
Brolin’s theorem for periodic points: speed of convergence for z2 + c with c

in the main cardioid of the Mandelbrot set

by

Matthew J. Naeger

B.S., Truman State University, 2018

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Mathematics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2020

Approved by:

Major Professor
Tatiana Firsova



Copyright

© Matthew J. Naeger 2020.



Abstract

Brolin’s theorem states that for a monic polynomial f on the complex plane of degree d

greater than or equal to 2, for a non-exceptional point a, the backwards orbit of a equidis-

tributes on the Julia set of f [1]. Tortrat [9] proved a version of Brolin’s theorem for periodic

points. Drasin and Okuyama [3] proved a rate of convergence result for Brolin’s theorem,

and we use some of their work to prove a similar result for the periodic version of Brolin’s

theorem whenever f is a quadratic polynomial with parameter c in the main cardioid of the

Mandelbrot set.
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1. Introduction
Let f : Ĉ → Ĉ will be a rational function of degree d ≥ 2, where Ĉ denotes the Riemann

sphere C ∪ {∞}. Define f ◦1 := f and f ◦(n+1) := f ◦ f ◦n for n ≥ 1. We are interested in the

distribution of points satisfying the equation f ◦n(z) = z for n ≥ 1. We say a point z0 has

period n if f ◦n(z0) = z0 and there is no smaller k ≥ 1 such that f ◦k(z0) = z0. Hence, the

solutions to f ◦n(z) = z are the points of period n or period dividing n.

A point z0 ∈ Ĉ is a fixed point of f if its period is 1. A fixed point z0 is classified according

to its multiplier |f ′(z0)|. It is attracting if |f ′(z0)| < 1, repelling if |f ′(z0)| > 1, and neutral

(or indifferent) if |f ′(z0)| = 1. For a neutral fixed point, |f ′(z0)| = e2πiθ, and we say z0 is

rationally neutral if θ is rational and irrationally neutral if θ is irrational.

Define the Fatou set Ff of f as

Ff := {z ∈ Ĉ : (f ◦n)n≥1 is a normal family on some neighborhood of z},

and define the Julia set Jf of f as the complement Ĉ \ Ff . It is clear from the definition

that Ff is open, and thence Jf is closed and hence compact (because Ĉ is compact). It

also follows easily from the definitions that all attracting fixed points are in Ff , and all

repelling fixed points are in Jf . In fact, all rationally neutral fixed points are in Jf as well,

but irrationally neutral fixed points may land in either set ([2], Theorem III.1.1). Both Jf

and Ff are completely invariant in the sense that f−1(Jf ) = Jf and f−1(Ff ) = Ff ([2],

Theorem III.1.3).

To obtain an alternative characterization for the Julia set of a polynomial f , we can

define the filled Julia set Kf of f as

Kf := Ĉ \
{
z ∈ Ĉ : lim

z→∞
f ◦n(z) =∞

}
=
{
z ∈ C : {f ◦n(z) : n ≥ 1} is bounded

}
.

For a polynomial f (but not for a general rational function), the Julia set Jf coincides with
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the boundary ∂Kf of the filled Julia set (see [2], Section III.4).

For a point z ∈ Jf and a neighborhood U of z, consider the set
⋃∞
n=1 f

◦n(U). Since

(f ◦n)n≥1 is not a normal family on U, Montel’s Theorem ([2] Theorem I.3.2) tells us that

there are no more than 2 points in the set Ez := Ĉ \
⋃∞
n=1 f

◦n(U). Indeed, Ez is actually

independent of our choice of z ∈ Jf (so we shall henceforth write Ef ) and a point is in Ef

if and only if it is a critical point of degree d ([2]Theorem III.1.5). When f is a polynomial,

∞ ∈ Ef , and at most one finite point is in Ef . We call Ef the exceptional set for f, and we

call a point in Ef an exceptional point. A point not in Ef is called a non-exceptional point.

Consider quadratic polynomials of the form fc(z) = z2 + c for c ∈ C. The Mandelbrot set

M is defined by

M := {c ∈ C : Jfc is connected} = {c ∈ C : |fc◦n(0)| ≤ 2 for all n ≥ 1}.

The main cardioid C ⊆ M is defined by

C := {c ∈ C : fc has a finite attracting fixed point}.

To show that C is indeed a cardioid, one can solve the equation z2c + c = zc for zc and use

the fact that f ′c(z) = 2z to find that

|1±
√

1− 4c| = |2zc| < 1 (c ∈ C).

From here, one finds that the boundary is of C is given by the parametric equation

c(θ) =
1

4
[1− (eiθ − 1)2] (θ ∈ [0, 2π]),

which gives the boundary of a cardioid. See Figure 1.1.

Let [z1, z2] denote the chordal distance between z1 and z2 in Ĉ, normalized so that
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Figure 1.1: The boundary of C in white, and the rest of M in black.

[0,∞] = 1:

[z1, z2] :=



|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

z1, z2 ∈ C

1√
1 + |z1|2

z2 =∞

1√
1 + |z2|2

z1 =∞.

Let δa denote the delta measure at the point a ∈ Ĉ, and let σ denote the spherical

measure, normalized so that σ(Ĉ) = 1:

dσ(z) :=
1

π

dxdy

(1 + |z|2)2
,

where z = x + iy and dxdy indicates the standard Lebesgue measure on C. Let ddc :=

1
2π

∆dxdy denote the normalized generalized Laplacian, so that ddc(log
√

1 + |z|2) = σ(z),

ddc(log |z − a|) = δa, and ddc
(

log 1
[z,a]

)
= σ(z)− δa.

For k ∈ N, let

Ck
c (C) := {φ : C→ R : φ is k times continuously differentiable and has compact support},
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where k = 0 corresponds to continuous functions. Let C0(Ĉ) be the Banach space of con-

tinuous functions φ : Ĉ → Ĉ with the sup norm. For a rational function f , the pullback

f ∗ : C0(Ĉ) → C0(Ĉ) is the continuous linear functional defined by f ∗φ := φ ◦ f. The

pushforward f∗ : C0(Ĉ)→ C0(Ĉ) is the continuous linear function defined by

(f∗φ)(a) =
∑
f(ξ)=a

φ(ξ),

where the sum includes multiplicity (i.e., if ξ is a root of f(z) − a of multiplicity p, then

φ(ξ) will occur p times in the sum). All sums of this or a similar form will be counted with

multiplicity in this paper.

We can identify the topological dual space C0(Ĉ)∗ with the space of Borel regular (signed)

measures on Ĉ, via the Riesz-Markov representation theorem, and for φ ∈ C0(Ĉ), ν ∈ C0(Ĉ)∗,

we write

〈φ, ν〉 :=

�
Ĉ
φdν.

Now we define the pushforward f∗ : C0(Ĉ)∗ → C0(Ĉ)∗ to be the dual to the pullback

f ∗ : C0(Ĉ) → C0(Ĉ), and the pullback f ∗ : C0(Ĉ)∗ → C0(Ĉ)∗ to be the dual to the

pushforward f∗ : C0(Ĉ)→ C0(Ĉ). We can characterize f ∗ and f∗ by the identities

〈φ, f ∗ν〉 = 〈f∗φ, ν〉 and 〈φ, f∗ν〉 = 〈f ∗φ, ν〉 (φ ∈ C0(Ĉ), ν ∈ C0(Ĉ)∗).

Let K be a compact subset of C, and let P(K) denote the space of Borel probability

measures on C supported on K. For µ ∈ P(K), we define its energy I(µ) to be

I(µ) :=

�
C

�
C

log |z − w|dµ(z)dµ(w).
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If there is a measure µK ∈ P(K) satisfying

I(µK) = sup
µ∈P(K)

I(µ),

then µK is called the equilibrium measure for K. All compact subsets of C, and in particular,

Jf , have an equilibrium measure ([7] Theorem 3.3.2). We call K a polar set if I(µ) = −∞ for

all µ ∈ P(K). If K is non-polar, then µK is unique, and supp(µK) is a subset of the exterior

boundary of K, i.e., the boundary of the unbounded component of C\K ([7] Theorem 3.7.6).

The Julia set Jf is non-polar ([7] Theorem 6.5.1), so it has a unique equilibrium measure,

which we will denote µf .

There is a connection between equilibrium measure and Brownian motion that gives a

nice intuition for equilibrium measure. Suppose a Brownian motion process begins at ∞

and stops whenever it hits K ⊆ C. Then for a Borel set A ⊆ C, µK(A) is equal to the

probability that the Brownian motion stops in A ([6] Chapter 3, Theorem 4.12). Therefore,

we can intuitively think of µf as being more concentrated on the parts of Jf that “stick out”

toward ∞.

Theorem 1.1. (Brolin’s theorem, [1] Theorem 16.1) Let f : Ĉ→ Ĉ be a monic polynomial

of degree d ≥ 2. For a non-exceptional point a ∈ Ĉ, let νn be the sequence of measures on Ĉ

defined by

νn := d−n(f ◦n)∗δa =
1

dn

∑
f◦n(ξ)=a

δξ,

where the sum is again counted with multiplicity. Then νn
w∗−→ µf .

Equivalently, for every φ ∈ C0
c (C),

lim
n→∞

1

dn

∑
f◦n(ξ)=a

φ(ξ) =

�
Ĉ
φdµf .

Intuitively, Brolin’s theorem says that if we start a Brownian motion process at ∞ and

stop it when it hits Jf , then all the points in {z ∈ C : f ◦n(z) = a} (except for a bounded
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(a) n = 5 (b) n = 6

Figure 1.2: The Julia set for f(z) = z2 + c, with c = 1/5 + i/2, and solutions to f ◦n(z) = a,
where a = −0.02 + 0.47i.

number of points) are approximately equally likely to be closest to the stopping point, for

sufficiently large n. So the pre-images of a under f ◦n concentrate on Jf , and they do so with

greater density near parts of Jf that “stick out” toward ∞. See Figure 1.2.

Tortrat proved a related theorem for the periodic points of f (in fact, what he proved

was more general: see the theorem in section IV of [9], and take Q = − id for the periodic

version).

Theorem 1.2. (Brolin’s theorem for periodic points, [9]) Let f : Ĉ → Ĉ be a monic

polynomial of degree d ≥ 2. Let µn be the sequence of measures on Ĉ defined by

µn := d−n(f ◦n − id)∗δ0 =
1

dn

∑
f◦n(ζ)=ζ

δζ ,

where the sum is counted with multiplicity (but we do not include ∞ in the sum even though

f ◦n(∞) =∞). Then µn
w∗−→ µf .
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Equivalently, for every φ ∈ C0
c (C),

lim
n→∞

1

dn

∑
f◦n(ζ)=ζ

φ(ζ) =

�
Ĉ
φdµf .

(a) n = 5 (b) n = 6

Figure 1.3: The Julia set for f(z) = z2 + c, with c = 1/5 + i/2, and solutions to f ◦n(z) = z.

Lyubich proved Brolin’s theorem and Brolin’s theorem for periodic points more generally,

replacing monic polynomials with rational functions and replacing equilibrium measure with

the measure of maximal entropy [5].

The intuition here is similar to that of Brolin’s original theorem. Brolin’s theorem for

periodic points says that if we start a Brownian motion process at ∞ and stop it when it

hits Jf , then all the points in {z ∈ C : f ◦n(z) = z} (except for a bounded number of points)

are approximately equally likely to be closest to the stopping point, for sufficiently large n.

So the points of period n or period dividing n are more concentrated on parts of Jf that

“stick out” toward ∞. See Figure 1.3.

Note that “most” of the solutions to f ◦n(z) = z are in Jf (more precisely, all but a
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bounded number of solutions are; see the discussion on p. 23). On the other hand, if a /∈ Jf ,

none of the solutions of f ◦n(z) = a are in Jf even though they accumulate on Jf . If a ∈ Jf ,

then all of the solutions of f ◦n(z) = a are in Jf , because Jf is completely invariant.

Drasin and Okuyama [3] proved the following rate of convergence result for νn
w∗−→ µf .

Theorem 1.3. ([3], Theorem 3) Let f : Ĉ → Ĉ be a monic polynomial of degree d ≥ 2.

For every η > 1, there exists Cη > 0 and Nη ∈ N such that for every n > Nη and every

φ ∈ C2
c (Ĉ),

|〈φ, νn〉 − 〈φ, µf〉| ≤ CφCη

(η
d

)n
for every a ∈ Jf , where Cφ ≥ 0 depends only on φ.

Equivalently, ∣∣∣∣∣∣ 1

dn

∑
f◦n(ξ)=a

φ(ξ)−
�
Ĉ
φdµf

∣∣∣∣∣∣ ≤ CφCη

(η
d

)n
for every a ∈ Jf .

In fact, for any non-exceptional point a ∈ C, rather than just a ∈ Jf , Drasin and

Okuyama [3] found other bounds, but to state the various cases would require much back-

ground that is not needed elsewhere in this paper. They also proved the theorem more

generally for rational functions and the measure of maximal entropy, but we state it only

for monic polynomials and equilibrium measure. Our main result is to Brolin’s theorem for

periodic points as Drasin and Okuyama’s result is to Brolin’s theorem, but we have only

proved it for a specific class of polynomials.

Theorem 1.4. Let f(z) = z2 + c, with c ∈ C, the main cardioid of M. Then for any

φ ∈ C2
c (C), there exist constants αf ∈ (0, 1], dependent only on f , and Dφ,f > 0 , dependent

on φ and f, such that for any n ≥ 1,

|〈φ, µn〉 − 〈φ, µf〉| ≤ Dφ,f
(d1−αf )n

dn
,

8



or, equivalently, ∣∣∣∣∣∣ 1

dn

∑
f◦n(ζ)=ζ

φ(ζ)−
�
Ĉ
φdµf

∣∣∣∣∣∣ ≤ Dφ,f
(d1−αf )n

dn
.
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2. Reducing the Problem to Proximity
For a point a ∈ Ĉ, define the proximity of f ◦n at a to be

m(a, f ◦n) :=

�
Ĉ

log
1

[a, f ◦n(z)]
dσ(z).

Drasin and Okuyama showed that the rate of convergence for Brolin’s theorem is related to

proximity according to the following proposition.

Proposition 2.1. ([3]) Let f : Ĉ → Ĉ be a rational function of degree d ≥ 2. For a non-

exceptional point a ∈ Ĉ, let νn := d−n(f ◦n)∗δa, as in Theorem 1.1. Then for any φ ∈ C2
c (C),

there exist constants Cφ > 0 , dependent only on φ, Cf > 0, dependent only on f, and

C0 > 0, with no dependencies, such that for every n ≥ 1,

|〈φ, νn〉 − 〈φ, µf〉| ≤ Cφ
m(a, f ◦n) + CfC0

dn
,

or, equivalently,

∣∣∣∣∣∣ 1

dn

∑
f◦n(ξ)=a

φ(ξ)−
�
Ĉ
φdµf

∣∣∣∣∣∣ ≤ Cφ
m(a, f ◦n) + CfC0

dn
.

They completed the rate of convergence result by finding the rate of growth of m(a, f ◦n)

for any a ∈ Ĉ. We will only state the rate of growth for a ∈ Jf , because that is the only one

we will need.

Theorem 2.2. ([3], Theorem 2) Let f : Ĉ→ Ĉ be a monic polynomial of degree d ≥ 2. For

every η > 1,

m(a, f ◦n) = o(ηn) as n→∞,

uniformly for a ∈ Jf .
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Now we define the periodic proximity of f ◦n to be

m(f ◦n) :=

�
Ĉ

log
1

[z, f ◦n(z)]
dσ(z).

Perhaps not surprisingly, the relationship of the periodic version of Brolin’s theorem to the

periodic proximity is similar to that of Brolin’s theorem to proximity.

Proposition 2.3. Let f : Ĉ→ Ĉ be a monic polynomial of degree d ≥ 2. Let µn := d−n(f ◦n−

id)∗δ0, as in Theorem 1.2. Then for any φ ∈ C2
c (C), there exist constants Cφ, C

′
φ ≥ 0,

dependent only on φ, Cf ≥ 0 dependent only on f , and C0, with no dependencies, such that

for every n ≥ 1,

|〈φ, µn〉 − 〈φ, µf〉| ≤
Cφ(m(f ◦n) + CfC0) + C ′φ

dn
,

or, equivalently,

∣∣∣∣∣∣ 1

dn

∑
f◦n(ζ)=ζ

φ(ζ)−
�
Ĉ
φdµf

∣∣∣∣∣∣ ≤ Cφ(m(f ◦n) + CfC0) + C ′φ
dn

.

Actually, this theorem holds with rational functions in place of monic polynomials and

with the measure of maximal entropy in place of equilibrium measure.

Proof. Our proof of Proposition 2.3 is mostly a copy of the proof of Proposition 2.1 given in

[3], but we give the details because of the differences.

Define

Cφ := sup
Ĉ

∣∣∣∣ddcφσ
∣∣∣∣ = sup

z∈Ĉ

∣∣(1/2)(1 + |z|2)2∆φ(z)
∣∣ <∞,

which is finite because φ has compact support in C,

Cf := sup
Ĉ

f ∗σ

σ
= sup

z∈Ĉ

∆(log
√

1 + |f(z)|2)
∆(log

√
1 + |z|2)

= sup
z∈Ĉ

|f ′(z)|2(1 + |f(z)|2)−2

(1 + |z|2)−2
<∞,

C0 := 〈log(1/[w, a]), σ(w)〉 ,
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which is finite and independent of a ∈ Ĉ, and

C ′φ := 〈φ, σ〉 <∞.

Then for any a ∈ Ĉ,

∣∣〈φ, (f ◦n)∗σ − (f
◦n

)∗δa
〉∣∣ =

∣∣〈φ, (f ◦n)∗ddc log(1/[·, a])
〉∣∣

=
∣∣〈φ, ddc log(1/[f

◦n
(·), a])

〉∣∣
=

∣∣〈log(1/[f
◦n

(·), a]), ddcφ
〉∣∣ by Green’s identity

≤ Cφ
〈
log(1/[f

◦n
(·), a]), σ

〉
= Cφm(a, f

◦n
).

(2.4)

The use of Green’s identity is the reason we require φ to be twice continuously differentiable.

Next, we calculate

∣∣〈φ, (f ◦n)∗σ + σ − (f
◦n − id)∗δ0

〉∣∣
=

∣∣∣〈φ, (f ◦n)∗ddc(log
√

1 + | · |2) + ddc(log
√

1 + | · |2)− (f
◦n − id)∗ddc log | · |

〉∣∣∣
=

∣∣∣〈φ, ddc(log
√

1 + |f ◦n(·)|2) + ddc(log
√

1 + | · |2)− ddc log |f ◦n(·)− id(·)|
〉∣∣∣

=
∣∣〈φ, ddc(log(1/[f

◦n
(·), ·]))

〉∣∣
=

∣∣〈log(1/[f
◦n

(·), ·]), ddcφ
〉∣∣ by Green’s identity

≤ Cφ
〈
log(1/[f

◦n
(·), ·]), σ

〉
= Cφm(f

◦n
).

(2.5)

Now, because (f
◦n

)∗σ = (f ∗)
◦n
σ, we have

〈
φ, (f

◦(n+1)

)∗σ
〉

=
〈
(f
◦n

)∗φ, f
∗σ
〉

=
〈〈
φ, (f

◦n
)∗δw

〉
, (f ∗σ)(w)

〉
. (2.6)
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Also,

(f ∗σ)(Ĉ) := 〈1Ĉ, f
∗σ〉 = 〈f∗1Ĉ, σ〉 =

〈 ∑
f(ζ)=w

1Ĉ(ζ), σ(w)

〉
= d·〈1Ĉ, σ〉 = d·σ(Ĉ) = d = deg f,

(2.7)

where 1A is the indicator function of the set A.

Then

∣∣∣〈φ, d · (f ◦n)∗σ − (f
◦(n+1)

)∗σ
〉∣∣∣

=
∣∣∣d 〈φ, (f ◦n)∗σ

〉
−
〈
φ, (f

◦(n+1)

)∗σ
〉∣∣∣

=
∣∣〈〈φ, (f ◦n)∗σ

〉
f ∗σ
〉
−
〈〈
φ, (f

◦n
)∗δw

〉
, (f ∗σ)(w)

〉∣∣ by (2.7) and (2.6)

=
∣∣〈〈φ, (f ◦n)∗σ − (f

◦n
)∗δw

〉
, (f ∗σ)(w)

〉∣∣
≤

〈
Cφm(w, f

◦n
), (f ∗σ)(w)

〉
by (2.4)

≤
〈
Cφm(w, f

◦n
), Cfσ(w)

〉
= CφCf

〈〈
log(1/[w, f

◦n
(·)]), σ

〉
, σ(w)

〉
= CφCf

〈〈
log(1/[w, f

◦n
(·)]), σ(w)

〉
, σ
〉

by Fubini’s Theorem

= CφCf 〈C0, σ〉

= CφCfC0.

(2.8)

Therefore, ∣∣∣〈φ, d−n(f
◦n

)∗σ
〉
−
〈
φ, d−n−1(f

◦(n+1)

)∗σ
〉∣∣∣ ≤ d−n−1CφCfC0,

so the sequence d−n(f
◦n

)∗σ converges weak∗ to some measure, say µ0, and

∣∣〈φ, d−n(f
◦n

)∗σ − µ0

〉∣∣ ≤ CφCfC0

dn
. (2.9)
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Hence,

∣∣d−n 〈φ, (f ◦n − id)∗δ0
〉
− 〈φ, µ0〉

∣∣
=

∣∣d−n 〈φ, (f ◦n − id)∗δ0 − σ − (f
◦n

)∗σ
〉

+
〈
φ, d−n(f

◦n
)∗σ − µ0

〉
+ d−n 〈φ, σ〉

∣∣
≤ d−nCφm(f

◦n
) + d−nCφCfC0 + d−nC ′φ by (2.5) and (2.9)

=
Cφ(m(f

◦n
) + CfC0) + C ′φ
dn

.

Now, all that remains is to show that µ0 = µf . But we know by Theorem 1.2 that d−n(f
◦n −

id)∗δ0 converges weak∗ to µf , and we just proved that it converges to µ0, so we must have

µ0 = µf .
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3. Rate of Growth of Proximity
In the previous section, we reduced the problem to finding the rate of growth of m(f ◦n). To

do this, we will need the following proposition.

Proposition 3.1. For any ζ ∈ C,

�
Ĉ

log |z − ζ|dσ(z) =
1

2
log(1 + |ζ|2).

In order to prove Proposition 3.1, we introduce h : [0,∞)→ R defined by

h(ρ) =

� 2π

0

log |1− ρeiα|dα,

which will arise naturally in the proof of Proposition 3.1.

Lemma 3.2.

h(ρ) = 2π log+(ρ) :=


0, ρ < 1

2π log(ρ), ρ ≥ 1.

Proof of Lemma 3.2. The ρ < 1 case follows immediately from the fact that log |1 − z| is

harmonic except at z = 1. But for ρ ≥ 1, we would be integrating over a circle that encloses

the point z = 1, so this case is trickier. We will use B(0, ρ) to denote the open ball of radius

ρ centered at 0.

Now, we assume ρ ≥ 1, and we note that

h(ρ) = lim
γ→0+

� 2π−γ

γ

log |1− ρeiα|dα = lim
γ→0+

� 2π−γ′

γ′
log |1− ρeiα|dα,

where γ′ is the angular measure of the arc ∂B(0, ρ) connecting ρ and the ray {x + iγ : x ∈

(0,∞)}, so that γ′ → 0 and γ → 0. See Figure 3.1a.
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ρ

γ

0

(a) With γ as shown,γ′ is the arc length of
the dashed part of the circle.

0 ρ
1

γ

Aγ

Bγ

Cγ

z1(γ) z2(γ)

z3(γ) z4(γ)

(b) With the branch cut and with zj(γ) as
shown, limγ→0+ arg(zj(γ)) = 0 for j < 4, and
limγ→0+ arg(z4(γ)) = 2π.

Figure 3.1: The contour of integration near ρ.

Then

h(ρ) = lim
γ→0+

� 2π−γ′

γ′
log |1− ρeiα|dα

= lim
γ→0+

Re

[� 2π−γ′

γ′

(
log |1− ρeiα|+ i arg(1− ρeiα)

)
dα

]

= Re

[
lim
γ→0+

� 2π−γ′

γ′
log(1− ρeiα)dα

]

= Re

[
lim
γ→0+

�
∂B(0,ρ)γ

log(1− z)

iz
dz

]
,

where

∂B(0, ρ)γ = ∂B(0, ρ) \ {x+ iy : x > 0, |y| < γ}

and log(1−z)
iz

and arg(1− z) have [1,+∞) as a branch cut, so that

lim
α→0+

arg(1− ρeiα) = 0 and lim
α→2π−

arg(1− ρeiα) = 2π.

Now let Aγ := {x+iγ : x ∈ [1/2, ργ]}, Bγ := {x−iγ : x ∈ [1/2, ργ]}, and Cγ := {1/2+it :

t ∈ [−γ, γ]}, where ργ is the imaginary part of the point of intersection of ∂B(0, ρ) and the

ray {x+ iγ : x ∈ (0,∞)}. See Figure 3.1b, and note that the choice of 1/2 is not particularly

16



important; we could use any value strictly between 0 and 1.

Then

�
∂B(0,ρ)γ

log(1− z)

iz
dz =

�
∂B(0,ρ)γ∪Aγ∪Cγ∪Bγ

log(1− z)

iz
dz −

�
Aγ∪Cγ∪Bγ

log(1− z)

iz
dz

= 0 +

�
Bγ∪Cγ∪Aγ

log(1− z)

iz
dz

(note the change to clockwise orientation in the last step), because log(1−z)
iz

is holomorphic

in the interior of (and a neighbrohood around) ∂B(0, ρ)γ ∪ Aγ ∪ Cγ ∪ Bγ : the only hiccups

with holomorphicity could occur at 0 or the branch cut [1,+∞), but the contour avoids the

branch cut, and in a neighborhood of 0,

log(1− z)

iz
= −

∑∞
k=1 z

k/k

iz
= i

∞∑
k=1

zk−1

k
,

which is holomorphic at 0.

Then

h(ρ) = Re

[
lim
γ→0+

�
Bγ∪Cγ∪Aγ

log(1− z)

iz
dz

]

= Re

[
lim
γ→0+

�
Bγ∪Aγ

log(1− z)

iz
dz

]
+ Re

[
lim
γ→0+

�
Cγ

log(1− z)

iz
dz

]
.

Now, clearly

Re

[
lim
γ→0+

�
Cγ

log(1− z)

iz
dz

]
= 0,

17



(just use the trivial integral bound) so

h(ρ) = Re

[
lim
γ→0+

�
Bγ∪Aγ

log(1− z)

iz
dz

]

= Re

[
lim
γ→0+

(�
Bγ

log(1− z)

iz
dz +

�
Aγ

log(1− z)

iz
dz

)]

= Re

[
lim
γ→0+

(� ρ

1/2

log(1− (x− iγ))

i(x− iγ)
dx+

� 1/2

ρ

log(1− (x+ iγ))

i(x+ iγ)
dx

)]

= lim
γ→0+

� ρ

1/2

Re

[
log(1− (x− iγ))

i(x− iγ)
− log(1− (x+ iγ))

i(x+ iγ)

]
dx.

And we have

Re

[
log(1− (x− iγ))

i(x− iγ)
− log(1− (x+ iγ))

i(x+ iγ)

]
= Re

[
i
(x− iγ) log(1− (x+ iγ))− (x+ iγ) log(1− (x− iγ))

x2 + γ2

]
=

1

x2 + γ2
Re

[
i
[
(x− iγ) (log |1− (x+ iγ)|+ i arg(1− (x+ iγ)))

−(x+ iγ) (log |1− (x− iγ)|+ i arg(1− (x− iγ)))
]]

=
1

x2 + γ2
Re

[
(ix+ γ) (log |1− (x+ iγ)|+ i arg(1− (x+ iγ)))

−(ix− γ) (log |1− (x− iγ)|+ i arg(1− (x− iγ)))

]
=

1

x2 + γ2

[
γ
(

log |1− (x+ iγ)|+ log |1− (x− iγ)|
)

+x
(

arg(1− (x− iγ))− arg(1− (x+ iγ))
)]
.
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So

h(ρ) = lim
γ→0+

� ρ

1/2

γ
(

log |1− (x+ iγ)|+ log |1− (x− iγ)|
)

x2 + γ2

 dx
+ lim

γ→0+

� ρ

1/2

x
(

arg(1− (x− iγ))− arg(1− (x+ iγ))
)

x2 + γ2

 dx
=: E + F.

We’ll look at the second integral F first. We can use the dominated convergence theorem

(with some constant function, for example, as our upper bound) to pass the limit inside the

integral and obtain

F = lim
γ→0+

� ρ

1/2

x
(

arg(1− (x− iγ))− arg(1− (x+ iγ))
)

x2 + γ2

 dx

=

� ρ

1/2

x
(

limγ→0+ arg(1− (x− iγ))− limγ→0+ arg(1− (x+ iγ))
)

x2

 dx.
Now

lim
γ→0+

arg(1− (x− iγ))− lim
γ→0+

arg(1− (x+ iγ)) =


0, x < 1

2π, x ≥ 1

because of the branch cut of [1,+∞) (see Figure 3.1b), which gives us

F = 2π

� ρ

1

x

x2
dx = 2π log(x)

∣∣∣∣ρ
1

= 2π log(ρ).

Now it just remains to show E = 0.
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Since |1− (x+ iγ)| = |1− (x− iγ)|, we have

∣∣ log |1− (x+ iγ)|+ log |1− (x− iγ)|
∣∣ = | log |1− (x+ iγ)|2|

= | log[(1− x)2 + γ2]|

≤ max{| log(γ2)|, | log(ρ2)|},

which we may assume is equal to | log(γ2)| by taking small enough γ. Then

|E| = lim
γ→0+

∣∣∣∣∣∣
� ρ

1/2

γ
(

log |1− (x+ iγ)|+ log |1− (x− iγ)|
)

x2 + γ2

 dx
∣∣∣∣∣∣

≤ lim
γ→0+

� ρ

1/2

[
γ| log(γ2)|
x2 + γ2

]
dx

≤ lim
γ→0+

γ| log(γ2)|
� ρ

1/2

1

x2
dx

= 0.

�

We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. Suppose ζ = |ζ|eiα. Then

�
Ĉ

log |z − ζ|dσ(z) =

�
Ĉ

log |(ζ)(z/ζ − 1)|dσ(z)

= log |ζ|+ 1

π

�
C

log |z/ζ − 1| dxdy

(1 + |z|2)2

= log |ζ|+ 1

π

� ∞
0

[� 2π

0

log

∣∣∣∣ reiθ|ζ|eiα
− 1

∣∣∣∣ dθ] rdr

(1 + r2)2

= log |ζ|+ 1

π

� ∞
0

[� 2π

0

log
∣∣(r/|ζ|)ei(θ−α) − 1

∣∣ dθ] rdr

(1 + r2)2

20



= log |ζ|+ 1

π

� ∞
0

[� 2π−α

−α
log
∣∣(r/|ζ|)eiβ − 1

∣∣ dβ] rdr

(1 + r2)2
β = θ − α

= log |ζ|+ 1

π

� ∞
0

[� 2π

0

log
∣∣(r/|ζ|)eiβ − 1

∣∣ dβ] rdr

(1 + r2)2

= log |ζ|+ 2

� ∞
0

log+(r/|ζ|) rdr

(1 + r2)2
by Lemma 3.2

= log |ζ|+ 2

� ∞
|ζ|

log(r/|ζ|) rdr

(1 + r2)2

= log |ζ|+ 2

� ∞
|ζ|

log(r)
rdr

(1 + r2)2
− 2

� ∞
|ζ|

log |ζ| rdr

(1 + r2)2

=: log |ζ|+ 2A+ 2B.

Now

A =

� ∞
|ζ|

log(r)
rdr

(1 + r2)2

=
1

2

� ∞
|ζ|

log(r2)
rdr

(1 + r2)2

=
1

4

� ∞
|ζ|2

log(u)
du

(1 + u)2
u = r2, du = 2rdr

=
1

4

[
log

(
u

1 + u

)
− log(u)

1 + u

∣∣∣∣∞
|ζ|2

]

=
1

4

[
(0− 0)− log

(
|ζ|2

1 + |ζ|2

)
+

log |ζ|2

1 + |ζ|2

]
=

1

4

(
log |ζ|2

1 + |ζ|2

)
− 1

4
log

(
|ζ|2

1 + |ζ|2

)
,

and � ∞
|ζ|

rdr

(1 + r2)2
=

1

2

� ∞
1+|ζ|2

du

u2
=

1

2

[
−1

u

∣∣∣∣∞
1+|ζ|2

]
=

1

2

[
0 +

1

1 + |ζ|2

]
,

so

B = −
� ∞
|ζ|

log |ζ| rdr

(1 + r2)2
= −1

2

(
log |ζ|

1 + |ζ|2

)
.

21



Therefore,

�
Ĉ

log |z − ζ|dσ(z) = log |ζ|+ 2A+ 2B

= log |ζ|+ 1

2

(
log |ζ|2

1 + |ζ|2

)
− 1

2
log

(
|ζ|2

1 + |ζ|2

)
−
(

log |ζ|
1 + |ζ|2

)
= log |ζ| − 1

2
log

(
|ζ|2

1 + |ζ|2

)
=

1

2
log(1 + |ζ|2).

�

Theorem 3.3. Let f : Ĉ→ Ĉ be a monic polynomial of degree d ≥ 2. For n ≥ 1 and a ∈ C,

m(f ◦n) = m(a, f ◦n) + Ca +
1

2
log

(∏
f◦n(ξ)=a(1 + |ξ|2)∏
f◦n(ζ)=ζ(1 + |ζ|2)

)
,

where

Ca =

�
Ĉ

log

[√
1 + |z|2√
1 + |a|2

]
dσ(z).

Proof. First, by Proposition 3.1,

�
Ĉ

log |f ◦n(z)− z|dσ(z) =
∑

f◦n(ζ)=ζ

�
Ĉ

log |z − ζ|dσ(z)

=
1

2

∑
f◦n(ζ)=ζ

log(1 + |ζ|2)

=
1

2
log

 ∏
f◦n(ζ)=ζ

(1 + |ζ|2)

 .

Similarly, �
Ĉ

log |f ◦n(z)− a|dσ(z) =
1

2
log

 ∏
f◦n (ξ)=a

(1 + |ξ|2)

 .
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Then

m(f
◦n

) :=

�
Ĉ

log
1

[f ◦n(z), z]
dσ(z)

=

�
Ĉ

log

[√
1 + |f ◦n(z)|2

√
1 + |z|2|

|f ◦n(z)− z|

]
dσ(z)

=

�
Ĉ

log

[√
1 + |f ◦n(z)|2

√
1 + |a|2|

|f ◦n(z)− a|

]
dσ(z) +

�
Ĉ

log

[√
1 + |z|2√
1 + |a|2

]
dσ(z)

+

�
Ĉ

log |f ◦n(z)− a|dσ(z)−
�
Ĉ

log |f ◦n(z)− z|dσ(z)

=

�
Ĉ

log
1

[f ◦n(z), a]
dσ(z) + Ca +

1

2
log

 ∏
f◦n (ξ)=a

(1 + |ξ|2)

− 1

2
log

 ∏
f◦n (ζ)=ζ

(1 + |ζ|2)


= m(a, f

◦n
) + Ca +

1

2
log

(∏
f◦n (ξ)=a(1 + |ξ|2)∏
f◦n (ζ)=ζ(1 + |ζ|2)

)
.

Now assume a ∈ Jf , so that f
◦n

(ξ) = a implies ξ ∈ Jf , and let βn be the number of

ζ /∈ Jf satisfying f ◦n(ζ) = ζ, counting multiplicity. We want an upper bound for βn. If ζ0

is a root of f ◦n(z) − z of multiplicity p > 1, then (f ◦n)′(ζ0) − 1 = 0, so ζ0 is in a rationally

neutral cycle. By Theorem 1.1 in Chapter III of [2], Jf contains all repelling cycles and all

rationally neutral cycles. Therefore, βn will be unaffected by multiplicity. And by Corollary

1 of [8], the number of attracting cycles plus the number of neutral cycles is at most 2d− 2.

Therefore, there are at most 2d− 2 cycles not in the Jf , and all points in these cycles have

multiplicity 1 as solutions to f ◦n(z) = z. So for all n ≥ 1,

βn ≤ βf := Nf (2d− 2),

where Nf is the number of points in the largest of the cycles not in Jf .
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Next, order the ξs as {ξ1, ξ2, . . . , ξdn} and the ζs as {ζ1, ζ2, . . . , ζdn}, where ζj ∈ Jf for

j ∈ {1, . . . , dn−βn} and ζj /∈ Jf for j ∈ {dn−βn + 1, dn}. Let Mf := supz∈Jf (1 + |z|2). Then

log

(∏
f◦n (ξ)=a(1 + |ξ|2)∏
f◦n (ζ)=ζ(1 + |ζ|2)

)
= log

(
dn∏
j=1

1 + |ξj|2

1 + |ζj|2

)

= log

(
dn−βn∏
j=1

1 + |ξj|2

1 + |ζj|2

)
+ log

(
dn∏

j=dn−βn+1

1 + |ξj|2

1 + |ζj|2

)

≤ log

(
dn−βn∏
j=1

1 + |ξj|2

1 + |ζj|2

)
+ logMβn

f

≤ log

(
dn−βn∏
j=1

1 + |ξj|2

1 + |ζj|2

)
+ βf logMf .

Now suppose we have matched up the ξjs and the ζjs in such a way that |ξj − ζj| ≤ εn

for j ∈ {1, . . . , dn − βn}, for some εn > 0. We can certainly do this in such a way that
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εn ≤ diam(Jf ) for all n, but we will find a better value εn later. Then

1 + |ξj|2

1 + |ζj|2
≤ 1 + (|ξj − ζj|+ |ζj|)2

1 + |ζj|2

≤ 1 + (εn + |ζj|)2

1 + |ζj|2

=
1 + |ζj|2 + 2εn|ζj|+ ε2n

1 + |ζj|2

= 1 +
2εn|ζj|+ ε2n

1 + |ζj|2

= 1 + εn

(
2|ζj|+ εn
1 + |ζj|2

)
≤ 1 + εn(2Mf + diam(Jf ))

= 1 + εnC
′
f

≤ eεnC
′
f ,

since, in general 1 + x ≤ ex for x ∈ R.

Hence,

log

(
dn−βn∏
j=1

1 + |ξj|2

1 + |ζj|2

)
≤ log

(
dn−βn∏
j=1

eC
′
f εn

)

≤ log(eC
′
f εnd

n

)

= C ′fεnd
n.

So now we just need to show that we can obtain a suitable sequence εn, preferably equal to

a constant times d−n. In the case that f(z) = z2 + c, with c in the main cardioid of the

Mandelbrot set, we can use a constant times d−αn for some α ∈ (0, 1], which is the final step

to prove our main theorem, which we re-state here for convenience.

Theorem 1.4 Let f(z) = z2 + c, with c in the main cardioid of the Mandelbrot set. Then

for any φ ∈ C2
c (C), there exist constants αf ∈ (0, 1], dependent only on f , and Dφ,f > 0 ,
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dependent on φ and f, such that for any n ≥ 1,

|〈φ, µn〉 − 〈φ, µf〉| ≤ Dφ,f
(d1−αf )n

dn
,

or, equivalently, ∣∣∣∣∣∣ 1

dn

∑
f◦n (ζ)=ζ

φ(ζ)−
�
Ĉ
φdµf

∣∣∣∣∣∣ ≤ Dφ,f
(d1−αf )n

dn
.

Proof. If c is in the main cardioid of the Mandelbrot set, then there is a quasiconformal map

τ : Ĉ→ Ĉ conjugating f to z 7→ zd (with d = 2) in a neighborhood of N of ∂D, i.e.,

τ−1 ◦ f ◦n ◦ τ(z) = zd
n

(z ∈ N);

in [2], see Theorem 2.1 and the following example in Chapter VI, along with Theorem 1.3 in

Chapter VIII. In fact, this proof holds more generally when the Fatou set of f has exactly

two components and f is hyperbolic on Jf , thanks to the aforementioned Theorem 2.1 in

[2]. In particular, since ∂D is the Julia set of z 7→ zd, we have τ(∂D) = Jf .

By Theorem 11.14 in [4], τ is quasisymmetric. Therefore, by Corollary 11.5 in [4], τ is

Hölder continuous on ∂D, say with constant α ∈ (0, 1], i.e., there exists Lf > 0 such that

|τ(z)− τ(w)| ≤ Lf |z − w|α (z, w ∈ ∂D).

Now, choose a = τ(1) ∈ Jf , and let Ξn := {ξ1, ξ2, . . . , ξdn} and Uk be the set of the kth

roots of unity. We claim Ξn = τ(Udn).

(⊆) Suppose ξ ∈ Ξn. Then ξ ∈ Jf , so ξ = τ(ω) for some ω ∈ ∂D. Then we have

τ(1) = a = f
◦n

(ξ) = f
◦n

(τ(ω)),
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so

1 = τ−1 ◦ f ◦n ◦ τ(ω) = ωd
n

,

so ω ∈ Udn . Hence, ξ ∈ τ(Udn).

(⊇) Suppose ξ ∈ τ(Udn). Then ξ = τ(ω) for some ω ∈ Udn . Then

f
◦n

(ξ) = f
◦n ◦ τ(ω) = τ(ωd

n

) = τ(1) = a,

so ξ ∈ Ξn.

Next, define Zn := {ζ1, . . . , ζdn−βn} := {ζ ∈ Jf : f
◦n

(ζ) = ζ}, and we claim Zn =

τ(Udn−1).

(⊆) Suppose ζ ∈ Zn. Then ζ = τ(ω) for some ω ∈ ∂D, and

τ(ω) = ζ = f
◦n

(ζ) = f
◦n ◦ τ(ω) = τ(ωd

n

),

so ω = ωd
n
, so ω ∈ Udn−1 or ω = 0, but ω ∈ ∂D, so ω ∈ Udn−1. Hence, ζ ∈ τ(Udn−1).

(⊇) Suppose ζ ∈ τ(Udn−1) Then ζ = τ(ω), with ωd
n−1 = 1, or ωd

n
= ω. Then

f
◦n

(ζ) = f
◦n ◦ τ(ω) = τ(ωd

n

) = τ(ω) = ζ.

Also, since ω ∈ ∂D, ζ ∈ Jf , so ζ ∈ Zn.

Now that we know Ξn = τ(Udn) and Zn = τ(Udn−1), we can pair up the points in Ξn and

Zn properly. Let ωk := e2πi/k be the principal kth root of unity. Then we let ζj = τ(ωj−1dn−1)

for j = 1, . . . , dn − 1 and ξj = τ(ωj−1dn ) for j = 1, . . . , dn − 1 (so the points we are “throwing

out” are ξdn = τ(ωd
n−1
dn ) and ζdn , which is the attracting fixed point, meaning βn = 1 in this

case).
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Then for j ∈ {1, . . . , dn − 1}, we have

|ζj − ξj| = |τ(ωj−1dn−1)− τ(ωj−1dn )|

≤ Lf |ωj−1dn−1 − ω
j−1
dn |

α since τ is α-Hölder

≤ Lf |ωj−1dn−1 − ω
j−2
dn−1|

α since
j − 2

dn − 1
≤ j − 1

dn
≤ j − 1

dn − 1
for j ∈ {1, . . . , dn − 1}

≤ Lf

(
2π

dn − 1

)α
since chordal distance is less than arc length

≤ C ′′f d
−αn,

so we define

εn := 2C ′′f d
−αn,

and we obtain

m(f
◦n

) = m(a, f
◦n

) + Ca +
1

2
log

(∏
f◦n (ξ)=a(1 + |ξ|2)∏
f◦n (ζ)=ζ(1 + |ζ|2)

)

≤ m(a, f
◦n

) + Ca + βf logMf +
1

2
C ′fεnd

n

= m(a, f
◦n

) + Ca + βf logMf + C ′fC
′′
f d
−αndn

= m(a, f
◦n

) + Ca + βf logMf + C ′fC
′′
f (d1−α)n.
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Now, combining this with Proposition 2.3, we obtain the desired result:

∣∣∣∣∣∣ 1

dn

∑
ζ=f◦n (ζ)

φ(ζ)−
�
Jf

φdµf

∣∣∣∣∣∣
≤

Cφ(m(f
◦n

) + CfCσ) + C ′φ
dn

≤
Cφ(m(a, f

◦n
) + Ca + βf logMf + C ′fC

′′
f (d1−α)n + CfCσ) + C ′φ

dn

≤
Cφ(C ′′′f (d1−α)n + Cτ(1) + βf logMf + C ′fC

′′
f (d1−α)n + CfCσ) + C ′φ

dn
Theorem 2.2 with η = d1−α

≤ Dφ,f
(d1−α)n

dn
.
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