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Abstract 

In fitting linear models, R2 statistic has been wildly used as one of the measures to assess 

the goodness-of-fit and prediction power of the model. Unlike fixed linear models, at this time 

there is no single universally accepted measure for assessing goodness-of-fit and prediction 

power of a linear mixed model. In this report, we reviewed seven different approaches proposed 

to define a measure analogous to the usual R2 statistic for assessing mixed models. One of seven 

statistics, CR , has both conditional and marginal versions. Association mapping is an efficient 

way to link the genotype data with the phenotype diversity. When applying the R2 statistic to the 

association mapping application, it can determine how well genetic polymorphisms, which are 

the explanatory variables in the mixed models, explain the phenotypic variation, which is the 

dependent variation. A linear mixed model method recently has been developed to control the 

spurious associations due to population structure and relative kinship among individuals of an 

association mapping. We assess seven definitions of R2 statistic for the linear mixed model using 

data from two empirical association mapping samples: a sample with 277 diverse maize inbred 

lines and a global sample of 95 Arabidopsis thaliana accessions using the new method. 2
LRR  

statistic derived from the log-likelihood principle follows all the criterions of R2 statistic and can 

be used to understand the overlap between population structure and relative kinship in 

controlling for sample relatedness. From our results, 2
LRR  statistic is an appropriate R2 statistic 

for comparing models with different fixed and random variables. Therefore, we recommend 

using 2
LRR  statistic for linear mixed models in association mapping. 
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CHAPTER 1 - Introduction 

Linear regression models are wildly used in the field of statistics and by researchers in 

many disciplines. The R2 statistic, the coefficient of determination is one of the most wildly used 

measure of prediction power and goodness-of-fit of linear regression models. Recently, many R2-

like statistics were proposed in the statistical literature to measure the prediction power and 

goodness-of-fit of nonstandard linear regression models, such as generalized linear models and 

mixed effect models.  

In this report, we are mainly interested in ways to measure the prediction power and 

goodness-of-fit of linear mixed effect models. Unlike R2 statistic in linear regression models, 

there are no single universally accepted R2-like statistic to measure the prediction power and 

goodness-of-fit of linear mixed effect models.  This report will review seven R2-like statistics 

proposed in the statistical literatures in the context of mixed effect models. 

 Recently, mixed effect models have been used in genetic research. Association mapping 

studies the association between a particular gene and disease susceptibility based on populations. 

It provides a powerful complement to the previous linkage analysis for figuring out the genetic 

basis of the complex traits. Yu et al. (2006) proposed a new improved association mapping 

method accounting for both population structure and relative kinship to complement the current 

available methods for association mapping.  This new approach involves comparing several 

nested mixed effect models based on the -2log-likelihood and the Bayesian Information Criterion 

(BIC).  These two criterions are generally for model selection and identification but not for 

measuring the goodness-of-fit or prediction power of the model. Therefore, R2-like statistics for 

mixed models may be more appropriate for the study of association mappings. In addition, it 

would be desirable to many researchers if R2 statistic can be developed for the mixed model to 

assess the effect of a gene as the amount of phenotypic variation explained. 

This report applied the seven R2-like statistics to the association mapping procedure in 

two large empirical data sets. The construction of these seven R2-like statistics was based on 

different assumptions and principles. Therefore the results obtained from the analysis of these 
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two data sets would be different. We used the results to illustrate and compare the utility of these 

seven R2-like statistics. 

The remaining chapters of the report are organized as follow. In Chapter 2 of this report, 

we reviewed the traditional R2 statistic for the standard linear regression model with fixed effects 

and seven R2-like statistics for nonstandard linear models with different assumptions, and 

relations between them were also showed. In Chapter 3, we first reviewed the basic background 

knowledge about the association mapping and linked it to the applied area of statistics. Second 

we described the mixed-effect models which we used in the empirical analysis on association 

mapping.  Last, we applied the seven R2-like statistics to two data sets and we assessed the 

performance of these seven statistics to find the best one for application to association mapping. 

We also showed the overlap between population structure and relative kinship in the way of 

Venn Diagrams. In Chapter 4, we discussed more about the different R2-like statistics including 

the simulation studies done by Xu (2003) and Orelien (2008). We pointed out a mistake found in 

Orelien’s (2008) paper as well. 
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CHAPTER 2 - The R2-like Statistics 

§2.1 R2 for Fixed Linear Models 
For the linear model with only fixed effects: 

                                                              y X uβ= +                                                        (1) 

where y  is a 1n×  vector, X  is a n k×  matrix, β  is a 1k ×  vector of unknown regression 

coefficients, and u  is a 1n×  vector consisting of i.i.d. normal variables with mean 0 and 

variance 2σ . Then the usual R2 statistic is defined as 

2 SSR SSER = =1-
SSTO SSTO

 

where ˆ ˆ( ) '( )SSR Y Y Y Y= − − , ˆ ˆ( ) '( )SSE Y Y Y Y= − − , and ( ) '( )SSTO Y Y Y Y= − − . 

Since 0 SSE SSTO≤ ≤ , it follows that: 
20 R 1≤ ≤ . 

We may interpret R2 as the proportion of total variation due to the regression model with 

explanatory variables X. Thus, the larger the R2 the larger the proportion of the total variation of 

Y is explained by the explanatory variables X. R2 is scale invariant and remains unchanged when 

the units of Y and X change. It also provides us a simple statistic to summarize the effects of 

covariates on the response. In the other words, R2 gives us an easy-to-understand way to assess 

how well the model fits the data.  

For model (1), there are several alternative R2 statistics. Kvalseth (1985) listed eight of 

them which are presented below. 
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22 2
1

22 2
2

22 2
3

22 2
4

2
5
2
6

ˆR 1 (y y) / (y y)

ˆR (y y) / (y y)

ˆ ˆR (y y) / (y y)

R 1 (e e) / (y y)

R squared multiple correlation coefficient between the regressand and the regressors

R squared correlation coeffi

= − − −

= − −

= − −

= − − −

=

=

∑ ∑
∑ ∑
∑ ∑
∑ ∑

22 2
7

2 2 2
8

ˆcient between y and y

ˆR 1 (y y) / y

ˆR y / y

= − −

=

∑ ∑
∑ ∑

 

It is well known that R2 is a biased estimator of the population multiple correlation 

coefficient , 2ρ . An unbiased estimator of 2ρ  when 2ρ =0 is 

2 2
adj

MSE n 1R 1 1 (1 R )( )
MST n k 1

−
= − = − −

− −
. 

 The adjusted R2 takes the number of independent variables used in the model into account. 

Kvalseth (1985) proposed eight requirements for R2 Statistics: 

1. R2 must have utility of a goodness of fit measure with reasonable interpretation. 

2. R2 should be dimensionless and independent of the units of measurement. 

3. The potential endpoints corresponding to perfect and total lack of fit should be well 

defined. 

4. R2 should be applicable to any model independent of the statistical properties of the 

model. 

5. R2 should not be restricted to any specific model-fitting technique. 

6. R2 values for different models fitting the same data should be comparable directly. 

7. R2 is generally compatible with other acceptable measures of fit. 

8. Positive and negative residuals should be weighted equally. 

Cameron and Windmeijer (1996) proposed four additional properties: 

1. R2 does not decrease as regressors are added. 

2. R2 based on residual sum of squares coincides with R2 based on explained sum of 

squares. 

3. There is a correspondence between R2 and a significance test on all slope parameters 

and between changes in R2 and significance tests as regressors are added. 
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4. R2 has an interpretation in terms of information content of the data. 

Under weak conditions R2= x
2

x

'S
'S
β β

β β σ+
 almost surely as n tends to infinity, where 

x
1S (X 1x) '(X 1x)

n 1
= − −

−
 is the sample covariance matrix for the explanatory variables. 

However, x
2

x

'S
'S
β β

β β σ+
 is decided by the researchers since Sx is given by the experimental 

design. Therefore, the random X matrix should be considered so that R2 can also be random. 

Based on the assumption of the random X whose rows are independent with each other and also 

independent of errors, and each row of X has a multivariate normal distribution with expectation 

xµ and covariance matrix x∑ , we have 
22
k

2 2
n k 1

( )R
1 R

χ λ
χ − −

=
−

, where the numerator, a non-central 2χ  

distribution with k degree of freedom is independent of the denominator, a central  2χ  

distribution with (n-k-1) degree of freedom. The non-centrality parameter of the numerator is 

x
2

'β β
σ
Σ  which distributes as 

2
2
n 121

ρ χ
ρ −−

 that depending a new 2χ  distribution with 

2 x
2

x

'
'
β βρ

β β σ
Σ

=
Σ +

. Gurland (1968) show that for large n, 
2

2

R
1 R−

 can be approximated by 

,n k 1 ,n k 1
a (n 1)t kF F

n k 1 n k 1ν ν
ν

− − − −
− +

=
− − − −

, where (n 1)t(t 2) ka
(n 1)t k
− + +

=
− +

, (n 1)t k
a

ν − +
= , and 

2

2t
1
ρ
ρ

=
−

. A significance test of R2 is equivalent to the usual F-test of the significance of the 

regression model. 

§2.2 Mixed Models 
The linear model with both fixed effects and random effects is 

                                                        β γ= + +Y X Z u                                                      (2) 

where Y  is a 1n×  observation vector; X  is a n k×  design matrix linked to the fixed-effect β , a 

1k ×  vector of unknown regression coefficients of fixed effects;Z  is a n p×  design matrix 

linked to the random-effects γ , a random 1p×  vector of random effects with zero means and 
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variance-covariance matrix G; u  is a 1n×  random vector with zero means and variance 

covariance matrix R. 

§2.3 R2 Statistics for Linear Mixed Models 

§2.3.1  The 2
LRR  Statistic 

Cox and Snell (1989), and Magee (1990) independently proposed a R2 based on LR 

statistics: 

2
LR M 0

2R =1-exp(- (logL -logL ))
n

 

where MlogL  is the maximum log-likelihood of the model of interest, 0logL  is the maximum 

log-likelihood of the intercept-only model, n is the number of observations. Maddala (1983) also 

suggested this statistic for binary response models. LR Statistics can be written as 

LR=2log(LM/L0) which asymptotically follows a 2χ  distribution. We have the relationship 

between 2
LRR  and LR as 2

LR
-LRR =1-exp( )

n
. 

2
LRR  is an appropriate statistic when the concept of residual variance cannot be easily 

defined and the maximum likelihood is the criterion of fitting the model of interest. It has seven 

properties as pointed out by Nagelkerke (1991): 

1. It’s consistent with the traditional R2 when applied to the linear regression. 

2. The maximum likelihood estimates of parameters also maximize 2
LRR . 

3. 2
LRR  and n, the sample size are asymptotically independent. 

4. 2
LRR  could be interpreted as the proportion of explained variation and viewed as a 

measure of the extent to which a distribution is not degenerate.  

5. It does not have dimension. 

6. Replacing 2/n by k/n in the definition may produce a generalization of the explained 

proportion of the kth central moment of the model. 

7. 2
LRR  is the square of the Pearson correlation between the fixed effects and the 

efficient score of the model based on the first order Taylor expansion approximation. 
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§2.3.2  The 2
WR  Statistic 

If we reformulate model (2) as a new linear model in the following form  

                                                               β= +Y X u                                                              (3) 

where u  is an 1n×  vector of disturbances with mean 0 and variance covariance matrix V. In 

model (3), u  is just the combination of the random effects and errors of model (2). Thus the 

variance covariance matrix of Y is 'V Z GZ R= + . 

Buse (1973) derived a modified R2 based on model (3) as  
-1

2
W -1

ˆ ˆ'R =1-
( - )' ( - )

u V u
Y Y V Y Y

 

where û = ˆ-Y Y with ˆˆ βY = X being the best predictor of Y , and
-1

-1

'=
'

e V YY
e V e

with ' = (1, ... , 1)e . 

In generalized least square estimation, we have the following partition of total weighted 

sum of squares and the normal equation for the best linear unbiased estimator β̂  of β  

1 1 1ˆ ˆ ˆ ˆ' ' 'Y V Y Y V Y u V u− − −= +  
1 1ˆ( ' ) 'X V X X V Yβ− −= . 

By partitioning matrix X into K parts as 1 2( : : : )kX X X X=  , the normal equation can 

be laid out accordingly as 
1 1 1 1

1 1 1 2 1 1
11 1 1 1

2 1 2 2 2 2

11 1 1
1 2

'      '         ' 'ˆ
'     '         '   '

           ˆ
''     '         '  

k

k

k
kk k k k

X V X X V X X V X X V Y
X V X X V X X V X X V Y

X V YX V X X V X X V X

β

β

− − − −

− − − −

−− − −

  
   
   =   
      

 






   











. 

The jth row of the above layout gives 
1 1 1 1

1 1 2 2
ˆ ˆ ˆ( ' ) ( ' ) ( ' ) 'j j j k k jX V X X V X X V X X V Yβ β β− − − −+ + + = . 

Pre-multiplying ˆŶ X β=  by 1'jX V −  yields 

1 1 1 1
1 1 2 2

ˆ ˆ ˆ ˆ( ' ) ( ' ) ( ' ) 'j j j k k jX V X X V X X V X X V Yβ β β− − − −+ + + = , 

and thus 1 1ˆ ˆ' ( ) ' 0j jX V Y Y X V u− −− = = . Then we could define 

1 1

1 1

ˆ' '
' '

e V Y e V Y Y
e V e e V e

− −

− −= =  
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which states that the weighted mean of the predicted Y is equal to the weighted mean of the 

observed Y and the weighted sum of residuals is zero.  

If we use the deviations from the weighted means as new variables in the model, then the 

following equations hold: 
1 2

1 1
1

( ' )ˆ ˆ ˆ ˆ( ) ' ( ) '
'

e V YY Ye V Y Ye Y V Y
e V e

−
− −

−− − = −  

1 2
1 1

1

( ' )( ) ' ( ) '
'

e V YY Ye V Y Ye Y V Y
e V e

−
− −

−− − = − . 

Then we can rewritten 1 1 1ˆ ˆ ˆ ˆ' ' 'Y V Y Y V Y u V u− − −= +  as  
1 1 1ˆ ˆ ˆ ˆ( ) ' ( ) ( ) ' ( ) 'Y Ye V Y Ye Y Ye V Y Ye u V u− − −− − = − − + . 

When define SSTO as 1( ) ' ( )Y Ye V Y Ye−− − , SSR as 1ˆ ˆ( ) ' ( )Y Ye V Y Ye−− − , and SSE as 1ˆ ˆ'u V u−  in 

terms of the weighted sum of squares, the above equation can be rewritten as 

SSTO SSR SSE= + . 

Based on the rewritten model, R2 statistic would be defined as 
1 1

2
1 1

ˆ ˆ ˆ ˆ( ) ' ( ) '1
( ) ( ) ( ) ( )W
Y Ye V Y Ye u V uR
Y Ye V Y Ye Y Ye V Y Ye

− −

− −

− −
= = −

− − − −
. 

Note that V is estimated by ML of REML. 

From another perspective developed by Magee (1990), the F statistic for testing the 

hypothesis of nonzero k-1 non-intercept parameters is  
2

2

/( 1)( ) /( 1)
/( ) (1 ) /( )

W

W

R kSSTO SSE kF
SSE n k R n k

−− −
= =

− − −
 

It is related to the Wald statistic as 

( ) ( 1)(1 )n SSTO SSE kW k F
SSE n k

−
= = − +

−
.  

Then we can write 2
W

WR
n W

=
+

. 

If the components of the random effect are also independent identically distributed 

according to a normal distribution or the model contains only the fixed effects, then we have 
2 2
LRR WR= =traditional R2. In this case, let the variance covariance matrix of Y be 2

y Iσ∑ = . We 

can prove this equality in two ways: 
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1. The minus two times the maximum log-likelihood for model (3) with V = ∑ , we 

have 
1

2 2

1

2

2 log log ' log(2 )

ˆ ˆ( ) ( )
ˆ ˆlog ( ) '( ) ( ) log(2 )

ˆ( )
log( ) log(2 )

ML u u n

Y X Y X
I Y X I Y X n

n n

Y X
n n n

n

π

β β
β β π

β
π

−

−

− = ∑ + ∑ +

− −
= + − − +

−
= + +

 

where ˆu Y X β= −  and β̂  is the MLE and also the BLUE of β . Similarly, for model (3) 

without the covariate, we have 
2

0

( )
2log log( ) log(2 )

Y Y
L n n n

n
π

−
− = + + . 

Then the 2
LRR  statistic can be written as 

2 2

2

2

2
2

ˆ
1 exp(log log )

ˆ
1

LR

Y X Y Y
R

n n

Y X
R

Y Y

β

β

− −
= − −

−
= − =

−

 

At the same time, under the same assumptions we have 

2

2

2

2

2

2

ˆ ˆ( ) ' ( )1
( ) ' ( )

ˆ ˆ( ) ' ( )
1

( ) ' ( )

ˆ
1

W

y

y

LR

Y X Y XR
Y Y Y Y

Y X I Y X
Y Y I Y Y

Y X

Y Y

R

β β

β σ β
σ

β

− ∑ −
= −

− ∑ −

− −
= −

− −

−
= −

−

=

 

2. Since LR and W are related as log(1 / )LR n W n= + , so 
2

2

1 exp( / )
1 exp( log(1 / ))
LR

W

R LR n
W n

W R
n W

= − −
= − − +

= =
+
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In the context of the R2 statistic without the distribution assumption, 2
LRR  cannot be 

computed whereas 2
WR  can be computed and has meaningful interpretation. 2

LRR  measures how 

well the model with the given distribution fits the data. 2
WR  only measures how well the means of 

the model predict the data without fully specified the actual form of the distribution of Y. 

§2.3.3  The CR  Statistic  

Motivated by the concordance correlation coefficient  
2

1 2 1 2
c 2 2 2 2 2 2

1 2 1 2 1 2 1 2

E[(Y Y ) ] 21
( ) ( )
− ρσ σ

ρ = − =
σ +σ + µ −µ σ +σ + µ −µ

 

Vonesh et al. (1996) proposed  

2

ˆ ˆ( ) '( )1 ˆ ˆˆ ˆ ˆ( ) '( ) ( ) '( ) ( )c
n n n n

R
y y y y n y y

− −
= −

− − + − − + −1 1 1 1
Y Y Y Y

Y Y Y Y
 

as a goodness of fit measure for generalized nonlinear mixed effect model, where n is the 

number of observations; Y is the vector of observed values; Ŷ is a predictor of Y ; y  is the mean 

of the elements of Y ; and ŷ  is the mean of the elements of Ŷ . 

cR  can be interpreted as a measure of the degree of the agreement between the observed 

values and the predicted values as cρ  measures agreement between Y1 and Y2. 

§2.3.4  The randP  Statistic  

With a multivariate normal random effect, Zheng (2000) proposed  

ˆˆ ˆ ˆ ˆˆ(1/ 2 )( ) '( ) '1 1
ˆ(1/ 2 )( ) '( )

-1
M

rand
N n n

PQL /2P
PQL y y

σ
σ

− − − +
= − = −

− − −1 1
Y Y Y Y G

Y Y
γ γ  

 to be a measure of the proportional reduction in penalized quasi-likelihood function, where 

MPQL  denotes penalized quasi-likelihood function for the model of interest; NPQL  denotes 

penalized quasi-likelihood function for the null model which is the model only contains the 

intercept; γ̂  is the estimated best linear unbiased predictor (BLUP) of γ ; ˆˆ ˆY X Zβ γ= +  is the 

estimated BLUP of Y; Ĝ is the maximum likelihood estimate (MLE) of G, the variance 
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covariance matrix of Y; and σ̂  is the MLE of σ . G and σ  can also be estimated by REML. 

Note that when the model only has the fixed effect, randP  is reduced to the traditional R2 statistic. 

Let ( , ; )l Yµ σ  be the conditional log-likelihood function given mean µ  and variance 

component σ  for the model of interest and ( , ; )l Y Yσ  be the maximum log-likelihood value 

corresponding to the perfect prediction. The deviance is defined as 

( , ) / 2( ( , ; ) ( , ; ))d Y l Y l Y Yµ σ µ σ σ= − − . 

Thus the sample deviances for the model of interest and the fixed intercept model (null model) 

are 
1

ˆ( , )n
i i ii

d Y Y
=∑  and 

1
( , )n
i ii

d Y Y
=∑ , respectively. Based on the above definitions, the negative 

penalized quasi-likelihood (-PQL) is defined as 

1

1

1 1( , ) '
2 2

n

i i i
i

PQL d Y Gµ γ γ
σ

−

=

− = +∑ . 

Hence  –PQL’s  for the model (3) and the null model (model (3) without the covariate) are 

1

1

1 1 ˆˆ ˆ ˆ( , ) '
ˆ2 2

n

M i i i
i

PQL d Y Y Gγ γ
σ

−

=

− = +∑  

and 

1

1 ( , )
ˆ2

n

N i i i
i

PQL d Y Y
σ =

− = ∑ . 

Under the normality assumption,  

11 1 ˆˆ ˆ ˆ ˆ( ) '( ) '
ˆ2 2MPQL Y Y Y Y Gγ γ
σ

−− = − − +  

and 

1 ( ) '( )
ˆ2NPQL Y Y Y Y
σ

− = − − . 

It can be shown approximately that 
log(2 )

21
log(2 )

2

M

rand

N

nL
P nL

π

π

+
= −

+
, where ML  is the 

maximum log-likelihood value of the model of interest and NL  is the maximum log-likelihood 

value of the null model. Based on the approximation, we could interpret randP  as a measure of the 

proportional reduction of the log-likelihood comparing the model of interest with the fixed 

intercept only model. 
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The range of the statistic  randP  is between 0 and 1 under the above model assumptions. 

The larger randP , the better prediction and the smaller random effect. The penalty for the random 

effects in randP  is analogous to the Akaike’s Information Criterion (AIC) and the Schwarz’s 

Bayesian Information Criterion (BIC). 

§2.3.5  The 2r  Statistic 

Xu (2003) also proposed three other kinds of R2-like measures: 2r , 2
2R  and 2ρ  to assess 

the goodness of fit of the model. If we write β  as 0 1( , ') 'β β  and γ  as 0 1( , ') 'γ γ  where 0β  and 0γ  

are the fixed and random intercepts, then two kinds of null models are possible in this case: 

                                                            H0: * * *
j 0 0 jY uβ γ= + +                                                           (4) 

and 

                                                            H0: * *
j 00 0 jY uβ= +                                                                (5) 

Note that null model (4) has random intercept but null model (5) does not and that model (4) and 

(5) are in fact nested. Denote 2 * *
0 0var(Y ) var(u )σ γ= =  for model (4) and 

0

2 *
00 var(u ) var(Y)σ = = for model (5). Then the proportion of variation in Y explained by X is  

2
2

* 2
0 0

var(Y X, )
1 1

var(Y )
γ σ

γ σ
Ω = − = −  

for model (4) and 
2

2
2
00

var(Y X, )
1 1

var(Y)
γ σ

σ
Ω = − = −  

for model (5). 

We use the maximum likelihood (ML) method to estimate 2Ω  and we would have the 

following measures for model (4) and (5) respectively: 
2

2
2
0

ˆ
=1-

ˆ
r σ

σ
 

2
2

2
00

ˆ
=1-

ˆ
σ
σ

r  



 

 13

where 2σ̂ , 2
0σ̂  and 2

00σ̂  are the ML estimates of 2σ , 2
0σ  and 2

00σ . Note when the model only has 

the fixed effect, we only have model (5) and 2r  is equal to the traditional R2 statistic. 

§2.3.6  The 2
2R  Statistic  

Xu (2003) also defined a related R2-like statistic based on the residuals obtained from 

fitting model (2). Let ˆˆ ˆY X Zβ γ= +  be the linear predictor in model (2), then the residual under 

the fitted model (2) is ˆû Y Y= − . Similarly, let *
0β̂  and *

0γ̂  be the predictors of *
0β  and *

0γ  under 

model (4), and *
00β̂  be the predictor of *

00β  under model (5). Then the residual under the fitted 

model (4) and (5) are * *ˆû Y Y= −  and * *
0 0

ˆû Y Y Y Y= − = −  where * * *
0 0

ˆˆ ˆY β γ= + , * *
0 00

ˆŶ Yβ= =  

and Y  is the average of observed values. 
2
2R  statistics under model (4) and model (5) are respectively 

2
2 * *

0

ˆ ˆ'1 1
ˆ ˆ'

= − = −
u u RSSR
u u RSS

 

and 

2
2 * *

0 0 00

ˆ ˆ'1 1
ˆ ˆ'

= − = −
u u RSSR
u u RSS

, 

where RSS, RSS0, and RSS00 are the residual sums of squares under model (2), (4) and (5). 

Notice that 2
2R  for model (5) is just the traditional R2 statistic which is not preferred since it 

ignores the random components. 

Since RSS/n estimates the residual variance 2σ  of model (2), RSS0/n estimates the 

residual variance 2
0σ  of model (4), and RSS00/n estimates the residual variances 2

00σ , 2
2R  is also 

an estimator of 2Ω . 

§2.3.7  The 2ρ  Statistic 

The explained randomness was first proposed by Kent (1983). Xu (2003) defined a R2 

statistic with the use of the conditional likelihood of the observed data given the predicted 

random effects. 

Under model (2), define the residual randomness as D(Y X, ) exp( 2E(log l(Y X, )))γ γ= − , 

under model (3), and the total randomness of Y given only the random effect as 
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* *
0 0D(Y ) exp( 2E(log l(Y )))γ γ= − , where log l(Y X, )γ  is the log-likelihood function for model 

(2) and *
0log l(Y )γ  is the log-likelihood function for model (4). Then the proportion of explained 

randomness could be defined as 

*
0

D(Y X, )
1 1 exp( )

D(Y )
γ

τ
γ

− = − −  

where *
02(E(log l(Y X, )) E(log l(Y )))τ γ γ= −  is twice the Kullback-Leibler information gain. 

Denote the vector of unknown parameters under model (2) and (4) by θ  and 0θ , then 

2
0 0

0 2 2 2
0

ˆ RSSRSSˆ ˆˆn 2log(L( ) / L( )) n log( )
ˆ ˆ ˆ
στ θ θ
σ σ σ

= = − +  

where 
n

j
j 1

L( ) l(Y )θ γ
=

=∏  is the conditional likelihood of the observed data given the random 

effects under model (2). 

A measure of explained randomness is defined as 
2

2 0
2 2 2
0 0

ˆˆ1 exp( ) 1 exp( )
ˆ ˆ ˆ
σρ τ
σ σ σ

= − − = − −
RSSRSS

n n
. 

Notice that when there is no random effect, the 2ρ  measure is equal to the traditional R2 

for the linear regression model. 

The coefficient 2
0ρ  for model (5) can be defined as 2

0 0ˆ1 exp( )ρ τ= − − , where 

2
00

0 2 2

ˆˆ log 1
ˆ ˆ
στ
σ σ

= − +
RSS
n

. 

Again, because RSS/n estimates the residual variance 2σ  of model (2), RSS0/n estimates 

the residual variance 2
0σ  of model (4), and RSS00/n estimates the residual variance 2

00σ , 2ρ  is 

also an estimator of 2Ω  and it should be closed to 2r  and 2
2R . Based on a first-order Taylor 

approximation, we have 2 2
2

0

RSS1 R
RSS

ρ ≈ − = . Then we could say that 2r  takes into account the 

different degree of freedom under the full and null models, however, 2
2R  and 2ρ  do not, since 
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2σ̂ ≈
−
RSS
n df

, 2 0
0

0

σ̂ ≈
−
RSS
n df

 and 2 00
00

00

σ̂ ≈
−
RSS
n df

, where df, df0, and df00 are the degrees of freedom 

of the residual variances under model (2), (4), and (5) respectively. 

§2.4 Conditional and Marginal R2 Statistics 
Vonesh et al (1996) and Vonesh and Chinchilli (1997) invited the concepts of conditional 

and marginal R2 statistic. For the conditional version of R2 statistic, the fitted value ˆˆ ˆ= β γ+Y X Z  

is used to compute the R2-like statistics according to the formula introduced in Section 2.3. 

However, for the marginal version of the R2 statistic, the fitted value ˆˆ= βY X  is used to compute 

the R2-like statistics in their formula. The conditional version accounts for both the fixed and 

random effects to measure the overall goodness of fit and prediction power, while the marginal 

version only measures the fixed-effect part, the mean of the model. CR  statistic has both 

versions of R2 statistic. 

However, the other R2 statistics such as 2
LRR  2

WR  randP  2r , 2
2R  and 2ρ  do not have both 

conditional and marginal versions. For 2
LRR  and 2r , this is because that the definitions of these 

two statistics do not relate to the estimated values of Y. Instead, they only concern about the log-

likelihood values and the estimators for the residual variances of the models. For 2
WR  statistic, we 

could view the mixed model in the way of combining the random effects with the error term 

together as new noise with the variance covariance matrix 'V Z GZ R= +  of a fixed-effect model 

(3). In this case, the predicted value can only account for the fixed effects. Therefore, 2
WR  

statistic only has the marginal version of R2 statistic. For randP  statistic, when we only use the 

fixed effect terms to be the predicted values, we no longer has the random effect in model (3) 

and we could not use randP  which involves the random effect as a penalty in the numerator of the 

definition anymore. Therefore, we have to use ˆˆ ˆ= β γ+Y X Z  as the predicted values of the mixed 

model. Hence, randP  only has the conditional version of the R2 statistic. And for 2
2R  and 2ρ , since 

the RSS and RSS0 are only defined based on the fitted value of Y as ˆˆ ˆ= β γ+Y X Z , they only have 
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the conditional version too. In addition, if we use  ˆX β  as Ŷ  in  2
2R  and 2ρ , it would not be 

appropriate of using RSS/n or RSS
n df−

 to estimate 2σ  anymore, so do 2
0σ  and 2

00σ .  
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CHAPTER 3 - Association Mapping Application 

§3.1 Association Mapping 
A phenotype is any observed quality of an organism and the genotype is the genetic 

constitution and the specific allele makeup of an individual. A single nucleotide polymorphism 

(SNP), is a DNA sequence variation occurring when a single nucleotide - A, T, C, or G in the 

genome (or other shared sequence) differs between members of a species (or between paired 

chromosomes in an individual) and they could be used as the markers to study the complex traits. 

For example, two sequenced DNA fragments from different individuals, ACCT to ACTT, are 

differed by a single nucleotide. In this case we say that there are two alleles: C and T. Almost all 

common SNPs have only two alleles. During the statistical analysis of the SNPs markers, we 

usually code the two alleles as 0 and 1 as categorical variable. As we know, genetic factors affect 

the corresponding quantitative traits, and the occurrence of disease. 

Association mapping holds substantial promise for unraveling the genetic basis of the 

interested complex traits for human and other species. Association analysis is a method to 

identify the relationship between molecular markers or candidate genes and the interested traits 

based on a given collected population. It is different from quantitative trait locus (QTL) mapping 

since QTL mapping needs the family-based population while association mapping does not, 

although alternative methods may use the family-based controls to avoid the potential problem of 

population stratification. Association mapping can address the targeted genes faster and more 

efficiently and provide much more information to the candidate genes to verify the function of 

candidate genes.  

In candidate gene association mapping, genes are selected based on their location in a 

region of linkage or other evidence showing that the selected genes may impact the interested 

quantitative traits. However, Candidate gene study relies on the precision of the selection which 

is based on the biological hypotheses. 

Genome-wide association study provides a powerful approach for us to understand the 

complex traits better than in the past. It is defined as an approach that surveys most of the 

genome for causal genetic variants. 
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Statistically, we treat the interested quantitative trait as the response and the markers 

information as the explanatory variables of the model. After fitting the model, we could base on 

the specific tests and corresponding p-values or the R2 values to assess the effects of the 

functional markers or genes on the diseases. 

It is well known that allele frequency differs between cases and the controls due to 

different systematic ancestry. This kind of population stratification can cause spurious 

associations in association mapping if not accounted for in the test. Since we commonly classify 

the individual in a sample into populations, researchers want to understand the population 

besides the samples with individuals. Pritchard (2000) proposed a cluster method to assign the 

individual into subpopulations based on multilocus genotype data to describe the population 

structure. If we assume there are k subpopulations, and all of them are set with the allele 

frequencies at each locus, then the individual could be assigned into one of these k 

subpopulations, or more than one admixed subpopulations. After the cluster analysis, the 

probability results of each individual could be arranged into a matrix denoted by Q with the size 

of the number of individuals by the number of subpopulations. They also designed computer 

software named “STRUCTURE” to calculate the Q matrix using the genotype data information. 

Besides the cluster analysis using “STRUCTURE” to assign individuals to the 

subpopulations, Price (2006) proposed a method named “EIGENSTRAT” to detect and correct 

for population stratification. They applied the principal components analysis to the genotype data 

and used the first several eigenvectors as P matrix instead of Q matrix to account for the 

population structure. 

The genetic relatedness of random molecular markers is also an important aspect that 

should be considered in association mapping. Many areas have studied this genetic relatedness 

very well and many methods are proposed to estimate them. Relative kinship estimates (Loiselle 

et al. 1995; Ritland 1996) provide both inter-coancestry and intra-individual estimates in a 

symmetric matrix, say K matrix with the size of the number of individuals by the number of 

individuals, and are used to account for the relatedness in diverse association mapping panels. 

The Kinship coefficients are also called coancestry coefficients. They are computed 

based on the probability of identity of alleles for two homologous genes sampled in some 

particular way. Software named “SPAGeDi” could compute the kinship coefficients for us in two 

ways: 



 

 19

1. They are computed as a correlation coefficient between allelic states (Loiselle 

et al. 1995). 

2. They are estimated by Ritland (1996) in the way of giving more weight to the 

rare alleles and having lower sampling variance than the first method. 

Yu et al. (2006) proposed a new method named unified mixed-model association 

mapping that takes into account both the population structure and the familial relatedness. While 

the previous method of genomic control adjusts the test statistics obtained from a model that 

does not consider the population structure or kinship, the new proposed method adjusts the test 

statistic internally by considering the multiple levels of relatedness. They showed that this new 

method could control the type I and type II errors much better than the other methods used in 

the association mapping. The mixed effect model they proposed is illustrated in Section 3.2. 

§3.2 The Mixed Model in Association Mapping 
The mixed model for Q+K method is 

                                                           Qµ= + + +y v u eZ                                                       (6) 

where y  is a vector of phenotype observation, µ  is a vector of intercepts, v  is a 1×k  vector of 

population effects, u  is a 1×n  vector of random polygene background effects, e  is a vector of 

random experimental errors with mean 0 and covariance matrix Var( e ), Q is an ×n k  matrix 

defining the subgroup membership, Z is an incidence matrix relating y  to u . In our case, since 

we do not have the replication for each subject, the Z design matrix of the model is the identity 

matrix with the size of number of observations. We have Var( u )=2KVg, where K is a known 

n n×  matrix of kinship coefficients, Vg is the unknown genetic variance which is a scalar. 

Var( e )=RVR, where R is an n n×  matrix, and VR is the unknown residual variance which is a 

scalar too. 

We examined four different models: Q, K, P and P+K model to compare the results 

(Table 3.1). The definitions of Q and K were the same as in previous sections. In both P and P+K 

model, the P matrix consists of first several principal components that are eigenvectors 

calculated by the principal component analysis (PCA) of SNPs data. In our empirical analysis 

presented in next section, we followed analyses we chose the first three PCAs for maize data and 

first eight PCAs for Arabidopsis data to be consistent with analyses in previous publications (Yu 

et al. 2006; Zhao et al. 2007). 
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Table 3.1  Models Used in the Application 

Model Name       Model form 

The Q+K model Qµ= + + +y v u eZ  

The Q model Qµ= + +y v e  

The K model µ= + +y u eZ  

The P+K model µ= + + +y v u eP Z  

The P model µ= + +y v eP  

 

§3.3 Empirical Analysis 

§3.3.1 Maize Data Example 
We used the data collected from maize (Yu et al. 2006 Nat Genet 38.) with 277 inbred 

lines. There are three quantitative traits: flowering time, ear height and ear diameter, which we 

will use as the response variables in the models. The Q matrix and the K matrix are derived using 

553 Single Nucleotide Polymorphism (SNPs) markers in STRUCTURE and SPAGeDi software, 

respectively. 

The intercept only model ( y = + eµ ) and five other models were fitted with each of the 

three traits as the response. The 2
LRR  values were calculated between each of the five models and 

the intercept-only model (Table 3.2). 

 

Table 3.2  2
LRR  Values for Three Traits in Different Models 

2
LRR  Flowering Time Ear Height Ear Diameter 

Q+K 0.42 0.25 0.22 

Q 0.35 0.16 0.05 

K 0.35 0.21 0.21 

P+K 0.41 0.25 0.22 

P 0.31 0.15 0.05 
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It is illustrated in Table 3.2 that the 2
LRR  value of the Q+K model is less than the sum of 

2
LRR  values of the Q model and the K model across three traits and that the same can be said for 

the P+K model, the P model and the K model. This is due to the fact that the Q matrix 

representing the population structure, the P matrix characterizing the main information of the 

interested population and the K matrix showing the relatedness of 277 inbred lines are all derived 

from the common source, the same genotype data but in different ways. The overlap portion of 

what Q matrix explains and what K matrix explains, denoted by “Q·K” is the sum of the 2
LRR  

values of the Q model and the K model minus that of the Q+K model. Similarly, the overlap 

portion of what P matrix explains and K matrix explains, denoted by “P·K” is the sum of the 
2
LRR  value of the P model and the K model minus that of the P+K model. Based on our maize 

data set, we have the following Table3.3: 

 

Table 3.3  Overlaps for Three Traits in Different Models 
2
LRR  Flowering Time Ear Height Ear Diameter 

Q·K 0.28 0.12 0.04 

P·K 0.25 0.11 0.04 

 

We could also show this fact in the way of Venn Diagrams. 

 

Figure 3.1  Flowering Time Trait Involving Q and K Models 
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Figure 3.2  Ear Height Trait Involving Q and K Models 

 
 

Figure 3.3  Ear Diameter Trait Involving Q and K Models 

K Model Q Model 
0.16 0.21 0.12 

Q+K Model=0.25 

Q·K 

K Model Q Model 
0.35 0.35 0.28 

Q+K Model=0.42 

Q·K 
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Figure 3.4  Flowering Time Trait Involving P and K Models 

 
 

Figure 3.5  Ear Height Trait Involving P and K Models 

K Model P Model 
0.31 0.35 0.2

P+K Model=0.41 

P·K 

K Model Q Model 
0.05 0.21 0.04 

Q+K Model=0.22 

Q·K 
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Figure 3.6  Ear Diameter Trait Involving P and K Models 

 
 

Table 3.4  2
WR  Values for Three Traits in Different Models 

2
WR  Flowering Time Ear Height Ear Diameter 

Q+K 0.11 0.05 0.01 

Q 0.35 0.16 0.05 

K 0.00003 0.00003 0.00004 

P+K 0.09 0.05 0.01 

P 0.31 0.15 0.05 

K Model P Model 
0.05 0.21 0.04 

P+K Model=0.22 

P·K 

K Model P Model 
0.15 0.21 0.11 

P+K Model=0.25 

P·K 
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From Table 3.4, we will find that K model’s 2
WR  values are very near to zero. Because 

based on the definition of 2
WR  statistic under model (3), when there is only intercept and random 

effects in the model, Ŷ  is just the estimated intercept and 1ˆ ˆ( ) ' ( )−− −Y Y V Y Y  and 

1( ) ' ( )−− −Y Y V Y Y  are the same theoretically in this case, which will lead the 2
WR  value to be 0. 

Therefore, 2
WR  cannot report the correlation between random effects and the responses, which 

means that 2
WR  is not a useful statistic in this situation. 

When we compare the 2
WR  values of the mixed models and the models only consist of 

the fixed effects, we always see that the previous values are less than the later values. It seems 

like there is a contradiction with the criterion 1 proposed by Cameron and Widmeijer (1996) in 

Section 2.1. In fact, the criterion is not applicable in this case because we are comparing two 

models with different assumptions of the errors. For the mixed model the variance covariance 

matrix is assumed to be V and for the models only have the fixed effects, the variance covariance 

matrix is assumed to be 2Iσ . We just add the random effect into the error term instead of adding 

more regressors to the model. 

From Table 3.3 and 3.4, we see that the 2
WR  and 2

LRR  for the Q model that only contains 

the fixed effects are the same, which we have proved in section 2.3. However, two R2 statistics 

of model Q+K are different obviously. The reason for this result is that for the mixed-model we 

have 12 ( , ) log V ' log(2 )π−− = + +l G R u V u n  in the ML method where ˆu Y X β= − , so 2
LRR  

takes into accounts the determinant of the variance covariance matrix V of Y, 1' −u V u  and also 
1( ) ' ( )−− −Y Y R Y Y  that are the generalized sums of squares with respect to the full model and 

the null model. While 2
WR  only involves 1' −u V u , the same as what 2

LRR  does, and 

1( ) ' ( )−− −Y Y V Y Y , called weighted sum of square, which is different from 1( ) ' ( )−− −Y Y R Y Y , 

where R is the variance covariance matrix of Y of the model that only includes the intercept. 

 

Table 3.5  Components of Maximum Log-Likelihood Values Using ML Method (Mixed-

Model) 



 

 26

Q+K model Flowering Time Ear Height Ear Diameter 

log V  773.19 1507.40 605.51 

1' −u V u  274.00058 276.00122 247.00071 
1( ) ' ( )−− −Y Y R Y Y          274 276 247 

1( ) ' ( )−− −Y Y V Y Y  308.49 289.29 249.50 

 

Table 3.5 involves the computation of log V . When we use SAS or Matlab to 

compute log V , the software can not compute the result directly since the value is too large. So 

we do the following steps to resolve this problem: 

First, we compute V . The value of V is also too big to output by the software, so we use 

one of the properties of the determinant of matrix which is  

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

... ...

... / / ... /
... ... ... ... ... ... ... ...

... ...

n n

n n

n n nn n n nn

e e e e e e
e e e e k e k e k

k

e e e e e e

= . 

For example, 1V is the determinant of 1V  that is the variance covariance matrix of the 

response variable corresponding to ear height trait. We first divided every row of the matrix V by 

100, and then we calculate the determinant of the restructured matrix, say 1pV , with much 

smaller elements. Finally, 1V  is just that 264100  times 1pV , and 264
1plog V log V log100= + . 

Notably, in Table 3.5 the values of the row named 1( ) ' ( )−− −Y Y R Y Y  always equal to 

the n, the number of observations. This is because: 
1'r V r− = 1ˆ ˆ( ) ( )Y Y V Y Y−′− −  

= 1ˆ ˆ( ) ( )−′− −Y Y R Y Y  

Where 
2

2
−

= =


 Y Y

R I I
n

σ  

                     1'r V r− =
2

1( )−
−


Y Y

n
ˆ ˆ( ) ( )′− −Y Y I Y Y = n  
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Table 3.6  Marginal CR  Values for Three Traits in Different Models 

CR  Flowering Time Ear Height Ear Diameter 

Q+K 0.53 0.28 0.09 

Q 0.51 0.27 0.10 

K 0 0 0 

P+K 0.48 0.28 0.09 

P 0.47 0.25 0.10 

 

From Table 3.6, all CR  values for K model are equal to zero for the same reason as for 

2
WR  statistic. Therefore, CR  is not a preferred R2 statistic. 

 

Table 3.7  Conditional CR  Values for Three Traits in Different Models 

CR  Flowering Time Ear Height Ear Diameter 

Q+K 0.92 0.88 0.96 

Q 0.51 0.27 0.10 

K 0.94 0.91 0.96 

P+K 0.92 0.88 0.96 

P 0.47 0.25 0.10 

 

Table 3.8  randP  Values for Three Traits in Different Models 

randP  Flowering Time Ear Height Ear Diameter 

Q+K 0.83 0.81 0.85 

Q 0.35 0.16 0.05 

K 0.86 0.85 0.86 

P+K 0.83 0.81 0.85 

P 0.31 0.15 0.05 

 

Table 3.9  2r  Values for Three Traits in Different Models 



 

 28

2r  Flowering Time Ear Height Ear Diameter 

Q+K 0.74 0.66 0.79 

Q 0.35 0.16 0.05 

K 0.78 0.70 0.79 

P+K 0.74 0.65 0.79 

P 0.31 0.15 0.05 

 

Table 3.10  2
2R  Values for Three Traits in Different Models 

2
2R  Flowering Time Ear Height Ear Diameter 

Q+K 0.98 0.98 0.99 

Q 0.35 0.16 0.05 

K 0.98 0.98 0.99 

P+K 0.87 0.82 0.93 

P 0.31 0.15 0.05 

 

Table 3.11  2ρ  Values for Three Traits in Different Models 

2ρ  Flowering Time Ear Height Ear Diameter 

Q+K 0.84 0.78 0.89 

Q 0.35 0.16 0.05 

K 0.88 0.82 0.89 

P+K 0.84 0.79 0.89 

P 0.31 0.15 0.05 

 

From Table 3.7 to Table 3.11, the R2 values for the K model all are larger than the R2 

values for the mixed effect models, which contradicts the criterion 1 proposed by Cameron and 

Widmeijer (1996) in Section 2.1. With the same assumption of the variance covariance structure, 

after adding more regressors into the model, the R2 should not decrease. The proposers of the R2-

like statistics only considered the non-decreasing property of R2 values by adding more fixed 

regressors into the mixed models with the same random effects. They did not compare the 
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models with different random and fixed effects. Therefore, conditional CR , randP , 2r , 2
2R , and 

2ρ  are not the preferred R2 statistics to use for the application considered here. 

On the other hand, 2
LRR  is based on the likelihood principle where the log-likelihood 

function increases as the number of parameters increases. It does not have the same problem as 

the other R2-like statistics. All in all, 2
LRR  statistic is the most useful and make the most sense 

R2-like statistic relative to the others based on our results using Maize data example. 

To detect the effect of SNP on the phenotype, we could add the marker data into the 

interested model to check if there is a big difference in the R2 values. We used the Q+K model as 

the example. After adding 553 SNPs markers into the Q+K mixed models one at a time as the 

fixed regressors, we obtained the 2
LRR  values across three traits. The following figures show the 

important SNPs with significant peaks to certain traits. 

 

Figure 3.7  Flowering Time Trait with SNPs Markers 

 
 

Figure 3.8  Ear Height Trait with SNPs Markers 
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Figure 3.9  Ear Diameter Trait with SNPs Markers 

 
 

§3.3.2 Arabidopsis Data Example 
The data used in this example is a global sample of 95 Arabidopsis thaliana accessions 

(Zhao et al. 2007 PloS Genet 3.) with three phenotypes: SDV, JIC8W and FRI. These 

phenotypes are the mean flowering time for accessions under different experimental conditions 

obtained at University of Southern California (USC) and at the John Innes Centre (JIC) and also 

an expression level of key flowering time gene. We use the same methods to compute Q, K and 

P matrices as in the Maize example based on 5419 SNPs markers. 



 

 31

Five models were fitted with each of the three traits as the response. The 2
LRR  values are 

reported in Table 3.13. 

 

Table 3.12  Descriptions of The Phenotype 

Phenotype Description 

SDV Short days without 5-week vernalizaiton at USC 

JIC8W Long days with 8-week vernalization at JIC 

FRI FRI expression 

 

Table 3.13 2
LRR  Values for Three Traits in Different Models 

2
LRR  SDV JIC8W FRI 

Q+K 0.40 0.54 0.35 

Q 0.37 0.53 0.31 

K 0.17 0.08 0.18 

P+K  0.47 0.56 0.39 

P 0.47 0.56 0.44 

 

From Table 3.13, we conclude that P+K model is better than the other models and the P 

matrix capture more character of the SNPs markers than the Q matrix. 

Again, there exist overlaps between what Q matrix and K matrix explain about the 

genotype information. 

 

Table 3.14  Overlaps for Three Traits in Different Models 
2
LRR  SDV JIC8W FRI 

Q·K 0.14 0.07 0.14 

P·K 0.17 0.08 0.23 

 

We show this fact in the way of following Venn Diagram figures. 

Figure 3.7  SDV Trait Involving Q and K Models 
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Figure 3.8  JIC8W Trait Involving Q and K Models 

 
Figure 3.9  FRI Trait Involving Q and K Models 

K Model Q Model 
0.53 0.08 

0.07 

JIC8W 

Q+K Model=0.54 

Q·K 

K Model Q Model 0.37 0.17 

0.14 

SDV 

Q+K Model=0.40 

Q·K 
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Figure 3.10  SDV Trait Involving P and K Models 

 
 

Figure 3.11  JIC8W Trait Involving P and K Models 

K Model Q Model 
0. 31 0.18 

0.14 

FRI 

Q+K Model=0.35 

Q·K 

P Model 

K Model 

0.17 

0.47 

SDV 

P+K Model=0.47 

P·K 
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Figure 3.12  FRI Trait Involving P and K Models 

 
 

Table 3.15  2
WR  Values for Three Traits in Different Models 

2
WR  SDV JIC8W FRI 

Q+K 0.28 0.49 0.58 

Q 0.37 0.53 0.31 

K 0.0000 0.00005 0.0011 

P+K 0.42 0.53 0.27 

P 0.47 0.56 0.44 

K Model P Model 
0. 44 0.18 

0.23 

FRI 

P+K Model=0.39 

P·K 

P Model 

K Model 

0.08 

0.56 

JIC8W 

P+K Model=0.56 

P·K 
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Table 3.16  Marginal CR  Values for Three Traits in Different Models 

CR  SDV JIC8W FRI 

Q+K 0.56 0.69 0.58 

Q 0.54 0.69 0.48 

K 0 0 0 

P+K 0.64 0.72 0.67 

P 0.64 0.72 0.60 

 

From Table 3.16, marginal CR  statistic for K model is near to zero. Because the fitted 

value of Y is the mean in this case, the CR  value equals to zero based on the definition. 

Therefore, CR  cannot provide useful information to the researchers. 

When we use ML method to compute the estimates of the variance components of K 

models, all three traits encountered the problems of non-convergence. So we set the parameters 

from Q+K model into K model to make the iteration convergent.  

 

Table 3.17  Conditional CR  Values for Three Traits in Different Models 

CR  SDV JIC8W FRI 

Q+K 0.74 0.80 0.60 

Q 0.54 0.69 0.48 

K 0.58 0.45 0.49 

P+K 0.71 0.79 0.60 

P 0.64 0.72 0.60 

 

Table 3.18  randP  Values for Three Traits in Different Models 

randP  SDV JIC8W FRI 

Q+K 0.61 0.68 0.66 

Q 0.37 0.53 0.31 

K 0.47 0.36 0.49 
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P+K 0.56 0.65 0.78 

P 0.47 0.56 0.44 

 

Table 3.19  2r  Values for Three Traits in Different Models 
2r  SDV JIC8W FRI 

Q+K 0.54 0.63 0.50 

Q 0.37 0.53 0.31 

K 0.36 0.25 0.37 

P+K 0.52 0.62 0.50 

P 0.47 0.56 0.44 

 

Table 3.20  2
2R  Values for Three Traits in Different Models 

2
2R  SDV JIC8W FRI 

Q+K 0.62 0.69 0.33 

Q 0.37 0.53 0.31 

K 0.47 0.37 0.21 

P+K 0.56 0.66 0.28 

P 0.47 0.56 0.44 

 

Table 3.21  2ρ  Values for Three Traits in Different Models 

2ρ  SDV JIC8W FRI 

Q+K 0.61 0.69 0.31 

Q 0.37 0.53 0.31 

K 0.46 0.36 0.19 

P+K 0.56 0.66 0.22 

P 0.47 0.56 0.44 

 

From Table 3.20 and 3.21, we found that for trait FRI, the R2 statistics values of P models 

are larger than that of P+K models. Because the non-convergence of the P+K model, we 

estimated the variance components of P+K model by those obtained from estimating from Q+K 
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model. However, with this kind of procedure, the variance component estimates may not be 

valid, which will lead to a “contradiction” with the non-decreasing criterion. Actually, it is not a 

contradiction and we could find a better set of parameters to make the non-decreasing criterion 

holds. Also, another reason is the difference of the variance covariance structures for mixed 

models and fixed effect models. 

From Table 3.17 to Table 3.21, conditional CR , randP , 2r , 2
2R ,and 2ρ values of the K 

model no longer larger than the mixed model as in Maize data example which means the 

violation of the non-decreasing criterion does not always happen. Although based on the 

Arabidopsis data example, our results did not show the contradiction with the non-decreasing 

criterion, we still prefer to 2
LRR  statistic since the other R2-like statistics are not stable and 

reliable for using. 

We could also plot the figures of 2
LRR  values in the same way as in Maize data example 

to address the SNPs markers to the phenotype traits. 
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CHAPTER 4 - Discussion 

After reviewing seven R2-like statistics and applying these statistics to two empirical data 

sets, we have obtained some general impression about various R2-like statistics for measuring the 

goodness-of-fit and prediction power of a mixed effect linear model. Notice that CR  statistic is 

the only R2-like statistic that has both the marginal and conditional version, and it is also the only 

R2-like statistic that could be used both in linear and nonlinear mixed effect models. 

For 2
WR , 2

2R , and 2ρ  statistics, for some traits the R2 values of the fixed effect models are 

larger than those of the corresponding mixed effect models. The different covariance structures 

of the two models are the key reasons for this contradiction. Moreover the requirement for the 

fixed variance components to the nonnegative for the mixed models are also the reasons during 

handling the non-convergence problem in the iteration to obtain the estimates of the parameters 

of the mixed effect model using SAS. 

For CR , randP , 2r , 2
2R ,and 2ρ  statistics, the R2 values of the random effect models are 

larger than those of the corresponding mixed effect models. Although the random-effect models 

and the mixed effect models have the same random components, their variance components are 

estimated from two different models and they will be different in general, especially when the 

fixed effect terms have significant impact on the response y. This will cause the failure of R2 

statistics satisfying the monotone increasing property. If the variance components are known or 

given and the same variance components are used in the two models to compute the R2 statistics, 

then the nonstandard R2 statistics will have the monotone increasing property. Hence, we should 

use the variance components estimated in the mixed effect models to compute the R2 statistics. 

This approach make sense because if the fixed effect term is significant, then the variance 

components estimated from the K model are not correct and should not be used in the calculation 

of R2 statistics for the K model, and the variance components estimated from the mixed effect 

models should be used in both K and Q+K models. 

Since 2
LRR  is based on the likelihood principle where the log-likelihood function 

increases as the number of parameters increases, it would not have the non-monotone increasing 
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problem as the others have. Therefore, 2
LRR  statistic seems to be the preferred R2-like statistic for 

the mixed effect models, in our study of association mapping. 

Xu (2003) studied the R2-like statistics such as 2r , 2
2R ,and 2ρ  through Monte Carlo 

simulations. In the study of the behavior of these three R2-like statistics, he concluded that 2r , 
2
2R ,and 2ρ  adequately quantify the predictability of the variables as given by the fixed and 

random effects. 2r  could give accurate estimates of the population 2Ω  with small or large 

sample sizes. 2
2R  and 2ρ  could give good estimates of the population 2Ω  with large cluster 

sizes, but overestimate 2Ω  with small sample sizes. 

Orelien (2008) reported the performance of the R2-like statistics such as CR , randP , 2r , 

2
2R ,and 2ρ  by method of simulation. All models involved have the same random effects. The 

results of their simulation is that R2-like statistics that involve the residuals are unable to 

adequately distinguish between the right model and the model without important fixed effects 

when the random effects are included to compute the fitted values. And they also demonstrated 

that the R2-like statistics proposed by Xu (2003) behave poorly since the variation is little in 2r , 
2
2R ,and 2ρ  from the model of interest (the full model) to a reduced model. 

When we did the review of seven R2-like statistics, we found a mistake in the paper 

written by Orelien and Edwards (2008). They asserted that the concept of conditional and 

marginal R2 could be applied to other statistics such as randP  and 2
2R . However, the discussion in 

Section 2.4 reviews that this statement is not quite true. 

Based on the results of the empirical analysis, we conclude that the 2
LRR  statistic is the 

most useful R2-like statistic for mixed effect models in association mapping. The other six 

statistics violate the non-decreasing criterion for R2 statistic. 
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Appendix A - Computer Codes of SAS 

Maize Data Example 

Models involving Q matrix 
option nodate nonumber center ls=115 ps=55 notes ; 
/*Infile data sets*/ 
data AltMaz; 
infile 'E:\files\work\read paper2 mixed model\AltMaz.prn'; 
input  TAXA $ Trait1 @@; 
run; 
proc sort data=AltMaz ; 
by taxa; 
run; 
data DPOLL; 
infile 'E:\files\work\read paper2 mixed model\DPOLL.prn'; 
input  TAXA $ Trait2 @@; 
run; 
proc sort data=DPOLL ; 
by taxa; 
run; 
data EarDia; 
infile 'E:\files\work\read paper2 mixed model\EarDia.prn'; 
input  TAXA $ Trait3 @@; 
run; 
proc sort data=EarDia; 
by taxa; 
run; 
Data Pheno_data ; 
merge AltMaz DPOLL EarDia; 
by taxa; 
RUN; 
%let Trait_N=3 ;  
Data STRUCT ; 
set 'E:\files\work\Rsqure\sas files\q.sas7bdat'; 
RUN; 
proc sort; 
by taxa; 
run; 
proc sort data=pheno_data ; 
by taxa; 
run; 
Data Similarity_matrix ; 
set 'E:\files\work\read paper2 mixed model\kinship2.sas7bdat' ; 
run; 
proc sort; 
by taxa; 
run; 
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/*macro part with model fitting*/ 
%MACRO JY247sgn ; 
 %global T I N M K ; 
 
data results; 
trait=.; 
run; 
%Do T=1 %to 1; 
 
dm "output" clear;  
 
data pheno; 
set pheno_data ; 
trait=trait&T ; 
drop trait1--trait&Trait_N ; 
run; 
 
data all; 
merge pheno STRUCT   Similarity_matrix ; 
by TAXA ; 
if row=. then delete ; 
RUN; 
 
data new; 
set all; 
drop col1--col277 ; 
run; 
 
data all_2; 
set all; 
if G1=.   then delete ; 
if trait=. then delete ; 
drop trait G1--row ; 
run; 
 
proc transpose data=all_2 out=all_2 ; 
run; 
 
data new; 
merge new all_2 ; 
if G1=.   then delete ; 
if trait=. then delete ; 
row=_n_ ; 
drop _NAME_ ; 
last=999 ; 
run; 
 
data sim1; 
set new ; 
row=_n_ ; 
drop  taxa trait  G1--G3 last ; 
run; 
 
proc transpose data=sim1 out=sim1 ; 
run; 
 
data sim1 ; 
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set sim1 ; 
if _NAME_='parm' then delete ; 
if _NAME_='row'  then delete ; 
temp=-999 ; 
parm=1 ; 
row=_n_ ; 
run; 
 
data temp; 
set sim1 ; 
drop col1--temp ; 
 
data sim1 ; 
merge temp sim1 ; 
by parm row ; 
drop _NAME_ temp ; 
row=_n_ ; 
run; 
 
 
data maize; /*the data set we will use to analyze */ 
merge new pheno_data ; 
by taxa; 
drop parm--last ; 
if G1=.   then delete ; 
run; 
 
proc sort; 
by taxa ; 
run; 
 
data critical; 
bic=.; 
aic=.; 
Neg2LogLike=.; 
trait=.; 
run; 
  
 
/*the Q+K model*/ 
/*Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait = G1 G2/ solution outp=pred ddfm=satterth outpm=pred2; 
random Taxa / type=lin(1) ldata=Sim1 vi v gi solution; 
repeated/ r; 
ods output  infocrit=critical invV=inverseV V=v R=R invG=inverseG 
solutionR=er solutionF=mysolutiontable1; 
run;*/ 
 
 
/* the intercept only model*/ 
/*Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait=/solution outp=pred ddfm=satterth ; 
repeated/ r; 
ods output  infocrit=critical r=r; 
run;*/ 
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/* the Q model*/ 
/*Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait = G1 G2 /solution outp=pred ddfm=satterth ; 
repeated/r ri; 
ods output  infocrit=critical R=R invR=inverseR solutionF=mysolutiontable1; 
run;*/ 
 
 
/* the K model*/ 
Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait = / solution outp=pred ddfm=satterth outpm=pred2; 
random Taxa / type=lin(1) ldata=Sim1 vi v gi solution; 
*parms (6.7141)(8.1834); /*trait2 parms from Q+K*/ 
repeated/ r; 
ods output  infocrit=critical invV=inverseV v=v R=r solutionR=er 
invG=inverseG; 
run; 
 
 
 
data inverseV_dr; set inverseV; drop index row; run; 
data inverseG_dr; set inverseG; drop row effect taxa; run; 
data R_dr; set R; drop index row; run; 
 
data critical; set critical; trait=&T ; drop parms aicc hqic caic; run; 
 
data results; merge results critical; by trait ; if trait=. then delete; run; 
/*result table containing -2log-likelikhood values*/ 
 
%END; 
%mend JY247sgn ; 
run; 
%JY247sgn 
run; 

 

/*compute R2 values except RLR using iml */ 
proc iml; 
use R_dr; read all into R; 
use inverseV_dr; read all into invV; 
/*use pred2; read all var {resid} into u;*/  /*fitted Y consisting the fixed 
effect*/ 
use pred2; read all var {pred} into p2; 
use maize; read all var {trait} into y; 
use pred; read all var {resid} into u;  /*fitted Y consisting the fixed 
effect and the random effect*/ 
use pred; read all var {pred} into p; 
use er; read all var {estimate} into er; 
use inverseG_dr; read all into invG; 
use inverseR; read all var {col1} into invR; 
 
n=nrow(y); 
*invR2=invR*i(n); 
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*m=t(u)*invV*u; 
*m=t(u)*invR2*u; 
m=t(u)*u; 
*m=t(r)*invV*r; 
*m=(t(u)*u)/(2*sqrt(R))+t(er)*invG*er*0.5; 
m=(t(u)*u*sqrt(invR))/2; 
 
 
total=sum(y); 
avg=total/n; 
ymean=avg*j(n,1); 
y2=y-ymean; 
*l=t(y2)*invV*y2; 
*l=t(y2)*invR2*y2; 
l=t(y2)*y2; 
/*avgp=sum(p)/n; 
pm=avgp*j(n,1); 
y3=p-pm; 
l=t(y2)*y2+t(y3)*y3+n*(avg-avgp)*(avg-avgp);*/ 
*l=(t(y2)*y2)/(2*sqrt(R)); 
*l=(t(y2)*y2*sqrt(invR))/2; 
 
w=log(397.83/R)-(t(u)*u)/(n*R)+1; /*trait1*/ 
*w=log(31.8156/R)-(t(u)*u)/(n*R)+1; /*trait2*/ 
*w=log(16.2915/R)-(t(u)*u)/(n*R)+(t(y2)*y2)/(n*16.2915); /*trait3*/ 
r2=1-exp(-w); 
 

R2s=1-m/l; 
print r2 /*R2s*/; 

Q+K Models with SNPs markers 
option nodate nonumber center ls=115 ps=55 notes ; 
/*Infile data sets*/ 
data AltMaz; 
infile 'E:\files\work\read paper2 mixed model\AltMaz.prn'; 
input  TAXA $ Trait1 @@; 
run; 
proc sort data=AltMaz ; 
by taxa; 
run; 
data DPOLL; 
infile 'E:\files\work\read paper2 mixed model\DPOLL.prn'; 
input  TAXA $ Trait2 @@; 
run; 
proc sort data=DPOLL ; 
by taxa; 
run; 
data EarDia; 
infile 'E:\files\work\read paper2 mixed model\EarDia.prn'; 
input  TAXA $ Trait3 @@; 
run; 
proc sort data=EarDia; 
by taxa; 
run; 
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Data Pheno_data ; 
merge AltMaz DPOLL EarDia; 
by taxa; 
RUN; 
%let Trait_N=3 ;  
Data STRUCT ; 
set 'E:\files\work\Rsqure\sas files\q.sas7bdat'; 
RUN; 
proc sort; 
by taxa; 
run; 
proc sort data=pheno_data ; 
by taxa; 
run; 
Data Similarity_matrix ; 
set 'E:\files\work\read paper2 mixed model\kinship2.sas7bdat' ; 
run; 
proc sort; 
by taxa; 
run; 
%let Trait_N=3 ;   
%let SNP_N=553 ;   /*number of SNP in the data set*/ 
 
Data SNP_data ;  
infile 'E:\files\work\read paper2 mixed model\snp553c.txt' expandtabs lrecl= 
10000; 
array SNP{&SNP_N} $ SNP1-SNP&SNP_N; 
input TAXA$ SNP1-SNP&SNP_N @@; 
run; 
 

/*macro part with model fitting*/ 
%MACRO JY247 ; 
 %global T S I N M K ; 
 
data results; 
trait=.; 
assay=. ; 
run; 
 
data results2; 
assay=. ; 
run; 
%Do T=1 %to &Trait_N ; 
%DO S=1 %TO *&SNP_N; 
 
%if &S>5 %then %do ; 
option nonotes ; 
%end; 
 
dm "output" clear;  
 
data pheno; 
set pheno_data ; 
trait=trait&T ; 
drop trait1--trait&Trait_N ; 
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run; 
 
data all; 
merge pheno SNP_data STRUCT Similarity_matrix ; 
by TAXA ; 
SNP=SNP&S ; 
if row=. then delete ; 
RUN; 
 
data new; 
set all; 
drop col1--snp ; 
run; 
 
data all_2; 
set all; 
if SNP='' then delete ; 
if G1=.   then delete ; 
if trait=. then delete ; 
drop trait snp1--row snp ; 
run; 
 
proc transpose data=all_2 out=all_2 ; 
run; 
 
data new; 
merge new all_2 ; 
SNP=SNP&S ; 
if SNP='' then delete ; 
if G1=.   then delete ; 
if trait=. then delete ; 
row=_n_ ; 
drop _NAME_ ; 
last=999 ; 
run; 
 
data SNP; 
set new ; 
drop trait parm--last ; 
SNP=SNP&S ; 
run; 
 
data sim1; 
set new ; 
row=_n_ ; 
drop  taxa trait snp1--G3 snp last ; 
run; 
 
proc transpose data=sim1 out=sim1 ; 
run; 
 
data sim1 ; 
set sim1 ; 
if _NAME_='parm' then delete ; 
if _NAME_='row'  then delete ; 
temp=-999 ; 
parm=1 ; 
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row=_n_ ; 
run; 
 
data temp; 
set sim1 ; 
drop col1--temp ; 
 
data sim1 ; 
merge temp sim1 ; 
by parm row ; 
drop _NAME_ temp ; 
row=_n_ ; 
run; 
 
data maize; 
merge SNP pheno_data ; 
by taxa ; 
trait=trait&T ; 
run; 
 
data maize;    /*the data set we will use to analyze */ 
set maize; 
SNP=SNP&S ; 
if SNP='' then delete ; 
if G1=.   then delete ; 
run; 
 
proc sort; 
by taxa ; 
run; 
 
data mysolutiontable1 ; 
assay=.; 
DF=-999; 
SNP='?'; 
run; 
 
data critical; 
assay=.; 
bic=.; 
Neg2LogLike=.; 
trait=.; 
run; 
 
Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa SNP; 
model trait = SNP G1 G2 /solution outp=pred ddfm=satterth ; 
random Taxa / type=lin(1) ldata=Sim1 ; 
ods output solutionF=mysolutiontable1 infocrit=critical ; 
run; 
 
data mysolutiontable1; 
set mysolutiontable1; 
if DF=. then delete; 
if SNP='' then delete; 
TRAIT=&T   ; 
assay=&S ; 
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run; 
 
data critical; 
set critical; 
TRAIT=&T   ; 
assay=&S ; 
drop parms aic aicc hqic caic; 
run; 
 
 
data results; 
merge results mysolutiontable1 critical; 
by trait assay ; 
if assay=. then delete; 
run;  /*result table containing -2log-likelikhood values*/ 
 
%END; 
%end; 
%mend JY247 ; 
run; 
%JY247 
run; 

Models involving P matrix 
option nodate nonumber center  ls=115 ps=55 notes ; 
 
/*Infile data sets*/ 
data AltMaz; 
infile 'E:\files\work\read paper2 mixed model\AltMaz.prn'; 
input  TAXA $ Trait1 @@; 
run; 
proc sort data=AltMaz ; 
by taxa; 
run; 
data DPOLL; 
infile 'E:\files\work\read paper2 mixed model\DPOLL.prn'; 
input  TAXA $ Trait2 @@; 
run; 
proc sort data=DPOLL ; 
by taxa; 
run; 
data EarDia; 
infile 'E:\files\work\read paper2 mixed model\EarDia.prn'; 
input  TAXA $ Trait3 @@; 
run; 
proc sort data=EarDia; 
by taxa; 
run; 
Data Pheno_data ; 
merge AltMaz DPOLL EarDia; 
by taxa; 
RUN; 
%let Trait_N=3 ;  
 
proc sort data=pheno_data ; 
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by taxa; 
run; 
Data Similarity_matrix ; 
set 'E:\files\work\read paper2 mixed model\kinship2.sas7bdat' ; 
run; 
proc sort; 
by taxa; 
run; 
 
filename snpc "E:\files\work\Rsqure\sas files\snp553ci.txt"; 
data snp553c; 
infile snpc  expandtabs lrecl= 100000; 
array SNP{553} SNP1-SNP553; 
input TAXA$ SNP1-SNP553; 
run; 
proc sort; 
by taxa; 
run; 
 
 
proc princomp data=snp553c n=3 out=eigenvector ; 
var SNP1-SNP553  ; 
run; 
data ptable; 
set eigenvector; 
keep taxa prin1-prin3; 
if prin1=. then  delete; 
run; 
proc sort; 
by taxa; 
run; 
 
/*macro part with model fitting*/ 
%MACRO JY247sgn ; 
 %global T  I N M K ; 
 
data results; 
trait=.; 
run; 
%Do T=3 %to 3;*&Trait_N; 
 
dm "output" clear;  
 
data pheno; 
set pheno_data ; 
trait=trait&T ; 
drop trait1--trait&Trait_N ; 
run; 
 
data all; 
merge pheno ptable   Similarity_matrix ; 
by TAXA ; 
if row=. then delete ; 
RUN; 
 
data new; 
set all; 
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drop col1--col277 ; 
run; 
 
data all_2; 
set all; 
if prin1=. then delete; 
if trait=. then delete ; 
drop trait prin1--row ; 
run; 
 
proc transpose data=all_2 out=all_2 ; 
run; 
 
data new; 
merge new all_2 ; 
if prin1=. then delete; 
if trait=. then delete ; 
row=_n_ ; 
drop _NAME_ ; 
last=999 ; 
run; 
 
data sim1; 
set new ; 
row=_n_ ; 
drop  taxa trait prin1-prin3  last ; 
run; 
 
proc transpose data=sim1 out=sim1 ; 
run; 
 
data sim1 ; 
set sim1 ; 
if _NAME_='parm' then delete ; 
if _NAME_='row'  then delete ; 
temp=-999 ; 
parm=1 ; 
row=_n_ ; 
run; 
 
data temp; 
set sim1 ; 
drop col1--temp ; 
 
data sim1 ; 
merge temp sim1 ; 
by parm row ; 
drop _NAME_ temp ; 
row=_n_ ; 
run; 
 
 
data maize; /*the data set we will use to analyze */ 
merge new pheno_data ; 
by taxa; 
drop parm--last ; 
if prin1=. then delete; 
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run; 
 
proc sort; 
by taxa ; 
run; 
 
data critical; 
bic=.; 
aic=.; 
Neg2LogLike=.; 
trait=.; 
run; 
  
 
/*the P+K model*/ 
Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait = prin1 prin2 / solution outp=pred ddfm=satterth outpm=pred2; 
random Taxa / type=lin(1) ldata=Sim1 vi v gi solution; 
repeated/ r; 
ods output  infocrit=critical invV=inverseV V=v R=R invG=inverseG 
solutionR=er solutionF=mysolutiontable1; 
run; 
 
 
/* the P model*/ 
/*Proc mixed data=maize METHOD=ML noprofile covtest itdetails ic ; 
class Taxa ; 
model trait = Prin1 Prin2 /solution outp=pred ddfm=satterth ; 
repeated/ r ri; 
ods output  infocrit=critical R=R invR=inverseR solutionF=mysolutiontable1; 
run;*/ 
 
 
data inverseV_dr; set inverseV; drop index row; run; 
data inverseG_dr; set inverseG; drop row effect taxa; run; 
data R_dr; set R; drop index row; run; 
 
data critical; set critical; trait=&T ; drop parms aicc hqic caic; run; 
 
data results; merge results critical; by trait ; if trait=. then delete; run; 
/*result table containing -2log-likelikhood values*/ 
 
%END; 
%mend JY247sgn ; 
run; 
%JY247sgn 
 
run; 
 
/*compute R2 values except RLR using iml */ 
proc iml; 
use R_dr; read all into R; 
use inverseV_dr; read all into invV; 
/*use pred2; read all var {resid} into u;*/  /*fitted Y consisting the fixed 
effect*/ 
use pred2; read all var {pred} into p2; 
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use maize; read all var {trait} into y; 
use pred; read all var {resid} into u;  /*fitted Y consisting the fixed 
effect and the random effect*/ 
use pred; read all var {pred} into p; 
use er; read all var {estimate} into er; 
use inverseG_dr; read all into invG; 
use inverseR; read all var {col1} into invR; 
 
n=nrow(y); 
*invR2=invR*i(n); 
*m=t(u)*invV*u; 
*m=t(u)*invR2*u; 
m=t(u)*u; 
*m=t(r)*invV*r; 
*m=(t(u)*u)/(2*sqrt(R))+t(er)*invG*er*0.5; 
m=(t(u)*u*sqrt(invR))/2; 
 
 
total=sum(y); 
avg=total/n; 
ymean=avg*j(n,1); 
y2=y-ymean; 
*l=t(y2)*invV*y2; 
*l=t(y2)*invR2*y2; 
l=t(y2)*y2; 
/*avgp=sum(p)/n; 
pm=avgp*j(n,1); 
y3=p-pm; 
l=t(y2)*y2+t(y3)*y3+n*(avg-avgp)*(avg-avgp);*/ 
*l=(t(y2)*y2)/(2*sqrt(R)); 
*l=(t(y2)*y2*sqrt(invR))/2; 
 
w=log(397.83/R)-(t(u)*u)/(n*R)+1; /*trait1*/ 
*w=log(31.8156/R)-(t(u)*u)/(n*R)+1; /*trait2*/ 
*w=log(16.2915/R)-(t(u)*u)/(n*R)+1; /*trait3*/ 
r2=1-exp(-w); 
 

R2s=1-m/l; 
print r2 /*R2s*/; 

Arabidopsis Data Example 

Models involving Q matrix 
option nodate nonumber center  ls=115 ps=55 notes ; 
 
/*Infile data sets*/ 
data phenodata; 
set 'E:\files\work\Rsqure\sas files\phenodata.sas7bdat'; 
run; 
proc sort; 
by accession; 
run; 
%let Trait_N=4 ;  
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Data STRUCT ; 
set 'E:\files\work\Rsqure\sas files\structsnp.sas7bdat'; 
RUN; 
 
proc sort; 
by accession; 
run; 
Data Similarity_matrix ; 
set 'E:\files\work\Rsqure\sas files\similatrity_matrixsnp.sas7bdat' ; 
run; 
 
proc sort; 
by accession; 
run; 
 
%MACRO JY247sgn2 ; 
 %global T I N M K ; 
 
data results; 
trait=.; 
run; 
%Do T=1 %to 1; 
 
dm "output" clear;  
 
data pheno; 
set phenodata ; 
trait=trait&T ; 
drop trait1--trait&Trait_N ; 
run; 
 
data all; 
merge pheno  Struct  Similarity_matrix ; 
by accession ; 
if row=. then delete ; 
RUN; 
 
data new; 
set all; 
drop col1--col95 ; 
run; 
 
data all_2; 
set all; 
if Q1=.   then delete ; 
if trait=. then delete ; 
drop trait Q1--row ; 
run; 
 
proc transpose data=all_2 out=all_2 ; 
run; 
 
data new; 
merge new all_2 ; 
if Q1=.   then delete ; 
if trait=. then delete ; 
row=_n_ ; 
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drop _NAME_ ; 
last=999 ; 
run; 
 
data sim1; 
set new ; 
row=_n_ ; 
drop  accession trait Q1--Q8 last ; 
run; 
 
proc transpose data=sim1 out=sim1 ; 
run; 
 
data sim1 ; 
set sim1 ; 
if _NAME_='parm' then delete ; 
if _NAME_='row'  then delete ; 
temp=-999 ; 
parm=1 ; 
row=_n_ ; 
run; 
 
data temp; 
set sim1 ; 
drop col1--temp ; 
 
data sim1 ; 
merge temp sim1 ; 
by parm row ; 
drop _NAME_ temp ; 
row=_n_ ; 
run; 
 
 
data arabidopsis; /*the data set we will use to analyze */ 
merge new phenodata ; 
by accession; 
drop parm--last ; 
if Q1=.   then delete ; 
run; 
 
proc sort; 
by accession ; 
run; 
 
data critical; 
bic=.; 
aic=.; 
Neg2LogLike=.; 
trait=.; 
run; 
  
 
/*the Q+K model*/ 
Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait = Q1-Q7 /solution outp=pred ddfm=satterth outpm=pred2; 
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random accession / type=lin(1) ldata=Sim1 vi v gi solution; 
repeated/ r ri; 
ods output  infocrit=critical invV=inverseV V=v R=R invG=inverseG 
solutionR=er; 
run; 
 
 
/* the intercept only model*/ 
/*Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait=/solution outp=pred ddfm=satterth ; 
ods output  infocrit=critical ; 
run;*/ 
 
/* the Q model*/ 
/*Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait = Q1-Q7 /solution outp=pred ddfm=satterth  ; 
repeated / ri r; 
ods output  infocrit=critical invR=inverseR R=r ; 
run;*/ 
 
/* the K model*/ 
/*Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait = /solution outp=pred ddfm=satterth outpm=pred2; 
random accession / type=lin(1) ldata=Sim1 vi v gi solution; 
*parms (102.87)(536.43);/*tait1*/ 
*parms (5.1536)(32.1574);/*trait3*/ 
parms (0.06714)(0.2674);/*trait4*/ 
repeated/ r; 
ods output infocrit=critical invV=inverseV V=v R=R invG=inverseG solutionR=er; 
run;*/ 
 
data inverseV_dr; set inverseV; drop index row; run; 
data inverseG_dr; set inverseG; drop row effect taxa; run; 
data inverseR; set inverseR; drop index row; run; 
data R_dr; set R; drop index row; run; 
 
data critical; set critical; trait=&T ; drop parms aicc hqic caic; run; 
 
data results; 
merge results   critical; 
by trait ; 
if trait=. then delete; 
run;  /*result table containing -2log-likelikhood values*/ 
 
%END; 
%mend JY247sgn2 ; 
run; 
%JY247sgn2 
 
run; 
 
/*compute R2 values except RLR using iml */ 
proc iml; 
use R_dr; read all into R; 
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use inverseV_dr; read all into invV; 
/*use pred2; read all var {resid} into u;*/  /*fitted Y consisting the fixed 
effect*/ 
use pred2; read all var {pred} into p2; 
use arabidopsis; read all var {trait} into y; 
use pred; read all var {resid} into u;  /*fitted Y consisting the fixed 
effect and the random effect*/ 
use pred; read all var {pred} into p; 
use er; read all var {estimate} into er; 
use inverseG_dr; read all into invG; 
use inverseR; read all var {col1} into invR; 
 
n=nrow(y); 
*invR2=invR*i(n); 
*m=t(u)*invV*u; 
*m=t(u)*invR2*u; 
m=t(u)*u; 
*m=t(r)*invV*r; 
*m=(t(u)*u)/(2*sqrt(R))+t(er)*invG*er*0.5; 
*m=(t(u)*u*sqrt(invR))/2; 
 
 
total=sum(y); 
avg=total/n; 
ymean=avg*j(n,1); 
y2=y-ymean; 
*l=t(y2)*invV*y2; 
*l=t(y2)*invR2*y2; 
l=t(y2)*y2; 
/*avgp=sum(p)/n; 
pm=avgp*j(n,1); 
y3=p-pm; 
l=t(y2)*y2+t(y3)*y3+n*(avg-avgp)*(avg-avgp);*/ 
*l=(t(y2)*y2)/(2*sqrt(R)); 
*l=(t(y2)*y2*sqrt(invR))/2; 
 
w=log(1157.27/R)-(t(u)*u)/(n*R)+1; /*trait1*/ 
*w=log(87.602/R)-(t(u)*u)/(n*R)+1; /*trait3*/ 
*w=log(0.5381/R)-(t(u)*u)/(n*R)+1; /*trait4*/ 
r2=1-exp(-w); 
 
R2s=1-m/l; 
print m l  r2/* R2s */; 

Models involving P matrix 
option nodate nonumber center  ls=115 ps=55 notes ; 
 
/*Infile data sets*/ 
data phenodata; 
set 'E:\files\work\Rsqure\sas files\phenodata.sas7bdat'; 
run; 
proc sort; 
by accession; 
run; 
%let Trait_N=4 ;  
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Data Similarity_matrix ; 
set 'E:\files\work\Rsqure\sas files\similatrity_matrixsnp.sas7bdat' ; 
run; 
 
proc sort; 
by accession; 
run; 
 
/*data arabidopsis_snp; 
infile "E:\files\work\Rsqure\sas files\snp5419c.txt" expandtabs lrecl= 100000; 
array snp{5419} snp1-snp5419; 
input accession $ snp1-snp5419; 
run; 
 
proc princomp data=arabidopsis_snp n=8 out=eigenvector noprint; 
var SNP1-SNP5419  ; 
run; 
data ptable; 
set eigenvector; 
keep accession prin1-prin8; 
if prin1=. then  delete; 
run; 
proc sort; 
by accession; 
run;*/ 
 
data ptable; 
set 'E:\files\work\Rsqure\sas files\ptable.sas7bdat'; 
run; 
proc sort; 
by accession; 
run; 
 
/*macro part with model fitting*/ 
%MACRO JY247sgn2 ; 
 %global T I N M K ; 
 
data results; 
trait=.; 
run; 
%Do T=4 %to 4;*&Trait_N; 
 
dm "output" clear;  
 
data pheno; 
set phenodata ; 
trait=trait&T ; 
drop trait1--trait&Trait_N ; 
run; 
 
data all; 
merge pheno  ptable Similarity_matrix ; 
by accession ; 
if row=. then delete ; 
RUN; 
 
data new; 
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set all; 
drop col1--col95 ; 
run; 
 
data all_2; 
set all; 
if Prin1=.   then delete ; 
*if P1=.   then delete ; 
if trait=. then delete ; 
drop trait Prin1--row ; 
run; 
 
proc transpose data=all_2 out=all_2 ; 
run; 
 
data new; 
merge new all_2 ; 
if Prin1=.   then delete ; 
*if P1=.   then delete ; 
if trait=. then delete ; 
row=_n_ ; 
drop _NAME_ ; 
last=999 ; 
run; 
 
data sim1; 
set new ; 
row=_n_ ; 
drop  accession trait /* P1-P8*/ prin1--prin8 last ; 
run; 
 
proc transpose data=sim1 out=sim1 ; 
run; 
 
data sim1 ; 
set sim1 ; 
if _NAME_='parm' then delete ; 
if _NAME_='row'  then delete ; 
temp=-999 ; 
parm=1 ; 
row=_n_ ; 
run; 
 
data temp; 
set sim1 ; 
drop col1--temp ; 
 
data sim1 ; 
merge temp sim1 ; 
by parm row ; 
drop _NAME_ temp ; 
row=_n_ ; 
run; 
 
 
data arabidopsis;  /*the data set we will use to analyze */ 
merge new phenodata ; 
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by accession; 
drop parm--last ; 
if Prin1=.   then delete ; 
*if P1=.   then delete ; 
run; 
 
proc sort; 
by accession ; 
run; 
 
data critical; 
bic=.; 
aic=.; 
Neg2LogLike=.; 
trait=.; 
run; 
  
 
/*the P+K model*/ 
Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait =prin1-prin7 /solution outp=pred ddfm=satterth outpm=pred2; 
random accession / type=lin(1) ldata=Sim1 vi v gi solution; 
parms (0.06714)(0.2674)/noiter;/*trait4*/ 
repeated/ r; 
ods output  infocrit=critical invV=inverseV V=v R=R invG=inverseG 
solutionR=er; 
run; 
 
 
/* the P model*/ 
/*Proc mixed data=arabidopsis METHOD=ML noprofile covtest itdetails ic ; 
class accession ; 
model trait = Prin1-Prin7 /solution outp=pred ddfm=satterth ; 
repeated/ ri; 
ods output  infocrit=critical invR=inverseR; 
run;*/ 
 
data inverseV_dr; set inverseV; drop index row; run; 
data inverseG_dr; set inverseG; drop row effect taxa; run; 
data inverseR; set inverseR; drop index row; run; 
data R_dr; set R; drop index row; run; 
 
data critical; set critical; trait=&T ; drop parms aicc hqic caic; run; 
 
data results; 
merge results   critical; 
by trait ; 
if trait=. then delete; 
run; 
/*result table containing -2log-likelikhood values*/ 
 
 
%END; 
%mend JY247sgn2 ; 
run; 
%JY247sgn2 
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run; 

 

/*compute R2 values except RLR using iml */ 
proc iml; 
use R_dr; read all into R; 
use inverseV_dr; read all into invV; 
/*use pred2; read all var {resid} into u;*/  /*fitted Y consisting the fixed 
effect*/ 
use pred2; read all var {pred} into p2; 
use arabidopsis; read all var {trait} into y; 
use pred; read all var {resid} into u;  /*fitted Y consisting the fixed 
effect and the random effect*/ 
use pred; read all var {pred} into p; 
use er; read all var {estimate} into er; 
use inverseG_dr; read all into invG; 
use inverseR; read all var {col1} into invR; 
 
n=nrow(y); 
*invR2=invR*i(n); 
*m=t(u)*invV*u; 
*m=t(u)*invR2*u; 
m=t(u)*u; 
*m=t(r)*invV*r; 
*m=(t(u)*u)/(2*sqrt(R))+t(er)*invG*er*0.5; 
*m=(t(u)*u*sqrt(invR))/2; 
 
 
total=sum(y); 
avg=total/n; 
ymean=avg*j(n,1); 
y2=y-ymean; 
*l=t(y2)*invV*y2; 
*l=t(y2)*invR2*y2; 
l=t(y2)*y2; 
/*avgp=sum(p)/n; 
pm=avgp*j(n,1); 
y3=p-pm; 
l=t(y2)*y2+t(y3)*y3+n*(avg-avgp)*(avg-avgp);*/ 
*l=(t(y2)*y2)/(2*sqrt(R)); 
*l=(t(y2)*y2*sqrt(invR))/2; 
 
w=log(1157.27/R)-(t(u)*u)/(n*R)+1; /*trait1*/ 
*w=log(87.602/R)-(t(u)*u)/(n*R)+1; /*trait3*/ 
*w=log(0.5381/R)-(t(u)*u)/(n*R)+1; /*trait4*/ 
r2=1-exp(-w); 
 
R2s=1-m/l; 
print m l  r2/* R2s */; 
 

 


