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Abstract

Four permittivity probes have been developed asteteto measure contaminants in water and
in biodiesel fuel. An impedance meter was alsalusemeasure the same contaminants. The
pollutants measured in water were nitrate salts@QKNCa(NQ),, and NHNOs) and atrazine.
The contaminants measured in biodiesel were wafgcerol, and glyceride. Each sensor

measured the gain and phase of a sample with arknomcentration of one of these pollutants.

The resulting signals were analyzed using stepwageession, partial least squares regression,
artificial neural network, and wavelet transformatifollowed by stepwise regression to predict
the concentration of the contaminant using chamgdise gain and phase data measured by the
sensor. The same methods were used to predichatecular weight of the nitrate salts. The
reliability of the probes and the regression meshegre compared using the coefficient of
determination and the root mean square error. ffaguencies selected using stepwise
regression were studied to determine if any freqgigsnwere more useful than others in detecting

the contaminants.

The results showed that the probes were able tdigbrthe concentration and the molecular
weight of nitrates in water very accurately, with\Rlues as high as 1.00 for the training data
and 0.999 for the validation data for both concaamin predictions and molecular weight
predictions. The atrazine measurements were soatgwbmising, the training Rvalues were
as high as 1.00 in some cases, but there were toanyalidation values, often below 0.400.
The results for the biodiesel tests were also gtwlhighest training Rvalue was 1.00 and the

highest validation Rvalue was 0.966.
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CHAPTER 1 - Introduction

Water pollution is becoming an increasingly largelgem in the United States. As of 2008,
there were 43,868 watersheds, lakes, and wetlaapsted to the Environmental Protection
Agency (EPA) as impaired; 1,333 of which were innKas. Nitrates were the cause of 474
impairments, and atrazine was the cause of 147hef itnpairments (US Environmental

Protection Agency, 2009).

Nitrate and atrazine have numerous negative effectsvater quality. The biggest source of
nitrate pollution is fertilizer that runs off ofefids during rain and irrigation. Excessive nitsate
in water can lead to algae blooms and decreasedeoxy High levels of nitrates in drinking
water can cause methemoglobinemia in infants (&@elf Waskom, 2008). Atrazine, a common
herbicide, is harmful to sensitive aquatic plaat®phibians, and some species of fish. It also
causes a variety of health issues in humans, ssiclardiovascular problems, congestion of the

heart and lungs, and possibly cancer (Nationaltg&educts Incorporated, n.d.).

Impurities are also a concern in biodiesel fuek Podiesel becomes more and more popular, it
is important to have a method for quickly and aately measuring the purity of the fuel. Water

in biodiesel can cause corrosion of fuel tanksyc@iol is the biggest by-product of biodiesel

production, and it is also one of the most commamtaminants. Glycerol in biodiesel creates

problems with fuel storage and engine fouling. d8lydes are unreleased glycerol molecules
that cause similar problems.

There are many methods used to detect water poltutand biodiesel impurities. The most
common methods involve chromatography, a procedineh is very expensive and must be
done in a laboratory. Colorimetric analysis i®alsed, and it too requires expensive equipment.

Permittivity is a frequency-dependent measure danmation and conduction in dielectric
materials. The permittivity of a material suchvater or biodiesel fuel changes when impurities
are present. The molecules in the impurities lifferent polarities and conductive properties



than the molecules in the water or fuel. Thereftve concentration of an impurity in a sample
can be determined using a calibration model foratians in permittivity of the sample material.
Permittivity is commonly used to measure properidésother dielectric materials such as

moisture content in soils (Scholte et al., 2002).

Calibration can be achieved using regression. é¥sgyn describes how closely one set of

variables is related to another set. Two setsaghbles are needed to build a regression model:
response variables and predictor variables. Omeenodel is created, it can be used to estimate
the response variables given a set of predictdabkes. Stepwise and partial least squares are
linear regression methods. Atrtificial neural netkvis a popular nonlinear regression technique.

Wavelet transformation is a way of compressing ,data it can be used as a preprocessing tool
for regression.

The purpose of this study was to calibrate foufed&nt permittivity probes and an impedance
meter to measure the concentration of water paitatg{potassium nitrate, calcium nitrate,
ammonium nitrate, and atrazine) and biodiesel imipsr(water, glycerol, and glyceride). The
four probes were developed at the Instrumentatimh@ontrol Laboratory in the Biological and
Agricultural Engineering Department at Kansas Stiteversity. These probes are portable and
relatively inexpensive. This study also comparedr fdifferent regression methods: stepwise
regression, partial least squares regressionicatiheural network, and stepwise regression of

wavelet transformed data.



CHAPTER 2 - Research Goals

The main objective of this study was to test thiéitgtof four different permittivity probes and
an impedance meter to detect pollutants in watdriarbiodiesel fuel. The permittivity probes
were developed in the Instrumentation and Contatidratory in the Biological and Agricultural
Engineering Department at Kansas State Universityese probes were designed to be durable,
portable, and inexpensive. The probes were congpokparallel stainless steel plates with the
even numbered plates electrically connected to amather and the odd numbered plates
electrically connected to one another. The sizéhef plates and the number of plates was

different for each probe.

The specific goals of the research were:

1. To convert the permittivity measurement of eaelter or fuel sample to a measure of

the concentration of contaminant in the samplegisdgression methods.

2. To distinguish between different nitrate sgKktNO3;, Ca(NQ),, and NHNOg3) in
water by converting the permittivity signals frorhet sample to a measure of the

molecular weight of the nitrate salt in the watsing regression methods.

3. To compare stepwise regression, partial legsares regression, artificial neural
network, and stepwise regression of wavelet trans#d data to determine which method

could produce the most reliable prediction models.

4. To compare the four different probes and theedance meter in terms of their ability

to detect contaminants in water and biodiesel.

5. To determine if any frequencies are more sicgmit than others in detecting

contaminants in water and in biodiesel.



CHAPTER 3 - Literature Review

3.1 Water Pollution

Water quality is a major concern in the U.S. Tigeialtural industry is one of the biggest

contributors to water pollution. Fertilizers anelsficides are applied to fields in large quantities
to promote crop growth. Rainfall and unmanageigation can wash these chemicals off the
field, and they end up in streams, lakes, and weltisre they harm the natural environment and

contaminate drinking water.

3.1.1 Nitrates

Nitrates are a common pollutant in water. They ednom a number of sources including

fertilizers, feedlots, septic tanks, and municipalstewater. Potassium nitrate, calcium nitrate,
and ammonium nitrate are inorganic nitrates that loa found in fertilizers. Nitrates occur

naturally in the environment when microorganismgakr down plants and other organic
materials.  Nitrates are safe in small amounts, hutnan activities increase nitrate

concentrations to unhealthy levels.

3.1.1.1 Negative | mpacts

Nitrates can cause health issues in humans. A inigtke of nitrates is not likely to cause
anything more serious than gastric problems intadulnfants, on the other hand, are very
susceptible to nitrate poisoning. Methemoglobirenalso called blue baby syndrome, is a
disease that can occur when infants ingest wattdr igh nitrate levels. The nitrates cause
hemoglobin, an oxygen-carrying protein, to be cotaceto methemoglobin, which is not a good
oxygen carrier. As a result, the child’s brain slo®t receive enough oxygen. This can cause

brain damage and, in severe cases, death (Se\asiom, 2008).

Nitrates are also harmful to the environment, esfigcaquatic habitats. Nitrogen is a nutrient

for plants and algae, and when the nitrate conagoir in a body of water is elevated above the



normal level, algae grow very rapidly and prevamilight from penetrating through the water
body. The absence of light increases the activitgome aerobic bacteria and the amount of
oxygen in the water is greatly reduced by thesaebiac a process called eutrophication. Many

fish and other aquatic organisms cannot surviva thiese low levels of oxygen.

3.1.1.2 Water Quality Standards

The maximum contaminant level goal (MCLG), whichthe maximum amount of contaminant
that is believed to be safe for human consumptod, the maximum contaminant level (MCL),
which is the maximum amount of contaminant tha¢gglly allowed to be in drinking water, are
both 10 mg/L for nitrate. Levels below 10 mg/L a& believed to cause methemoglobinemia
(Self and Waskom, 2008).

3.1.1.3 Detection Methods

There are EPA methods for measuring nitrate conggom in water. The first way, EPA
Method 300.0, is by ion chromatography. The loveestcentration this method can detect is 0.4
mg/L, or 0.4 ppm (California State Water Resour@ad, 2008). The second procedure for
detecting nitrate is EPA Method 353.2, colorimetnitomated cadmium reduction. This method
can detect nitrate concentrations of as low as @&, or 0.05 ppm (O’Dell, 1993). Both tests
have two major problems: they are expensive ang thquire the use of several hazardous

chemicals.

lon selective electrodes (ISEs) are an inexpenteé that can measure the concentration of
nitrates and other ions in water in only a few n@su ISEs function by converting the activity
of an ion dissolved in solution to an electric poi@. This electric potential can then be
measured using a voltmeter. ISEs are usually ¢agdlmeasuring ion concentration within a
range of £3% of the actual concentration value.er€hare some disadvantages of using ISEs.
They contain gel that needs to be replaced perdigjadhey often need to be recalibrated after
every test, and they are not very durable (Rurfep).



3.1.2 Atrazine

Atrazine is a popular herbicide that is used on oo@ps such as corn and grain sorghum to Kill
broadleaf and grassy weeds. It is an organocldocompound, and its molecular formula is
CgH14CINs. The use of atrazine is widespread in the MiderestU.S. In 2001, between
3,664,000 and 5,413,000 pounds of atrazine werkealpip fields in Kansas (Natural Resources
Defense Council, 2004).

Over the last twenty years, the use of atrazinebegh challenged and even banned in some
European countries because of problems associatedwater contamination. In 2005, the
European Union banned the use of atrazine. Germadytaly, countries that produce millions
of tons of corn each year, banned atrazine in 13drn yield in these countries did not decline
in comparison to the U.S., where atrazine was osethe crops, suggesting that a good yield is
still possible without using atrazine. Some coesation has been given to banning atrazine in
the U.S., but it has been met with a lot of resistéadue to concerns about decrease in crop yield
and increase in crop price (Ackerman, 2007).

3.1.2.1 Negative | mpacts

Atrazine can be very dangerous to humans. It bas Bnown to cause cardiovascular problems
and reproductive problems in humans (Kansas Depattmf Health and Environment, 2004).
Studies also suggest that atrazine can cause dmmged the heart, lungs, and kidneys and
damage adrenal glands (National Safety Productrpocated, n.d.). Research has been done
that links repeated atrazine exposure to breastecan laboratory rats; however, there is no
conclusive evidence that these results apply to damsm(Wisconsin Department of Health
Services, 2008).

Atrazine is harmful to aquatic habitats and staassing serious problems at concentrations of
10 to 20 pg/L. Atrazine is moderately toxic tdhfignd highly toxic to aquatic invertebrates. It
can cause disturbances in the reproductive andcendosystems of aquatic organisms; this is
most common in amphibians and largemouth bassazite is especially toxic to aquatic plants.

These plants are an important part of the foodnchad they provide cover that allows small fish



to hide from predators. When this vegetation duoed, the whole community is affected (US

Environmental Protection Agency, 2006).

3.1.2.2 Water Quality Standards

In 1992, the EPA set regulations for the amounatofzine that could be present in drinking
water. The maximum contaminant level goal (MCL@svset at 3 ug/L because it was believed
that a lifetime of exposure at this level would rm@tuse health problems in humans. The
detection limit was set at 0.1 pg/L for drinking tera (Kansas Department of Health and
Environment, 2004).

3.1.2.3 Detection Methods

Detecting atrazine in water can be challenginge @tnventional method of testing water for the
presence of atrazine is through gas chromatograpbymass spectrometry. These methods are
effective, but they are time consuming and expensiAt-home test kits are also available.
These kits are based on calorimetric immunoassdkiods, and they use antibodies to measure
atrazine. These tests are faster and less exgetsit/they can only measure to a limit of about

0.5 pg/L and, therefore, do not meet the standarddrinking water {losiello et al., 1998).

3.2Biodiesel Fuel

Biodiesel fuel is a renewable energy source congpagelong-chain mono alkyl esters, also
known as fatty acid methyl esters (FAME). Biodlesecreated from the transestrification of
plant or animal fats. Soybean, corn, canola, oseed, sunflower, rapeseed, and beef tallow are

common sources of fat that go into biodiesel préidac

Biodiesel is a very promising alternative fuel sibecause it contains 2.5 to 3.5 units of energy
for every one unit of fossil fuel energy that gaet® producing it. Biodiesel is also a cleaner
burning fuel than diesel; it reduces greenhouseegassions and tailpipe emissions when used

in place of diesel, and it does not emit the cargemnic fumes associated with diesel fuel. B20, a



blend of 20% biodiesel and 80% diesel, is becoraingry popular option because it can be used

in traditional diesel engines with no modificatigiNREL, 2009).

3.2.1 Water in Biodiesel

Water is used to separate the catalyst in thedsnfcation reaction from the biodiesel (Kim, et
al., 2008). If the biodiesel is not dried corrgcilfter this separation, it may be contaminated
with water. Biodiesel can also be contaminatedh wiater if it comes into contact with it during
transportation and storage. Excessive amountsatdrvwean cause corrosion of the fuel tank and

allow for the growth of microorganisms (NREL, 2009)

According to ASTM standard D6751-08, biodiesel cantain at most 0.05% (500 ppm) water
and sediment, on a volume basis. The standarmdefecting water in biodiesel is ASTM method
D-2709 (National Biodiesel Board, 2008).

3.2.2 Glycerol in Biodiesdl
Pure glycerol, gHs(OH)s, is an odorless, colorless, sugar alcohol withynages. It is added to
food as a preservative and a sweetener; it caolradfin hygiene products such as toothpaste,

lotion, soap, and shampoo; and it is often addedddicines such as cough syrup.

Crude glycerol is the main by-product of biodiefsel production; for every 3.79 L of biodiesel
produced about 0.35 kg of crude glycerol is alsalendJSDA, 2006). The crude glycerol
contains a lot of impurities, but it can go throwaghexpensive refining process and become pure

glycerol.

The glycerol by-product is much denser than thedibgel, and it can be removed using
gravitational separation. According to the ASTMrmstard D6751-08, biodiesel can only contain
0.240 % (2,400 mg/L) total glycerol, which is thens of free glycerol and glycerides, and
0.020% (200 mg/L) free glycerol (National Biodie8slard, 2008). If the fuel contains glycerol
at levels higher than 0.020%, storage tanks anrsyfuel filters can become clogged. Engine



fouling, a problem in which a spark plug becomeated in fuel, causing short circuit, is another

consequence of high glycerol levels in biodiesdDiA n.d.).

The most common method for detecting glycerol indi@sel is gas chromatography. The
industry standard for this process is set by ASTNG84. This procedure can be done by a lab
for around $275 per test (Hoar, 2008). There areraber of chromatographers that can perform
this test manufactured by PerkinElmer, Koehler, rirtee Fisher Scientific, and Agilent
Technologies.

3.2.3 Glyceridesin Biodiesel

Glycerides are esters formed from glycerol andyfattids. Animal fats and vegetable oil are
composed of glycerides. Glycerides are presehiadiesel if the transestrification reaction was
not complete. Each glyceride contains a glycerolecule that was not released in the reaction
(Kim, et al., 2008). Glycerides are a problem iadiesel because they can contaminate the
engine and clog filters (NREL, 2009).

The amount of glyceride that biodiesel can conigigiven by ASTM standard D6751-08, and is
the difference between total glycerol and free gigt or 0.220% (2,200 mg/L) (National

Biodiesel Board, 2008). The standard for remowhgeride from biodiesel is ASTM method

D-6584, gas chromatography (NREL, 2009).

3.3 Permittivity

Permittivity describes how well a dielectric mastrcan store an electric charge. It is a
frequency-dependent measurement composed of twordacpolarization and conduction.
Polarization is the ability of a material to stama electrical charge, and conduction is the
movement of electrical charges through the matéB8aholte et al., 2002). When an electric
field is applied to a material, the polar moleculeshat material tend to align themselves so that
the positive end of the molecule points to the tiegaside of the electric field and the negative
end of the molecule points to the positive sidetlod field (Figure3.1). This is called

polarization, and it decreases the effective aletigld. If the force binding the atoms together



is too strong for the atoms to align themselved whe electric field, the energy absorbed from
the field is dissipated. This is called dielectetaxation (Topp et al., 2000).

Figure 3.1: Polarization of molecules in an electric fieldBecker, 2009)

Permittivity can be expressed as a complex variablee definition of relative permittivity is:
er(0) = &) —j&' () (3.1)
wherew = angular frequency,
¢(w) = complex relative permittivity,
£r(w) = real part of permittivity,
i =(-1)"? and
£t (o) = imaginary part of permittivity (Scholte et alQ@2).

The real part of permittivity is the amount of eperstored in the dielectric material from the
alternating current field. It can be expressed as:
€r(w) =€’ e +€4(w) (3.2)
wheree’ ¢ = apparent permittivity due to polarization of étedes, and

€4 (w) = frequency dependent permittivity (Scholte et2002).

The imaginary component is the energy loss dueh¢oAC electric field, also known as the

relative loss factor. It is made up of two compuse
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21 (0) = (ea(0) +— ) (3.3)

W&
wheree” 4 (o) = relative dielectric loss,
K = static electrical conductivity, and
€0 = permittivity of free space = 8.8540"% F/m (Scholte et al., 2002).

Every dielectric material has a different condutyivand a different ability to polarize, and
therefore a different permittivity. If a contamitais added to a material, such as water, the
contaminated water will have a different permitynihan pure water. If the concentration of the
contaminant is increased, the permittivity will olge again. For this reason, it is possible to
detect changes in the chemical composition of aenaht by measuring the material’s

permittivity.

3.4 Regression Methods

Regression analysis is a technique for modelingt @fsdependent variables, y-variables, using a
set of independent variables, x-variables. Theeddent variables are also referred to as the
response variables, and the independent varialdesatled predictor variables. The y-variables

can be predicted from the x-variables with a regjogsmodel.

It is useful to have two sets of data for the xd grvariables for regression. One set of data,
called the training dataset, is used to fit the ehod\nother set, called the validation set, isduse
to test the reliability of the model. Validatinget model is important because the validation
results show whether or not the model can be applieother, similar, situations or if it is only
valid for the dataset that created it. If the dation does not provide reasonable estimates of the
response variables, it suggests that there may e inconsistencies in data collection or that

the original model is affected by over-fitting.
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There are many methods that can be used to moelgl-Hariables in terms of the x-variables.
The methods that will be discussed in this seclien stepwise regression, partial least squares

regression, artificial neural network, and stepwesgression with wavelet preprocessing.

A parameter is needed to judge the goodness-af-fihe models. This makes it possible to
determine how useful a prediction model is and &soompare one model to another. In this

study, two statistical parameters were utilizedvaluate the goodness-of-fit.

The first parameter used was the coefficient okmreination, or Rvalue. The coefficient of
determination measures how well the regressiorfiie¢he data. It can also be thought of as the
ratio of variation explained by the model to théatovariation in the data. The procedure for
calculating R is shown in Equations 3.4 - 3.7.

\2
Sex = (XD % (3.4)
\2
Swv =x(v) -E0L (3.5)
Sxy = Z(XiY)) - (X)) (ZYi) (3.6)
n
R2= S’ 3.7)
Sxx Svy

where, Sx = is the sum of x deviations squared,
Xi= actual value,
Y= predicted value,
n = number of samples,
Syy = the total sum of squares, and
Sxy =the sum of x deviations times y deviations @itl Longnecker, 2004).

The coefficient of determination is always betwdéeand 1. A value of one means that the
model explains the data perfectly and a value iofitates that there is no fit. Thé-Ralue can
also be explained in percentage. For example,ngaan R-value of 0.900 is equivalent to

saying that the model explains 90% of the varigbiln the data. Because the coefficient of
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determination can only fall within a set range afues, it is easy to decide what an acceptable

value is, and 0.900 is usually considered a gotukva

The second parameter used to compare goodnedsebftfie models was the root mean square
error (RMSE), also referred to as the residualdsdesh deviation. The RMSE can be any positive
value, it is not limited the way the*Ralue is. A large RMSE means that there is aofot
uncertainty in the model. It also indicates thatiability in the x-variables is low. The formula
for the root mean square error is shown below.is Itnore difficult to determine what an
acceptable RMSE value is because this will chamgeding on the size of the data; however,

RMSE values from models created using the samaetatan be compared.

. 1/2
RMSE :[Z(Yuyu)z] (3.8)
n-2

where RMSE = root mean square error,
Y; = the actual y-variable,

Y, = the predicted y-variable,
n = the number of y-variables (Ott and Longneckéf4).

3.4.1 Stepwise Regression

Stepwise regression (SWR) is a combination of fodvwselection and backward elimination that
is especially useful if multicollinearities exish ithe data. Stepwise regression chooses
significant x-variables from a large set of x-vates and uses them to predict the y-variables.
The process begins with a model that has no xdvasain it. Then the program runs simple
linear regression between the y-variable and eadiriable. The x-variable with the highest R
value enters the model first, followed by the xighle which most increases thé-Rlue.
Predictors that improve the’Ralue continue to be added one-by-one, and thsfisignce of
the predictors is checked using an F-test. If edistor is non-significant, which usually
indicates that it is involved in a multicollineasitthat predictor is eliminated from the model.
This process continues until all x-variables in thedel are significant at a specified level and

the model cannot be improved by adding more vaeg{Dtt and Longnecker, 2001).
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The formula used to determine if a variable j gnfficant enough to be added to a model with p

variables is as follows:

RSS, RS$+,
]

F* = max [ = (3.9)

where, $,.; = the variance of the model with variabfes,
RSS = the residual sum of squares of the model witanebles,
RSS = the residual sum of square of the model witlial@esp+j, and

Fin = a specified comparison value (Marengo et alD820

The model that is created by stepwise regressiatomposed of x-variables and regression
coefficients, as shown below.
Y =Bo+BuXa + BaXa + o +BuXn (3.10)
where, X through X, = x-variables,

B1 throughp, = regression coefficients which are zero for xiaales not included

in the model,

Bo = the intercept of the line, and

Y = the predicted y-value (Ott and Longnecker, 2001)

One of the main benefits of stepwise regressiothas it eliminates x-variables that are not
significant; making it possible to see which x-a#tes were useful. In future data collection, it
could be possible for data to only be collectedtler significant variables. This can reduce time

and cost in data collecting.

3.4.2 Partial Least Squares Regression

Partial least squares regression (PLS) is a goedigiron method when there are a large number
of correlated x-variables (Numerical Algorithms @po 2007). PLS combines principal
component regression (PCR) with multiple linearresgion (MLR). PCR finds factors that
maximize the variance of the independent variakd@sl MLR finds a variable to maximize
correlation between the independent and dependmmbles. PLS is an improvement over

MLR and PCR because it uses information from bbéhx-variables and the y-variables to form
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a model. As a result, PLS finds factors that maaénvariance and correlation (Wise et al.,
2006).

PLS selects “orthogonal linear combinations of prteds” from the predictor data that explain
variance in the x-variables as well as the y-vadesib These combinations are called factors, and
the factors are used to calculate the PLS modék rodel is initially calculated using a large
number of factors. The number of factors thateateally needed is then estimated using cross-
validation. After the number of factors is detemed, the model is fit with this number of factors
using linear regression. Finally, the model isduseestimate the y-variables with the given x-

variables (Numerical Algorithms Group, 2007).

The models that are generated by PLS are:

X=TP+E (3.11)
and
Y=UQ+F (3.12)

where X is a matrix of the predictor variables,
Y is a matrix of the response variables,
T and U are the scores of X and Y,
P and Q = loadings,
E and F = error terms (Beebe and Kowalski, 1987).

3.4.3 Artificial Neural Network

An artificial neural network (ANN) is a computat@mirmodel composed of artificial neurons that
imitate the workings of the biological nervous gyst The neurons are connected to each other
by weights. Neural networks can be used as datkelimg tools because they can find patterns
and relationships in data. The neural networksudised and used in this paper are feed-forward,
back propagation neural networks.

The main advantage of ANNs over various statistiggjression methods is that they are

nonlinear, and so they can be used to model nanlipatterns. The functions performed by the
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artificial neurons are preformed in parallel, apaged to sequentially, as the other regression

techniques discussed in this chapter are.

A neural network has three layers: the input lagtez, hidden layer, and the output layer (Jiang,
et al., 2004). This is illustrated in FiguBe2 The number of neurons, which are found in the
hidden layer of the network, can be specified basethe complexity of the data being analyzed.
More neurons make the program run slower but asoimprove the model-building ability of

the network.

The inputs are the x-variables. The network lofmkspatterns and relationships in inputs and
uses them to predict the outputs. Once the outpetpredicted, the predictions are compared to
the target values, the actual y-variables. Thektsibetween neurons are adjusted based on the
error in the predictions. This process continuesl the error becomes very small, the exact
value varies depending on the situation and whatuser believes is allowable (Tokar and
Johnson, 1999).

Target

Hidden Layer-

: Compare
Input neurons and weights Output

Adjust
Weights

Figure 3.2: Artificial neural network layers (The Mathworks, 2008b)

3.4.4 Wavelet Transformation
Similar to Fourier transformation, wavelet transfiation is a way to compress data. The

difference is that the wavelet transform localibesh the time and frequency domains, whereas
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the Fourier transform only localizes the frequedoynain. The wavelet compression is a useful

tool for signal preprocessing and de-noising (Leayet Wentzell, 2004).

The signal is passed through two filters: a highspiter and a low-pass filter. The coefficients
produced by these filters are referred to as thwildeoefficients and the approximation
coefficients respectively. The number of coeffitgein each group is equal to half the length of
the original signal. The approximation coefficeerdan be put through the filters repeatedly,
until there is only one coefficient left. Thisillistrated in Figure8.3. The number of times the
signal is passed through the filters is calledléwvel. Each level is divided into sections called

wavebands. Each waveband contains informationiméltertain frequency range.

Detail
» 32 Points _
Detail
64 Points — _ _ » 16 Points _
inal Approximation Detail
Original Data » 32 Points — . » 8 Points
1 Approximation
Leve » 16 Points — o
Approximation
Level 2 » 8 Points
Level 3

Figure 3.3: Wavelet decompressiorgdapted from (The MathWorks, 2008d)

The equations for the approximation coefficientd tire detail coefficients are as follows.

AGK) = < T (MO > = 3 () x D) 3.13
D) =< f M) > = 3 () x@'ye(0) 619
®5(M) =520 (591 - K) 319
¢ 1.k(N)=%"% ¢ (so'n - k) (3.19

where A (j,k) = approximation coefficient,
D (j,k) = detail coefficient,
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f (n) = signal of length N,

®; «(n) = a shifted scaling function, and

¢ j.k(n) = a shifted wavelet function

| = discretized version of the scaling parameter

k = discretized version of the shifting parametee @b al, 2007).

The simplest filter is called the Haar transforithe Haar transform is based on a step function.
It replaces two steps with one wider step and oaeclet. The wide step is calculated by taking
the average of the two original steps and the veavekasures the difference between the two

original steps. The Haar wavelet function is deditbelow (Nievergelt, 1999).

Wo,10 = o,y - Pps,1] (3.17)

This is shown graphically in Figu24. For every number

1 ifO<r<is,
W (1) = { 1 ifv<r<i, (3.18)
0 otherwise.
4 ¥t
1 !
| 1
i | =
! by
1 5
v

Figure 3.4: The Haar wavelet adapted from (Nievergelt, 1999)

Transforming a signal using wavelet decomposit®an effective way of de-correlating data so
that regression analysis can be done without anifi-ouallinearity issues (Ge et al, 2007).

Wavelet compression of a signal followed by stepwisgression is especially helpful because

18



when stepwise selects a waveband to use in thelptbdavaveband that it selected is associated
with several frequencies and frequency bands ééreifit widths. The information collected at

each of these frequencies and frequency bandsectdrobght of as significant for prediction.

A tiling diagram is a good way to represent the sgho frequencies. Figurg5 is a tiling

diagram for a hypothetical dataset with 16 pointShe darkened rectangles correspond to
wavebands that are selected through the above anendtprocedure to be included in the model.
The numbers written inside the rectangles indithéenumber of data points included in each

waveband. At level zero, each waveband only costane data point, and is equivalent to the

original data.

0 |1 16 T
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1 2 .
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- o
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= =%
o

o)

4 16 1 =

Figure 3.5: An example tiling diagram

Wavelet analysis has been used to analyze neareédfireflectance spectroscopy. In a study
done to relate the spectroscopic reflectance sgofR70 soil samples to the clay content of
each sample, the regression of wavelet transfordsgd was an improvement over tradition
regression. The study found that thevRlue for wavelet transformed data was 0.99, wdeie
was only 0.79 for non-preprocessed data (Ge e2@0.7).
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CHAPTER 4 - Materials and Methods

4.1 Control Boxes

Two different control boxes were used with eachheffour probes. The boxes will be referred
to as the “old control box” and the “new controlxdo Each control box was composed of a
signal generator, a microcontroller, and a gain@mase detector. The signal generator was used
to generate sinusoidal signals which were senutiir@a probe. The gain and phase detector was
used to measure the difference in gain and phasebe the signal that went into the probe and
the signal that left the probe (Tang, 2009).

4.1.1 The Old Control Box

The old control box measured the gain and the pbadee samples at 635 different frequencies
ranging from 50 Hz to 120 MHz. This control boxsyarogrammed to test the gain and phase at
each frequency three times. The old control bak tkabe connected to a computer to store the
data because it had no internal memory. It did mete its own power supply, so it was
connected to a BK Precision Triple Output DC Po®epply 1660 which supplied it with 10 V
of power.

4.1.2 The New Control Box

The new control box measured the gain and phaskeosamples at 524 frequencies ranging
from 200 Hz to 400 MHz. It also had an input fothermocouple, so the temperature of the
samples could be monitored. Like the old contt,lithe new control box took a measurement
at each frequency three times. The new box hadws memory storage, but for these

experiments it was connected to a computer for statage. This box also had its own power

supply.
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4.2 Probes

All of the experiments were conducted with four lpge developed by researchers in the
Instrumentation and Control Laboratory of the Bgtal and Agricultural Engineering

Department of Kansas State University and with ampedance meter from Agilent

Technologies.

The probes made at Kansas State University werstremted from a series of parallel stainless
steel plates. The odd numbered plates were alaltyriconnected with each other, and so were
the even numbered plates. The probes were immarsesample where the gain and phase shift
were measured at a few hundred different frequencietermined by the control box. These

probes varied by size and by the number of plates.

There were two general designs for the probes. shialest probes, the “2 cm probe” and the
“2.5 cm probe”, both had plastic spacers betweenribtal plates to hold them in position. The
cable that connected the probe to the control bag & 50-52 coaxial cable with shield. The
larger probes, the “5 cm” and “7.5 cm probes”, weoastructed out of plastic, food storage
containers. The plates were screwed into the twotbthe container and the plates were wired

together inside of the container. The 50-52 cdavahle exited from the top of the containers.

4.2.1 The 2 cm Probe

The smallest probe, shown in Figutd, had 6 plates that were 2 cm wide, 3 cm tall, A mm
thick. The spacing between the plates was 1 mhe aFea of each plate was 6°criThis probe
was designed to measure biodiesel fuel, and wds tbuthese dimensions so that it could fit
inside a fuel tank. This width also allowed thelg to be inserted directly into the glass bottles
in which the solutions were kept. Figut€ shows the gain and phase of 1 L of distilledewa
measured by the 2 cm probe.
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Figure 4.1: The 2 cm probe
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Figure 4.2: Signal for distilled water from the 2 cm prole and the new control box
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4.2.2 The 2.5 cm Probe

The 2.5 cm probe is shown in Figute. It was made df2 plates that were 2.5 cm wide, 3.8
cm tall, and 1 mm thick. The distance betweenplaées was 1.5mm. The area of each plate
was 9.5 crh Figure4.4 shows the gain and phase of 1 L of distilledewaneasured by the 2.5
cm probe.

— (Zain
— Phase

Gain/Phase Signal

200 T T T
0.00E+00 J.00E+07 6.00E+07 9.00E+07 1.20E+03

Freq. {Hz)

Figure 4.4: Signal for distilled water from the 2.5 cm prdve and old control box
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4.2.3 The5and 7.5 cm Probes

The two larger probes were constructed almost iclgnio one another. They each had 6 plates
that were 5 or 7.5 cm wide, 3.5 cm tall and 5 miokth The spacing between the plates was 5
mm. The area of the 5 cm plates was 17.5 anl the area of the 7.5 cm plates was 263 cm
These probes fit into a rectangular container tasuee the solution. The 7.5 cm probe is shown
in Figure4.5 and Figuré.6 shows the gain and phase of 1 L of distilletewmeasured by the 5
cm probe.

Figure 4.5: The 7.5 cm probe
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Figure 4.6: Signal for distilled water from the 5 cm probeand old control box
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4.3Impedance Meter

The impedance meter used in this research was @denfd=4991A RF Impedance/Material
Analyzer, shown in Figurd.7. The impedance meter was set to measuithe real part of

permittivity, ande”, the imaginary part of permittivity, at 596 fregpcies between 1 MHz and
120 MHz in increments of 0.2 MHz. The method titatsed to measure permittivity is called

the capacitance method (Agilent, 2005). Measur¢ésmaade in 1 L of distilled water are shown
in Figure4.8.

Figure 4.7: Agilent E4991A RF Impedance/Material Analyzer(Agilent, 2009)
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Figure 4.8: Signal for distilled water with the impedancemeter
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4.4 Water Sample Preparation

4.4.1 Nitrate Salts

The salts studied in this experiment were potassiitrate (KNQ), calcium nitrate (Ca(N§),),

and ammonium nitrate (NfNIO3).  Solutions of water and salt were made at camagons of O-
200 umol/L in 50 umol /L increments and at concentrations of 300-Q 000l /L in increments

of 100 umol /L. Two sets of 0-20@mol/L solutions were prepared, a training set and a

validation set, making a total of 54 samples.

These samples were made from stock solutions &M KNO3, 0.005M Ca(NG@),, and 0.01M
NH4NOs. The stock solutions were prepared by weighireg dppropriate amount of dry salt,
shown in Tablet.1, placing it in a 1 L volumetric flask, and aadiglidistilled water to make the

total volume 1 L. The salts were all water soludhel dissolved readily at room temperature.

Table 4.1: Molecular weights of salts

Salt Molecular Weight Mass added to prepare
(g/mol) stock solution (g)
KNO, 101.1 1.01
Ca(NOs), 164.00 0.82
NH4NO4 80.04 0.80

To make the individual samples, the necessary atadigtock solution was measured intoa 1 L
volumetric flask using an Eppendorf Repeater PipgtBr. Distilled water was added to make
the total volume of the sample 1 L. Tall€ shows the amount of stock solution needed to
make each concentration. The contents of the flegstie mixed thoroughly, and the samples
were stored in 1 L glass bottles from Fisher SdieniThe flask was rinsed with distilled water
three times after each sample was prepared to swakethat none of the samples contaminated

the others.
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Table 4.2: Volume of stock solutions used to make 1 L tnate samples

Sample Volume of Concentration Concentration Concentration
Concentration Stock Solution of KNO 5 (mg/L) of Ca(NO3), of NH4NO;
(umol /L) (mL) 3(Mg (mg/L) (mg/L)
0 0 0 0 0
50 5 5.06 8.20 4.00
100 10 10.11 16.40 8.00
150 15 15.17 24.60 12.01
200 20 20.22 32.80 16.01
300 30 30.33 49.20 24.01
400 40 40.44 65.60 32.02
500 50 50.55 82.00 40.02
600 60 60.66 98.40 48.02
700 70 70.77 114.80 56.03
800 80 80.88 131.20 64.03
900 90 90.99 147.60 72.04
1,000 100 101.10 164.00 80.04
4.4.2 Atrazine

Solutions of water and atrazine were prepared tearations of 0-12 mg/L in increments of 2
mg/L. Two samples were made for each concentratioa for training and one for validation;
there were a total of 14 atrazine solutions. Tuvidual atrazine solutions were prepared from
a 1,000 mg/L stock solution. The stock solutiorswwamposed of 1.187 g (1 mL) atrazine and
999 mL of distilled water. The individual sampleere prepared from the stock solution using
the same procedure as the nitrate salts. The ambstock solution used to make each sample

is shown in Tabld.3.

Table 4.3: Volume of stock solution used to make 1 L atmane samples

Concentration of Volume of Stock
Sample (mg/L) Solution (mL)

N[O |O(A~|IN|O
N|O||(O|~[N|O

P
=
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4.5 Testing Procedure

4.5.1 One Liter Water Samples

The nitrate salts were tested in three groupstrtiring set of 0-20@mol/L concentrations, the
validation set of 0-20Qumol/L concentrations, and the set 300-1,Q0fol/L concentrations.
The atrazine samples were the fourth group. Theokss in each group were assigned a number,
and a list of these numbers in a random order waduged using the RAND function in
Microsoft Excel. This list of numbers was the ardewhich the samples in each group were
tested. The purpose of the random order was torerthat the patterns seen from sample to
sample were due to the differences in chemical cmmipn in the samples and not to
uncontrolled changes of other factors, such as rtmmperature, from one test time to another.
The room temperature was recorded each day befstind began to be sure that it did not

greatly fluctuate.

For each test, the control box was connected tadhguter. Microsoft HyperTerminal 5.1 was
used to collect the data from the control box. éhfgrminal saved the data for each test as a .txt
file. These files were opened in Microsoft Excelteat the frequency could be plotted against
the gain and phase measurements.

4.5.1.1 The 2 cm Probe

A stand was built to keep the position of the 2 probe, relative to the bottle of solution,
constant for each test (Figu4e9). The stand held the probe in place. A shoelthe bottle to sit
on was located 26 cm below the probe. The sheillidcbe slid in and out of the stand, allowing
the bottle to be changed without moving the probée shelf had a circular depression in the
center of it, exactly the same diameter as theobotif the bottles, ensuring that every bottle was
placed in the same position.
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Figure 4.9: Testing with the 2 cm probe and new control bo

Before the samples were tested with the 2 cm pritieamount of solution in each bottle was
adjusted to be exactly 900 mL so that the probeldvbe immersed to exactly the same depth for
each test. After each test was done, the probednmgeed in distilled water and dried with

pressurized air.

When the 2 cm probe was used to measure the 1 Lpleamthere were significant
inconsistencies in the signals it measured, esipeagahigher frequencies. Experiments were
done to investigate a number of possible causefjdimg bumping of the probe when it was
removed from a sample, movement of the plates dtieet pressurized air that was used to clean
the probe, and the size of the container that tieldsolution. It was theorized that the 1 L glass
bottles were too small, and that the probe neenléé surrounded by more solution to reduce the
boundary effect. The boundary effect results frtna interference of the electric field by the
bottles in which the samples was measured. Thesglaght react to the electric field, or its
permittivity may interfere with the measurementtiof sample’s permittivity. The tests were
duplicated in a 10 gallon (37.9 L) glass aquarionsee if this would improve the results. The
procedure for the tests done in the aquarium isrdesd in Section 4.5.2.
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4.5.1.2 The 2.5 cm Probe
A stand was also built to hold the 2.5 cm probplate, as shown in Figu#el0. The stand held

the sample in place below the probe. Unlike then2probe, the 2.5 cm probe was removed
from the stand after each test so that it couldleéaned. A ring clamp on the probe ensured that

it always slid back into its holder on the stanthatsame height.

Figure 4.10: Testing with the 2.5 cm probe and old contrdbox

Each sample was poured into a rectangular plastitamer to be tested. A line was drawn on
the container to which the water was always filldthe purpose of the line was to make sure that
the probe was always immersed to the same deptter @ach test the probe and the container
were washed thoroughly using dish soap and a brddiey were dried with pressurized air.
This was done to ensure that one sample did ndaconate another and that the water from

washing the equipment did not mix with any of thenples.

30



45.1.3 The5and 7.5 cm Probes

The testing procedures for the 5 cm probe and e probe were identical. For each test, the
sample was poured into the plastic container usetht tests with the 2.5 cm probe. Another
fill line was drawn for these probes. The contase on a board with the control box, as shown
in Figure4.11. The board had wooden guides on it to linehepcontainer and the control box
so that their positions remained the same for etesty The probes fit securely into a rectangular

hole in the fiber glass lid that covered the comai

Figure 4.11: Testing with the 5 cm probe and old control bx

The coaxial cable connecting the probe to the obiibx remained attached to the control box
between tests, but had to be removed from the paftee each test so that the probe could be
cleaned. After each sample was tested with thenJwbe and the 7.5 cm probe, the plastic
container, the lid, and the probes were washeddaied with the same procedure used for the

2.5 cm probe.

4.5.1.4 | mpedance Meter

A stand was also built so that the probe on thesolapce meter remained in a fixed position for
each sample measured. This is illustrated in Eigut2. Before tests could be performed, the
machine had to be calibrated for open, short, ad ad using a 16195B cal kit. The

calibration was done to remove error and make thasorements as accurate as possible.
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Figure 4.12: Testing with the impedance meter

The plastic containers were also used to hold éineptes for the impedance meter tests. Once
again, the container was always filled to a spediiie to keep the probe depth constant
throughout the tests. The impedance meter wasecteth to a computer, and the data was
collected using 85070E software from Agilent Tedbgees. Between tests, the probe was

dipped into deionized water and dried with a lirgef cloth.

4.5.2 Testing Procedure for 36 L Water Samples

To reduce the influence of the boundary effect,wad¢er was also tested in a 37.9 L aquarium.
The 2, 2.5, and 7.5 cm probes were used with tkeaoaitrol box for these tests. A special top
was built for the aquarium that held each of thebps in a fixed position, as shown in Figure
4.13 The center of each probe was 12.5 cm from the efathe aguarium and from the center

of the adjacent probe.

32



Figure 4.13: Testing the 36 L samples and new control box

Because of the large amount of water needed faethkests, individual samples were not used.
Instead, for each contaminant, the aquarium whedfilvith 36 L of clean, distilled water. The
water was measured with each of the three probé&setvonce for training and once for
validation, and then a specific amount of contamingas added from a stock solution. Each
stock solution was 1 L, and they were preparedoacentrations of 0.15 M for KNQand
NH4NOs, 0.075 M for Ca(NG),, and 4,000 mg/L for atrazine. The amount of comtant used

to make each stock solution is shown in Tah#e Table4.5 shows the amount of nitrate stock
solution added for each concentration, and Taleshows the amount of atrazine stock solution

added for each test.

Table 4.4: Amount of contaminant used to make stock sadlions for 36 L tests

Contaminant SCtOCk SOIUI.'On Mass Added (g)
oncentration
KNO; 0.15M 15.165
NH;NO; 0.075 M 12.300
Ca(NOs), 0.15 M 12.006
Atrazine 4,000 mg/L 4.748

33




Table 4.5: Dilution of 36 L nitrate solutions

. Volume Stock
Concentration Total Water Solution Added
(umol/L) (L) (mL)

0 36.0 0

50 36.0 12.0

100 36.0 12.0

150 36.0 12.0

200 36.1 12.0

300 36.2 24.2

400 36.2 24.2

500 36.3 24.5

600 36.4 24.5

700 36.6 25.0

800 36.8 25.2

900 37.0 25.5

1000 37.2 26.0

Table 4.6: Dilution of 36 L atrazine solutions

. Volume Stock
Con?r(]eqr;]t/rsnon Total(l\_/;/ater Solution Added
(mL)

0 36.0 0

2 36.1 18.0

4 36.1 18.0

6 36.2 18.0

8 36.2 18.2

10 36.3 18.2

12 36.4 18.2

All three probes remained in the water/contamirsahition during the entire series of tests for a
particular contaminant. The contents of the aquranwere stirred carefully after each addition
of stock solution to make sure that the newly addedtaminant was evenly distributed

throughout the aquarium. After all the tests waome for one contaminant, the probes were

cleaned with dish soap and water and dried witsqunezed air.

4.5.3 Testing Procedure for Biodiesel Samples
Biodiesel fuel was tested with water, glycerol, aglgiceride as contaminants.
procedure for the biodiesel samples was similatheoprocedure for the 36 L water samples.

The aquarium was filled with 36 L of clean soybdéérdiesel at the beginning of each series of
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tests, measured twice with each of the three pradoes then contaminant was added. Eleven
concentrations were measured for each of the consats from O ppm to two times the
maximum limit allowed by the ASTM standards, in elyedistributed increments, and ten
concentrations were measured from two times thé lionten times the limit, also in evenly
distributed increments. Thus, a total of twentg-aroncentrations were measured for each
contaminant. Tabld.7 shows the concentrations of each contaminamtwlre measured. The

row in bold is the ASTM limit for each of the impties.

Table 4.7: Concentrations of contaminants measured in bdesel tests

Test Water (ppm Glycerin Glyceride
Number | volume basis) (mg/L) (mg/L)
1 0 0 0
2 100 40 440
3 200 80 880
4 300 120 1320
5 400 160 1760
6 500 200 2200
7 600 240 2640
8 700 280 3080
9 800 320 3520
10 900 360 3960
11 1000 400 4400
12 1400 560 6160
13 1800 720 7920
14 2200 880 9680
15 2600 1040 11440
16 3000 1200 13200
17 3400 1360 14960
18 3800 1520 16720
19 4200 1680 18480
20 4600 1840 20240
21 5000 2000 22000

To calculate the amount of contaminant that ne¢dd® added to the biodiesel for each test, the
glycerin and glyceride limits had to be convertedatvolume basis using the density of each
substance. The volume of contaminant added is showlable4.8. To make sure that the
contaminants were evenly distributed throughoutatearium, approximately 2 L of biodiesel
was drained from the aquarium to a smaller contaiaed the contaminant was added to the
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smaller container. The container was vigorousigkshn, and then the contents of the container

were stirred back into the aquarium.

Table 4.8: Amount of contaminant added for each biodiesdbst

Test | Water | Glycerin | Glyceride
No. (mL) (mL) (mL)

1 0 0 0
2 3.60 1.00 15.0
3 3.60 1.00 15.0
4 3.60 1.00 15.0
5 3.60 1.00 15.0
6 3.60 1.00 15.0
7 3.60 1.00 15.0
8 3.60 1.00 15.0
9 3.60 1.00 15.0
10 3.60 1.00 15.0
11 3.60 1.00 15.0
12 14.5 4.00 60.0
13 14.5 4.00 60.0
14 14.5 4.00 60.0
15 14.5 4.00 60.0
16 14.5 4.00 60.0
17 14.5 4.00 60.0
18 14.5 4.00 60.0
19 14.5 4.00 60.0
20 14.5 4.00 60.0
21 14.5 4.00 60.0

Experiments were done to determine if the proba® able to detect more than one impurity at
atime. The first contaminant was added, and vélie2il concentrations of that contaminant had
been measured, the second contaminant was addéeé. 2T concentrations of the second
contaminant, with the first contaminant at its nmaxm level, were measured, and then the same
procedure was repeated for the third contamindrite order in which the contaminants were
added for each series of tests is given in Tdl®e Only the first series of tests is discussed i

this thesis.

Table 4.9: Order that contaminants were measured for eachiodiesel test series

Test Series 1 Test Series 2 Test Series 3
Water Glycerin Glyceride
Glycerin Glyceride Glycerin
Glyceride Water Water
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4.5.4 Temperature Experiments
The

room temperature fluctuated very little, not mdrart 3°C; however, tests still needed to be done

The temperature of the room in which the testing \wane could not be kept constant.

to determine if these small fluctuations would effféne results. To study the temperature effect,
1 L samples of distilled water, 100 umol/L of eastrate salts, and 200 umol/L of each nitrate
salt were put in the refrigerator overnight. Tlaenples were removed from the refrigerator in
the morning, and measurements were taken approaynayery 20 minutes with the 5 and 7.5

cm probes until the sample reached room temperature

These experiments showed that varying the temperaiuhe range of 3°C to 23°C affected the
results very little. Figurel.14 shows the gain signals from distilled watentasemperature
increased. These measurements were taken with¢heprobe and the old control box. Figure

4.15 shows the phase signals from these tests.
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Figure 4.14: Gain signals with increasing temperature froni L of distilled water with the 5
cm probe and the old control box
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Figure 4.15: Phase signals with increasing temperature fro 1 L of distilled water with the
5 cm probe and the old control box

4.6 Data Analysis

Four different programs were written using MatLab.d (The Mathworks, 2008a) and various
toolboxes for MatLab. The regression methods usetk stepwise regression, partial least
squares regression, artificial neural network, atepwise regression of wavelet transformed
data. The gain and/or phase data were the x-Vasi@md the concentration or molecular weight

values were the y-variables.

The probes developed at K-State measured the gairplase of every sample three times at
each frequency. These three signals were averagddhe regression programs were run on the
average values. Only one reading was taken byinipedance meter. For each group of
samples, regression was done using just the gaalsijust the phase signal, and the gain and
phase signals together. The same thing was danthdoimpedance meter with the real and
imaginary permittivity signals. Regression was @l@n the nitrate samples for just the low
concentrations (0-200 pmol/L), just the high coriions (300-1,000 pumol/L), and for all of
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the concentrations together. This was also don¢hfo fuel tests; the concentrations up to two
times the ASTM standard were considered the lowceotmations, and the concentrations that
were higher than twice the ASTM standard were a®red the high concentrations. As a result,
there were nine subsets of data from each sens@afth regression method. The results from
these subsets were analyzed both individually and group to show the overall trend for a

particular probe or regression technique.

Each group of samples consisted of a training sketaused to create the regression model, and a
validation data set that was used to verify the eho@ecause only one set of high concentration
nitrate salts was made for the 1 L samples, thenaabered concentrations (300, 500, 700, and
900 umol/L) were used as the training set, ancé#s® numbered concentrations (400, 600, 800,
and 1,000 pmol/L) were used as the validation $&ir the 36 L nitrate tests, all of the odd
numbered concentrations (50, 150, 300, 500, 700,%9 pumol/L) were used as the training
data and the even numbered concentrations (0,2000,400, 600, 800, and 1,000 umol/L) were
used as the validation data. Alternating concéintrta were also used for the biodiesel tests.
The data was analyzed without including O pmol/ltha validation data, and it was found that

excluding 0 umol/L from regression did not change esults very much.
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4.6.1 Stepwise Regression
For this research, stepwise regression was dong datLab 7.6.0 (The Mathworks, 2008a) and
the Statistics Toolbox 7.0 (The Mathworks, 2008E)gure4.16 is a flowchart of the program.

A copy of the complete program can be founédppendix B.

The program begins by loading the training and daion data, as well as a list of the
frequencies that correspond to each x-variablext,Nestepwise model is made with the training
data using the function stepwisefit. The p-vahet is needed to add a variable into the model is
0.05, a commonly used value, and the p-value needezmove a variable is 0.10. A list of the
frequencies at which the x-variables were significanough to be included in the model is
stored. After this, the model is used to prediet y-variables from the training and validation x-
variables. The predictions are stored, and thedRies and RMSE values are calculated and
stored. Finally, a plot is made that shows thealcg-values on the x-axis and the predicted y-
values on the y-axis. A perfect fit line is drathinough the actual values.
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4.6.2 Partial Least Squares Regression

The program that was used for PLS regression watemwusing PLS Toolbox 4.0 (Eigenvector
Research Inc., 2006) and MatLab 7.6.0 (The Maths,a2k08a). A flowchart of the program is
shown in Figure4.17, and a copy of the program is providedAppendix C. The program
begins by cross-validating the data with leave-oue-cross validation using the crossval
function. The predictive residual error sum of @es, or PRESS, statistic is calculated, along
with the cumulative PRESS (CUMPRESS), which isgbm of columns in the PRESS matrix.
The formula for calculating the PRESS is:

PRESS = (Ypred- Yac) ° (4.1)
where Yyeq = the predicted Y-value, and

Y act = the actual Y-value.

The program then selects the value at which CUMPRESSsmallest; this is the number of
factors that explain the most variation. The dstmean-centered with the preprocess function,
which means that all of the columns are adjustedatce a mean of zero, and then a model is
created using the training data and the numbemrafs previously determined with the pls

function.

The model uses the training x-variables to prethiettraining y-variables. The same thing is
done for the validation data. Once the predictibage been made, the program computes the
R*-values and the RMSE values for both training amitlation data. Finally, a plot is made that
shows the actual y-values on the x-axis and thdigtexl y-values on the y-axis. A perfect fit

line is drawn through the actual values.
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Figure 4.17: A flowchart of the PLS program
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4.6.3 Artificial Neural Network

The neural network program in this research wastemiusing MatLab 7.6.0 (The Mathworks,
2008a) and the Neural Network Toolbox 6.0.1 (Thehv@arks, 2008b). A flowchart for the
program is shown in Figure18. A copy of the program can be foundippendix D.

The program begins by removing all rows with constaalues, using the removeconstantrows
function. If a row has a constant value all they\maross, there was no variation in the gain or
phase measurement from one concentration to anathétte frequency corresponding to the
constant row. Because there is no variabilityhie x-variables at frequencies where this occurs,
this data will not be useful in model building.

Next, the data is rescaled using the mapminmaxtifumcso that the smallest value in a row is -1
and the largest value is 1. A feed-forward baakppgation network is created with ten hidden
neurons, a common number to use for a datasetiofite, using the newff function. Then,
from the rescaled data, the training dataset igdeds into three subsets- a training subset, a
validation subset, and a test subset. The dividéwection randomly separates the data so that
60% of the samples are in the training subset, 26&4n the validation subset, and 20% are in

the test subset.

In the following step, the train function is usew dreate a model with the network and the
training data subset. The model is tested andsttjuvith the validation and test subsets. This
is done to avoid over-fitting. Once the model baen adjusted, the entire training data set and
the entire validation data set are each fed ineortodel and the model predicts the outputs.
After the predictions are made, the program conmthe R-values and the RMSE values for

both training and validation data. Finally, a pptmade that shows the actual y-values on the x-
axis and the predicted y-values on the x-axis. effget fit line is drawn through the actual

values.
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Figure 4.18: A flowchart for the artificial neural network program
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4.6.4 Wavelet Transformation
The wavelet program was written using MatLab 7(@@e Mathworks, 2008a) and the Wavelet
Toolbox 4.2 (The Mathworks, 2008d). A flowcharttbé program is shown in Figu#el9 and

the complete program is providedAppendix E.

The program begins by determining the highest leesisform that can be performed given the
number of x-variables present. This is calculdtgdounding log (length of x data)/log (2) down

to the nearest whole number. Data from five déferevels will be used to make the model, so
the lowest level is found by subtracting four froine highest level. Once the levels have been
determined, the x-data is transformed with a Haavelet and the appropriate levels using the
wavedec function. This compresses the data fraertain range of frequencies together into an

approximation and a detail coefficient.

Stepwise regression is run on the transformeditigidata using the function stepwisefit. The
model made by stepwise is applied to the wavetoamed training and validation x-variables
to predict the Y-variables. The*Ralues and the RMSE values are calculated anédstoA
plot is made that shows the actual y-values orxtleis and the predicted y-values on the y-axis.

A perfect fit line is drawn through the actual vedu

A list of the data points that were selected bypwise is made and converted into a table of the
levels and wavebands corresponding to each padihis information is used to make a tiling
diagram. The tiling diagram is constructed usimg annotation function. The wavebands that
were selected are colored in, and the transforeldeand frequencies are added to the diagram.
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Figure 4.19: A flowchart of the wavelet program
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CHAPTER 5 - Results and Discussion

5.1 Nitrate Salts and Water

The results for predicting nitrate concentratioml amolecular weight in water were promising.
There were many high’Rralues from these tests. These values are giveables that have the
validation R-values above 0.900 bold and in blue. For tabiestiich there were no“Ralues
above 0.900, the highest validation value is bald&ables are also given for the RMSE values.

5.1.1 Concentration

Overall, the probes and regression methods usettiisnresearch proved to be reliable for
measuring nitrate concentration in water. The ésghR-values obtained for training and
validation were both 1.00, and the lowest RMSE @saltor both training and validation were
0.00 umol/L. This means that for some of thestéisat were completed, the regression model

was able to explain 100% of the variation in theada

5.1.1.1 One Liter Samples

The R-values for predicting the concentration of nitratt in the 1 L samples are given in
Table5.1, and the RMSE values are given in Tdh® The highest training’®alue for the 1

L samples was 1.00, and the highest validatibvatue was 0.988. The lowest training RMSE

value was 0.00 umol/L, and the lowest validation$#Walue was 22.0 umol/L.

5.1.1.1.2Comparison of Probes

For the 1 L samples, the 5 cm probe and the 7.Brome were the most accurate, based dn R
and RMSE values, of measuring the nitrate concéotra When both the high and low
concentrations were used to build the models, diaest validation Rvalue for each of these
probes was around 0.858, meaning that 85% of thatian in the validation data was explained
by the model made using the training data. Boghitfand 7.5 cm probes had trainingvRlues
above 0.900 for approximately 90% of the data sisbs€he validation Rvalues for the 5 cm
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probe were above 0.900 for 58% of the data subaetsthe validation Rvalues for the 7.5 cm

probe were above 0.900 for 69% of the data subsets.

The 2 cm probe did not do a good job of predictingcentration with the 1 L samples. Most of
the training R-values for this probe were good, many above 0@0the average validation’R
value for this probe was only 0.171 and there weosevalidation R-values above 0.900.
Therefore, the variations in the data were not iste&st from the training set to the validation set

for this probe.

The 2.5 cm probe and the impedance meter did médrpeas well as the larger probes, but they
predicted nitrate concentration more accurately tine 2 cm probe. Both of these sensors had
training R-values that were mainly above 0.900, but the 5pcobe only had validation’R
values above 0.900 for 33% of the regression modele impedance meter had validatiod R

values above 0.900 for 64% of the regression models

5.1.1.1.2Comparison of Regression Techniques

The partial least squares regression models wéegt@lexplain more variation in the 1 L nitrate
concentration data than the models from the otbgression methods. The models made using
the real part of permittivity from the impedance terewith only the 0-200 pmol/L
concentrations were unreliable for all of the regren methods. When these measurements are
excluded from the data, the lowest trainingvRlue from PLS was 0.917 and the lowest
validation R-value was 0.814. For the training data, the PESdRes were above 0.900 89%
of the time and the validation’Ralues were above 0.900 64% of the time, morendftan for

any other regression method studied.

Neural network proved to be the least effectivehmétin predicting nitrate concentration. The
average training Rvalue from ANN was only 0.802, even without theopoesults from the 2
cm probe, whereas the average values for the ddobiniques were all above 0.900. The
training R-values for this method were only above 0.900 49%h®time, and the validation’R

values were above 0.900 11% of the time.
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Traditional stepwise regression and wavelet transfiollowed by stepwise regression were
comparable in their abilities to detect nitratesniater. Both had average training-walues
around 0.960 and average validation values arouBd00 The RMSE values were lower,
overall, for traditional stepwise regression than gtepwise regression on wavelet transformed
data.

Table 5.1: RP-values for predicting concentration of 1 L nitratesamples

SWR PLS ANN Wavelet

Training | Validation | Training | Validation | Training | Validation | Training | Validation

All Gain 0.938 0.153 0.974 0.323 0.969 0.136 0.918 0.172

All Phase 0.747 0.350 0.965 0.265 0.610 0.004 0.761 0.255

~n | All Gain+Phase 0.937 0.114 0.975 0.340 0.216 0.193 0.605 0.550
S | Low Gain 0.707 0.106 0.651 0.208 0.013 0.122 0.553 0.144
T | Low Phase 0.367 0.094 0.764 0.191 0.001 0.050 0.528 0.170
% Low Gain+Phase 1.000 0.055 1.000 0.155 0.351 0.008 0.330 0.110
High Gain 1.000 0.446 0.994 0.001 0.662 0.000 0.561 0.585

High Phase 0.852 0.002 0.513 0.027 0.360 0.003 0.917 0.312

High Gain+Phase 1.000 0.492 0.507 0.031 0.258 0.002 0.000 0.000

All Gain 0.997 0.901 1.000 0.966 0.885 0.818 0.982 0.960

All Phase 0.979 0.945 0.996 0.910 0.907 0.710 0.992 0.893

a All Gain+Phase 1.000 0.923 0.999 0.970 0.934 0.848 0.976 0.941
o | Low Gain 0.983 0.831 0.999 0.965 0.336 0.007 0.913 0.867
% Low Phase 0.862 0.979 0.997 0.869 0.262 0.039 0.970 0.610
g_‘ Low Gain+Phase 1.000 0.921 0.999 0.906 0.669 0.228 0.901 0.060
® | High Gain 1.000 0.855 0.927 0.884 0.772 0.008 0.961 0.893
High Phase 0.959 0.841 0.980 0.843 0.574 0.391 0.953 0.668

High Gain+Phase 0.959 0.841 0.917 0.852 0.807 0.776 0.936 0.842

All Gain 0.991 0.970 0.995 0.978 0.879 0.858 0.982 0.980

All Phase 0.995 0.977 0.981 0.984 0.967 0.894 0.989 0.976

a1 | All Gain+Phase 0.995 0.964 0.985 0.977 0.979 0.886 0.986 0.972
S | Low Gain 0.971 0.521 0.937 0.969 0.838 0.385 0.974 0.195
o | Low Phase 0.952 0.905 0.924 0.964 0.950 0.852 0.949 0.387
% Low Gain+Phase 1.000 0.034 0.931 0.970 0.891 0.141 0.957 0.762
High Gain 0.998 0.591 0.940 0.926 0.053 0.056 0.952 0.947

High Phase 0.987 0.937 0.956 0.944 0.900 0.885 0.978 0.941

High Gain+Phase 1.000 0.881 0.952 0.940 0.947 0.882 0.955 0.939

All Gain 0.987 0.964 1.000 0.956 0.973 0.884 0.989 0.968

All Phase 1.000 0.924 0.994 0.961 0.971 0.877 0.987 0.949

; All Gain+Phase 0.992 0.972 0.994 0.959 0.934 0.859 0.985 0.968
o Low Gain 0.934 0.979 0.929 0.971 0.383 0.163 0.938 0.951
% Low Phase 0.925 0.964 0.917 0.976 0.920 0.713 0.927 0.978
g_‘ Low Gain+Phase 0.934 0.979 0.923 0.975 0.619 0.386 0.938 0.951
® | High Gain 0.987 0.722 0.999 0.961 0.872 0.660 0.967 0.947
High Phase 0.979 0.934 0.945 0.926 0.992 0.832 0.962 0.958

High Gain+Phase 0.986 0.879 0.943 0.922 0.932 0.828 0.962 0.960

All Real 1.000 0.692 0.995 0.827 0.906 0.773 0.975 0.952

3 All Imaginary 1.000 0.945 0.991 0.979 0.989 0.985 0.979 0.977
B All Real+Imaginary 1.000 0.969 0.991 0.956 0.976 0.884 0.981 0.985
& | Low Real 0.497 0.066 0.487 0.061 0.019 0.335 0.857 0.632
§ Low Imaginary 0.951 0.953 0.936 0.988 0.940 0.934 0.965 0.966
=z | Low Real+Imaginary 1.000 0.961 0.956 0.959 0.971 0.939 0.993 0.823
% High Real 0.970 0.763 0.987 0.814 0.987 0.796 1.000 0.914
- High Imaginary 1.000 0.901 1.000 0.941 0.941 0.934 0.988 0.900
High Real+Imaginary 0.987 0.885 0.956 0.951 0.989 0.936 0.969 0.953
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Table 5.2: RMSE values for predicting concentration of 1L nitrate samples (umol/L)

SWR PLS ANN Wavelet

Training | Validation | Training | Validation | Training | Validation | Training | Validation

All Gain 76.39 392.53 49.24 353.73 56.13 409.51 87.61 414.12

All Phase 154.08 289.23 57.55 394.38 195.46 436.27 149.47 311.22

~ | All Gain+Phase 76.66 494.84 48.60 351.66 338.30 402.24 192.32 240.21
g Low Gain 41.08 208.44 44.89 192.93 95.25 112.03 50.79 192.29
T | LowPhase 60.44 136.17 36.92 167.55 102.38 91.69 52.19 166.87
& | Low Gain+Phase 0.00 325.00 0.14 271.53 65.34 103.35 62.18 98.66
® High Gain 0.00 230.70 18.65 340.71 159.09 334.32 162.22 180.77
High Phase 94.29 362.97 170.99 324.29 207.58 314.98 70.52 264.20

High Gain+Phase 0.00 195.44 172.00 324.67 384.66 318.19 701.43 804.98

All Gain 15.42 115.07 0.05 79.07 114.74 150.96 40.69 100.93

All Phase 44.38 103.64 18.64 110.42 101.60 229.59 27.35 107.05

3 All Gain+Phase 0.00 111.60 9.55 65.27 82.08 150.78 47.78 91.36
o | Low Gain 9.97 70.58 2.62 49.64 63.37 105.84 22.38 58.68
% Low Phase 28.23 57.99 4.43 50.41 72.17 105.29 13.12 57.40
g Low Gain+Phase 0.00 51.75 2.71 49.74 44.21 74.43 23.92 113.28
® | High Gain 0.81 136.71 66.33 86.11 128.71 352.89 48.63 85.54
High Phase 49.43 114.20 34.42 100.59 215.07 235.09 53.38 145.80

High Gain+Phase 49.43 114.20 70.51 102.70 108.98 154.06 62.04 102.68

All Gain 28.39 70.80 22.36 54.09 131.33 134.42 40.89 68.66

All Phase 21.85 59.30 42.15 64.55 66.53 129.17 31.92 41.75

o1 | All Gain+Phase 21.21 92.72 36.89 64.36 46.49 134.63 36.02 71.74
g Low Gain 12.87 109.65 19.00 77.22 35.68 69.00 12.28 134.47
T | Low Phase 16.60 88.15 20.94 68.58 17.63 30.67 17.11 155.29
g | Low Gain+Phase 0.00 234.74 20.01 71.42 28.22 104.51 15.68 124.05
® High Gain 10.94 181.45 60.18 75.97 269.25 308.52 53.93 61.63
High Phase 28.38 71.56 51.54 60.86 80.27 112.52 35.93 60.07

High Gain+Phase 0.00 125.29 53.68 64.49 62.16 147.66 51.81 62.42

All Gain 34.36 76.08 1.26 93.88 51.04 132.27 32.68 85.39

All Phase 0.54 102.30 23.37 85.28 53.90 140.01 34.47 69.88

a All Gain+Phase 26.98 76.65 24.34 85.70 81.39 133.28 37.42 65.94
o | Low Gain 19.57 76.26 20.19 73.50 68.10 99.06 18.98 86.42
% Low Phase 20.81 70.80 21.85 71.36 24.16 61.82 20.55 81.76
g Low Gain+Phase 19.57 76.26 21.03 72.20 49.12 63.67 18.98 86.42
® | High Gain 28.31 137.65 7.18 50.49 98.73 204.01 44.36 67.17
High Phase 35.33 70.66 57.44 72.23 22.61 186.95 48.02 51.09

High Gain+Phase 28.95 93.56 58.63 74.92 67.17 203.79 47.60 51.23

All Real 0.98 201.81 21.19 158.38 98.35 205.14 48.33 79.03

3 All Imaginary 0.00 91.36 28.22 59.92 35.18 57.97 44.37 43.68
S | Al Real+imaginary 0.00 84.55 29.29 127.16 49.93 129.07 42.50 48.99
& | Low Real 53.86 184.65 54.38 171.68 123.50 140.49 28.75 89.02
§ Low Imaginary 16.85 28.32 19.23 57.80 19.65 25.72 14.29 67.27
= | Low Real+Imaginary 0.00 24.59 15.84 41.69 13.93 22.00 6.19 36.92
% High Real 42.51 130.53 27.68 112.75 38.05 200.99 0.01 86.28
~ | High Imaginary 1.49 108.30 2.04 73.72 71.76 83.05 26.81 81.01
High Real+Imaginary 27.58 90.94 51.41 54.37 27.90 87.49 43.17 57.94
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5.1.1.2 Thirty-six Liter Samples

Overall, the predictions were more accurate with 36 L samples than with the 1 L samples.
Table5.3 shows the Rvalues for predicting the concentration of thel3itrate salts, and Table
5.4 shows the RMSE values. The highest trainifigdRue for the 36 L tests were 1.00, and the
highest validation Rvalue was 0.999. The lowest training and val@atRMSE values for

these tests were 0.00 pmol/L.

5.1.1.2.1Comparison of Probes

The 7.5 cm probe performed the best in the 36 tateitconcentration tests. All but two of the
training R-values for this probe were at or above 0.900, mady of these values were 1.00.
The average validation?Rralue for this probe was 0.899, and the validafirvalues were
0.900 or above for 70% of the regression models.

The second best performing probe was the 2.5 @hepr The 2.5 cm probe and the 7.5 cm
probe had similar RMSE values; the training RMSRiea tended to be a little bit lower for the
2.5 cm probe than the 7.5 cm probe. The trainifgdRies for the 2.5 cm probe were above
0.900 for 83% of the regression models, and thielatdn R-values were above 0.900 for 58%

of the regression models.

Once again, the 2 cm probe provided the leasthielieesults. The training?Ralue for this
probe was only above 0.900 half of the time, amdvidlidation R-values were only above 0.900
for 11% of the regression models. This probe &0 the highest RMSE values of the three

probes for both training and validation.

5.1.1.2.2Comparison of Regression Techniques

PLS was the most effective regression method fedipting the concentration of nitrate salts in
water for the 36 Lsamples. This method had thee&tVRMSE values, overall, and the highest
R%values. The training Rvalues for PLS were above 0.900 for 100% of the,dand the
validation R-values were above 0.900 for 78% of the data. aVerage training Rvalue for
PLS was 0.993, and the average validatiGwv#&tue was 0.909.
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Stepwise regression was also a promising methodoifedicting nitrate concentration. The
RMSE values for stepwise were only a little bitltégthan the values for PLS. The traininfg R

values for stepwise were above 0.900 85% of the aimd the validation Rvalues were above

0.900 52% of the time.

Neural network and wavelet were the two least pédianethods. The RMSE values for these
methods were, on average, much higher than the RM8Ees for PLS and stepwise. Thé R
values for these methods were not very high. Meeame training Rvalues for neural network
and wavelet were 0.813 and 0.744, respectivelye dVerage validation °Rialues for these

methods were both around 0.600, and neither metadd/ery many Rvalues above 0.900.

Table 5.3: RP-values for predicting concentration of 36 L nitrae samples

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 0.997 0.743 1.000 0.825 0.931 0.887 0.969 0.839

All Phase 0.994 0.880 0.999 0.909 0.854 0.854 0.161 0.185

~ | All Gain+Phase 0.894 0.686 1.000 0.881 0.971 0.728 0.130 0.165
g Low Gain 0.555 0.055 1.000 0.665 0.813 0.705 0.000 0.000
T | Low Phase 0.784 0.412 0.997 0.641 0.407 0.574 0.465 0.236
& | Low Gain+Phase 0.963 0.684 0.999 0.626 1.000 0.126 0.397 0.185
® High Gain 0.976 0.574 0.999 0.944 0.745 0.365 0.508 0.483
High Phase 0.707 0.241 0.999 0.945 0.479 0.426 0.000 0.000

High Gain+Phase 0.945 0.661 1.000 0.915 0.615 0.829 0.000 0.000

All Gain 1.000 0.954 0.998 0.958 0.664 0.397 0.997 0.973

All Phase 1.000 0.967 1.000 0.964 0.929 0.937 0.993 0.941

5 All Gain+Phase 1.000 0.987 0.999 0.965 0.957 0.920 0.995 0.955
o | Low Gain 0.956 0.689 0.972 0.926 0.522 0.713 0.824 0.889
% Low Phase 0.999 0.656 0.939 0.762 1.000 0.145 0.969 0.871
g Low Gain+Phase 0.992 0.554 0.915 0.914 0.002 0.174 0.901 0.803
® | High Gain 1.000 0.973 1.000 0.937 0.898 0.702 0.999 0.934
High Phase 1.000 0.951 1.000 0.949 0.831 0.740 1.000 0.863

High Gain+Phase 1.000 0.977 1.000 0.950 0.984 0.779 0.997 0.971

All Gain 1.000 0.992 1.000 0.995 0.985 0.880 0.997 0.993

All Phase 1.000 0.995 1.000 0.996 0.980 0.960 0.997 0.995

a All Gain+Phase 1.000 0.996 1.000 0.999 0.920 0.920 0.999 0.994
o | Low Gain 1.000 0.783 1.000 0.968 0.574 0.206 0.966 0.878
% Low Phase 0.999 0.921 1.000 0.943 1.000 0.702 0.952 0.610
g Low Gain+Phase 1.000 0.923 1.000 0.975 1.000 0.587 0.864 0.785
® | High Gain 1.000 0.985 1.000 0.996 0.984 0.815 1.000 0.994
High Phase 1.000 0.993 1.000 0.997 0.937 0.792 1.000 0.970

High Gain+Phase 1.000 0.994 1.000 0.999 0.964 0.829 1.000 0.999
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Table 5.4: RMSE values for predicting concentration of 36 nitrate samples (umol/L)

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 180.38 245.65 177.56 202.45 163.19 228.94 316.86 311.67

All Phase 150.33 200.16 164.53 219.30 190.45 180.88 250.29 356.11

~ | All Gain+Phase 149.70 242.70 164.19 188.61 206.54 237.55 305.19 319.92
g Low Gain 59.32 62.47 3.90 44.87 60.21 71.59 131.56 131.56
T | Low Phase 59.76 56.21 0.81 37.41 37.04 46.11 61.26 74.03
& | Low Gain+Phase 5.37 96.85 3.22 38.39 83.60 97.48 62.86 59.05
® High Gain 269.52 296.73 240.83 241.67 266.00 272.19 289.46 294.71
High Phase 257.96 277.99 240.29 228.40 404.57 496.57 295.36 266.87

High Gain+Phase 259.18 262.02 240.88 237.28 299.21 325.62 701.43 804.98

All Gain 151.03 164.45 151.80 172.08 165.27 185.19 155.54 186.58

All Phase 151.60 167.06 152.37 171.13 203.17 172.55 163.97 209.73

5 All Gain+Phase 152.32 171.58 152.28 180.47 155.55 138.29 155.19 168.19
o | Low Gain 11.33 36.96 13.45 22.97 26.48 58.40 24.33 30.92
% Low Phase 9.06 22.00 17.46 27.88 16.60 44.29 12.95 30.20
g Low Gain+Phase 0.01 22.89 13.86 23.37 35.45 80.25 9.29 19.00
® | High Gain 240.83 270.45 240.76 287.76 239.94 349.77 242.88 274.55
High Phase 240.83 351.08 240.33 278.73 269.61 318.28 245.13 293.76

High Gain+Phase 240.83 275.66 239.57 287.26 238.09 284.44 238.19 272.19

All Gain 152.32 153.32 152.44 161.59 140.40 167.50 149.63 152.13

All Phase 152.13 168.85 152.30 171.27 556.19 500.55 149.43 200.86

a All Gain+Phase 152.32 172.73 151.54 169.69 149.64 196.07 147.60 165.20
o | Low Gain 7.09 32.48 0.29 13.10 26.94 50.70 16.49 18.95
% Low Phase 4.73 20.40 0.26 23.50 36.03 42.93 12.16 33.02
g Low Gain+Phase 1.16 24.58 1.68 17.00 100.38 99.30 15.10 18.57
® | High Gain 240.83 245.65 240.50 276.12 240.37 393.87 238.20 265.76
High Phase 240.83 262.14 240.83 302.11 238.41 205.27 243.00 315.64

High Gain+Phase 240.83 258.64 240.78 280.16 242.75 231.82 241.23 272.96

5.1.1.3 Comparison of Sample Size

Overall, the concentration estimations were bdttethe 36 L samples than for the 1 L samples.
The validation R-value was higher for the 36 L samples 75% of theet and the validation
RMSE value was lower for the 36 L samples 50% eftiine. Tablé.5 shows a comparison of
the R-values for each sample size, and TdbR shows a comparison of the RMSE values for
each sample size. For these tables, the coluninthat higher validation Rvalue or the lower
validation RMSE value is highlighted.

The higher Rvalues for the 36 L samples might be partially tu¢he fact that the tests were
done in order of increasing concentration for esalh, and not randomly as the 1 L tests were
done. The differences could also be explainedhbydifferent control boxes used. The 1 L tests
for the 2 cm probe were done with the new contoX; lall other 1 L tests were done with the old
control box. All of the 36 L tests were done usihg new control box, and the wider frequency
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range that the new control box measured may acdouttie higher Rvalues for the 36 L tests.
The results for the 2 cm probe, which used the saoné&ol box to measure both sample sizes,
were better for the larger sample size. This ssiggthat the control box was not the only factor
contributing to the higher Rvalues for the 36 L samples, but for the testopered for this
thesis, it cannot be concluded that the larger asipe was responsible for the better results for
the 36 L tests.

Table 5.5: Comparison of 36 L and 1 L R-values for predicting nitrate concentration
Stepwise Regression PLS Neural Network Wavelet
36 L 1L 36 L 1L 36 L 1L 36 L 1L

Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid.
Gain | 1.00| 0.74| 0.94| 0.15] 1.00| 0.82| 0.97| 0.32| 0.93| 0.89| 0.97| 0.14] 0.97| 0.84| 0.92| 0.17
Phase| 0.99| 0.88| 0.75| 0.35] 1.00| 0.91| 0.96| 0.26| 0.85| 0.85| 0.61| 0.00] 0.16] 0.19]| 0.76| 0.26
G+P | 0.89] 0.69| 0.94| 0.11] 1.00| 0.88| 0.97| 0.34| 0.97| 0.73| 0.22| 0.19] 0.13]| 0.16]| 0.61| 0.55
Gain | 0.56| 0.05| 0.71] 0.11] 1.00| 0.67| 0.65| 0.21| 0.81| 0.71| 0.01| 0.12] 0.00| 0.00| 0.55| 0.14
Phase| 0.78| 0.41| 0.37| 0.09] 1.00| 0.64]| 0.76| 0.19| 0.41| 0.57| 0.00| 0.05] 0.47| 0.24| 0.53| 0.17
G+P | 0.96| 0.68| 1.00| 0.05] 1.00] 0.63| 1.00| 0.15| 1.00| 0.13| 0.35| 0.01] 0.40| 0.19]| 0.33| 0.11
Gain | 0.98| 0.57| 1.00| 0.45] 1.00| 0.94| 0.99| 0.00| 0.75| 0.36| 0.66| 0.00] 0.51| 0.48]| 0.56| 0.59

v
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< |Phase| 0.71| 0.24| 0.85| 0.00|] 1.00|] 0.94| 0.51| 0.03] 0.48| 0.43| 0.36| 0.00] 0.00| 0.00| 0.92| 0.31
G+P 0.94| 0.66| 1.00) 0.49] 1.00f 0.91] 0.51| 0.03] 0.62] 0.83| 0.26| 0.00] 0.00| 0.00| 0.00] 0.00
Gain 1.00/ 0.95| 1.00| 0.90] 1.00| 0.96| 1.00| 0.97] 0.66] 0.40| 0.88| 0.82] 1.00f 0.97| 0.98| 0.96

=

Phase|] 1.00| 0.97| 0.98| 0.94] 1.00| 0.96| 1.00| 0.91] 0.93| 0.94| 0.91]| 0.71] 0.99| 0.94| 0.99| 0.89
G+P 1.00| 0.99| 1.00f 0.92] 1.00] 0.96| 1.00| 0.97] 0.96| 0.92| 0.93| 0.85] 1.00| 0.96| 0.98| 0.94
Gain 0.96] 0.69| 0.98| 0.83] 0.97| 0.93| 1.00| 0.96] 0.52| 0.71]| 0.34| 0.01] 0.82| 0.89| 0.91| 0.87
Phase] 1.00| 0.66| 0.86| 0.98) 0.94| 0.76| 1.00| 0.87] 1.00| 0.15| 0.26| 0.04] 0.97| 0.87| 0.97| 0.61
G+P 0.99| 0.55| 1.00] 0.92] 091 091| 1.00| 0.91] 0.00| 0.17| 0.67| 0.23] 0.90| 0.80| 0.90| 0.06
Gain 1.00| 0.97| 1.00| 0.86] 1.00] 0.94| 0.93| 0.88] 0.90| 0.70| 0.77]| 0.01] 1.00| 0.93| 0.96| 0.89
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< |Phase|] 1.00| 0.95| 0.96| 0.84] 1.00| 0.95| 0.98| 0.84] 0.83| 0.74| 0.57| 0.39] 1.00| 0.86| 0.95| 0.67
G+P 1.00/ 0.98| 0.96| 0.84] 1.00] 0.95| 0.92| 0.85] 0.98] 0.78] 0.81] 0.78] 1.00f 0.97| 0.94| 0.84
Gain 1.00| 0.99| 0.99| 0.96] 1.00/ 0.99| 1.00| 0.96] 0.99| 0.88| 0.97| 0.88] 1.00| 0.99| 0.99| 0.97

1\4

Phase] 1.00| 0.99| 1.00| 0.92] 1.00f 1.00| 0.99| 0.96] 0.98| 0.96| 0.97| 0.88] 1.00| 1.00| 0.99| 0.95
G+P 1.00|{ 1.00| 0.99| 0.97] 1.00/ 1.00| 0.99| 0.96] 0.92| 0.92| 0.93| 0.86] 1.00| 0.99| 0.99| 0.97
Gain 1.00| 0.78| 0.93| 0.98] 1.00/ 0.97| 0.93| 0.97] 0.57| 0.21| 0.38| 0.16] 0.97| 0.88| 0.94| 0.95
Phase] 1.00f 0.92]| 0.92| 0.96] 1.00| 0.94| 0.92| 0.98] 1.00| 0.70| 0.92]| 0.71] 0.95| 0.61| 0.93| 0.98
G+P 1.00| 0.92| 0.93| 0.98] 1.00/ 0.98| 0.92| 0.98] 1.00] 0.59]| 0.62| 0.39] 0.86| 0.78| 0.94| 0.95
Gain 1.00/ 0.98| 0.99| 0.72] 1.00| 1.00| 1.00| 0.96] 0.98| 0.82| 0.87| 0.66] 1.00f 0.99| 0.97| 0.95
Phase] 1.00/ 0.99| 0.98| 0.93] 1.00| 1.00| 0.95| 0.93] 0.94| 0.79| 0.99| 0.83] 1.00| 0.97| 0.96| 0.96
G+P 1.00{ 0.99| 0.99| 0.88] 1.00/ 1.00| 0.94| 0.92] 0.96/ 0.83] 0.93| 0.83] 1.00| 1.00| 0.96| 0.96
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Table 5.6: Comparison of 36 L and 1 L RMSE values for prdicting nitrate concentration
(umol/L)

Stepwise Regression PLS Neural Network Wavelet
36 L 1L 36 L 1L 36 L 1L 36 L 1L

Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid.
Gain 180| 246 76| 393| 178| 202 49| 354] 163| 229 56| 410| 317| 312 88| 414
Phase] 150 200| 154| 289 165| 219 58| 394] 190| 181| 195| 436] 250 356| 149| 311
G+P 150| 243 77] 495] 164| 189 49| 352] 207| 238| 338| 402) 305| 320| 192| 240
Gain 59 62 41| 208 4 45 45| 193 60 72 95| 112 132| 132 51| 192
Phase 60 56 60| 136 1 37 37| 168 37 46| 102 92 61 74 52| 167
G+P 5 97 0| 325 3 38 0| 272 84 97 65| 103 63 59 62 99
Gain 270 297 0| 231] 241| 242 19| 341) 266| 272 159| 334 289| 295| 162| 181

1\4
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Q |Phase|] 258| 278 94| 363| 240| 228| 171| 324] 405| 497| 208| 315] 295| 267 71| 264
G+P 259| 262 0| 195] 241| 237| 172 325] 299| 326/ 385| 318} 701] 805| 701 805
Gain 151| 164 15| 115|] 152| 172 0 79] 165| 185| 115| 151] 156| 187 41| 101

=

Phase] 152| 167 44| 104] 152| 171 19| 110)] 203| 173| 102| 230] 1e64| 210 27| 107
G+P 152| 172 0| 112 152| 180 10 65| 156| 138 82| 151|] 155| 168 48 91

N
S Gain 11 37 10 71 13 23 3 50 26 58 63| 106 24 31 22 59
% %’ Phase 9 22 28 58 17 28 4 50 17 44 72| 105 13 30 13 57
% G+P 0 23 0 52 14 28 3 50 35 80 44 74 9 19 24| 113

Gain 241 270 1| 137] 241| 288 66 86] 240 350| 129| 353] 243| 275 49 86

juny

€ |Phase|] 241| 351 49| 114] 240| 279 34| 101| 270| 318| 215| 235] 245| 294 53| 146
G+P 241 276 49| 114] 240| 287 71| 103] 238] 284| 109| 154] 238| 272 62| 103
Gain 152| 153 34 76| 152| 162 1 94| 140| 168 51| 132] 150| 152 33 85

1\4

Phase] 152| 169 1] 102] 152] 171 23 85| 556| 501 54| 140] 149| 201 34 70
G+P 152 173 27 77] 152| 170 24 86] 150| 196 81| 133] 148| 165 37 66

~
f.,” Gain 7 32 20 76 0 13 20 74 27 51 68 99 16 19 19 86
% % Phase 5 20 21 71 0 23 22 71 36 43 24 62 12 33 21 82
% G+P 1 25 20 76 2 17 21 72] 100 99 49 64 15 19 19 86

Gain 241| 246 28| 138] 241| 276 7 50] 240| 394 99| 204] 238| 266 44 67
Phase] 241| 262 35 71] 241| 302 57 72] 238 205 23| 187] 243| 316 48 51
G+P 241] 259 29 94| 241| 280 59 75| 243| 232 67| 204] 241| 273 48 51

ybiH

5.1.2 Molecular Weight

The results of the tests showed that the probestl@dmpedance meter had little ability to
distinguish between the molecular weights of thed@mitrates for the 1 L tests. This could have
been caused by the boundary effect. Many of tlidation R>-values for these tests were below
0.100. The results were better for the 36 L tedtsere were many training’Ralues of 1.00,
and the highest validationr*Ralue was 0.999.
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5.1.2.1 One Liter Samples

The tests done to predict the molecular weighthefrtitrate salts with the 1 L samples did not
have good results. The®Ralues were always low for the validation dataj arere usually low
for training data. There was not a lot of diffezenn prediction ability between the different

probes or the different regression methods.

Table5.7 shows the Rvalues for predicting the molecular weight of thé. nitrate salts, and
Table 5.8 shows the RMSE values. The highest validaRowalue for the 1 L samples was
0.413, which came from the 2.5 cm probe and nexeatork. The lowest validation’Ralues
were around zero for each probe and each regressatmique. The RMSE values were
relatively high for all of the probes and regreasmethods, most falling between 70.0 g/mol and
100.0 g/mol.

Stepwise was unable to create predictions for séwarthe datasets because there were no
variables in the data significant enough to entex model. This happened for both the
traditional stepwise regression and the stepwigeession on the wavelet transformed data.
There were a few situations where stepwise foursdnall number of significant data points,
usually around five, and built a model with gocairing R-values, but the validation’Ralues

for these models were always very low, usually \welo?.
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Table 5.7: R*-values for predicting molecular weight of 1 L nitrate samples
SWR PLS ANN Wavelet
Training | Validation | Training | Validation | Training | Validation | Training | Validation
All Gain 0.267 0.009 0.008 0.134
All Phase 0.027 0.000 0.345 0.003
~ | All Gain+Phase 0.039 0.000 0.000 0.038
§ | Low Gain 0.163 0.007 0.462 0.089 0.927 0.086
T | Low Phase 0.246 0.059 0.001 0.037
% Low Gain+Phase 1.000 0.002 0.000 0.055
High Gain 1.000 0.082 0.727 0.083 0.962 0.183
High Phase 0.983 0.360 0.684 0.037 0.333 0.031 0.544 0.169
High Gain+Phase 1.000 0.016 0.702 0.048 0.653 0.228 0.451 0.116
All Gain 0.154 0.007 0.014 0.006 0.028 0.005
All Phase 0.686 0.133 0.015 0.005 0.059 0.000
5 All Gain+Phase 0.511 0.191 0.016 0.006 0.307 0.010
o | Low Gain 0.038 0.039 0.082 0.041
% Low Phase 0.995 0.018 0.048 0.005 0.033 0.064
‘_3; Low Gain+Phase 0.966 0.001 0.056 0.010 0.103 0.008
® | High Gain 0.039 0.026 0.000 0.000
High Phase 0.017 0.032 0.007 0.031
High Gain+Phase 0.028 0.030 0.024 0.413
All Gain 0.011 0.005 0.298 0.121
All Phase 0.012 0.010 0.524 0.229
o1 | All Gain+Phase 0.012 0.008 0.058 0.008
§ | Low Gain 0.748 0.063 0.045 0.000 0.066 0.158 0.417 0.028
T | Low Phase 0.764 0.000 0.061 0.007 0.105 0.006 0.450 0.027
% Low Gain+Phase 1.000 0.144 0.056 0.003 0.170 0.089 0.384 0.098
High Gain 0.940 0.045 0.194 0.206 0.095 0.115
High Phase 1.000 0.234 0.186 0.253 0.432 0.014
High Gain+Phase 1.000 0.156 0.189 0.241 0.052 0.168
All Gain 0.009 0.003 0.015 0.030
All Phase 0.009 0.004 0.027 0.008
; All Gain+Phase 0.009 0.004 0.000 0.002
o | Low Gain 0.023 0.006 0.004 0.019
% Low Phase 0.036 0.005 0.085 0.000 0.492 0.063
‘_3; Low Gain+Phase 0.031 0.005 0.124 0.112
® | High Gain 0.036 0.039 0.019 0.002
High Phase 0.032 0.035 0.004 0.002
High Gain+Phase 0.033 0.036 0.018 0.124
All Real 0.037 0.001 0.269 0.011
3 All Imaginary 0.007 0.002 0.005 0.002
S | All Realtimaginary 0.008 0.002 0.270 0.025
& | Low Real 1.000 0.089 0.990 0.055 0.080 0.001 0.683 0.010
§ Low Imaginary 0.023 0.004 0.000 0.004
z | Low Real+Imaginary 1.000 0.173 0.977 0.124 0.614 0.000
% High Real 0.936 0.235 0.201 0.164 0.978 0.020
~ | High Imaginary 0.997 0.071 0.014 0.003
High Real+Imaginary 0.364 0.003 0.188 0.136

*Empty cells indicate that stepwise did not find/ aata points that met the specified level of
significance and no model was made.
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Table 5.8: RMSE values for predicting molecular weight ofl L nitrate samples (g/mol)

SWR PLS ANN Wavelet
Training | Validation | Training | Validation | Training | Validation | Training | Validation
All Gain 61.52 95.72 80.42 92.40
All Phase 70.88 72.99 58.73 80.32
~ | All Gain+Phase 70.46 73.24 94.88 102.70
g Low Gain 67.95 93.77 55.21 101.86 20.11 355.21
T | Low Phase 64.52 93.29 92.72 103.36
% Low Gain+Phase 0.86 274.19 83.73 94.17
High Gain 0.00 167.32 39.61 86.43 16.80 74.04
High Phase 9.99 82.69 42.57 91.63 66.19 93.48 51.15 82.70
High Gain+Phase 0.00 139.92 41.38 88.50 47.56 78.75 56.15 90.28
All Gain 66.12 75.70 71.39 71.81 73.71 89.10
All Phase 40.30 96.65 71.34 71.94 57.22 122.53
5 All Gain+Phase 50.27 77.75 71.32 71.91 60.57 88.03
o Low Gain 72.88 73.31 84.39 89.80
% Low Phase 5.04 121.78 72.47 76.49 95.54 99.30
g Low Gain+Phase 13.68 122.73 72.17 75.95 85.38 106.07
o High Gain 74.28 75.24 73.81 102.66
High Phase 75.13 74.97 114.32 112.95
High Gain+Phase 74.70 74.91 102.13 88.38
All Gain 71.49 71.84 73.04 70.75
All Phase 71.44 71.56 50.38 69.01
o1 | All Gain+Phase 71.45 71.65 79.70 100.50
g Low Gain 37.32 226.36 72.59 77.43 81.35 77.84 56.73 237.06
T | Low Phase 36.07 205.79 71.99 76.24 75.37 104.90 55.10 182.71
% Low Gain+Phase 0.00 420.34 72.18 76.74 86.95 113.20 58.33 113.74
High Gain 18.61 116.76 68.03 68.57 77.42 75.60
High Phase 0.00 181.25 68.34 67.40 69.39 107.30
High Gain+Phase 0.00 154.96 68.24 67.68 96.13 98.35
All Gain 71.54 71.91 86.37 98.73
All Phase 71.56 71.84 85.36 79.84
a All Gain+Phase 71.55 71.86 92.03 106.75
o Low Gain 73.43 75.05 89.18 90.20
% Low Phase 72.95 75.69 72.73 81.53 52.94 89.31
g Low Gain+Phase 73.13 75.46 75.05 101.51
D High Gain 74.41 74.57 90.51 99.69
High Phase 74.56 74.70 92.56 100.23
High Gain+Phase 74.51 74.66 85.96 85.06
All Real 70.52 75.20 64.06 77.19
3 All Imaginary 71.62 71.93 83.79 83.57
5 All Real+Imaginary 71.59 71.98 62.13 76.08
& | Low Real 0.00 119.64 7.33 210.68 116.39 117.25 41.84 126.23
5 Low Imaginary 73.42 74.94 79.52 78.98
= | Low Real+Imaginary 0.00 83.71 11.30 463.28 46.74 86.91
% High Real 19.15 80.46 76.71 102.62 11.22 126.51
- High Imaginary 4.09 98.74 95.54 94.04
High Real+Imaginary 60.43 84.12 88.42 103.25

*Empty cells indicate that stepwise did not find/ alata points that met the specified level of
significance and no model was made.
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5.1.2.2 Thirty-six Liter Samples

The molecular weight predictions were much better the 36 L samples than for the 1 L
samples. This might be because there was morelsamund between the probe and the sides
of the container, reducing the effect that the amar had on the electric field. There were
several instances where the trainingvllue was 1.00 and the validatiod-®Rlue was 0.90 or
higher. Tables.9 shows the Rvalues for the 36 L nitrate molecular weight teatsd Tables.10
shows the RMSE values.

5.1.2.2.3Comparison of Probes

The 2 cm probe and the 7.5 cm probe did the bbstfipredicting molecular weight for the 36 L
samples. Both probes had average trainifgdRies above 0.9 and average validatidvalues
above 0.85. Overall, the’?Ralues tended to be a little bit higher for th& @m probe. The 7.5
cm probe had training Rralues above 0.900 for 89% of the regression nsodeid validation
R?-values above 0.900 for 75% of the regression nsodéhe RMSE values were also lower for

the 7.5 cm probe for both training and validation.

The 2.5 cm probe did not predict molecular weightwaell. The training and validation®R
values were above 0.900 for less than 30% of thesdes. The average training-Wwlue for this
probe was only 0.500, and the average validatiouafie was 0.454. Despite the loi-®alues
for this probe, its RMSE values were comparativgypd. This probe had the lowest average

validation RMSE of any of the probes.

5.1.2.2.4Comparison of Regression Methods

The highest Rvalues for predicting the molecular weight of aig came from PLS and
stepwise regression. Both methods had averagenmaR-values around 0.85, and the average
validation R-value for PLS was 0.807, about 0.017 higher tlarsfepwise. The training®R
value was above 0.900 for 78% of the datasets fmseebhch of these methods. The validation
R?-values were above 0.900 for 70% and 60% of thase#s for PLS and stepwise, respectively.
The RMSE values were also very similar for these tmethods, averaging around 55 g/mol for

training and 65 g/mol for validation.
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Neural network and wavelet did not perform as wvietl predicting the molecular weight of
nitrate. Both methods had training RMSE valueg theeraged over 60 g/mol, and validation
RMSE values that averaged over 70 g/mol. Neuralork did the worst overall. The training
R?-value for this method was over 0.900 for only 44#4he tests, and the validatiorf-Ralue

was over 0.900 30% of the time.

Table 5.9: R*-values for predicting molecular weight of 36 L nitate samples

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 0.972 0.910 0.979 0.951 0.803 0.874 0.940 0.917

All Phase 0.999 0.910 1.000 0.962 0.129 0.129 0.932 0.822

~ | All Gain+Phase 0.990 0.935 0.987 0.964 1.000 1.000 0.917 0.889
§ | Low Gain 0.932 0.899 0.999 0.944 0.816 0.761 0.827 0.757
T | Low Phase 0.998 0.933 0.943 0.795 0.993 0.913 0.708 0.538
% Low Gain+Phase 0.993 0.875 0.973 0.767 0.969 0.849 0.927 0.687
High Gain 0.997 0.974 0.999 0.984 1.000 0.998 0.991 0.971

High Phase 0.955 0.863 1.000 0.963 1.000 1.000 0.859 0.784

High Gain+Phase 0.995 0.980 1.000 0.979 1.000 1.000 0.624 0.705

All Gain 0.375 0.124 0.329 0.236 0.338 0.233 0.255 0.160

All Phase 0.298 0.282 0.300 0.245 0.001 0.000 0.325 0.259

g All Gain+Phase 0.375 0.124 0.277 0.280 0.038 0.045 0.000 0.000
o | Low Gain 0.995 0.926 1.000 0.940 0.838 0.818 0.910 0.734
% Low Phase 1.000 0.941 1.000 0.979 0.820 0.904 0.955 0.714
c‘ca_‘ Low Gain+Phase 1.000 0.875 1.000 0.940 0.969 0.853 0.942 0.851
@ | High Gain 0.356 0.356 0.345 0.348 0.230 0.281 0.359 0.359
High Phase 0.352 0.350 0.324 0.349 0.076 0.246 0.320 0.313

High Gain+Phase 0.359 0.359 0.351 0.358 0.235 0.235 0.337 0.315

All Gain 1.000 0.992 1.000 0.992 0.932 0.901 0.999 0.988

All Phase 1.000 0.994 0.999 0.989 0.145 0.092 0.988 0.902

.:‘n All Gain+Phase 1.000 0.989 1.000 0.998 0.993 0.884 0.998 0.995
o Low Gain 0.991 0.878 1.000 0.973 0.914 0.754 0.953 0.950
% Low Phase 0.996 0.937 1.000 0.915 0.827 0.748 0.974 0.820
c_oa_‘ Low Gain+Phase 1.000 0.939 1.000 0.961 0.040 0.023 0.960 0.945
© High Gain 1.000 0.992 1.000 0.995 0.997 0.635 0.999 0.998
High Phase 1.000 0.994 1.000 0.990 0.893 0.689 0.992 0.951

High Gain+Phase 1.000 0.998 1.000 0.999 0.992 0.873 1.000 0.999
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Table 5.10: RMSE values for predicting molecular weight 636 L nitrate samples (g/mol)

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 84.99 82.27 83.20 80.45 82.99 83.16 82.92 81.42

All Phase 82.62 90.03 82.58 86.82 94.52 95.61 81.90 77.52

~ | All Gain+Phase 84.19 83.10 83.85 81.88 83.49 87.64 86.19 86.62
g Low Gain 19.41 25.31 1.67 17.82 0.65 36.42 30.94 39.96
T | Low Phase 3.42 19.64 17.70 34.91 29.81 43.61 40.18 52.69
& | Low Gain+Phase 6.40 26.43 12.12 38.41 8.14 17.23 20.12 42.77
® High Gain 129.81 128.71 130.22 129.06 129.59 129.34 131.43 126.16
High Phase 131.23 125.99 130.55 137.27 129.16 127.30 129.89 129.52

High Gain+Phase 130.16 136.64 130.29 132.26 130.83 129.71 124.42 121.94

All Gain 56.95 77.79 69.05 78.86 76.77 85.70 70.97 77.36

All Phase 53.81 67.21 55.61 63.36 81.78 78.13 43.64 58.04

5 All Gain+Phase 56.95 77.79 50.95 54.18 73.78 88.35 161.44 161.44
o | Low Gain 5.02 23.37 1.13 18.78 31.69 35.03 22.26 40.60
% Low Phase 1.24 19.07 1.52 10.99 37.09 32.06 15.76 42.65
g Low Gain+Phase 0.00 27.22 0.28 18.50 13.24 29.47 17.86 32.31
® | High Gain 79.54 78.15 84.64 82.12 96.03 95.15 79.79 79.46
High Phase 76.30 75.04 75.43 79.93 102.37 96.34 85.18 87.42

High Gain+Phase 81.20 79.35 83.70 86.13 117.42 106.65 76.46 69.67

All Gain 43.45 47.69 49.94 57.27 57.10 65.49 56.02 50.54

All Phase 56.50 54.52 51.51 62.74 69.79 68.08 52.12 49.92

a All Gain+Phase 43.45 47.69 49.19 59.82 115.72 117.98 57.59 68.70
o | Low Gain 0.30 30.96 0.02 29.06 25.93 78.25 26.48 47.38
% Low Phase 0.00 112.56 0.03 28.88 21.41 36.08 12.52 42.50
g Low Gain+Phase 0.00 49.76 0.66 28.85 6.23 44.30 6.41 31.13
® | High Gain 78.39 96.78 80.64 97.22 76.36 105.85 79.11 93.41
High Phase 86.26 85.09 69.00 84.84 78.93 68.66 81.21 91.21

High Gain+Phase 87.67 84.20 79.57 95.71 106.31 101.35 79.11 93.41

5.1.2.3 Comparison of Sample Sizes

The molecular weight predictions from the 36 L siwapvere much better than the predictions
from the 1 L samples. Theé*Ralue was higher for the 36 L samples in 98% eftésts, and the
RMSE was lower for the 36 L samples in 75% of th&ts. Tablé.11 lists the Rvalues for
predicting the molecular weight for each sample sand Tabl®.12 lists the RMSE values. For
each table, the sample size that gave the highadistation R-value or the lowest validation
RMSE value is highlighted.

As discussed in Section 5.1.1.3, the proceduresefing the 1 L tests and the 36 L tests were
not identical. The nitrate salts in the 1 L tesése measured randomly, whereas the nitrate salts
in the 36 L tests were measured in order of inamgasoncentration. The control boxes that

were used were not the same for the different sarsges. Either one of these factors could
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contribute to the improved results for the 36 L ples. The reduced boundary effect with the

larger sample size could also explain the improesdlts.

Table 5.11: Comparison of 36 L and 1 L R-values for predicting nitrate molecular weight

Stepwise Regression PLS Neural Network Wavelet
36 L 1L 36 L 1L 36 L 1L 36 L 1L

Train | Valid. | Train | Valid. ] Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid.
Gain 0.97| 0.91 0.98| 0.95| 0.27| 0.01] 0.80f 0.87| 0.01| 0.13] 0.94| 0.92
z Phase] 1.00| 0.91 1.00| 0.96| 0.03| 0.00] 0.13] 0.13| 0.35| 0.00] 0.93| 0.82
G+P 0.99] 0.93 0.99| 0.96| 0.04| 0.00] 1.00f 1.00] 0.00| 0.04] 0.92| 0.89

f;: Gain 0.93| 0.90 1.00f 0.94| 0.16| 0.01] 0.82| 0.76| 0.46| 0.09] 0.83| 0.76| 0.93| 0.09
R %’ Phase] 1.00| 0.93 0.94| 0.80| 0.25| 0.06] 0.99| 0.91| 0.00| 0.04] 0.71| 0.54
% G+P 0.99| 0.87 0.97| 0.77| 1.00f 0.00] 0.97| 0.85] 0.00| 0.06] 0.93| 0.69

Gain 1.00| 0.97| 1.00| 0.08] 1.00] 0.98| 0.73| 0.08] 1.00| 1.00| 0.96| 0.18] 0.99| 0.97

juny

< |Phase| 0.95| 0.86| 0.98| 0.36] 1.00| 0.96| 0.68| 0.04] 1.00| 1.00| 0.33| 0.03] 0.86| 0.78| 0.54| 0.17
G+P 0.99/ 0.98| 1.00| 0.02} 1.00{ 0.98]| 0.70| 0.05] 1.00] 1.00| 0.65| 0.23] 0.62| 0.71| 0.45] 0.12
Gain 0.37] 0.12| 0.15| 0.01} 0.33| 0.24| 0.01| 0.01] 0.34| 0.23| 0.03| 0.01] 0.26| 0.16

=

Phase|] 0.30| 0.28| 0.69| 0.13] 0.30| 0.24| 0.01| 0.00] 0.00| 0.00| 0.06| 0.00] 0.32| 0.26
G+P 0.37| 0.12| 0.51| 0.19] 0.28| 0.28| 0.02| 0.01] 0.04| 0.04| 0.31| 0.01] 0.00| 0.00
Gain 1.00| 0.93 1.00| 0.94| 0.04| 0.04] 0.84| 0.82| 0.08| 0.04] 0.91| 0.73
Phase] 1.00f 0.94| 1.00| 0.02] 1.00| 0.98| 0.05| 0.00|] 0.82] 0.90| 0.03| 0.06] 0.96| 0.71
G+P 1.00| 0.88| 0.97| 0.00] 1.00] 0.94| 0.06] 0.01] 0.97| 0.85| 0.10| 0.01] 0.94| 0.85

9001d WD G2
MO

T Gain 0.36] 0.36 0.35| 0.35| 0.04| 0.03] 0.23| 0.28| 0.00| 0.00] 0.36| 0.36
<Q |Phase] 0.35| 0.35 0.32| 0.35| 0.02| 0.03] 0.08] 0.25| 0.01| 0.03] 0.32| 0.31
G+P 0.36] 0.36 0.35| 0.36| 0.03| 0.03] 0.23| 0.24] 0.02| 0.41] 0.34| 0.32
Gain 1.00| 0.99 1.00| 0.99| 0.01| 0.00y 0.93| 0.90| 0.02] 0.03] 1.00| 0.99
z Phase] 1.00| 0.99 1.00f 0.99| 0.01| 0.00] 0.14| 0.09| 0.03| 0.01] 0.99| 0.90
~ G+P 1.00| 0.99 1.00{ 1.00| 0.01| 0.00y 0.99| 0.88]| 0.00| 0.00] 1.00| 0.99
;E)n Gain 0.99]| 0.88 1.00| 0.97| 0.02| 0.01] 0.91| 0.75]| 0.00] 0.02] 0.95| 0.95
%%’ Phase] 1.00| 0.94 1.00| 0.91| 0.04| 0.00] 0.83] 0.75]| 0.09] 0.00] 0.97| 0.82| 0.49| 0.06
% G+P 1.00| 0.94 1.00| 0.96| 0.03| 0.01] 0.04| 0.02f 0.12] 0.11] 0.96| 0.94
- Gain 1.00f 0.99 1.00f 1.00| 0.04| 0.04] 1.00| 0.64| 0.02| 0.00] 1.00| 1.00
Q |Phase] 1.00| 0.99 1.00| 0.99| 0.03| 0.04] 0.89| 0.69| 0.00| 0.00] 0.99| 0.95
G+P 1.00{ 1.00 1.00{ 1.00| 0.03| 0.04] 0.99| 0.87| 0.02] 0.12] 1.00| 1.00

*Empty cells indicate that stepwise did not find/ alata points that met the specified level of
significance and no model was made.
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Table 5.12: Comparison of 36 L and 1 L RMSE values for prdicting nitrate molecular
weight (g/mol)

Stepwise Regression PLS Neural Network Wavelet
36 L 1L 36 L 1L 36 L 1L 36 L 1L
Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid. | Train | Valid.
Gain 85 82 83 80 62 96 83 83 80 92 83 81
z Phase 83 90 83 87 71 73 95 96 59 80 82 78
G+P 84 83 84 82 70 73 83 88 95| 103 86 87
§ Gain 19 25 2 18 68 94 1 36 55| 102 31 40 20| 355
b 2 |Phase 3 20 18 35 65 93 30 44 93| 103 40 53
% G+P 6 26 12 38 1| 274 8 17 84 94 20 43
- Gain 130] 129 0| 167] 130| 129 40 86| 130| 129 17 74) 131| 126
Q |Phase] 131| 126 10 83| 131 137 43 92| 129| 127 66 93] 130| 130 51 83
G+P 130| 137 0| 140] 130| 132 41 89] 131| 130 48 79| 124 122 56 90
Gain 57 78 66 76 69 79 71 72 77 86 74 89 71 77
z Phase 54 67 40 97 56 63 71 72 82 78 57| 123 44 58
o G+P 57 78 50 78 51 54 71 72 74 88 61 88| 161| 161
-(U," Gain 5 23 1 19 73 73 32 35 84 90 22 41
% % Phase 1 19 5| 122 2 11 72 76 37 32 96 99 16 43
% G+P 0 27 14| 123 0 18 72 76 13 29 85| 106 18 32
- Gain 80 78 85 82 74 75 96 95 74| 103 80 79
<Q | Phase 76 75 75 80 75 75| 102 96| 114| 113 85 87
G+P 81 79 84 86 75 75] 117| 107 102 88 76 70
Gain 43 48 50 57 72 72 57 65 86 99 56 51
Z | Phase 57 55 52 63 72 72 70 68 85 80 52 50
~ G+P 43 48 49 60 72 72| 116| 118 92| 107 58 69
;c.)n Gain 0 31 0 29 73 75 26 78 89 90 26 47
% 2 |Phase 0| 113 0 29 73 76 21 36 73 82 13 42 53 89
% G+P 0 50 1 29 73 75 6 44 75| 102 6 31
- Gain 78 97 81 97 74 75 76| 106 91| 100 79 93
Q |Phase 86 85 69 85 75 75 79 69 93| 100 81 91
G+P 88 84 80 96 75 75] 106/ 101 86 85 79 93

*Empty cells indicate that stepwise did not find/ alata points that met the specified level of
significance and no model was made.

5.2 Atrazine and Water

The sensors studied were able to detect concemtrabianges in atrazine. The highest training
R?-value for predicting atrazine concentration wad1and the highest validatiorf-Ralue was
0.979. The Rvalues for detecting atrazine are shown in TdhlE3, in which the highest
validation R-value is bolded, and TabE15, in which all Rvalues above 0.900 are bolded.
The RMSE values are given in TaBld4 and Tabl&.16.
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5.2.1 One Liter Samples

Overall, the probes were not able to predict theceatration of atrazine as accurately as they
were able to predict the concentration of nitrate€3nly stepwise regression had an average
training R-value above 0.900. There were several high tigifif-values, but almost all of
them corresponded to very low validatioA-Rlues. These Rvalues for predicting atrazine
concentration are summarized in Tabld3, and the RMSE values are summarized in Table
5.14.

5.2.1.1 Comparison of Probes

For the 1 L atrazine samples, none of the probesisently had higher Rralues than the
others. The 2.5 cm probe had the highest averaieng R-value, but it had one of the lower
average validation Rvalues. The 2.5 cm probe also had the highesepege of training R
values above 0.900, but the high trainingvlues are meaningless because the corresponding

validation R-values were so low, usually below 0.100.

All four probes and the impedance meter had at lezs model with a training’Rralue of 1.00,
but the highest validation?Rralue for the models with a training®Ralue of 1.00 was 0.214.
The highest validation Rvalue, 0.477, was obtained from the 5 cm probehe Towest

validation R-value for most of the probes was 0.000.

The training RMSE values were, for the most pawtydst for the 2.5 cm probe, and the
validation RMSE values tended to be lowest for & cm probe. The RMSE values, both

training and validation, were highest for the 2 &nin probes.

5.2.1.2 Comparison of Regression Methods

None of the regression methods provided accuredeiaé predictions. Stepwise regression had
the highest training Rvalues, many were 1.00, and the lowest trainingSEMalues, most were
close to 0.00 mg/L, but it had terrible validativalues. The average validatiod-Ralue for

stepwise was only 0.079.
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The highest validation Rvalues came from PLS, but the average value wis0oh69. Neural
network was, once again, the least reliable priedianethod. The average training-®alue for
neural network was 0.067. Stepwise regressionhenwtavelet transformed data was not a
reliable prediction method either. For some of da¢asets, stepwise was not able to build a
model using the wavelet transformed data. Wheatitd build a model, the’Rralues were very
low, mostly below 0.100, and the RMSE values wegh h

Table 5.13: R-values for predicting concentration of 1 L atrazire samples

SWR PLS ANN Wavelet
Training | Validation | Training | Validation | Training | Validation | Training | Validation
Gain 0.670 0.007| 0.109 0.002| 0.378 0.039
2 cm Probe Phase 1.000 0.018| 0.994 0.001| 0.109 0.010| 1.000 0.047
Gain+Phase 0.670 0.007| 0.995 0.000] 0.789 0.008
Gain 1.000 0.124| 1.000 0.058| 0.131 0.063| 0.965 0.025
2.5 cm Probe Phase 1.000 0.058] 0.829 0.010] 0.201 0.063] 1.000 0.000
Gain+Phase 1.000 0.072] 1.000 0.055| 0.368 0.006| 0.965 0.025
Gain 0.974 0.160| 0.924 0.202| 0.077 0.058| 0.713 0.016
5 cm Probe Phase 1.000 0.345| 0.288 0.204| 0.345 0.003| 0.587 0.143
Gain+Phase 1.000 0.010] 0.492 0.338] 0.784 0.477] 0.713 0.016
Gain 1.000 0.080| 0.395 0.259| 0.912 0.380| 0.918 0.247
7.5 cm Probe Phase 1.000 0.007] 0.250 0.284| 0.320 0.069
Gain+Phase 1.000 0.004| 0.267 0.281] 0.067 0.053
Real 0.631 0.040| 0.539 0.280| 0.618 0.000| 0.964 0.068
Impedance Meter | |maginary 1.000 0.214| 0.447 0.310| 0.138 0.000
Real+imaginary | 0.631 0.040| 0.550 0.254| 0.786 0.023] 1.000 0.000

*Empty cells indicate that stepwise did not find/afata points that met the specified level of
significance and no model was made.
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Table 5.14: RMSE values for predicting concentration of 1L atrazine samples (mg/L)

SWR PLS ANN Wavelet
Training | Validation | Training | Validation | Training | Validation | Training | Validation
Gain 2.72 5.74 4.47 5.15 7.79 7.10
2 cm Probe Phase 0.00 6.90 0.38 7.02 5.84 7.07 0.03 7.51
Gain+Phase 2.72 5.74 0.34 6.42 2.42 5.46
Gain 0.00 6.75 0.09 6.92 5.08 7.24 0.88 7.36
2.5 cm Probe Phase 0.00 7.39 1.96 5.71 7.34 4.95 0.00 6.14
Gain+Phase 0.00 5.63 0.05 6.87 4.67 6.30 0.88 7.36
Gain 0.76 5.95 1.30 8.09 6.44 5.03 2.54 5.20
5 cm Probe Phase 0.00 9.51 4.00 6.81 6.81 6.07 3.04 10.17
Gain+Phase 0.00 5.22 3.37 7.21 2.68 9.88 2.54 5.20
Gain 0.00 7.72 3.68 5.01 1.79 4.73 1.36 7.84
7.5 cm Probe Phase 0.00 7.69 4.10 4.69 4.42 5.86
Gain+Phase 0.00 7.24 4.05 4.71 5.30 5.11
Real 2.88 5.19 3.21 4.60 3.24 7.10 0.90 10.60
Impedance Meter | |maginary 0.00 5.38 3.52 5.16 5.33 6.17
Real+Imaginary 2.88 5.19 3.18 4.60 2.66 8.22 0.00 6.71

*Empty cells indicate that stepwise did not find/afata points that met the specified level of
significance and no model was made.

5.2.2 Thirty-six Liter Samples

The results for predicting atrazine concentratiaravnot as good as the results for predicting
nitrate concentration with the 36 L samples, balytivere better than the results from the 1 L
atrazine tests. Overall, the 2 cm probe was tis¢ @be for atrazine prediction and wavelet
transformation followed by stepwise regression wees best regression method. Tablé5
shows the Rvalues for predicting the concentration of thel3@trazine samples, and Table
5.16 shows the RMSE values.

5.2.2.1 Comparison of Probes

The 2 cm probe did the best job of predicting thecentration of atrazine in the 36 L samples.
The RMSE values for both training and validationrevieowest, on average, for this probe. It
also had the highest average trainingvRlue, 0.837, and the highest average validatién R
value, 0.693. The training®Ralues for this probe were over 0.900 for 66.7%hef datasets,
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and the validation Rvalues were above 0.900 for 41.7% of the tests) higher than for any

other probe.

The 7.5 cm probe had a few very high\Rlues. All of the Rvalues for PLS and stepwise
were 1.00 with this probe, but the neural netwofkv&ues for this probe were extremely low.
The 7.5 cm probe also had very poor values fodagibn. The highest validation®Ralue for
the 7.5 cm probe was only 0.829 and the averaged)\B&8. The average’Ralues were similar
for the 2.5 cm probe, 0.701 for training and 0.5®@5validation. The 2.5 cm probe did not have
as many high validation®R/alues as the other two probes, but the lowestiatdn R-value for

this probe was 0.187, about ten times higher tharidwest values for the other probes.

5.2.2.2 Comparison of Regression Methods

PLS and stepwise regression with wavelet preprouwgsgere the best regression methods for
the 36 L atrazine tests. The average trainifgdtue was higher for wavelet, 0.942 compared to
0.817. Wavelet also had two more trainingvalues above 0.900 than PLS did. The average
validation R-value was slightly higher for PLS than for wavelf729 compared to 0.708, but
wavelet had three validation®Ralues above 0.900 whereas PLS only had two. tfiring
RMSE values were slightly lower, overall, for wastethan for PLS, but the validation RMSE

values were lower for PLS.

Stepwise regression had the higheétv&ues and lowest RMSE values for training, b th
validation values for stepwise were not as goothag were for PLS and wavelet. The average
validation R-value for stepwise was only 0.611. The neuralnst results were the worst,
overall. It had the highest RMSE values and theeki R-values. The average training-R

value for neural network was only 0.298.
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Table 5.15: R-values for predicting concentration of 36 L atrazihe samples

SWR PLS ANN Wavelet
Training | Validation | Training | Validation | Training | Validation | Training | Validation
Gain 0.986 0.979 0.985 0.932 0.002 0.094 0.834 0.339
2 cm Probe Phase 1.000 0.676 0.894 0.773 0.965 0.800 0.972 0.729
Gain+Phase 1.000 0.934 0.981 0.914 0.419 0.180 0.999 0.964
Gain 1.000 0.418 0.490 0.511 0.467 0.892 1.000 0.948
2.5cmProbe | phase 1.000 0.187 0.518 0.559 0.701 0.715 0.970 0.618
Gain+Phase 1.000 0.446 0.490 0.518 0.033 0.385 0.738 0.942
Gain 1.000 0.633 1.000 0.750 0.018 0.041 0.998 0.787
7.5cmProbe | phase 1.000 0.649 1.000 0.829 0.044 0.100 0.971 0.254
Gain+Phase 1.000 0.581 1.000 0.778 0.032 0.504 0.998 0.787

Table 5.16: RMSE values for predicting concentration of 8 L atrazine samples (mg/L)

SWR PLS ANN Wavelet

Training | Validation | Training | Validation | Training | Validation | Training | Validation

Gain 0.553 0.829 0.587 1.670 6.639 6.195 1.927 5.337

2 cm Probe Phase 0.000 3.378 1.539 2.302 1.027 2.427 0.797 2.630
Gain+Phase 0.000 1.367 0.653 1.997 4.056 5.487 0.123 1.041

Gain 0.000 3.778 3.381 3.313 4.243 2.375 0.006 1.176

2.5cmProbe | phase 0.002 5.952 3.285 3.152 2.809 3.685 0.818 3.784
Gain+Phase 0.000 9.790 3.381 3.289 5.117 4.006 2.421 2.600

Gain 0.000 2.941 0.088 3.167 5.186 5.981 0.226 3.158

7.5cmProbe | phase 0.005 4.391 0.037 2.191 6.559 6.400 0.808 4.630
Gain+Phase 0.000 3.394 0.072 2.749 6.392 6.550 0.226 3.158

5.3Biodiesel Samples

The three probes studied with the biodiesel sampka® able to measure the concentration of
the impurities in the fuel.
water and nitrate tests, but there were still sgowmd results achieved for the fuel tests. For each
of the contaminants, the highest trainirfgvRlue achieved was 1.00. The highest validation R
values were all above 0.960. Tables are givenghatv the Rvalues and RMSE values for

predicting the concentration of each contaminafbr the R-value tables, the validation®R

values above 0.800 are bolded and in blue.
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5.3.1 Water

The results from the tests done with biodieselwater showed that the probes had some ability
to detect the concentration of the water. The flisee tests that were done for the 2 cm probe
were not accurate, and the signals for these thtesis were drastically different from one
another. This was the result of a problem withgtyews in the probe. The screws that held the
plates together had become loose, and the plates neelonger electrically connected as they
should have been. Once the screws were tighteahedmeasurements from this probe were
much more consistent. The first three concentnataf water measured were not included in the
data during regression because of this probleme Rhvalues and RMSE values for predicting

the concentration of water in biodiesel are giveiable5.17 and Tabl®.18, respectively.

5.3.1.1 Comparison of Probes

There was not a lot of variability in the ability the three probes to detect the concentration of
water in biodiesel for the training data. All haderage training Rvalues between 0.800 and
0.850, and the Rvalues for the three probes was above 0.900 50%5%b of the time. The 2.5

cm probe tended to have lower training RMSE vathas the other two probes.

In terms of the validation data, the 2.5 cm probdgymed the best. This probe had an average
validation R-value of 0.619 and had®Ralues above 0.900 for 25 % of the data, highan the
other two probes. The 2.5 cm probe also had lovaéidation RMSE values than the other
probes; the average was 805 ppm, compared to p@m0Ofor the 7.5 cm probe and 1,540 ppm
for the 2 cm probe.

5.3.1.2 Comparison of Regression Methods

Stepwise regression was the best regression méhdue training data; the average training R
value was 0.984 and the training-®alues were above 0.900 for 93% of the tests.pv@ise
regression also had the lowest average RMSE valugdining. The validation results for the
stepwise models were not very good, however. Meeage validation Rvalue was 0.454 and

the validation R-values were only above 0.900 19% of the time.
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The best validation results, in terms of-WRilues, came from stepwise regression of wavelet
transformed data. The average validatiGrav&ue for wavelet was 0.550, slightly higher than
for traditional stepwise regression, and the vaiitaR?-value was above 0.900 19% of the time.
This method also had good training-Rilues, the average was 0.956. In terms of dida
RMSE values, partial least squares regression twaeérlvalues, on average, than any other

method.

The validation R-values were comparable for PLS and neural netwanth averaging just over
0.400. The RMSE values were higher, overall, fural network.

Table 5.17: R-values for predicting concentration of water in bodiesel

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation
All Gain 0.986 0.908 0.867 0.225 0.989 0.418 0.992 0.324
All Phase 0.999 0.347 0.800 0.345 0.996 0.594 0.837 0.424
~ | All Gain+Phase 0.974 0.454 0.877 0.278 0.805 0.174 0.947 0.540
g Low Gain 1.000 0.545 0.740 0.606 1.000 0.763 1.000 0.992
o | Low Phase 1.000 0.195 0.796 0.434 1.000 0.604 1.000 0.238
& | Low Gain+Phase 1.000 0.292 0.788 0.495 1.000 0.605 0.916 0.996
® High Gain 0.837 0.195 0.663 0.014 0.486 0.134 1.000 0.142
High Phase 0.810 0.001 0.157 0.164 0.074 0.023 0.876 0.090

High Gain+Phase 1.000 0.392 0.321 0.094 0.045 0.105
All Gain 0.985 0.883 0.996 0.845 0.958 0.836 0.995 0.939
All Phase 1.000 0.732 0.991 0.846 0.971 0.918 0.970 0.861
LNn All Gain+Phase 0.985 0.883 0.997 0.898 0.043 0.082 0.984 0.870
o | Low Gain 1.000 0.922 0.548 0.127 0.253 0.560 1.000 0.161
% Low Phase 0.999 0.358 0.996 0.922 0.610 0.037 0.910 0.666
c‘ca_‘ Low Gain+Phase 1.000 0.922 0.533 0.140 0.013 0.007 0.825 0.327
® | High Gain 1.000 0.955 0.996 0.684 0.005 0.000 1.000 0.989
High Phase 1.000 0.913 0.999 0.313 0.010 0.140 0.979 0.800
High Gain+Phase 1.000 0.194 1.000 0.711 0.912 0.890 1.000 0.944
All Gain 0.982 0.032 0.980 0.910 0.093 0.038 0.953 0.538
All Phase 1.000 0.273 0.914 0.649 0.333 0.260 0.817 0.708
.:‘n All Gain+Phase 1.000 0.103 0.942 0.690 0.867 0.381 0.975 0.616
o | Low Gain 1.000 0.191 0.872 0.717 0.991 0.941 0.987 0.549
% Low Phase 1.000 0.697 0.912 0.950 0.976 0.962 1.000 0.526
c‘c:_‘ Low Gain+Phase 1.000 0.423 0.907 0.827 0.385 0.341 0.896 0.553
® | High Gain 1.000 0.059 0.934 0.083 0.593 0.803 1.000 0.013
High Phase 1.000 0.351 0.811 0.069 0.009 0.365 1.000 0.080
High Gain+Phase 1.000 0.026 0.846 0.070 0.360 0.012 1.000 0.425
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Table 5.18: RMSE values for predicting concentration of \ater in biodiesel (ppm)

SWR PLS ANN Wavelet
Training Validation | Training Validation | Training Validation | Training Validation
All Gain 213.05 567.34 658.99 1530.18 225.72 1271.30 157.43 1951.16
All Phase 66.10 2770.56 807.03 1356.08 116.73 1238.37 729.49 1269.17
~ | All Gain+Phase 289.03 1407.12 632.44 1450.43 1369.93 1899.29 414.03 1184.44
g Low Gain 3.13 279.14 161.11 274.77 0.00 171.55 5.87 85.22
T | Low Phase 0.53 390.58 142.94 275.51 0.01 243.14 1.48 359.72
& | Low Gain+Phase 0.00 836.66 145.57 271.67 0.04 242.38 91.41 156.10
® High Gain 590.03 2504.02 847.91 1518.54 1660.15 2826.77 0.53 5516.29
High Phase 637.35 6758.71 1341.36 1462.20 1929.32 1765.32 515.17 4827.47
High Gain+Phase 1.94 1401.86 1203.66 1462.71 1936.31 2188.98
All Gain 221.25 631.96 120.75 807.99 421.35 1353.61 124.13 461.00
All Phase 0.00 907.33 175.03 803.46 368.37 518.98 318.87 718.87
5 All Gain+Phase 221.25 631.96 92.09 636.00 2687.47 2464.55 232.23 686.34
o | Low Gain 0.00 288.03 281.24 401.52 387.18 275.78 0.06 593.40
% Low Phase 12.41 311.35 25.19 127.79 490.01 549.95 125.18 368.93
g Low Gain+Phase 0.00 288.03 285.96 416.55 472.39 459.88 175.24 479.15
® | High Gain 0.00 410.07 86.62 1127.40 1930.52 2022.15 0.12 492.04
High Phase 0.00 730.19 35.01 1475.34 2035.08 2299.19 214.16 985.41
High Gain+Phase 0.00 1851.90 23.77 1117.54 442.67 893.15 0.11 374.65
All Gain 243.69 2121.59 255.79 563.90 1797.91 2041.82 394.78 2059.06
All Phase 1.76 2858.16 537.21 1015.06 1738.75 1728.56 780.49 1454.58
a All Gain+Phase 0.00 1831.69 440.00 956.36 704.86 2009.99 289.12 1444.60
o | Low Gain 0.00 508.53 149.58 219.18 42.76 174.42 48.02 306.15
% Low Phase 0.09 307.36 123.83 118.82 82.52 185.78 0.02 314.80
g Low Gain+Phase 0.01 421.57 127.34 177.93 690.79 628.12 134.66 563.55
® | High Gain 0.00 1889.83 376.63 1551.38 1045.97 2864.72 1.57 1891.37
High Phase 0.48 1376.38 634.60 1496.29 2203.94 1266.91 1.21 1722.50
High Gain+Phase 0.00 2498.00 572.72 1506.14 1352.59 2234.30 0.56 1416.00
5.3.2 Glycerol

The three probes were mostly equal in their abttityletect changes in glycerol concentration.
Partial least squares was the best regression thétingoredicting the glycerol concentration.
Table 5.19 shows the Rvalues for predicting the concentration of glydero biodiesel, and
Table5.20 shows the RMSE values.

5.3.2.1 Comparison of Probes

The three probes were fairly equivalent in theiligtto predict the concentration of glycerol in
biodiesel and 5,000 ppm water. The average trgiRfrvalues ranged from 0.836 to 0.887. The
2 cm probe was the lowest, and the 7.5 cm probetleabighest. The average validatiof R
values ranged from 0.560 to 0.663; the 2 cm proae the lowest and the 2.5 cm probe was the
highest. These probes also had similar percentfg@Svalues above 0.900. For training they
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ranged from 58% for the 2 cm probe to 69% for tfecn probe. For validation, the percent of
R?-values above 0.900 ranged from 8% for the 2 crbgto 17% for the 7.5 cm probe.

The average training RMSE values for the probeswaso very similar; the 2.5 cm probe had
the lowest value of 109.1 mg/L, followed by the @b probe at 112.9 mg/L, and the 2 cm probe
at 129.6 mg/L. The average validation RMSE valt@sthe 2.5 and 7.5 cm probes were
comparable, 334.7 mg/L and 326.9 mg/L, respectjviely the 2 cm probe had a much higher
average validation RMSE, 410.0 mg/L.

5.3.2.2 Comparison of Regression Techniques

Partial least squares was the most reliable mefbropredicting the concentration of glycerol in
biodiesel. This method had the second highestageetraining Rvalue, 0.934, and the second
lowest average training RMSE value, 58.47 mg/L. SPkas the best by far in terms of
validation. The average validatiorf-Ralue was 0.705, much higher than for any othethotg
and the validation Rvalues were above 0.900 33% of the time. Wauehgisform followed by
stepwise regression was the method with the sehigiest percentage of validatiorf-Ralues
above 0.900, only 7.4%. PLS also had much lowéidatton RMSE values than the other

regression methods, the average was 258.2 mg/L.

The other three regression methods had similaitsefar predicting the glycerol concentration.
Stepwise regression had the highest trainifg@ues, 0.995 on average, and the lowest training
RMSE values, 17.11 mg/L on average, but the vatidatesults for stepwise were no than for

neural network or stepwise regression of wavetetsformed data.
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Table 5.19: R-values for predicting concentration of glycerol inbiodiesel

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 1.000 0.859 0.968 0.676 0.996 0.759 0.951 0.707

All Phase 0.896 0.690 0.997 0.464 0.721 0.595 0.991 0.436

~ | All Gain+Phase 1.000 0.655 0.981 0.617 0.430 0.316 0.837 0.724
g Low Gain 1.000 0.440 0.779 0.149 0.000 0.239 0.804 0.090
T | Low Phase 1.000 0.430 0.771 0.341 0.039 0.660 0.950 0.084
% Low Gain+Phase 1.000 0.249 0.788 0.227 0.743 0.221 0.830 0.326
High Gain 1.000 0.800 0.971 0.918 0.287 0.342 0.820 0.783

High Phase 0.998 0.840 0.980 0.966 0.981 0.860 1.000 0.722

High Gain+Phase 1.000 0.350 0.977 0.924 0.617 0.790 1.000 0.893

All Gain 1.000 0.688 1.000 0.923 0.969 0.800 0.991 0.890

All Phase 1.000 0.713 1.000 0.925 0.839 0.583 0.984 0.883

5 All Gain+Phase 1.000 0.857 0.999 0.954 0.664 0.770 0.794 0.813
o | Low Gain 1.000 0.366 0.716 0.539 0.585 0.000 1.000 0.457
% Low Phase 1.000 0.850 0.705 0.509 0.927 0.571 0.808 0.907
g Low Gain+Phase 1.000 0.883 0.720 0.544 0.051 0.018 1.000 0.750
® | High Gain 1.000 0.360 0.981 0.776 0.929 0.641 0.945 0.507
High Phase 1.000 0.403 0.991 0.795 0.748 0.216 1.000 0.858

High Gain+Phase 1.000 0.763 0.967 0.762 0.575 0.805 0.991 0.778

All Gain 0.988 0.254 0.999 0.906 0.730 0.405 0.819 0.572

All Phase 0.998 0.790 1.000 0.936 0.779 0.569 1.000 0.910

a All Gain+Phase 0.988 0.254 0.998 0.942 0.798 0.541 0.893 0.731
o | Low Gain 1.000 0.719 0.978 0.480 0.103 0.201 1.000 0.500
% Low Phase 1.000 0.601 0.997 0.697 0.421 0.626 0.954 0.029
g Low Gain+Phase 1.000 0.306 0.986 0.522 0.886 0.206 0.840 0.009
® | High Gain 1.000 0.915 0.963 0.896 0.752 0.858 0.999 0.596
High Phase 1.000 0.496 0.998 0.863 0.278 0.938 1.000 0.783

High Gain+Phase 1.000 0.549 0.999 0.781 0.780 0.803 1.000 0.816
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Table 5.20: RMSE values for predicting concentration of tycerol in biodiesel (mg/L)

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 0.00 501.12 129.74 398.83 50.73 364.99 161.49 378.08

All Phase 236.17 391.12 37.45 554.31 434.93 508.04 67.40 730.00

~ | All Gain+Phase 8.87 416.76 99.64 446.56 593.79 589.18 295.33 379.38

g Low Gain 0.02 118.61 78.67 143.41 215.24 193.40 74.17 163.29

T | Low Phase 0.29 251.09 80.14 121.70 226.60 87.97 37.53 222.90

& | Low Gain+Phase 0.01 159.64 77.08 134.32 88.98 179.97 69.02 128.47

® High Gain 0.00 672.51 100.19 577.67 544.21 581.41 247.71 808.32

High Phase 27.57 722.89 82.08 393.78 92.14 283.49 0.22 467.70

High Gain+Phase 0.00 1537.44 88.09 380.85 419.80 390.87 0.40 381.73

All Gain 0.01 511.48 0.59 289.16 140.52 352.95 67.55 266.63

All Phase 0.00 868.39 4.39 217.44 312.16 520.53 93.50 433.30

5 All Gain+Phase 0.00 556.08 22.58 191.29 545.27 394.41 331.97 385.89

o | Low Gain 0.00 220.00 89.15 110.39 162.43 188.21 0.36 113.06

% Low Phase 0.00 59.22 90.96 109.17 46.71 134.16 73.36 195.24

g Low Gain+Phase 0.00 53.27 88.47 107.35 231.22 241.30 0.02 130.21

® | High Gain 0.30 518.85 81.43 345.42 235.77 397.64 136.96 465.03

High Phase 0.00 721.48 55.82 327.09 354.47 610.96 0.04 337.76

High Gain+Phase 0.03 301.41 105.90 367.90 597.27 615.48 56.81 392.69

All Gain 78.91 687.22 22.84 211.79 449.44 602.47 310.47 541.23

All Phase 31.36 333.70 0.85 202.77 356.84 568.83 5.07 234.17

a All Gain+Phase 78.91 687.22 29.52 168.93 389.89 661.05 239.45 378.84

o | Low Gain 0.10 115.28 25.04 110.86 235.10 249.26 0.26 107.01

% Low Phase 0.03 219.78 8.75 81.83 174.96 124.34 35.72 207.93

g Low Gain+Phase 0.01 190.76 19.82 105.30 58.12 174.69 66.94 195.57

® | High Gain 0.00 427.82 112.48 270.05 398.18 392.04 15.36 402.82

High Phase 0.00 489.96 27.95 270.91 512.76 682.11 11.98 289.27

High Gain+Phase 0.00 465.97 19.02 332.50 349.36 276.59 0.21 308.17
5.3.3 Glyceride

The three probes were roughly equally capable ofsmeng changes in the glyceride
concentration in the biodiesel. Partial least sgsiavas the best regression method, and the only
method that had good results for validation. THRe/&ues for predicting the concentration of

glyceride in biodiesel are shown in Tabl21, and the RMSE values are given in T&R2.

5.3.3.1 Comparison of Probes

The range of Rvalues for the three probes was very small fodisting the concentration of
glyceride in biodiesel. The average trainirfgvlues ranged from 0.756 for the 2.5 cm probe to
0.799 for the 2 cm probe. The average validatidvaRies ranged from 0.434 for the 2.5 cm
probe to 0.569. The 2 cm probe had the highesepéage of Rvalues above 0.900, 56% for

training and 22% for validation. The 2 cm probsoahad the lowest average training RMSE
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value, 2,073.1 mg/L; however, the 2.5 cm probe tia lowest average validation RMSE,
4,898.3 mg/L.

5.3.3.2 Comparison of Regression Techniques
PLS was the only method with good validation resulfhe average validatiorf-Ralue for PLS
was 0.601, higher than for any other method, aedatrerage validation RMSE value for PLS

was lower than it was for the other methods, 4 40&y/L.

Once again, stepwise had the highest trainifigaRies and lowest validation RMSE values, but
had poor validation values. The average trainifevdtue for stepwise was 0.987 and the
training R-values for stepwise were above 0.900 for 93% &f tatasets. The average
validation R-value for stepwise was only 0.425. Neither stespwiegression of wavelet
transformed data nor neural network were very ssfaé in predicting the glyceride
concentration. Wavelet had a decent averageaRie, 0.867, but wavelet and neural network

both had validation Rvalues that were only just above 0.400.

Table 5.21: R-values for predicting concentration of glyceridem biodiesel

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 0.998 0.304 0.990 0.756 0.948 0.652 0.916 0.486

All Phase 1.000 0.347 0.990 0.500 0.846 0.554 0.611 0.490

~ | All Gain+Phase 1.000 0.625 0.995 0.575 0.580 0.071 0.958 0.501

g Low Gain 1.000 0.478 0.998 0.978 0.705 0.252 0.998 0.916

U | Low Phase 1.000 0.674 0.966 0.737 0.003 0.202 0.749 0.280

& | Low Gain+Phase 1.000 0.775 0.973 0.928 0.004 0.375 0.998 0.916

® High Gain 1.000 0.082 0.615 0.029 0.480 0.370 0.873 0.288

High Phase 1.000 0.851 0.637 0.992 0.240 0.703 0.772 0.983

High Gain+Phase 1.000 0.920 0.646 0.956 0.440 0.501 0.821 0.418

All Gain 0.994 0.929 0.875 0.749 0.686 0.566 0.908 0.703

All Phase 1.000 0.825 1.000 0.411 0.435 0.704 0.795 0.786

.an All Gain+Phase 1.000 0.946 0.993 0.622 0.009 0.056 0.908 0.703
o | Low Gain 1.000 0.183 0.841 0.688 0.150 0.471
% Low Phase 1.000 0.429 0.805 0.541 0.154 0.004

c‘ca_‘ Low Gain+Phase 1.000 0.215 0.851 0.391 0.828 0.555 1.000 0.437
® | High Gain 1.000 0.093 0.488 0.298 0.220 0.308

High Phase 0.944 0.170 0.905 0.251 0.073 0.357 0.830 0.173

High Gain+Phase 1.000 0.233 0.548 0.333 0.704 0.137 1.000 0.040

All Gain 0.997 0.065 1.000 0.357 0.095 0.114 0.937 0.441

All Phase 0.842 0.076 0.979 0.644 0.909 0.125 0.552 0.152

.:‘n All Gain+Phase 1.000 0.070 1.000 0.491 0.045 0.077 0.455 0.494

o | Low Gain 1.000 0.130 0.770 0.673 0.643 0.835 1.000 0.254

% Low Phase 0.884 0.680 0.852 0.691 0.967 0.528 0.847 0.650

c‘c:_‘ Low Gain+Phase 1.000 0.130 0.843 0.706 0.084 0.523 1.000 0.301

® | High Gain 1.000 0.721 0.941 0.493 0.006 0.613 1.000 0.016

High Phase 1.000 0.092 0.880 0.832 0.246 0.838 1.000 0.893

High Gain+Phase 1.000 0.881 0.922 0.970 0.497 0.000 0.875 0.132
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Table 5.22: RMSE values for predicting concentration of tyceride in biodiesel (mg/L)

SWR PLS ANN Wavelet

Training Validation | Training Validation | Training Validation | Training Validation

All Gain 336.92 6490.40 799.18 3909.95 2600.42 8634.15 2328.63 6225.25

All Phase 0.32 6441.03 807.44 6303.54 3348.85 8300.25 5010.51 5853.49

~ | All Gain+Phase 0.01 5574.55 549.56 5539.96 5583.88 8530.70 1642.65 6244.25

g Low Gain 0.00 1260.21 78.03 423.93 1184.58 1684.43 81.18 1644.85

T | Low Phase 0.78 1490.05 337.81 1008.26 2637.81 2828.99 922.26 1866.81

& | Low Gain+Phase 0.71 1368.20 301.87 655.93 3101.61 2895.65 81.18 1644.85

® High Gain 0.00 10885.47 3989.78 8629.90 10417.79 10840.70 2290.85 7123.10

High Phase 1.70 7938.58 3874.23 4549.01 6616.65 7218.44 3066.22 2751.80

High Gain+Phase 0.00 10478.20 3822.96 6019.59 6094.70 9342.64 2719.96 6848.71

All Gain 618.63 2859.31 2841.50 4224.28 4541.80 7410.23 2439.51 4031.91

All Phase 129.14 4557.29 22.82 7075.89 6463.95 4136.76 3636.28 3940.35

5 All Gain+Phase 0.29 2402.41 669.64 5331.72 9786.36 8167.29 2439.51 4031.91
o | Low Gain 0.00 2688.23 733.81 1797.56 1821.77 1612.61
% Low Phase 5.36 1395.07 812.10 1467.33 2056.20 2347.05

g Low Gain+Phase 0.00 1649.57 709.41 1692.03 998.21 1367.15 1.53 3613.20
® | High Gain 0.00 10657.33 4598.91 6539.93 5796.09 10508.56

High Phase 1515.56 6212.81 1979.59 6004.18 7570.30 5222.87 2646.42 6059.05

High Gain+Phase 0.00 5982.85 4319.41 6388.00 9366.08 8303.18 19.10 11966.62

All Gain 470.36 10189.65 0.01 6337.60 8285.88 10158.88 2011.59 7856.14

All Phase 3192.24 10908.39 1157.09 4662.13 2484.22 10728.78 5377.21 7236.97

a All Gain+Phase 0.04 11121.32 48.86 5485.68 13774.14 11943.67 5931.38 5287.59

o | Low Gain 0.00 6673.84 883.24 1030.89 1178.40 1550.74 1.30 2367.19

% Low Phase 626.14 1159.07 707.50 1101.29 437.31 2255.54 720.50 1252.14

g Low Gain+Phase 0.00 6673.84 728.58 1045.99 2208.32 3134.47 10.36 3384.61

® | High Gain 0.00 12732.15 1555.17 5016.29 9844.12 10545.21 11.13 7658.10

High Phase 5.32 8100.77 2228.59 4236.52 5840.48 4087.69 5.08 10731.67

High Gain+Phase 0.00 3028.75 1799.04 4448.63 4922.12 7255.55 2269.96 6216.08

5.4 Most Significant Frequencies from Stepwise

5.4.1 Nitrate Salts and Water

5.4.1.1 Concentration

Stepwise regression selected a large number afidreges to build regression models to predict
the concentration of nitrates in water. The freaqyetihat was selected the most to predict nitrate
concentration from the old control box was 1,000,6, and 17,600,000 and 301,600,000 Hz

were selected most often from the new control box.

5.4.1.1.10ne Liter Samples

A complete table of the frequencies that stepwisedufor each sensor to predict the

concentration of nitrate in the 1 L water sampgegiven inAppendix F. In Figur&.1, the total
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number of frequencies measured by the old conipal ib divided evenly into twenty groups,

each containing 31 or 32 frequencies. The horaobars next to these frequency ranges
indicate the number of frequencies stepwise saleftem each of these ranges to build
regression models for predicting the concentratibnitrate in the 1 L samples. The selected
frequencies were distributed fairly evenly from 4@ to 120 MHz. The frequency range that
had the most frequencies selected from it was 660,000 to 62,800,000 Hz range. The
smallest number of frequencies was selected fra2¢th800,00 to 31,000,000 Hz range. The
individual frequency that occurs most often in atigr prediction with the old control box and the

impedance meter was 1,000,000 which was selectietes.

The nitrate tests with the 2 cm probe were donagughe new control box, so the range of
frequencies at which measurements were taken wieresit. A complete table of the
frequencies selected with the 2 cm probe and theaoatrol box is given ippendix G. The
frequency that was selected the most often for2hmm probe was 181,600,000 Hz. It was

selected five times.
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114,000,000 - 120,000,000
107,600,000 - 113,800,000 |
101,200,000 - 107,400,000 |
94,800,000 - 101,000,000 |
88,400,000 - 94,600,000 | |
82,200,000 - 88,200,000 | |
75,800,000 - 82,000,000 |
69,400,000 - 75,600,000 | |
63,000,000 - 69,200,000 |
56,600,000 - 62,800,000 |
50,400,000 - 56,400,000 |
44,000,000 - 50,200,000 |
37,600,000 - 43,800,000 |
31,200,000 - 37,400,000 |
24,800,000 - 31,000,000 |

18,600,000 - 24,600,000 | |

12,200,000 - 18,400,000 | |

5,800,000 - 12,000,000 | |
63,096 - 5,600,000 | |

50 - 44,668 | |

0 5 10 15 20 25
# of Times Selected by Stepwise

Frequency Range (Hz.)

Figure 5.1: Frequencies selected by stepwise for predicgrthe concentration of 1 L nitrate
samples with the 2.5-7.5 cm probes and the old coal box or with the impedance meter

5.4.1.1.2Thirty-six Liter Samples

A complete list of the frequencies selected to jateudtrate concentration for the 36 L samples is
shown inAppendix H, and Figur&.2 shows how many frequencies from each range were
selected by stepwise. The frequencies that wéeeted most often with the 36 L samples were
17,600,000 and 301,600,000 Hz, both of which weseduseven times. The frequency range
from which the most frequencies were selected Wwa2t400,000 to 22,400,000 Hz range. The
smallest number of frequencies was selected fren2#4,400,000 to 294,400,000 Hz range.
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Overall, a lot more frequencies were selected ftbhm lower frequencies; 185 were selected

from the lower half and only 111 were selected ftbmupper half.

379,200,000 - 400,000,000 |
358,400,000 - 378,400,000 | |
337,600,000 - 357,600,000 | |
316,800,000 - 336,800,000 |
295,200,000 - 316,000,000 |
274,400,000 - 294,400,000 [
253,600,000 - 273,600,000 | ‘
232,800,000 - 252,800,000 [
212,000,000 - 232,000,000 | |
190,400,000 - 211,200,000 | |
169,600,000 - 189,600,000 | ‘ |
148,800,000 - 168,800,000 | |
128,000,000 - 148,000,000 |
107,200,000 - 127,200,000 |
86,400,000 - 106,400,000 | —
64,800,000 - 85,600,000 | |
44,000,000 - 64,000,000 | ‘
23,200,000 - 43,200,000 | ‘
2,400,000 - 22,400,000 | ‘
200 - 1,600,000 | T

Frequency Range (Hz.)

0 5 10 15 20 25 30
# of Times Selected by Stepwise

Figure 5.2: Frequencies selected by stepwise for predicgnthe concentration of 36 L
nitrate samples with the 2, 2.5, and 7.5 cm probesd the new control box

5.4.1.2 Molecular Weight
The number of frequencies selected by stepwiseddigi molecular weight was a lot smaller
than the number used to predict concentration. fiéguency used most often from the old

control box was 110.2 MHZ, and 2,674.4 MHz wasdus®st often from the new control box.
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5.4.1.2.10ne Liter Samples

A complete list of the frequencies selected fortHesamples with the impedance meter and the
old control box can be found sppendix I, and a list of the frequencies seledtedthe 2 cm
probe and the new control box can be foundppendix J. Eighty-six frequencies were selected
to create stepwise regression models to prediciriblecular weight of the 1 L nitrate samples
with the old control box. The frequency that watested most was 110.2 MHz, and it was
selected five times. Higher frequencies were seteto make these predictions. Almost twice
as many frequencies were selected above 56.4 Midzmiddle frequency for the old control
box, than below 56.4 MHz.

Twenty-three frequencies were selected to prediet molecular weight of the 1 L nitrate
solutions with the 2 cm probe and the new contox. bOnly one of these frequencies was used
more than once, 1,413 Hz. The frequencies thae welected were distributed fairly evenly

throughout the entire frequency range.

5.4.1.2.2Thirty-six Liter Samples

The 90 frequencies that stepwise used to predicintblecular weight of the 36 L nitrate samples
can be found irAppendix K. The most used frequency, 321,600,00w#s selected six times.
As with the 1 L samples, a very large proportionhgdh frequencies was used to make the
stepwise regression models. The middle frequenayneé range measured by the new control
box is 189,600,000 Hz. Approximately 1.5 times enfnrequencies were selected above this

value than below it.

5.4.2 Atrazine and Water

5.4.2.1 One Liter Samples

The stepwise regression program did not selectfeeguencies more than twice for the 1 L
atrazine samples with the old control box and inamee meter. A table of the frequencies that it
did select is given ippendix L. Thirty-three different frequencies wearsed, and seven of

these were used twice. There was no particulaenpaih the frequencies that were selected.
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Only four frequencies were selected to predictittheatrazine concentration with the 2 cm probe
and the new control box, and they are shownAppendix M. One of the frequencies,

137,600,000 Hz, was used twice. This was alsdtattgest selected frequency.

5.4.2.2 Thirty-six Liter Samples

Appendix N gives a table of the 35 frequenciesctetkto predict the concentration of atrazine

for the 36 L samples. The frequency that was sadlemost often was 245,600,000 Hz, which

was selected three times. None of the frequersatscted were above the middle frequency,
189,600,000 Hz. Only three frequencies above 1464Hz were selected. There was no

pattern to the frequencies selected when the alraobox was used, but in both experiments

that used the new control box, which can measwea#in and phase at higher frequencies that
the old control box, the frequencies selected bpwise to measure atrazine concentration were

low.

5.4.3 Impuritiesin Biodiesel Fuel

All of the frequencies used by stepwise to pretiietconcentration of impurities in biodiesel can
be found inAppendix O. One hundred and forty frequencies wsexl. The frequency that was
selected the most often was 69,600,000 Hz, whichugad seven times. There was not much of
a pattern to the frequencies that were selectedquencies below 189,600,000 Hz, the middle
frequency, were selected 155 times, and frequerabiese 189,600,000 Hz were selected 157

times.

5.5Most Significant Wavebands

5.5.1 Nitrate Salts and Water

5.5.1.1 Concentration
For both control boxes and sample sizes, the wankbased the most to predict the nitrate
concentration in water contained information frawér frequencies. The first waveband of the

fifth level was used many times by stepwise foraté concentration prediction.
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5.5.1.1.10ne Liter Samples

Stepwise regression used several wavebands tacpthdiconcentration of nitrate salts in the 1
L water samples. FigurB.3 is a tiling diagram that summarizes the wavdbatihat were
selected and how many times they were selectedta BPam the new control box and the
impedance meter are not included in this diagramabse they collected data at different
frequencies and therefore have different numbergasebands in each level. A complete table
of the levels and wavebands that were selecteddpyvsse for each sensor and each data subset

can be found iRppendix P.

8T |3 11112|2(1 (2 11111 1 1
518 2 2 1 1 1 1 1 O = a waweband that
was  selected by
stepwise
E 7 1 The numbers in the
j wavebands indicate
the number of times
that waweband was
g selected
g 2 1
a0 SR400000 120000000
Frequency (Hz)

Figure 5.3: Wavebands used to predict 1 L nitrate concen#ttion with 2.5, 5, and 7.5 cm
probes and old control box

Many of the wavebands that were used were seldoteshore than one probe or for both the
gain and phase data for the same probe. The tatontbre selected most often were the first
waveband of the fifth level, which contains infotina about data from frequencies between 50
and 44,668 Hz, and the first waveband of the slgtrel, which contains information about

frequencies between 50 and 5,600,000 Hz.
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5.5.1.1.2Thirty-six Liter Samples

Stepwise regression also used several wavebarmedat the concentration of the 36 L nitrate
samples. A detailed list of the wavebands thatewsslected by stepwise regression for each
probe and each data subset can be foudgpendix Q. Figuré.4 shows how many times each
waveband was selected. The first and seventh vaadsbirom the fifth level were used the most
often. These wavebands represent data from fregeseranging fron200 to 5,600,000

Hz and128,000,000 to 152,800,000 Hz, respectively.

518|4|6 |2 |4|5|6|2|3 212 |2|5(2|2
5 2 2 3 3 1 2 2
b O = 5 waveband that
was  selected by
L stepwise
e
v 7 3 1 2 The numbers in the
e wavehands indicate
| the number of times
4 that waveband was
g selected
g 5 3
200 189 500,000 400,000,000

Frequency (Hz)

Figure 5.4: Wavebands used to predict 36 L nitrate concerdtion with 2, 2.5, and 7.5 cm
probes and new control box

5.5.1.2 Molecular Weight
A fewer number of wavebands were selected to predamecular weight of nitrates than to
predict the concentration of nitrates. Only folawebands were selected from the data for the 1

L samples.
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5.5.1.2.10ne Liter Samples

Very few wavebands were used to predict the moéeaueight of the nitrates in the 1 L samples
because the stepwise program was often unablaedonfavebands that were significant enough
to build a model with. Figur&.5 shows the wavebands that were chosen: the tenthl '
wavebands from the fifth level, the fourth wavebanoim the seventh level, and the first

waveband from the ninth level.

5 1 2
B L] = a wavehand that
was  selected by
stepwise
E 7 1 The numbers in the
j wavebands indicate
the number of times
that waveband was
B selected
9 1
a0 akR400000 120000000
Frequency (Hz)

Figure 5.5: Wavebands used to predict 1 L nitrate moleculaweight with 2.5, 5, and 7.5 cm
probes and old control box

5.5.1.2.2Thirty-six Liter Samples

Stepwise regression selected more wavebands tacptbe molecular weight of the 36 L
samples than of the 1 L samples. A table of theelvands selected by stepwise for the 36 L
samples can be found iAppendix R. The tiling diagram in Figurg.6 shows that the
distribution of wavebands selected for predictihg tnolecular weight of the 36 L samples is
different than it was for predicting the concentmatand that a lot fewer wavebands were

selected for molecular weight. For the concerdrafpredictions, almost all of the wavebands
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corresponding to lower frequencies were selectedhfe models. For the molecular weight
predictions, the lowest and highest wavebands wgrered, and bands in the middle were

selected.

The waveband that was selected most frequentlythead 4" band of the fifth level. The i3

and 1% bands on either side of it were also selected rabdenes. The frequency range
included in these three wavebands is 276,800,0085400,000 Hz. The fifth and sixth
wavebands in the sixth level were selected fouesimach. Together these two wavebands range
from 166,400,000 to 260,000,000 Hz. Thereforetethe no overlap in frequency in the bands

used most often in the 5th level and the 6th level.

5 1(1 (1 113 2(2|1|14(5 4|2
b 1 3 4 4 1 2 O = a waveband that
was  selected by
L stepwise
e
v 7 The numbers in the
e wavehands  indicate
| the number of times
that waveband was
B 1 selected
3 2 2
200 189 500,000 400,000,000
Frequency (Hz)

Figure 5.6: Wavebands used to predict 36 L nitrate molecal weight with the 2, 2.5, and
7.5 cm probes and the new control box
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5.5.2 Atrazine and Water
Stepwise also selected very few wavebands to grdditcconcentration of atrazine in both the 1
L samples and in the 36 L sampleAppendix S lists the wavebands that were used dch e

samples size.

5.5.2.1 One Liter Samples

As illustrated in Figures.7, none of the wavebands selected by stepwiséh®il L atrazine
samples were used for more than one data subd®t. wavebands all corresponded to lower
frequencies; the highest waveband chosen was trentsewaveband of the sixth level, which
contained information from the frequencies randiram 69.4 to 82.0 MHz. There were no
higher frequencies used.

g 1 1 1
511 1 1 O = a waweband that
was  selected by
stepwise
E 7 1 1 The numbers in the
j wavebands indicate
the number of times
that waweband was
g selected
g 1
a0 SR400000 120000000
Frequency (Hz)

Figure 5.7: Wavebands used to predict 1 L atrazine concertion with the 2.5, 5, and 7.5
cm probes and the old control box
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5.5.2.2 Thirty-six Liter Samples

Stepwise also selected wavebands correspondingwer Ifrequencies for the 36 L samples.
This is summarized in the tiling diagram in Fig&&. The only waveband that was used for
more than one subset of data was the first barttieoeventh level. This waveband contains
information from the frequency range 200 to 64,000,Hz. The seventh level was the highest

level from which stepwise selected wavebands, maldaere chosen from levels eight or nine.

5 1(1]1(1 1
b 1 1 O = 5 waveband that
was  selected by
L stepwise
e
v 7 2 1 The numbers in the
e wavebands  indicate
| the number of times
that waveband was
g selected
9
200 189 500,000 400,000,000
Frequency (Hz)

Figure 5.8: Wavebands used to predict 36 L atrazine conceation with the 2, 2.5, and 7.5
cm probes and the new control box

5.5.3 Biodiesal Impurities

All but four of the wavebands that were availalbdestepwise were used to build at least one
regression model to predict the concentration otaminants in biodiesel. The four wavebands
that were not used were the highest wavebandevetd five through eight, the wavebands that
correspond to the highest frequency ranges. Tdmsbe seen in Figu29. A complete list of

the wavebands used to build prediction modelsdehecontaminant is located Appendix T.
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The waveband that is used most often, nine tinsethe sixth waveband of the sixth level. This

waveband contains information about the data rewbrdt frequencies of 213,600,000 to

260,000,000 Hz. The second most used wavebandhwias selected seven times, is the tenth
waveband of the fifth level which corresponds ttadaom the frequency range 202,400,000 to
227,200,000 Hz.

Sla s (a4l ls|1|3(1|4]7|6]|4|4]|6] 3|1
5
- ! 2 £ 2 E g . O = & waveband that
L was  selected by
e stepwise
7
v 2 5 4 2 The numbers in the
e e
I wavehands  indicate
the number of times
g that waveband was
2 5 selected
9 4 2
200 189 500,000 400,000,000
Frequency (Hz)

Figure 5.9: Wavebands used to predict the 36 L biodiesehpurities with the 2, 2.5, and 7.5
cm probes and the new control box
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CHAPTER 6 - Conclusions

6.1 Water Tests

6.1.1 Probes

All of the probes tested in this study were abledébect changes in nitrate concentration to a
reasonable degree of accuracy. The 2 cm probéreega larger sample size in order to detect
these changes. Based on the tests done in thig, $he 7.5 cm probe was able to detect nitrates
in water better than the other probes. This pmlbeost always had the highest-®lues for
predicting the concentration of nitrate in both the water samples and the 36 L water samples.

The probes in this study were not able to accurgtetdict molecular weight of nitrates in a
small sample of water. The results were greatigroved with the 36 L water samples; and the
7.5 cm probe was also the best at predicting thiecutar weight of the nitrates. The 2 cm
probe was also capable of measuring differencesolecular weight; however, the 2.5 cm probe

was not as reliable as the others.

Atrazine was not detected as accurately as nitnatts these probes. For the 1 L atrazine
samples, none of the probes especially outperfotimedthers. For the 36 L samples, the 2 cm
probe detected the change in atrazine concentratioh better than the other probes. The R

values and the RMSE values were consistently bieitehis probe than for any other probe.

The results for the three probes tested were mattkrifor the 36 L sample size than for the 1 L

samples.

6.1.2 Regression Techniques
Partial least squares was the most reliable reigressethod used to detect contaminants in
water samples. PLS did not always have trainifgdtues as high as stepwise regression, but it

almost always had higher validatiorf-Ralues than the other methods. PLS also had lower
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RMSE values than the other methods did. Neuralort was the least reliable of the methods

studied. It usually had low®Rvalues for both training and validation, and hRjMSE values.

6.1.3 Important Frequencies

There were not any major trends in the frequenarek wavebands that stepwise used to make
regression models. The frequencies used to preiiate concentration were often in the lower
half of the frequency range, and the frequenciesl ue predict nitrate molecular weight were
often in the upper half of the frequency rangeisThay be the reason that the molecular weight
predictions were so much better for the 36 L samfleey were all tested using the new control
box which measures the gain and phase at muchriiglggiencies than the old control box.

6.2 Biodiesel Tests

6.2.1 Probes

The three probes that were used to test the bieldfasl were all fairly comparable in their
ability to measure the concentration of the contemi in the fuel. The results, in terms &t R
and RMSE values, indicate that the probes are si@apable of detecting changes in biodiesel
impurity levels as they are in detecting water imifgulevels. This could be a result of the
settling of the impurities to the bottom of the aqum due to their high densities.

6.2.2 Regression Techniques
PLS was the best regression method for predichiegcbncentration of glycerin and glyceride in
biodiesel, and stepwise regression of wavelet toamed data predicted the concentration of

water most accurately. Neural network typicallgguced the worst results.

6.2.3 Important Frequencies
Stepwise selected frequencies that were sprealy ®anenly throughout the total frequency

range, suggesting that higher and lower frequenaies equally significant in biodiesel
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contaminant concentration prediction. The freqyetiat was used most often in biodiesel
contaminant prediction was 69,600,000 Hz, whichrie of the lower frequencies measured by

the new control box measures data.

A large assortment of wavebands was used to gentiratstepwise regression models. Not all
of the wavebands corresponded to low frequenciesielier the wavebands that contained
information from the highest frequencies for leviele through eight were the only wavebands
not selected. This could also indicate that loWweguencies are more useful in predicting

biodiesel contaminants.
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CHAPTER 7 - Recommendations for Future Research

The main goal of this experiment was to produceaple, durable, and inexpensive probe to
measure water and biodiesel contaminants. Theriexgets done for this thesis indicate that the
probes studied do have some ability to measureananant concentration and to distinguish
between different contaminants. More researchiveiéd to be conducted to determine how well

these probes will work in real life situations. eMollowing is a list of suggestions:

1. Tests should be conducted on samples that contaie than one contaminant.

2. A more in-depth study of container size and shéyoellsl be done. A variety of container
sizes and shapes should be tested to determinéh giie and shape gives the most
accurate results. Containers composed of diffeneaierials should also be compared
because it is possible that the permittivity of #entainer material could affect the
permittivity measurement of the sample. The comtaimight also interfere with the

electric field.

3. Independent 36 L samples should be prepared atetitesa random order to determine

if testing the samples in order of increasing cotraion falsely improves the results.
4. The tests should be repeated using only the frameenthat stepwise selected as
significant and these results should be compardtigaesults obtained using data from

the entire frequency range.

5. A better method for mixing the contaminants witke thodiesel should be developed and

tested.
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Appendix A - MatLab Regression Program

%%%%%%% %% %% %% %% %% %% %% %% % %% %% %% %% % %Y %%%%%
% Program:  Stepwise Regression & PLS & Neural Network & Wavelet %

% Description: To Predict Concentration of Nitrate Salts in Water %

% Functions: Uses Graph_Function, Stepwise_Funct ion, PLS_Function, %

% Neural_Function, and Wave_Function %

% Probe: 7.5 cm (Big) %

% Date: 3/6/09 %

%%%%%%% %% %% % %% % % %% % % %% % % %% % % %% % % % %0 %08 804808088020080800800808808080886%%% %%
clear all;

clc;

load '7_5 cm Probe Data’;

Probe='7.5 cm’;
Predict="Concentration’;
Pred='Conc’;

%6%%%%%%%% %% %% %% %
% Graph Data %
%6%6%%%%%%% %% %% %% %

Graph_Function(freq,GAa,'G',Probe,Predict,'T',1);
Graph_Function(freq,PAa,'P',Probe,Predict,'T',2);
Graph_Function(freq,GAVa,'G',Probe,Predict,'V',3);
Graph_Function(freq,PAVa,'P',Probe,Predict,'V',4);

%%%%%%%%%% %% %% % %% %% %% %%
% Stepwise Analysis %
%6%%%%%%%%% %% %% %% %%6%%%%%

[FreqGA,R2GA,RMSEGA, PredictedGA]=Stepwise_Function( ConcT,ConcV,GA,GAV,...
Probe,'Gain',Predict,'All',freq,5);
[FregPA,R2PA,RMSEPA,PredictedPA]=Stepwise_Function( ConcT,ConcV,PA,PAV,...

Probe,'Phase’,Predict,'All',freq,6);
[FreqGPA,R2GPA,RMSEGPA,PredictedGPA]=Stepwise_Funct ion(ConcT,ConcV,GPA,...
GPAV,Probe,'Gain+Phase',Predict,'All',freq,7);

[FreqGL,R2GL,RMSEGL,PredictedGL]=Stepwise_Function( ConcL,ConcL,GL,GLV,...
Probe,'Gain',Predict,'Low',freq,8);
[FregPL,R2PL,RMSEPL,PredictedPL]=Stepwise_Function( ConcL,ConcL,PL,PLV,...
Probe,'Phase’,Predict,'Low',freq,9);
[FreqGPL,R2GPL,RMSEGPL,PredictedGPL]=Stepwise_Funct ion(ConcL,ConcL,GPL,...
GPLV,Probe,'Gain+Phase',Predict,'Low',freq,10);
[FreqGH,R2GH,RMSEGH,PredictedGH]=Stepwise_Function( ConcTH,ConcVH,GH,...
GHV,Probe,'Gain’,Predict,'High',freq,11);
[FregPH,R2PH,RMSEPH,PredictedPH]=Stepwise_Function( ConcTH,ConcVH,PH,...

PHV,Probe,'Phase’,Predict,'High’,freq,12);
[FreqGPH,R2GPH,RMSEGPH,PredictedGPH]=Stepwise_Funct ion(ConcTH,ConcVH,...
GPH,GPHV,Probe,'Gain+Phase',Predict,'High’,freq ,13);

%Make a Table of all R-Square Values for Stepwise
RSqgrValue=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2GPL; R2 GH; R2PH; R2GPH];
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%Make a Table of all RMSEs for Stepwise

RMSEValue=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL; RMSEPL; RMSEGPL; ...

RMSEGH; RMSEPH; RMSEGPH];

%Make a Table of all Predictions for Stepwise

PredictedValue=[PredictedGA PredictedPA PredictedGP

PredictedPL PredictedGPL PredictedGH PredictedP

%Make Table of Frequencies Used in Each Test
L=1:60;

Freqs=zeros(60,9);
Fregs(L,1)=[sort(FreqGA);zeros(60-size(FreqGA,1),1)
Freqgs(L,2)=[sort(FreqPA);zeros(60-size(FreqPA,1),1)
Freqgs(L,3)=[sort(FreqGPA);zeros(60-size(FreqGPA,1),
Freqgs(L,4)=[sort(FreqGL);zeros(60-size(FreqGL,1),1)
Freqgs(L,5)=[sort(FreqPL);zeros(60-size(FreqPL,1),1)
Freqgs(L,6)=[sort(FreqGPL);zeros(60-size(FreqGPL,1),
Freqgs(L,7)=[sort(FreqGH);zeros(60-size(FreqGH,1),1)
Freqgs(L,8)=[sort(FreqPH);zeros(60-size(FreqPH,1),1)
Freqgs(L,9)=[sort(FreqGPH);zeros(60-size(FreqGPH,1),

FreqList{1,1}=[Probe ' Probe- Frequencies Used to P
Predict ' by Stepwise;

z={'All Gain','All Phase','All Gain+Phase','Low Gai
'‘Low Gain+Phase','High Gain','High Phase','High

for m=1:9
FreqgList{2,m}=z{1,m};

end

for g=1.60
for s=1.9;
FregList{g+2,s}=Freqgs(q,s);
end
end

%Make Table of All Frequencies Used in Stepwise

FreqAll=[FreqGA;FreqPA;FreqGPA;FreqGL;FreqPL;FreqGP

FreqAll=sort(FregAll,'ascend");

%%%%%% %% %% %% %% %% %%
% PLS Analysis %
%%%%%%% %% %% %% % %% %%

[R2GA,RMSEGA,PredictedGA]=PLS_Function(ConcT,ConcV,

'‘Gain',Predict,'All',14);

[R2PA,RMSEPA, PredictedPA]=PLS_Function(ConcT,ConcV,

'‘Phase’,Predict,'All',15);

[R2GPA,RMSEGPA,PredictedGPA]=PLS_Function(ConcT,Con

'‘Gain+Phase’,Predict,'All',16);

[R2GL,RMSEGL,PredictedGL]=PLS_Function(ConcL,ConcL,

‘Gain',Predict,'Low',17);

[R2PL,RMSEPL,PredictedPL]=PLS_Function(ConcL,ConcL,

'Phase’,Predict,'Low',18);

[R2GPL,RMSEGPL,PredictedGPL]=PLS_Function(ConcL,Con

'‘Gain+Phase’,Predict,'Low',19);

100

A PredictedGL ...
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[R2GH,RMSEGH,PredictedGH]=PLS_Function(ConcTH,ConcV
'‘Gain',Predict,'High',20);

[R2PH,RMSEPH,PredictedPH]=PLS_Function(ConcTH,ConcV
'Phase’,Predict,'High’,21);

[R2GPH,RMSEGPH,PredictedGPH]=PLS_Function(ConcTH,Co
Probe,'Gain+Phase’,Predict,'High’,22);

%Add PLS R-Sqgrs to Table
RSqrValue(:,3:4)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2

%Add PLS RMSEs to Table
RMSEValue(:,3:4)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL;
RMSEGPL; RMSEGH; RMSEPH; RMSEGPH];

%Add PLS Predictions to Table

PredictedValue(:,19:36)=[PredictedGA PredictedPA Pr
PredictedGL PredictedPL PredictedGPL PredictedG
PredictedGPH];

%0%%%%% %% %% %% %% %% %% %%
% Neural Network %
%0%%%% %% %% %% %% %% %% % %%

[R2GA,RMSEGA,PredictedGA]=Neural_Function(ConcT,Con
'‘Gain',Predict,'All',23);
[R2PA,RMSEPA,PredictedPA]=Neural_Function(ConcT,Con
'‘Phase’,Predict,'All',24);
[R2GPA,RMSEGPA,PredictedGPA]=Neural_Function(ConcT,
Probe,'Gain+Phase’,Predict,'All',25);
[R2GL,RMSEGL,PredictedGL]=Neural_Function(ConcL,Con
'‘Gain',Predict,'Low',26);
[R2PL,RMSEPL,PredictedPL]=Neural_Function(ConcL,Con
'‘Phase’,Predict,'Low',27);
[R2GPL,RMSEGPL,PredictedGPL]=Neural_Function(ConcL,
Probe,'Gain+Phase’,Predict,'Low",28);
[R2GH,RMSEGH,PredictedGH]=Neural_Function(ConcTH,Co
Probe,'Gain',Predict,'High',29);
[R2PH,RMSEPH,PredictedPH]=Neural_Function(ConcTH,Co
Probe,'Phase’,Predict,'High’,30);
[R2GPH,RMSEGPH,PredictedGPH]=Neural_Function(ConcTH
Probe,'Gain+Phase’,Predict,'High’,31);

%Add ANN R-Sqrs to Table
RSqrValue(:,5:6)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2

%Add ANN RMSEs to Table
RMSEValue(:,5:6)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL;
RMSEGPL; RMSEGH; RMSEPH; RMSEGPH];

9%Add ANN Predictions to Table

PredictedValue(:,37:54)=[PredictedGA PredictedPA Pr
PredictedGL PredictedPL PredictedGPL PredictedG
PredictedGPH];
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%0%%%%% %% %% %% %% % %% % %% %
% Wavelet Transform %
%0%%% %% %% %% %% %% % %% % %% %

[R2GA,RMSEGA,PredictedGA,SeGA,LGA]=Wave_Function(Co
Probe,'Gain',Predict,'All',freq,32);
[R2PA,RMSEPA, PredictedPA,SePA,LPA]=Wave_Function(Co
Probe,'Phase’,Predict,'All',freq,34);
[R2GPA,RMSEGPA,PredictedGPA,SeGPA,LGPA]=Wave_Functi
GPAV,Probe,'Gain+Phase’,Predict,'All',freq,36);
[R2GL,RMSEGL,PredictedGL,SeGL,LGL]=Wave_Function(Co
Probe,'Gain',Predict,'Low',freq,38);
[R2PL,RMSEPL,PredictedPL,SePL,LPL]=Wave_Function(Co
Probe,'Phase’,Predict,'Low',freq,40);
[R2GPL,RMSEGPL,PredictedGPL,SeGPL,LGPL]=Wave_Functi
GPLV,Probe,'Gain+Phase',Predict,'Low',freq,42);
[R2GH,RMSEGH,PredictedGH,SeGH,LGH]=Wave_Function(Co
GHV,Probe,'Gain',Predict,'High',freq,44);
[R2PH,RMSEPH,PredictedPH,SePH,LPH]=Wave_Function(Co
PHV,Probe,'Phase’,Predict,'High’,freq,46);
[R2GPH,RMSEGPH,PredictedGPH,SeGPH,LGPH]=Wave_Functi
GPH,GPHV,Probe,'Gain+Phase',Predict,'High',freq

%Add Wavelet R-Sqrs to Table
RSqrValue(:,7:8)=[R2GA; R2PA; R2GPA; R2GL; R2PL; R2

%Add Wavelet RMSEs to Table
RMSEValue(:,7:8)=[RMSEGA; RMSEPA; RMSEGPA; RMSEGL;
RMSEGPL; RMSEGH; RMSEPH; RMSEGPH];

%Add Wavelet Predictions to Table

PredictedValue(:,55:72)=[PredictedGA PredictedPA Pr
PredictedGL PredictedPL PredictedGPL PredictedG
PredictedGPH];

%Make Table of Selected Wavebands
Bands{1,1} = [Probe ' Probe- Predicting ' Predict .
' of Salts- Wavebands Selected From Wavelet Tra
Bands{2,2} = 'Level’;
Bands{2,3} = 'Waveband';
Bands{3,1} = 'All Gain’;

Bands1=SeGA;

Bands{length(Bands1)+3,1} = 'All Phase’;
Bands1((length(Bands1)+1):(length(Bands1)+LPA),:)=S
Bands{length(Bands1)+3,1} = 'All Gain+Phase’;
Bands1((length(Bands1)+1):(length(Bands1)+LGPA),:)=
Bands{length(Bands1)+3,1} = 'Low Gain’;
Bands1((length(Bands1)+1):(length(Bands1)+LGL),:)=S
Bands{length(Bands1)+3,1} = 'Low Phase’;
Bands1((length(Bands1)+1):(length(Bands1l)+LPL),:)=S
Bands{length(Bands1)+3,1} = 'Low Gain+Phase’;
Bands1((length(Bands1)+1):(length(Bands1)+LGPL),:)=
Bands{length(Bands1)+3,1} = 'High Gain’;
Bands1((length(Bands1)+1):(length(Bands1)+LGH),:)=S
Bands{length(Bands1)+3,1} = 'High Phase’;
Bands1((length(Bands1)+1):(length(Bandsl1)+LPH),:)=S
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Bands{length(Bands1)+3,1} = 'High Gain+Phase’;

Bands1((length(Bands1)+1):(length(Bands1)+LGPH),:)=

for n=1:length(Bands1)
for m=1:2
Bands{n+2,m+1}=Bands1(n,m);
end

end

%Make Table of All RMSEs
RMSE{1,1} = [Probe ' Probe- Predicting ' Predict
RMSE{2,2} = 'SWR';
RMSE{2,4} = 'PLS';
RMSE{2,6} = 'ANN’;
RMSE{2,8} = 'Wavelet;
RMSE{3,2} = 'Training’;
RMSE{3,3} = 'Validation’;
RMSE{3,4} = 'Training’;
RMSE{3,5} = 'Validation’;
RMSE{3,6} = 'Training’;
RMSE{3,7} = 'Validation’;
RMSE{3,8} = 'Training’;
RMSE{3,9} = 'Validation’;
RMSE{4,1} = 'All Gain’;
RMSE{5,1} = 'All Phase’;
RMSE{6,1} = 'All Gain+Phase’;
RMSE{7,1} = 'Low Gain’;
RMSE{8,1} = 'Low Phase’;
RMSE{9,1} = 'Low Gain+Phase’;
RMSE{10,1} = 'High Gain’;
RMSE{11,1} = 'High Phase’;
RMSE{12,1} = 'High Gain+Phase’;
for N=1:9
for M=1:8
RMSE{N+3,M+1}=RMSEValue(N,M);
end
end

%Make Table of all R-Sqgr Values
RSqr=RMSE;
RSqr{1,1} = [Probe ' Probe- Predicting ' Predict '

for N=1:9
for M=1:8
RSqr{N+3,M+1}=RSqrValue(N,M);
end
end

%Make Table of all Prediction Values

z={'All Gain'," ','All Phase'," ''All Gain+Phase’,
"''Low Phase',’ ','Low Gain+Phase',' ','High
'High Phase',' ','High Gain+Phase'," '};

Prediction{1,1} = [Probe ' Probe- Predicting ' Pred
' of Salts- Predictions';

Prediction{2,1} = 'Stepwise Regression’;

Prediction{2,19} = 'PLS";

Prediction{2,37} = 'Neural Network’;
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Prediction{2,55} = 'Wavelet';

for n=1:18
Prediction{3,n}=z{1,n};
Prediction{3,n+18}=z{1,n};
Prediction{3,n+36}=z{1,n};
Prediction{3,n+54}=z{1,n};
end

for n=1:36
Prediction{4,2*n-1}="Training’;
Prediction{4,2*n}="Validation’;
end

for N=1:72
for M=1:27
Prediction{M+3,N}=PredictedValue(M,N);
end
end

%Write Tables to Excel

xlswrite([Probe '-' Pred '- R-Sqr Values.xIs'], RSq
xlswrite([Probe '-' Pred - RMSE Values.xIs'], RMSE
xlswrite([Probe '-' Pred '- Predicted Values.xIs",
xlswrite([Probe '-' Pred '- All Frequencies Used.x|
xlswrite([Probe '-' Pred '- Wavebands.xIs'], Bands)
xlswrite([Probe '-' Pred '- Frequencies Used for Ea
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Appendix B - Stepwise Program

%%%%%%% %% %% %% %% %% %% %% %% % % %% % % %% % % %Y %%%%%%
% Program: Stepwise Regression Function %

% Toolbox: Mathworks Statistics Toolbox 7.0 %

% Purpose: To predict concentration or molecular w eight of pollutants %

% in water samples %

% By: Sarah Shultz %

% Date:  3/6/09 %

%%%%%% %% %% %% %% %% %% %% %% %% %% %% % %% % %% %80880860898808008088080080880880800%6% %% %%
function [FreqList,R2,RMSE,Predicted]=Stepwise_Func tion(YT,...
YV,XT,XV,Probe,Data,Prediction,Concentration,.. .
freq,FigNum)
%lInputs-
%YT = training Y-variables
%YV = validation Y-variables
%XT = training X-variables
%XV = validation X-variables
%Probe = probe that data was collected from

%Data = gain, phase, or gain and phase toge ther

%Prediction = concentration or molecular we ight
%Concentration = range of concentrations in cluded

%freq = list of frequencies corresponding t o the X-variables

%FigNum = number to assign to plot

%Outputs-
%FreqList = list of significant frequencies
%R2 = R-squared values
%RMSE = RMSE value
%Predicted = Y-values predicted using stepw ise model

%List of Frequencies

if size(XT,2)>size(freq,2);
allfreq=[freq;freq]’;

else allfreq=freq’;

end

%Remove Frequencies from Data
R=1:5:length(XT);

XT=XT(:,R);

XV=XV(;,R);

allfreg=allfreq(:,R);

%Stepwise Model
[b,se,pval,inmodel,stats] = stepwisefit(XT,YT,...
'‘penter’,0.05,'premove’,0.10);

%Make list of frequencies stepwise selects
X=allfreq.*inmodel;

Freg=X(X ~= 0);

FregList=Freq’;
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%Training

T=XT";

n=size(XT,1);

for N=1:n
Q(1:length(b),N)=b.*inmodel'.*T(1:length(b),N);

end

T=sum(Q)+stats.intercept;

T=T}

clear 'Q";

%Validate

V=XV

n=size(XV,1);
for N=1:n
Q(1:length(b),N)=b.*inmodel'.*V(1:length(b),N);
end

V=sum(Q)+stats.intercept;

V=V

Predicted=[[T; zeros(27-size(T,1),1)] [V; zeros(27-

%Calculate R-Square Values
Sxy=sum(T.*YT)-((sum(T)*sum(YT))/length(T));
Sxx=sum(T."2)-(sum(T)"2/length(T));
Syy=sum(YT."2)-(sum(YT)"2/length(YT));
R2T=(Sxy/sqrt(Sxx*Syy))"2;

Sxy=sum(V.*YV)-((sum(V)*sum(YV))/length(V));
Sxx=sum(V.*2)-(sum(V)"2/length(V));
Syy=sum(YV."2)-(sum(YV)"2/length(YV));
R2V=(Sxy/sqrt(Sxx*Syy))"2;

R2=[R2T R2V];

%Calculate RMSE for Training & Validation
SSET=sum((YT-T)."2);
RMSET=sqrt(SSET/(size(YT,1)-2));

SSEV=sum((YV-V)."2);
RMSEV=sqrt(SSEV/(size(YV,1)-2));

RMSE=[RMSET RMSEV];

%Title of Plot
Titlel=[Probe ' Probe- Predicting ' Prediction ' wi
Title2=[Concentration ' ' Data];
Title3=['Training R"2=" mat2str(R2T,3) ', Validatio
Titled=['Training RMSE=" mat2str(RMSET,3)...

', Validation RMSE=" mat2str(RMSEV,3)];

%PIlot of actual vs. predicted values
h=figure(FigNum);
scatter(YT,T,'bo")

hold(‘all’);

scatter(YV,V,'go")

plot([YV YTL[YV YTL,'r)
xlabel(['Actual ' Prediction]);
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size(V,1),1)]];

th Stepwise AnalysisT;

n R"2=" mat2str(R2V,3)];



ylabel(['Predicted ' Prediction]);

title({Title1;Title2;Title3;Title4}, 'fontsize’, 13 );

grid on;

legend('Training','Validation','Perfect Fit','Locat ion','NorthWest')
z=[Prediction '- ' mat2str(FigNum) - ' Probe - S tepwise.bmp';

%Save plot as a bitmap
saveas(h,z)
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Appendix C - PLS Program

%%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% % %%
% Program: PLS Function

% Toolbox: Eigenvector PLS Toolbox 4.0

% Purpose: To predict concentration or molecular w

% in water samples

% By: Sarah Shultz

% Date:  3/6/09

%%%%%%% %% %% %% % % %% %% %% %% %% % % %% %% % % Y0 880108 04048400000080808080898084

0%%%% %%

%%%%%%

function [R2,RMSE,Predicted]=PLS_Function(YT,YV,XT,

XV,Probe,Data,Prediction,Concentration,FigNum)
%lInputs-

%YT = training Y-variables

%YV = validation Y-variables

%XT = training X-variables

%XV = validation X-variables

%Probe = probe that data was collected from

%Data = gain, phase, or gain and phase toge ther
%Prediction = concentration or molecular we ight
%Concentration = range of concentrations in cluded

%FigNum = number to assign to plot

%Outputs-
%R2 = R-squared values
%RMSE = RMSE values
%Predicted = Y-values predicted using PLS m odel

%Remove Frequencies from Data
R=1:5:length(XT);

XT=XT(;,R);

XV=XV(;,R);

%Preprocess Data
max_pc=size(XT,1); %Number of Y-variables
[press,cumpress]=crossval(XT,YT,'sim',{'loo'},max_p c);
%sim = SIMPLS algorithm
%loo = leave-one-out cross-validation

min_train_pc=find(cumpress==min(cumpress));
%find minimum CUMPRESS value

%Model options

options.name='options’;

options.display="off,

options.plots='none’;

options.outputversion=3;

options.preprocessing={preprocess('meancenter’) pre process(‘'meancenter")};
%center columns to have zero mean

options.algorithm="'sim’;
%Use SIMPLS algorithm

options.blockdetails='standard’;

%Create model with training data
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model=pls(XT,YT,min_train_pc(1,1),options); %calibr

%Prediction using the training data
pred=pls(XT,model,options);
predYT=pred.pred{2};

%Prediction using validation data
pred=pls(XV,YV,model,options);
predYV=pred.pred{2};

%Put prediction values together into one matrix to
Predicted=[[predYT; zeros(27-size(predYT,1),1)] ...
[predYV; zeros(27-size(predYV,1),1)]];

%Calculate R-Square values for training & validatio
Sxy=sum(predYT.*YT)-((sum(predYT)*sum(YT))/length(p
Sxx=sum(predYT."2)-(sum(predYT)"2/length(predYT));
Syy=sum(YT.*2)-(sum(YT)"2/length(YT));
R2T=(Sxy/sqrt(Sxx*Syy))"2;

Sxy=sum(predYV.*YV)-((sum(predYV)*sum(YV))/length(p
Sxx=sum(predYV."2)-(sum(predYV)"2/length(predYV));
Syy=sum(YV.*2)-(sum(YV)"2/length(YV));
R2V=(Sxy/sqrt(Sxx*Syy))"2;

R2=[R2T R2V];

%Calculate RMSE for Training & Validation
SSET=sum((YT-predYT)."2);
RMSET=sqrt(SSET/(size(YT,1)-2));

SSEV=sum((YV-V)."2);
RMSEV=sqrt(SSEV/(size(predYV,1)-2));

RMSE=[RMSET RMSEV];

%Title of Plot
Titlel=[Probe ' Probe- Predicting ' Prediction ' wi
Title2=[Concentration ' ' Data |;
Title3=['Training R"2=" mat2str(R2T,3) ', Validatio
Titled=['Training RMSE=" mat2str(RMSET,3) ...

', Validation RMSE=" mat2str(RMSEV,3)];

%PIlot of actual vs. predicted values
h=figure(FigNum);

plot(YT,predYT,'bo";

hold on;

plot(YV,predYV,'go";

plot(YV YTL[YV YT],'r");

xlabel(['Actual ' Prediction]);
ylabel(['Predicted ' Prediction]);
title({Title1;Title2;Title3;Title4}, 'fontsize’, 13
grid on;
legend('Training','Validation','Perfect Fit','Locat
hold off;
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%Save plot as a bitmap
z=[Prediction '- ' mat2str(FigNum) - ' Probe - P LS.bmp'];
saveas(h,z)
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Appendix D - ANN Program

%%%%%%% %% %% %% %% %% %% %% %% % % %% % % %% % % %Y %%%%%%
% Program: Neural Network Function %

% Toolbox: Mathworks Neural Network Toolbox 6.0.1 %

% Purpose: To predict concentration or molecular w eight of pollutants %

% in water samples %

% By: Sarah Shultz %

% Date:  3/6/09 %

%9%0%%%% % %% %% %% %% % %% %% %% %% % %% %% %% %% % %%8804886800880080008008008800886R

%%%%%%

function [R2,RMSE,Predicted]=Neural_Function(YT,YV,

XT,XV,Probe,Data,Prediction,Concentration,FigNu m)
%lInputs-

%YT = training Y-variables

%YV = validation Y-variables

%XT = training X-variables

%XV = validation X-variables

%Probe = probe that data was collected from

%Data = gain, phase, or gain and phase toge ther
%Prediction = concentration or molecular we ight
%Concentration = range of concentrations in cluded

%FigNum = number to assign to plot

%Outputs-
%R2 = R-squared values
%RMSE = RMSE values
%Predicted = Y-values predicted using the A NN model

%Remove Frequencies from Data
R=1:5:length(XT);

XT=XT(;,R);

XV=XV(;,R);

%Transpose matrices to be in correct order
XT = XT"

XV = XV

YT=YT,

YV =YV,

%Remove Constant Rows
[pT1,PS] = removeconstantrows(XT);
pV1 = XV(PS.keep,));

%Normalize Inputs and Targets
[normInputT] = mapminmax(pT1);
[normInputV] = mapminmax(pV1);
[normYT,ts] = mapminmax(YT);
[normYV] = mapminmax(YV);

%Create Network

numHiddenNeurons = 10; %Adjust as desired
numOutputs = size(YT,1);
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net = newff(minmax(norminputT),[numHiddenNeurons,nu

%Divide up Samples

testPercent = .2;

validatePercent = .2;

[trainSamples,validateSamples,testSamples] = ...
dividevec(normlnputT,normYT,testPercent,validat

%Train Network
[net] = train(net,trainSamples.P,trainSamples.T,][],
validateSamples,testSamples);

%Simulate Network

[normTrainOutput] = sim(net,trainSamples.P,[],[],tr
[normTrainOutputT] = sim(net,normInputT,[],[],normY
[normValidateOutputV] = sim(net,norminputV,[],[],no

%Reverse Normalize Outputs

trainOutput = mapminmax(‘reverse’,normTrainOutput,t

trainOutputT = mapminmax('reverse',normTrainOutputT

validateOutputV = mapminmax('reverse',normValidateO

Predicted=[[trainOutputT"; zeros(27-size(trainOutpu
[validateOutputV'; zeros(27-size(validateOutput

%Calculate R-Sqr Value for Training & Validation
Sxy=sum(trainOutputT.*YT)-((sum(trainOutputT)*sum(Y
/length(trainOutputT));
Sxx=sum(trainOutputT.*2)-(sum(trainOutputT)*2/lengt
Syy=sum(YT.*2)-(sum(YT)"2/length(YT));
R2T=(Sxy/sqrt(Sxx*Syy))"2;

Sxy=sum(validateOutputV.*YV)-((sum(validateOutputV)
/length(validateOutputV));
Sxx=sum(validateOutputV.”2)-(sum(validateOutputV)"2
length(validateOutputV));
Syy=sum(YV."2)-(sum(YV)"2/length(YV));
R2V=(Sxy/sqrt(Sxx*Syy))"2;

R2=[R2T R2V];

%Calculate RMSE for Training & Validation
SSET=sum((YT- trainOutputT).”2);
RMSET=sqrt(SSET/(size(YT,1)-2));

SSEV=sum((YV- trainOutput\j.»2);
RMSEV=sqrt(SSEV/(size(YV,1)-2));

RMSE=[RMSET RMSEV];

%Title of Plot
Titlel=[Probe ' Probe- Predicting ' Prediction ' wi
Title2=[Concentration ' ' Data];
Title3=['Training R"2=" mat2str(R2T,3) ', Validatio
Titled=['Training RMSE=" mat2str(RMSET,3)...

', Validation RMSE=" mat2str(RMSEV,3)];
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%PIlot of actual vs. predicted values
h=figure(FigNum);
scatter(YT,trainOutputT,'bo")

hold('all);

scatter(YV,validateOutputV,'go")

plot([YT YVL[YT YV],'r")

xlabel(['Actual ' Prediction]);
ylabel(['Predicted ' Prediction]);
title({Title1;Title2; Title3;Title4}, 'fontsize’, 13
legend('Training','Validation','Perfect Fit','Locat
grid on;

%Save plot as a bitmap
z=[Prediction '- ' mat2str(FigNum) '- ' Probe '- Ne
saveas(h,z)
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Appendix E - Wavelet Program

%%%%%%%%% %% %% %% %% %% %% % %% %% % %% %% %% %9

% Program: Wavelet Function

% Toolbox: Mathworks Wavelet Toolbox 4.3

% Purpose: To predict concentration or molecular w
% in water samples

% By: Sarah Shultz

% Date:  3/6/09

%9%%%%% %% % %% %% %% %% % %% %% %% %% % %% %% %% %9

function [R2,RMSE,Predicted,Bands,Length]=Wave_Func

XT1,XV1,Probe,Data,Prediction,Concentration,fre
%lInputs-

%YT = training Y-variables
%YV = validation Y-variables
%XT1 = training X-variables
%XV1 = validation X-variables
%Probe = probe that data was collected from
%Data = gain, phase, or gain and phase toge
%Prediction = concentration or molecular we
%Concentration = range of concentrations in
%freq = list of frequencies
%FigNum = number to assign to plot

%Outputs-
%R2 = R-squared values
%RMSE = RMSE values
%Predicted = Y-values predicted using PLS m
%Bands = levels & bands selected by stepwis
%Length = number of bands selected

%Label concentration or molecular weight

if strcmp(Prediction,'Molecular Weight')==1
K="MW';

else K='Conc;

end

%Determine the level of transform depending on dat
Level2=floor(log(length(XT1))/log(2));
Levell=Level2-4;

%Transform training and validation data
n=size(XT1,1);
for N=1:n

[C(:,N),L(:,N)] = wavedec(XT1(N,:),Level2,'haar
end

n=size(XV1,1);
for N=1:n
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[CV(:,N),LV(;,N)] = wavedec(XV1(N,:),Level2, 'ha
end

XT=C';
XV=CV}
L=L
L=L(1,);

%Select Only 5 of the Levels
J=1:sum(L(1,1:6),2);
XT=XT(:,J);

XV=XV(:,J);

%Stepwise Model
[b,se,pval,inmodel,stats] = stepwisefit(XT,YT,...
'‘penter’,0.05,'premove’,0.10);

%XT

T=XT";

n=size(XT,1);

for N=1:n
Q(1:length(b),N)=b.*inmodel'.*T(1:length(b),N);

end

T=sum(Q)+stats.intercept;

T=T}

clear 'Q";

% Validate

V=XV";

n=size(XV,1);
for N=1:n
Q(1:length(b),N)=b.*inmodel'.*V(1:length(b),N);
end

V=sum(Q)+stats.intercept;

V=V

Predicted=[[T; zeros(27-size(T,1),1)] [V; zeros(27-

%Calculate R-Square Values
Sxy=sum(T.*YT)-((sum(T)*sum(YT))/length(T));
Sxx=sum(T.*2)-(sum(T)"2/length(T));
Syy=sum(YT.*2)-(sum(YT)"2/length(YT));
R2T=(Sxy/sqrt(Sxx*Syy))"2;

Sxy=sum(V.*YV)-((sum(V)*sum(YV))/length(V));
Sxx=sum(V.*2)-(sum(V)"2/length(V));
Syy=sum(YV."2)-(sum(YV)"2/length(YV));
R2V=(Sxy/sqrt(Sxx*Syy))"2;

R2=[R2T R2V];

%Calculate RMSE for Training & Validation
SSET=sum((YT-T)."2);
RMSET=sqrt(SSET/(size(YT,1)-2));

SSEV=sum((YV-V)."2);
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RMSEV=sqrt(SSEV/(size(YV,1)-2));
RMSE=[RMSET RMSEV];

%NMake Sure Correct Labels are on Plot
if inmodel(1,1:size(inmodel,2))==0
R2T=0;
R2V=0;
RMSET=9999;
RMSEV=9999;
else
end;

%Title of Plot
Titlel=[Probe ' Probe- Level ' mat2str(Levell) ' to
mat2str(Level?) ' Haar Wavelet Transform?;
Title2=['Predicting ' Prediction ' with Wavelet Tra
Title3=[Concentration ' ' Data];
Titled=['Training R"2=" mat2str(R2T,3) ', Validatio
Title5=['Training RMSE=" mat2str(RMSET,3)...
', Validation RMSE=" mat2str(RMSEV,3)];

%PIlot actual vs. predicted values
h=figure(FigNum);

scatter(YT,T,'bo")

hold(‘all’);

scatter(YV,V,'go")

plot([YV YTL[YV YT],'r")

xlabel(['Actual ' Prediction]);
ylabel(['Predicted ' Prediction]);
title({Title1;Title2;Title3;Title4;Title5}, 'fontsi
grid on;
legend('Training','Validation','Perfect Fit','Locat

%Save the Plot

z=[mat2str(FigNum) - ' K'- ' Probe ' Probe- Leve
"to ' mat2str(Level?) ' Predict.bmp';

%saveas(h,z)

if inmodel(1,1:size(inmodel,2))==0
Bands=[0,0];
R2=[0 0];
RMSE=[9999 9999];
clear 'Predicted’;
Predicted=[zeros(27,1) zeros(27,1)];
Length=1;
else
%Selected Frequencies
Selected=inmodel.*(1:length(inmodel));
Selected=Selected(Selected ~= 0);

%Make Table of Levels and Wavebands Selected
for M=1:size(Selected,2)
switch logical(true)
case Selected(1,M)<=L(1,1)

nsform and StepwiseT;

n R"2=" mat2str(R2V,3)];

ze', 13);

ion','NorthWest")
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Bands(M,1:2)=[Level2 Selected(1,M)];
case Selected(1,M)>L(1,1) && Selected(1
Bands(M,1:2)=[Level2 (Selected(1,M)
case Selected(1,M)>sum(L(1,1:2)) && Sel
Bands(M,1:2)=[(Level2-1) ...
(Selected(1,M)-sum(L(1,1:2)
case Selected(1,M)>sum(L(1,1:3)) && Sel
Bands(M,1:2)=[(Level2-2) (S
sum(L(1,1:3))];
case Selected(1,M)>sum(L(1,1:4)) && Sel
Bands(M,1:2)=[(Level2-3
sum(L(1,1:4)];
case Selected(1,M)>sum(L(1,1:5)) && Sel
Bands(M,1:2)=[(Leve
sum(L(1,1:5)))]
end
end

Length=length(Selected);
clear 'h’;

%Make Tiling Diagram using Rectangle Annotations
%figure(FigNum+1)=figure;
h=figure(FigNum+1);

Z=L(1,6)/mean(L(1,6:7));

for M=0:.15:.6
annotation(figure(FigNum+1),'rectangle’,[0.1 O.

end

for N=0:(L(1,1)-2)
annotation(figure(FigNum+1),'rectangle’,[0.
0.15 Z/L(1,1) .15));
end

for N=0:(L(1,3)-2)
annotation(figure(FigNum+1),'rectangle’,[0.
0.3 Z/L(1,3) .15)]);
end

for N=0:(L(1,4)-2)
annotation(figure(FigNum+1),'rectangle’,[0.
0.45 Z/L(1,4) .15));
end

for N=0:(L(1,5)-2)
annotation(figure(FigNum+1),'rectangle’,[0.
0.6 Z/L(1,5) .15));
end

for N=0:(L(1,6)-2)
annotation(figure(FigNum+1),'rectangle’,[0.
0.75 Z/L(1,6) .15));
end
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%Convert Table of Selected Wavebands to the Vector

%Correct Bands in the Tiling Diagram

M=0:.15:.6;

for N=1:size(Bands,1)

Color(N,:)=[(0.1+(Bands(N,2)-1)*Z/L(1,(length(L

(0.15+M(1,(length(L)-Bands(N,1)-1)))...
(Z/L(2,length(L)-(Bands(N,1)))) .15];

end

%Color the Rectangles
for N=1:size(Color,1)
annotation(figure(FigNum+1),'rectangle’,'FaceCo
'Position’,Color(N,3));
end

%Add Level Numbers Along the Side of the Tiling Dia
Q=Level2:-1:Levell,
for N=1:length(Q)
annotation(figure(FigNum+1),'textbox','String’,
'HorizontalAlignment','right’,'VVerticalAlig
'FitBoxToText','off','Position’,[.1 .15+M(1
end

%Add Chart Title and Label Axes
annotation(figure(FigNum+1),'textbox','String" {'L'
'HorizontalAlignment','center’,'VerticalAlignme
'FontWeight','bold','FitBoxToText','on','LineSt
'‘Position’,[.03 .15 0 .75]);
annotation(figure(FigNum+1),'textbox','String',{'Fr
'HorizontalAlignment','center’,'FitBoxToText',’
'bold','LineStyle','none’,'Position’,[.1 .05 Z
annotation(figure(FigNum+1),'textbox','String’,...
{['Tiling Chart- Predicting ' K ' with ' Probe
Concentration ' ' Data]},'HorizontalAlignment',
‘VerticalAlignment','top’, fontsize',12,'FitBox
'FontWeight','bold’,'LineStyle','none’,'Positio

%Add Highest and Lowest Frequencies to Table
annotation(figure(FigNum+1),'textbox','String',mat2
'HorizontalAlignment','center’,'LineStyle’,'non

[.1.14 0 0]);
annotation(figure(FigNum+1),'textbox','String', ...

mat2str(freq(length(freq),1)),'HorizontalAlignm

‘LineStyle’,'none’,'Position’,[.1+Z .14 0 0]);

%Add Additional Frequencies Depending on whether Ga

%just Gain or Phase
if strcmp(Data,'Gain+Phase')==1
annotation(figure(FigNum+1),'textbox’,'String’,
'HorizontalAlignment','center’,'LineStyle’,
[.1+(2/2) .14 0 0));
annotation(figure(FigNum+1),'textbox','String’,
'HorizontalAlignment','center’,'LineStyle’,
‘demi','Position’,[.1 .1 Z/2 Q]);
annotation(figure(FigNum+1),'textbox’,'String’,
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'HorizontalAlignment','center’,'LineStyle’,
‘demi','Position’,[.1+(Z/2) .1 Z/2 0]);
else
annotation(figure(FigNum+1),'textbox’,'String’,
(length(freq)/2),1)),'HorizontalAlignment’,
'none’,'Position’,[.1+(Z/2) .14 0 0]);
end

%Save Tiling Chart

z=[mat2str(FigNum+1) - ' K - ' Probe ' Probe- Le
mat2str(Levell) ' to ' mat2str(Level2) ' Tiling

%saveas(h,z)

end;
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Appendix F - Frequencies Selected by Stepwise to Predict 1 L
Nitrate Concentration with Old Control Box or Imped ance Meter

Frequency # of Times Frequency # of Times Frequency # of Times
(Hz) Selected (Hz) Selected (Hz) Selected
50 1 19,800,000 2 69,800,000 1
300 3 21,800,000 1 70,200,000 2
550 1 22,000,000 1 71,200,000 1
800 3 22,200,000 1 74,200,000 1
1,413 3 23,000,000 2 76,000,000 1
7,943 3 26,200,000 1 76,800,000 1
44,668 2 27,200,000 1 77,200,000 2
251,189 3 28,000,000 1 78,200,000 1
1,000,000 4 28,200,000 2 79,200,000 1
1,200,000 1 31,200,000 1 80,200,000 1
2,000,000 2 32,000,000 1 80,800,000 1
2,200,000 2 35,200,000 1 81,200,000 1
3,200,000 1 37,200,000 1 83,200,000 2
3,800,000 1 42,200,000 1 84,000,000 1
4,000,000 2 43,200,000 1 84,200,000 2
4,200,000 1 46,000,000 1 84,800,000 1
5,000,000 1 48,800,000 1 89,000,000 1
5,800,000 2 50,000,000 1 89,200,000 1
6,000,000 2 50,800,000 1 92,000,000 2
6,200,000 1 52,000,000 1 94,200,000 1
7,000,000 1 52,200,000 1 99,800,000 1
8,000,000 1 53,200,000 1 103,800,000 1
8,200,000 1 55,800,000 1 105,000,000 1
9,200,000 2 56,000,000 2 108,000,000 1
9,800,000 1 57,000,000 2 108,200,000 1
10,000,000 1 57,800,000 1 110,000,000 1
10,200,000 2 58,800,000 1 111,000,000 1
10,800,000 1 59,200,000 1 111,200,000 2
11,200,000 3 59,800,000 1 113,200,000 1
11,800,000 1 60,200,000 2 115,200,000 2
12,200,000 1 60,800,000 1 116,800,000 1
13,800,000 1 61,200,000 1 118,200,000 2
14,000,000 1 62,000,000 1
16,000,000 1 62,200,000 2
16,200,000 1 64,800,000 1
18,000,000 1 65,200,000 1
18,200,000 1 68,000,000 1
19,000,000 1 69,000,000 1
19,200,000 1 69,200,000 1
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Appendix G - Frequencies Selected by Stepwise to Predict 1 L
Nitrate Concentration with New Control Box and 2 cmProbe

Frequency # of Times
(Hz) Selected

5,600,000
9,600,000
9,600,000
13,600,000
18,400,000
26,400,000
37,600,000
61,600,000
65,600,000
109,600,000
117,600,000
129,600,000
133,600,000
134,400,000
158,400,000
162,400,000
174,400,000
181,600,000
186,400,000
189,600,000
201,600,000
202,400,000
205,600,000
229,600,000
241,600,000
245,600,000
246,400,000
257,600,000
261,600,000
273,600,000
309,600,000
313,600,000
322,400,000
326,400,000
330,400,000
345,600,000
357,600,000
365,600,000
366,400,000
377,600,000
381,600,000
398,400,000

NN RN N R RN NN NN R R R R R R
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Nitrate Concentration with New Control Box

Appendix H — Frequencies Selected by Stepwise to Predict 36 L

Frequency # of Times Frequency # of Times Frequency # of Times

(Hz) Selected (Hz) Selected (Hz) Selected
200 6 102,400,000 2 241,600,000 1
400 1 105,600,000 4 246,400,000 1
1,413 2 109,600,000 2 249,600,000 1
7,943 1 118,400,000 1 253,600,000 3
44,668 3 121,600,000 2 254,400,000 1
63,096 2 122,400,000 1 257,600,000 2
251,189 1 125,600,000 4 261,600,000 1
1,600,000 6 129,600,000 2 262,400,000 1
2,400,000 1 130,400,000 2 265,600,000 3
5,600,000 1 133,600,000 6 266,400,000 1
6,400,000 1 134,400,000 1 269,600,000 5
9,600,000 5 137,600,000 3 273,600,000 1
10,400,000 2 138,400,000 2 277,600,000 2
13,600,000 2 141,600,000 2 289,600,000 3
14,400,000 3 142,400,000 2 293,600,000 1
17,600,000 7 145,600,000 4 297,600,000 2
18,400,000 1 153,600,000 1 298,400,000 1
21,600,000 3 157,600,000 4 301,600,000 7
25,600,000 4 157,600,000 3 305,600,000 3
26,400,000 2 158,400,000 1 309,600,000 3
29,600,000 1 161,600,000 2 313,600,000 4
33,600,000 2 165,600,000 3 317,600,000 3
34,400,000 1 165,600,000 2 321,600,000 2
37,600,000 2 165,600,000 1 325,600,000 1
38,400,000 1 166,400,000 1 326,400,000 1
41,600,000 3 169,600,000 4 329,600,000 1
42,400,000 1 170,400,000 1 333,600,000 2
45,600,000 3 173,600,000 5 337,600,000 3
46,400,000 1 177,600,000 1 338,400,000 1
50,400,000 1 181,600,000 3 341,600,000 1
53,600,000 4 186,400,000 2 342,400,000 1
57,600,000 4 189,600,000 4 349,600,000 2
61,600,000 1 190,400,000 1 357,600,000 2
65,600,000 2 193,600,000 2 358,400,000 1
66,400,000 1 194,400,000 1 361,600,000 1
69,600,000 3 197,600,000 2 366,400,000 3
70,400,000 1 198,400,000 1 369,600,000 1
73,600,000 4 205,600,000 1 373,600,000 2
77,600,000 1 209,600,000 2 377,600,000 1
78,400,000 1 213,600,000 2 378,400,000 1
81,600,000 3 217,600,000 1 381,600,000 1
85,600,000 2 221,600,000 1 385,600,000 2
86,400,000 1 225,600,000 3 386,400,000 1
89,600,000 1 230,400,000 1 389,600,000 1
94,400,000 1 233,600,000 1 393,600,000 3
97,600,000 5 234,400,000 1 397,600,000 3
101,600,000 2 237,600,000 2 398,400,000 1
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Appendix | — Frequencies Selected by Stepwise to Predict 1 L
Nitrate Molecular Weight with Old Control Box or Im pedance

Meter
Frequency # of Times Frequency # of Times
(Hz) Selected (Hz) Selected
50 1 79,200,000 1
1,000,000 1 80,000,000 2
1,200,000 1 80,200,000 1
3,000,000 1 85,200,000 2
5,200,000 1 86,200,000 1
10,000,000 2 87,200,000 2
10,800,000 1 88,200,000 1
12,200,000 1 89,000,000 1
12,800,000 1 89,200,000 1
13,800,000 1 90,200,000 1
15,200,000 2 90,800,000 1
20,200,000 1 92,000,000 1
23,000,000 2 92,200,000 1
24,000,000 1 95,200,000 3
29,800,000 1 100,200,000 1
37,200,000 1 102,200,000 2
40,800,000 1 103,000,000 1
43,200,000 1 103,200,000 1
44,200,000 2 104,200,000 1
46,200,000 1 105,200,000 1
47,200,000 2 106,200,000 2
50,200,000 4 108,200,000 2
60,200,000 1 109,000,000 1
61,000,000 1 109,200,000 1
61,800,000 1 110,200,000 5
62,800,000 1 113,200,000 1
63,000,000 1 114,200,000 2
63,200,000 1 115,200,000 2
66,200,000 1 118,200,000 1
68,000,000 1
69,800,000 1
75,200,000 3
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Appendix J — Frequencies Selected by Stepwise to Predict 1 L
Nitrate Molecular Weight with New Control Box and 2 cm Probe

Frequency # of Times
(Hz) Selected

1,413
17,600,000
18,400,000
37,600,000
49,600,000
53,600,000
57,600,000
65,600,000

126,400,000
133,600,000
134,400,000
165,600,000
205,600,000
221,600,000
242,400,000
245,600,000
261,600,000
273,600,000
297,600,000
346,400,000
350,400,000
369,600,000
381,600,000

SN = S S PN PN PN PR PN P PN P P T N R G G G G G G kN
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Appendix K - Frequencies Selected by Stepwise to Predict 36 L
Nitrate Molecular Weight with New Control Box

Frequency # of Times Frequency # of Times
(Hz) Selected (Hz) Selected

200 1 189,600,000 2
44,668 1 190,400,000 1
251,189 1 193,600,000 1
1,600,000 1 197,600,000 2
17,600,000 1 201,600,000 1
21,600,000 1 205,600,000 1
29,600,000 1 206,400,000 1
33,600,000 1 209,600,000 2
37,600,000 1 217,600,000 1
41,600,000 1 225,600,000 1
53,600,000 1 229,600,000 4
57,600,000 1 233,600,000 3
58,400,000 2 237,600,000 2
61,600,000 2 241,600,000 3
73,600,000 1 245,600,000 1
77,600,000 2 249,600,000 2
85,600,000 2 253,600,000 3
97,600,000 1 254,400,000 1
98,400,000 1 257,600,000 2
105,600,000 1 265,600,000 2
106,400,000 1 277,600,000 5
109,600,000 1 289,600,000 2
113,600,000 1 293,600,000 3
118,400,000 1 305,600,000 3
121,600,000 1 309,600,000 4
125,600,000 1 313,600,000 2
126,400,000 1 317,600,000 4
129,600,000 3 321,600,000 6
133,600,000 2 322,400,000 1
137,600,000 4 325,600,000 3
141,600,000 1 329,600,000 1
142,400,000 1 333,600,000 1
145,600,000 2 334,400,000 1
149,600,000 1 338,400,000 2
157,600,000 1 341,600,000 3
158,400,000 1 349,600,000 1
161,600,000 2 350,400,000 1
165,600,000 1 353,600,000 1
169,600,000 5 357,600,000 1
173,600,000 1 365,600,000 2
177,600,000 1 381,600,000 1
178,400,000 1 385,600,000 3
181,600,000 1 386,400,000 2
182,400,000 1 389,600,000 2
185,600,000 1 394,400,000 1
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Appendix L — Frequencies Selected by Stepwise to Predict 1 L
Atrazine Concentration with Old Control Box or Impedance Meter

# of Times

Frequency (Hz) Selected

1,413
7,943
1,200,000
3,000,000
3,200,000
9,000,000
16,200,000
19,200,000
21,200,000
27,200,000
34,200,000
36,200,000
37,200,000
43,200,000
46,200,000
49,200,000
51,200,000
55,200,000
58,200,000
59,200,000
61,200,000
64,000,000
71,200,000
72,200,000
77,200,000
79,000,000
88,000,000
88,200,000
89,200,000
93,200,000
95,200,000
101,000,000
119,200,000
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Appendix M - Frequencies Selected by Stepwise to Predict 1 L
Atrazine Concentration with New Control Box and 2 en Probe

Frequency # of Times
(Hz) Used
37,600,000 1
57,600,000 1
125,600,000 1
137,600,000 2
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Appendix N — Frequencies Selected by Stepwise to Predict 36 L
Atrazine Concentration with New Control Box

Frequency # of Times
(Hz) Selected

1,413

7,943
251,189
1,600,000
25,600,000
26,400,000
65,600,000
101,600,000
117,600,000
137,600,000
161,600,000
173,600,000
185,600,000
193,600,000
194,400,000
217,600,000
229,600,000
245,600,000
273,600,000
277,600,000
281,600,000
285,600,000
305,600,000
313,600,000
317,600,000
321,600,000
333,600,000
341,600,000
346,400,000
357,600,000
369,600,000
370,400,000
385,600,000
390,400,000
393,600,000
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Appendix O — Frequencies Selected by Stepwise to Predict the
Concentration of Impurities in Biodiesel with New Gntrol Box

Frequency # of Times Frequency # of Times Frequency # of Times
(Hz) Selected (Hz) Selected (Hz) Selected
200 1 126,400,000 1 273,600,000 5
400 2 129,600,000 2 277,600,000 3
1,413 2 134,400,000 1 281,600,000 3
1,995 2 137,600,000 3 281,600,000 2
11,220 1 141,600,000 2 281,600,000 1
44,668 5 145,600,000 3 285,600,000 5
63,096 1 146,400,000 2 286,400,000 1
251,189 3 149,600,000 2 289,600,000 1
1,600,000 2 153,600,000 3 290,400,000 1
2,400,000 1 154,400,000 2 293,600,000 2
5,600,000 3 157,600,000 3 297,600,000 2
9,600,000 5 158,400,000 1 301,600,000 2
17,600,000 3 161,600,000 5 302,400,000 1
21,600,000 3 165,600,000 1 305,600,000 2
25,600,000 1 166,400,000 2 309,600,000 4
30,400,000 1 169,600,000 2 313,600,000 4
33,600,000 2 173,600,000 3 317,600,000 2
37,600,000 1 174,400,000 1 321,600,000 2
38,400,000 1 177,600,000 2 322,400,000 1
41,600,000 2 181,600,000 4 325,600,000 2
45,600,000 2 185,600,000 5 329,600,000 4
46,400,000 1 189,600,000 4 333,600,000 1
49,600,000 2 193,600,000 3 337,600,000 1
53,600,000 1 197,600,000 1 338,400,000 1
57,600,000 2 201,600,000 4 341,600,000 3
61,600,000 2 201,600,000 1 342,400,000 1
65,600,000 3 205,600,000 3 345,600,000 3
69,600,000 7 209,600,000 5 346,400,000 1
70,400,000 2 210,400,000 1 349,600,000 4
73,600,000 3 213,600,000 1 350,400,000 1
74,400,000 1 214,400,000 2 353,600,000 4
77,600,000 2 217,600,000 2 354,400,000 1
81,600,000 1 218,400,000 2 357,600,000 4
85,600,000 2 221,600,000 3 358,400,000 1
86,400,000 1 229,600,000 2 361,600,000 1
89,600,000 4 233,600,000 2 365,600,000 1
97,600,000 2 237,600,000 3 369,600,000 3
101,600,000 5 241,600,000 1 370,400,000 2
105,600,000 2 245,600,000 1 373,600,000 5
109,600,000 1 249,600,000 4 378,400,000 2
110,400,000 1 253,600,000 1 381,600,000 1
113,600,000 2 253,600,000 2 382,400,000 1
114,400,000 1 257,600,000 4 385,600,000 4
117,600,000 3 261,600,000 2 394,400,000 1
121,600,000 2 265,600,000 3 397,600,000 3
122,400,000 3 269,600,000 2 398,400,000 1
125,600,000 1 270,400,000 1
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Appendix P — Wavebands Used to Predict Concentration of 1 L
Nitrate Samples with Old Control Box

2.5 cm Probe 5 cm Probe 7.5 cm Probe Impedance Meter
Level Waveband Level Waveband Level Waveband Level Waveband
6 1 5 1 6 5 9 1
All Gain 6 8 5 1 2 ©
5 1 5 4 5 18
5 10 5 9
9 2 5 2 7 4 5 4
9 1 5 7 5 2 5 14
6 1 5 13
All Phase 6 3
6 10
5 1
5 10
5 16
10 1 10 1 8 3 8 2
Al 9 2 6 12 6 8 7 2
Gain+Phase 6 8 6 11 6 14
6 10
6 11
6 1 9 1 6 1 8 1
Low Gain 5 1 5 8 7 5
5 19 5 14
6 1 6 1 6 1 5 1
Low Phase 6 2 6 y 5 15
5 6
5 12
9 1 1 6 1 7 1
8 4 6 17 6 9
Low
Gain+Phase 6 1 6 11
6 19 6 13
6 16
5 1 5 1 6 3 8 1
6 4 8 2
7 4
7 5
High Gain 5 1
5 10
5 11
5 13
5 18
5 19
High Phase 6 1 > 2 6 2 6 6
5 8 5 7 5 12
High 9 2 6 12 6 12 6 15
Gain+Phase 6 11
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Appendix Q — Wavebands Used to Predict Concentration of 36 L
Nitrate Samples with New Control Box

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level | Waveband | Level | Waveband | Level | Waveband
6 2 6 3 1
5 3 6 4 5 2
5 6 6 6 5 7
All Gain 5 7 2 : 5 9
5 8 5 5 5 14
5 9 5 11
5 13 5 14
5 14
5 12 6 5 9 1
6 7 7 1
5 1 6 1
All Phase 2 2 6 3
5 3 5 1
5 6 5 5
5 8
5 12
8 4 10 1 8 3
10 1 7 5
8 4 6 1
All 7 8 6 2
Gain+Phase 6 4 6 6
6 5 6 16
6 12
6 14
0 0 9 1 9 1
Low Gain 8 1
5 7
9 1 7 4 8 1
Low Phase 6 1 6 1
5 1
Low 7 6 6 9 8 3
Gain+Phase 6 11
9 2 6 8 9 1
5 14 5 1 7 1
5 3 7 2
5 4 6 1
5 11 6 4
5 13 6 5
5 1
5 2
High Gain 5 3
5 4
5 5
5 6
5 7
5 9
5 16

131



2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level | Waveband | Level | Waveband | Level | Waveband
9 2 9 2
8 1 8 1
7 1 6 5
7 4 5 2
6 1 5 5
6 2 5 6
6 4 5 7
High Phase 6 7 5 15
6 8 5 16
5 1
5 3
5 6
5 7
5 14
5 15
10 1 7 1
High 10 1 7 5
Gain+Phase 7 3 6 1
6 2 6 9
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Appendix R — Wavebands Used to Predict Molecular Weight of 36
Nitrate Samples with New Control Box

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level Waveband Level Waveband Level Waveband
6 4 5 2 5 14
6 5 0 0
Al Gain 5 !
5 11
5 13
5 14
6 4 5 16 5 13
All Phase 6 5 5 15
5 13
5 14
10 2 6 5 6 13
6 4 6 15
All Gain+Phase 6 6
6 8
6 13
6 6 9 1 6 6
6 8 6 3
Low Gain 5 10 6 7
5 14
5 15
5 10 6 5 9 2
Low Phase 5 11 5 4 6 4
5 15 5 12 6 8
10 1 10 1 6 6
8 4 8 2 6 16
7 7 8 4
Low Gain+Phase 7 8 7 8
6 11
6 15
6 16
6 6 5 3 8 2
5 8
High Gain 5 14
5 15
5 16
9 1 6 6 5 8
9 2
High Phase 6 5
5 8
5 13
High Gain+Phase 3 g’ v g 9 2
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Appendix S— Wavebands Used to Predict Concentration of
Atrazine in Water

Table 7.1: Wavebands used to predict atrazine concentratn in 1 L water samples

2.5 cm Probe 5 cm Probe 7.5 cm Probe Impedance Meter
Level Waveband Level Waveband Level Waveband Level Waveband
. 7 1 7 2 5 11 5 4
Gain
5 7
9 1 6 1
6 3
Phase 6 7
5 7
5 9
7 1 7 2 10 1
7 4
Gain+Phase 6 3
6 7
6 18

Table 7.2: Wavebands used to predict atrazine concentratn in 36 L samples

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level Waveband Level Waveband Level Waveband
Gain 6 2 7 1 7 2
5 3 0 0
7 1 1 5 5
Phase 6 7 5 9
5 2
5 4
6 2 8 3 7 2
Gain+Phase 7
6 4
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Appendix T — Wavebands Used to Predict Impurities in Biodiesel

Table 7.3: Wavebands used to predict the concentration afater in 36 L biodiesel samples

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level Waveband Level Waveband Level Waveband
6 7 6 1 6 3
Al Gain 5 11 2 2
5 14 5 2
5 10
All Phase 9 L 2 2 ! 2
5 13 5 16
7 2 7 6 7
All Gain+Phase 6 7 6 1 7 6
6 11
7 2 7 3 5 6
Low Gain 5 12 & 5 13
5 1
5 10
8 2 9 2 5
Low Phase 5 15 5 4
5
5 10
Low Gain+Phase 7 2 7 3 6
6 6 7 7 3
High Gain 5 5 2 6 6
5 14 5 9 5 14
5 15 7 1 7 2
High Phase 5 1
5 4
7 2 10 1
High Gain+Phase 6 1 8 1
12 6 16
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Table 7.4: Wavebands used to predict the concentration oflycerol in 36 L biodiesel
samples

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level Waveband Level Waveband Level Waveband

8 1 8 1 8 2

All Gain 6 ) 5 3 5 14
5 10 5 12

7 6 3 7 2

6 6 6 6 1

All Phase 6 ! 5 4 6 8

5 13 5 10 5 4

5 11

5 14

All Gain+Phase 6 8 3 ! 10 2

8 3

6 4 9 2 8 2

Low Gain 3 2 5 1

5 2 5 5

5 11 5 9

Low Phase 6 6 v ! 5 !

5 5 10

10 7 6 6 10
Low 7 8
Gain+Phase 6 3
6 6

High Gain 6 8 6 8 6 4

5 11

5 8 7 3 7 3

High Phase 5 11 6 4 5 12
5 12 6 6

High 8 7 7 8 1

Gain+Phase 7
6 12 6 4
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Table 7.5: Wavebands used to predict the concentration oflyceride in 36 L biodiesel
samples

2 cm Probe 2.5 cm Probe 7.5 cm Probe
Level Waveband Level Waveband Level Waveband
1 6 4 8 2
All Gain 5 7 6 5 6 4
5 14
All Phase 6 6 g ! 5 1
5 5
7 2 6 4 6 5
All Gain+Phase 6 10 6 5
6 14
9 1 9 1
Low Gain 6 7 5 E
5 13
5 15
Low Phase 5 1 6 6
1 8 3 7 1
Low Gain+Phase 7 v 1 6 8
7 7 6 10
7 8
5 7 7 4
High Gain 5 2
5 5
7 4 5 2 6 2
High Phase 5 4
5 10
6 5 7 7 4
High Gain+Phase 6
6
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