 232,40000,-442.73,-284.51,-107.89,126.765
150 DATA 268,50000,-563.21,-359.025,-128.7,274.38
160 DATA 306,60000,-658.63,-435.47,-149.025,412.25
170 DATA 342,70000,-810.47,-513.375,-173.7,530.315
ISO DATA 378,80000,-943.545,-596.125,-198.86,382.89
190 DATA 418,90000,-1078.05,-680.79,-229.35,731.125
200 DATA 440,99500,-1213.535,-769.35,-259.35,820.635
210 DATA 461,105620,-1305.465,-828.465,-279.665,865.64
220 DATA 486,112000,-1391.6,-884.99,-303.86,902.9
230 DATA 504,118000,-1480.63,-994.02,-324.67,923.38
240 DATA 532,124000,-1571.08,-1004.025,-345.75,964.34
250 DATA 558,136000,-1668.34,-1067.89,-370.63,986.6
260 DATA 583,142000,-1758.3,-1126.92,-392.4,1016.6
270 DATA 583,148000,-1857.53,-1192.24,-418.54,1038.37
280 DATA 583,154000,-1972.665,-1334.99,-474.66,1073.216
290 DATA 583,160000,-2073.33,-1334.99,-474.66,1073.216
300 DATA 583,166000,-2174.41,-1398.86,-500.315,1101.275
310 DATA 583,170000,-2291.5,-1474.35,-531.28,1119.185
320 DATA 583,172000,-2382.5,-1535.31,-554.51,1131.75
330 DATA 583,174000,-2440.58,-1574.99,-573.36,1132.24
340 DATA 583,176000,-2497.67,-1613.669,-590.79,1132.25
350 DATA 583,178000,-2561.98,-1681.44,-609.665,1130.3
360 DATA 583,180000,-2604.415,-1695.94,-625.635,1145.79
370 SA1(I)=(S2(I)-S2(1))
380 SA2(I)=(S4(I)-S4a))
390 SA3(I)=(S6(I)-S6(1))
400 SA0(I)=(ST(I)-ST(D)
410 NEXT I

420 REM LPRINT "-VE SIGN INDICATES TENSION": LPRINT : LPRINT
430 LPRINT "LOAD IN NEUTRAL AXIS STRESS AT STRESS AT STRESS AT STRESS AT"
440 LPRINT "KIPS. DEPTH IN TOP 2 IN. 4 IN 6 IN."
460 FOR 1=2 TO N
470 UN(I)=(((SA0(I)-SAl(I))/2+(SAl(I)-SA2(I))/2))/2:PRINT "UN(" ; I ;")=";UN(I)
430 NAT(I)=(4+(SA2(I)/UN(I))):PRINT"NAT(";I;'')='';NAT(I):PRINT
510 AA=1:BB=1:CC=1:DD=1
520 IF SGN(SA1(I))=1 THEN AA=0
530 IF SGN(SA2(I))=1 THEN BB=0
540 IF SGN(SA3(I))=1 THEN CC=0
550 IF SGN(SA0(I))=1 THEN DD=0



92

560 SA1(I)=ABS(SA1(I))
570 SA2(I)=ABS(SA2(I))
580 SA3(I)=ABS(SA3(I))
590 SA0(I)=ABS(SA0(I))
600 STR0(I)=(-4.06906E-07*(SA0(I)"3)+5.619357E-04*(SA0(I)*2)+6.060692*(SA0(I))+

18.562801#)
610 STR1(I)=(-4.06906E-07*(SA1(I)*3)+5.619357E-04*(SA1(I)"2)+6.060692*(SA1(I)) +

18.562801#)
620 STR2(I)=(-4.06906E-07*(SA2(I)"3)+5.619357E-04*(SA2(I)*2)+6.0&0692*(SA2(I))+

18.562801#)
630 STR3(I)=(-4.06906E-07*(SA3(I)"3)+5.619357E-04*(SA3(I)"2)+6.060692*(SA3(I))+

18.562801f)
640 IF AA=0 THEN STR1(I)=-STR1(I)
650 IF BB=0 THEN STR2(I)=-STR2(I)
660 IF CC=0 THEN STR3 ( I >-STR3 ( I

)

670 NEXT I
680 FOR 1=2 TO N
690 W(I)-W(I)/1000
691 DVN=10
692 IF STR0(I)>=10000 THEN DVN=100
693 STR0(I)=(CINT(STR0(I)/DVN))*DVN:DVN=10
694 STR1(I)=(CINT(STR1(I)/DVN))*DVN
695 STR2(I)=(CINT(STR2(I)/DVN))*DVN
696 STR3(I)=(CINT(STK3(I)/DVN))*DVN
700 LPRINT USING "###.# #.## ##### ###### ###### ###### ";W(I),

MAT(I),STR0(I),STR1(I),STR2(I),STR3(I)
720 W(I)=W(I)*1000
730 NEXT I
740 LPRINT CHRS(12)
750 D=9.3125
760 FC=12100
770 B=.65:UB=8
780 FOR C0UNTER=0 TO 2

790 IF COUNTERS THEN PRINT "ACI STRESS BLOCK RESULTS"
800 IF COUNTERS THEN PRINT "TRIANGULER STRESS BLOCK RESULTS"
810 IF C0UNTER=2 THEN PRINT "PARABOLIC STRESS BLOCK RESULTS"
820 FOR 1=1 TO N
830 AB(I)=(NAT(I)*B)
840 IF COUNTERS GOTO 950
850 IF COUNTERS GOTO 880
860 COMP(COUNTER,I)=( .85*FC*AB(I)*WB)
870 IF C0UNTER=0 GOTO 890
880 C0tlP(COUNTER,I)=(.5*STR0(I)*NAT(I)*V/B)
890 PRINT "COMP(";COUNTER,I;")=";COKP(COUNTER,I)
900 IF COUNTER-1 GOTO 930

' 910 LEV(C0UNTER,I)=(D-(AB(I)/2))
920 IF COUNTERS GOTO 1350
930 LEV(C0UNTER,I)=(D-(NAT(I)/3))
940 IF COUNTERS OR 1 GOTO 1350
950 REM PARABALOIC CURVE FITTING
960 NP=3
970 IF NAT(I)>=4 THEN NP=4
980 X(1)=NAT(I)
990 X(2)=(NAT(I)-2)
1000 IF NAT(I)<4 THEN X(3)=0:Y(3)=0:G0TO 1020
1010 X(3)=NAT(I)-4:X(4)=0:y(3)=STR2(I):Y(4)=0:BEEP:BEEP:BEEP:BEEP:
1020 Y(1)=STR0(I)
1030 Y(2)=STR1(I)
1040 SX=0:SX2=0:SX3=0:SX4=0:SY=0:SXY=0:SX2Y=0
1050 FOR T=l TO NP
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1060 SX=SX+X(T)
1070 SY=SY+Y(T)
1080 SX2=SX2+(X(T)*2)
1090 SX3=SX3+(X(T)"3)
1100 SX4=SX4+(X(T)"4)
1110 SXY=SXY+X(T)*Y(T)
1120 SX2Y=SX2Y+(X(T)*X(T)*Y(T))
1130 NEXT T
1155 A(2,2)=SX2:A(2,3)=SX3
1165 A(3,2)=SX3:A(3,3)=SX4
1170 A(2,4)=SXY:A(3,4)=SX2Y
1180 GOSUB 2040
1190 A1(I)=XX(1)
1200 A2(I)=XX(2)
1210 A3(I)=XX(3)
1220 NX(I)=NAT(I):PRINT ; "A1(";I;")=";A1(I) ,A2(I) ,A3(I)
1230 TTX(I)=NX(I)/10
1240 FOR Z=l TO 11

1250 TAX(Z)=NX(I)-((Z-1)*TTX(I))
1260 TAY(Z)=(A3(I)*(TAX(Z)"2))+(A2(I)*TAX(Z))+A1(I)
1270 NEXT Z
1280 FOR Z=l TO 10
1290 TAT(I)=TAT(I)+(TTX(I)*((TAX(Z)*TAY(Z))+((TAY(Z)+TAY(Z+1))*

(TAX(Z)+TAX(Z+l)))+(TAX(Z+l)*TAY(Z+l))))/6
1300 NEXT Z
1310 AS(I)=(A3(I)*((NX(I)"3)/3))+(A2(I)*((NX(I)-2)/2))+(Al(I)*NX(I))
1320 XBAR(I)=TAT(I)/AS(I):XBAR(I)=NX(I)-XBAR(I)
1330 LEV(C0UNTER,I)=(D-XBAR(D)
1340 C0MP(C0UNTER,I)=(AS(I)*8):PRINT "COMP("; COUNTER, I;")="COMP(COUNTER,I)
1350 PRINT "LEV(";COUNTER,I;")=";LEV(COUNTER,I)
1360 CM ( COUNTER , I )=COMP ( COUNTER , I

) *LEV ( COUNTER , I ) : L=34
1370 AM(I)=(W(I)*L)/6
1380 PRINT ,>CM('';C0UNTER,I;")="C-1(C0UNTER,I),"AM(";I;")=";AM(I)
1390 ACCU(COUNTER,I)=(AM(I)/CM(COUNTER,I))
1400 ER(C0UNTER,I)=((CH(C0UNTER,I)-AM(I))/AM(I))*100
1410 PRINT "ACCU(";COUNTER,I;")=";ACCU(COUNTER,I):PRIi\T :

PRINT "ER(";COUNTER,I;")=";ER(C0UNTER,I)
1420 AM(I)=AiM(I)/12000:CM(COUNTER,I)=(CH(COUNTER,I)/12000)
1430 NEXT I

1440 NEXT COUNTER
1450 FOR 1=1 TO N
1460 W(I)=W(I)/1000:DEFA(I)=DEFA(I)/1000
1470 NEXT I

1480 FOR C0UNT=1 TO 3

1500 IF C0UNT=1 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (Hcalc)
Mu('calc) Mu (test) Mu(test)

1510 IF C0UNT=2 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu (* calc)
Mu(~calc) Mu (test) Mu(test)

1520 IF C0UNT=3 THEN LPRINT "LOAD NO. LOAD IN Mu (test) Mu ([]calc)
Mu( calc) Mu (test) Mu(test)

1530 IF C0UNT=1 THEN LPRINT " KIPS KIP-FT KIP-FT
KIP-FT Mu ([]calc) Mu("calc)

1540 IF C0UNT=2 THEN LPRINT " KIPS KIP-FT KIP-FT
KIP-FT Mu (" calc) Mu('calc)

1550 IF C0UNT=3 THEN LPRINT " KIPS KIP-FT KIP-FT
KIP-FT Mu ([]calc) Mu('calc)"

1570 FOR I=N TO N
1580 IF C0UNT=1 THEN LPRINT USING " ## ###.# ### ### ### #.## #.## ";

I,W(I),AM(I),CH(0,I),CM(1,I),ACCU(0,I),ACCU(1,I)
1590 NEXT I
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1600 FOR 1=2 TO N
1610 IF C0UNT=2 THEN LPRINT USING " ## ###.# ### ### i?## #.##

I,!v(I),A;[(I),CM(1,I),CM(2,I),ACCU(1,I),ACCU(2,I)
1620 IF KN THEN GOTO 1640
1630 IF C0UNT=3 THEN LPRINT USING " S ###.# ### ### l## (.ft

I,W(I),AM(I),CH(0,I),C>i(2,I),ACCU(0,I),ACCU(2,I)
1640 IF C0UNT=2 THEN LPRINT
1650 NEXT I

1670 NEXT COUNT
1680 FOR C0UNTER=0 TO 2

1690 FOR 1=1 TO N
1700 CM(COUNTER,I)=(CM(COUNTER,I) !t12000)
1710 NEXT I

1720 NEXT COUNTER
1740 LPRINT "LOAD NO. LOAD IN DEF ACTUAL DEF CAL DEF ACTUAL"
1750 LPRINT " KIPS IN. IN. DEF CAL"
1760 FOR 1=2 TO 17
1770 IF STR0(I)<6700 THEN EC=6216845!
1780 IF STRO(I)>6700 AND STRO(I)<9700 THEN EC=5467505!
1790 IF STRO(I)>9700 THEN EC=3828919!
1800 TD=12:WB=8:AS=1.8:ES=2.9E+07:A=96
1810 MA(I)=AM(I)
1820 YT(I)=(6-NAT(I))
1830 IC(I)=(WB*(TD"3))/12+(A*(YT(I)*2))
1840 YS(I)=(D-NAT(I))
1850 IS(I)=(((ES/EC)-1)*AS)*(YS(I)"2)
1860 IT(I)=IC(I)+IS(I):PRINT "ITCG=";IT(I)
1870 ICCR(I)=(WB*(NAT(I)"3)/12)+((WB*NAT(I))*((NAT(I)/2)'2))
1880 NS=(ES/EC)
1890 ISCR(I)=(NS*AS)*(YS(I)*2)
1900 ITCR(I)=ICCR(I)+ISCR(I):PRINT "ITCR=";ITCR(I)
1910 FCR=7.5*SQR(FC)
1920 MCR(I)=(FCR*IT(I))/(TD-NAT(I))
1930 TI(I)=((MCR(I)/(106. 96*12000)

)

-
3)

1940 IE(I)=(TI(I)*IT(I))+((1-TI(I))*ITCR(I))
1950 IF AM(I)*12000<MCR(I) THEN IE(I)=IT(I)
1960 PRINT "TI=";IE(I)
1970 DEFC(I)=(23*W(I)*(84*3)*1000)/(1296*EC*IE(I))
1980 ACCD(I)=(DEFA(I)/DEFC(I))
2000 LPRINT USING ''## ### #.##### #.### #.##";I,W(I),DEFA(I),DEFC(I),ACCD(I)
2010 NEXT I
2030 END
2040 NS=3
2050 FOR K=l TO NS
2060 C=A(K,K)
2070 FOR J=K TO (NS+1)
2080 A(K,J)=A(K,J)/C
2090 NEXT J
2100 FOR S=l TO NS
2110 IF S=K THEN GOTO 2160
2120 C=-A(S,K)
2130 FOR J=K TO (NS+1)
2140 A(S,J)=A(S,J)+(C*A(K,J))
2150 NEXT J
2160 NEXT S
2170 NEXT K
2180 XX(1)=A(1,NS+1)
2190 XX(2)=A(2,NS+1)
2200 XX(3)=A(3,NS+1)
2210 RETURN
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Table 3.1: Tensile Test Results for Steel Reinforcing Bars.

Bar
No.

Area
sq . in

.

Yield
Load

in lbs.

Ultimate
Load

in lbs.

3 0.11 6625 7600

3 0.11 7400 10300

4 0.20 12400 16450

4 0.20 12150 16050

7 0.60 38800 63600

7 0.60 38000 63600

9 1 .00 63800 97300

Yield Stress Ultimate Stress
in psi in p3i

60000

67000

62000

61000

64700

64700

63300

69100

93600

82200

80200

106000

106000

97300

Bean Yield Stress of #3 bars

Mean Yield Stress of #4 bars

Hean Yield Stress of #7 bars

Mean Yield Stress of #9 bars

=63500 psi

=61500 psi

=64700 psi

=63800 psi

1 lb. = 4.45 N

1 psi = 6.89 kPa
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Table 4.1: Compressive Strength (3 days) Test Results of

3 in. X 6 in. Cylinders Made By Regular Mixing
Technique

Cylinder Crushing Load
No. lbs.

1 44400

2 50500

3 51500

4 43000

Crushing Strength
pai

6300

7100

7300

6100

Average Cylinder Compressive Strength f£~ 6700 psi

Population Standard Deviation. & = 590 psi

Coefficient of Variation V = 8.QK

1 lb. = 4.45 N

1 psi ~ 6.89 kPa
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Table 4.2: Compressive Strength (3 days) Test Results of

3 in. X 6 in. Cylinders Made by Cement Slurry
Method

Cyli
No.

nder Crushing Load
lbs.

Crush ing Strength
pal

1 48500 6900

2 45000 6400

3 48000 6800

4 51500 7300

Average Cylinder Compressive Strength f£ = 6800 psi

Population Standard Deviation. 6 = 370 psi

Coefficient of Variation V = 5. OX

1 lb. = 4.45 N

1 psi = 6.89 kPa



Table 5.1: Compressive Strength (28 days) Test Results of
3 in. X 6 in. Cylinders Made from the Mix
Proportions taken from Ref . 15

Cylinder
No.

Crushing Load
lbs.

1 60700

2 63500

3 65700

4 63700

5 60000

6 60100

crushing Strength
pai

8600

9000

9300

9000

8500

8500

Average Cylinder Compressive Strength f£ = 8800 psi

Population Standard Deviation. 6 = 330 psi

Coefficient of Variation V = 4. OX

1 lb. = 4.45 N

1 psi - 6.89 kPa
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Table 5.2: Compressive Strength Test Results of 3 in. X 6 in.

Cylinders for Beam 1 <SS1B>

lylinder Crushing Load Crushing Strength
No. lbs. psi

SS1A-1 74500 10500

SS1A-2 81000 11500

SS1B-1 62000 8770

SS1B-2 64500 9120

SSIB-3 56000 7920

SS1B-4 68000 9620

SS1B-5 64000 9050

Average Cylinder Compressive Strength fc = 9500 psi

Population Standard Deviation

.

6 = 1180 psi

Coefficient of Variation V = 12 . 5*

1 lb. = 4.45 N

1 psi = 6.89 kpa.



Table 5.3: Compressive Strength Test Results of 3 in. X 6 in.
Cylinders for Beam 2 <SS2B>

Cylinder
No.

5S2A-1

552A-2

SS2B-1

SS2B-2

SS2B-3

Crushing Load
lbs.

75000

83200

84200

75000

85000

Crushing Strength
psi

10600

11700

11900

10600

12000

Average Cylinder Compressive Strength fc = 11400

Population Standard Deviation.

Coefficient of Variation

6 = 700 psi

V = 6.2S

1 lb. • 4.45 N

1 psi = 6.89 kPa
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Table 5.4 : Compressive Strength Test Results of 3 in. X 6 in.

Cylinders for Beam 3 CURD

Cylinder
No.

UR1-1

UR1-2

UR1-3

UR1-4

UR1-5

UR1-6

Crushing Load
lbs.

84800

74000

82200

85800

85400

86400

Crushing Strength
psi

12000

10500

11600

12100

12000

12200

Average Cylinder Compressive Strength f£ = 11700 psi

Population Standard Deviation. 6 = 640 psi

Coefficient of Variation V = 5.4K

1 lb. = 4.45 N

1 psi = 6.89 kPa



Table 5.5 Compressive Strength Test Results of 3 in. X 6 in.
Cylinders for Beam 4 <0R1>

Cylinder Crushing Load crushing Strength
No. lbs. psl

0R1-1 83500 11800

0R1-2 84000 11900

0R1-3 83000 11700

0R1-4 91000 12900

0R1-5 76000 10800

0R1-6 93000 13200

0R1-7 93500 13200

0R1-8 75600 10700

0R1-9 91300 12900

Average Cylinder Compressive Strength f£= 12100 psi

Population Standard Deviation. 6 = 980 psi

Coefficient of Variation V = 8. IK

1 lb. 4.45 N

1 psi = 6.39 kPa
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Table 5.7: Load-Average Strain Data for Specimen 1 CSS1B)

Load in

kips

0.0

Deflection
in. X 10" 3

Avg. Strain

at top.

in./in.XlO"6

(gages 1E.2)

3

Avg. Strain
at 2 in.

in./in.XlO -6

(gages 3&14)
-2

3.0 68 -22 -21

5.9 90 -45 -17

9.0 98 -72 -28

11.9 109 -104 -43

14.8 117 -134 -71

17.7 129 -174 -81

20.6 143 -232 -116

20.0 143 -231 -117

23.7 161 -284 -137

26.7 177 -329 -142

29.7 192 -374 -164

32.7 209 -420 -204

34.8 21

8

-447 -216

36.6 226 -473 -230

38.0 234 -492 -216

39.8 243 -516 -227

42.0 661 -540 -239

37.4 661 -493 -185

37.2 661 -491 -189

38.2 661 -503 -192

42.0 668 -543 -221

I kip = 4.45 N, 1 in. * 25. 4 •

Avg. Strain Avg. Strain
at 4 in. at 6 in.

in./in.X10" 6 in./in.XlO-6

(gages 4&13) (gages 5&121
2 3

-6 1

-12 5

-20 5

-30 14

-34 19

-38 32

-40 22

-43 25

-45 37

-54 23

-63 8

-70 5

-74 -5

-79 -6

-79 -10

-83 -12

-88 -16

-75 -22

-74 -24

-79 -23

-94 -26
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Table 5.10:' Load-Average Strain Data for Specimen 2 (552B)

Load in Deflection Avg. Strain Avq . Strain Avq .Strain A vq .Strain

kips in. X 10~3 at top. at 2 in. at 4 in. at 6 in.

in./in.XlO -6 in./in.XlO^ 6 in./in.XlO -6 m./in.XlO-6

(gages lfi.2) (gages 3S.8) (gages 46.7) (gages 5&6)

0.0 -12 -10

7.3 27 -81 -53

16.9 60 -181 -109

23.8 95 -299 -152

31.8 138 -423 -194

31.8 138 -423 -194

39.6 165 -535 -230

47.4 217 -613 -268

53.4 260 -731 -309

59.2 294 -817 -344

" 9 1

59.8 3?b -794 -368

63.9 354 -841 -392

67.8 374 -896 -417

71.7 395 -947 -444

75.8 418 -995 -467

79.8 4 30 -1057 -498

80.4 460 -1086 -505

83.5 473 -1147 -533

86.7 4'3<S -1138 -539

1 kip • 4.45 N

1 in. * 25.4 m.*

-16 15

-39 -IS

-57 -7

-33 -44

-23 -35

-28 -6!

-20 -35

-31 -64

-37 -99

-45 -106

-1 1

-38 8

-41 8

-45 5

-50 4

-4S 12

-56 12

-50 '-'-

-48 3

-40 3
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Table 5.13: Load-Average Strain Data for Specimen 3 (UF1)

Load in Deflection Avq. Strain Avq. Strain Avq. Strain Ave. Strain
kips in. X 10" 3 at top. at 2 in. at 4 in. at 6 in.

in./in.X10" 6 in./in.X10~6 in./in.X10" & in./in.X10" e

(gages 16,2) (gages 3&8) (gages 4S.71 (qages 56.6)

-3 -2

-25 6

-31 24

-43 1

47 9

140 i:

162 S

255 11

315 13

364 15

666 15

561 7

451 55

387 15

493 51

564 55

531 25

502 16

332 -21

161 -42

0.0 4 1

11.8 48 -118 -59

25.0 116 -328 -124

35.7 170 -477 -168

47.8 230 -651 -217

59.5 294 -810 -268

67.6 324 -920 -307

75.4 378 -1066 -350

83.5 424 -1202 -398

87.5 450 -1280 -419

89.2 478 -1473 -512

85.1 582 -1502 -371

85.1 640 -1695 -338

37.

8

685 -1773 -325

88.7 755 -1964 -255

91.0 780 -2210 -171

91.5 780 -2396 -138

91.7 780 -2413 -141

90.3 780 -2211 -234

90.8 760 -2096 -310

1 kip = 4.45 N

1 in. = 25.4 mm
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Table 5.16: Load-Averaqe Strain Data for Specimen 4 (0R1)

Load in Deflection Avq.5train Avq. Strain Avq. Strain Avq, Strain
kips in. X 10~3 at top. at 2 in. at 4 in. at 6 m.

in./in.X10" 6 in./in.X10" 6 in./in.X10" s in./in.XiO -6

(qaqes 1&2) (qaqes 3&3> (qcaes 4&7) Cqaaes 5&6>

-39

-60

-84

-103

-129

-149

-174

0.0 -1 -1

10.8 132 -113 -77

19.8 162 -202 -135

30.0 200 -320 -208

40.0 232 -443 -285

50.0 268 -563 -359

60.0 306 -659 -435

70.0 342 -810 -513

80.0 378 -944 -596

90.0 418 -1078 -681

99.5 440 -1214 -769

105.6 461 -1305 -828

112.0 486 -1392 -885

118.0 504 -1481 -994

124.0 532 -1571 -1004

136.0 558 -1668 -106S

142.0 583 -1759 -1127

148.0 583 -1858 -1192

154.0 583 -1973 -1335

160.0 583 -2073 -1335

lbb.O 583 -2174 -1399

170.0 583 -2292 -1474

-304

-325

-346

-371

-419 1038

-475 1073

-475 1073

-500 1101

-531 1119



(Table 5.16 continued)

Load in Deflection Avg. Strain Avg. Strain Avq. Strain Avq, strain
kips in. X lCr 3 at top. at 2 in. at 4 in. at & in.

in./in.X10" s in./in.XlO -6 in./in.XiO" 6 in./in.XlO-6

(qaqes 1&2) {qaqes 368) (qaqes 4&7) (qaqes 5S&)

1132

1132

1132

1130

1146

172.0 583 -2383 -1535 -555

174.0 583 -2441 -1575 -574

176.0 583 -2498 -1614 -591

178.0 S83 -2562 -1681 -610

180.0 583 -2604 -1696 -626

1 kip = 4.45 N

1 in. = 25 .4 mm



Table 5.17: Stress strain relation for 3 in. X S in. cylinder fo
Speclnen-KSSIB)

Load in Stress Longitudinal Strain
lbs. psi Readings ue

Gage #1 Gage #2.

o -1

5000 700 -37 -165

10000 1400 -164 -243

15000 2100 -297 -328

20000 2800 -413 -421

25000 3500 -535 -524

30000 4200 -650 -623

33000 470O -728 -689

36000 5100 -804 -755

39000 5500 -882 -823

42000 5900 -952 -886

45000 6400 -1024 -951

48000 6800 -1103 -1024

52000 7400 -1202 -1116

55100 7800 -1283 -1192

53000 8200 -1369 -1275

SI 000 8600 -1442 -1346

64000 9100 -1518 -1425

67400 9500 -1611 -1522

70000 9900 -1635 -1597

Average Longitudinal
Strain Readings US

1

-101

-203

-313

-417

-529

-637

-708

-779

-852

-988

-1064

-1159

-1238

-1395

-1472

-1567

-1641



Load in Stress
lbs. psi

73000 10300

76000 10800

78200 11100

81000 11500

(Table 5.17 continued)

Longitudinal Strain
Readings US

Gage #1 Gage #2

-1787

-1884

-1953

-2058

-1710

-1811

-1889

-2014

Average Longitudinal
Strain Readings US

-1747

-1847

-1921

-2037

1 lb - 4.45 N

1 pai = 6.89 kPa
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Table 5.19: Load and Stress Data for Shear Specimen I (55IB)
Using Cylinder Stress-Strain Curve 2

Neutral axis Stress at Stress at Stress at Stress at
top.psi 2 in.,psi 4 in. t psi 6 in.,psi

-170 -130 -70 -30

-310 -110 -100 30

-480 -180 -150 30

-670 -260 -210 80

-860 -440 -240 110

-1110 -500 -260 190

-1470 -710 -270 140

-1460 -720 -290 150

-1790 -850 -300 220

-2080 -880 -360 140

-2360 -1010 -410 50

-2650 -1260 -460 30

-2820 -1340 -480 -70

-2990 -1420 -510 -70

-3100 -1340 -510 -100

-3260 -1410 -540 -110

-3410 -1480 -570 -140

-3110 -1140 -490 -170

-3100 -1170 -480 -180

-3180 -1190 -510 -180

-3430 -1370 -600 -200

1 kip = 4.45 kN, 1 psi - 6.89 kPa. 1 in = 25.4 un

Load in Neutral
kips Depth in

3.0 6.46

5.9 5.63

9.0 5.64

11.9 5.68

14.8 5.44

17.7 5.17

20.6 4.88

20.0 4.94

23.7 4.77

26.7 4.80

29.7 4.83

32.7 4.82

34.8 6.23

36.6 6.24

38.0 6.37

39.8 6.41

42.0 6.55

37.4 6.97

37.2 7.12

38.2 6.95

42.0 6.87



Table. 5.20: Actual and Calculated (laments using Triangular
and Parabolic Stress Blocks for 5S1B

120

Load no. Load in

kips
Hu (test)

kip-ft
Hu C calc)

kip-ft
Hu(~calc)
kip-ft

Hu (test)

Hu (" calc)
Hu(test)
Hu<~calc)

2 3.0 3.5 3.1 3.3 1.11 1.04

3 5.9 6.9 S.l 4.1 1.35 1.67

4 9.0 10.5 7.9 6.5 1.32 1.61

5 11.9 13.8 11.2 9.2 1.24 1.51

6 14.8 17.3 13.8 12.7 1.25 1.36

7 17.7 20.6 17.2 15.0 1.20 1.38

8 20.6 24.1 21.6 19.7 1.11 1.22

9 20.0 23.3 21.7 19.9 1.07 1.17

10 23.7 27.7 25.9 23.5 1.07 1.18

11 26.7 31.1 30.3 26.0 1.03 1.20

12 29.7 34.7 34.5 29.7 1.00 1.17

13 32.7 38.2 38.6 34.9 0.99 1.09

14 34.8 40.6 50.4 38.3 0.81 1.06

15 36.6 42.6 53.5 40.6 0.80 1.05

IS 38.0 44.4 56.4 40.5 0.79 1.10

17 39.8 46.4 59.6 42.6 0.78 1.09

18 42.0 49.0 63.3 44.8 0.77 1.09

19 37.4 43.6 60.4 38.1 0.72 1.14

20 37.2 43.4 61.2 38.3 0.71 1.13

21 38.2 44.6 61.7 39.4 0.72 1.13

22 42.0 49.0 66.0 44.1 0.74 1.11

1 kip 4.45 N

1 kip-ft= 1.36 kN-



Table 5.21: Actual and Calculated Deflections for 551B

d in kips Actual Def

.

Cal.Daf

.

Actual Def.

in. in. Cal.Def.

3.0 0.068 0.004 15.114

5.9 0.090 0.009 10.019

9.0 0.098 0.014 7.212

11.9 0.109 0.018 6.062

14.8 0.117 0.050 2.345

17.7 0.129 0.059 2.171

20.7 0.143 0.069 2.060

20.0 0.143 0.067 2.127

23.7 0.161 0.080 2.019

26.7 0.177 0.090 1.973

29.7 0.192 0.100 1.923

32.7 0.209 0.110 1.901

34.8 0.218 0.117 1.863

36.6 0.226 0.123 1.839

38.0 0.234 0.128 1.831

39.8 0.243 0.134 1.817

42.0 0.661 0.141 4.681

1 kip = 4.45 N

1 in. = 25.4 »»



Table 5.22: Load and Stress Data for Shear Specimen II <SS2B)

Using Cylinder Stress-Strain Curve 2

Load in Neutral axis Stress at Stress at Stress at Stress at
kips Depth in. top,psi 2 in.,psi 4 in.,psi 6 in.,psi

7.9 6.01 -440 -280 -160 -220

6.9 5.26 -1060 -620 -270 -150

3.8 4.26 -1790 -890 -120 -380

1.8 4.12 -2580 -1150 -90 -630

1.8 4.12 -2580 -1150 -90 -510

9.6 4.03 -3280 -1370 -40 -630

7.4 4.10 -3780 -1610 -110 -500

3.4 4.12 -4520 -1870 -140 -720

9.2 4.15 -5050 -2090 -200 -760

9.8 4.11 -4900 -2240 -150 -60

3.9 4.20 -5330 -2460 -260 70

7.8 4.21 -5660 -2620 -290 50

1.7 4.22 -5970 -2790 -320 40

5.8 4.20 -6260 -2940 -310 90

9.3 4.22 -6620 -3130 -350 90

0.4 4.19 -6790 -3180 -320 90

3.5 4.17 -7150 -3350 -310 50

6.7 4.14 -7100 -3390 -250 30

1 kip = 4.45 kN

1 psi * 6.89 kPo

1 in 25.4 »m



123

Table. 5.23: Actual and Calculated Moments Using

Triangular and Parabolic Stress Blocks for 5S2B

Load no

.

Load in llu (test) Hu (" calc) MuCcalc) Mu (test) flu (test)

Kips kip-ft kip-ft kip-ft Mu (* calc) Hu('calc)

2 7.9 9.2 7.7 7.6 1.20 1.21

3 16.9 19.7 16.6 16.3 1.19 1.21

4 23.8 27.8 23.5 22.7 1.18 1.22

5 31.8 37.1 33.0 30.5 1.12 1.22

S 31.8 37.1 33.0 30.5 1.12 1.22

7 39.

S

46.2 41.2 37.2 1.12 1.24

a 47.4 55.2 48.2 43.5 1.15 1.27

9 53.4 62.3 57.8 51.3 1.08 1.21

10 59.2 69.0 65.0 57.5 1.06 1.20

11 59.8 69.8 62.6 58.7 1.11 1.19

12 63.9 74.5 69.2 64.6 1.08 1.15

13 67.8 79.1 73.7 68.7 1.07 1.15

14 71.7 83.7 77.9 73.0 1.07 1.15

15 75.8 88.4 81.4 76.6 1.09 1.15

16 79.8 93.1 86.4 81.4 1.08 1.14

17 80.4 93.8 88.1 82.9 1.06 1.13

18 83.5 97.4 92.4 87.1 1.05 1.12

19 86.7 101.2 91.2 87.2 1.11 1.16

1 kip =4.45 kN

1 kip-ft = 1.36 kN-«



Table 5.24: Actual and Calculated Deflections for SS2B

Load in kips Actual Def. Cal.Def, Actual Def^

in. in. Cal.Def.

0.011 2.471

0.052 1.161

0.073 1.306

0.097 1.419

0.097 1.419

0.121 1.363

0.145 1.497

0.163 1.593

0.181 1.624

0.183 1.838

0.195 1.812

. 207 1 . 804

0.219 1.802

0.232 1.804

0.244 1.762

0.246 1.871

0.255 1.849

0.265 1.867

7.9 0.027

16.9 0.060

23.8 0.095

31.8 0.138

31.8 0.138

39.6 0.165

47.4 0.217

53.4 0.260

59.2 0.294

59.8 0.336

63.9 0.354

67.8 0.374

71.7 0.395

75.8 0.418

79.8 0.430

80.4 0.460

83.5 0.472

86.7 0.495

1 kip 4.45 H

1 in. 25.4 mm



Table 5.25: Load and Stress Data for Under-Reinforced Specimen I

<UR1) Using Cylinder Stress-Strain Curve 2

Load in Neutral Axis Stress at Stress at Stress at Stress at

Kips Depth in. top, psi 2 in.
,
psi 4 in., psi 6 in., psi

11.8 4.99 -760 -390 -140 40

25.0 4.57 -2070 -790 -190 180

35.7 4.61 -3020 -1060 -260 40

47.8 3.62 -4110 -1360 330 30

59.5 3.30 -5110 -1680 900 100

67.6 3.30 -5780 -1930 1030 80

75.4 3.15 -6650 -2200 1610 100

83.5 3.11 -7430 -2500 1990 110

87.5 3.07 -7870 -2630 2300 120

89.2 2.87 -8890 -3220 4200 120

85.1 2.79 -9030 -2330 3540 70

85.1 2.86 -9940 -2120 2850 240

87.8 2.91 -10300 -2040 2440 120

88.7 2.68 -11000 -1600 3110 340

91.0 2.47 -11800 -1080 3560 370

91.5 2.41 -11500 -870 3350 180

91.7 2.44 -12200 -890 3170 120

90.3 2.83 -11800 -1470 2100 160

90.8 3.31 -11500 -1950 1020 280

87.5 3.46 -7870 -2630 960 120

1 kip = 4.45 kN

1 psi • 6.89 kPa



Table 5.26 : Actual and Calculated Moments Using Triangular
and Parabolic Stress Blocks for UR1

Load no. Load in Mu (test) h"u (* calc) Mu('calc) Mu (test) Mu(test)
kips Kip-ft kip-ft kip-ft Mu C* calc) Mu('calc)

10.4 1.21 1.32

23.0 1.01 1.27

32.1 0.98 1.29

40.1 1.19 1.39

49.3 1.29 1.41

56.2 1.29 1.40

64.2 1.31 1.37

72.3 1.31 1.35

76.3 1.31 1.34

90.1 1.26 1.16

78.7 1.21 1.26

80.

1

1.08 1.24

80 . 7 1 . 05 1 . 27

78.8 1.07 1.31

76.3 1.11 1.39

71.7 1.17 1.49

75.3 1.09 1.42

80.5 0.97 1.31

85.5 0.87 1.24

76.8 1.18 1.33

2 11.8 13.8 11.4

3 25.0 29.2 28.9

4 35.7 41.6 42.5

5 47.8 55.8 47.1

6 59.5 69.4 54.0

7 67.6 78.8 61.0

8 75.4 88.0 67.4

9 63.5 97.4 74.4

10 87.5 102.0 77.8

11 89.2 104.1 82.7

12 85.1 99.3 82.1

13 85.1 99.3 92.1

14 87.8 102.4 97.1

15 88.7 103.4 96.3

16 91.0 106.2 95.7

17 91.5 106.8 91.5

18 91.7 107.0 97.9

19 90.3 105.4 108.3

20 90.8 105.9 121.6

21 87.5 102.0 86.6

1 kip = 4.45 kN

1 kip-ft = 1.36 kN-



Table 5.27 : Actual and Calculated Moments Using Rectangular
and Parabolic Stress Blocks for UR1

Load no. Load in Hu (test) Mu (Mcalc) HuCcalc) flu (test) Hu(test)
kips kip-ft kip-ft kip-ft Mu ( Hcalc) HuCcalc)

1 kip = 4.45 kN

1 kip-ft = 1.36 kN-m



Table 5.28 : Actual and Calculated Moments Using Rectangular
and Triangular Stresss Blocks for UR1

Load no. Load in h*u (test) Hu (Hcalc) HuCcalc) Hu (test)

kips kip-ft kip-ft kip-ft Mu iHcalc)
Mu(test)
HuCcalc)

18 91.7

1 kip = 4.45 kN

1 kip-ft = 1.36 kN-n



Table 5.29: Actual and Calculated Deflections for UR1

1 in kips Actual Def.

in.

Cal. Def

.

in.

Actual Def.

Cal. Def.

11.8 0.048 0.036 1.335

25.0 0.116 0.076 1.523

35.7 0.170 0.109 1.563

47.8 0.230 0.146 1.579

59.5 0.294 0.181 1.622

67.6 0.324 0.206 1.573

75.4 0.378 0.230 1.645

83.5 0.424 0.254 1.667

87.5 0.450 0.267 1.688

89.2 0.478 0.272 1.759

85.1 0.582 0.259 2.245

85.1 0.640 0.259 2.468

87.8 0.685 0.268 2.561

88.7 0.755 0.270 2.794

91.0 0.780 0.277 2.813

1 kip = 4.45 N

1 in. = 25.4 »»



Table 5,30: Load and Stress Data for Over-Reinforced Specimen
<0R1) Using Cylinder Stress-Strain Curve 2

Load in Neutral Axis Stress at Stress at Stress at Stress at
kips Depth in. top,psi 2 in.,psi 4 in.,psi 6 in,,psi

10.8 5.74

19.8 5.62

30.0 5.40

40.0 4.92

50.0 4.64

60.0 4.53

70.0 4.49

80.0 4.68

90.0 4.48

99.5 4.48

105.6 4.49

112.0 4.50

118.0 4.52

124.0 4.53

136.0 4.55

142.0 4.56

148.0 4.57

154.0 4.61

160.0 4.61

166.0 4.62

170.0 4.64

172.0 4.66

174.0 4.67

itress at Stress at

.op.psi 2 in.,psi

-700 -480

-1260 -840

-2000 -1290

-2770 -1770

-3530 -2240

-4130 -2720

-5080 -3220

-5890 -3740

-6690 -4270

-7470 -4820

-7980 -5190

-8440 -5530

-8900 -6190

-9350 -6250

-9800 -6630

10200 -6970

10600 -7350

11000 -8140

•11400 -8140

11700 -8480

12000 -8870

12100 -9170

12200 -9360

-250 50

-380 100

-530 230

-680 800

-800 1720

-930 2580

-1080 3330

-1240 2400

-1430 4590

-1620 5150

-1750 5420

-1900 5650

-2030 5770

-2160 6020

-2320 6150

-2460 6330

-2620 6460

-2980 6670

-2980 6670

-3140 6830

-3330 6940

-3480 7010

-3600 7010



(Table 5.30 continued)

Load in Neutral Axis Stress at Stress at Stress at

kips Depth in. top.psi 2 in.,psi 4 in., dim

Stress at

G in.,psi

176.0 4.69

178.0 4.70

180. 4.71

-12300 -9550 -3710

-12400 -9860 -3830

-12400 -9920 -3930

7010

7000

7090

1 kip =4.45 kN

1 psi = 6. 89 kPa



Table 5. 31 : Actual and Ca] culated Homen bs Using Tlriangular

and Parabolic 5tress Blocks for 0R1

Load no. Load in Hu (test) Hu (* calc) HuCcalci i Hu (test) Hu(test)

kips kip-ft kip-ft kip-ft Mu (* calc) HuCcalc)

2 10.8 13 10 10 1.27 1.20

3 19.8 23 18 18 1.31 1.28

4 30.0 35 27 27 1.29 1.27

5 40.0 47 35 37 1.34 1.25

6 50.0 58 42 47 1.38 1.25

7 60.0 70 4? 56 1.44 1.25

8 70.0 82 59 67 1.37 1.22

9 80.0 93 71 78 1.31 1.20

10 90.0 105 78 83 1.34 1.19

11 99.5 116 87 99 1.33 1.17

12 105.6 123 93 107 1.32 1.15

13 112.0 131 99 114 1.32 1.15

14 118.0 138 105 125 1.32 1.11

15 124.0 145 110 128 1.31 1.13

16 136.0 159 116 135 1.37 1.17

17 142.0 166 121 142 1.37 1.17

18 148.0 173 126 149 1.37 1.16

19 154.0 180 132 163 1.37 1.11

20 160.0 187 136 164 1.37 1.14

21 166.0 194 140 171 1.38 1.14

22 170.0 198 144 178 1.38 1.12

23 172.0 201 146 183 1.38 1.10

24 174.0 203 147 186 1.38 1.09



(Table 5.31 continued)

Load no. Load in Hu (test) Mil <~ calc) HuCcalc) Mu (test) Hu(test)

kips kip-ft kip-ft kip-ft tlu C* calc) HuCcalc)

25 176.0 205 149 189 1.38 1.08

26 178.0 208 150 194 1.38 1.07

27 180.0 210 151 195 1.39 1.07

1 kip = 4.45 kit.

1 kip-ft = 1.36 klf-»
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Table 5.32 : Actual and Calculated Moments Using Rectangular

and Parabolic Stress Blocks for 0R1

Load no. Load in Mu (test) Mu (tlcalc) Mu<~calc) Hu <test) MuCtest)

kips kip-ft kip-ft kip-ft Mu CUcalc) MuCcalc)

1 kip = 4.45 kN.

1 kip-ft = 1.36 kN-m



Table 5.33 : Actual and Calculated Moments Using Rectangular
and Triangular Stress Blocks for 0R1

Load no. Load in Mu (test) Mu (Hcalc) Hu(*calc) Mu (test) Hu(test)

kips kip-ft kip-ft kip -ft Mu ( Hcalc) MuCcalc)

1 kip =4.45 kN

1 kip-ft = 1.36 kN-m



Table 5.34: Actual and Calculated Deflections for 0R1

id in kips Actual Def. Cal.Def

.

Actual Def.

in. in. Cal.Def.

10.8 0.132 0.014 9.106

19.8 0.162 0.038 4.272

30.0 0.200 0.057 3.481

40.0 0.232 0.077 3.029

50.0 0.268 0.096 2.799

60.0 0.306 0.115 2.663

70.0 0.342 0.134 2.551

80.0 0.378 0.153 2.467

90.0 0.418 0.172 2.425

99.5 0.440 0.191 2.309

105.6 0.461 0.202 2.280

112.0 0.486 0.214 2.266

118.0 0.504 0.226 2.230

124.0 0.532 0.237 2.240

136.0 0.558 0.260 2.142

142.0 0.583 0.272 2.144

1 kip = 4.45 N

1 in. = 25.4 urn



Table 5.35: Shear Stress Values (Actual and Calculated) for
Specimens SS1B and SS2B

Specimen f' c Measured Shear Predicted Shear Force lbs
Force lbs ACI equations Zsutty's

Cracking Ultimate 11-3 11-6 Crack. Ultimate

SS1B 9500 19000 21000 16700 17600 21400 23000

SS2B 11400 — 19650 18300 19000 22700 24400

1 lb. • .4.45 N

1 psl = 6.89 kPa
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Fig. 3.1: An Arbitrary Section with Reinforcing Bar Arrangement
Near Mid-span for Shear Specimen I (SSI B

)

(1 in. = 2 5.4 mm)

Fig. 3.2: An Arbitrary Section witrs Reinforcing Bar Arrangement

Near Mid-span for Shaar Soecinen II (SS2B)

(1 in. = 25.4 nen)



Fig. 3.3: An Arbitrary Section with Reinforcing Bar Arrangement

Near Mid-span for Under-reinforced Specimen (UR1)

(1 in. = 25.4 mm)

Fig. 3.4: An Arbitrary Section nth Reinforcing oar Arrangement

ilsar Mid-span for Ovar-roi rvforced Specimen (OR!)

(1 in. = 25.4 mm)
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APPENDIX V

NOTATION
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NOTATION

B] = coefficient for depth of equivalent rectanglar stress

block.

i - strength reduction factor,

p steel ratio.

PbaT balanced steel ratio.

^
s

= strain in steel.

G u
= strain in concrete.

"b « area of the parabolic stress block.

A
v

= area of the shear reinforcement.

A
s

= area of steel reinforcement.

b = width of the beam.

c = depth of neutral axis.

C - total compressive force.

d effective depth of the beam.

D = total depth of the beam.

E
c

= secant modulus of elasticity for concrete.

E s
= modulus of elasticity for steel.

f
c = stress at any distance x from neutral axis.

Vc = ultimate compressive strength of concrete.

f
s = stress in the steel reinforcement.

fy = yield stress of steel reinforcement.

1 = length of the test beam.

l cr
= horizontal crack length.
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M actual moment in the beam (calculated using the load).

M
u

!
= triangular stress block moments.

M
u
[]= rectangular stress block moments.

M
u §

= parabolic stress block moments.

N = no. of stirrups.

P = load on the beam.

S spacing of stirrups.

T = total tensile force in the beam.

V
c

Vcr = shear stress at inclined cracking.

V
u

= ultimate shear force in the beam.

W = unit weight of concrete,

x = distance measured from neutral axis.

X = centroidal distance of the stress block from the top of the

beam.
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ABSTRACT

Higher-Strength concrete has been defined as that which

has a compressive strength in the range of 8000 to 12000 psi.

The purpose of this thesis is to obtain further information on

the shape of the compressive stress block at failure for higher-

strength concrete beams and to check the validity of the ACI

rectangular stress block for higher-strength concrete. The ACI

formula for the critical and the ultimate shear was also checked.

Four reinforced beams with nominal strength of 12000 psi

were tested in four-point bending. Each beam spanned 7.0 ft. and

had the cross-sectional dimensions of 8 in. by 12 in. The beams

were reinforced with Grade 60 steel at 0.5 pu and 1.5 ph
(pu based on an assumed trianguler stress distribution at

failure) and had either no stirrups, or 1/2 the required stirrup

area or the full stirrup area. From the strain values obtained,

the stress was calculated using the uniaxial stress-strain data.

These stress values were used to plot the shape of the stress

block and to calculate the maximum moments using triangular, ACI

equivalent rectangular, and parabolic stress blocks.

From the results, it was concluded that the shape of the

stress block is triangular at low loads and it becomes parabolic-

or may remain tri angu 1 ar-at ultimate loads. Therefore the ACI

equivalent rectangular stress block should not be used in moment

calculations for higher-strength concrete even though it may give

a close and conservative estimate of the ultimate moment
capacity. The ACI formula for critical and ultimate shear was
found to be safe and economical.


