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INTRODUCTION

Shallow foundation such as mat foundations and footing
fsunddtions are frequently designed and constructed in the
form of beams on soll, and loaded by one or several concen-
trated column loads. One of the important steps in design of
such foundations consists of analysis of bending moments and
shearing forces due to the concentrated column loads. This
analysis, which takes the form of the solution of a beam on
an elastic foundation, requires some assumptions for proper-
ties and behavior of the soil-foundation system, E, Winkler (1)
developed the first theory of beams on elastic foundations
early in 1867. The theory is based on the assumption that the
intensity of the continuously distributed reaction of the
foundation at every point 1is proportional to the deflection
at that point. Since then, refinements and various assumptions
have been make in the solution by others notably Hetenyi(z),
De Beer(3), Biot(4), and Vesic(5). Alternative mathematical
techniques in solving the problem have been proposed by
Levinton(6), Popov(?), Malter(8), and Bowles{9). Recently
Tsal and Westmann(1l0) have indicated an approach based on
the tensionless foundation assumption to account for the
effects of beam up-1ift, which satisfies the actual conditions
of real soil under elastic theory. The problem of the beam
subjected to a single load and supported on a one-way elastic
foundation was solved by Lin(11). A matrix formulation for

the numerical evaluation of the problem was developed. A study



of the beam subjected to concentrated loads and moments and
supported on a one-way elastic foundation will be prosented

following Lin's formulation.



PURPOSE OF THE STUDY

As mentloned previously, Lin used the matrix formulation
for a beam loaded by a single concentrated load and supported
on a tensionless, elastic subgrade, However, footlings generally
are loaded with more than one load and frequently with moments,
In this report, an analysis is made for the purpose of solving
problems with various loading conditions which are more likely
to be encountered in the actual footing condition. The analysis
is based on Lin's matrix formulation and Winkler's assumption
modified by Tsal. An iterative solution of beams resting on
different subgrades 1is presented by approximating the subgrade
wlth equally spaced springs with a stiffness per unit length
the same as the actual subgrade. The cases of finite and
infinite beams under the action of concentrated loads and
moments are examined. The results are compared with the results

obtained by Lin(1l), Levinton(6), Bowles(9) and Fraser(l2),



LITERATURE REVIEW

The theory of beams on elastic foundation was first
proposed by E, Winkler(l) in 1867, By the simple assumption
that the continuous reaction of the foundation is proporticnal
to the deflection, Timoshenko{1l3) successively established the
sulution to the differential equation which expressed the beam
deflection in terms of foundation reaction. Hetenyi(2) made a
comprehensive study of beam-foundation problems following the
theory of elasticity and the basic mathematical relationship
between the subgrade reactlon and settlement., Some notable
mathematic techniques in solving the problem (such as redundant
method and finite difference method) have been developed by
Levinton(6) and Malter(8) in 1949 and 1960 respectively.

Leonards and Harr(l4) simplified the problem formulation
and solution by assuming that the foundation could take tension
and a further refirement was made by Kerr(l5) in assuming that
the subgrade properties are identical in tensidn and compression,
The common feature to all of these works is the assumed mode
of stress transfer across the beam-foundation interface,
Usually the resulting analysis based on this classlical solution
is not acceptable, particularly in dealing with the infinite
beam, because of the beam uplift. Recently Tsal and Westmann(10)
indicated an approach which considered both the w1nk1er's
assumption and the uplift effects of the beam and developed
a valid problem formulation and solution by assuming that the
foundation can take compression only. Lin's approach presented

the digital computer program for the practical solution.



STATEMENT OF THE PROBLEM

It is assumed in the classical solution for beéms on
elastic foundations that foundation properties are identical
in tension and compression. The resulting analysis indicates
an alternating reaction thus implying the foundation can
support a tensile stress. Usually this 1s not an acceptable
result for real soll., Therefore, the Winkler model should be
modified to take into account the effect of beam uplift. This
will then lead to a non-linear solution(10). As the beam is
supported along its entire length by a continuous elastilc
medium, the problem formulatlion was make by Lin by assuming
that the beam rests on "one-way" equal spaced, elastic springs;
the more springs chosen along the length of the beam, the closer
the analogy is to the continuous medium, The subgrade tensile
stress in the uplift protion of beam can be relaxed simply by
setting the wpring constants of those portions equal to zero,
In Lin's report, two basic assumption were made;

1) The subgrade can take compression only, and
2) The compressive stress in the foundation 1s proportional

to the deflection.



1)

2)

3)

kL)

5)
6)

OUTLINE OF THE STUDY

Present the matrix formulation of beams on elastic spring

supports which are regarded as analogous to beams on
elastic foundations,

Perform the solution process using a computer program
written in Fortran IV to obtain the deflections of long
and short beams under the action of several concentrated
loads and moments,

Choose four beams on different subgrade as an illustra-
tion of the application of matrix formulation and numerical
evaluation, |

Compare results obtained with Lin's results,

Compare results obtained with classical solutions.,

Compare result obtained with Fraser's computer result,



PROBLEM FORMULATION

Elastic solutions of beam foundation problems are based
on the assumption that the soil behaves as an elastic, homo-
geneous, infinite, and isotropic solid, defined by a modulus
of elasticity, Eg, and a Poisson's Ratiowv . It 1s also assumed
that there are no shearing stresses at the contact between
beam and soil, and in addition, possible influences of soil
overburden on pressure distribution are neglected. Winkler's
model can be replaced by a continuous beam resting on a set
of springs with stiffness constant K. Its value is defined by

K=K a

Ki = KgB = modulus of subgrade reaction x width of beam.

a = cell length of beam (distance between springs equally
spaced),

Once the problem is set up, it can be visualized as a
continuous beam of a finite number of spans supported by a
row of springs. The solution of this problem then can be
expressed by a matrix formulation as follows;

Consider a beam supported by five equally spaced springs,
shown in Fig. 1, where a is the cell length of beam, ¥y 1is the
uniform dead load, Qs is the concentrated load, Mi is the
moment load at the ith spring.

1) Load Matrix [P] and Displacement Matrix [X] (16, 11)

The load matrix [P] is defined as a column vector whose

elements are the externally applied loads. Each load Py,

accordingly 1s a component of the load matrix [P]) + The



Displacement Matrix [X] consists of the displacements at the
prints of application of the load vector components measured
in the same directions as the loads, (Fig. 2)

The load matrix [P] is expressed by

o

[P] = (1)
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Consider the beam shown in Fig, 1. The load matrix [P]

can be obtained by solving the jJoint eguilibrium eguations



(Fig. 3)
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Substituting into Eq. 1



(P = 12
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2) Deformation Matrix [e] and Force Matrix [F)

A deformation matrix [e] consisting of member deforma-
tions ey at any joint can be defined for any structure. There
will be a subset for each member, All relative movements of
the end joints of the member are included in the subset of
the deformation matrix for the member., (Fig. 4, Fig, 5 and
Fig, 6). For matrix [e] , [F] , [A] , [S8] , and their trans-

poses, refer to Lin's Report (11),

10
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NUMERICAL EXAMPLES

Five numerical examples are presented, The computer pro-
gram (Appendix C) is used to obtain the displacement matrix [X].
The cross section properties of beams and subgrades are shown
in Teble I and Table II,
Example 1l:

_ A short beam with unit weight not included in the analysis
{11, Ex, 1). The resulté are identical to Lin's results (Fig. 7)
Example 21

A long beam with the unit weight not included in the analy-
sis (Fig. 8). The results are compared with Hetenyi's Infinite
Solution (2) and Bowles' solution (9), and plotted in Fig. 8.
=10 ft., Q=5 kips, q=1.2 k/ft., K'=288 K/rt?,, two sets of the
spring numbers are compared, a=2,5 ft. and a=0,5 ft., K=720 K/ft,
and K=144 K/ft. respectively,

Example 31

A cross section of an aqueduct is shown in Fig. 9. We can
consider the object as a unit width beam with uniform load on
the beam, concentrated loads and moments on both ends, The
results are compared with Hetenyi's Infinite Solution (2) and
Levinton's Redundant Solution (6), plotted in Fig. 9.
=1k ft., Q)=Q,=0,72 kips, M3=M,=3.57 ft.-K, r=0.54 K/ft.,
a=l ft., K=285 K/ft..

Example 41
A long beam with the unit weight not included, The results

are compared with Levinton's Redundant Solution (6) and



Bowles' Infinite Solution (2), and plotted

in Fig. 10.
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L-60 ft., Q=10 kips, Q,=15 kips, M=30 ft.-K, K!=100 K/ft>.

In choosing of two sets of spring numbers, a=5 ft., a=1.67 ft.

and K=500 K/ft., K=167 K/ft. respectively.

Example 5

A long beam with the unit weight not included. The results

are compared with Hetenyi's Infinite Solution (2), Levinton's

Redundant Solution and Fraser's Computer Solution (12), and

plotted in Fig. 1l.

I=60 ft., Q1=Q4=?5 kips, Q2=Q5=100 kips, Ml=120 ft.-kK,

M2=-12O ft.-K (sign convention, clockwise moment is positive),

a=2 ft., K=200 K/ft..

Table I — Data on beam sections
No. of |Width B | Depth | Area, |Moment of | Modulus of | Beam
example inchs inchs | inch inertia I | Elasticity | material
inch%# E, psi

1 8.0 8.0| 9.12 109.7 | 30 x 10° | 8 wr31
2 10.0 8.0| 80.0 426.7 | 1.5 x 10° | wood
3 12.0 8.0 | 96.0 512.0 | 2.5 x 10° | concrete
4 12.0 | 48.0{576.0 | 110592.0 | 3.0 x 10° | concrete
5 12.0 | 48.0|576.0 | 110592.0 | 3.0 x 10° | concrete




Table II — Properties of soil subgrade

13

Modulus of | Poisson's | Modulus of | Length
No. of Soil elasticity | Ratio subgrade Charact-
example type of soil reaction eristic
E., psi LRV Ks’ psi AL
' Micaceous :
i silt 1192 0.25 454 0.98
Silty -
2 clay 3600 0.3%0 2000 5.57
Silty
3 clay 3600 0.30 1980 %95
Sandy
4 clay 2100 0«25 694 1.98
Sandy
7 clay 2100 0.25 694 1.98
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SUMMARY OF NUMERICAL RESULTS AND COMPARISON WITH‘REFERENCES

Table Example 1 :

son to (11). L=24 f%t.

Output of computer for Example 1 with compari;

W Q CL XK EIL , NC
Input kips kips )i K/ft. K-ft.
Data

0 32.688 2.4 |43.588 22896 10
Distance
from center 0 2.4 4.8 Zad 9.6 12.0

ft.

g F
5 & | Computer | 1.40 1.32 1.08 | 0.79 C.47 0.16
E | Lin 1.40 1.32 1.08 | 0.79 047 0.16

Table Example 2 :

son to (2),(9) and (12). L=10 ft.

Output of computer for Example 2 with compari-

W Q o] CL XK EIL 5 NC
Input kips | kips | K/ft. ft. K/ft. | E~-ft.
Data
0 5 1.2 g:g %gg 4440 =2
Distance
from left 0 2.5 5«0 P 10.0
end .
Computer
8-0.5 ft. 0.026 0.053 0..05% 0.034 0.004
S Computer
ig a=2.5 ft. 0.019 0.052 0.051 0.034 0.007
o .
2 5 | Hetenyi {031, 0.054 0.052 0.0%3% 0.008
-
2 Bowles 0.033 | 0.053 0.050 0.035 0.011
Fraser 0.031 0.054 0.052 0.034 0.004




Table Example 3 : Outpubt of computer for Example

son to (2) and (6). I=14 f%t.

15

3 with compari-

Wole | e M| M, |en | xx | BIL |No
ouk k/ft. kips|kips | ft.-K | ft.-K | £t. | K/ft. |K-1t.2
ata
Distance
from center 0 1 3 5 7

ft.
o
S |Computer | 0.013% | 0.0137 | 0.0168 | 0.0273% | 0.0520
43 .
E.ﬁ Hetenyi | 0.0110 | 0.0115 | 0.0164 | 0.0%33 | 0.0695
@ |Levinton | 0.0120 | 0.0124 | 0.0155 | 0.0277 | 0.0657

Table Example 4

" son to (6),(9). L=60 ft.

: Output of computer for Example 4 with compari-

W Q Q2' M CL =] XK EIL  |NC
Input : - : 2
Data k/ft. | kips | kips | ft.-K ft. | K/ft.| K-ft.
1.67 167 36
0 10 15 20 5.00 500 2302560 15
Distance
from left 0 10 20 30 40 50 60
end ft.
Computer
) a=1.671t. 0.010 | 0.044 | 0.071 | 0.079 | 0.064 | 0.032]0.004
5]
7 Computer
+2 .
o sla=5.0 ft. 0.010 | 0.044 | 0,070 | 0.079 | 0.064 | 0.032]0.004
—
o Levinton | 0.014 | 0.046 | 0.076 | 0.080 | 0.069 | 0.036{0.003
=
' Bowles 0.014 | 0,044 | 0.069 | 0.076 | 0.060 | 0.03%]0.012
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Output data of computer

1) For Example 1, a=2.4 ft

THE MATRIX X

ROW
ROW
ROW
ROW
ROW
RCW
ROW
ROW
ROW
ROW
ROW

O = O DN e

1C
11

1.11294810-C2
1.16636840-C2
1.0654333C-C2
9,.23399440-C3
6.25882720-C3
3.4703038C-C4

-5.5235276C-C3
-B.4842925D0-C3
—9.64605220-C3
-9.,9041923C-C3
-9.9041923C-C3

2) For Example 2, a=2.5 ft

THE MATRIX X

ROW
ROW
ROW
ROW
ROW

U N e

1.365721CC-C3
5.7299162L-C4

—3.96813970-C4
—7.6371552C-C4
—-9.5354C86C-C4

3) TFor Example 3, a=0.5 %

- THE FMATRIX X

ROW
ROW
RCW
ROW
ROW
ROW
ROW
ROW
RCW
ROW
ROW
ROW
RCW
RCHW
ROW
ROW
ROW
ROW
ROW
ROW
RCW

OO wd O A e

10
11
12
13
14
15
16
17
18
18
0
el

1.C&73073C-C3
1.0585945C~(3
1.0215861C-C3
9.3242633C-C4
T«631535CC-C4
4,.8207977C-C4

1.9526478C-C4

t.8176423C~-C6

-1.2C77634C-C4
-2.24256050-C4
=3.2665502C-C4
-443405111C0-C4
-5.4753458C-C4
~6.6643193C-C4
-T.8784626C-C4
-8.8928532C-(4
-9.619683CC-C4
-1.C112651C-C3
-1.035CC15C-C3
-1.0429684C-C3
-1.0444311C-C3

ROW
ROW
ROW
ROW
ROW
ROW
RCHW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

12
13
14
15
16
17
18
19
C
21
c2

Qo=

22
23
24
£5
6
21
8
29
20
31
22
43
14
35
e
27
28
33
4C
41
42

1.19999810-C2
3.8658098C-C2
6.4830822C-C2
8.9C701C6C-C2
1.0823013C-C1

1.1684317C-C1 -

1.0992887C~-C1
9.26580750-C2
7.064347CC-C2
4,707932CC~-C2
2+33098559C-C¢

1.5643193D-C3
4,.31801400-C3

© 4,28171390-C3

2.83636420-C3
6.1069978C-C4

2.14913900-C3
2.6813406C-C3
3.2030176C-C3
3,69423470-C3
4,1220918D-C3
4.43875480-C3
4.6032147C-C3
4,6504142D-C3
4,62017450-C3
4.5336569C-C3
4,3960986C-C3
4,206169CD-C3
3,96103290-C3
3.6577321C-C3
3,2941815C-C3
2.87321510-C3
2.4096€8880-C3
1.9151445C=-C3
1.40268380-C3
8.827712CC-C4
3,6079941C0-C4

17



4) TFor Example 3, a=1.0 ft%

TJHE NMATRIX X

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROH
ROW
ROW
ROW

-1.45632740-C3
-1.0232234C-C3
—6.8759682C~-C4
—4.252774CC-C4
—2.3565858C-C4
-1.20C6843C-C4

-4.,179C267C-C5
1.2484765C~-18
4.7790067C-C5
1.2C06843C-C4
2+39658580~-C4
4.252774CC-C4
6.8759682C-C4
1.C232294C-C3
1.4063274C-(3

5) For Example 4, a=5.0 ft

THE FATRIX X

RO¥
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCW

2.9106506C-C4
2.8891308L-C4
2 7636462C-C4
2.3738002C-C4
1.3768023C0-C4
6.7254537C-C5

—-7.2095753C-C6
-1.20831910-C4
-2.2692834C-C4
—2.1556893C~-C4

~2492355118=C4%

-2.9555247C-C4

-2.9555247L-C4

ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCW
ROW
ROW
RCW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

16
17
18
19
Z2C
21
£2
23
Z4
5
26
27
8
9
3C

14
15
16
17
18

19
2C
¢l
22
23
24
5
26

4,33T4726C-C3

3.125C045C-C3
24275132CC-C3
1.7253731C-C3
1.3990704C-C3
1e2240464C-C3
1.1431629N-C3
1.1203035C-C3
1.1431629C-C3
1.2240464C-C3
1.3939C704C-C3
1.7253731r0-C3
2.275192CC-C3
3.125C04ENn-C3
4.3374726C-C3

T.9280855D-C4
22445473C-C3
3.6646119C-C3
4.9641333C-C3
5.68829328C-C3

6.3897257C-C3
6.548T7475C-C3
6.25236630-C3
5.3529715C-C3
4.0788426C-C3
2650373CD0~C3
1.17793950-C3

-2.9982283C-C4

18



6) For Example 4, a=1.67 ft

THE MATRIX X

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCOW
RCOW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCOW
ROW
ROW
"ROW
ROW
RCKW
ROW
ROW
ROW
ROW
RCW

[

2.B51€847C-C4
2.85CBO45C-C4
2.846892C0C-(4
2.83647240-C4
2.8156495C-C4
2.779209%6D-C4
2.121078SC-C4
2:6342457C-C4
2.510781CL-C4
2.341868CC-C4
1.9608211C-C4
1.€6353437C-C4
1.235435260-C4
1.1061748C~C4
B.7870024C-C5
6+5943922C-(5
4.35604440-C5
1.9418€110-C5
-7.7971726C-C6
-3.94CgeBBD-CH
-7.67356350-C5
-1.2108288C-C4
—1.6464564C-C4
-1.99578CSN-C4
-2.27063390-C4
—2.4821769C-C4
-2.€408083C-C4
-2.7560306C-C4
-2.8366971C-C4
-2.890371&6D-C4
-2+5239C17C-C4
-2.9430993L-C4
-2.9527838C-C4
—-2.9568047C-C4
—2+9579785C~-C4
-2.958147CC-C4
-2.958147CC-C4

ROW
ROW
RCOW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RCW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

28
39
40
41
42
43
44
45
46
47
48
49
50

-

€2
3
€4
55
s6
7
t8
56
€0
€1
€2
€3
€4
£5
€6
€7
é8
€9

70

71

i2

73

74

B.70331550-C4
1.3465139C-C3
1.8223264C-C3
202969935C~-C3
2.7691241C-C3
3.2365511C-C3
3.€96172¢C-(3
4.14379376-C3
44.57397150-C3
4.9798646C-C3
5.3382906C-23
5.6378725C-(3
5.8869731C-C3

6.0920533C-C3
6.257588CC-C3
6.3859964C-C3
6.4775861C-C3
6.5305C950-C3
6.5407331C-C3
6.5020139C-C3
6.405926CC-C3
6.2418148C-C3
6.,0019456C-(3
5.6967025C-C3
5.3365007C~-C3
4.9418351C-C3
4,5133530C-C3
4.0622182C-C3
3.594795CC-C3
3.1162606C-C3
2.€6305323C-C3
2+.14C4753C-(3
1.6480¢€63C-C3
1.1545594C-C3
€.£6C65172D-C4
1.6€65055C0-C4
=3.273600CT-C4

15



?) TFor Example 5, a=2.0 ft

THE FMATRIX X

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
RO
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW

1

3
A
5
6
7
8
9
10
11
12
13
14
15
16

17
18
19
20
¢l
22
23
é4
25
26
et
<8
29
a0
1

1.94751130-C3
1.941448C00-C3
1.9165186C-C3
1.8585736C-C3
1.7521355C-C3
1.5413541D-C3
1.37764320-C3
1.2419637C-C3
1.11431570-C3
9.73835470~-C4
7.96886470-C4
5.6715941C-C4
3.4265631C-C4
1.88984230-(4
B.2644086C-CH5
1.7269714C-15

-8+,2644C86C-C5
-1.8898423C-(4
-3.4265631C~-C4
—5.6715941C-C4
-7.9888647D-C4
-9.7383547C-C4
-1.11431578-C3
-1.,24196370-C3
-1.3776432C-C3
-1.54135410-C3
-1.75213550~-C3
-1.858573£0-C3
-1,9165186C-C3
-1.941448C0-C3

-1.94751130-C3

ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
ROW
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23
24
35
¢
27
2g
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
4
£5
56
7
58
59
&0
3
€2

3.4903161C-C2
3.87941410-C2
4.2656375C-C2
4.6438205C-C2
5.0058341C-C2
5.33424410-C2
5.625513€80-C2
5.8871701C-C2
6.1228347D-C2
6433204090-C2
6.5100709C-C2
6.6478103C-C2
6.73741630-C2
6.78959450~(C2
6.8161654C-C2
6.82423230-C2
6.81616548-C2
6.78959490-C2
6.7374163C-C2
€.64781030-C2
€.51007090-C2
6.3320409C-C2

6.12283470-C2

5.88717010-¢C2

5.6255138ML-C2

53342441C~-C2

5.CC58341p-C2

4.6438205C-C2
4.2656375C-C2

3.8794141D-C2

3.49031610-C2
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CONCLUSIONS

1) The study described herein shows that'the matrix solution
for beams on elastic foundations gives good agreement with the
classical or recent developed method (12), for the number of
springs chosen.

2) The matrix solution of the problem shows its simplicity
not only in the matrix formulation but also in the numerical
evaluation by computer,

3) The beam and aubgrade properties were chosen from the
reference (2,6) for the convenience of investigation and
results comparison, the loading conditions are both general
and practical.

4) In the case of partial uniform load, increasing the number
of spring will give a result showing more agreement . This is
clearly illustrated in PFig. 8 and Fig. 10,

5) Physical properties of real soil are more complicated than
that represented by Winkler's assumptions.

6) The modulus of subgrade K; is mainly determined by the
modulus of elasticity of soil, whlle the width of beam has

1ittle influence ﬁhen a beam cross section is chosen,
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APPENDIX A —— NOTATION

The following symbols are used in this report:

EI

[ B

- S

fl

flexural rigidity of beam
subgrade modulus
width of bean

Ks X B = subgrade modulus include the effect of
beam width .

magnitude of concentrated load at ith loading pt.
magnitude of moment load at.  ith loading point
unit weight of beam

uniform load at part of beam

spring constant

cell length of beam-foundation

modulus of elasticity of soil

Poisson's ratio

total length of bean

length characteristic
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APPENDIX B -—— FIGURES

The given beam and loads

Force-deflection Diagram.

Ioad Diagram for the Given Beam

Internal Moments and Rotations

Spring Force and Deflections

Joint Equilibrium Diagram

Example 1, a short beam to compare with Lin's results

Example 2, a ong beam to compare with Hetenyi's and
Bowles' results

Example 3, a long beam to compare with heteyi's and
Levinton's results

Example 4, a long beam to compare with lLevinton's and

Bowles' results

Example 5, a long beam to compare with Levinton's
Hetenyi's and Fraser's results
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Fig. 1 Given beam and loads
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Fig. 3 Load Diagram
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Fig. 4 Internal Moments and Rotations
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Fig. 5 Spring Forces and Deflections
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Fig. 6 Joint Equilibrium Diagram
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Fig. 7 Example 2, short beam to compare with Lin's results
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APPENDIX C = COMPUTER PROGRAM

Displacement method of beams on "One-way" elastic foundation
analysis;
(I) Program Explanation

This program is a modification of the one given in Lin's
report to solve the matrix equations of beams on elastic founda-
tion by the displacement method, This was a modification of
a program glven by Wang (16),_Where, in the spring constant K,
arising from upward defledtions, is set equal to zero in the
stiffness matrix [S] , after the first iteration. The deflec-
tions are then recalculated. If the region of upward deflections
expands, iteration is continued until all upward deflections
are tested and thelr spring constants K are set equal to zero
in [S] matrix. The iteration goes on to its last eycle and
the final deflections are written out, This is the essence of
the program that follows;

(II) Fortran Name - The following symbols are used in this

progranm,
Fortran Name _ Quantity
[A] Force-load transformation matrix
[s] Member stiffness matrix
[SAF] Member stiffness matrix related to axlal forces
[ASATﬂ Transpose of [A] matrix
[P] Load matrix
[Xj Displacement matrix
(F] Force matrix

fe] Deformation matrix



INDEX
IDONT

NF
NEM
NAF
NIC
NC

EIL
ISW

35

Index of do loop taking on values from 1 to NP
Index of do lcop taking on values from 1 to NAF
Degrees of freedom

Total number of internal forces

Number of internal end moments

Number of internal axlal forces

Load condition

Number of cell length

Index of tension or tensiocnless allowed for
foundation, taking wvalues 1 or 0, respectively

Unit weight of beam ( = y)
Concentrated load at ith loading pt.
Moment load at ith loading point
Cell length of beam

Spring constant

Flexural rigidity of beam

Test of upward deflection
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(IIT) Flow Chart of Beams on One-way Elastic Foundation Program

Start

Read Properties
of beam, Spring
Constant and
Loading

|

Compute and store
[asaT)—[a)[s1(aT] 7t
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[x] [asaT) ~ire]

Set Spring Constants = O
Recalculate [X] by
Iteration

yes

o
Write //

xl /
Compute and Store
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ABSTRACT

The analysis of beams on one-way elastic foundations is
based on Winkler's assumption that the continuous reaction
of the foundation at every point 1is proportional to the
éeflection at that point. However, the tension property
which 1s crdinarily assumed for a foundation is relaxed by
assuming the foundation can take compression only. Under
such conditions the foundation can be visualized és a set of
closely spaced "“one-way" springs, A matrix formulation 1s used
to express the beam member deformations and forces 1ln terms
of spring joint displacements, Once the redundant displacements
are known the elastic solution of this beam-foundation system
can be obtained.'Several beams on different soil subgrade with
general loading conditions were chosen to illustrate the
numerical evaluation of the tensionless foundation solution,
The numerical process was performed using a computer progranm
written in Fortran IV, The beam=-subgrade stiffness matrix was
modified to take into account beam uplift by setting appro-
priafe spring constants equal to zero in every cycle of
iteration, The final Joint displacements (deflections) were
calculated following the last iteration. The results are in

a good agreement with previous tensionless foundation solutions,



