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Abstract 

As the global human population continues to increase, there is an increased responsibility 

on plant breeders to develop varieties with improved productivity. Current yearly yield 

improvement rates are not completely estimated to meet future demands, so new technologies 

that allow for rapid cultivar screening and selection in large-scale breeding trials are warranted. 

High-resolution imagery data collected with unmanned aerial systems (UAS) shows potential to 

greatly assist breeders. A crop that could greatly benefit from this technology is grain sorghum 

(Sorghum bicolor (L). Moench). Grain sorghum is an important food, fuel, forage, and livestock 

feed source for many people across the world. In addition, it is well-suited to be grown in 

climates with limited precipitation, providing a means of food security for nations in such agro 

climatic regions. As global climate becomes increasingly warmer, more grain sorghum is 

predicted to be grown in areas that have traditionally grown with more water-dependent crops. 

To maximize productivity, sorghum not only needs to be selected for higher yielding cultivars, 

but also cultivars that can withstand abiotic stresses such as herbicide application and drought. 

Focusing on these two stresses, the objectives of this project were to: i) evaluate the effectiveness 

of UAS imagery in quantifying, detecting, and differentiating sorghum spectral response to 

herbicide, mesotrione, and ii) develop and evaluate a methodology to collect, process, extract, 

and compare UAS data to select for traits related to drought tolerance in grain sorghum. For the 

first objective, a field experiment was sown in the 2019 growing season (Ashland Bottoms, 

Manhattan, KS) consisting of a mesotrione tolerant and susceptible genotypes, and a commercial 

grain sorghum hybrid for comparison. Plots were sprayed with 0, 105, 420, and 840 g ae (acid 

equivalent) ha-1 of mesotrione, and weekly flights were flown over the experiment up to 35 days 

after treatment (DAT). Ground-measured herbicide damage ratings were taken, and were 



  

compared to vegetative indices (VIs) derived from the imagery. Results showed highly-

significant relationships between VIs and ground ratings. For the second objective, an 

experiment with 20 commercial hybrids was planted in 2019 (Manhattan, KS). Flights were 

flown at the flowering (F), soft dough (SD), hard dough (HD), and physiological maturity (PM) 

growth stages. Ground-samples that were collected included whole plant biomass, leaf biomass, 

stem biomass, senescence scores, leaf area index, and final grain yield. Results showed that the 

near infrared (NIR) spectral band was the most significant to plant traits related to biomass, the 

green normalized difference vegetation index (GNDVI) was highly significant to yield, and the 

visible atmospheric resistant index (VARI) was the most related to both senescence at PM and 

senescence rates. A hierarchical clustering analysis showed that through all stages, significant 

differences among groups could be detected. These results suggest that multi-spectral imagery 

data collected via UAS could be very useful for sorghum breeders to differentiate between grain 

sorghum hybrids in large-scale breeding trials, particularly for breeders looking to increase 

herbicide tolerance in grain sorghum and to develop more drought-resistant cultivars. 
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General Introduction 

 Grain Sorghum 

Grain sorghum [Sorghum bicolor (L.) Moench] is a resilient C4 cereal crop that can yield 

well in environments where other crops may fail [1-2]. Originating from the sub-Saharan African 

region, it is a major food source for people within the region, but is traditionally used in the 

United States for animal feed, forage, and biofuel production [3, 6-7]. Sorghum is the fifth most 

produced grain crop in the world, trailing behind production of maize (Zea mays), rice (Oryza 

sativa L.), wheat (Triticum aestivum), and barley (Hordeum vulgare) [3-5]. Sorghum is well-

adapted to precipitation-limited environments, and has been documented to produce grain with 

as little as 350-700 mm of annual rainfall [4, 8]. Because of this, grain sorghum is frequently 

grown in semi-arid environments [1, 9]; it has even been shown to have a distinct yield 

advantage in these environments [10]. 

 As a whole, 80% of the human diet is plant-based, with cereal crops making up half of 

this percentage [11]. Crop production will have to be doubled in order to meet the projected 

global food demands in 2050 [12-14, 61-65], therefore, intensification of agriculture is projected 

as the end goal of many crop breeding programs throughout the world. Increasing in crop 

productivity can be achieved by developing crop varieties resilient to various environmental 

conditions including biotic and abiotic stresses via transferring stress-tolerant traits. As most 

crops encounter some form of yield-limiting biotic or abiotic stressors during their life cycles 

(such as heat stress, drought stress, nutrient stress, light competition, and saline soils) [16], 

breeding for stress tolerance becomes of the utmost importance for future crop intensification. 

For grain sorghum, the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT) has placed a priority on breeding for a wide adaptability to biotic and abiotic stresses 
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[17] in order to increase crop yields in stressful environments. Although there are many stressors 

challenging sorghum production being addressed by breeders, this discussion will focus on 

sorghum tolerance to two specific abiotic stresses, i.e., herbicide and post-flowering drought. 

 

 Herbicide Tolerance 

 Weeds are considered to be one of the main biotic pestilences in crop production [18], 

because of how well they can compete with crops for water, nutrients, and solar radiation, etc. 

[19]. Managing weeds in grain sorghum continues to be a major problem for growers across the 

globe; for example, a recent survey in the United States determined that controlling weeds, 

especially post-emergence, was the top concern among growers [20]. Depending on the severity 

of infestation, sorghum yield losses due to weeds can be as high as 85%, [19, 21], which can 

tremendously reduce profitability for these cropping systems [22-23]. Common tactics to manage 

weeds include mechanical and cultural techniques such as reducing row spacing [24], increasing 

higher planting populations [24], inter-row cultivation [25], and tillage [26]. However, the use of 

herbicides is the most widely followed practice for weed control, especially with the increased 

adoption of no-till planting practices [27-29]. 

 At early growth stages, sorghum does not compete well with weeds [30]. Effective weed 

control is therefore essential to avoid costly yield losses. However, weed control is further 

complicated in grain sorghum due to the limited number of herbicides available for use, as well 

as the rising number of resistant weed species to these herbicides [20, 31]. The majority of 

herbicide programs used in grain sorghum involve mostly pre-emergence (PRE) herbicides, as 

post-emergence (POST) options are limited [20, 30, 38]. Many POST herbicides currently 

labeled for use can cause crop injury, therefore leaving sorghum susceptible to damage from 
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other abiotic and biotic forces as well [28, 32-33]. Because of the relatively small acres of 

sorghum produced relative to other crops, lack of profit opportunities for chemical companies, 

and concerns of resistant gene transfers to close relatives such as Johnson grass (Sorghum 

halepense) and shattercane (Sorghum bicolor), herbicide-tolerant technology development for 

grain sorghum will continue to be slow [20]. This limitation can lead to overreliance on an 

already limited number of herbicides, which in turn can contribute to evolution of ever-

increasing number of resistant weeds [34]. 

 One method that has been proposed to increase herbicide options for growers involves 

selectively breeding for herbicide-tolerant traits [35-36]. This can be achieved by screening a 

wide collection of germplasm for herbicide tolerance, primarily for POST applications [35]. 

There are many benefits to such breeding programs. If new genotypes with elevated tolerance to 

herbicides compared to commercial hybrids are identified, these traits could eventually be 

transferred to agronomically-desirable germplasms to develop new hybrids. This could reduce 

the risk of yield losses by providing POST weed control and reducing crop injury [37] and 

provide more herbicide options for growers [35, 37]. Additionally, the risks of crop damage due 

to residual herbicide persistence could also be significantly reduced [36]. 

 

 Post-Flowering Drought Tolerance 

 Since sorghum is usually the crop of choice where precipitation is limited; and because it 

is well-adapted to arid environments [39-40], it is an important food source for over 100 million 

people in Africa [60]. One of the reasons for this wide adaptation to such environments is that 

many sorghum genotypes have a characterized form of post-flowering drought stress known as 

the stay green (SG) trait [41-43]. Post-flowering drought stress, also known as “terminal 
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drought,” is detrimental and can cause severe yield losses in grain sorghum through inducing 

premature plant senescence [44-45]. However, sorghum genotypes with the SG trait continue 

grain filling under these stress conditions, and also have been observed to resist other factors 

affecting sorghum during moisture stress including lodging and various types of stem rot [46-

51]. The SG trait extends green leaf functionality further into the latter growth stages, keeping 

the plant alive to continue the uptake of water and nutrients for grain filling [52]. Further, the SG 

trait not only also helps resist drought conditions, but also shows no yield penalties (compared to 

non-SG counterparts) when grown where excess rainfall is plentiful [53-54]. 

 Since the 1970s, SG has become a major marketed feature in many commercial crops 

[55]. Because of such agronomic importance, many sorghum breeders continue to intensively 

select for this trait in breeding trials [43, 56]. To evaluate this trait, breeders typically irrigate the 

genotypes of interest until flowering, and then allow for moisture stress at post-flowering stages 

[43, 57]. Plants will then be evaluated for greenness retention, traditionally using various visual 

leaf scoring systems [57-59]. Certain crops such as maize and rice have been subjected to this 

SG breeding for more than 100 years, and have thus reached a point where no more SG 

improvements can be made with crop breeding [55]. However, sorghum has yet to reach this 

point [55], and as there are still more strides to be made in this realm, it can be assumed that SG 

breeding operations will continue for a foreseeable future. 

 

 Remote Sensing for Crop Breeding 

 Plant breeding is vital to maintain food security and adaption to changes to environmental 

factors [77]. As stated previously, current crop production must be doubled to meet projected 

demand by 2050. This means that crop yields must increase approximately 2.4% each year, but 
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current increases in crop production are only at 1.3% per year [61]. This poses a significant 

challenge to crop breeders. In order to meet these future needs, an increase in breeding 

efficiency, especially in terms of crop resilience to stress, is warranted [61]. Such traits 

controlling stress adaptation, plant growth, and yield are complex and controlled by many genes 

[66-68], adding to the challenges of phenotyping in breeding trials. As field-based phenotyping 

is crucial to improve crop genetics, breeders are sometimes tasked with phenotyping thousands 

of plots, despite traditional manual sampling methods being time-consuming, labor-intensive, 

and sometimes inaccurate [61, 63, 69-72]. Because of this, new methods are needed to enable 

plant breeders to rapidly phenotype large numbers of plots, which would help to identify the best 

progenies for a given breeding program. 

 Recently, plant breeders have begun to use remote sensing for phenotyping purpose. 

Remote sensing is defined as the process of detecting characteristics of an area by measuring its 

reflected and emitted radiation [73], and is frequently used to quantify changes in vegetation 

[74]. The driving factor that makes this possible is that photosynthetically active vegetation 

reflects near infrared radiation (NIR) light, whereas vegetation that is stressed reflects more 

visible radiation (especially the red region) [62, 66, 75]. This spectral reflectance information can 

then be used to compute vegetation indices, equations or ratios between any given 

electromagnetic reflectance regions, that have been shown to be related to vegetation parameters 

such as (but not limited to) plant biomass, canopy cover, final grain yields, and leaf area index 

[63, 66, 70, 76]. Platforms that have been used include autonomous ground vehicles, field 

scanning towers, piloted aircraft, blimps, unmanned aerial systems (UAS), and satellites [62-63, 

80]. However, UAS are the platform of choice for crop breeding, as they have the ability to 

collect high spatial resolution imagery at relatively low operating costs [61-63, 69, 72, 77-78]. 
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 UAS and high-resolution aerial imaging have revolutionized crop phenotyping, as 

hundreds to thousands of plots are able to be photographed in a short time [65, 81]. This rapid 

and non-destructive method of extracting phenotypic information from breeding plots has helped 

greatly to improve the efficiency of crop breeding [63, 79]. As a whole, UAS are very versatile 

in the types of payload they can carry; these range from cost-effective red-green-blue (RGB) 

cameras, NIR cameras, thermal sensors, hyperspectral sensors, and Light Detection and Ranging 

(LiDAR) sensors [69, 76, 82]. Of these, most breeders have found that RGB and NIR cameras to 

have the most value, as they are relatively cost-effective and allow for rapid and effective 

assessment of breeding plots [62]. After radiometric calibration to convert camera digital 

numbers to reflectance values [63, 83], images collected from the UAS camera are combined to 

form an orthomosaic image, and can be exported to various GIS software for analysis. In most 

cases, areas of interest (plots) are defined, and vegetation is extracted from background noise 

using binary thresholding [84-85] or machine learning algorithms such as support vector 

machines, random forest, or maximum likelihood classification [83, 86-90]. Information can then 

be extracted and sent for further analysis. 

  

 Thesis Objectives 

 In grain sorghum breeding, UAS imagery has been shown useful for quantifying plant 

tillers and grain head numbers [91-92], determining leaf numbers and plant locations [93], plant 

height [94-95], biomass accumulation [96-98] and cold tolerance [99]. Although there is some 

information on the use of UAS to monitor herbicide tolerance and SG breeding in sorghum, there 

is much that can be contributed and improved on in these fields. In SG breeding trials, it has been 

determined that using UAS and vegetative indices such as the normalized difference red edge 



7 

(NDRE) index may be effective for monitoring sorghum senescence patterns [100], as significant 

differences between NDRE scores of SG and non-SG genotypes have been detected [101]. As 

these studies mainly evaluated the spectral change of the NDRE index over time, there is still 

more to be learned in terms of the relationship of UAS-derived data to traditional visual 

senescence scoring techniques. Numerous studies have been conducted using remote sensing 

platforms to detect herbicide injury (i.e. from drift) [102-104], but few have focused exclusively 

on identifying herbicide-tolerant genotypes in large-scale breeding operations. 

 The overall objective of this thesis was to evaluate the use of UAS as a tool to aid 

sorghum breeders in identification of herbicide tolerant and drought-resistant (SG) genotypes of 

grain sorghum in large-scale breeding trials. Thus, specific objectives of Chapter 2 and 3 of this 

thesis were: 

Chapter 2: 

• Develop and elaborate a methodology for sorghum breeders to extract and process data 

using user-friendly computer programs (Agisoft Metashape and ArcGIS Pro) to aid in 

speed of data processing. 

• Test the methodology in a small-scale study evaluating sorghum tolerance to herbicide, 

mesotrione, with activity on broad spectrum of weeds. 

Chapter 3: 

• Develop a methodology for UAS data processing and extraction for SG trait evaluation 

using Agisoft Metashape and ArcGIS Pro. 

• Investigate the relationship between various UAS-derived vegetative indices and ground-

truth visual senescence measurements, biomass traits, and final grain yield. 
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Use of high resolution unmanned aerial systems imagery 

and machine learning to evaluate grain sorghum response to 

mesotrione 

 

 Abstract 

Manual evaluation of crop injury to herbicides is time-consuming. Unmanned aircraft 

systems (UAS) and high-resolution multispectral sensors and machine learning classification 

techniques have the potential to save time and improve precision in the evaluation of herbicide 

injury in crops, including grain sorghum (Sorghum bicolor L. Moench). The objectives of this 

research were to (1) evaluate three supervised classification algorithms (support vector machine, 

maximum likelihood, and random forest) for categorizing high-resolution UAS imagery to aid in 

data extraction and (2) evaluate the use of vegetative indices (VIs) collected from UAS imagery 

as an alternative to traditional methods of visual herbicide injury assessment in mesotrione-

tolerant grain sorghum breeding trials. An experiment was conducted in a randomized complete 

block design using a factorial treatment arrangement of three genotypes by four mesotrione 

doses. Herbicide injury was rated visually on a scale of 0 (no injury) to 100 (complete plant 

mortality). The UAS flights were flown at 9, 15, 21, 27, and 35 days after treatment. Results 

show the SVM algorithm to be the most consistently accurate, and high correlations (r = -0.83 to 

-0.94; p < 0.0001) were observed between the normalized difference vegetative index (NDVI) 

and ground-measured herbicide injury. Therefore we conclude that VIs collected with UAS 

coupled with machine learning image classification, has the potential to be an effective method 

of evaluating mesotrione injury in grain sorghum. 
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Abbreviations: UAS, unmanned aerial systems; VI, vegetative indices; SVM, support vector 

machine; NDVI, normalized difference vegetative index. 

 

 

 Introduction 

Grain sorghum (Sorghum bicolor L. Moench) is an important crop with diverse uses 

throughout the world [1]. Sorghum is known to have originated from sub-Saharan Africa, where 

it has been used as a major food crop [2]. Grain sorghum has a vast genetic diversity with many 

genotypes possessing agronomically-desirable traits [3]. Traditionally, sorghum is used in the 

Western Hemisphere as animal feed; however, other uses include biofuel, forage production, and 

as a gluten-free alternative for human consumption [3-4]. In the United States, grain sorghum 

ranks the fifth-most important grain crop with 1.9 million hectares harvested in 2019 [5]. As 

sorghum is adapted to semi-arid regions of the world, it has been shown to have distinct yield 

advantages over corn (Zea mays L.) in such environments [6]. 

Weed competition is a common biotic pestilence that interferes with grain sorghum 

production. Prior research has demonstrated that infestations of weeds in grain sorghum can 

reduce yields ranging from 8 to 56%, depending on the type of weeds [7]. Despite other methods 

of weed control such as crop rotation and row cultivation, herbicides are the most common 

method of weed control in grain sorghum in the United States [7-8]. Several herbicides are 

registered for use in grain sorghum as pre (PRE)- or post (POST)-emergence treatments. For 

example, herbicides such as atrazine and mesotrione can be used as a PRE, and 2,4-D and 

dicamba as POST treatments [9]. Despite having several herbicides used for PRE treatments, the 

options for POST treatments are limited in grain sorghum, especially those used for grass weed 
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control. More options for POST grass control herbicides are needed for grain sorghum cropping 

systems. 

The 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (e.g. 

mesotrione, tembotrione) are widely used for POST emergence grass weed control in corn [10] 

but not registered for POST use in grain sorghum because of crop injury [11]. These herbicides 

are used both as soil and foliar applied, and control a broad spectrum of grass and broadleaf 

species while providing soil residual activity for extended protection [10, 12-13]. These 

herbicides inhibit the HPPD enzyme in the plastoquinone biosynthesis pathway, leading to the 

depletion of plastoquinone levels. This results in the inhibition of carotenoids biosynthesis and 

subsequent plant death by photo-oxidation of chloroplasts. Because of this photo-oxidation, the 

main symptom after treatment with these herbicides is the bleaching of plant tissue, although 

additional symptoms including stunting of growth, leaf chlorosis and necrosis are also common 

in susceptible plants [8, 10]. HPPD-inhibiting herbicides are widely used as POST in corn, which 

can actively metabolize these herbicides into non-phytotoxic compounds [10]. 

Mesotrione is an HPPD-inhibitor in the triketone chemical family [14], and can be used 

as a pre-emergence treatment in grain sorghum. However, it has been shown to cause damage 

including 20% chlorosis in sorghum when applied POST [8, 15]. Recent research has identified 

grain sorghum genotypes with elevated tolerance to post-emergence applications of mesotrione 

with minimal crop damage [16]. These grain sorghum genotypes are valuable for the 

development of mesotrione-tolerant varieties in breeding programs. Although herbicide-tolerant 

traits could be quite useful for growers, implementing herbicide tolerance to grain sorghum 

breeding operations can be difficult. This is because several combinations of herbicides rates and 

genetic lines need to be fully investigated to quantify the data of herbicide injury level [17]. In 
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addition, previous methods to assess plant responses to herbicides, including visual scoring, 

portable chlorophyll sensors, and biomonitoring [18-20] are labor-intensive and time-consuming. 

New methods of evaluation of herbicide damage are warranted to support and hasten the 

screening large number of genotypes and populations in the breeding programs for the 

development of herbicide-tolerant technology in crops. 

The use of high-resolution remote sensing techniques coupled with machine learning 

image classification algorithms is one of the promising methods for quantification of plant 

response to various biotic or abiotic stresses [21-22]. Image classification via remote sensing has 

been explored extensively, with the majority of platforms using either satellite, piloted aircraft, 

or unmanned aerial systems (UAS) [19, 23]. Images collected from these platforms can then be 

separated into distinct classes through various algorithms, allowing extraction of data from 

individual classes for external analysis [24-26]. A highly accurate sect of image classification 

includes a supervised approach, which uses user-defined training samples to make these feature 

classifications [23, 27]. In addition to image classification, vegetative indices such as the 

normalized difference vegetation index (NDVI) can be computed, which have been shown to be 

useful in predicting plant parameters such as biomass, nitrogen status and chlorophyll content 

[28-30]. The quality of the data enhances with improved image resolution, making UAS a useful 

platform for collecting high-resolution remote sensing imagery in agricultural settings [31-34]. 

Proposed uses of UAS imagery in weed science, include weed pressure mapping, 

quantifying herbicide damage on non-target crops, herbicide applications, and site-specific weed 

management [32-33, 35-38]. However, very few studies have been carried out using UAS 

imagery to quantify herbicide injury in crops, specifically in grain sorghum. Therefore, the 

objectives of this study were to (1) determine the most suitable method of classifying high-
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resolution UAS imagery in grain sorghum to aid in data extraction and (2) evaluate the use of 

UAS imagery as an alternative to traditional methods of assessing visual herbicide injury in grain 

sorghum. 

 

 Materials and Methods 

 Field Experiment 

A field study was conducted in 2019 at the Kansas State University Ashland Bottoms 

Research Farm in Manhattan, Kansas (Figure 2.1). The soil type at the study location was a 

Reading silt loam with 2.42% organic matter and a pH of 6.07. A grain sorghum genotype (G-1) 

identified with tolerance to mesotrione [16] was planted along with a known mesotrione- 

susceptible genotype (S-1) and a Pioneer® (Corteva Agriscience, Wilmington, Delaware; USA) 

sorghum hybrid (84G62) for comparison. The experiment was arranged in a randomized 

complete block design (with three replications) with a two-way factorial arrangement of 

treatments, consisting of three genotypes and four herbicide rates. The genotypes were planted 

on June 8, 2019 at a rate of 175,000 seeds ha-1, with a row spacing of 76 cm and a planting 

depth of 5 cm. The experiment plots were 2 m wide and 6.5 m long, consisting of four sorghum 

rows. The two middle rows consisted of each genotype (G-1, S-1, 84G62), and two outside 

border rows of Pioneer 84G62 were planted to act as a buffer between treatments. Mesotrione 

(Callisto® SC; Syngenta Crop Protection, LLC, Greensboro, North Carolina, USA) rates of 0, 

105, 420, and 840 g ai ha-1 were applied at the 3-4 leaf growth stage using a CO2-pressurized 

backpack sprayer consisting of a four nozzle boom fitted with 110-02 flat-fan nozzles (TeeJet 

Spraying Systems Co., Wheaton, Illinois, USA) calibrated to deliver 187 L ha-1 at 276 kPa. 
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Fertilizer applications followed the recommendations determined from a pre-plant soil test, and 

pests and diseases were controlled on an as-needed basis. 

 

 Image Acquisition 

Prior to seedling emergence, 10 ground control points (GCPs) were placed within the 

experiment, and real-time kinematic (RTK) points were collected to aid in image processing. In 

addition to GCPs, each plot received two diagonally-placed ground targets indicating the sub-

plots where ground-truth measurements were taken. Dimensions of the sub-plots were 

approximately 1.5 m x 1m. After processing, geo-centered border polygons could then be drawn 

over these sub-plots to allow for data extraction (Figure 2.2). 

The Imagery was collected with a DJI Matrice 200 (DJI Inc., Shenzhen, China; 

https://www.micasense.com/) multi-rotor aircraft equipped with a Micasense RedEdge-MX 

multispectral camera (Micasense Inc., Seattle, Washington, USA; https://www.micasense.com/). 

The camera is capable of capturing five spectral bands of the visible and invisible 

electromagnetic spectrum (blue, 465-485 nm; green, 550-570 nm; red, 663-673 nm; red edge, 

712-722 nm; near infrared, 820-860 nm) [40]. Each band is captured independently with a 

separate camera lens, and is capable of capturing images with a spatial resolution of 8 cm/pixel 

at an altitude of 120 m. To measure fluctuations in ambient lighting conditions, a down-welling 

light sensor (DLS) was included on the top of the aircraft. 

Flights were flown 9, 15, 21, 27, and 35 days after treatment (DAT) for data collection. 

Flights were flown under clear, sunny conditions with no cloud cover. These conditions were 

selected to standardize lighting across all measurement dates, ensuring differences in data due to 

lighting conditions would be minimized. All flights were taken within ± 2.5 hours of solar noon 
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as recommended by the camera manufacturers. Radiometric calibration was performed using the 

calibration panel before and after each flight to ensure image quality. Each flight was flown at an 

altitude of 15 m and was flown using a pre-programmed GPS waypoint mapping mission using 

the DJI Pilot application. To ensure image quality, each flight was flown with an 80% front 

overlap and a 75% side overlap. The camera was set to capture images every 2 seconds to ensure 

adequate amounts of images were taken for processing. Images collected in flight were stored on 

an SD card and transferred to a desktop computer for further processing. 

 

 Image Processing 

Data processing followed a workflow involving image orthomosaic generation in Agisoft 

Metashape (Agisoft LLC., St. Petersburg, Russia) and data extraction in ArcGIS Pro (ESRI 

Headquarters, Redlands, California, USA) (Figure 2.3). UAS images processed in Agisoft 

Metashape were processed with the slight modifications discussed in Holman et al. [39]: When 

aligning images and generating the sparse point cloud, alignment accuracy was set to high as 

opposed to ultra-high to reduce processing time and decrease levels of noise. When generating 

the dense point cloud, depth filtering was disabled to prevent any smoothing of the sorghum 

canopy. In addition, the quality of the dense point cloud was also set to high instead of ultra-high 

to reduce processing time. The resulting orthomosaic spatial resolution was between 1.1-1.3 

cm/pixel for each of the 5 flight dates. 

The image orthomosaic was exported to ArcGIS Pro for further data analysis. Ground 

targets within each plot were located, and sub-plots were defined. The sub-plots were then 

clipped from the original image, and vegetative indices (VIs) were computed on the sub-plots. 

The vegetative indices (VIs) computed were NDVI, enhanced normalized difference vegetation 
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index (ENDVI), simple ratio (SR), and enhanced vegetation index 2 (EVI2) (Table 2.1). These 

VIs were chosen for their close relations to plant greenness and canopy chlorophyll content [41]. 

 

 Machine Learning Classification 

A supervised classification approach was chosen over unsupervised methods because of 

the classification accuracy advantage over unsupervised methods [26-27]. Due to high image 

resolutions and standardized lighting conditions on each measurement date, we chose to use 

pixel-based classification algorithms, as opposed to other methods such as object based. After 

computing VI imagery, each sub-plot was classified into three categories: Sorghum leaves, 

shadows, and soil. To test for differences between accuracies in classification algorithms, we 

chose three different algorithms: support vector machine (SVM), random forest (RF), and 

maximum likelihood (ML). These three algorithms were chosen because they are all the options 

offered for pixel-based classifications in ArcGIS Pro. In order to classify the imagery, we 

followed a similar approach described by Tay et al. and Makanza et al. [47-48]. First, a 

classification scheme consisting of three categories was created. Twenty representative training 

samples were taken at random from the sub-plot, grouping similar pixels based on visual 

similarity and assigning them to each class. The training dataset and classification schema was 

then saved as a signature file and used to classify each sub-plot using each machine learning 

algorithm. In order to achieve maximum accuracy across each measurement day, this process 

was repeated with new representative training samples generated for each day. All algorithms 

were run with the default settings provided by ArcGIS Pro. 
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 Ground Truth Measurements 

Herbicide injury was assessed visually by using a scale of 0 (no visual injury) to 100 

(complete plant mortality). Injury ratings were based on the presence of foliar bleaching, growth 

stunting, leaf chlorosis and tissue necrosis [8, 10, 49]. Ratings were taken within sub-plots so 

data from flights could be taken from the same plants in which the ratings were assigned. Each 

rating were taken ± 1 day of flight measurements. 

Accuracy assessments were conducted on the classification methods by computing 

confusion matrices [50-51]. For each measurement day, 300 accuracy assessment points were 

generated via stratified random sampling. Each point was manually designated to the class to 

which it belonged, relative to the original orthomosaic image, creating ground reference points. 

When overlaid onto each classified raster, overall accuracy (OA) percentages were then 

computed by dividing the total number of correctly classified pixels by the total number of 

reference pixels. Accuracies at or above 85% were considered to be accurate classifications, 

which is a commonly-used target accuracy when classifying imagery [50]. For this study, we 

selected the most consistently-accurate algorithm across all 5 treatment dates to use for further 

data extraction (see results section). 

 

 Data Extraction 

The process of data extraction from each sub-plot is shown in Figure 2.4. To prevent 

extraction from background features, data from each sub-plot was extracted using a conditional 

statement. Using the selected classified image, a conditional statement was built to allow for data 

from each computed VI to be extracted only from the sorghum plants. The average value of each 

VI was then extracted and exported for further analysis. 
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 Statistical Analysis 

All data were exported for analysis in R statistical program (R Core Team, Vienna, 

Austria; https://www.R-project.org). Data analysis was completed in two stages. First, statistical 

differences between mean overall classification accuracies (per algorithm) were tested with the 

Shapiro-Wilks test to verify assumptions of analysis of variance (ANOVA) [52]. The 

classification accuracy dataset failed to meet ANOVA assumptions and was therefore analyzed 

using the Kruskal-Wallis chi-squared goodness of fit test [53]. Significant differences between 

algorithms were found with a post-hoc analysis using the Dunn test [54]. Second, relationships 

between VIs and ground truth injury ratings were investigated and tested for significance with 

Pearson correlation coefficients [40, 48, 55-57]. Correlations were then used to detect differences 

in spectral values between genotypes and application rates. After identifying levels of 

significance, the VI with the highest significance scores was used in a two-way ANOVA to 

examine the effect of genotype and rate on spectral scores. Means were separated using a Tukey 

HSD post hoc test. All significance levels were set at α = 0.05. 

 

 Results 

 Classification Accuracy 

Overall classification accuracies ranged from 82 to 93% across algorithms (Table 2.2). 

The SVM was the most consistent across all dates with accuracies of 90% (27 DAT) to 92% (9 

DAT). The algorithm with the most variability was ML, while the lowest accuracies were 

achieved with RF. The Kruskal-Wallis test revealed significant differences between groups (Chi-

square = 7.41, p-value = 0.025), and the RF algorithm was found to be less accurate when 
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compared with SVM and ML (Table 2.3). Because SVM was consistently the most accurate 

classification algorithm, it was chosen to continue to extract data for further analysis. When 

comparing the overall accuracy means of each algorithm, all algorithms accurately classified the 

imagery into three established classes, as compared to the threshold of 85%. However, RF was 

found to be significantly less accurate than SVM and ML, indicating that RF may not be the best 

choice in supervised, pixel-based classifications for images of similar sorghum breeding trials. 

 

 Relation of Vegetative Indices to Ground Truth Injury 

Significant negative correlations were observed across all measurement dates with each 

VI. High correlations were observed between UAS-based VI data and ground truth herbicide 

injury across all measurement dates (Table 2.4). The NDVI coefficients (r = -0.94 to -0.83) 

consistently displayed the highest correlations with visual injury symptoms on every 

measurement day. ENDVI (r = -0.92 to -0.82) and EVI2 (r = -0.94 to -0.82) correlations were 

very similar to NDVI values and thus were also very highly correlated with injury symptoms. 

The SR demonstrated the most variability in each measurement date (r = -0.92 to -0.70). 

 As NDVI was shown to be the most consistently related to mesotrione injury, it was 

chosen for the ANOVA analysis. Across all treatment dates, there was no significant interaction 

effect between genotype and rate (data not shown). Despite this, the main effect models 

demonstrated significant differences, with the results of the post-hoc test shown in Figure 2.5. 

When looking at the main effects model for genotypes, the NDVI response for the G-1 genotype 

across all mesotrione doses was not statistically different from the commercial hybrid response 

until 35 DAT. However, in all cases, the NDVI values for the G-1 genotype and commercial 

hybrid were statistically different from the S-1 genotype, which was to be expected given the S-1 
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susceptibility to mesotrione. For the rate main effect model, plants treated with 0 and 105 g ae 

ha-1 were not statistically different from one another on each measurement date, indicating that a 

low dose of mesotrione did not significantly injury the lines used in this study. Interestingly, on 

the 27 and 35 DAT, it appeared that the plots treated with a higher rate of mesotrione (420 and 

840 g ai ha-1) started to recover from their injuries, but were always significantly lower than the 

control and 105 g ae ha-1 dose. 

 

 Discussion 

UAS imagery has been used to monitor various agronomic traits, including plant 

response to stress [48]. Supervised machine learning algorithms are commonly used to classify 

remote sensing imagery, and have been shown to be highly accurate in terms of overall 

classification accuracies [24, 58]. However, their effectiveness in classifying vegetation from 

background noise in breeding trails, especially for herbicide-tolerant trait development has not 

yet been explored. Our current research shows that machine learning algorithms, most notably 

the SVM algorithm, could be an effective method of extracting VI values from grain sorghum 

treated with different rates of mesotrione (Table 3). 

Key to this finding is the use of high-resolution UAS imagery coupled with small plot 

sizes across uniform lighting conditions. Within each plot, there were three classes identified in 

each classification schema: leaves, shadows, and soil. A stark contrast between pixel brightness 

values occurred throughout each of the classes, allowing for the SVM algorithm to effectively 

segregate each class throughout the plots with high accuracy percentages. We expect that this 

classification schema could be used in grain sorghum to assess injury of other HPPD-inhibitor 

herbicides, such as tembotrione, because similar classes would be expected, regardless of the 
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location of study or genotypes. As pixel-based classifications were studied, we did not compare 

these results with other methods of segregating vegetation from background noise, including 

using the Otsu algorithm [59] for binary thresholding and object based image analysis. Further 

research for vegetation classification in screening for herbicide tolerance studies should compare 

classification accuracies of pixel-based, object-based, and binary thresholding algorithms. 

The classification method chosen for this study was supervised, which are often more 

accurate than unsupervised in some situations [27]. One of the main benefits of unsupervised 

classifications is that large areas of land can be classified in a very short period of time [60]. In 

situations where there are large numbers of classes to assign to the image, an unsupervised 

approach would be preferred as a supervised approach would be very time-consuming. However, 

as demonstrated by our study, segregating sorghum vegetation in herbicide breeding trials does 

not require a large number of classes or training samples. It can therefore be accomplished in a 

relatively short period of time. As supervised classification algorithms can accurately identify 

features within these breeding trials, more research is needed to compare supervised 

classifications with unsupervised classifications in herbicide tolerance trials to see if statistically 

significant differences exist between overall accuracies. 

Using the NDVI values and an ANOVA, it was observed that differences in spectral 

values existed for genotypes with respect to mesotrione application rates. The ability to detect 

spectral responses of plots treated with mesotrione could aid in quickly assessing the variable 

responses of multiple sorghum genotypes to mesotrione treatment. To be useful for sorghum 

breeders, differences in plant responses to mesotrione must be detected by the camera and able to 

be seen after data extraction. Our data shows that the Micasense camera was able to detect 

significant differences among genotype responses, which could allow breeders to know which 



32 

genotypes are responding to herbicide treatment. This prevents a large-scale manual assessment 

of the entire operation, leading to reduced time, labor, and resources to achieve the desired 

objective.  

It should be noted that all VIs showed the strongest correlations on 9 and 15 DAT, and 

showed slightly weaker correlations for the rest of the measurement days. This is most likely 

because reductions in chlorophyll due to herbicide injury were clearly visible on the canopy early 

during the experiment, but were overshadowed by new growth as the growing season progressed. 

As a result, injury symptoms were still visible during ground truth ratings but were not visible to 

the camera. As healthy plants absorb light in the visible spectrum and reflect near infrared (NIR) 

energy, higher NDVI values are observed with healthier plants, whereas lower NDVI values are 

recorded as plant health declines [36]. This explains the negative correlations, as plants injured 

by mesotrione applications experienced a loss of green pigmentation. Previous research 

suggested that the genotype G-1 is more tolerant to mesotrione than Pioneer 84G62 or S-1 [16] 

used in this  research. In this research, the similar response of G-1 and Pioneer 84G62 to 

mesotrione application can be explained because of the bleaching symptoms due to mesotrione 

application were not directly classified with machine learning algorithms due to spectral 

similarities with soil values. Instead, the reduction in leaf greenness showed to be sufficient in 

determining correlations with ground truth injury ratings.  

VI have been successfully correlated with herbicide injury involving chlorophyll 

pigmentation loss in previous research. Huang et al. [61] found that NDVI values were highly 

related to cotton (Gossypium hirsutum L.) injury from aerial applications of glyphosate, with 

very strong correlations observed between increased frequencies of spray drift droplets and 

NDVI values. Dicke et al. [35] found reductions in NDVI values in plots treated with 
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sulfonylurea herbicides as well as significant correlations between NDVI values and corn yield, 

suggesting that low NDVI values in herbicide-damaged plots can be used as predictor of final 

yield. Duddu et al. [62] reported strong correlations between the optimized soil adjusted 

vegetation index (OSAVI) and visual injury ratings of faba beans (Vicia faba L.) treated with 9 

different herbicide tank mixtures. Faba bean visual injury ratings were based on visible growth 

reduction and tissue chlorosis. Our data is consistent with these findings in that the increase in 

herbicide foliar injury is strongly related to changes in VI scores. As a final recommendation for 

future studies, relationships between UAS data and other herbicide modes of action should be 

determined to investigate how useful UAS would be for determining grain sorghum tolerance to 

other herbicides. 

Herbicide injury in grain sorghum breeding trials is traditionally been assessed with 

visual injury ratings, which can be prone to error due to variations among evaluators. For trials 

consisting of thousands of grain sorghum plots, traditional injury assessment methods would take 

many hours or days to complete. Alternatively, UAS imagery can be taken in as little as 20-25 

minutes, and while the data extraction methodology may seem to take a long time, the 

methodology can actually be completed quickly once the process is established. 

 

 Limitations 

Limitations of this study are centered on the lack of use of more number of herbicides, 

genotypes tested and geographic restrictions. As there was only one herbicide used in this study, 

it remains to be determined if tolerance/susceptibility to other herbicides could be detected with 

UAS. Mesotrione injury was well-detected due to foliar bleaching symptoms, resulting from the 

destruction of phyto-oxidation of chloroplasts. This resulted in stark differences between treated 
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and untreated plants, which were able to be detected with the camera due to differences in 

chlorophyll pigmentation loss. As other herbicides do not directly result in stark pigmentation 

losses (i.e. auxins), the ability to detect sorghum responses to these herbicides remains to be 

determined. 

Additional limitations involve use of genotypes that are not bred similarly for cultivation. 

While Pioneer 84G62 is a commercially grown hybrid with desirable agronomic traits, the 

genotypes G-1 and S-1 represent sorghum diversity panel which are do not possess 

agronomically suitable traits. The other limitation includes, use of only one year data at one 

geographic location. This experiment was conducted in one field (Manhattan, KS), and has only 

been replicated across one year. This methodology remains to be tested across multiple 

years/locations to determine the robustness of detecting differences in mesotrione tolerance. 

Further studies should determine UAS injury characterization across multiple locations and 

growing conditions. 

Although significant spectral difference existed between certain genotypes and rates of 

herbicide applications, the differences were not as pronounced as would be expected between 

mesotrione tolerant and susceptible genotypes. A likely explanation can be found in precipitation 

patterns. Rainfall was plentiful for the 2019 growing season in central KS, enabling adequate 

growth and development for all sorghum lines studied. This further demonstrates the need for 

additional replications across different geographic regions, as greater spectral differences 

between tolerant and susceptible genotypes could potentially be observed in different growing 

conditions. 
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 Conclusions 

This study suggests that VIs collected from high-resolution imagery, coupled with image 

classification, may be a useful tool for sorghum breeders to quantify the degree of mesotrione 

injury in grain sorghum. Across all measurement dates, a supervised, pixel-based SVM classifier 

was shown to be accurate and consistent when classifying imagery into sorghum leaves, 

shadows, and soil. The high correlation between VI data and ground-measured injury scores 

indicates that high-resolution multispectral imagery is able to detect reductions in chlorophyll 

due to mesotrione injury. As NDVI values were shown to be the most correlated to herbicide 

injury, we have demonstrated that the most widely-used VI in agriculture is capable of detecting 

these changes. Therefore, cost-effective NDVI sensors of varying types could potentially be used 

to measure mesotrione injury or possibly other herbicide injury symptoms that can be 

quantifiable. To add, this methodology does not focus on labeling specific genotypes/hybrids as 

“tolerant” or “susceptible;” rather, it provides sorghum breeders with a means of discovering 

genotypes (based on spectral responses) for further evaluation.. In a breeding trial with thousands 

of plots, we anticipate that this could reduce time and efforts required to discover herbicide 

tolerant sorghum genotypes. With further testing, this methodology could help to increase 

genotype selection, and could ultimately help to decrease the time it takes to deliver new 

herbicide-tolerant technologies to sorghum growers around the world. 
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Figure 2.4 Methodology for vegetative indices (VI) data extraction based on the results of the 

image classification. (A) Original red-green-blue (RGB) sub-plot image; (B) each VI was 

computed from the original RGB images, creating a new raster layer for each VI; (C) RGB 

images were classified via supervised, pixel-based algorithms into leaves, shadows, and soil; and 

(D) each VI raster was combined with the classified image to create a new raster layer, allowing 

for VI data from only the sorghum leaves to be extracted for statistical analysis. 
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Figure 2.5 ANOVA results for main effect models, genotype + rate. Means were 

separated using Tukey’s HSD test at the 0.05 significance level. 
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 Tables 

Table 2.1 Equations and common uses for vegetative indices used in this study. 

Vegetative Index Formula Use Reference 

NDVI ρNIR-ρR

ρNIR+ρR
 

Green biomass, 

chlorophyll 

[40, 42-44]] 

ENDVI ((ρNIR+ρG)-(2×ρR))

((ρNIR+ρG)+(2×ρR))
 

Chlorophyll content [41, 44] 

SR ρNIR

ρR
 

Chlorophyll, leaf 

area index 

[45] 

EVI2 
2.5×

ρNIR-ρR

ρNIR+(2.4×ρR)+1
 

Chlorophyll, 

canopy cover 

[41, 43, 46-47] 

Acronyms: NDVI, normalized difference vegetation index; ENDVI, enhanced normalized difference vegetative 

index; SR, simple ratio; EVI2, enhanced vegetation index 2. ρ denotes spectral reflectance. 
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Table 2.2 Overall accuracies for each algorithm on each measurement date. 

DAT 
Algorithm 

SVM RF ML 

9 92 88 85 

15 91 82 92 

21 91 87 93 

27 90 87 92 

35 91 82 90 

Acronyms: DAT, days after treatment; SVM, support vector machine; RF, random forest; ML, maximum likelihood. 
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Table 2.3 Results of the Dunn test indicating significant differences between mean overall 

classification accuracy percentages. No significant differences were found between the SVM-

ML algorithms, but the RF algorithm was significantly less accurate than the others. 

Algorithm P-value Significance 

ML-RF 0.02 * 

ML-SVM 0.94 ns 

RF-SVM 0.02 * 

Acronyms: SVM, support vector machine; RF, random forest; ML, maximum likelihood. * indicates significant 

differences at the 0.05 level. 
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Table 2.4 Pearson correlation coefficients between vegetative indices and ground-measured 

visual injury ratings. 

 

 

 

 

VI 
9 DAT 15 DAT 21 DAT 27 DAT 35 DAT 

r p-value r p-value r p-value r p-value r p-value 

NDVI -0.94 < 0.0001 -0.91 < 0.0001 -0.85 < 0.0001 -0.83 < 0.0001 -0.83 < 0.0001 

ENDVI -0.92 < 0.0001 -0.90 < 0.0001 -0.84 < 0.0001 -0.83 < 0.0001 -0.82 < 0.0001 

EVI2 -0.94 < 0.0001 -0.90 < 0.0001 -0.84 < 0.0001 -0.81 < 0.0001 -0.82 < 0.0001 

SR -0.92 < 0.0001 -0.83 < 0.0001 -0.79 < 0.0001 -0.68 < 0.0001 -0.70 < 0.0001 
Acronyms: NDVI, normalized difference vegetation index; ENDVI, enhanced normalized difference vegetation index; EVI2, 

enhanced vegetation index 2; SR, simple ratio; DAT, days after treatment. 
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Investigation of high-resolution UAS imagery for SG 

trait characterization in grain sorghum 

  

 Abstract 

Grain sorghum (Sorghum bicolor (L). moench) is a very important crop to the world’s 

semi-arid regions, as it is able to produce grain and biomass yields in precipitation-limited 

environments. Many genotypes have a characterized form of drought resistance known as the 

stay-green (SG) trait, enabling sorghum plants to resist post-flowering drought stress that can 

severely reduce yields. Breeding for SG sorghum lines is considered very important for sorghum 

breeders around the world, but selecting for SG traits currently relies on methods that are labor-

intensive and time-consuming. Using unmanned aerial systems (UAS) capable of capturing high-

resolution imagery offers a solution for reducing the time and energy required to select for these 

traits. A field study was conducted in Manhattan, Kansas (United States) where 20 Pioneer® 

sorghum hybrids were planted in a randomized complete block design with three replications per 

hybrid. Imagery was collected with a DJI® Matrice 200™ equipped with a MicaSense ® 

RedEdge-MX™ multispectral camera. Flight altitude was 30 m, and flights were collected under 

clear, sunny skies within ±2.5 hours of solar noon. Ground-measured data included visual 

senescence ratings, fresh and dry plant biomass, leaf area index (LAI), and final grain yield. 

After correlation and regression analysis, results indicated significant relationships with the near 

infrared (NIR) spectral band with fresh and dry plant biomass samples, the green normalized 

difference vegetation index (GNDVI) scores at flowering were the most related to final grain 

yield, and the visible atmospherically resistant index (VARI) was the most related to visual 

senescence scores. Significant spectral band/vegetative indices were clustered into groups, and 
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significant differences were found between various traits. From this study, we have developed a 

methodology for SG sorghum growers to collect, process, and extract data for more efficient 

identification of traits of interest.  

 

 Introduction 

In the year 2050, the human population is expected to rise from 7 to 10 billion people, 

consequently increasing global demand for food [1]. In order to meet these increasing demands, 

current global crop production will need to be at least doubled [2]. Even though there are nearly 

200 species of plants are used for wide-scale human consumption, there are growing concerns 

that current farming practices and crop cultivars will not be capable of meeting these demands 

[1]. For major crops including corn (Zea mays), rice (Oryza sativa L.), and wheat (Triticum 

aestivum), displayed an annual yield of improvement from 0.8 to 1.2%, but this yield trend must 

be doubled to meet future demands [1, 3]. In addition, several regions around the world have 

experienced yield losses due to stresses brought by a warming climate [4], further complicating 

the goal of increasing yields. To address these challenges, crop breeders must select for cultivars 

for increased yield potential while simultaneously displaying stability against environmental 

stressors such as drought and temperature stress [5]. 

One crop that shows potential to contribute to and diversify human diets is grain sorghum 

(Sorghum bicolor (L.) Moench) [1]. Grain sorghum is a C4 crop that is an important food source 

for many people in Africa, Asia, and Central America [6]. Globally, it is the fifth most important 

cereal crop, after wheat, corn, rice, and barley (Hordeum vulgare) [7-9], and is also valued for its 

use for forage and biofuel production [10]. Since it is known to have originated in sub-Saharan 

Africa [11-12], it is well-adapted to semi-arid and arid regions of the world, making it a crop of 
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choice in areas with limited precipitation [6, 9]. Despite having distinct economic and yield 

advantages over corn in drier environments [13-14], sorghum is still considered to be well-below 

its yield potential [15]. This is partially because grain sorghum is widely-considered to be 

difficult to process into products for human consumption, so as a result, most grain sorghum 

grown in developed countries is exported and used as animal feed [15]. However, as many areas 

in the world are predicted to become warmer and drier due to climate change, it is estimated that 

more regions will adapt to this by growing more grain sorghum for human consumption [15]. 

Being well-suited for arid environments, sorghum is considered a crop that will help with the 

goal of global food security under future climate changes [10, 16].  

One way sorghum breeders are looking to combat yield losses is to select for cultivars 

tolerant to abiotic stress, particularly in terms of drought tolerance [17-18]. All stresses 

considered, one of the most relevant stressors to sorghum is post-flowering drought stress, often 

known as “terminal drought” [7]. This type of stress severely limits grain filling during later 

growth stages, impacting the duration of this period and thus severely reducing grain yields. 

Many genetic lines of crops, including grain sorghum, have a characterized form of drought 

tolerance during post-flowering growth stages known as the non-senescence or “stay-green” 

(SG) trait [13, 19]. Grain sorghum genotypes with the SG trait continue to fill their grain under 

drought, and also exhibit tolerance to several factors that affect grain sorghum under moisture 

stress such as stem rot and lodging [13, 20-24]. In addition to yield retention, the SG trait is 

valuable for biomass production in regions where water is limited [25-26], allowing farmers in 

these regions to produce more above-ground biomass for forage and biofuel production. Due to 

these advantages, many breeders consider the SG trait of much agronomic importance, and has 

been and continues to be subjected to intensive selection in crop breeding trials [27]. 
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With all of these predicted changes to world population and climate patterns, there is an 

increasing amount of pressure on farmers and crop breeders to improve crop cultivars [28]. As 

concerns arise regarding cultivar improvements beginning to plateau [1], new technologies are 

needed to boost the speed of cultivar selection in breeding trials. Technology that is capable of 

screening thousands of lines for a desired trait is essential for this process [29]. These 

technologies can be even more important when screening for SG traits, which can be very labor-

intensive and time-consuming if scored with traditional methods (i.e. using visual leaf scoring 

systems or SPAD meters) [23, 30-31]. For this purpose, many breeders have turned to screening 

large trials with remote sensing methods, utilizing non-destructive approaches to measure 

reflected electromagnetic radiation from plants [32]. Through identifying changes in both the 

visible and invisible spectral bands, information regarding vegetation health and productivity can 

be detected and quantified [33].  In addition, these individual bands can be combined into 

vegetative indices (VIs), which have been shown to be successful in estimating traits such as (but 

not limited to) plant biomass [34], leaf area index (LAI) [35], leaf senescence [36], and final 

grain yield [37].  

Because remote sensing platforms such as satellites may not currently provide the 

resolution necessary for screening individual cultivars, unmanned aerial systems (UAS) 

equipped with consumer-grade cameras have been shown to be useful for obtaining very high-

resolution imagery for agricultural purposes [38]. In addition, UAS platforms are considered 

relatively inexpensive [39], and have recently become more accessible not only in cost but in 

easiness to use for data processing for both farmers and research programs [36]. Our hypothesis 

is that high-resolution UAS multispectral imagery is an effective alternative to time-consuming 

ground evaluation and selection of traits of interest in sorghum SG breeding trials.  
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Spectral data have been used to explain senescence in previous studies, as they have been 

deemed useful in the prediction of green leaf area during senescence [40]. In most vegetative 

remote sensing applications, healthy vegetation is sensed by detecting the quantity of NIR 

wavelengths emitted as a result of cellular refraction [41]. In cases of vegetative senescence, NIR 

reflectance does not significantly decrease; instead, the degradation of chlorophyll results in the 

decrease of green electromagnetic reflectance and the rise of red electromagnetic reflectance 

[42]. There is seldom a major change observed in the relation of green leaf area to NIR 

reflectance, but the relation between red reflectance and green leaf area changes substantially 

[43]. In many studies, there is an emphasis on quantifying red edge reflectance, as reductions in 

this region have been shown to be related to reductions in chlorophyll during senescence [35, 40, 

43-45]. However, since there are significant spectral fluctuations across the entire visible 

electromagnetic spectrum [45], vegetative indices quantifying the change of green light 

reflectance to the change of red light reflectance are thought to also be able to quantify 

vegetative senescence. 

In this paper, we explore the relationship between ground-sampled plant traits and cluster 

groups found by hierarchical clustering of individual spectral bands and VIs, focusing on 

characterizing sorghum senescence patterns, fresh and dry above-ground biomass, and grain 

yield. In an effort to encourage more SG sorghum breeding programs to utilize this technology, 

we have proposed a methodology to assist sorghum breeders in image collection, processing, 

data extraction, and analysis to locate plots with these traits of interest. For the purposes of this 

study, we have investigated as to whether or not significant differences can be detected from the 

clusters formed in this methodology. In addition, we have tested the relevancy of using 

individual spectral bands and red-green-blue (RGB) VIs versus VIs based on the invisible 
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electromagnetic spectrum by developing regression models comparing ground-sampled plant 

traits to spectral data.  

 

 

 Materials and Methods 

 Field Study Information 

 This study was conducted at the Corteva Agriscience (Corteva Agriscience, Wilmington, 

Deleware, USA; www.corteva.com) grain sorghum nursery in Manhattan, Kansas (39°9’13.69” 

N, 96°40’1.2” W). The soil type is classified as a Reading silt loam with a slope between 0-2%. 

Twenty Pioneer® sorghum hybrids with different released years were planted in a randomized 

complete block design at a density of 13 plants m-2. Sorghum genotypes were Pioneer hybrids 

spanning six decades of genetic selection (from 1963 until 2017). Each hybrid was replicated 

three times for a total of 60 plots. The hybrids were planted on June 8, 2019 in blocks with 8 

rows 5.3 m in length, with a row spacing of 0.76 m. Fertility and pest control measures were 

taken when necessary to ensure plant health throughout the season. Figure 3.1 illustrates the 

layout of the experiment. 

 

 

 Image Collection 

 Image collection, processing, and data extraction followed a framework presented in 

Figure 3.2. To collect aerial imagery, the UAS used for this study was a DJI Matrice 200 (DJI, 

Shenzhen, China; www.dji.com) outfitted with a MicaSense RedEdge-MX multispectral camera 

(MicaSense, Seattle, Washington, USA; www.micasense.com). The Matrice 200 design includes 
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a DJI SkyPort integration kit, allowing the sensor to be quickly mounted on the camera gimbal. 

The RedEdge-MX sensor is a five-banded multispectral sensor, able to simultaneously capture 5 

narrow bandwidths on both the visible and invisible electromagnetic spectrum [blue, 465-485 

nm; green, 550-570 nm; red, 663-673 nm; red edge (RE), 712-722 nm; near infrared (NIR), 820-

860 nm]. The camera is capable of capturing a spatial resolution of 8 cm pixel-1 at an altitude of 

122 m, and is equipped with a downwelling light sensor (DLS) to detect changes in ambient 

lighting conditions during flight.  

 Prior to flights, ground control points (GCPs) were set around the perimeter of the study, 

and real time kinematic (RTK) GPS points were taken at each target. Throughout the growing 

season, 4 flights were flown in accordance to grain sorghum growth stage, primarily focusing on 

the reproductive period of the crop: Flowering, soft dough, hard dough, and physiological 

maturity. To ensure lighting conditions were the same for all flights, each mission was flown 

under clear, sunny conditions within ±2.5 hours of solar noon. Due to close proximity to Class D 

airspace, flight altitude was limited to 30 m, with a forward and side overlap set to 80% to ensure 

clear image orthomosaic production. Missions were planned and uploaded to the aircraft using 

the DJI Pilot application, with all missions conducted as GPS waypoint mapping missions. 

Waypoint missions produce flight plan of GPS points with altitude, flight area, and overlap 

settings factored into it, creating points to which the aircraft will travel to during flight. The 

RedEdge-MX camera was set to collect imagery every 2 seconds to ensure that enough images 

would be collected for processing. Following recommendations from the manufacturer, gain 

(ISO) and exposure (i.e. shutter speed and aperture) were left at an automatic setting, allowing 

for the camera to self-adjust these settings for the conditions of the flights. 
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 In order to assess image data quality, the signal-to-noise ratio (SNR) was computed. The 

SNR is an important parameter of remote sensing imagery, determining the quality of imagery 

that the camera is capable of collecting [46]. The SNR is commonly estimated by computing the 

mean pixel value to the standard deviation of a homogeneous area [46-47]. To test this, 4 

Masonite boards with dimensions of 0.61m x 0.61m were painted with a flat white, flat black, 

flat brown, and Italian Olive color. Each color was chosen to replicate certain homogeneous 

features that would be found within a sorghum field (white representing maximum reflectance 

values, black for shadows, brown for soil, and Italian Olive for vegetation). Images of the boards 

were captured on a sunny day under the same conditions as the flights, and the ratio was 

computed for each band. After converting each ratio to decibels (dB), each band’s SNR (over 

each panel) was averaged to produce an overall SNR, which was found to be 26 dB. Cameras 

over 20dB are considered high-quality research cameras [46, 48], so we therefore determined 

that the camera is capable of collecting suitable imagery for this study. 

 

 Image Processing 

 To process the images, we used Structure-from-Motion (SfM) photogrammetry. This 

technique allows for the production of 3-D surface models and orthomosaic image generation by 

processing a series of overlapping images [49]. The main steps in processing the imagery 

included image orthorectification, data extraction, and exportation for statistical analysis. Images 

taken via UAS were saved on an onboard SD card as 16-bit TIFF files and were tagged with GPS 

coordinates. UAS images were uploaded into Agisoft Metashape (Agisoft LLC, St. Petersburg, 

Russia; www.agisoft.com) where images were layered into multispectral images. Radiometric 

calibration converting digital numbers into reflectance values was conducted using a MicaSense 
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calibration panel. These images were then aligned by matching common features shared between 

photos, and a series of tie points were then computed into a sparse point cloud. RTK points were 

then placed onto each GCP to provide ground-reference points for more accurate alignment. A 

dense point cloud was then computed, followed by a digital elevation model, and finally an 

orthomosaic photo was produced. The end orthomosaic was produced as an unsigned 16-bit 

image, with the range of pixel values in each band ranging from 0 to 65,536 [50]. This process 

was repeated for each flight during this study. Each orthomosaic had a spatial resolution between 

2.2 – 2.3 cm/pixel, and were then exported to ArcGIS Pro (ESRI inc., Redlands, California, 

USA; www.esri.com/en-us/arcgis/products/arcgis-pro/resources) for further analysis. 

  

 Field Determinations 

 Plant traits specifically related to biomass were chosen to be sampled through a 

destructive sampling process. These traits include fresh and dry aboveground whole plant 

biomass at varying growth stages during the reproductive period. Plant fractions were separated 

in leaves and stem during vegetative stages; and leaves, stem, and panicle (plus grain) during the 

reproductive stages. In addition, LAI at each sampling stage was measured, along with end-of-

season yields. 

Fresh biomass samples were taken at the flowering, soft dough, and physiological 

maturity growth stages, in the 3rd and 4th row of each plot. At each stage, all above-ground 

sorghum biomass within a 0.45 meters (m) length was sampled. Fresh weight of the samples was 

recorded, with subsequent partitioning of leaves, stems, and panicles. To determine LAI, 3 plants 

were chosen at random from the sampled plants, and each leaf from these plants was measured 

with a Licor 3100C leaf area meter (LICOR®, Lincoln, Nebraska, United States; 
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www.licor.com). To obtain dry biomass measurements, all samples were oven-dried at 65° C 

until constant weight was achieved. At physiological maturity, rows 6 and 7 were machine 

harvested for final grain yield. Fresh and dry biomass measurements were adjusted to grams (g) 

m-2, LAI to leaf area m-2, and grain yield to kilograms (kg) hectare (ha)-1. 

For senescence, a sub-sample of 5 consecutive plants were set aside for ground-truth 

measurements in each plot. These plants were set aside in the 7th row of each plot. Leaf 

senescence was defined as the decrease in green color due to the breakdown of leaf chloroplasts 

[51], resulting in a certain percentage of leaf greenness loss for any given measurement stage. 

Each leaf on each plant was scored visually for leaf senescence on a scale of 100 (no visible 

senescence) to 0 (complete leaf mortality). Measurements were taken at soft dough, hard dough, 

and physiological maturity, and were made within 1-2 days of the flights to allow for 

comparisons in each growth stage. Measurements were taken from the 1st 8 leaves of the canopy, 

with the flag leaf being the first leaf measured. To ensure leaf senescence was measured from 

maximum leaf greenness to maturity, an additional set of ground measurements were taken at F, 

and only leaves that scored 100 at this stage were used for analysis. This proved effective, as 

almost all of the first 8 leaves showed no signs of senescence. 

Prior to flights, elevated ground targets with dimensions of 0.3 m x 0.3 m were placed 

between the 5th and 6th row of each plot indicating the location of the ground-measured plants. 

Targets were placed exactly one row to the north of the plants to avoid casting shadows that 

would impede UAS data collection. In all cases, the width of the targets corresponded to the 

length of the measured plants, allowing for their locations to be identified when extracting data 

from the imagery. 
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 Data Processing, Extraction, and Exportation 

From the original orthomosaic data, image background noise was then removed via 

image classification. A supervised, pixel-based classification was chosen to allow the greatest 

user input in order to define classes. Each image was classified into four classes: sorghum leaves, 

shadows, soil, and grain heads. The only exception to this classification schema was the imagery 

collected at the F stage, which was classified as leaves, shadows, and soil because grain heads 

were not yet distinguishable from vegetation. As larger numbers of training samples are expected 

to increase supervised classification accuracies [52], 20 representative training sample polygons 

for each class were collected from each image. Separate training samples were generated for 

each orthomosaic to increase classification accuracies. A support vector machine algorithm was 

chosen for the classification, and a new raster image was created. Accuracy assessments were 

conducted using a stratified random sampling procedure with 500 total points. Accuracies for 

sorghum leaf classifications ranged between 88% and 95% correct for any given flight stage, 

indicating that vegetation was accurately classified when compared to a threshold of 85% [53]. 

After classification, each spectral band was extracted from the original orthomosaic. As 

outlined by Potgieter et al. [36], each band was extracted and was normalized between 0 and 1. 

To establish plot boundaries, shape-file polygons were drawn around both the whole plots and 

designated senescence plants, and data were extracted from each region. The average pixel value 

for each spectral band was extracted, and VIs were computed based on significant findings of 

spectral bands (see results section). Each band/VI was extracted with a conditional statement, 

allowing for only data to be extracted from the ‘leaves’ class to mask data from background 

features. The data were then exported for statistical analysis. 
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 Statistical Analysis 

Statistical analysis was conducted using R (R Core Team, Vienna, Austria; 

https://www.R-project.org/). To analyze spectral band relationships between biomass, yield, and 

LAI, simple correlation and regression analyses were used. The coefficient of determination (R2) 

and root mean square error (RMSE) were also determined to verify the performance of the 

regression models [38]. For bands that were observed to be consistently significant, VIs were 

computed that composed of these bands to further investigate the relationships with ground-

sampled data. From this data, either spectral bands or VIs were chosen for further analysis based 

on correlation and regression coefficient values. Hierarchical clustering was then used to cluster 

the significant spectral data into three distinct groups, based on Euclidean distance between 

clusters. To determine if significant differences existed in ground-sampled traits as defined by 

each cluster group, a one-way analysis of variance (ANOVA) was conducted using the mean of 

each cluster, comparing the effect of cluster groups on plant traits. A Tukey HSD test [54] was 

used to separate means from each cluster group.  

To analyze senescence patterns, both correlation and simple regression analyses were 

used to determine the relation of spectral data to senescence scores at each growth stage. Each 

leaf that was scored for senescence was averaged into a “plant” score, with each plant score was 

averaged to form a “plot” score. The mean spectral band/VI score was correlated and regressed 

against the mean plot scores to determine significant relationships. In the same manner, the 

relationship between spectral data and post-flowering senescence rates was determined. 

Senescence rates were determined by subtracting the mean senescence score at maturity from 

mean scores at flowering, and spectral change rates were determined in the same manner [40]. 

As previously, hierarchical clustering using the R base package was used to divide each hybrid 
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into 3 groups based on spectral responses, and a 1-way ANOVA (comparing the effect of cluster 

on senescence/senescence rates) and Tukey HSD test conducted to determine significant 

differences in ground-measured scores. For all analyses, the ANOVAs and mean separations 

were computed using the “car” [55] and “agricolae” [56] R packages, respectively. All 

significance levels were set at α = 0.05. 
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 Results 

 Biomass, LAI, and yield traits 

 A variety of significant and non-significant results resulted from the correlation and 

regression analyses of the 5 spectral bands and field-measured plant traits (Table 3.1). The NIR 

band was seen to be the most consistently related to these traits across all growth stages. Weak to 

moderate relationships were observed between the NIR band and fresh biomass traits (r = 0.36 – 

0.61; r2 = 0.10 – 0.37; RMSE = 0.01 – 0.02). Most notably, the highest relationships were seen 

with fresh leaf biomass at each stage (r = 0.51 – 0.61; r2 = 0.26 – 0.37). Weak to no significant 

relationships were observed with dry biomass at flowering, but total, stem, and leaf dry biomass 

were significantly related to the NIR band at the soft dough and maturity stages (r = 0.30 – 0.46; 

r2 = 0.09 – 0.21). For LAI, weak correlations were observed between the blue and NIR bands at 

flowering, but were not significantly related at any other stage. As the blue band was 

significantly related to certain fresh and dry biomass traits for flowering and soft dough, these 

relationships were not statistically advantageous over the NIR band.  

To investigate this further, the blue, green, red, and NIR band was chosen to create VIs to 

further investigate these relationships. The blue normalized difference vegetation index 

(BNDVI), green NDVI (GNDVI), NDVI, simple ratio (SR) and enhanced vegetation index 

(EVI) were all computed (Table 3.2). Results shown in Table 3.3 indicate significant 

relationships between the EVI and fresh biomass traits across all measured growth stages, (r = 

0.28 – 0.50, r2 = 0.08 – 0.25, RMSE = 0.02 – 0.04), with the exception of leaf fresh biomass at 

soft dough. In addition, significant relationships with fresh biomass traits were observed with the 

GNDVI at flowering (r = 0.39, r2 = 0.15 – 0.16, RMSE = 0.01), and with the SR at M (r = 0.29 – 

0.34, r2 = 0.09 – 0.11, RMSE = 0.43 – 0.44). Total, leaf, and stem dry biomass was significant 
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for the EVI (r = 0.31 – 0.39, r2 = 0.10 – 0.15, RMSE = 0.03) and SR (r = 0.30 – 0.33, r2 = 0.09 – 

0.11, RMSE = 0.43 – 0.44) at maturity. As a whole, it was determined that the NIR band was 

more consistently significant with biomass traits than the VIs, so it was selected for further 

analysis. 

For each growth stage, the mean NIR band value for each hybrid was hierarchically 

clustered, and each hybrid was divided into three groups (1-3). The mean ground-sampled trait 

for each cluster group was then analyzed via ANOVA and separated with the Tukey HSD test for 

traits found significant in the previous correlation and regression analyses (Table 3.4). Within the 

assigned clusters, significant differences were seen with fresh and dry leaf biomass for all growth 

stages. No comparisons were made with total and stem dry biomass at flowering because it was 

not significantly related with NIR data at flowering, and no significant differences were seen 

between groups at soft dough or physiological maturity. For both total and stem fresh biomass, 

significant differences were only seen between groups at maturity. LAI mean separations at 

flowering revealed no significant differences, with no further comparisons made due to 

insignificant relationships with NIR data. 

As demonstrated in table 4, it was discovered that the GNDVI (r = 0.39 – 0.56, r2 = 0.15 

– 0.31, RMSE = 0.01 – 0.02) and the SR (0.30 – 0.56, r2 = 0.09 – 0.32, RMSE = 0.44 – 0.48) 

were the most related to final grain yields throughout the post-flowering grow stages. As 

multispectral data taken at flowering has been found to be the most correlated to final grain yield 

in previous grain sorghum studies [38, 62], the GNDVI was used for further analysis since it was 

found to be the most related to yield at flowering in our study (r = 0.56, r2 = 0.31, RMSE = 0.01). 

The mean GNDVI scores for each hybrid was clustered and divided into three distinct groups 

(Figure 3.3). Through the ANOVA to determine yield differences, we found no significant 
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differences between clusters (F = 0.001, p = 0.97). To determine if there were significant 

differences among yield that the cluster groups may have overlooked, an additional 1-way 

ANOVA was conducted to test the effect of hybrid on yield without clustering. No significant 

yield differences were found among the hybrids in this study (F = 1.70, p = 0.09). 

 

 Senescence 

During data analysis, it was discovered that the panel we used to calibrate the images was 

highly reflective. There was a very high level of saturation in the NIR band in the boundaries 

drawn around the senescence plants, but there was very little saturation in the RGB bands. 

Therefore, VIs were computed using the RGB bands, including the excess green index (ExG), 

normalized difference index (NDI), excess green minus excess red index (ExGR), visible 

atmospherically resistant index (VARI), and the green leaf index (GLI) (Table 3.5).  

When regressing the individual bands, there were no statistical differences observed with 

ground-truth scores (data not shown). However, significant relationships were discovered when 

regressing the RGB VIs chosen for this study (Table 3.6). At maturity, the most significant VIs 

were the NDI (r = 0.57, r2 = 0.33, RMSE = 0.03), VARI (0.60, r2 = 0.36, RMSE = 0.05) and GLI 

(r = 0.48, r2 = 0.23, RMSE = 0.03), with the VARI being selected for further cluster analysis. 

Dividing the resulting dendrogram into 3 groups, the ANOVA analysis showed no statistical 

differences between clusters (F = 0.53, p = 0.47). Similarly, an ANOVA analysis comparing the 

effect of hybrid on senescence scores at maturity showed no statistical differences amongst 

scores at physiological maturity (F = 1.41, p = 0.18). In the same manner, senescence and VI 

change rates were analyzed, and the VARI was again found to be the most significantly related 

to post-flowering senescence rates (r = 0.42, r2 = 0.18, RMSE = 0.05). ANOVA analysis showed 
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no difference among clusters (F = 0.21, p = 0.65), and ANOVA analysis comparing the effect of 

hybrid on senescence rate revealed no significant differences in senescence rates in hybrids used 

for this study (F = 1.88, p = 0.05). 

 

 Discussion 

We have introduced a methodology for sorghum researchers to follow in order to collect, 

process, extract, and analyze multispectral data for more efficient screening of large-scale grain 

sorghum breeding plots for traits associated with SG. As UAS have become a more cost-

effective method of obtaining very high spatial resolution imagery for such evaluations [69], 

there is a need for specific methodologies to be developed for sorghum breeders to use this 

technology for rapid identification of the SG trait. If breeders are able to screen thousands of 

breeding lines quickly and effectively for this trait, improvements to current grain sorghum 

hybrids needed to sustain future demands can potentially be made in a much shorter period of 

time.  

When compared to non-SG grain sorghum lines, SG sorghum lines have been related to 

increased yield and biomass production under heat and water stress [70]. In our methodology, we 

were able to find significant differences in fresh and dry biomass traits among cluster groups, as 

defined by the NIR band. While RGB and NIR data is most frequently combined to produce VIs, 

the NIR band has been already reported to be significantly correlated with above-ground 

sorghum biomass [71]. In this study, clear differences between fresh and dry leaf biomass cluster 

groups were observed for each measurement date, a result that was not surprising given that 

sorghum leaves were highly visible to the camera. Because the hybrids used in this study were 

not specifically chosen due to known differences in biomass traits, further research is needed to 
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validate this methodology for robustness in determining differences in each trait measured for 

this study. In addition, VI correlation and regression coefficients in this study were much lower 

than what has been previously reported for sorghum fresh biomass [71-72], LAI [38], and dry 

biomass [72].  

Our results demonstrated that at flowering, yield was best predicted with the GNDVI. As 

the GNDVI has been shown to be a strong predictor of crop yield in previous works [73-77], 

these results were not surprising. The GNDVI has been shown to be sensitive to plant 

chlorophyll concentrations [78-79], which has been found to be directly related to end-of-season 

grain yields [80-81]. Previous studies have found that spectral data taken at flowering have 

produced the highest correlations with sorghum final grain yield [38, 62], which is why we chose 

to determine clusters with spectral data from this growth stage. Despite a trend of historical yield 

improvement for the hybrids used in this study [82], hybrids in this study were not selected 

specifically for yield differences. Therefore, further work should be conducted among hybrids 

with known yield differences to determine if clusters are able to detect significant differences. 

In terms of quantifying senescence and senescence rates, our results indicate that RGB 

imagery alone may be useful in quantifying and characterizing grain sorghum senescence at 

maturity. In many cases, UAV RGB imagery may be desired over multispectral sensors due to 

their comparably lower costs [83]. In terms of evaluating for the SG trait, grain sorghum 

greenness at PM has been labeled as a very good indicator of SG, and has been successfully used 

to select for drought tolerance in previous sorghum breeding trials [31, 84]. In our study, the 

highest linear relationships between RGB VI data and senescence scores were observed at 

maturity. As sorghum plants do not typically completely senesce unless terminated by external 

factors such as freezing temperatures [85], senescence patterns are considerably less pronounced 
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when compared to annual crops such as corn and soybeans. This is probably the main reason 

why sorghum senescence was not well detected at soft dough and hard dough stages in our study.  

Many studies have previously used VIs such as the normalized difference red edge (NDRE) 

index to evaluate crop senescence rates by evaluating the spectral differences from flowering to 

maturity [36, 40, 86]. Although we did observe the VARI to be significantly related to post-

flowering senescence rates, we did not observe significant differences in hybrid senescence rates. 

As none of the hybrids in this study have not been previously observed to have differing 

senescence rates, further work should be investigated to determine if significant differences in 

both senescence scores by growth stage and post-flowering senescence rates can be differentiated 

using this methodology. 

In situations where very dense vegetation canopies are present, it can be difficult to get 

accurate VI data with the NIR band. This is because of a well-documented phenomenon 

involving the “leveling off” or saturation of reflected NIR in dense vegetative canopies [67, 87], 

making it difficult to detect changes in plant chlorophyll in these scenarios. In canopies with 

percent vegetation fractions greater than 50%, the NDI and VARI have been shown to be more 

linearly related to vegetation than indices using NIR reflectance [66]. In sorghum breeding trials 

with very dense canopies, the NDI or VARI could be useful in detecting rates of senescence at 

physiological maturity. In environments with limited precipitation, canopy sizes are usually 

smaller and saturation is not perceived as a problem [88]. As the SG trait is generally assessed in 

these environments, further research is needed to evaluate senescence detection for these VIs 

under such conditions. 

The likely explanation for our low correlation and regression coefficients with biomass, 

LAI, and yield can be traced back to the problems we experienced with the calibration panel. As 
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the panel was highly reflective, most of our NIR data was highly saturated, depending on the 

flight date. This issue also prevented us from investigating VIs that have been previously related 

to senescence (i.e. NDRE). We anticipate that stronger relationships could be detected in future 

research if proper calibration equipment is used for radiometric calibration. Additionally, as one 

of the specific goals for this study was to develop a methodology that could be used by SG 

breeders, we focused on this and did not have any hybrids that were known to have the SG trait. 

To use UAV imagery effectively in large-scale sorghum breeding trials, the ability to distinguish 

between senescence rates of SG and non-SG plots is very important. Further research should be 

conducted to evaluate this methodology’s ability to distinguish differences in sorghum hybrids 

based on the known presence or absence of the SG trait. Key to analyzing all traits in this study 

is the use of hierarchical clustering to select hybrids of interest. In breeding trials with thousands 

of hybrid plots, a cluster analysis can be used to group hybrids with spectral similarities, 

allowing for hybrids of interest to be investigated with ground-truth evaluation. In theory, this 

would eliminate the need to investigate every plot, which has the potential to save time, money, 

labor, and other resources. If subjected to further testing, this methodology shows potential for 

greatly assisting sorghum breeders looking for traits associated with SG. 

 

 Limitations 

Within this study, there are some limitations that should be discussed. First, in terms of 

the senescence patterns, there were minor variations observed in the field among senescence 

patterns in the hybrids used for this study. As demonstrated by Potgieter et al. [36], sorghum 

lines with different rates of SG-induced senescence should be more easily evaluated for 

screening SG senescence.  As SG delays in senescence are best observed under drought stress [9, 
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84], it is possible that SG senescence patterns were not able to be observed due to plentiful 

rainfall in the 2019 growing season. Future studies using this methodology should be done in 

precipitation-limited conditions in order to obtain maximum SG expression. This can be done in 

controlled environments such as using rain shelters to simulate these conditions. More studies in 

more locations are necessary to further investigate this methodology for SG evaluation. 

In order to collect visual senescence scores, the top 8 leaves of the canopy were estimated 

based on percentage of senescence, and the average of these scores were used to compare with 

extracted spectral data. A different method to calculate leaf senescence should be evaluated with 

the data collected from this study. In addition, the UAS depth of detection into the sorghum 

canopy remains to be studied. As each leaf was measured, it remains possible to perform a 

sensitivity analysis to determine if leaves closer to the top of the canopy would result in 

significant relationships with spectral data. 

Due to the highly-reflective panel used for radiometric calibration, a high saturation of 

our data was observed. Because of this saturation, we were unable to obtain highly significant 

relationships between NIR-based VIs and ground-measured plant traits. Future corrections on 

this methodology should involve the use of a less-reflective calibration panel, which would help 

to prevent said saturation. 

 

 Conclusions 

This study presents a methodology to improve grain sorghum characterization in regard 

to biomass, yield, and senescence characterization using a consumer-available UAS camera. 

Results in this study shows potential that through hierarchical clustering of sorghum spectral 

responses, it is possible to group hybrids with significant differences in various measured traits. 
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The NIR band was found significantly related to various biomass traits, including fresh/dry total 

biomass and leaf biomass. For senescence evaluation, the VARI was observed to have the 

strongest relation with senescence scores at physiological maturity, as well as post-flowering 

senescence changes. As this methodology has led to the extraction of significant spectral 

relationships with biomass, grain yield, and senescence scores, we anticipate that with further 

evaluation, this methodology could greatly assist sorghum breeders in locating genotypes of 

interest in large-scale sorghum SG breeding trials. 
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Figure 3.2 Workflow diagram of image collection, image processing, data extraction, 

and statistical analysis. 
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Figure 3.3 Dendrogram produced by hierarchical clustering the mean GNDVI data for each of the 

genotypes, resulting in the formation of three distinct cluster groups. Hybrids are denoted by year of 

release. 
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Table 3.2 Vegetation indices computed for biomass, LAI, and yield comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acronyms: BNDVI, blue normalized difference vegetation index; GNDVI, green normalized difference vegetation 

index; NDVI, normalized difference vegetation index; SR, simple ratio, EVI, enhanced vegetation index. ρ denotes 

spectral reflectance 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vegetation Index Formula Reference 

BNDVI 

ρNIR-ρB

ρNIR+ ρB
 

 

[57] 

GNDVI 

ρNIR-ρG

ρNIR+ ρG
 

 

[37, 58] 

NDVI 

ρNIR-ρR

ρNIR+ ρR
 

 

[59] 

SR 

ρNIR

ρR
 

 

[60] 

EVI 2.5 × 
ρNIR- ρR

ρNIR+ 6×ρR-7.5 ×ρB+1
 [37, 61] 
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Table 3.4 Results of ANOVA and Tukey HSD test for significant differences in biomass traits, 

LAI, and grain yield in clusters defined by hybrid NIR spectral responses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait Cluster 
Flowering 

Mean1, 2 

Flowering 

SEM 3 

Soft Dough 

Mean 

Soft Dough 

SEM 

Maturity 

Mean 

Maturity 

SEM 

Total Fresh 

Biomass 

1 4326 a 154 4811 a 140 4874 a 169 

2 4184 a 160 4913 a 291 4687 ab 184 

3 3775 a 126 4304 a 247 3987 b 130 

Fresh Leaf 

Biomass 

1 1195 a 44 1428 ab 45 1224 a 46 

2 1097 ab 45 1565 a 92 1151 a 49 

3 997 b 48 1231 b 60 932 b 34 

Fresh Stem 

Biomass 

1 2665 a 101 3381 a 102 3703 a 148 

2 2653 a 106 3348 a 219 3536 ab 139 

3 2476 a 109 3073 a 192 3054 b 124 

Total Dry Biomass 

1 N/A N/A 1863 a 65 2941 a 124 

2 N/A N/A 1797 a 154 2878 a 126 

3 N/A N/A 1612 a 111 2627 a 112 

Dry Leaf Biomass 

1 345 a 14 397 ab 11 353 a 12 

2 306 ab 18 347 a 37 333 ab 15 

3 272 b 15 318 b 13 291 b 17 

Dry Stem Biomass 

1 N/A N/A 763 a 53 912 a 51 

2 N/A N/A 840 a 153 870 a 37 

3 N/A N/A 687 a 57 761 a 38 

LAI 

1 4.8 a 0.38 N/A N/A N/A N/A 

2 4.0 a 0.37 N/A N/A N/A N/A 

3 3.7 a 0.29 N/A N/A N/A N/A 

1 Units for biomass, LAI, and yield adjusted for g m2 -1, leaf area m2 -1, and kg ha-1, respectively 
2 Letters denote Tukey HSD mean separation at p < 0.05 significance level 

3 Standard error of the mean 
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Table 3.5 RGB VIs computed for comparison with ground-measured senescence scores. 

Vegetation Index Formula Reference 

ExG 2ρG -ρR - ρB [63-65] 

NDI 
ρG - ρR

ρG + ρR
 [63, 65] 

ExGR 3ρG - 2.4ρR - ρB [63] 

VARI 
ρG - ρR

ρG + ρR - ρB
 [66-67] 

GLI 
2ρG - ρR - ρB

2ρG + ρR + ρB
 [63] 

ExG, excess green; NDI, normalized difference index; ExGR, excess green red; VARI, visible atmospherically 

resistant index; GLI, green leaf index. ρ denotes spectral reflectance. 
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Conclusions and Further Direction 

 Conclusions 

The rising global population presents farmers and crop breeders with unprecedented 

challenges of increasing crop yields. With a growing human population comes the need for 

increased food, fiber, fuel, and forage production to sustain life as we know it. As a changing 

climate is forecasted to produce unfavorable growing conditions for traditional crops, it is 

thought that grain sorghum will become even more vital to food security around the world. 

Therefore, breeding cultivars of stress-resistant sorghum is crucial to increasing the world food 

supply in the future. 

To accomplish this feat, new technologies must be utilized for the rapid screening and 

selection of sorghum cultivars, depending on the trait of interest. In a breeding operation with 

thousands of plots, manual evaluation of these plots can be very time consuming and can delay 

the entire process. However, with unmanned aerial systems (UAS) and high-resolution 

multispectral imaging, new opportunities arise for more efficient evaluation, screening, and 

pinpointing genotypes containing traits of interest. In as little as 20-30 minutes, potentially 

thousands of plots can be mapped with a single aircraft, as opposed to evaluating each plot 

manually. In addition, if methodologies are established that are user-friendly and easy to 

comprehend, sorghum breeders beginning to use multispectral imaging will be greatly assisted in 

this transition. In this study, methodologies were optimized specifically for breeders looking for 

herbicide tolerant traits and stay green (SG) traits, and the results indicate potential use of high-

resolution UAS imagery greatly aiding in the sorghum cultivar selection process. 

Chapter one is a literature review of information related to sorghum herbicide tolerance 

breeding, SG breeding, and remote sensing being used for cultivar selection in these areas. 
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Through a thorough examination of the literature on these topics, it was found that UAS remote 

sensing showed potential to aid in trait-selection for various breeding operations. Although there 

were some studies that had been conducted for herbicide tolerance and SG analysis in grain 

sorghum, it was also found that there is still scope for improvement. This Chapter essentially 

focused specifically at the development of methodologies for sorghum breeders to extract data 

from UAS imagery, and to validate these newly-developed methodologies with small-scale 

sorghum experiments. 

Chapter two was an investigation of the relation of vegetative indices (VIs) with ground-

measured mesotrione visual injury scores. Critical to this experiment was the development of a 

methodology in which sorghum breeders can extract data for identification of traits of interest. 

Within this methodology, a comparison was made between supervised classification algorithms 

to determine significant differences between them in terms of overall accuracies. Because 

vegetation extraction is crucial for breeders to determining spectral differences between 

cultivars, determining a proper vegetation extraction method is important for future use. Results 

demonstrated no significant differences between the overall accuracy scores of support vector 

machine (SVM) and maximum likelihood (ML), but the random forest (RF) classifier was 

significantly less accurate then both algorithms. In addition, the SVM algorithms was the most 

consistent across all measurement days, indicating that it was the most robust algorithm within 

the course of this study. The SVM was therefore chosen to extract the data for comparison with 

ground-measured herbicide injury. With two genotypes and one hybrid being sprayed with 4 

different rates of mesotrione, it was discovered that there was a strong correlation between VI 

data and injury ratings. The strongest correlations were seen within the first 15 days after 

treatment (DAT); these results are not surprising given that herbicide injury was more visible to 
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the camera during these dates than the following dates. Out of four VIs tested, the normalized 

difference vegetation index (NDVI) was observed to have the highest correlation to injury 

scores. Based on a two-way analysis of variance (ANOVA) testing the effects of genotype and 

rate on NDVI scores, we were able to detect significant differences between genotypes and rates 

when looking at the main effects models. We therefore, concluded that assisted by machine 

learning image classification techniques, high resolution UAS imagery shows potential to assist 

sorghum breeders with selecting for herbicide-tolerance to provide more post-emergence weed 

control for sorghum growers. 

Chapter three focused specifically on creating a methodology for sorghum breeders to 

investigate post-flowering drought tolerance (in the form of the SG trait). As the SG trait can 

help sorghum growers continue to produce grain for human consumption, forage for animal 

consumption, and above-ground biomass for biofuel production in precipitation-limited 

environments, it is a highly sought-after trait in sorghum breeding operations worldwide. If 

sorghum cultivars are able to be rapidly screened and selected, it may be possible to introduce 

improved sorghum hybrids for dry-land sorghum farmers, providing a means of food and income 

security for millions worldwide. In this study, the methodology created for data extraction was 

tested with 20 sorghum hybrids, with an emphasis on characterizing senescence patterns, plant 

biomass, and final grain yield of 20 different sorghum hybrids. Biomass samples were taken at 

the flowering (F), soft dough (SD), and physiological maturity (M) growth stages, and 

senescence ratings were taken at F, SD, hard dough (HD), and M stages. The NIR band was seen 

as the most related to sorghum biomass characteristics, and hierarchical clustering was used to 

form three distinct cluster groups. An ANOVA was conducted to determine ground-truth 

differences between these groups, and depending on the trait and stage, certain differences were 
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able to be detected. For final grain yield, the green normalized difference vegetation index 

(GNDVI) was seen to be the most significant vegetative index at F, and a subsequent cluster 

analysis revealed three groups that showed no statistical differences in grain yield among 

hybrids. As there was a very high level of NIR saturation on the plants designated for senescence 

measurements, VIs from the visible electromagnetic spectrum were constructed, with the visible 

atmospherically resistant index (VARI) being the most highly related to ground-measured 

senescence scores. As previously, the data was clustered into three groups, and no statistical 

differences were discovered between cluster groups in regards to senescence scores. For this 

particular study, the hybrids were not selected specifically due to differences in biomass, 

senescence, or yield, so these results do not invalidate the methodology. In conclusion, the 

methodology that was developed as a result of this study shows potential to assist sorghum 

breeders in locating and selecting for traits related to SG in sorghum in large-scale breeding 

trials. 

 

 Further Direction 

Future studies involving this technology for cultivar selection should focus on broadening 

the scope of investigation in various geographic regions. Currently, each study has been 

completed over one growing season in one specific region; in order to explore the robustness of 

these methodologies, more extensive analyses must be conducted. These suggestions for further 

research are elaborated on in the following paragraphs. 

For the herbicide tolerance experiment, more modes of action must be explored in 

multiple geographic regions. It was easy to see a response from mesotrione application, as the 

end result of application was a reduction of chlorophyll due to lipid peroxidation. However, for 
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other modes of action such as auxinic herbicides, photosystem-II inhibitors, etc., the resulting 

injury to susceptible plants may not result in drastic spectral changes and thus may not be as 

visible to multispectral cameras. However, if it is found that UAS imaging is able to detect 

significant differences among tolerant and susceptible cultivars, UAS could be even more useful 

in grain sorghum herbicide tolerance breeding operations than originally presumed. It is 

important to note that in these future studies, it is important to ensure that spectral fluctuations 

are due to differing levels of herbicide injury and not external factors such as water stress, weed 

pressure, insect pressure, etc. Such factors would complicate data analysis, and would make it 

difficult to separate levels of herbicide injury in the analysis. 

In addition, image classification can be further explored for vegetation separation in 

herbicide-tolerance studies. As this study focused on supervised classification because of the 

control it allows users to exercise over the classification, there are many other means of image 

classification that have been accepted for vegetation discrimination. Future studies should 

compare the aforementioned supervised pixel-based algorithms with unsupervised pixel 

classification, object based classification (supervised and unsupervised), and binary image 

thresholding. These algorithms have yet to be compared to one another for herbicide tolerance 

studies, so such an evaluation is warranted to determine the most accurate method of vegetation 

extraction for this purpose. 

For the SG study, future studies should use the developed methodology to examine if 

spectral differences can be detected amongst hybrids with known differences in senescence rates, 

above-ground biomass, and grain yield. As previously mentioned, the hybrids in this study were 

not chosen for significant differences among the studied traits, and although there were some 

significant differences among biomass at varying stages, there were no significant differences 
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among grain yield and senescence scores (at M). In a breeding trial with thousands of plots, it is 

very likely that significant differences would exist for these different traits, so such a procedure 

would help to validate this methodology. To add, it would be beneficial to increase the number 

of geographic locations in such a study, which would help to determine the methodology’s 

robustness in detecting significant differences in different locations. 

It would also benefit if future SG studies can investigate cameras with differing 

resolutions, as well as including a calibration technique that will not saturate out the NIR band. 

The calibration panel that we used was very highly reflective, which led to problems with NIR 

saturation in bright sunlight. Future radiometric calibration procedures should be made with a 

darker panel, which is hypothesized to reduce saturation in the invisible electromagnetic 

spectrum. In addition, if higher resolution images are obtained whether by differing sensor or 

flight altitude, the optimum equipment/flight parameters could be determined for future use by 

sorghum breeders in pursuit of the SG trait.  

 


