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Abstract 

Permittivity, displayed when a dielectric material is exposed to an electric field, is a 

useful property for measuring impurities in a dielectric medium.  These impurities often have a 

dipole moment different from the pure material, and the dipoles align through polarization and 

impede electric current.  By measuring the resulting impedance in a known geometry, the 

permittivity can be determined. 

 

Four permittivity sensors were utilized to measure contaminants that are associated with 

biofuels, specifically glycerol, ethanol, and ammonia.  These sensors were based around either 

stainless steel or aluminum plates to ensure durability and reliability.  By connecting each of 

these sensors to a signal generating control box, the gain and phase can be measured at 609 

frequencies, from 10 kHz up to 120 MHz.   

 

Data from each of the three contaminants were run through a method for detection.  

Measurements for ambient air and air with the contaminants were compared with a statistical 

analysis.  Glycerol, ethanol, and ammonia each had significantly different measurements in the 

gain and phase data at a unique set of frequencies.  Using a neural network analysis for detection 

resulted in a 95.8%, 93.9%, and 97.1% success rate for detecting glycerol, ethanol, and 

ammonia, respectively. 

 

For ethanol and ammonia, where multiple concentrations were measured, regression 

methods were used to relate the frequency response data to the contaminant concentration.  

Stepwise regression, wavelet transformation followed by stepwise regression, partial least 

squares regression, and neural network regression were the four methods used to establish these 

relationships.  Several regressions over-fit the data, showing coefficient of determination (R
2
) 

values of 1.000 for training data, yet very low R
2
 values for validation data.  However, the best 

R
2
 values of all the regressions were 1.000 and 0.996 for the training and validation data, 

respectively, from measuring ammonia. 
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CHAPTER 1 - Introduction 

With biofuels becoming much more common in transportation, the question arises about 

the air quality associated with both manufacturing and combusting these renewable fuels.  

Several contaminants, including glycerol, ethanol, and ammonia, are associated with these 

processes and should be quantified for compliance with air quality regulations and as a means of 

process quality control.  Glycerol is a direct by-product of biodiesel synthesis; ethanol is the 

most common biofuel; ammonia is a by-product of anaerobic digestion, one of many methods of 

biofuel synthesis with any of several feedstocks.  These three chemicals are volatile or semi-

volatile liquids, so a certain volume of the chemical in the liquid state will produce a known 

concentration in a known volume of air upon evaporation. 

 

Permittivity, the ability for a dielectric material to sustain an electric field, can be a useful 

property for measuring impurities within a dielectric medium.  Often, these impurities have a 

dipole moment different from that of the pure medium; these dipole moments, when exposed to 

an external electric field, align through polarization and impede electric current.  By measuring 

the resulting impedance in a known geometry, the permittivity can be determined.  Historically, 

permittivity sensors have measured the salinity and moisture content of soils, quality of grains, 

and impurities in water and biofuels.  Other major applications of these sensors are in chemical 

analyses and product quality control. 

 

Factors such as frequency of the applied electric field and temperature at which the 

measurement is conducted have a great impact on permittivity measurements.  As such, 

measurements need to be taken while considering several levels of these factors, especially 

frequency.  Likewise, many properties of the sensors themselves can affect the permittivity 

measurements.  With the sensor construction, the size and materials of the plates, the gap 

between plates, and the uniformity of the plates clearly have effects on the frequency response 

data (Tang, 2009; Shultz, 2009).  External factors, such as the cable positioning or surrounding 

materials, may also have effects on the measurements. 
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This project utilized four different permittivity sensors to investigate their ability to 

measure the concentration of different air contaminants that are related to the manufacturing and 

combustion of biofuels.  Two sensors were probe-style sensors constructed from stainless steel 

plates while the other two were box-style sensors made of aluminum plates.  These sensors were 

connected, via coaxial cable, to a control box that recorded gain and phase data at 609 

frequencies and transmitted the data through a serial cable. 

 

After acquiring impedance spectra in the frequency domain, the contaminant 

concentrations were compared with multiple statistical methods.  A set of programs was written 

for distinguishing between ambient air and air with contaminants on a qualitative basis.  This 

program identified which frequencies had associated measurements significantly different 

between ambient air and air with contaminants present.  Also, another program was written to 

use neural network analysis for detecting contaminants on a qualitative basis.   Furthermore, 

programs were also written to perform regression analyses to determine varying concentrations.  

These methods include stepwise regression, wavelet transformation followed by stepwise 

regression, partial least squares regression, and neural network regression.  Coefficient of 

determination (R
2
) and root mean square error (RMSE) parameters were calculated to compare 

the utility of the various regression analysis tools. 
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CHAPTER 2 - Research Objectives 

The overall objective of this work was to investigate the feasibility of using permittivity 

sensors for detecting and measuring air contaminants.  These contaminants—glycerol, ethanol, 

and ammonia—were chosen because they are associated with the manufacturing and combustion 

of biofuels. 

 

The specific objectives were as follows: 

1. Design and construct probe-style permittivity sensors that are relatively inexpensive, rugged, 

and accurate. 

2. Investigate the specific factors that affect sensor readings. 

3. Write and implement SAS
®
 and MATLAB

®
 programs that analyze the differences in the 

frequency response data. 

4. Identify the set of frequencies that had significantly different measurements between ambient 

air and air with contaminants. 

5. Write and implement MATLAB
®
 programs that perform regression analysis for ethanol and 

ammonia data, contaminants that were tested at multiple concentrations. 

6. Calculate and compare R
2
 and RMSE values for each regression analysis based on the 

different contaminants, sensors, datasets, and regression methods used. 
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CHAPTER 3 - Review of Literature 

 3.1 Need for Research 

As the global petroleum reserves continue to approach depletion, an increased effort to 

manufacture and utilize biofuels has become a major topic of interest.  According to the National 

Biodiesel Board (2007a), biodiesel production in the United States has continuously increased 

from 75 million gallons in 2005 to 250 million gallons and 450 million gallons in 2006 and 2007, 

respectively.  Additionally, the 2010 biodiesel production in the European Union was greater 

than 9.5 million metric tons, or 2.9 billion gallons (European Biodiesel Board, 2012). 

 

With traditional isooctane, the major component of gasoline, the major combustion 

product is carbon dioxide.  However, the manufacture and combustion of biofuels may yield a 

variety of byproducts, including glycerol and ammonia. 

 3.1.1 Glycerol 

In the biodiesel manufacturing process, triglycerides from vegetable oil or animal fat are 

reacted with alcohol through a process called esterification.  Glycerol is the primary by-product 

of this process (Peterson et al., 2002).  Peterson et al. (1997) analyzed the effect of glycerol on 

the performance of various types of biodiesel.  Among the nine different types of biodiesel 

tested, the average composition of the fuels contained 1.1% glycerol by mass.  Each had a 

significantly lower heat of combustion than traditional diesel, which has no glycerol.  However, 

there was no correlation between the glycerol content and heat of combustion.  Nonetheless, 

elevated levels of glycerol can plug storage tanks and fuel systems while deteriorating engine 

performance (National Biodiesel Board, 2007b). 

 3.1.2 Ethanol 

Ethanol, the most well-known type of biofuel, is commonly produced through a 

fermentation process, whether aerobic or anaerobic.  This allows adaptability in the 

manufacturing process so that a variety of feedstock and microorganisms can be used (McElroy, 

2009).  As a fuel source, ethanol is typically blended with traditional gasoline in a stated mixture; 

for example, E85 is 85% ethanol and 15% isooctane. 
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Vapors from ethanol, especially as a by-product of E85 fuel, is known to cause irritations 

to the eyes, nose, and throat (Clean Air Trust, 2008).  Furthermore, exposure to these vapors can 

lead to lessened respiration, unconsciousness, coma, and death.  The International Labour 

Organization sets a threshold concentration of 5,000 ppm (Stellman, 1998). 

 3.1.3 Ammonia 

Ammonia is well-known to have detrimental effects to both human health and the 

environment.  The U.S. Occupational Safety and Health Administration (2003) has set a 

permissible exposure limit of 50 ppm because of the potential respiratory effects and eye 

irritation.  Furthermore, the immediately dangerous to life or health (IDLH) concentration is 300 

ppm (U.S. OSHA, 2003).  In the environment, ammonia is toxic to many species, especially 

aquatic animals; for instance, fish can become lethargic and die from excessive ammonia 

concentrations (Hargreaves and Tucker, 2004). 

 

Harper et al. (2010) studied the effect of biofuel production on the emissions of ammonia.  

The biofuel farm under study was meant to capture biogas from swine manure and convert the 

biogas into biodiesel.  The results of the study showed that the ammonia emissions from the 

biofuel manufacturing process were increased over a control farm by 38% and 48% during the 

summer and winter, respectively. 

 3.2 Air Pollution Sensors 

Several types of sensors are used today for air quality measurements, and most of these 

sensors are meant to either measure particulate or non-particulate contaminants. 

 3.2.1 Sensors for Particulate Contaminants 

With an emphasis on PM2.5 and PM10, sensors constructed for measuring particulate 

contaminants require a sample be taken.  For example, the Anderson RAAS sampler has a 

shielded inlet that leads to a cyclone for separating particles with an equivalent aerodynamic 

diameter of 2.5 microns or greater (BGI, 2003).  The remaining particles are then collected on a 

filter, which is later weighed and converted into a concentration.  However, this process of 

gravimetric analysis is complicated and requires a steady, precise flow rate (BGI, 2003). 
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Other types of particulate sensors use light scattering for measuring particle 

concentrations.  As illustrated in Figure 3.1, one example of this is the Omron ZN-PD sensor, 

which uses a laser beam to scatter the particles (Omron Corporation, 2008).  A light sensor near 

the laser beam measures the intensity of scattered light, which is correlated with the particulate 

concentration. 

 

 

Figure 3.1: ZN-PD air particle sensor (Omron Corporation, 2008) 

 3.2.2 Sensors for Gaseous Contaminants 

Sensors often measure the changes in conductive properties when gases are adsorbed into 

the metal oxide core of a sensor.  Figaro USA (2005) manufactures the sensor highlighted in 

Figure 3.2, which can indicate the ammonia concentration by measuring the variance in the 

resistance of the alumina core.  Similarly, Figure 3.3 shows a sensor for measuring the 

concentration of volatile organic compounds, such as ethanol, benzene, and n-hexane, which 

works by measuring the change in resistance of tin dioxide.  The major drawback to these 

sensors is their sensitivity at low concentrations. 

 

 

Figure 3.2: Ammonia sensor (Figaro USA, 2005) 
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Figure 3.3: Volatile organic compound sensor (Figaro USA, 2005) 

 

Based on the technical datasheet (Figaro USA, 2005), the resistance of these sensors can 

be expressed by: 

          (Equation 3.1) 

where    = sensor resistance (Ω), 

   = contaminant concentration (mol L
-1

), and 

   and   = constants that depend on the sensor, contaminant, temperature, and 

specific range of concentration (Ω and dimensionless, respectively). 

 

Similar types of compact and versatile sensors, through a redox reaction specific to a 

target gas, produce a small voltage that is dependent on contaminant concentration.  As displayed 

in Figure 3.4, a specific example of this is the MG811 carbon dioxide sensor from Futurlec 

(2004).  The sensor utilizes the overall redox reaction Na2O + 2 Li
+
 + CO2 ⇌ Li2CO3 + 2 Na

+
 to 

produce the CO2-dependent electromotive force.  As the CO2 concentration increases, 

equilibrium shifts to the products and produces lesser voltage.  The sensor voltage output is 

approximately 325 mV with 400 ppm CO2 and 265 mV with 10000 ppm CO2; overall, the output 

voltage is related to the partial pressure of carbon dioxide by the Nernst equation (Futurlec, 

2004): 

           
  

  

  
       

 (Equation 3.2) 

 

where       = produced voltage at actual conditions (V), 

      
  = produced voltage at standard conditions (V), 

   = 8.314 J K
-1

 mol
-1

, the ideal gas constant, 

   = absolute temperature (K), 
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   = 96,485 J V
-1

 mol
-1

, the Faraday constant, and 

     
 = partial pressure of carbon dioxide (atm). 

 

 

Figure 3.4: Carbon dioxide sensor (Futurlec, 2004) 

 

Another major type of sensor for gaseous contaminants is a laser sensor, like the 

GasFinder from Boreal Laser (2009).  Such a laser, as depicted in Figure 3.5, can measure 

several gases, including carbon dioxide, ammonia, methane, hydrogen sulfide, and hydrogen 

fluoride.  Harper et al. (2010) used one of these lasers for measuring the ammonia and methane 

emissions downwind of a covered anaerobic digester in their study mentioned above. 

 

Figure 3.5: GasFinder laser (Boreal Laser, 2009) 

 

 3.3 Theory of Permittivity 

All types of dielectric molecules have some type of dipole, or sections with a partial 

positive and partial negative charge.  These dipoles may be permanent due to unbalanced 

electronegative attractions or induced based on the London dispersion forces.  In either case, this 

phenomenon is the chemical basis for studying permittivity (Lee et al., 2007). 
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Without an external electrical field present, the molecules will assume a random 

orientation to where there is no specific orientation for the dipoles.  However, when an electric 

field is introduced, these molecules will line up—through a process called polarization—such 

that their dipoles maintain a common orientation.  Figure 3.6 and Figure 3.7 illustrate the effect 

of an electric field.  These molecules all have dipoles indicated by a red portion (partial positive 

charge) and a black portion (partial negative charge). 

 

 

Figure 3.6: Molecules with no electric field 

 

 

Figure 3.7: Molecules with an external electic field 
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As seen in Figure 3.7, the electric field causes the plate on the left to form a positive 

charge and the plate on the right to form a negative charge.  Similarly, the molecules form an 

orientation to where the negative end of the dipole faces the positively charged plate and the 

positive end of the dipole faces the negatively charged plate. 

 

Permittivity is highly dependent on the frequency of the applied electric field, and that 

dependence is the basis for several types of permittivity measurements.  At relatively low 

frequencies, the alignment of dipoles causes a separation of charges, which stores energy and 

contributes to the real component of complex permittivity (Robinson et al., 2003).  Furthermore, 

relatively high frequencies do not allow the molecules enough time to polarize, so there is not a 

sufficient separation of charges to store energy. 

 

Based on the notation utilized by Nelson (1991) and Scholte et al. (2002), the following 

terms and relations will be utilized for the various components of permittivity: 

     
      

   (Equation 3.3) 

   
 
  

 (Equation 3.4) 

  
     

   
  

    
 (Equation 3.5) 

 

where    = relative complex permittivity (F m
-1

), 

   
  = real component of complex permittivity (F m

-1
), 

   
   = imaginary component of complex permittivity (F m

-1
), 

  
   = dielectric relaxation (F m

-1
), 

   = complex permittivity (F m
-1

), 

    = 8.8541878 x 10
-12

 F m
-1

, the permittivity of free space, and 

   √  , the complex unit. 

 

The real component of complex permittivity,   
 , can be described with two components 

that account for both the polarization of the electrodes and the frequency-dependent permittivity, 

as described by Scholte et al. (2002): 

  
    

    
  (Equation 3.6) 
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where   
  = permittivity due to the polarization of electrodes (F m

-1
), and 

  
  = frequency-dependent permittivity (F m

-1
). 

 

Furthermore, Robinson et al. (2003) gives the loss tangent according to: 

     
  

  

  
  

  
   

  

    

  
  (Equation 3.7) 

 

where      = loss tangent (dimensionless), 

   = DC electrical conductivity (S), and 

  = 2πf, the angular frequency (rad s
-1

). 

3.4 Existing Permittivity Sensors 

Various types of permittivity sensors have been used for decades in measuring the 

properties of water, biofuels, grains, and soil. 

3.4.1 Water Permittivity Sensors 

As described by Shultz (2009), permittivity sensors were utilized for measuring common 

contaminants in water, including nitrate salts and atrazine.  Results for the study determined that 

the concentration and molar mass of the nitrate contaminants could be correlated with a 

coefficient of determination, R
2
, very close to one.  However, the validation tests for atrazine 

were not nearly as reliable. 

 

Utley et al. (2011) studied the utility of permittivity sensors in measuring suspended 

sediment concentrations.  A simple linear regression was not possible, as the assumption of 

normally distributed variances was not met for the gain and phase data.  Alternatively, using a 

partial least squares regression, the sediment could be measured at relatively higher 

concentrations (1000 mg L
-1

 or greater). 

3.4.2 Biofuel Permittivity Sensors 

Shultz (2009) also investigated how permittivity sensors could be used for measuring 

contaminants in biofuels.  Water, glycerol, and glycerides often deter the performance of 
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biodiesel and were the focus of the study.  Like the tests for nitrate concentration and molar 

mass, the R
2
 values indicated a strong relationship. 

3.4.3 Grain Permittivity Sensors 

Dielectric properties of grain often give insight into their various properties, including 

moisture content and quality.  Nelson (1991) found that both the real and imaginary components 

of complex permittivity in hard red winter wheat, yellow-dent field corn, winter barley, and 

soybeans increased with moisture content.  Likewise, the permittivity measurements tended to be 

positively related with temperature, holding the frequency and moisture content fixed. 

3.4.4 Soil Permittivity Sensors 

Multiple properties of soil can be measured simultaneously with permittivity.  

Contrariwise to the permittivity data with grain, the gain of the signal—measured in decibels—

tended to decrease with increasing volumetric water content at a broad range of frequencies (Lee 

et al., 2007).  Alternatively, Scholte et al. (2002) studied the response at only 200 MHz.  The real 

component of complex permittivity was nearly constant between 17% and 21% volumetric water 

content and linearly increased between 21% and 31%.  Over the entire range of 17% and 31% 

moisture contents, the complex component of permittivity increased linearly. 

 

Measuring the salinity at various concentrations was also compared at two specific 

frequencies by Lee et al. (2007).  In almost all combinations of frequency (600 Hz and 200 

MHz) and volumetric water content (0.156 m
3
 m

-3
 and 0.243 m

3
 m

-3
), the regression analysis for 

the gain was stronger than that of the phase angle.  The highest coefficient of determination was 

0.989, showing that permittivity can be a good predictor for soil salinity. 

3.5 Data Analysis and Statistical Methods 

The process of regression analysis establishes a mathematical model that does the best 

job of fitting data.  During this process, the predictor values (typically the x values) are modeled 

against the response variables (typically the y values).  From this model, the predictor values can 

be used to forecast the values of the corresponding response variables. 
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Comparing the effectiveness of different models is frequently done with the coefficient of 

determination, or R
2
 value.  In a practical sense, the R

2
 value represents the portion of variation 

in the responses that is accounted for by the model.  Ranging between zero and one, the R
2
 value 

can be multiplied by 100% to give a percentage of how much variation is explained.  Mendenhall 

and Sincich (2012) outline the process for calculating the R
2
 values in Equation 3.8, Equation 

3.9, and Equation 3.10: 

 

     
   

    
 (Equation 3.8) 

    ∑     ̂  
  (Equation 3.9) 

     ∑     ̅   (Equation 3.10) 

 

where    = coefficient of determination, 

     = sum of squared errors, 

      = sum of squared y deviations, 

    = actual response, 

  ̂  = response predicted from the model, and 

  ̅ = average values of all responses. 

 

A second parameter for comparing the effectiveness of models is the root mean square 

error, or RMSE.  In contrast with the R
2
 value, a smaller RMSE value is indicative of a better 

model.  The RMSE value is not bounded between zero and one like the R
2
 value is, so there is 

not a clear threshold for an acceptable value.  Instead, the RMSE values are compared between 

various tests and regression methods.  Ott and Longnecker (2001) give this parameter as: 

     √
∑     ̂   

   
 (Equation 3.11) 

where      = root mean square error, 

    = actual response, 

  ̂  = response predicted from the model, and 

   = number of observations. 
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3.5.1 Stepwise Regression 

When many predictor variables exist, a variable screening method is needed to determine 

which predictor variables are truly significant.  Stepwise regression is an example of such a 

procedure that begins with an empty model and adds significant predictors one-by-one, checking 

that all predictors are significant.  Mendenhall and Sincich (2012) outline the process as follows: 

 

1. All possible one-variable, linear models are fit to the data.  The predictor variable whose 

corresponding t-value for the coefficient is the largest in magnitude begins the model, 

provided that it is significant at a specified αin. 

 

2. Each possible multivariable model containing the existing predictors plus one additional 

predictor from all remaining predictors is fit to the data.  Of these remaining predictors, 

the one whose corresponding t-value has the largest magnitude is added to the model, 

provided that it is significant at a specified αin. 

 

3. The significance of each predictor is checked with compared with a specified αout.  

Should a predictor not be significant, it is removed from the model. 

 

4. Steps 2 and 3 are repeated until predictors can be neither added to nor removed from the 

model. 

3.5.2 Wavelet Transform 

Similar to a Fourier transform, the wavelet transform is a method of analyzing signals 

that preserves aspects of both the time and frequency domains.  Wavelets must have a zero-

average and are usually highly irregular.  Scaling and shifting the original wavelets allows for 

matching the original signal.  The simplest wavelet is the Haar wavelet, and several other 

wavelets are classified into families, which may include the Daubechies, Biorthogonal, Coiflets, 

and Symlets families (Misiti et al., 2006).  Figure 3.8 shows the Haar wavelet plus an example 

from each of the four mentioned families. 
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Figure 3.8: (a) The Haar wavelet, (b) a Daubechies wavelet, (c) a Biorthogonal wavelet, (d) 

a Coiflet wavelet, (e) a Symlet wavelet, adapted from Misiti et al. (2006) 

 

 

The discrete wavelet transform utilizes a low-pass filter with its complementary high-

pass filter to decompose a signal into its approximations (low frequency components) and details 

(high frequency components) (Misiti et al., 2006).  For instance, Figure 3.9 shows an initial 

sample of 1024 data points.  The first level of decomposition provides 1024 low frequency 

samples and 1024 high frequency samples, which are then reduced to 512 samples each via 

downsampling (Misiti et al., 2006).  In Figure 3.9, these coefficients are identified as ―cA1‖ and 

―cD1‖ for the first level approximations and details.  Subsequent decompositions, which can be 

iterated repeatedly, take the samples from the approximation components and decompose them 

into the approximation and detail components of the next level.  The subscript following each set 

of coefficients indicates the level of decomposition. 

 

(a) (b) (c) 

(d) (e) 
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Figure 3.9: Wavelet decomposition, adapted from Misiti et al. (2006) 

 

The approximation and detail coefficients can then be used as the predictor variables, so 

that a stepwise regression can determine which coefficients are significant when building a 

model. 

3.5.3 Partial Least Squares Regression 

Partial least squares regression (PLS) is an ideal method of regression when the number 

of variables surpasses the number of observations, as in the case of spectral data (Mevik, 2006).  

Similarly, the PLS procedure can be used where several predictors have multicollinear values, 

which is also important with spectral data (The MathWorks, 2012c). 

 

Through constructing components—linear combinations of original predictor variables—

PLS can achieve four objectives (The MathWorks, 2012c): 

 

1. Ideal fitting of predictor variables to response variables, like in multiple linear regression. 

 

2. Large variance of predictor variables through principal component analysis. 

 

3. Large covariance between response variables and combinations of predictor variables. 

 

4. A minimal number of terms needed to establish an accurate model, like in stepwise 

regression 
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Several software packages have algorithms for finding the appropriate matrices for scores 

and loading of predictor variables and response variables.  The SAS Institute (2000) gives the 

model for PLS regression as: 

        (Equation 3.12) 

        (Equation 3.13) 

where   = matrix of predictor variables, 

   = matrix of response variables, 

   and   = matrices of X and Y scores, respectively, 

   and   = matrices of X and Y loadings, respectively, and 

   and   = matrices of X and Y error terms, respectively. 

 

Another version of this method involves creating regression coefficients, which is utilized 

by the plsregress function in MATLAB
®
 (The MathWorks, 2012d).  This method uses the 

SIMPLS algorithm and excludes error terms so that the PLS regression can become: 

     (Equation 3.14) 

where   = matrix of predictor variables, 

   = matrix of response variables, and 

   = matrix of regression coefficients. 

3.5.4 Neural Networks 

Neural networks provide a powerful tool for data analysis.  Simulating a biological neural 

network, an artificial neural network performs functions in parallel, rather than sequentially 

(Demuth and Beale, 2004).  These networks can be used in a wide variety of applications, 

including pattern recognition and function fitting, which can be extended to analyzing spectral 

data. 

 

A neural network can be represented as having an input matrix, a matrix of weights, and 

an output matrix that is compared with a target matrix.  The overall connections are illustrated in 

Figure 3.10; while using the neural network for prediction, the x-variables represent the input 

while the y-variables are the target. 
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Figure 3.10: Example of a neural network layer, adapted from Demuth and Beale (2004) 

 

Initially, there can be a large discrepancy between the output values and the target values.  

In a process called supervised training, the weights that connect all the neurons are adjusted to 

match the output to the target as close as possible.  More iterations of supervised training will 

produce a more accurate result, with the major tradeoff being a longer processing time.  

Furthermore, this process can either be done with an entire set of inputs (batch training) or with 

inputs one by one (adaptive training) (Demuth and Beale, 2004). 
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CHAPTER 4 - Materials and Methods 

4.1 Sensors 

4.1.1 Probe Sensors 

Two probe-style sensors were constructed to measure the frequency response data.  As 

detailed in Appendix A, these two probes were constructed of several components.  The most 

significant part of the sensor were six parallel sections of 0.51 mm thick type 302 stainless steel 

with an average gap of 2.05 mm between each plate.  Stainless steel was chosen for its corrosion 

resistance and long life span.  Alternating plates were electrically connected via 18-8 stainless 

steel machine screws while adjacent places were electrically insulated with nylon 6/6 washers.  

One set of plates was attached to the primary wire of the coaxial cable while the other set was 

attached to the copper shielding. 

 

The housing of each sensor is a 26.83 cm section of ¼‖ schedule 80 clear PVC pipe.  

Furthermore, an acetal through-wall fitting allows for an easy attachment to and removal from 

the top of the testing chamber.  An O-ring on the threaded portion of this fitting gives an airtight 

seal between the testing chamber and the outside air. 

 

Additionally, the probes both feature 1.6 m sections of both Omega Engineering
®
 type-T 

(copper-constantan) thermocouple wire to record temperature readings and RG-58 50 Ω coaxial 

cable to transmit the frequency signal and response data. 

 

The cross-sectional areas of the probes are slightly different, so ―small probe‖ and ―large 

probe‖ will be used to differentiate between the two.  Appendix A gives the dimensions of both 

sensors.  Figure 4.1 and Figure 4.3 show the two probe sensors while Figure 4.2 and Figure 4.4 

show the frequency response spectra for the small probe and large probe, respectively, in 

ambient air. 
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Figure 4.1: Small probe sensor 

 

 

 

Figure 4.2: Frequency response data for the small probe in ambient air 
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Figure 4.3: Large probe sensor 

 

 

Figure 4.4: Frequency response data for the large probe in ambient air 

 

4.1.2 Box Sensors 

In Shultz (2009), two box-style sensors were constructed in a similar manner to the probe 

sensors.  However, the housing for this pair of sensors was a plastic container.  Six aluminum 
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plates, each 4.90 mm thick, were attached to this housing with an average gap of 3.5 mm 

between each plate.  The pin of the BNC connector was electrically attached to alternating plates 

with 22 gauge wire; the BNC connector shell was connected in a similar manner to the remaining 

plates. 

 

Like the probe sensors, since the two box sensors have different cross-sectional areas, 

―small box‖ and ―large box‖ will distinguish between the two.  Each plate on the small box is 

5.10 cm wide by 3.45 cm tall, and each plate on the large box is 7.65 cm wide by 3.55 cm tall. 

 

Figure 4.5 and Figure 4.6 show the small box sensor and its corresponding frequency 

response data in ambient air.  Figure 4.7 and Figure 4.8 do the same for the large box sensor. 

 

 

Figure 4.5: Small box sensor (Shultz, 2009) 
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Figure 4.6: Frequency response data for the small box in ambient air 

 

 

 

Figure 4.7: Large box sensor (Shultz, 2009) 
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Figure 4.8: Frequency response data for the large box in ambient air 

4.2 Testing Chamber 

An Aqueon
®
 size 10 glass aquarium was the primary component for all tests.  The 

aquarium measures 25.4 cm in length by 50.2 cm in width by 30.2 cm in height.  Therefore, the 

overall volume of the container is 38.5 L.  Inside the chamber is an acrylic shelf that will hold 

the box sensors well away from any of the side walls.  Furthermore, a 1.6 m section of coaxial 

cable, the same type used in the probe sensors, was included with the box to take measurements 

from the box sensors. 

 

To contain the air under investigation, a rectangular section of acrylic serves as the top of 

the chamber.  This acrylic has holes drilled to accommodate the probe sensors and shelf for the 

box sensors.  All holes are sealed with O-rings to prevent gas transfer.  Furthermore, this gas 

transfer is also prevented with a section of foam tape that lines the circumference of the 

aquarium. 

 

For the injection of contaminant samples, a 10 mm, 3-layer Hamilton GC septum was 

embedded into the top of the chamber.  While the septum fits snugly into the top of the chamber, 

a secondary piece of acrylic is glued below the septum to hold it in place. 
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Furthermore, as described with the sensitivity tests, the temperature inside the testing 

chamber is an important factor.  Thus, two temperature probes from a Traceable
®
 High Accuracy 

Refrigerator Thermometer was installed in the chamber.  One probe was placed near the probe 

sensor and the other was placed near the box sensor shelf.  This thermometer gives readings to 

0.01°C and was calibrated with instruments traceable to the NIST. 

 

 

Figure 4.9: Testing chamber 

4.3 Control Box 

4.3.1 System Hardware 

Constructed in previous work, the control box used in this project is needed to both 

produce sinusoidal electromagnetic waves and read the corresponding gain and phase data 

(Tang, 2009).  This gain and phase data is an alternative to the   
  and   

   terms discussed with 

the theory of permittivity.  An AD9854 signal generator evaluation board was installed to 

generate the sinusoidal signal and transmit it through the coaxial cable of the sensor.  After the 

signal is returned from the sensor, an AD8302 evaluation board measures the differences in gain 
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and phase between the signal sent to and received from the sensor.  Furthermore, a kitCON-167 

microcontroller is in charge of several processes, including instructing the AD9854 to generate 

the proper frequency, reading the data from the AD8302, and transmitting the data through the 

RS-232 serial port.  Figure 4.10 gives a block diagram of the control box. 

 

 

Figure 4.10: Block diagram of the control box, adapted from Tang (2009) 

 

The measurements of gain and phase data are based on a voltage divider circuit.  

Comparing the sinusoidal signals at points A and B in Figure 4.10 can be represented as the 

transfer function shown in Figure 4.11.  Furthermore, the gain and phase can be calculated from 

the signals at A and B using Equation 4.1 and Equation 4.2. 

 

 

Figure 4.11: Transfer function for gain and phase measurements 
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           |
          

          
|       (Equation 4.1) 

            
 

 
            (Equation 4.2) 

 

Based on the datasheet of the AD8302 board (Analog Devices, Inc., 2002), the voltages 

VMAG and VPHS will be produced depending on the gain and phase measurements, respectively, 

as shown in Figure 4.12.  These two measurements are then transmitted to the kitCON-167 

microcontroller, which uses an analog-to-digital converter to convert the voltage signals into 

discrete readings (Tang, 2009). 

 

 

Figure 4.12: Ideal transfer gain and phase characteristics of AD8302 (Analog Devices, Inc., 

2002) 

 

Since the system does not have its own power supply, an Elenco
®
 Precision XP-580 was 

used to provide a nominal 9 VDC for the control box.  Before supplying power to the control 

box, a multimeter was used to check that the voltage was truly between 8.5 VDC and 9.0 VDC—

enough to power the control box without risking damage to the internal circuitry.  As shown in 

Figure 4.13, banana cables connect the power supply to the control box. 
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Figure 4.13: Control box with power supply 

 

4.3.2 System Software 

To control the system, a C program was compiled in the TASKING
®
 Embedded 

Development Environment and downloaded to the kitCON-167 microcontroller.  The program is 

designed to control the signal generator to produce three iterations of the entire spectrum of 

frequencies up to 120 MHz.  Also, the program sends the data through the RS-232 serial port; 

each line of data includes a frequency index, the frequency divided by 10,000 Hz, the gain 

signal, and the phase signal.  These lines of text data are easily transmitted through a serial cable 

and read with a terminal emulation program. 

4.4 Sensitivity Tests 

With these sensors, a wide variety of factors can corrupt the readings.  Before applying 

the sensors to measure air contaminants, numerous factors were individually studied for their 

impact on the sensor readings.  Temperature is clearly a factor that should be considered, as the 

dielectric constants of materials tend to be very dependent on temperature, just as many other 

chemical and physical properties.  The boundary effect can also cause problems when the signal 

from the sensor interferes with the surroundings.  As such, the position of the sensor was 

changed in two dimensions—depth and radial distance.  Also, the external surface was changed 

between a slate tabletop, a metal tabletop, and a ceramic hot plate top.  Tests were also run with a 

metal thermometer to test for any interference problems.  Finally, the conformation of the coaxial 

cable on the sensor was changed to identify any effects. 
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Distilled water in a 1 L Nalgene
®
 plastic container was the medium for testing the large 

probe sensor.  A clamp on a metal ring stand held the sensor in place for the duration of the data 

acquisition.  Figure 4.14 shows an example of the setup for testing the sensitivity of the sensors. 

 

 

Figure 4.14: Setup for sensitivity tests 

 

After completing the tests for a given factor, the resulting data were processed and 

plotted using a MATLAB
®

 program unique to each factor.  As an example, Appendix B gives 

the program for analyzing the effect of the height of the sensor. 

4.5 Experimental Procedure 

4.5.1 Sample Preparation 

As the viscosity of glycerol is roughly 1580 times that of water (μ = 1.412 Pa s), a 

syringe or micropipette would be insufficient to introduce glycerol samples into the testing 

chamber.  Furthermore, since the vapor pressure of glycerol is very low (p* = 0.001316 atm), 

quantifying the concentration of glycerol is not practical.  Instead, the tests were treated as 

detection only, differentiating between ambient air and air with glycerol vapor present.  

Introducing 1 mL samples of glycerol (Fisher Scientific
®
, Certified ACS, 99.8%) with a 

disposable pipette ensures that a vapor-liquid equilibrium is established. 
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Ethanol and ammonia have significantly higher vapor pressures than glycerol, as given 

by the Antoine Equation (Felder and Rousseau, 2005): 

       
    

 

   
 (Equation 4.3) 

 

where    = vapor pressure (torr or atm), 

   = temperature (°C), and 

  ,  ,   = Antoine constants for a specific compound and temperature range. 

 

Solving Equation 4.3 at 25°C gives a vapor pressure for ethanol and ammonia of p* = 

0.07762 atm and p* = 9.985 atm, respectively.  This means that several amounts of either 

contaminant can be introduced into a container, and the concentration can be determined.  As the 

tests are run under roughly standard conditions, the ideal gas law gives a very good 

approximation of the amount of gas in a volume at a given temperature and pressure: 

          
     

  
 (Equation 4.4) 

 

where   = absolute pressure (atm), 

   = volume of gas (L), 

  = number of moles of gas (mol), 

  = 0.08206 L atm K
-1

 mol
-1

, the ideal gas constant, 

   = absolute temperature (K), 

   = mass of gas (g), and 

    = molecular weight of the gas (g mol
-1

). 

 

To find the mass of 1 ppm ethanol (   = 46.07 g mol
-1

), Equation 4.4 can be solved for 

 .  Since the container is 38.5 L, 1 ppm occupies 3.85 x 10
-5

 L.  Also, the local conditions were 

assumed to be 0.996 atm pressure and 299.45 K (26.3°C): 

  
      

   
 

                          
 

   
             

     
        

 (Equation 4.5) 
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The ethanol (Fisher Scientific
®
, anhydrous, denatured) has a density of 0.789 g mL

-1
, so 

Equation 4.6 converts the mass of ethanol to the volume required: 

                  
           

              
               (Equation 4.6) 

                                       

 

With the sensor measurements, thirteen different concentrations of ethanol were used for 

the regression.  Table 4.1 gives the list of concentrations along with the corresponding volume of 

ethanol introduced to the chamber and the ratio of the concentration to the ILO standard of 5,000 

ppm.  Each volume was rounded to the nearest microliter since the micropipette measures in 

whole microliter increments. 

 

Table 4.1: Concentrations of ethanol used 

Ethanol Concentration 
(ppm) 

Ethanol Volume 
(μL) 

Ratio to ILO 
Standard 

0 0 0.00 

98 9 0.02 

295 27 0.06 

699 64 0.14 

1,005 92 0.20 

1,507 138 0.30 

2,501 229 0.50 

3,014 276 0.60 

3,997 366 0.80 

5,002 458 1.00 

7,503 687 1.50 

10,004 916 2.00 

12,505 1,145 2.50 

 

To find the mass of 1 ppm ammonia (   = 17.031 g mol
-1

), Equation 4.5 can be 

modified, changing only the molar mass term: 

  
      

   
 

                           
 

   
             

     
        

 (Equation 4.7) 
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Based on the manufacturer‘s data, the ammonium hydroxide solution (Fisher Scientific
®
, 

Certified ACS Plus) has an assay of 29.47% (by mass) and a density of 0.9 g mL
-1

.  Equation 4.8 

converts the mass of ammonia in Equation 4.7 to the volume of ammonium hydroxide required: 

               
              

           
 
             

              
 (Equation 4.8) 

                                         

 

Like the ethanol tests, Table 4.2 summarizes the thirteen concentrations of ammonia that 

were introduced into the testing chambers based on the corresponding volume of ammonium 

hydroxide: 

 

Table 4.2: Concentrations of ammonia used 

Ammonia Concentration 
(ppm) 

Ammonium Hydroxide 
Volume (μL) 

Ratio to OSHA 
Standard 

0 0 0.00 

50 5 0.17 

100 10 0.33 

200 20 0.67 

300 30 1.00 

450 45 1.50 

600 60 2.00 

750 75 2.50 

900 90 3.00 

1,200 120 4.00 

1,500 150 5.00 

2,400 240 8.00 

3,000 300 10.00 

 

4.5.2 Trial Procedure 

Before each trial, the testing chamber was cleaned with distilled water to remove any 

residual chemicals.  Similarly, the sensors were rinsed with distilled water and dried under a hot 

air blower.  Five minutes after the sensors were replaced, the chamber was sealed.  For ethanol 

and ammonia tests, the injection of each sample was carried out with a Hamilton GASTIGHT
®

 

series 1700 syringe for any sample less than 20 μL.  Larger samples were introduced with a 

Fisherbrand
®
 Finnpipette

®
 II adjustable-volume micropipette. 
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After the sample was introduced to the container, enough time was allocated to allow for 

the system to reach equilibrium.  A preliminary test was carried out with 30 μL ammonia in the 

testing chamber and results taken every five minutes.  Based on this test, whose results are 

shown in Figure 4.15 and Figure 4.16, a 70 minute equilibrium time was chosen. 

 

Figure 4.15: Gain data for determining equilibrium time 

 

 

Figure 4.16: Phase data for determining equilibrium time 
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4.5.3 Data Acquisition 

All results were captured through the control box and its accompanying serial output.  

With an RS-232 serial cable, all data were captured with the HyperTerminal
®

 program and then 

saved as a comma delimited text file.  From Microsoft Excel
®
, this text file was converted into a 

XLS spreadsheet and then processed using one of several functions written in either MATLAB
®

 

or SAS
®
. 

4.6 Data Analysis 

4.6.1 Qualitative Detection of Contaminant Presence in Air 

As glycerol was only tested on a detection basis, a least squares means test at each 

frequency was used to distinguish between ambient air and air with glycerol vapor present.  

Either the gain or phase data was introduced into the first of two programs for this process.  The 

program, written in SAS
®
 9.2 (The SAS Institute, 2008) and given in the first part of Appendix 

C, utilizes the ‗proc glm‘ command that returns the average response at each combination of 

frequency and presence of contaminants.  Additionally, the ‗lsmeans‘ command with the ‗slice‘ 

option returns p-values for testing the differences between readings with and without 

contaminants at a given frequency. 

 

From this output, a spreadsheet is made in Microsoft Excel
®
 to include the frequency in 

the first column and p-value (sorted in ascending order) in the second column.  This spreadsheet 

is then processed with the MATLAB
®
-based Holm Comparison program in the second half of 

Appendix C.  The program is based on the Holm-Bonferroni method for making multiple 

comparisons, which is a more conservative process than a direct comparison of p-values.  

Beginning with the most significant (smallest) p-value, the p-value is compared with α divided 

by the number of comparisons left.  If the p-value is less than α divided by the number of 

comparisons left, the difference is declared to be significant and the process continues with the 

next lowest p-value.  In case the difference is not significant, the process stops since no other 

frequencies will be significant (Jager, 2012). 

 

Figure 4.17 demonstrates the process for deciding whether or not the readings at a given 

frequency are significant.  In this flowchart, k represents the number of comparisons left. 
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Figure 4.17: Flowchart of detection program 

 

Additionally, a neural network was used to analyze the utility of measuring the 

contaminants on a truly qualitative basis, determining whether or not a contaminant was present.  

Using a procedure similar to that described in Section 4.6.2.4 with the code given in Appendix 

D, the neural network classifies all iterations from both a training dataset (that was used to train 

the neural network) and a validation dataset as either having contaminants or no contaminants.  

Instead of having the concentrations being in parts per million, all nonzero concentrations are 

identified as one.  Should the neural network output be below 0.5, the predicted output decides 

there are no contaminants present; otherwise, the neural network determines there are 

contaminants present.  Tables in Chapter 5 list the success rate detecting each contaminant. 

4.6.2 Quantitative Detection of Contaminant Presence in Air 

For ethanol and ammonia, where multiple concentrations were measured, the data were 

analyzed with stepwise regression, partial least squares regression, neural network analysis, and 

wavelet transformation, the same four regression methods used by Shultz (2009). 
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For each combination of sensor and contaminant, a summary spreadsheet details the 

individual spreadsheets where the frequency response data are stored, the amount of contaminant 

introduced for each sample, and the temperature at which each of the three iterations were taken.  

The Import Data function, whose code is given in Appendix I, takes each of the individual 

spreadsheets, separates the gain and phase data, creates a term for the interaction between gain 

and phase, and then returns matrices for use in other MATLAB
®
 programs. 

 

The data originally represents the entire spectrum of frequencies that the control box is 

capable of producing and measuring (up to 120 MHz).  For the regression analysis, the data are 

divided into a range of frequencies for the specific peaks, depending on the sensor. 

 

Table 4.3: Frequency ranges used in regression analysis 

 Small Probe, 
Large Probe Small Box Large Box 

Peak 1 
2.10 x 107 Hz to 
3.78 x 107 Hz 

1.30 x 107 Hz to 
3.48 x 107 Hz 

1.60 x 107 Hz to 
2.78 x 107 Hz 

Peak 2 
8.08 x 107 Hz to 
9.76 x 107 Hz 

5.84 x 107 Hz to 
7.12 x 107 Hz 

5.52 x 107 Hz to 
6.50 x 107 Hz 

Peak 3 
 9.74 x 107 Hz to 

1.13 x 108 Hz 
9.42 x 107 Hz to 
1.08 x 108 Hz 

 

The four programs for performing the various regression techniques all followed the 

same general pattern.  First, the program imported the data from Microsoft Excel
®
 spreadsheets 

and trimmed the data based on the specific sensor and data (gain only, phase only, gain and 

phase together, or the interaction between gain and phase).  Using data from three iterations of 

all measurements at each concentration, a model is fitted through the predictor variables and 

response variables.  The predictors of the data (the training dataset) are then run through the 

model to estimate the response.  If any prediction yields a negative concentration, the prediction 

is changed to zero.  Comparing these estimated responses to the actual responses provides an R
2
 

and RMSE parameters.  Finally, a second set of three iterations of all measurements at each 

concentration (the validation dataset) is also used with the model to give R
2
 and RMSE values. 

 

All of the programs for analyzing the data were written in the MATLAB
®
 R2012a (The 

MathWorks, 2012a) and the various additional toolboxes. 
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4.6.2.1 Stepwise Regression 

After importing and trimming the data for the specific regression, the ‗stepwisefit‘ 

function in the Statistics Toolbox™ (The MathWorks, 2012e) is the main function for creating 

the stepwise model.  The ‗stepwisefit‘ function returns a vector of coefficient estimates and a 

logical vector indicating which coefficients are significant.  In these regressions, αin and αout were 

0.05 and 0.10, respectively, since these are default values in the ‗stepwisefit‘ function. 

 

Once the ‗stepwisefit‘ model is created, a list of significant frequencies is exported to a 

Microsoft Excel
®

 spreadsheet.  Next, this model is used to predict the contaminant concentration.  

This prediction is calculated by summing the products of the predictor variables, the coefficient 

vector, and the logical vector.  By including this logical vector, only the significant predictors 

have an effect on the predictions.  Once all these products are totaled, the intercept is added to 

complete the model. 

 

After the model is completed, prediction, R
2
, and RMSE values are calculated for the 

training and validation datasets.  Should no model be created, meaning that none of the 

predictors were found to be significant, the program does not attempt to create a list of 

significant frequencies and displays ―N/A – no model made‖ for R
2
 and RMSE values. 

 

Figure 4.18 gives a flowchart of the process while Appendix E gives the full code. 
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Figure 4.18: Flowchart of stepwise regression program 

4.6.2.2 Wavelet Transform 

The program for performing the wavelet regression is very similar to the stepwise 

regression program, with two major differences.  First, all predictors are processed using the 

'wavedec' function from the Wavelet Toolbox™ (The MathWorks, 2012f).  A third level Haar 

wavelet was used for each regression.  Also, the significant coefficients are exported to a 

Microsoft Excel
®

 spreadsheet, rather than the significant frequencies.  Figure 4.19 outlines the 

procedure while the full program is in Appendix F. 
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Figure 4.19: Flowchart of wavelet regression program 

 

4.6.2.3 Partial Least Squares Regression 

Following the importation and trimming of data, the ‗plsregress‘ function in the Wavelet 

Toolbox™ (The MathWorks, 2012f) is the function used to return the PLS coefficients from the 

training dataset.  The function requires a parameter that indicates the number of components to 

use in the regression.  This is included as another input for the program, and was chosen to be 

four, six, and eight for separate executions of the regression. 
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For simplicity, the beta coefficients   in Equation 3.14 were used for the model, rather 

than the matrices of scores and loadings in Equation 3.12 and Equation 3.13.  This model is then 

used to predict the actual concentrations from the training and validation datasets.  Illustrated in 

Figure 4.20, the complete code is included in Appendix G. 

 

 

Figure 4.20: Flowchart of PLS regression program 

 

4.6.2.4 Neural Networks 

The program for neural network regression begins by reading the data, and then 

transposes the data so each row corresponds to a specific predictor.  For regressions with the gain 

or phase data joined and with the gain and phase interaction, only every third predictor is used; 
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this reduces the amount of data used so that the neural network program can run properly.  

Otherwise, the computer runs out of memory, and the program terminates. 

 

From the Neural Network Toolbox™ (The MathWorks, 2012b), the neural network is 

initialized with a hidden layer size of ten, a typical value for such applications.  The data are then 

processed with the 'removeconstantrows' and 'mapminmax' functions to remove any data that is 

constant for all contaminant concentrations and normalizes the data in each row to a [-1, 1] 

range.  All data are divided in a random order such that 60% of samples are to train the network, 

20% to validate the network, and 20% to test the network. 

 

After these parameters are set, the network is trained with the Levenberg-Marquardt 

backpropagation algorithm.  This algorithm is relatively fast and very suitable for supervised 

training (Demuth and Beale, 2004).  Once the training is complete, the network is ready to accept 

a matrix of predictor variables to model the response variables, which is done with both the 

training and validation datasets. 

 

Figure 4.21 gives the framework for the entire process, and Appendix H gives the full 

code for the program. 
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Figure 4.21: Flowchart of neural network regression program 
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CHAPTER 5 - Experimental Results and Discussion 

5.1 Sensitivity Tests 

Using the procedure described in Section 4.4, several factors were investigated to 

determine which had significant effects on the sensor measurements.  The major factors 

examined included the temperature of the sample, the surface on which the sampling chamber 

was placed, the sensor position relative to the bottom and sides of the chamber, the presence of a 

thermometer, and the cable positioning.  Each of the tests in this section was carried out in 

distilled water with the large probe sensor. 

5.1.1 Temperature 

Varying the temperature had a minor effect on frequency and magnitude of different 

peaks showing in the frequency responses.  As shown in Figure 5.1 and Figure 5.2, there is a 

tendency for peaks at higher temperatures to not be as strong for both the gain and phase signal.  

However, since the room temperature where the air samples were taken could not be kept 

constant, the temperature for each iteration was included as another predictor for regression. 

 

 

Figure 5.1: Gain data for various temperatures in distilled water 
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Figure 5.2: Phase data for various temperatures in distilled water 

5.1.2 Testing Surface 

Placing the sampling chamber on a variety of surfaces did not have a significant effect on 

the sensor measurements.  Figure 5.3 and Figure 5.4 show very minute differences between tests 

carried out on a slate tabletop, a metal tabletop, and atop a ceramic hot plate. 

 

Figure 5.3: Gain data on various table surfaces in distilled water 
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Figure 5.4: Phase data on various table surfaces in distilled water 

 

5.1.3 Sensor Height 

Based on Figure 5.5 and Figure 5.6, the height of the sensor relative to the bottom of the 

container had very little effect.  At 1 cm, 3 cm, 5 cm, and 7 cm above the container bottom, both 

the gain and phase signals have very negligible differences.  However, at 9 cm above the 

container bottom, there is a significant difference; this is because about half the area of the metal 

plates was exposed to the air. 
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Figure 5.5: Gain data for various sensor heights in distilled water 

 

 

Figure 5.6: Phase data for various sensor heights in distilled water 

 

5.1.4 Sensor Radial Distance 

Similar to the sensor height, the boundary effect was minimal when compared at different 

radial distances.  Gain and phase readings, shown in Figure 5.7 and Figure 5.8, are virtually 
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identical when the sensor is at the center of the container, near the edge of the container, or 

halfway between the center and edge. 

 

 

Figure 5.7: Gain data for various sensor radial positions in distilled water 

 

 

Figure 5.8: Phase data for various sensor radial positions in distilled water 
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5.1.5 Presence of a Thermometer 

From the spectra in Figure 5.9 and Figure 5.10, a stainless steel thermometer was shown 

to be insignificant in affecting the sensor readings, regardless of the proximity to the sensor. 

 

Figure 5.9: Gain data for various thermometer positions in distilled water 

 

 

Figure 5.10: Phase data for various thermometer positions in distilled water 
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5.1.6 Cable Position 

The position of the coaxial cable did have an impact on readings, as shown in Figure 5.11 

and Figure 5.12.  This position likely shifted the BNC connector, impacting the gain and phase 

data.  In tests with air contaminants, the cable position was held fixed to marginalize this effect. 

 

Figure 5.11: Gain data for various cable positions in distilled water 

 

 

Figure 5.12: Phase data for various cable positions in distilled water 
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5.2 Glycerol Tests 

Using the code in Appendix C, the gain and phase data were compared between ambient 

air and air with glycerol vapor present.  A total of 12 iterations through all 609 frequencies, six 

without glycerol and six with glycerol, were used in the analysis.  Least squares means and a 

comparison using the Holm-Bonferroni method, discussed in Section 4.6.1, determined which 

frequencies had significantly different measurements between the two types of samples. 

 

Figure 5.13 and Figure 5.14 show distributions of significant frequencies for gain and 

phase data, respectively.  These distributions divided the entire spectrum of 21 groups of 29 

frequencies each.  Appendix J identifies the complete list of frequencies that were identified as 

having a significant difference. 

 

 

Figure 5.13: Distribution of significant frequencies with glycerol, gain data 
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Figure 5.14: Distribution of significant frequencies with glycerol, phase data 

 

The gain data showed the most significantly different frequencies with the large probe 

sensor (89) and the least with the small probe sensor (7).  Most of the significantly different 

frequencies corresponded to the major peaks in the frequency response spectra in Figure 4.2, 

Figure 4.4, Figure 4.6, and Figure 4.8.  Both the small and large probe sensors each had two 

major blocks of frequencies that had significantly different measurements, just as the small and 

large box sensors had three major blocks apiece. 

 

Phase data showed that, like the gain data, the large probe and large box sensors had 

many more frequencies where the measurements between ambient air and air with glycerol 

present were significantly different (107 and 167, respectively), compared with the small probe 

and small box sensors (8 and 16, respectively).  Like was seen with the gain data, the frequencies 

with significantly different measurements corresponded to the peaks in the ambient air spectra. 
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Using the neural network detection method correctly identified the vast majority of cases 

with either ambient air or air with glycerol present.  A total of 24 iterations of the entire 

frequency range were used in the analysis, with six belonging to each combination of ambient 

air/air with glycerol and training/validation.  As shown in Table 5.1, most cases were correctly 

identified as either being ambient air or air with glycerol present.  In total, 184 of the 192 

iterations were classified correctly, producing a 95.8% success rate. 

 

Table 5.1: Success rates of neural network for detecting glycerol 

 Ambient Air 
Training 

Ambient Air 
Validation 

Air with Glycerol 
Training 

Air with Glycerol 
Validation 

Small Probe 
Gain 

5 of 6 
(83%) 

5 of 6 
(83%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

Small Probe 
Phase 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

Large Probe 
Gain 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

4 of 6 
(67%) 

Large Probe 
Phase 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

Small Box 
Gain 

6 of 6 
(100%) 

5 of 6 
(83%) 

5 of 6 
(83%) 

6 of 6 
(100%) 

Small Box 
Phase 

6 of 6 
(100%) 

5 of 6 
(83%) 

6 of 6 
(100%) 

4 of 6 
(67%) 

Large Box 
Gain 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

Large Box 
Phase 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

6 of 6 
(100%) 

 

5.3 Ethanol Tests 

5.3.1 Qualitative Detection of Ethanol Presence in Air 

Following the same procedure in Section 5.2 for glycerol, the frequency response 

measurements were compared between ambient air and air with ethanol at the International 

Labour Organization standard of 5,000 ppm (Stellman, 1998).  Here, Figure 5.15 and Figure 5.16 

illustrate the distributions of frequencies where the measurements were significantly different 

while Appendix J includes the full list of frequencies. 
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Figure 5.15: Distribution of significant frequencies with ethanol, gain data 

 

One of the biggest differences between the gain data with glycerol and ethanol is the 

number of significant frequencies with the small probe sensor (7 compared to 113).  In fact, this 

count is about twice as much as for the large probe sensor (65), where the small and large box 

sensor had 39 and 50 frequencies with significant differences, respectively. Again, these 

frequencies tended to coincide with the major peaks seen with the frequency response spectra.  

Additionally, for the small probe, many significant differences were in the 90,000,000 Hz to 

100,000,000 Hz range, a slightly higher frequency than the main peak in ambient air. 
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Figure 5.16: Distribution of significant frequencies with ethanol, phase data 

 

Phase data showed many more contiguous blocks of frequencies with significant 

differences in measurements.  The major blocks were from 98,600,000 Hz to 115,600,000 Hz for 

the small probe sensor; 20,400,000 Hz to 42,600,000 Hz and from 82,400,000 Hz to 104,000,000 

Hz for the large probe sensor; and from 53,800,000 Hz to 68,200,000 Hz and from 95,400,000 

Hz and from 106,200,000 Hz.  Each frequency in these blocks had measurements that were 

significantly different between the ambient air and air with 5,000 ppm ethanol.  Also, unlike the 

gain data, these contiguous blocks do not match up exactly with the major peaks seen with 

ambient air.  Rather, especially for the large probe and large box sensors, the blocks of 

frequencies seemed to be centered near the peaks from ambient air, yet there is a much larger 

spread of frequencies. 
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With the neural network detection procedure, two complete runs, or six iterations, were 

used for each of the concentrations of ethanol listed in Table 4.1.  Half of the iterations at each 

concentration formed the training dataset; the other half, the validation dataset.  In six of the 48 

cases of ambient air, the neural network declared that there was ethanol present, resulting in a 

false positive.  For the 576 cases with ethanol present, 32 false negatives were found; most of 

these occurred at the lowest concentration (98 ppm), yet about one-third occurred at 5,002 ppm 

or above.  Overall, the detection success rate was 93.9%. 

 

Table 5.2: Success rates of neural network for detecting ethanol 

 Ambient Air 
Training 

Ambient Air 
Validation 

Air with Ethanol 
Training 

Air with Ethanol 
Validation 

Small Probe 
Gain 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

31 of 36 
(86%) 

Small Probe 
Phase 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

31 of 36 
(86%) 

Large Probe 
Gain 

3 of 3 
(100%) 

2 of 3 
(67%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Large Probe 
Phase 

3 of 3 
(100%) 

2 of 3 
(67%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Small Box 
Gain 

3 of 3 
(100%) 

2 of 3 
(67%) 

35 of 36 
(97%) 

32 of 36 
(89%) 

Small Box 
Phase 

3 of 3 
(100%) 

3 of 3 
(100%) 

35 of 36 
(97%) 

26 of 36 
(72%) 

Large Box 
Gain 

3 of 3 
(100%) 

2 of 3 
(67%) 

34 of 36 
(94%) 

35 of 36 
(97%) 

Large Box 
Phase 

2 of 3 
(67%) 

2 of 3 
(67%) 

35 of 36 
(97%) 

34 of 36 
(94%) 

 

5.3.2 Quantitative Detection of Ethanol Presence in Air 

The following tables detail the R
2
 and RMSE values for regressions performed on each 

sensor, divided into the specific frequency range listed in Table 4.3.  Each column represents the 

specific regression method used (stepwise regression; wavelet transformation followed by 

stepwise regression; four-, six-, or eight-component partial least squares regression; neural 

network regression).  The rows are the data used in the regression (gain data only; phase data 

only; gain and phase data together; the interaction between gain and phase data) with ‗T‘ 

standing for the training dataset and ‗V‘ for the validation dataset.  For the stepwise regressions, 

cell with three dashes indicate that a model could not be made from the input data. 
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Appendix K and Appendix L list the frequencies that were used in the stepwise models 

for the full sets of gain and phase data, respectively. 

5.3.2.1 Small Probe Sensor 

With stepwise regression and wavelet transformation followed by stepwise regression, 

the training model fit extremely well (R
2
 = 1.000) using all frequencies; however, the model did 

not fit the validation dataset with much consistency (R
2
 < 0.250).  PLS regression showed a 

significant improvement including more components, reaching a maximum R
2
 of 0.988 and 

0.606 for the training and validation datasets, respectively.  The neural network regression did 

not show a significant improvement over PLS regression. 

 

Trimming the data to the specific peaks tended to yield a smaller R
2
 values for the 

training datasets, but more reasonable R
2
 values for the validations datasets with the stepwise 

regression and wavelet transformation with stepwise regression.  Of these frequency ranges, the 

R
2
 values range from 0.369 to 1.000 and from 0.001 to 0.447 for the training and validation 

datasets, respectively. 
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Table 5.3: R
2
 values for ethanol with small probe sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.791 0.934 0.987 0.529

Gain – V 0.006 0.061 0.472 0.538 0.525 0.016

Phase – T 1.000 1.000 0.738 0.940 0.988 0.691

Phase – V 0.081 0.003 0.547 0.504 0.452 0.036

Joined – T 1.000 1.000 0.707 0.946 0.987 0.439

Joined – V 0.159 0.202 0.519 0.536 0.606 0.128

Interaction – T 1.000 1.000 0.730 0.925 0.975 0.671

Interaction – V 0.080 0.227 0.534 0.508 0.514 0.252

Gain – T 0.427 0.714 0.608 0.714 0.887 0.712

Gain – V 0.177 0.239 0.353 0.430 0.227 0.323

Phase – T 0.369 0.985 0.638 0.835 0.958 0.460

Phase – V 0.076 0.136 0.333 0.116 0.006 0.182

Joined – T 0.785 0.710 0.649 0.751 0.924 0.780

Joined – V 0.060 0.245 0.395 0.444 0.261 0.111

Interaction – T 0.662 1.000 0.562 0.693 0.831 0.617

Interaction – V 0.252 0.001 0.417 0.427 0.121 0.117

Gain – T 0.370 0.449 0.576 0.762 0.951 0.406

Gain – V 0.215 0.236 0.442 0.436 0.334 0.038

Phase – T 0.416 0.669 0.541 0.787 0.918 0.742

Phase – V 0.386 0.034 0.447 0.304 0.170 0.425

Joined – T 0.370 0.619 0.475 0.737 0.924 0.427

Joined – V 0.215 0.123 0.412 0.429 0.285 0.309

Interaction – T 0.370 0.891 0.522 0.766 0.904 0.885

Interaction – V 0.215 0.039 0.426 0.408 0.148 0.240

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Table 5.4: RMSE values for ethanol with small probe sensor 

 

5.3.2.2 Large Probe Sensor 

Using stepwise regression and wavelet transformation followed by stepwise regression 

when looking at the entire set of frequencies did not fit the model perfectly to the training 

datasets, as the maximum R
2
 was 0.979.  Yet, the R

2
 value for these validation datasets had an 

average of 0.159; this means that the models are still over-fitting the training data.  Again, the 

models created by PLS regression were improved by including more components, and the neural 

network regression tended to give lower R
2
 values than even the four-component PLS models. 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 1523.0 974.6 453.4 2135.5

Gain – V 4962.4 5456.9 1982.9 1902.6 1890.2 2857.6

Phase – T 0.0 0.0 1581.1 916.9 427.7 2008.3

Phase – V 4615.6 3729.8 1847.3 2245.5 2396.5 4405.5

Joined – T 0.0 0.0 1710.8 850.4 452.0 2491.7

Joined – V 4238.6 3820.8 2124.9 1891.8 1747.1 3484.3

Interaction – T 0.0 0.0 1596.0 1018.1 614.9 1814.8

Interaction – V 3799.3 3662.6 1966.9 2340.3 2216.3 2514.0

Gain – T 1897.9 1673.9 1814.5 1689.9 1205.1 1729.9

Gain – V 2016.1 2471.3 1884.9 1898.1 2515.4 1909.6

Phase – T 1863.2 486.0 1645.7 1360.1 787.3 3721.6

Phase – V 2611.9 3825.4 1802.8 1992.6 2854.9 3879.4

Joined – T 1501.3 1669.1 1711.7 1644.8 982.3 1993.4

Joined – V 2301.8 2071.3 1812.6 1901.8 2045.5 3082.7

Interaction – T 1720.5 0.0 1697.8 1698.6 1416.3 2215.6

Interaction – V 2304.4 4791.3 1702.4 1988.0 2609.9 2798.9

Gain – T 1895.9 1789.6 1895.6 1630.3 830.6 3309.3

Gain – V 2434.9 2142.7 2645.6 2655.8 4062.7 3184.0

Phase – T 1941.7 1837.6 1849.1 1531.8 1046.9 1753.2

Phase – V 1966.2 3286.2 2081.7 2396.6 2607.0 2229.1

Joined – T 1895.9 1847.2 1957.4 1590.1 1012.1 2305.9

Joined – V 2434.9 2431.2 2267.0 2350.4 2863.5 2228.4

Interaction – T 1895.9 1195.9 1923.8 1581.2 1125.5 1257.9

Interaction – V 2434.9 4186.6 1962.7 2178.3 2405.8 3195.7

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Selecting the individual peaks gave results similar to the small probe.  The training 

dataset had an R
2
 value ranging from 0.297 to 0.965 while the validation dataset had an R

2
 value 

from 0.020 to 0.795. 

 

Table 5.5: R
2
 values for ethanol with large probe sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.671 0.976 0.788 0.931 0.975 0.780

Gain – V 0.336 0.058 0.576 0.710 0.778 0.373

Phase – T 0.966 0.974 0.851 0.952 0.980 0.020

Phase – V 0.188 0.177 0.657 0.739 0.744 0.000

Joined – T 0.974 0.979 0.813 0.943 0.979 0.645

Joined – V 0.156 0.018 0.645 0.778 0.798 0.256

Interaction – T 0.974 0.977 0.839 0.954 0.979 0.561

Interaction – V 0.172 0.164 0.676 0.752 0.764 0.097

Gain – T 0.712 0.873 0.702 0.801 0.872 0.637

Gain – V 0.435 0.088 0.471 0.348 0.357 0.251

Phase – T --- 0.608 0.733 0.924 0.965 0.783

Phase – V --- 0.020 0.516 0.566 0.565 0.260

Joined – T 0.712 0.945 0.690 0.814 0.931 0.764

Joined – V 0.435 0.423 0.571 0.569 0.513 0.303

Interaction – T 0.712 0.935 0.691 0.819 0.905 0.755

Interaction – V 0.435 0.542 0.564 0.634 0.618 0.429

Gain – T 0.857 0.641 0.742 0.828 0.943 0.606

Gain – V 0.736 0.448 0.653 0.730 0.756 0.222

Phase – T 0.944 0.297 0.744 0.855 0.933 0.700

Phase – V 0.338 0.094 0.539 0.677 0.709 0.630

Joined – T 0.857 0.837 0.725 0.889 0.954 0.511

Joined – V 0.736 0.260 0.576 0.771 0.795 0.104

Interaction – T 0.857 0.829 0.672 0.859 0.920 0.527

Interaction – V 0.736 0.225 0.572 0.709 0.684 0.403

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Table 5.6: RMSE values for ethanol with large probe sensor 

 

5.3.2.3 Small Box Sensor 

Like the probe-style sensors, the stepwise and wavelet regression methods over-fit the 

data for all frequencies, with all training R
2
 = 1.000 and all validation R

2
 ≤ 0.055.  PLS 

regression shows lower R
2
 values for the training dataset (0.768 to 0.996), but with improved R

2
 

values for the validation dataset (0.009 to 0.385).  Neural network regression only had minor 

success in one case, but all training RMSE values were well above those of the other methods. 

 

Trimming the data to the specific peaks gave generally strong coefficients of 

determination for the training data, but the models again tend to over-fit the data.  From the 

validation datasets, the highest and average R
2
 values were 0.564 and 0.079, respectively. 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1799.3 602.5 1600.6 988.7 610.6 1632.8

Gain – V 2168.7 3909.1 1823.6 1603.0 1483.4 2214.6

Phase – T 709.6 619.2 1393.7 844.6 561.1 3564.9

Phase – V 4276.1 3570.2 1850.1 1689.3 1805.4 2321.7

Joined – T 631.3 561.1 1528.4 915.6 560.7 2156.8

Joined – V 3154.1 3130.1 1687.4 1453.8 1460.9 2698.5

Interaction – T 633.6 594.4 1431.8 814.0 569.5 2470.8

Interaction – V 3720.7 3303.2 1918.8 1589.2 1647.4 3348.9

Gain – T 1760.6 1291.4 1786.8 1536.2 1318.1 1569.2

Gain – V 1944.7 2796.6 1988.5 2338.5 2414.3 1341.4

Phase – T --- 1778.7 1683.5 1039.3 719.1 1511.6

Phase – V --- 2182.9 1670.0 1888.2 1866.8 1942.2

Joined – T 1760.6 905.1 1666.5 1538.1 998.7 1754.3

Joined – V 1944.7 2476.3 1464.3 1895.2 2016.8 2428.1

Interaction – T 1760.6 963.1 1732.8 1486.9 1160.0 1603.3

Interaction – V 1944.7 2245.1 1636.2 1709.8 1894.8 1667.6

Gain – T 1344.4 1762.1 1653.3 1463.5 901.5 2015.1

Gain – V 1869.9 1785.0 1530.5 1776.5 1942.5 1987.1

Phase – T 890.6 1815.5 1659.7 1363.5 972.0 1261.1

Phase – V 3267.3 918.5 2482.0 2233.7 2333.1 1344.7

Joined – T 1344.4 1383.1 1737.0 1211.6 821.3 2122.9

Joined – V 1869.9 2548.8 2084.8 1872.6 1975.2 1970.2

Interaction – T 1344.4 1401.8 1840.9 1331.5 1042.7 1919.4

Interaction – V 1869.9 2814.9 2193.8 2169.7 2590.4 1030.4

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Table 5.7: R
2
 values for ethanol with small box sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.800 0.959 0.993 0.212

Gain – V 0.012 0.001 0.009 0.059 0.031 0.167

Phase – T 1.000 1.000 0.838 0.938 0.987 0.171

Phase – V 0.025 0.048 0.385 0.286 0.268 0.001

Joined – T 1.000 1.000 0.887 0.969 0.996 0.666

Joined – V 0.001 0.014 0.257 0.296 0.306 0.000

Interaction – T 1.000 1.000 0.768 0.966 0.994 0.176

Interaction – V 0.055 0.019 0.161 0.221 0.174 0.002

Gain – T 0.684 0.584 0.540 0.804 0.950 0.363

Gain – V 0.018 0.032 0.000 0.053 0.048 0.001

Phase – T 0.624 0.732 0.680 0.896 0.960 0.151

Phase – V 0.015 0.008 0.173 0.087 0.060 0.011

Joined – T 1.000 1.000 0.627 0.869 0.973 0.575

Joined – V 0.117 0.000 0.096 0.162 0.212 0.002

Interaction – T 1.000 1.000 0.566 0.918 0.963 0.066

Interaction – V 0.045 0.010 0.054 0.070 0.009 0.021

Gain – T 0.401 0.428 0.600 0.797 0.889 0.245

Gain – V 0.003 0.027 0.002 0.000 0.036 0.080

Phase – T --- 0.666 0.654 0.831 0.932 0.000

Phase – V --- 0.042 0.000 0.001 0.002 0.037

Joined – T 0.930 0.979 0.654 0.907 0.965 0.648

Joined – V 0.002 0.002 0.026 0.081 0.121 0.002

Interaction – T 0.764 1.000 0.612 0.876 0.896 0.301

Interaction – V 0.016 0.000 0.022 0.026 0.014 0.016

Gain – T 0.685 0.913 0.569 0.902 0.970 0.063

Gain – V 0.037 0.084 0.248 0.292 0.273 0.020

Phase – T 0.473 0.487 0.672 0.851 0.940 0.483

Phase – V 0.078 0.008 0.178 0.037 0.011 0.000

Joined – T 0.855 1.000 0.638 0.884 0.956 0.474

Joined – V 0.012 0.050 0.521 0.564 0.374 0.011

Interaction – T 0.829 1.000 0.727 0.884 0.945 0.364

Interaction – V 0.124 0.063 0.241 0.259 0.180 0.074
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Table 5.8: RMSE values for ethanol with small box sensor 

 

5.3.2.4 Large Box Sensor 

Just as the small box sensor had several R
2
 values above 0.980, the large box sensor had 

many strong coefficients of determination when looking at all frequencies.  However, the 

validation datasets had a much stronger fit than those of the small box sensor, with the R
2
 up to 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 1529.3 769.7 324.0 3443.7

Gain – V 3672.0 3499.1 1509.8 1774.8 1806.4 3237.4

Phase – T 0.0 0.0 1389.2 956.3 453.9 3222.4

Phase – V 7333.3 4100.0 1858.0 2027.5 1987.3 4246.5

Joined – T 0.0 0.0 1201.4 685.6 264.3 2162.0

Joined – V 2619.8 4211.3 2369.8 2217.2 2131.2 2333.2

Interaction – T 0.0 0.0 1674.1 713.3 308.0 2647.1

Interaction – V 2731.7 5185.0 1698.3 1887.9 2025.3 4085.6

Gain – T 1787.9 1912.4 1864.8 1539.1 826.1 3029.8

Gain – V 3497.1 3492.9 2213.1 2449.8 3097.1 4390.9

Phase – T 1789.7 1674.8 1687.7 1172.0 755.4 2866.0

Phase – V 3508.0 3393.1 2657.9 2609.9 2497.0 3451.1

Joined – T 0.0 0.0 1816.8 1312.1 627.0 2464.0

Joined – V 2794.9 5051.8 3042.2 2688.6 2766.3 2034.3

Interaction – T 0.0 0.0 1844.7 1051.5 733.5 3748.9

Interaction – V 4732.6 4874.1 3030.9 3064.7 2935.0 3155.9

Gain – T 1811.9 1939.1 1849.1 1576.0 1216.3 2212.1

Gain – V 1486.6 2489.0 1804.8 2598.6 2784.2 2451.1

Phase – T --- 1752.9 1843.3 1427.5 969.5 2394.5

Phase – V --- 4880.0 2480.7 3165.9 3872.0 3081.5

Joined – T 985.5 569.5 1840.2 1115.4 714.8 2304.4

Joined – V 3962.7 5254.1 3010.6 3090.5 2949.3 6103.7

Interaction – T 1510.0 5.5 1876.6 1209.3 1153.2 3278.9

Interaction – V 2115.3 4906.4 2406.3 3545.1 4261.1 2646.0

Gain – T 1691.8 1070.2 1886.0 1129.7 663.1 2839.7

Gain – V 3026.6 3380.9 1351.9 1906.1 2273.8 3028.7

Phase – T 1906.6 1892.9 1572.9 1401.0 919.3 3077.2

Phase – V 1904.0 2247.2 1469.9 2299.5 2780.0 2590.2

Joined – T 1324.7 0.0 1708.8 1224.9 790.6 2277.6

Joined – V 2740.5 3787.6 2014.0 1909.1 2144.9 2464.7

Interaction – T 1377.8 0.0 1692.3 1245.8 883.5 2584.0

Interaction – V 2471.0 3401.6 2167.7 2278.4 2845.5 2833.3
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0.784, with an average of 0.564.  Also, the neural network regression showed a strong R
2
 value 

(0.808 for training and 0.660 for validation) for gain and phase data combined. 

 

Table 5.9: R
2
 values for ethanol with large box sensor 

 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.691 0.932 0.985 0.466

Gain – V 0.454 0.144 0.625 0.687 0.748 0.011

Phase – T 1.000 1.000 0.843 0.956 0.988 0.357

Phase – V 0.521 0.274 0.729 0.743 0.771 0.036

Joined – T 1.000 1.000 0.850 0.950 0.989 0.808

Joined – V 0.547 0.632 0.759 0.740 0.784 0.660

Interaction – T 1.000 1.000 0.799 0.940 0.985 0.584

Interaction – V 0.632 0.555 0.710 0.738 0.777 0.258

Gain – T 0.237 0.452 0.636 0.811 0.947 0.249

Gain – V 0.057 0.066 0.242 0.130 0.067 0.016

Phase – T 0.610 0.783 0.693 0.885 0.942 0.800

Phase – V 0.212 0.218 0.494 0.356 0.257 0.275

Joined – T 0.911 0.799 0.715 0.900 0.976 0.540

Joined – V 0.133 0.214 0.354 0.307 0.285 0.251

Interaction – T 0.920 0.879 0.631 0.847 0.911 0.636

Interaction – V 0.155 0.185 0.440 0.400 0.308 0.284

Gain – T 0.247 0.365 0.327 0.567 0.772 0.141

Gain – V 0.110 0.038 0.224 0.090 0.023 0.001

Phase – T 0.130 0.685 0.703 0.802 0.910 0.758

Phase – V 0.136 0.297 0.591 0.683 0.668 0.211

Joined – T 0.247 0.822 0.638 0.762 0.941 0.720

Joined – V 0.110 0.414 0.529 0.675 0.658 0.279

Interaction – T 0.247 0.866 0.553 0.675 0.859 0.791

Interaction – V 0.110 0.078 0.486 0.555 0.503 0.546

Gain – T 0.676 0.666 0.576 0.739 0.895 0.669

Gain – V 0.435 0.450 0.362 0.437 0.388 0.401

Phase – T 0.873 0.829 0.531 0.717 0.891 0.457

Phase – V 0.630 0.360 0.447 0.566 0.610 0.445

Joined – T 0.820 0.999 0.601 0.795 0.903 0.837

Joined – V 0.331 0.460 0.533 0.628 0.653 0.526

Interaction – T 0.820 0.996 0.547 0.764 0.888 0.778

Interaction – V 0.331 0.115 0.409 0.503 0.401 0.451
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Isolating the individual peaks did not show an improvement compared to the full range of 

frequencies, with the smallest and maximum training RMSE values of 132.9 and 3639.0, 

respectively.  This is far greater than that of using the entire frequency range, and the validation 

statistics follow a similar pattern. 

 

Table 5.10: RMSE values for ethanol with large box sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 1735.2 954.9 479.4 2625.7

Gain – V 4381.9 3367.8 1920.7 1704.9 1499.6 4431.1

Phase – T 0.0 0.0 1417.6 810.1 427.1 1884.9

Phase – V 2601.8 3854.2 1713.8 1757.4 1590.6 3264.3

Joined – T 0.0 0.0 1355.0 856.1 416.9 1740.4

Joined – V 2217.5 2196.6 1541.9 1704.8 1479.6 2322.1

Interaction – T 0.0 0.0 1540.1 936.7 486.1 2003.2

Interaction – V 2141.3 2662.7 1709.6 1798.7 1677.3 2715.2

Gain – T 1654.3 1901.2 1867.4 1531.0 889.4 3639.0

Gain – V 1748.4 3614.8 3134.6 5037.4 7597.4 5061.6

Phase – T 1937.3 1603.3 1766.4 1230.1 905.8 1782.0

Phase – V 3111.2 4242.7 2002.3 2707.1 3254.3 3277.7

Joined – T 1094.2 1579.6 1785.1 1165.7 587.3 2218.5

Joined – V 4850.2 4221.0 2925.0 3534.0 3801.2 2851.0

Interaction – T 1047.6 1285.0 1871.5 1410.4 1125.7 2009.5

Interaction – V 4270.5 3590.6 2442.3 2989.1 3250.2 2169.5

Gain – T 1714.9 1784.8 1831.4 1871.2 1628.4 1925.1

Gain – V 1813.1 1973.8 1706.7 2476.3 3083.2 2544.6

Phase – T 1337.0 1706.2 1752.4 1500.7 1115.8 1271.6

Phase – V 1340.5 3077.3 2003.9 1754.1 2014.4 2853.6

Joined – T 1714.9 1437.9 1534.4 1641.7 904.2 1769.4

Joined – V 1813.1 3096.5 1819.1 1801.1 2209.5 3952.5

Interaction – T 1714.9 1278.3 1712.4 1788.9 1351.0 1639.0

Interaction – V 1813.1 5048.8 1925.1 2088.2 2478.4 2359.5

Gain – T 1741.4 1840.4 1662.8 1644.1 1170.7 2314.8

Gain – V 2254.1 2429.4 2265.9 2377.2 3101.8 3050.8

Phase – T 1215.0 1488.5 1834.6 1738.7 1178.4 2188.9

Phase – V 2511.1 2677.6 1985.8 1947.1 2258.9 2273.9

Joined – T 1418.9 132.9 1841.5 1542.7 1147.5 1502.2

Joined – V 2872.5 3169.3 1930.0 1956.2 2003.8 2453.2

Interaction – T 1418.9 254.1 1811.2 1660.0 1217.1 1209.2

Interaction – V 2872.5 4651.0 2036.2 2182.7 2898.8 1959.3
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5.4 Ammonia Tests 

5.4.1 Qualitative Detection of Ammonia Presence in Air 

With the same procedure for detecting glycerol in Section 5.2, each of the gain and phase 

measurements were compared with ambient air and air with 300 ppm ammonia, a standard set 

forth by the Occupational Safety and Health Administration (2003).  An overview of the 

distribution is given in Figure 5.17 and Figure 5.18 with the full list given in Appendix J. 

 

Figure 5.17: Distribution of significant frequencies with ammonia, gain data 

 

This distribution shows that there were far more significantly different gain 

measurements found with ammonia than with either glycerol or ethanol.  The small probe sensor 

had significantly different measurements at all frequencies between 19,800,000 Hz and 

26,800,000 Hz, 60,400,000 Hz and 72,200,000 Hz, and 76,600,000 Hz and 110,600,000 Hz.  

With significant differences at 514 frequencies, the large probe sensor had major contiguous 

blocks from 11,000,000 Hz to 50,000,000 Hz and from 55,800,000 Hz to 106,000,000 Hz.  The 
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small box sensor showed several, albeit discontinuous, blocks of frequencies with significant 

differences, whereas the large box sensor had significantly different measurements at 40 

different frequencies in five smaller, contiguous blocks. 

 

 

Figure 5.18: Distribution of significant frequencies with ammonia, phase data 

 

Phase data had many significant differences in measurements with and without ammonia 

as well.  The small probe, large probe, small box, and large box sensors had significant 

differences at 419, 594, 293, and 27 frequencies, respectively.  Most of these frequencies are in 

large, contiguous blocks with only a few insignificant measurements scattered throughout.  The 

largest contiguous block is with the large probe sensor, which had significant readings between 

78,600,000 Hz and 116,000,000 Hz.  In fact, with the exception of 58,600,000 Hz, 58,800,000 

Hz, and 78,400,000 Hz, all frequencies between 25,600,000 Hz and 116,000,000 Hz have 

significantly different phase readings between ambient air and air with 300 ppm ammonia. 
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Like detecting ethanol, six iterations for each concentration in Table 4.2 were used in the 

detection method for ammonia.  Only one false positive was detected, and ammonia was 

successfully detected in 559 of 576 cases.  The false negatives tended to occur with at the lower 

and mid-range concentrations (50 ppm to 900 ppm), although there was not a specific pattern of 

false negatives.  Nonetheless, ammonia was detected with a 97.1% overall success rate. 

 

Table 5.11: Success rates of neural network for detecting ammonia 

 Ambient Air 
Training 

Ambient Air 
Validation 

Air with Ammonia 
Training 

Air with Ammonia 
Validation 

Small Probe 
Gain 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Small Probe 
Phase 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Large Probe 
Gain 

3 of 3 
(100%) 

3 of 3 
(100%) 

35 of 36 
(97%) 

36 of 36 
(100%) 

Large Probe 
Phase 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Small Box 
Gain 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

34 of 36 
(94%) 

Small Box 
Phase 

3 of 3 
(100%) 

3 of 3 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

Large Box 
Gain 

3 of 3 
(100%) 

3 of 3 
(100%) 

34 of 36 
(94%) 

30 of 36 
(83%) 

Large Box 
Phase 

3 of 3 
(100%) 

2 of 3 
(67%) 

33 of 36 
(92%) 

31 of 36 
(86%) 

 

5.4.2 Quantitative Detection of Ammonia Presence in Air 

The frequency response data from the various ammonia concentrations is run through the 

same four regression programs, with the partial least squares program used with four, six, and 

eight components.  As described fully in Section 5.3.2, each column corresponds to the specific 

regression methods and each row is the data used in the regression.  Again, ‗T‘ stands for the 

training dataset; ‗V‘, the validation dataset. 

 

Appendix M and Appendix N give the frequencies used in the stepwise regression model 

for the gain and phase data, respectively. 
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5.4.2.1 Small Probe Sensor 

Considering the entire range of frequencies, stepwise regression and wavelet 

transformation followed by stepwise regression had very high R
2
 values for the training dataset, 

and R
2
 values ranging from 0.048 to 0.648 for the validation dataset.  PLS regression tended to 

improve with an increasing number of components, and neural network regression gave RMSE 

values in the 380.8 to 734.2 range. 

 

Analyzing the two peaks individually tended to reduce the training R
2
 values, but with 

the advantage of improving the validation R
2
 values.  A very significant data subset was the gain 

and phase data together for the second peak; neural network regression gave training and 

validation R
2
 values of 0.991 and 0.817, respectively. 

Table 5.12: R
2
 values for ammonia with small probe sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.533 0.750 0.961 0.487

Gain – V 0.304 0.330 0.117 0.185 0.334 0.122

Phase – T 1.000 1.000 0.453 0.901 0.970 0.798

Phase – V 0.357 0.048 0.086 0.098 0.137 0.311

Joined – T 1.000 1.000 0.426 0.873 0.973 0.561

Joined – V 0.468 0.363 0.127 0.104 0.197 0.295

Interaction – T 0.718 1.000 0.423 0.785 0.963 0.563

Interaction – V 0.648 0.369 0.134 0.054 0.106 0.094

Gain – T 0.904 0.790 0.438 0.761 0.917 0.739

Gain – V 0.387 0.389 0.207 0.146 0.175 0.384

Phase – T 0.983 0.803 0.621 0.856 0.943 0.963

Phase – V 0.500 0.038 0.078 0.303 0.416 0.417

Joined – T 1.000 1.000 0.441 0.794 0.929 0.846

Joined – V 0.407 0.248 0.028 0.053 0.161 0.344

Interaction – T 0.947 1.000 0.453 0.746 0.853 0.946

Interaction – V 0.383 0.272 0.065 0.186 0.184 0.522

Gain – T 0.718 0.627 0.260 0.856 0.954 0.782

Gain – V 0.690 0.125 0.295 0.457 0.562 0.581

Phase – T 0.763 0.184 0.526 0.760 0.917 0.943

Phase – V 0.689 0.173 0.017 0.028 0.004 0.686

Joined – T 0.763 0.930 0.437 0.735 0.926 0.991

Joined – V 0.689 0.001 0.091 0.102 0.008 0.817

Interaction – T 0.718 0.688 0.421 0.838 0.907 0.988

Interaction – V 0.648 0.009 0.006 0.003 0.006 0.800

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Table 5.13: RMSE values for ammonia with small probe sensor 

 

5.4.2.2 Large Probe Sensor 

Like many other sensor-contaminant combinations, the training R
2
 values for the 

stepwise regression and wavelet transformation followed by stepwise regression were 1.000 

when analyzing the entire range of frequencies.  However, when validated, these models 

generally had lower RMSE values than with ethanol.  With a few exceptions, the RMSE values 

tended to decrease as more components were used in the PLS regressions, and neural network 

regression gave R
2
 values that, for the majority of regressions, were lower than any other 

methods. 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 415.3 390.9 174.3 629.0

Gain – V 845.2 654.9 626.4 605.0 582.1 710.5

Phase – T 0.0 0.0 381.0 273.5 155.9 380.8

Phase – V 758.2 880.4 566.5 832.9 792.3 615.4

Joined – T 0.0 0.0 342.3 304.0 148.0 440.7

Joined – V 586.4 851.7 442.1 748.1 751.8 734.2

Interaction – T 332.5 0.0 365.3 373.7 174.0 534.4

Interaction – V 397.4 842.5 499.4 783.9 905.5 592.7

Gain – T 253.9 339.2 434.5 369.3 246.6 340.8

Gain – V 745.1 680.3 406.4 531.7 535.4 554.8

Phase – T 118.6 335.1 432.6 315.4 210.0 169.8

Phase – V 717.6 761.2 436.9 554.9 582.5 624.6

Joined – T 0.0 0.0 406.2 360.3 231.9 321.4

Joined – V 713.8 955.9 460.7 545.3 570.8 883.3

Interaction – T 196.2 0.0 415.4 382.1 322.0 205.9

Interaction – V 694.3 970.0 459.9 526.6 640.8 555.6

Gain – T 385.4 413.7 300.4 303.8 191.6 304.6

Gain – V 353.0 589.2 318.3 458.6 390.6 378.9

Phase – T 366.3 342.9 408.2 383.5 246.4 194.3

Phase – V 360.0 385.3 554.2 775.9 710.2 413.9

Joined – T 366.3 228.2 342.6 392.6 236.8 84.2

Joined – V 360.0 667.4 389.9 712.8 775.7 363.5

Interaction – T 332.5 421.2 447.6 328.2 263.0 96.2

Interaction – V 397.4 710.0 674.3 717.3 740.9 409.7

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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The strongest R
2
 values of any regression were found using the neural network regression 

with the gain and phase data combined from the second peak; the training and validation R
2
 

values were 1.000 and 0.996, respectively, with both RMSE values below 55.  All combinations 

of data from this peak had R
2
 values had training and validation R

2
 values at or above 0.968. 

 

Table 5.14: R
2
 values for ammonia with large probe sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.538 0.591 0.937 0.612

Gain – V 0.309 0.151 0.521 0.581 0.862 0.545

Phase – T 1.000 1.000 0.611 0.627 0.884 0.952

Phase – V 0.648 0.625 0.592 0.586 0.844 0.898

Joined – T 1.000 1.000 0.599 0.640 0.892 0.319

Joined – V 0.588 0.403 0.592 0.606 0.851 0.359

Interaction – T 1.000 1.000 0.598 0.741 0.889 0.288

Interaction – V 0.651 0.444 0.615 0.694 0.861 0.287

Gain – T --- 0.705 0.431 0.852 0.913 0.774

Gain – V --- 0.637 0.529 0.837 0.861 0.735

Phase – T 0.480 0.916 0.554 0.786 0.934 0.589

Phase – V 0.561 0.549 0.600 0.680 0.888 0.601

Joined – T 0.480 0.974 0.563 0.789 0.890 0.993

Joined – V 0.561 0.581 0.606 0.701 0.837 0.964

Interaction – T 0.480 1.000 0.550 0.870 0.917 0.628

Interaction – V 0.561 0.396 0.575 0.811 0.862 0.986

Gain – T 0.377 0.450 0.394 0.610 0.843 0.996

Gain – V 0.359 0.311 0.391 0.488 0.523 0.992

Phase – T 0.884 0.918 0.467 0.660 0.883 0.980

Phase – V 0.541 0.635 0.460 0.606 0.782 0.980

Joined – T 0.986 0.975 0.499 0.616 0.802 1.000

Joined – V 0.635 0.506 0.494 0.591 0.770 0.996

Interaction – T 0.358 0.960 0.489 0.753 0.953 0.968

Interaction – V 0.355 0.223 0.485 0.720 0.899 0.974

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Table 5.15: RMSE values for ammonia with large probe sensor 

 

 

These regressions show a clear difference between the regression methods that tended to 

over-fit the training data and those that did not.  Using the gain data from all frequencies, it is 

clear that the wavelet transformation followed by stepwise regression over-fit the data while the 

eight-component PLS regression did not.  As shown in Figure 5.19, the wavelet transformation 

followed by stepwise regression model overestimates the lower concentrations (750 ppm and 

below) and underestimates the higher concentrations (900 ppm and above) when analyzing the 

validation dataset.  Figure 5.20 illustrates how the PLS regression results in training data points 

that do not follow a near-exact trend line, but the validation data points have a much smaller 

deviation from the model established with the training data. 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 458.8 440.7 215.2 460.1

Gain – V 1023.6 676.9 470.8 444.0 290.0 492.6

Phase – T 0.0 0.0 424.2 438.5 287.3 184.4

Phase – V 539.7 566.7 429.5 461.1 303.7 242.0

Joined – T 0.0 0.0 443.0 436.8 279.0 695.6

Joined – V 543.3 671.7 432.3 448.8 296.3 622.0

Interaction – T 0.0 0.0 440.9 386.4 287.5 315.3

Interaction – V 466.5 612.6 415.2 413.4 289.0 337.6

Gain – T --- 388.3 455.0 309.9 244.0 420.4

Gain – V --- 453.7 368.0 294.9 267.2 444.2

Phase – T 456.7 253.3 446.0 356.8 227.1 464.5

Phase – V 379.0 551.1 396.9 418.7 263.7 400.1

Joined – T 456.7 140.9 443.3 345.1 282.0 75.1

Joined – V 379.0 474.9 389.5 386.9 305.8 161.0

Interaction – T 456.7 0.0 455.4 285.2 251.2 690.0

Interaction – V 379.0 736.8 424.1 311.5 275.8 95.4

Gain – T 446.0 446.5 449.7 446.6 323.8 55.4

Gain – V 448.2 565.7 444.5 511.1 529.4 79.1

Phase – T 274.4 250.9 458.7 409.4 286.2 125.2

Phase – V 478.2 471.6 458.3 430.6 350.4 121.7

Joined – T 106.1 142.0 456.5 394.8 365.2 20.1

Joined – V 496.3 469.1 452.6 402.9 365.3 54.9

Interaction – T 441.3 174.7 459.0 396.2 193.3 155.9

Interaction – V 438.5 659.7 453.7 410.5 249.7 143.9

Gain – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Gain – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Phase – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Joined – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – T 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7

Interaction – V 10266.7 10266.7 10266.7 10266.7 10266.7 10266.7
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Figure 5.19: Comparison of actual and predicted ammonia concentrations using wavelet 

transformation followed by stepwise regression on data from large probe sensor 

 

 

Figure 5.20: Comparison of actual and predicted ammonia concentrations with PLS 

regression on data from large probe sensor 
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5.4.2.3 Small Box Sensor 

When analyzing the full range of frequencies, the training models tend to over-fit the 

data, as most of the training R
2
 values were above 0.900 and only one validation R

2
 value was 

above 0.100.  Like the training results with the ethanol tests, the stepwise and wavelet 

transformation followed by stepwise regression all had R
2
 values of 1.000, the PLS regressions 

increase the R
2
 values with more components, and neural network regression tended to have the 

lowest R
2
 values and highest RMSE values of any regression technique. 

 

Limiting the data to the specific peak produced very mixed results.  For stepwise 

regression, the R
2
 values had a maximum of 0.339 for training and 0.081 for validation, with no 

models being made for any peaks with phase only data.  Among the other regression methods, 

the training R
2
 values had minimum, average, and maximum values of 0.181, 0.755, and 1.000, 

respectively; the validation R
2
 values, 0.000, 0.036, and 0.252, respectively. 
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Table 5.16: R
2
 values for ammonia with small box sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 1.000 1.000 0.719 0.892 0.987 0.188

Gain – V 0.022 0.004 0.050 0.031 0.034 0.009

Phase – T 1.000 1.000 0.729 0.926 0.981 0.546

Phase – V 0.174 0.002 0.005 0.021 0.011 0.041

Joined – T 1.000 1.000 0.749 0.926 0.987 0.693

Joined – V 0.003 0.015 0.015 0.040 0.032 0.067

Interaction – T 1.000 1.000 0.656 0.845 0.976 0.503

Interaction – V 0.000 0.047 0.027 0.031 0.034 0.029

Gain – T 0.188 0.666 0.644 0.859 0.986 0.602

Gain – V 0.000 0.004 0.076 0.112 0.063 0.138

Phase – T --- 0.942 0.621 0.902 0.964 0.807

Phase – V --- 0.000 0.003 0.006 0.008 0.031

Joined – T 0.188 1.000 0.671 0.895 0.974 0.193

Joined – V 0.000 0.001 0.034 0.004 0.003 0.031

Interaction – T 0.188 1.000 0.608 0.890 0.972 0.279

Interaction – V 0.000 0.039 0.007 0.013 0.028 0.252

Gain – T 0.135 0.181 0.561 0.824 0.940 0.592

Gain – V 0.001 0.001 0.007 0.043 0.008 0.020

Phase – T --- 0.273 0.530 0.822 0.912 0.925

Phase – V --- 0.016 0.040 0.000 0.002 0.009

Joined – T 0.135 0.870 0.572 0.858 0.986 0.903

Joined – V 0.001 0.004 0.052 0.008 0.001 0.054

Interaction – T 0.135 1.000 0.340 0.789 0.962 0.914

Interaction – V 0.001 0.023 0.089 0.015 0.005 0.000

Gain – T 0.339 0.737 0.505 0.776 0.965 0.932

Gain – V 0.081 0.028 0.063 0.008 0.001 0.058

Phase – T --- 0.802 0.572 0.754 0.897 0.977

Phase – V --- 0.040 0.015 0.095 0.098 0.000

Joined – T 0.339 0.701 0.493 0.799 0.930 0.704

Joined – V 0.081 0.117 0.046 0.007 0.074 0.033

Interaction – T 0.339 0.700 0.421 0.637 0.850 0.931

Interaction – V 0.081 0.060 0.087 0.005 0.114 0.008
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Table 5.17: RMSE values for ammonia with small box sensor 

 

5.4.2.4 Large Box Sensor 

The regressions for the entire range of frequencies have R
2
 values that followed the same 

pattern as many of the other sensor-contaminant combinations.  Stepwise regression and wavelet 

transformation followed by stepwise regression all had R
2
 values above 0.900 with training data, 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.0 0.0 401.9 271.7 103.3 816.6

Gain – V 899.8 867.0 861.0 901.0 876.0 1071.3

Phase – T 0.0 0.0 401.0 231.1 124.7 453.3

Phase – V 601.4 920.9 724.1 741.7 727.7 555.3

Joined – T 0.0 0.0 391.1 229.6 103.5 430.1

Joined – V 797.6 943.4 825.9 777.0 790.4 725.7

Interaction – T 0.0 0.0 416.2 326.9 139.1 646.8

Interaction – V 865.2 979.5 651.3 739.2 631.1 815.0

Gain – T 359.6 396.8 418.8 316.1 105.9 619.2

Gain – V 289.0 710.0 550.2 520.4 648.2 655.0

Phase – T --- 212.9 422.5 259.1 167.9 362.1

Phase – V --- 793.7 582.5 567.0 557.4 515.2

Joined – T 359.6 0.0 412.1 265.6 144.5 623.3

Joined – V 289.0 997.4 647.8 673.5 636.2 482.7

Interaction – T 359.6 0.0 420.6 276.0 149.5 640.4

Interaction – V 289.0 878.6 519.9 508.7 447.6 479.3

Gain – T 305.8 354.4 428.2 344.0 214.6 579.0

Gain – V 297.3 302.8 427.3 526.6 631.7 740.3

Phase – T --- 409.7 459.3 348.6 259.0 234.5

Phase – V --- 565.2 785.3 1122.5 1282.3 739.5

Joined – T 305.8 296.5 455.0 320.5 107.8 284.4

Joined – V 297.3 1158.2 946.3 1222.8 1283.5 595.1

Interaction – T 305.8 16.2 435.9 372.0 170.1 274.4

Interaction – V 297.3 1496.3 706.7 987.9 1353.0 632.5

Gain – T 414.9 389.1 457.8 354.1 167.0 220.5

Gain – V 559.3 563.3 685.7 699.8 808.3 953.9

Phase – T --- 360.9 450.8 395.2 276.8 131.3

Phase – V --- 976.1 809.4 861.7 949.8 756.7

Joined – T 414.9 405.9 459.0 368.6 229.3 427.2

Joined – V 559.3 809.5 683.2 845.3 1142.8 369.8

Interaction – T 414.9 416.0 454.3 442.4 328.8 234.8

Interaction – V 559.3 832.2 610.6 751.5 531.7 673.7
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yet only one R
2
 value above 0.200 with validation data.  Increasing the number of PLS 

components from four to six to eight generally improved the average R
2
 values from 0.433 to 

0.817 to 0.924 with training data, and from 0.333 to 0.382 to 0.348 with validation data.  Neural 

network regression had the best R
2
 values with the interaction data, with 0.664 for the training 

data and 0.427 for the validation data. 

 

Regression on the individual peaks had very mixed results, just as it did with the small 

box sensor with ammonia.  No stepwise models were created for any of the data for the 

individual peaks.  R
2
 values for the wavelet transformation followed by stepwise regression had 

an average of 0.609 and 0.169 for training and validation data, respectively.  Training RMSE 

values with PLS regressions tended to decrease with more components used; validation RMSE 

values followed the opposite trend.  Lastly, a great improvement was with the neural network on 

the third peak; the average R
2
 values were 0.922 and 0.743 for training and validation data, 

respectively. 
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Table 5.18: R
2
 values for ammonia with large box sensor 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 0.914 1.000 0.412 0.764 0.938 0.525

Gain – V 0.186 0.169 0.280 0.277 0.343 0.171

Phase – T 0.981 1.000 0.419 0.788 0.904 0.032

Phase – V 0.007 0.026 0.344 0.422 0.322 0.103

Joined – T 1.000 1.000 0.428 0.890 0.944 0.195

Joined – V 0.187 0.292 0.348 0.397 0.372 0.032

Interaction – T 1.000 1.000 0.473 0.825 0.911 0.664

Interaction – V 0.108 0.127 0.361 0.430 0.354 0.427

Gain – T --- 0.688 0.476 0.778 0.952 0.326

Gain – V --- 0.191 0.217 0.228 0.211 0.198

Phase – T --- 0.118 0.381 0.789 0.909 0.560

Phase – V --- 0.208 0.152 0.242 0.253 0.495

Joined – T --- 0.847 0.593 0.770 0.950 0.035

Joined – V --- 0.292 0.153 0.440 0.400 0.128

Interaction – T --- 0.884 0.290 0.660 0.853 0.063

Interaction – V --- 0.142 0.170 0.205 0.200 0.008

Gain – T --- 0.313 0.507 0.723 0.889 0.666

Gain – V --- 0.122 0.403 0.455 0.407 0.177

Phase – T --- 0.742 0.508 0.683 0.871 0.435

Phase – V --- 0.050 0.342 0.238 0.183 0.272

Joined – T --- 0.204 0.417 0.675 0.883 0.815

Joined – V --- 0.114 0.419 0.275 0.243 0.480

Interaction – T --- 0.969 0.455 0.673 0.846 0.719

Interaction – V --- 0.257 0.450 0.420 0.316 0.222

Gain – T --- 0.727 0.229 0.709 0.839 0.901

Gain – V --- 0.096 0.236 0.312 0.350 0.702

Phase – T --- 0.241 0.397 0.616 0.842 0.949

Phase – V --- 0.191 0.304 0.491 0.337 0.753

Joined – T --- 0.764 0.435 0.669 0.817 0.941

Joined – V --- 0.137 0.317 0.400 0.381 0.725

Interaction – T --- 0.811 0.431 0.599 0.813 0.897

Interaction – V --- 0.228 0.301 0.420 0.384 0.790
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Table 5.19: RMSE values for ammonia with large box sensor 

 

 

 

Stepwise Wavelet PLS 4 PLS 6 PLS 8

Neural 

Network

Gain – T 250.1 0.0 431.0 361.5 213.2 476.6

Gain – V 1691.6 1472.9 759.9 2049.1 2205.3 949.1

Phase – T 123.6 0.0 420.9 314.2 262.1 385.3

Phase – V 965.1 1710.5 599.9 982.8 1948.0 1003.1

Joined – T 0.0 0.0 444.6 269.0 205.2 644.8

Joined – V 1011.6 954.1 699.3 1646.6 1966.7 619.4

Interaction – T 0.0 0.0 425.7 302.5 251.5 545.5

Interaction – V 1119.8 1231.8 756.1 1302.9 1979.5 734.1

Gain – T --- 392.1 444.7 363.2 190.1 586.5

Gain – V --- 991.4 1494.7 1561.7 1690.4 455.4

Phase – T --- 296.4 406.2 347.0 258.8 363.5

Phase – V --- 443.0 745.7 1388.6 1718.2 483.7

Joined – T --- 305.2 342.2 358.7 193.5 545.2

Joined – V --- 1126.4 433.9 624.7 1279.1 673.2

Interaction – T --- 283.5 378.0 409.0 306.0 314.9

Interaction – V --- 1529.1 614.0 1637.3 1577.5 330.0

Gain – T --- 373.7 439.8 402.4 269.3 389.0

Gain – V --- 630.2 507.0 835.4 581.8 647.2

Phase – T --- 387.4 444.7 415.2 290.9 345.2

Phase – V --- 2694.0 1167.4 2006.0 2784.9 483.4

Joined – T --- 370.6 452.6 409.7 289.8 455.9

Joined – V --- 670.1 583.4 2000.5 2461.3 726.1

Interaction – T --- 158.6 442.7 410.1 312.9 459.1

Interaction – V --- 1385.1 564.7 973.0 1350.1 766.3

Gain – T --- 384.9 386.6 392.7 330.7 253.0

Gain – V --- 896.0 643.0 1456.1 1261.0 502.7

Phase – T --- 393.6 423.6 404.7 320.1 200.9

Phase – V --- 383.9 537.7 556.5 1912.8 349.3

Joined – T --- 383.5 433.5 410.9 337.8 212.5

Joined – V --- 1280.1 712.0 1094.8 1588.8 465.4

Interaction – T --- 333.9 425.5 397.8 345.5 262.3

Interaction – V --- 1284.1 714.8 677.9 1399.5 444.5
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 5.5 Combined Tests 

In addition to analyzing the three contaminants individually, the data from all tests were 

pooled together and run through two different neural network analyses.  The first was to 

recognize the presence of contaminants with the second to identify which contaminant was 

present. 

 5.5.1 Recognizing Presence of a Contaminant 

This procedure was identical to that described in Section 4.6.1 and used in Sections 5.2, 

5.3.1, and 5.4.1.  Here, the data from all three contaminants were combined and then run through 

the neural network.  After combining these data, there are 12, 36, 36, and six iterations with 

ambient air, air with ammonia, air with ethanol, and air with glycerol, respectively, for both the 

training and validation datasets. 

 

In general, the pooled data did not show a major difference from using data with the 

individual contaminants.  However, there were many false positives, especially with the large 

box sensor.  Overall, the success rates were 73.4%, 98.1%, 96.7%, and 94.8% for measuring 

ambient air, air with ammonia, air with ethanol, and air with glycerol, respectively.  Table 5.20 

details the complete data, with ‗T‘ and ‗V‘ for the training and validation data, respectively. 

 

Table 5.20: Success rates of neural network for detecting contaminants with pooled data 

 Ambient Air Air with Ammonia Air with Ethanol Air with Glycerol 

Small Probe 
Gain – T 

8 of 12 
(67%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

Small Probe 
Gain – V 

7 of 12 
(58%) 

36 of 36 
(100%) 

34 of 36 
(94%) 

6 of 6 
(100%) 

Small Probe 
Phase – T 

11 of 12 
(92%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

Small Probe 
Phase – V 

10 of 12 
(83%) 

36 of 36 
(100%) 

30 of 36 
(83%) 

6 of 6 
(100%) 

Large Probe 
Gain – T 

12 of 12 
(100%) 

36 of 36 
(100%) 

35 of 36 
(97%) 

6 of 6 
(100%) 

Large Probe 
Gain – V 

10 of 12 
(83%) 

35 of 36 
(97%) 

36 of 36 
(100%) 

5 of 6 
(83%) 

Large Probe 
Phase – T 

11 of 12 
(92%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

Large Probe 
Phase – V 

12 of 12 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 
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Continuation of Table 5.20 

 Ambient Air Air with Ammonia Air with Ethanol Air with Glycerol 

Small Box 
Gain – T 

9 of 12 
(75%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

5 of 6 
(83%) 

Small Box 
Gain – V 

9 of 12 
(75%) 

31 of 36 
(86%) 

35 of 36 
(97%) 

5 of 6 
(83%) 

Small Box 
Phase – T 

9 of 12 
(75%) 

36 of 36 
(100%) 

35 of 36 
(97%) 

6 of 6 
(100%) 

Small Box 
Phase – V 

8 of 12 
(67%) 

33 of 36 
(92%) 

29 of 36 
(81%) 

4 of 6 
(67%) 

Large Box 
Gain – T 

10 of 12 
(83%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

Large Box 
Gain – V 

1 of 12 
(8%) 

34 of 36 
(94%) 

35 of 36 
(97%) 

6 of 6 
(100%) 

Large Box 
Phase – T 

12 of 12 
(100%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

Large Box 
Phase – V 

2 of 12 
(17%) 

36 of 36 
(100%) 

36 of 36 
(100%) 

6 of 6 
(100%) 

 

 5.5.2 Identifying the Contaminant Present 

Instead of using ‗0‘ as a target value for ambient air and ‗1‘ for contaminated air, target 

values were assigned to the contaminants to order them by increasing dipole moments.  Thus, ‗0‘ 

was used for ambient air, ‗1‘ for ammonia, ‗2‘ for ethanol, and ‗3‘ for glycerol.  After training 

the neural network, the outputs were classified as being ambient air or having one of the 

contaminants.  An output of less than 0.5 was ambient air, 0.5 to 1.5 was ammonia, 1.5 to 2.5 

was ethanol, and 2.5 or above was glycerol. 

 

While the success overall success rates for identifying the contaminants were not as 

strong as those for determining the presence of contaminants.  Many of the tests with ambient air 

and air with glycerol were not identified successfully.  However, especially with the small and 

large probe sensors, the air with ammonia and air with ethanol were correctly identified in 

several cases.  Table 5.21 overviews the success rates of these tests; Appendix O, Appendix P, 

Appendix Q, and Appendix R list each individual test with the actual conditions, the output value 

from the neural network analysis, and the resulting classification. 
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Table 5.21: Success rates of neural network for identifying contaminants with pooled data 

 Ambient Air Air with Ammonia Air with Ethanol Air with Glycerol 

Small Probe 
Gain – T 

7 of 12 
(58%) 

36 of 36 
(100%) 

32 of 36 
(89%) 

4 of 6 
(67%) 

Small Probe 
Gain – V 

5 of 12 
(42%) 

32 of 36 
(89%) 

24 of 36 
(67%) 

4 of 6 
(67%) 

Small Probe 
Phase – T 

7 of 12 
(58%) 

30 of 36 
(83%) 

27 of 36 
(75%) 

4 of 6 
(67%) 

Small Probe 
Phase – V 

6 of 12 
(50%) 

25 of 36 
(69%) 

15 of 36 
(42%) 

4 of 6 
(67%) 

Large Probe 
Gain – T 

5 of 12 
(42%) 

34 of 36 
(94%) 

32 of 36 
(89%) 

3 of 6 
(50%) 

Large Probe 
Gain – V 

4 of 12 
(33%) 

27 of 36 
(75%) 

25 of 36 
(69%) 

0 of 6 
(0%) 

Large Probe 
Phase – T 

3 of 12 
(25%) 

28 of 36 
(78%) 

31 of 36 
(86%) 

1 of 6 
(17%) 

Large Probe 
Phase – V 

3 of 12 
(25%) 

18 of 36 
(50%) 

29 of 36 
(81%) 

0 of 6 
(0%) 

Small Box 
Gain – T 

9 of 12 
(75%) 

28 of 36 
(78%) 

33 of 36 
(92%) 

4 of 6 
(67%) 

Small Box 
Gain – V 

4 of 12 
(33%) 

12 of 36 
(33%) 

22 of 36 
(61%) 

0 of 6 
(0%) 

Small Box 
Phase – T 

11 of 12 
(92%) 

33 of 36 
(92%) 

35 of 36 
(97%) 

1 of 6 
(17%) 

Small Box 
Phase – V 

5 of 12 
(42%) 

22 of 36 
(61%) 

23 of 36 
(64%) 

0 of 6 
(0%) 

Large Box 
Gain – T 

12 of 12 
(100%) 

29 of 36 
(81%) 

32 of 36 
(89%) 

2 of 6 
(33%) 

Large Box 
Gain – V 

4 of 12 
(33%) 

22 of 36 
(61%) 

21 of 36 
(58%) 

3 of 6 
(50%) 

Large Box 
Phase – T 

9 of 12 
(75%) 

30 of 36 
(83%) 

29 of 36 
(81%) 

5 of 6 
(83%) 

Large Box 
Phase – V 

2 of 12 
(17%) 

22 of 36 
(61%) 

26 of 36 
(72%) 

2 of 6 
(33%) 
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CHAPTER 6 - Conclusions 

6.1 Review of Research Objectives 

6.1.1 Construction of Sensors 

With stainless steel plates as the main sensing component, two probe-style sensors were 

constructed to go along with two box-style sensors constructed in previous work.  Materials for 

the two probe-style sensors were under $100.  These sensors all withstood the repeated testing, 

cleaning, and drying for measuring the contaminants at the various concentrations. 

6.1.2 Investigate Sensor Sensitivity 

From the sensor sensitivity tests, sample temperature and cable position were found to be 

variables that had a significant impact on the frequency response.  Conversely, the sensor 

readings were robust to the changes in the sensor vertical position, sensor radial position, the 

presence of a thermometer, and the surface on which the sample was placed. 

 6.1.3 Code for Analyzing Differences 

A SAS
®
 program is run on the initial data to give p-values for differences between 

measurements with and without contaminants.  These p-values are then passed through a 

MATLAB
®
 program that uses the Holm-Bonferroni method to determine which differences are 

truly significant.  Appendix C contains both programs in their entirety.  For applying a 

quantitative method for qualitative detection, Appendix D shows the neural network program 

that was used for this analysis. 

 6.1.4 Identifying Frequencies with Significantly Different Measurements 

Each contaminant had a unique set of frequencies where measurements were significantly 

different between ambient air and air with contaminants.  Appendix J gives the full list of 

frequencies where the differences were statistically different. 

 6.1.5 Code for Regression Analysis 

MATLAB® programs for performing each of the various types of regressions were 

written and are included in Appendix E through Appendix H.  Furthermore, two additional 

programs were written to import and trim the data (Appendix I). 
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 6.1.6 Calculating R
2
 and RMSE Values 

Table 5.3 through Table 5.10 and Table 5.12 through Table 5.19 give all the R
2
 and 

RMSE values for regressions from each contaminant, sensor, dataset, and regression method 

used.  In several cases, the R
2
 values were 1.000 for the training datasets, but the corresponding 

validation R
2
 values were very low.  However, the best regression had R

2
 values of 1.000 and 

0.996 for the training and validation datasets; this was using neural network regression with the 

second peak of the gain and phase data combined from the large probe sensor with ammonia. 

6.2 Summary of Results 

Overall, the qualitative detection methods tend to outperform the quantitative regression 

methods.  In general, the probe style sensors tended to outperform the box style sensors, and the 

larger plate areas tended to outperform the smaller plate areas.  Partial least squares regression 

did the best job of constructing a model without over-fitting, and including more components 

with PLS improved the regression.  Most cases did not show that restricting the regressions to 

individual peaks was advantageous over using the entire frequency range. 

6.2.1 Glycerol Tests 

Run only on a detection basis, measurements at several frequencies showed a significant 

difference between ambient air and air with glycerol present.  Gain data showed a total of 7, 89, 

28, and 52 frequencies with significantly different measurements for the small probe, large 

probe, small box, and large box, respectively.  Phase data had 8, 107, 16, and 167 significantly 

different measurements for each sensor.  Neural network analysis had an overall success rate of 

95.8% for detecting glycerol, with the large box having no errors. 

6.2.2 Ethanol Tests 

Distinguishing between ambient air and 5,000 ppm ethanol showed that 113, 65, 39, and 

50 frequencies showed different gain measurements for the small probe, large probe, small box, 

and large box, respectively.  For 115, 249, 54, and 147 measurements with the respective 

sensors, the phase data showed significant differences.  Detection with the neural network 

analysis had an overall success rate of 93.9% accuracy despite each sensor having some errors. 

 



84 

 

Regression analysis on the range of concentrations showed that many models tended to 

over-fit the training data, producing strong training R
2
 values and poor validation R

2
 values.  

However, partial least squares regression tended to correct this problem, producing lower 

training and higher validation R
2
 values. 

6.2.3 Ammonia Tests 

Detection tests comparing ambient air with 300 ppm ammonia had significant differences 

at many more frequencies than either glycerol or ethanol had.  In total 237, 514, 272, and 40 

frequencies had significantly different gain measurements for the small probe, large probe, small 

box, and large box sensors, respectively.  Likewise, measurements at 419, 594, 293, and 27 

frequencies were found with the phase data from the four sensors.  Neural network-based 

detection was successful in 97.1% of all cases, with the small probe being 100% accurate and the 

large probe only having one error. 

 

Running the regression methods on the series of concentrations had some instances of 

over-fitting, similar to the regressions with ethanol.  These problems were not as common as the 

regressions with ethanol, but still some validation R
2
 values were below 0.010.  However, 

especially with the large probe sensor, several validation R
2
 values were near or above 0.900, 

with the maximum being 0.996. 

 6.2.4 Combined Tests 

Using the qualitative detection tests with data pooled from all contaminants did not show 

a significant change between using the tests with each contaminant individually.  The major 

problem with these tests was the incidence of false positives.  Yet, contaminated air was 

identified correctly in well over 90% of the cases.  Identifying the specific contaminant showed 

some promise, especially with ammonia and ethanol. 
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CHAPTER 7 - Recommendations for Future Research 

Despite the work done on the project to date, these areas still need further work: 

1. Improvement of the sensor construction.  Ideally, each of the metal plates would be cut out 

with a laser cutter to give much higher precision and uniformity.  Also, the top of the sensors 

could be improved by creating a single plastic piece that accommodates each metal plate. 

2. Analysis of the sensor parameters.  So many factors of the sensor construction can impact the 

gain and phase readings.  The effects of the number of plates, plate size, plate material, and 

gap between plates are clearly important variables. 

3. Expansion of the frequency range.  A larger frequency range, on the order of 10
0
 to 10

9
 Hz, 

should be utilized to give a more widespread, accurate spectrum. 

4. Establish the minimum detection limits for each contaminant. 

5. Ensure that the distribution of contaminants is uniform.  This could be done with a fan that 

distributes the air but is turned off when reading the permittivity data. 

6. Run detection tests at each level of ethanol and ammonia.  While these tests were run at the 

concentrations set forth in the standards, running the detection tests at each frequency level 

would give a more complete picture of the sensors‘ ability to measure the contaminant. 

7. Investigation of the interaction between contaminants.  This work only investigated a single 

contaminant at one time.  In practice, several contaminants might be produced in a given 

process.  It is possible that such a combination of contaminants shows a significant difference 

in frequency response.  Furthermore, humidity could also play a major role in permittivity 

measurements. 

8. Run tests in the field.  As these tests were all run in a sealed chamber, it is unlikely that the 

steady-state conditions would produce the same frequency response as in transient 

conditions.  Air movement, contaminant variations, and temperature inconsistencies would 

all likely have a great impact on the measurements. 
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Appendix A - Design of Sensors 

The following figures illustrate the detail of the stainless steel plates for the two probes.  

All dimensions are given in inches and millimeters. 

 

 

Figure A.1: Plate for the small probe 

 

Figure A.2: Plate for the large probe 
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Appendix B - Code for Sensor Sensitivity Tests 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Boundary Height Function                                      % 
3 %                                                               % 
4 % This program takes Excel spreadsheets from the tests to check % 
5 % for the sensitivity to the height of the sensor, then plots   % 
6 % either the gain or phase data.                                % 
7 %                                                               % 
8 % May 14, 2012                                                  % 
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

10  
11 function Boundary_Height(GP) 

12  
13 %Input: 
14   %GP - Graph gain or phase (Gain - 1, Phase - 2) 

15  
16 clc; 

17  
18 %Read data from Excel spreadsheet and check for proper size 
19 data0 = Average_Iterations('051412-12'); 
20 data1 = Average_Iterations('051412-13'); 
21 data2 = Average_Iterations('051412-14'); 
22 data3 = Average_Iterations('051412-15'); 
23 data4 = Average_Iterations('051412-16'); 
24 data5 = Average_Iterations('051412-17'); 
25 data6 = Average_Iterations('051412-18'); 
26 data7 = Average_Iterations('051412-19'); 
27 data8 = Average_Iterations('051412-20'); 
28 data9 = Average_Iterations('051412-21'); 
29 data10 = Average_Iterations('051412-22'); 
30 data11 = Average_Iterations('051412-23'); 
31 data12 = Average_Iterations('051412-24'); 
32 data13 = Average_Iterations('051412-25'); 
33 data14 = Average_Iterations('051412-26'); 
34 [m n] = size(data0); 

35  
36 if((m ~= 609) || (n ~= 3)) 
37   error('The data dimensions are not valid.') 
38 end 

39  
40 Frequency = data0(:, 1); 

41  
42 %Plot the averaged data versus frequency on a linear scale 
43 hold off 

44  
45 if(GP == 1) 
46   plot(Frequency, data0(:, 2), 'b-', Frequency, data1(:, 2), 'b--', 

Frequency, data2(:, 2), 'b:', Frequency, data3(:, 2), 'g-', Frequency, 

data4(:, 2), 'g--', Frequency, data5(:, 2), 'g:', Frequency, data6(:, 

2), 'r-', Frequency, data7(:, 2), 'r--', Frequency, data8(:, 2), 'r:', 

Frequency, data9(:, 2), 'c-', Frequency, data10(:, 2), 'c--', 

Frequency, data11(:, 2), 'c:', Frequency, data12(:, 2), 'm-', 

Frequency, data13(:, 2), 'm--', Frequency, data14(:, 2), 'm:') 
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47   ylabel('Gain Signal', 'FontSize', 13) 
48   legend('1 cm', '1 cm', '1 cm', '3 cm', '3 cm', '3 cm', '5 cm', '5 

cm', '5 cm', '7 cm', '7 cm', '7 cm', '9 cm', '9 cm', '9 cm') 
49 end 

50  
51 if(GP == 2) 
52   plot(Frequency, data0(:, 3), 'b-', Frequency, data1(:, 3), 'b--', 

Frequency, data2(:, 3), 'b:', Frequency, data3(:, 3), 'g-', Frequency, 

data4(:, 3), 'g--', Frequency, data5(:, 3), 'g:', Frequency, data6(:, 

3), 'r-', Frequency, data7(:, 3), 'r--', Frequency, data8(:, 3), 'r:', 

Frequency, data9(:, 3), 'c-', Frequency, data10(:, 3), 'c--', 

Frequency, data11(:, 3), 'c:', Frequency, data12(:, 3), 'm-', 

Frequency, data13(:, 3), 'm--', Frequency, data14(:, 3), 'm:') 
53   ylabel('Phase Signal', 'FontSize', 13) 
54   legend('1 cm', '1 cm', '1 cm', '3 cm', '3 cm', '3 cm', '5 cm', '5 

cm', '5 cm', '7 cm', '7 cm', '7 cm', '9 cm', '9 cm', '9 cm') 
55 end 

56  
57 xlabel('Frequency (Hz)', 'FontSize', 13) 
58 axis([0 120000000 150 500]) 
59 grid on 
60 hold on 

61  

62  
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
64 % Average Iterations Function                                   % 
65 %                                                               % 
66 % This program takes an Excel spreadsheet called 'FileName',    % 
67 % processes the gain and phase data, then returns a matrix with % 
68 % the frequency, average gain, and average phase data.          % 
69 %                                                               % 
70 % March 5, 2012                                                 % 
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

72  
73 function [NewData] = Average_Iterations(File1) 

74  
75 %Inputs: 
76   %File1 - XLS file where data is stored 

77  
78 %Outputs: 
79   %NewData - Matrix with frequency, gain, and phase 

80  
81 clc; 

82  
83 %Read data from Excel spreadsheets and check for proper size 
84 data1 = xlsread(strcat(File1,'.xls')); 
85 [m1 n1] = size(data1); 

86  
87 if((m1 ~= 1910) || (n1 ~= 4)) 
88   error('The data dimensions are not valid.') 
89 end 

90  
91 NewData = zeros(609, 3); 

92  
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93 %Copy the data from the original file to the new matrix 
94 for i = 1 : 609 
95   %Frequency 
96   NewData(i, 1) = 10000 * data1(i + 27, 2); 

97  
98   %Gain 
99   NewData(i, 2) = (data1(i + 27, 3) + data1(i + 663, 3) + data1(i + 

1299, 3)) / 3; 

100  
101   %Phase 
102   NewData(i, 3) = (data1(i + 27, 4) + data1(i + 663, 4) + data1(i + 

1299, 4)) / 3; 
103 end 
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Appendix C - Code for Detection Tests 

SAS
®
 code for returning p-values: 

 

1 proc glm data=responses; 

2      class Glycerol Freq; 

3      model Gain = Glycerol Freq Glycerol*Freq; 

4      lsmeans Glycerol*Freq / slice=Freq; 

5 run; 

 

 

MATLAB
®
 code for the Holm-Bonferroni comparison test: 

 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Holm Comparison Function                                      % 
3 %                                                               % 
4 % This program takes Excel spreadsheet corresponding to the     % 
5 % Sensor, Data, and Contaminant parameters, and performs the    % 
6 % Holm-Bonferroni comparison for each frequency.  The Excel     % 
7 % spreadsheet must have the frequency and p-values in the two   % 
8 % columns, sorted by increasing p-values.                       % 
9 %                                                               % 

10 % July 16, 2012                                                 % 
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

12  
13 function Holm_Comparison(Sensor, Data, Contaminant, Alpha) 

14  
15 %Inputs: 
16   %Sensor - Sensor for data ('SP' 'LP' 'SB' or 'LB') 
17   %Data - Type of data to plot (Gain - 'G', Phase - 'P') 
18   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 
19   %Alpha - Level of significance 

20  
21 clc; 

22  
23 %Import Excel file where data is stored 
24 data = xlsread(strcat('Comparison', Sensor, Data, Contaminant,'.xls')); 
25 [m n] = size(data); 

26  
27 if(n ~= 2) 
28   error('The input data dimensions are not valid.') 
29 end 

30  
31 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
32   error('The Sensor parameter is not valid.') 
33 end 
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34  
35 if((strcmp(Data, 'G') == 0) && (strcmp(Data, 'P') == 0)) 
36   error('The Data parameter is not valid.') 
37 end 

38  
39 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
40   error('The Contaminant parameter is not valid.') 
41 end 

42  
43 %Perform Holm-Bonferroni comparison 
44 Significant = 1; 
45 Iteration = 1; 
46 while((Significant == 1) && (Iteration < m)) 
47   if(data(Iteration, 2) < (Alpha / (m - Iteration + 1))) 
48     fprintf('%i\n', data(Iteration, 1)) 
49     Iteration = Iteration + 1; 
50   else 
51     fprintf('Data found insignificant at %i \n', data(Iteration, 1)) 
52     Significant = 0; 
53   end 
54 end 
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Appendix D - Neural Network Detection Program 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Neural Detection Function                                     % 
3 %                                                               % 
4 % This program runs a neural network-based comparison to detect % 
5 % the presence of contaminants, using ambient air with an       % 
6 % output of 0 and contaminated air with an output of 1.         % 
7 %                                                               % 
8 % Adapted from Demuth and Beale (2004)                          % 
9 %                                                               % 

10 % July 22, 2012                                                 % 
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

12  
13 function Neural_Comparison(Sensor, Contaminant) 

14  
15 %Inputs: 
16   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
17   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 

18  
19 clc; 

20  
21 %Check for proper Sensor and Contaminant parameters 
22 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
23   error('The Sensor parameter is not valid.') 
24 end 

25  
26 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
27   error('The Contaminant parameter is not valid.') 
28 end 

29  
30 %Read data from Import Data function 
31 [XT YT XV YV] = Import_Data(Sensor, Contaminant); 

32  
33 %Run the neural network comparison for entire region of frequencies 
34 Compare_NN(XT, YT, XV, YV, Sensor, 'G') 
35 Compare_NN(XT, YT, XV, YV, Sensor, 'P') 

36  
37 function Compare_NN(XT, YT, XV, YV, Sensor, Data) 

38  
39 if(strcmp(Data, 'G')) 
40   str1 = 'gain'; 
41 elseif(strcmp(Data, 'P')) 
42   str1 = 'phase'; 
43 end 

44  
45 %Trim data to specific range and create neural network 
46 [XT1 YT1 XV1 YV1] = Trim_Data(XT, YT, XV, YV, Sensor, 0, Data); 
47 for i = 1 : length(YT1) 
48   if(YT1(i, 1) ~= 0) 
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49     YT1(i, 1) = 1; 
50   end 
51   if(YV1(i, 1) ~= 0) 
52     YV1(i, 1) = 1; 
53   end 
54 end 
55 XT1 = XT1'; YT1 = YT1'; XV1 = XV1'; 

56  
57 net = fitnet(10); 
58 net.inputs{1}.processFcns = {'removeconstantrows', 'mapminmax'}; 
59 net.outputs{2}.processFcns = {'removeconstantrows', 'mapminmax'}; 

60  
61 net.divideFcn = 'dividerand'; 
62 net.divideMode = 'sample'; 
63 net.divideParam.trainRatio = 0.60; 
64 net.divideParam.valRatio = 0.20; 
65 net.divideParam.testRatio = 0.20; 
66 net.trainFcn = 'trainlm'; 
67 net.performFcn = 'mse'; 

68  
69 [net, ~] = train(net, XT1, YT1); 

70  
71 %Use neural network to predict presence of contaminants in training 

dataset 
72 fprintf('Using %s data:\n', str1) 
73 yfit = (net(XT1))'; 
74 for i = 1 : length(yfit) 
75   if(yfit(i, 1) >= 0.5) 
76     fprintf('  Contaminants detected at %i ppm - Training\n', YT(i, 1)) 
77   else 
78     fprintf('  No contaminants detected at %i ppm - Training\n', YT(i, 

1)) 
79   end 
80 end 

81  
82 %Use neural network to predict presence of contaminants in validation 

dataset 
83 yfit = (net(XV1))'; 
84 for i = 1 : length(yfit) 
85   if(yfit(i, 1) >= 0.5) 
86     fprintf('  Contaminants detected at %i ppm - Validation\n', YV(i, 

1)) 
87   else 
88     fprintf('  No contaminants detected at %i ppm - Validation\n', 

YV(i, 1)) 
89   end 
90 end 
91 fprintf('\n') 
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Appendix E - Stepwise Regression Program 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Stepwise Regression Function                                  % 
3 %                                                               % 
4 % This program runs a stepwise regression on the data from the  % 
5 % entered sensor and contaminant, including all possible        % 
6 % combinations of data and frequency subsets.                   % 
7 %                                                               % 
8 % July 6, 2012                                                  % 
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

10  
11 function Stepwise_Regression(Sensor, Contaminant) 

12  
13 %Inputs: 
14   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
15   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 

16  
17 clc; 

18  
19 %Check for proper Sensor and Contaminant parameters 
20 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
21   error('The Sensor parameter is not valid.') 
22 end 

23  
24 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
25   error('The Contaminant parameter is not valid.') 
26 end 

27  
28 %Read data from Import Data function 
29 [XT YT XV YV] = Import_Data(Sensor, Contaminant); 

30  
31 %Run Stepwise for entire region of frequencies 
32 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 0, 'G') 
33 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 0, 'P') 
34 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 0, 'J') 
35 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 0, 'I') 

36  
37 %Run Stepwise for first region of frequencies 
38 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 1, 'G') 
39 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 1, 'P') 
40 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 1, 'J') 
41 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 1, 'I') 

42  
43 %Run Stepwise for second region of frequencies 
44 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 2, 'G') 
45 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 2, 'P') 
46 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 2, 'J') 
47 Calculate_Stepwise(XT, YT, XV, YV, Sensor, 2, 'I') 
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48 %Check third region for small box and large box sensors 
49 if((strcmp(Sensor, 'SB') == 1) || (strcmp(Sensor, 'LB') == 1)) 
50   Calculate_Stepwise(XT, YT, XV, YV, Sensor, 3, 'G') 
51   Calculate_Stepwise(XT, YT, XV, YV, Sensor, 3, 'P') 
52   Calculate_Stepwise(XT, YT, XV, YV, Sensor, 3, 'J') 
53   Calculate_Stepwise(XT, YT, XV, YV, Sensor, 3, 'I') 
54 end 

55  
56 function Calculate_Stepwise(XT, YT, XV, YV, Sensor, Peak, Data) 

57  
58 if(strcmp(Data, 'G')) 
59   str1 = 'gain'; 
60   StartFreq = [1; Frequency_List(Sensor, Peak)]; 
61 elseif(strcmp(Data, 'P')) 
62   str1 = 'phase'; 
63   StartFreq = [1; Frequency_List(Sensor, Peak)]; 
64 elseif(strcmp(Data, 'J')) 
65   str1 = 'gain and phase'; 
66   StartFreq = [1; Frequency_List(Sensor, Peak); Frequency_List(Sensor, 

Peak)]; 
67 elseif(strcmp(Data, 'I')) 
68   str1 = 'interaction'; 
69   StartFreq = [1; Frequency_List(Sensor, Peak); Frequency_List(Sensor, 

Peak); Frequency_List(Sensor, Peak)]; 
70 end 

71  
72 if(Peak == 1) 
73   str2 = 'first peak'; 
74 elseif(Peak == 2) 
75   str2 = 'second peak'; 
76 elseif(Peak == 3) 
77   str2 = 'third peak'; 
78 else 
79   str2 = 'all frequencies'; 
80 end 

81  
82 %Trim data to specific range and perform stepwise regression 
83 [XT1 YT1 XV1 YV1] = Trim_Data(XT, YT, XV, YV, Sensor, Peak, Data); 
84 [beta, ~, ~, inmodel, stats] = stepwisefit(XT1, YT1, 'display', 'off'); 

85  
86 %List the frequencies used in the model 
87 if(sum(inmodel) ~= 0) 
88   TrimmedFreq = StartFreq.*inmodel'; 
89   TrimmedFreq = TrimmedFreq(TrimmedFreq ~= 0); 
90   xlswrite(strcat('Freq', Sensor, num2str(Peak), Data, '.xls'), 

TrimmedFreq); 
91 end 

92  
93 %Fit training dataset to the model then calculate the R^2 and RMSE 

values 
94 if(sum(inmodel) ~= 0) 
95   [m, ~] = size(XT1); 
96   yfit = zeros(m, 1); 
97   for i = 1 : m 
98     yfit(i, 1) = (XT1(i, :)) * (beta.*inmodel'); 
99   end 
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100   yfit = yfit + stats.intercept; 
101   for i = 1 : length(yfit) 
102     if(yfit(i, 1) < 0) 
103       yfit(i, 1) = 0; 
104     end 
105   end 
106   [~, m, b] = regression(YT1', yfit'); 
107   SSE = sum((yfit - (b + m.*YT1)).^2); 
108   SSyy = sum((yfit - mean(yfit)).^2); 
109   Rsq = 1 - SSE/SSyy; 
110   RMSE = sqrt(SSE / (length(YT1) – 2)); 
111   fprintf('Training R^2 for %s data, %s:    %f\n', str1, str2, Rsq) 
112   fprintf('Training RMSE for %s data, %s:   %f\n', str1, str2, RMSE) 
113 else 
114   fprintf('Training R^2 for %s data, %s:    N/A, no model made\n', 

str1, str2) 
115   fprintf('Training RMSE for %s data, %s:   N/A, no model made\n', 

str1, str2) 
116 end 

117  
118 %Fit validation dataset to the model then calculate the R^2 and RMSE 

values 
119 if(sum(inmodel) ~= 0) 
120   [m, ~] = size(XV1); 
121   yfit = zeros(m, 1); 
122   for i = 1 : m 
123     yfit(i, 1) = (XV1(i, :)) * (beta.*inmodel'); 
124   end 
125   yfit = yfit + stats.intercept; 
126   for i = 1 : length(yfit) 
127     if(yfit(i, 1) < 0) 
128       yfit(i, 1) = 0; 
129     end 
130   end 
131   [~, m, b] = regression(YV1', yfit'); 
132   SSE = sum((yfit - (b + m.*YV1)).^2); 
133   SSyy = sum((yfit - mean(yfit)).^2); 
134   Rsq = 1 - SSE/SSyy; 
135   RMSE = sqrt(SSE / (length(YT1) – 2)); 
136   fprintf('Validation R^2 for %s data, %s:  %f\n', str1, str2, Rsq) 
137   fprintf('Validation RMSE for %s data, %s: %f\n', str1, str2, RMSE) 
138 else 
139   fprintf('Validation R^2 for %s data, %s:  N/A, no model made\n', 

str1, str2) 
140   fprintf('Validation RMSE for %s data, %s: N/A, no model made\n', 

str1, str2) 
141 end 
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Appendix F - Wavelet Regression Program 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Wavelet Regression Function                                   % 
3 %                                                               % 
4 % This program runs a wavelet transformation followed by a      % 
5 % stepwise regression on the data from the entered sensor and   % 
6 % contaminant, including all possible combinations of data and  % 
7 % frequency subsets.                                            % 
8 %                                                               % 
9 % July 11, 2012                                                 % 

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

11  
12 function Wavelet_Regression(Sensor, Contaminant) 

13  
14 %Inputs: 
15   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
16   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 

17  
18 clc; 

19  
20 %Check for proper Sensor and Contaminant parameters 
21 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
22   error('The Sensor parameter is not valid.') 
23 end 

24  
25 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
26   error('The Contaminant parameter is not valid.') 
27 end 

28  
29 %Read data from Import Data function 
30 [XT YT XV YV] = Import_Data(Sensor, Contaminant); 

31  
32 %Run Wavelet and Stepwise for entire region of frequencies 
33 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 0, 'G') 
34 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 0, 'P') 
35 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 0, 'J') 
36 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 0, 'I') 

37  
38 %Run Wavelet and Stepwise for first region of frequencies 
39 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 1, 'G') 
40 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 1, 'P') 
41 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 1, 'J') 
42 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 1, 'I') 

43  
44 %Run Wavelet and Stepwise for second region of frequencies 
45 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 2, 'G') 
46 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 2, 'P') 
47 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 2, 'J') 
48 Calculate_Wavelet(XT, YT, XV, YV, Sensor, 2, 'I') 
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49  
50 %Check third region for small box and large box sensors 
51 if((strcmp(Sensor, 'SB') == 1) || (strcmp(Sensor, 'LB') == 1)) 
52   Calculate_Wavelet(XT, YT, XV, YV, Sensor, 3, 'G') 
53   Calculate_Wavelet(XT, YT, XV, YV, Sensor, 3, 'P') 
54   Calculate_Wavelet(XT, YT, XV, YV, Sensor, 3, 'J') 
55   Calculate_Wavelet(XT, YT, XV, YV, Sensor, 3, 'I') 
56 end 

57  
58 function Calculate_Wavelet(XT, YT, XV, YV, Sensor, Peak, Data) 

59  
60 if(strcmp(Data, 'G')) 
61   str1 = 'gain'; 
62 elseif(strcmp(Data, 'P')) 
63   str1 = 'phase'; 
64 elseif(strcmp(Data, 'J')) 
65   str1 = 'gain and phase'; 
66 elseif(strcmp(Data, 'I')) 
67   str1 = 'interaction'; 
68 end 

69  
70 if(Peak == 1) 
71   str2 = 'first peak'; 
72 elseif(Peak == 2) 
73   str2 = 'second peak'; 
74 elseif(Peak == 3) 
75   str2 = 'third peak'; 
76 else 
77   str2 = 'all frequencies'; 
78 end 

79  
80 %Trim data to specific range and perform wavelet decomposition 
81 [XT1 YT1 XV1 YV1] = Trim_Data(XT, YT, XV, YV, Sensor, Peak, Data); 
82 [m1, ~] = size(XV1); 
83 for i = 1 : m1 
84   [CT(i, :), ~] = wavedec(XT1(i, :), 3, 'haar'); 
85   [CV(i, :), ~] = wavedec(XV1(i, :), 3, 'haar'); 
86 end 

87  
88 %Perform stepwise regression 
89 [beta, ~, ~, inmodel, stats] = stepwisefit(CT, YT1, 'display', 'off'); 

90  
91 %Identify coefficients used in the model 
92 if(sum(inmodel ~= 0)) 
93   Coeffs = CT.*inmodel; 
94   xlswrite(strcat('Index', Sensor, num2str(Peak), Data, '.xls'), 

Coeffs); 
95 end 

96  
97 %Fit training dataset to the model then calculate the R^2 and RMSE 

values 
98 if(sum(inmodel) ~= 0) 
99   [m, ~] = size(CT); 

100   yfit = zeros(m, 1); 
101   for i = 1 : m 
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102     yfit(i, 1) = (CT(i, :)) * (beta.*inmodel'); 
103   end 
104   yfit = yfit + stats.intercept; 
105   for i = 1 : length(yfit) 
106     if(yfit(i, 1) < 0) 
107       yfit(i, 1) = 0; 
108     end 
109   end 
110   [~, m, b] = regression(YT1', yfit'); 
111   SSE = sum((yfit - (b + m.*YT1)).^2); 
112   SSyy = sum((yfit - mean(yfit)).^2); 
113   Rsq = 1 - SSE/SSyy; 
114   RMSE = sqrt(SSE / (length(YT1) – 2)); 
115   fprintf('Training R^2 for %s data, %s:    %f\n', str1, str2, Rsq) 
116   fprintf('Training RMSE for %s data, %s:   %f\n', str1, str2, RMSE) 
117 else 
118   fprintf('Training R^2 for %s data, %s:    N/A, no model made\n', 

str1, str2) 
119   fprintf('Training RMSE for %s data, %s:   N/A, no model made\n', 

str1, str2) 
120 end 

121  
122 %Fit validation dataset to the model then calculate the R^2 and RMSE 

values 
123 if(sum(inmodel) ~= 0) 
124   [m, ~] = size(CV); 
125   yfit = zeros(m, 1); 
126   for i = 1 : m 
127     yfit(i, 1) = (CV(i, :)) * (beta.*inmodel'); 
128   end 
129   yfit = yfit + stats.intercept; 
130   for i = 1 : length(yfit) 
131     if(yfit(i, 1) < 0) 
132       yfit(i, 1) = 0; 
133     end 
134   end 
135   [~, m, b] = regression(YV1', yfit'); 
136   SSE = sum((yfit - (b + m.*YV1)).^2); 
137   SSyy = sum((yfit - mean(yfit)).^2); 
138   Rsq = 1 - SSE/SSyy; 
139   RMSE = sqrt(SSE / (length(YT1) – 2)); 
140   fprintf('Validation R^2 for %s data, %s:  %f\n', str1, str2, Rsq) 
141   fprintf('Validation RMSE for %s data, %s: %f\n', str1, str2, RMSE) 
142 else 
143   fprintf('Validation R^2 for %s data, %s:  N/A, no model made\n', 

str1, str2) 
144   fprintf('Validation RMSE for %s data, %s: N/A, no model made\n', 

str1, str2) 
145 end 
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Appendix G - Partial Least Squares Regression Program 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % PLS Regression Function                                       % 
3 %                                                               % 
4 % This program runs a partial least squares regression on the   % 
5 % data from the entered sensor and contaminant, including all   % 
6 % possible combinations of data and frequency subsets.          % 
7 %                                                               % 
8 % July 10, 2012                                                 % 
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

10  
11 function PLS_Regression(Sensor, Contaminant, Components) 

12  
13 %Inputs: 
14   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
15   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 
16   %Components - Number of components to be used in the regression 

17  
18 clc; 

19  
20 %Check for proper Sensor and Contaminant parameters 
21 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
22   error('The Sensor parameter is not valid.') 
23 end 

24  
25 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
26   error('The Contaminant parameter is not valid.') 
27 end 

28  
29 %Read data from Import Data function 
30 [XT YT XV YV] = Import_Data(Sensor, Contaminant); 

31  
32 %Run PLS for entire region of frequencies 
33 Calculate_PLS(XT, YT, XV, YV, Sensor, 0, 'G', Components) 
34 Calculate_PLS(XT, YT, XV, YV, Sensor, 0, 'P', Components) 
35 Calculate_PLS(XT, YT, XV, YV, Sensor, 0, 'J', Components) 
36 Calculate_PLS(XT, YT, XV, YV, Sensor, 0, 'I', Components) 

37  
38 %Run PLS for first region of frequencies 
39 Calculate_PLS(XT, YT, XV, YV, Sensor, 1, 'G', Components) 
40 Calculate_PLS(XT, YT, XV, YV, Sensor, 1, 'P', Components) 
41 Calculate_PLS(XT, YT, XV, YV, Sensor, 1, 'J', Components) 
42 Calculate_PLS(XT, YT, XV, YV, Sensor, 1, 'I', Components) 

43  
44 %Run PLS for second region of frequencies 
45 Calculate_PLS(XT, YT, XV, YV, Sensor, 2, 'G', Components) 
46 Calculate_PLS(XT, YT, XV, YV, Sensor, 2, 'P', Components) 
47 Calculate_PLS(XT, YT, XV, YV, Sensor, 2, 'J', Components) 
48 Calculate_PLS(XT, YT, XV, YV, Sensor, 2, 'I', Components) 
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49  
50 %Check third region for small box and large box sensors 
51 if((strcmp(Sensor, 'SB') == 1) || (strcmp(Sensor, 'LB') == 1)) 
52   Calculate_PLS(XT, YT, XV, YV, Sensor, 3, 'G', Components) 
53   Calculate_PLS(XT, YT, XV, YV, Sensor, 3, 'P', Components) 
54   Calculate_PLS(XT, YT, XV, YV, Sensor, 3, 'J', Components) 
55   Calculate_PLS(XT, YT, XV, YV, Sensor, 3, 'I', Components) 
56 end 

57  
58 function Calculate_PLS(XT, YT, XV, YV, Sensor, Peak, Data, Components) 

59  
60 if(strcmp(Data, 'G')) 
61   str1 = 'gain'; 
62 elseif(strcmp(Data, 'P')) 
63   str1 = 'phase'; 
64 elseif(strcmp(Data, 'J')) 
65   str1 = 'gain and phase';   
66 elseif(strcmp(Data, 'I')) 
67   str1 = 'interaction'; 
68 end 

69  
70 if(Peak == 1) 
71   str2 = 'first peak'; 
72 elseif(Peak == 2) 
73   str2 = 'second peak'; 
74 elseif(Peak == 3) 
75   str2 = 'third peak'; 
76 else 
77   str2 = 'all frequencies'; 
78 end 

79  
80 %Trim data to specific range and perform PLS regression 
81 [XT1 YT1 XV1 YV1] = Trim_Data(XT, YT, XV, YV, Sensor, Peak, Data); 
82 [~, ~, ~, ~, beta] = plsregress(XT1, YT1, Components); 

83  
84 %Fit training dataset to the model then calculate the R^2 and RMSE 

values 
85 yfit = [ones(size(XT1, 1), 1) XT1] * beta; 
86 for i = 1 : length(yfit) 
87   if(yfit(i, 1) < 0) 
88     yfit(i, 1) = 0; 
89   end 
90 end 
91 [~, m, b] = regression(YT1', yfit'); 
92 SSE = sum((yfit - (b + m.*YT1)).^2); 
93 SSyy = sum((yfit - mean(yfit)).^2); 
94 Rsq = 1 - SSE/SSyy; 
95 RMSE = sqrt(SSE / (length(YT1) – 2)); 
96 fprintf('Training R^2 for %s data, %s:    %f\n', str1, str2, Rsq) 
97 fprintf('Training RMSE for %s data, %s:   %f\n', str1, str2, RMSE) 

98  
99 %Fit validation dataset to the model then calculate the R^2 and RMSE 

values 
100 yfit = [ones(size(XT1, 1), 1) XV1] * beta; 
101 for i = 1 : length(yfit) 
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102   if(yfit(i, 1) < 0) 
103     yfit(i, 1) = 0; 
104   end 
105 end 
106 [~, m, b] = regression(YV1', yfit'); 
107 SSE = sum((yfit - (b + m.*YV1)).^2); 
108 SSyy = sum((yfit - mean(yfit)).^2); 
109 Rsq = 1 - SSE/SSyy; 
110 RMSE = sqrt(SSE / (length(YT1) – 2)); 
111 fprintf('Validation R^2 for %s data, %s:  %f\n', str1, str2, Rsq) 
112 fprintf('Validation RMSE for %s data, %s: %f\n', str1, str2, RMSE) 
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Appendix H - Neural Network Regression Program 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Neural Regression Function                                    % 
3 %                                                               % 
4 % This program runs a regression on the neural network based on % 
5 % data from the entered sensor and contaminant, including all   % 
6 % possible combinations of data and frequency subsets.          % 
7 %                                                               % 
8 % Adapted from The MathWorks (2012b)                            % 
9 %                                                               % 

10 % July 11, 2012                                                 % 
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

12  
13 function Neural_Regression(Sensor, Contaminant) 

14  
15 %Inputs: 
16   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
17   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol - 'E') 

18  
19 clc; 

20  
21 %Check for proper Sensor and Contaminant parameters 
22 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
23   error('The Sensor parameter is not valid.') 
24 end 

25  
26 if((strcmp(Contaminant, 'A') == 0) && (strcmp(Contaminant, 'G') == 0) 

&& (strcmp(Contaminant, 'E') == 0)) 
27   error('The Contaminant parameter is not valid.') 
28 end 

29  
30 %Read data from Import Data function 
31 [XT YT XV YV] = Import_Data(Sensor, Contaminant); 

32  
33 %Run neural network regression for entire region of frequencies 
34 Calculate_NN(XT, YT, XV, YV, Sensor, 0, 'G') 
35 Calculate_NN(XT, YT, XV, YV, Sensor, 0, 'P') 
36 Calculate_NN(XT, YT, XV, YV, Sensor, 0, 'J') 
37 Calculate_NN(XT, YT, XV, YV, Sensor, 0, 'I') 

38  
39 %Run neural network regression for first region of frequencies 
40 Calculate_NN(XT, YT, XV, YV, Sensor, 1, 'G') 
41 Calculate_NN(XT, YT, XV, YV, Sensor, 1, 'P') 
42 Calculate_NN(XT, YT, XV, YV, Sensor, 1, 'J') 
43 Calculate_NN(XT, YT, XV, YV, Sensor, 1, 'I') 

44  
45 %Run neural network regression for second region of frequencies 
46 Calculate_NN(XT, YT, XV, YV, Sensor, 2, 'G') 
47 Calculate_NN(XT, YT, XV, YV, Sensor, 2, 'P') 
48 Calculate_NN(XT, YT, XV, YV, Sensor, 2, 'J') 
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49 Calculate_NN(XT, YT, XV, YV, Sensor, 2, 'I') 

50  
51 %Check third region for small box and large box sensors 
52 if((strcmp(Sensor, 'SB') == 1) || (strcmp(Sensor, 'LB') == 1)) 
53   Calculate_NN(XT, YT, XV, YV, Sensor, 3, 'G') 
54   Calculate_NN(XT, YT, XV, YV, Sensor, 3, 'P') 
55   Calculate_NN(XT, YT, XV, YV, Sensor, 3, 'J') 
56   Calculate_NN(XT, YT, XV, YV, Sensor, 3, 'I') 
57 end 

58  
59 function Calculate_NN(XT, YT, XV, YV, Sensor, Peak, Data) 

60  
61 if(strcmp(Data, 'G')) 
62   str1 = 'gain'; 
63 elseif(strcmp(Data, 'P')) 
64   str1 = 'phase'; 
65 elseif(strcmp(Data, 'J')) 
66   str1 = 'gain and phase';   
67 elseif(strcmp(Data, 'I')) 
68   str1 = 'interaction'; 
69 end 

70  
71 if(Peak == 1) 
72   str2 = 'first peak'; 
73 elseif(Peak == 2) 
74   str2 = 'second peak'; 
75 elseif(Peak == 3) 
76   str2 = 'third peak'; 
77 else 
78   str2 = 'all frequencies'; 
79 end 

80  
81 %Trim data to specific range and create neural network 
82 [XT1 YT1 XV1 YV1] = Trim_Data(XT, YT, XV, YV, Sensor, Peak, Data); 
83 if(strcmp(Data, 'J') || strcmp(Data, 'I')) 
84   XT1 = XT1(:, 1:3:end); XV1 = XV1(:, 1:3:end); 
85 end 
86 XT1 = XT1'; YT1 = YT1'; XV1 = XV1'; YV1 = YV1'; 

87  
88 net = fitnet(10); 
89 net.inputs{1}.processFcns = {'removeconstantrows', 'mapminmax'}; 
90 net.outputs{2}.processFcns = {'removeconstantrows', 'mapminmax'}; 

91  
92 net.divideFcn = 'dividerand'; 
93 net.divideMode = 'sample'; 
94 net.divideParam.trainRatio = 0.60; 
95 net.divideParam.valRatio = 0.20; 
96 net.divideParam.testRatio = 0.20; 
97 net.trainFcn = 'trainlm'; 
98 net.performFcn = 'mse'; 

99  
100 [net, ~] = train(net, XT1, YT1); 

101  
102 %Fit training dataset to the neural network then calculate the R^2 and 

RMSE values 
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103 yfit = (net(XT1))'; 
104 YT1 = YT1'; 
105 for i = 1 : length(yfit) 
106   if(yfit(i, 1) < 0) 
107     yfit(i, 1) = 0; 
108   end 
109 end 
110 [~, m, b] = regression(YT1', yfit'); 
111 SSE = sum((yfit - (b + m.*YT1)).^2); 
112 SSyy = sum((yfit - mean(yfit)).^2); 
113 Rsq = 1 - SSE/SSyy; 
114 RMSE = sqrt(SSE / (length(YT1) – 2)); 
115 fprintf('Training R^2 for %s data, %s:    %f\n', str1, str2, Rsq) 
116 fprintf('Training RMSE for %s data, %s:   %f\n', str1, str2, RMSE) 

117  
118 %Fit validation dataset to the neural network then calculate the R^2 

and RMSE values 
119 yfit = (net(XV1))'; 
120 YV1 = YV1'; 
121 for i = 1 : length(yfit) 
122   if(yfit(i, 1) < 0) 
123     yfit(i, 1) = 0; 
124   end 
125 end 
126 [~, m, b] = regression(YV1', yfit'); 
127 SSE = sum((yfit - (b + m.*YV1)).^2); 
128 SSyy = sum((yfit - mean(yfit)).^2); 
129 Rsq = 1 - SSE/SSyy; 
130 RMSE = sqrt(SSE / (length(YT1) – 2)); 
131 fprintf('Validation R^2 for %s data, %s:  %f\n', str1, str2, Rsq) 
132 fprintf('Validation RMSE for %s data, %s: %f\n', str1, str2, RMSE) 
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Appendix I - Supplementary Code 

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
2 % Import Data Function                                          % 
3 %                                                               % 
4 % This program takes a summary Excel spreadsheet, reads the     % 
5 % data from the list of Excel spreadsheets, and returns         % 
6 % matrices for the training and validation datasets.            % 
7 %                                                               % 
8 % June 8, 2012                                                  % 
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

10  
11 function [XT YT XV YV] = Import_Data(Sensor, Contaminant) 

12  
13 %Inputs: 
14   %Sensor - Sensor for regression ('SP' 'LP' 'SB' or 'LB') 
15   %Contaminant - Contaminant for regression (Ammonia - 'A', Glycerol - 

'G', Ethanol – 'E') 

16  
17 %Outputs: 
18   %XT - Matrix of training predictor variables 
19   %YT - Matrix of training response variables 
20   %XV - Matrix of validation predictor variables 
21   %YV - Matrix of validation response variables 

22  
23 clc; 

24  
25 %Read data from Excel spreadsheets and check for proper size 
26 data1 = xlsread(strcat('Training', Sensor, Contaminant, '.xls')); 
27 data2 = xlsread(strcat('Validation', Sensor, Contaminant, '.xls')); 
28 [m1 n1] = size(data1); 
29 [m2 n2] = size(data2); 

30  
31 if((n1 ~= 6) || (n2 ~= 6) || (m1 ~= m2)) 
32   error('The data dimensions are not valid.') 
33 end 

34  
35 XT = zeros(3 * m1, 1828); 
36 YT = zeros(3 * m1, 1); 
37 XV = zeros(3 * m2, 1828); 
38 YV = zeros(3 * m2, 1); 

39  
40 %Copy the data from the original files to the training matrices 
41 %Iterate over the list of files in the Training file 
42 for i = 1 : m1 
43   if(data1(i, 2) < 10) 
44     data = xlsread(strcat('0', num2str(data1(i, 1)), '-0', 

num2str(data1(i, 2)), '.xls')); 
45   else 
46     data = xlsread(strcat('0', num2str(data1(i, 1)), '-', 

num2str(data1(i, 2)), '.xls')); 
47   end 
48   [m3 n3] = size(data); 
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49  
50   if((m3 ~= 1910) || (n3 ~= 4)) 
51     error(strcat('The data dimensions of ', data1(i, 1), '.xls are not 

valid.')) 
52   end 

53  
54   %Response 
55   YT(3 * i - 2, 1) = data1(i, 3); 
56   YT(3 * i - 1, 1) = data1(i, 3); 
57   YT(3 * i, 1) = data1(i, 3); 

58  
59   %Temperature 
60   XT(3 * i - 2, 1) = data1(i, 4); 
61   XT(3 * i - 1, 1) = data1(i, 5); 
62   XT(3 * i, 1) = data1(i, 6); 

63  
64   for j = 1 : 609 
65     %Gain 
66     XT(3 * i - 2, j + 1) = data(j + 27, 3); 
67     XT(3 * i - 1, j + 1) = data(j + 663, 3); 
68     XT(3 * i, j + 1) = data(j + 1299, 3); 

69  
70     %Phase 
71     XT(3 * i - 2, j + 610) = data(j + 27, 4); 
72     XT(3 * i - 1, j + 610) = data(j + 663, 4); 
73     XT(3 * i, j + 610) = data(j + 1299, 4); 

74  
75     %Interaction 
76     XT(3 * i - 2, j + 1219) = data(j + 27, 3) * data(j + 27, 4); 
77     XT(3 * i - 1, j + 1219) = data(j + 663, 3) * data(j + 663, 4); 
78     XT(3 * i, j + 1219) = data(j + 1299, 3) * data(j + 1299, 4); 
79   end 
80 end 

81  
82 %Iterate over the list of files in the Validation file 
83 for i = 1 : m2 
84   if(data2(i, 2) < 10) 
85     data = xlsread(strcat('0', num2str(data2(i, 1)), '-0', 

num2str(data2(i, 2)), '.xls')); 
86   else 
87     data = xlsread(strcat('0', num2str(data2(i, 1)), '-', 

num2str(data2(i, 2)), '.xls')); 
88   end 
89   [m3 n3] = size(data); 

90  
91   if((m3 ~= 1910) || (n3 ~= 4)) 
92     error(strcat('The data dimensions of ', data2(i, 1), '.xls are not 

valid.')) 
93   end 

94  
95   %Response 
96   YV(3 * i - 2, 1) = data2(i, 3); 
97   YV(3 * i - 1, 1) = data2(i, 3); 
98   YV(3 * i, 1) = data2(i, 3); 

99  
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100   %Temperature 
101   XV(3 * i - 2, 1) = data2(i, 4); 
102   XV(3 * i - 1, 1) = data2(i, 5); 
103   XV(3 * i, 1) = data2(i, 6); 

104  
105   for j = 1 : 609 
106     %Gain 
107     XV(3 * i - 2, j + 1) = data(j + 27, 3); 
108     XV(3 * i - 1, j + 1) = data(j + 663, 3); 
109     XV(3 * i, j + 1) = data(j + 1299, 3); 

110  
111     %Phase 
112     XV(3 * i - 2, j + 610) = data(j + 27, 4); 
113     XV(3 * i - 1, j + 610) = data(j + 663, 4); 
114     XV(3 * i, j + 610) = data(j + 1299, 4); 

115  
116     %Interaction 
117     XV(3 * i - 2, j + 1219) = data(j + 27, 3) * data(j + 27, 4); 
118     XV(3 * i - 1, j + 1219) = data(j + 663, 3) * data(j + 663, 4); 
119     XV(3 * i, j + 1219) = data(j + 1299, 3) * data(j + 1299, 4); 
120   end 
121 end 

122  
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
124 % Trim Data Function                                            % 
125 %                                                               % 
126 % This program takes the input training and validation data     % 
127 % and returns a portion of the input data based on the Sensor,  % 
128 % Peak, and Data parameters.                                    % 
129 %                                                               % 
130 % June 11, 2012                                                 % 
131 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

132  
133 function [XT YT XV YV] = Trim_Data(XT1, YT1, XV1, YV1, Sensor, Peak, 

Data) 

134  
135 %Inputs: 
136   %XT1 - Original matrix of training predictor variables 
137   %YT1 - Original matrix of training response variables 
138   %XV1 - Original matrix of validation predictor variables 
139   %YV1 - Original matrix of validation response variables 
140   %Sensor - Sensor for data ('SP' 'LP' 'SB' or 'LB') 
141   %Peak - Peak to trim to (0 to use entire spectrum) 
142   %Data - Type of data to plot (Gain - 'G', Phase - 'P', Join - 'J', 

Interaction - 'I') 

143  
144 %Outputs: 
145   %XT - Trimmed matrix of training predictor variables 
146   %YT - Trimmed matrix of training response variables 
147   %XV - Trimmed matrix of validation predictor variables 
148   %YV - Trimmed matrix of validation response variables 

149  
150 %Check inputs for proper size and parameters 
151 [m1 n1] = size(XT1); 
152 [m2 n2] = size(YT1); 
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153 [m3 n3] = size(XV1); 
154 [m4 n4] = size(YV1); 

155  
156 if((m1 ~= m2) || (m2 ~= m3) || (m3 ~= m4) || (n1 ~= 1828) || (n2 ~= 1) 

|| (n3 ~= 1828) || (n4 ~= 1)) 
157   error('The input data dimensions are not valid.') 
158 end 

159  
160 if((strcmp(Sensor, 'SP') == 0) && (strcmp(Sensor, 'LP') == 0) && 

(strcmp(Sensor, 'SB') == 0) && (strcmp(Sensor, 'LB') == 0)) 
161   error('The Sensor parameter is not valid.') 
162 end 

163  
164 if((Peak ~= 0) && (Peak ~= 1) && (Peak ~= 2) && (Peak ~= 3)) 
165   error('The Peak parameter is not valid.') 
166 end 

167  
168 if((strcmp(Data, 'G') == 0) && (strcmp(Data, 'P') == 0) && 

(strcmp(Data, 'J') == 0) && (strcmp(Data, 'I') == 0)) 
169   error('The Data parameter is not valid.') 
170 end 

171  
172 %Split data into its temperature, gain, phase, and interaction 

components 
173 XTt = XT1(:, 1); XTg = XT1(:, 2:610); XTp = XT1(:, 611:1219); XTi = 

XT1(:, 1220:1828); 
174 XVt = XV1(:, 1); XVg = XV1(:, 2:610); XVp = XV1(:, 611:1219); XVi = 

XV1(:, 1220:1828); 

175  
176 %Copy response variables 
177 YT = YT1; 
178 YV = YV1; 

179  
180 %Trim data based on Sensor and Peak parameter 
181 if((strcmp(Sensor, 'SP') == 1) || (strcmp(Sensor, 'LP') == 1)) 
182   if(Peak == 1) 
183     XTg = XTg(:, 114:198); XTp = XTp(:, 114:198); XTi = XTi(:, 

114:198); 
184     XVg = XVg(:, 114:198); XVp = XVp(:, 114:198); XVi = XVi(:, 

114:198); 
185   elseif(Peak == 2) 
186     XTg = XTg(:, 413:497); XTp = XTp(:, 413:497); XTi = XTi(:, 

413:497); 
187     XVg = XVg(:, 413:497); XVp = XVp(:, 413:497); XVi = XVi(:, 

413:497); 
188   end 
189 end 

190  
191 if(strcmp(Sensor, 'SB') == 1) 
192   if(Peak == 1) 
193     XTg = XTg(:, 74:183); XTp = XTp(:, 74:183); XTi = XTi(:, 74:183); 
194     XVg = XVg(:, 74:183); XVp = XVp(:, 74:183); XVi = XVi(:, 74:183); 
195   elseif(Peak == 2) 
196     XTg = XTg(:, 301:365); XTp = XTp(:, 301:365); XTi = XTi(:, 

301:365); 
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197     XVg = XVg(:, 301:365); XVp = XVp(:, 301:365); XVi = XVi(:, 

301:365); 
198   elseif(Peak == 3) 
199     XTg = XTg(:, 496:574); XTp = XTp(:, 496:574); XTi = XTi(:, 

496:574); 
200     XVg = XVg(:, 496:574); XVp = XVp(:, 496:574); XVi = XVi(:, 

496:574); 
201   end 
202 end 

203  
204 if(strcmp(Sensor, 'LB') == 1) 
205   if(Peak == 1) 
206     XTg = XTg(:, 89:148); XTp = XTp(:, 89:148); XTi = XTi(:, 89:148); 
207     XVg = XVg(:, 89:148); XVp = XVp(:, 89:148); XVi = XVi(:, 89:148); 
208   elseif(Peak == 2) 
209     XTg = XTg(:, 285:334); XTp = XTp(:, 285:334); XTi = XTi(:, 

285:334); 
210     XVg = XVg(:, 285:334); XVp = XVp(:, 285:334); XVi = XVi(:, 

285:334); 
211   elseif(Peak == 3) 
212     XTg = XTg(:, 480:549); XTp = XTp(:, 480:549); XTi = XTi(:, 

480:549); 
213     XVg = XVg(:, 480:549); XVp = XVp(:, 480:549); XVi = XVi(:, 

480:549); 
214   end 
215 end 

216  
217 %Concatenate data based on the Data parameter 
218 if(strcmp(Data, 'G') == 1) 
219   XT = [XTt XTg]; XV = [XVt XVg]; 
220 end 

221  
222 if(strcmp(Data, 'P') == 1) 
223   XT = [XTt XTp]; XV = [XVt XVp]; 
224 end 

225  
226 if(strcmp(Data, 'J') == 1) 
227   XT = [XTt XTg XTp]; XV = [XVt XVg XVp]; 
228 end 

229  
230 if(strcmp(Data, 'I') == 1) 
231   XT = [XTt XTg XTp XTi]; XV = [XVt XVg XVp XVi]; 
232 end 
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Appendix J - Significant Frequencies Found with Detection Method 

Each shaded box represents that a significant difference between ambient air and air with 

contaminants for each combination of sensor, gain or phase, contaminant, and frequency. 
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5,200,000                    1        

5,400,000                    1        

5,600,000                    1        

5,800,000                    1        

6,000,000                    1        

6,200,000                    1        

6,400,000                    1        

6,600,000                    1        

6,800,000                    1        

7,000,000                    1        

7,200,000                    1        

7,400,000                    1        

7,600,000                    1        

7,800,000                    1        

8,000,000                    1        

8,200,000                    1        

8,400,000                    1        

8,600,000                    1        

8,800,000                    1        

9,000,000                    1        

9,200,000                    1        

9,400,000                1    1        

9,600,000                1    1        

9,800,000                    1        

10,000,000                    1        

10,200,000                    1        

10,400,000                    1        

10,600,000      1              1        

10,800,000                    1        

11,000,000      1              1        

11,200,000      1              1        

11,400,000      1              1        

11,600,000      1              1        

11,800,000      1              1        

12,000,000      1              1        

12,200,000      1              1        

12,400,000      1    1          1        

12,600,000      1              1        

12,800,000      1              1        
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Frequency 
(Hz) 
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Probe 
Gain 

Large 
Probe 
Gain 

 Small 
Box  
Gain 

Large 
Box  
Gain 
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Probe 
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13,000,000      1    1          1    1    

13,200,000      1    1          1    1    

13,400,000      1    1          1    1    

13,600,000      1    1          1    1    

13,800,000      1              1    1    

14,000,000      1    1          1    1    

14,200,000      1    1          1    1    

14,400,000      1    1          1    1    

14,600,000      1    1          1    1    

14,800,000      1    1          1    1    

15,000,000      1    1          1    1    

15,200,000      1    1          1    1    

15,400,000      1    1          1    1    

15,600,000      1    1          1    1    

15,800,000      1    1          1    1    

16,000,000      1    1          1    1    

16,200,000      1    1          1    1    

16,400,000      1    1          1    1    

16,600,000      1    1          1    1    

16,800,000      1    1          1    1    

17,000,000      1    1          1    1    

17,200,000      1    1          1    1    

17,400,000      1    1          1    1    

17,600,000      1    1          1    1    

17,800,000      1    1          1    1    

18,000,000      1    1         1 1    1    

18,200,000      1    1          1    1    

18,400,000      1    1          1    1    

18,600,000      1    1          1    1    

18,800,000      1    1       1   1    1 1   

19,000,000      1    1       1   1    1    

19,200,000      1    1       1   1    1 1   

19,400,000      1    1       1  1 1    1 1   

19,600,000      1    1         1 1    1 1   

19,800,000      1    1       1   1    1 1   

20,000,000      1           1   1    1 1   

20,200,000      1           1   1    1 1   

20,400,000      1           1  1 1    1 1   

20,600,000      1           1  1 1    1 1   
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Frequency 
(Hz) 
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Probe 
Gain 

Large 
Probe 
Gain 
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Box  
Gain 
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Box  
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20,800,000      1     1      1  1 1    1 1   

21,000,000      1       1    1  1 1    1 1   

21,200,000      1     1  1    1  1 1    1 1 1  

21,400,000      1     1  1    1  1 1    1    

21,600,000      1    1 1  1    1  1 1    1  1  

21,800,000      1    1 1  1    1  1 1    1 1 1  

22,000,000      1    1 1  1    1  1 1    1 1 1 1 

22,200,000      1    1 1  1    1  1 1    1  1 1 

22,400,000      1   1 1 1  1    1  1 1    1  1  

22,600,000      1   1 1 1  1    1  1 1   1 1 1 1  

22,800,000      1   1 1 1 1 1    1  1 1    1 1 1  

23,000,000   1   1  1 1 1 1 1 1    1  1 1   1 1 1 1  

23,200,000   1   1  1 1 1 1 1     1  1 1   1 1 1 1  

23,400,000   1   1  1 1 1  1 1    1  1 1   1 1 1 1  

23,600,000   1   1  1 1 1  1     1  1 1    1 1 1  

23,800,000   1   1  1 1 1       1  1 1    1 1   

24,000,000   1   1  1 1 1       1  1 1    1 1 1  

24,200,000   1   1   1 1       1  1 1   1 1 1   

24,400,000   1  1 1   1 1       1  1 1   1 1 1   

24,600,000   1   1   1 1       1  1 1   1 1 1   

24,800,000   1   1   1 1       1  1 1   1 1 1   

25,000,000   1   1   1 1       1 1 1 1   1 1 1   

25,200,000   1   1   1 1       1 1 1    1 1 1   

25,400,000   1   1   1 1       1 1 1    1 1 1   

25,600,000   1   1    1       1 1 1 1    1 1   

25,800,000   1 1  1    1       1 1 1 1    1 1   

26,000,000   1   1    1       1 1 1 1    1 1   

26,200,000   1 1  1           1 1 1 1    1 1   

26,400,000   1 1  1           1 1 1 1    1 1   

26,600,000   1 1  1           1 1 1 1    1    

26,800,000   1 1  1           1 1 1 1    1    

27,000,000   1 1  1            1 1 1    1    

27,200,000   1 1  1           1 1 1 1    1    

27,400,000   1 1  1    1       1 1 1 1    1    

27,600,000  1 1 1 1 1    1        1 1 1    1    

27,800,000  1 1 1 1 1    1       1 1 1 1    1    

28,000,000  1 1 1 1 1    1       1 1 1 1    1    

28,200,000  1 1 1 1 1    1        1 1 1    1    

28,400,000  1 1 1 1 1    1      1  1 1 1    1    
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28,600,000  1 1 1 1 1    1      1  1 1 1    1    

28,800,000 1 1 1 1 1 1    1      1 1 1 1 1    1    

29,000,000  1  1 1 1    1      1  1 1 1    1    

29,200,000  1 1 1 1 1    1        1 1 1    1    

29,400,000 1 1  1 1 1    1     1  1 1 1 1    1    

29,600,000    1 1 1    1      1  1 1 1    1    

29,800,000   1 1 1 1    1       1 1 1 1    1    

30,000,000   1 1 1 1    1       1 1 1 1    1    

30,200,000   1 1 1 1    1       1 1 1 1    1    

30,400,000  1 1 1 1 1    1       1 1 1 1    1    

30,600,000   1 1 1 1    1       1 1 1 1    1    

30,800,000  1 1 1 1 1    1       1 1 1 1    1    

31,000,000   1 1 1 1    1       1 1 1 1    1    

31,200,000   1 1  1    1       1 1 1 1    1    

31,400,000   1 1  1    1       1 1 1 1    1    

31,600,000  1 1  1 1    1       1 1 1 1    1    

31,800,000  1 1  1 1    1       1 1 1 1    1    

32,000,000   1   1    1        1 1 1    1    

32,200,000  1 1  1 1    1        1 1 1    1    

32,400,000  1 1 1 1 1    1        1 1 1    1    

32,600,000  1 1 1 1 1    1        1 1 1    1    

32,800,000  1 1 1  1    1        1 1 1    1    

33,000,000  1 1 1  1    1        1 1 1    1    

33,200,000  1 1   1    1        1 1 1    1    

33,400,000  1 1   1    1        1 1 1    1    

33,600,000   1   1    1        1 1 1    1    

33,800,000   1   1    1        1 1 1    1    

34,000,000   1   1    1        1 1 1    1    

34,200,000   1   1    1        1 1 1    1    

34,400,000   1   1    1        1 1 1    1    

34,600,000   1   1    1        1 1 1    1    

34,800,000   1   1    1        1 1 1    1    

35,000,000   1   1    1        1 1 1    1    

35,200,000   1   1    1        1 1 1        

35,400,000   1   1    1        1 1 1    1    

35,600,000   1   1            1 1 1        

35,800,000   1   1    1        1 1 1        

36,000,000   1   1    1        1 1 1        

36,200,000   1   1    1        1 1 1        
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36,400,000   1   1    1        1 1 1        

36,600,000   1   1    1        1 1 1        

36,800,000   1   1           1 1 1 1        

37,000,000   1   1    1       1 1 1 1        

37,200,000   1   1    1       1 1 1 1        

37,400,000   1   1            1 1 1        

37,600,000   1   1           1 1 1 1        

37,800,000      1           1 1 1 1        

38,000,000      1           1 1 1 1        

38,200,000      1           1 1 1 1        

38,400,000   1   1           1 1 1 1        

38,600,000   1   1           1 1 1 1        

38,800,000      1           1 1 1 1        

39,000,000      1           1 1 1 1        

39,200,000      1           1  1 1        

39,400,000      1           1 1 1 1        

39,600,000      1           1 1 1 1        

39,800,000      1           1  1 1        

40,000,000      1           1 1 1 1     1   

40,200,000      1           1 1 1 1        

40,400,000      1           1 1 1 1        

40,600,000      1           1  1 1        

40,800,000      1           1 1 1 1        

41,000,000      1           1 1 1 1        

41,200,000      1           1  1 1        

41,400,000      1           1 1 1 1        

41,600,000      1           1  1 1        

41,800,000      1           1  1 1        

42,000,000      1           1  1 1        

42,200,000      1           1  1 1        

42,400,000      1           1  1 1        

42,600,000      1           1  1 1        

42,800,000      1           1   1        

43,000,000      1           1  1 1        

43,200,000      1           1   1        

43,400,000      1           1   1        

43,600,000      1           1   1        

43,800,000      1           1  1 1        

44,000,000      1           1   1        
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44,200,000      1           1   1        

44,400,000      1           1   1        

44,600,000      1           1   1        

44,800,000      1           1  1 1        

45,000,000      1           1   1        

45,200,000      1           1   1        

45,400,000      1           1   1        

45,600,000      1           1   1        

45,800,000      1           1   1        

46,000,000      1           1   1        

46,200,000      1           1   1        

46,400,000      1           1   1        

46,600,000      1           1   1        

46,800,000      1           1   1        

47,000,000      1           1   1        

47,200,000      1           1   1        

47,400,000      1           1   1        

47,600,000      1           1   1        

47,800,000      1           1   1        

48,000,000      1           1   1        

48,200,000      1           1   1        

48,400,000      1           1   1        

48,600,000      1           1   1        

48,800,000      1           1   1        

49,000,000      1           1   1        

49,200,000      1           1   1        

49,400,000      1           1   1        

49,600,000      1           1   1        

49,800,000      1           1   1        

50,000,000      1          1    1        

50,200,000                 1   1        

50,400,000                 1   1        

50,600,000                 1   1        

50,800,000                 1   1        

51,000,000                 1   1        

51,200,000                 1   1     1   

51,400,000                 1   1     1   

51,600,000                 1   1     1   

51,800,000                 1   1     1   
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52,000,000                 1   1     1   

52,200,000                 1   1     1   

52,400,000                 1  1 1     1   

52,600,000                 1   1     1   

52,800,000                 1   1     1   

53,000,000                 1   1     1   

53,200,000                 1   1     1   

53,400,000                 1   1     1   

53,600,000                 1   1     1   

53,800,000                 1   1     1 1  

54,000,000                 1   1     1 1  

54,200,000                 1   1     1 1  

54,400,000                 1   1     1 1  

54,600,000      1           1   1     1 1  

54,800,000      1              1     1 1  

55,000,000      1           1   1     1 1  

55,200,000      1           1   1     1 1  

55,400,000      1           1   1     1 1  

55,600,000                 1   1     1 1  

55,800,000      1           1   1     1 1  

56,000,000      1              1     1 1  

56,200,000      1              1     1 1  

56,400,000      1              1     1 1  

56,600,000      1              1     1 1  

56,800,000      1              1    1 1 1  

57,000,000      1              1    1 1 1  

57,200,000      1              1    1 1 1  

57,400,000      1              1    1 1 1  

57,600,000      1              1    1 1 1  

57,800,000      1              1    1 1 1  

58,000,000      1              1    1 1 1  

58,200,000      1     1         1    1 1 1  

58,400,000      1     1         1    1 1 1  

58,600,000      1     1             1 1 1  

58,800,000      1     1 1      1      1 1 1  

59,000,000      1     1 1        1    1 1 1  

59,200,000      1     1 1      1  1    1 1 1  

59,400,000      1     1 1     1 1  1    1 1 1  

59,600,000      1     1 1 1    1 1  1    1 1 1 1 
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59,800,000      1     1 1 1    1 1  1    1 1 1 1 

60,000,000      1     1 1 1  1   1  1    1 1 1  

60,200,000      1     1 1 1     1  1    1 1 1  

60,400,000      1     1 1 1    1 1  1    1 1 1  

60,600,000      1     1 1 1    1 1  1    1 1 1  

60,800,000      1     1 1 1    1 1  1    1 1 1  

61,000,000      1     1 1     1 1  1    1 1 1  

61,200,000      1     1 1     1 1  1    1 1 1  

61,400,000      1     1 1     1 1  1    1 1 1  

61,600,000      1     1 1     1   1    1 1 1  

61,800,000      1     1 1     1   1    1 1 1  

62,000,000      1      1     1   1    1 1 1  

62,200,000      1     1 1     1   1    1 1 1  

62,400,000      1      1     1   1    1 1 1  

62,600,000      1    1  1     1   1    1 1 1  

62,800,000      1    1       1   1    1 1 1  

63,000,000      1    1  1     1   1    1 1 1  

63,200,000      1  1  1       1   1   1 1 1 1  

63,400,000      1  1  1       1   1   1 1 1 1  

63,600,000      1  1  1       1   1   1 1 1 1  

63,800,000      1  1  1       1   1   1 1 1 1  

64,000,000      1  1 1 1       1   1   1 1 1 1  

64,200,000      1  1 1 1       1   1   1 1 1 1  

64,400,000      1  1 1 1       1   1   1 1 1 1  

64,600,000      1  1 1 1       1   1   1 1 1 1  

64,800,000      1  1 1 1       1   1  1 1 1 1 1  

65,000,000      1  1 1 1       1   1  1 1 1 1 1  

65,200,000      1  1 1 1       1   1   1 1 1 1  

65,400,000      1  1 1 1       1   1  1 1 1 1 1  

65,600,000      1   1 1       1   1   1 1 1 1  

65,800,000      1  1 1 1       1   1   1 1 1 1  

66,000,000      1  1  1       1   1   1 1 1 1  

66,200,000      1  1  1       1   1   1 1 1 1  

66,400,000      1  1  1       1   1   1 1 1 1  

66,600,000      1  1  1       1   1   1 1 1 1  

66,800,000      1    1       1   1   1 1 1 1  

67,000,000      1           1   1   1 1 1 1  

67,200,000   1   1           1   1   1 1 1 1  

67,400,000      1           1   1    1 1 1  
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67,600,000      1           1   1    1 1 1  

67,800,000   1   1           1   1    1 1 1  

68,000,000   1   1    1       1   1    1 1 1  

68,200,000   1   1    1       1   1    1  1  

68,400,000   1   1    1       1   1    1    

68,600,000   1   1    1       1  1 1    1 1   

68,800,000   1   1    1       1   1    1 1   

69,000,000   1   1    1       1   1    1    

69,200,000   1   1    1       1   1    1  1  

69,400,000   1   1    1       1   1    1    

69,600,000   1   1    1       1   1    1    

69,800,000   1   1    1       1   1    1    

70,000,000   1   1    1       1   1    1    

70,200,000   1   1    1       1   1    1    

70,400,000   1   1    1       1   1    1    

70,600,000   1   1    1       1   1    1    

70,800,000   1   1    1       1   1    1    

71,000,000   1   1    1       1   1    1    

71,200,000   1   1    1       1   1    1 1   

71,400,000   1   1    1       1   1    1    

71,600,000   1   1    1       1   1    1    

71,800,000   1   1    1       1   1    1    

72,000,000   1   1    1       1   1    1 1   

72,200,000   1   1    1       1   1    1    

72,400,000   1   1    1          1    1    

72,600,000   1   1    1          1    1    

72,800,000   1   1    1          1    1    

73,000,000   1   1    1          1    1    

73,200,000   1   1    1          1    1    

73,400,000   1   1    1          1    1    

73,600,000   1   1    1          1    1    

73,800,000   1   1    1          1    1    

74,000,000   1   1    1          1    1    

74,200,000   1   1    1          1    1    

74,400,000   1   1    1  1        1    1  1  

74,600,000   1   1    1          1    1    

74,800,000   1   1    1          1    1    

75,000,000   1   1    1      1    1  1  1    

75,200,000   1   1    1      1    1  1      
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75,400,000   1   1    1          1    1    

75,600,000   1   1    1          1        

75,800,000   1   1    1          1        

76,000,000   1   1    1          1        

76,200,000   1   1    1          1        

76,400,000   1   1    1          1        

76,600,000   1   1    1       1   1        

76,800,000   1   1    1       1   1        

77,000,000   1   1    1       1   1        

77,200,000   1   1    1       1   1        

77,400,000   1   1    1       1   1        

77,600,000   1   1    1       1   1        

77,800,000   1   1    1       1   1        

78,000,000   1   1          1 1   1        

78,200,000   1   1    1       1   1        

78,400,000   1   1           1           

78,600,000   1   1           1   1        

78,800,000   1   1    1      1 1   1        

79,000,000   1   1           1   1        

79,200,000   1   1           1   1        

79,400,000   1   1           1   1        

79,600,000   1   1           1   1        

79,800,000   1   1           1   1        

80,000,000   1   1          1 1   1        

80,200,000   1   1           1   1        

80,400,000   1   1          1 1   1        

80,600,000   1   1           1   1        

80,800,000   1   1           1   1        

81,000,000   1   1           1   1        

81,200,000   1   1           1   1        

81,400,000   1   1           1   1        

81,600,000   1  1 1           1   1        

81,800,000   1   1           1   1        

82,000,000   1   1           1  1 1        

82,200,000   1   1           1   1        

82,400,000   1   1          1 1  1 1        

82,600,000   1   1          1 1  1 1        

82,800,000  1 1   1           1  1 1        

83,000,000  1 1   1           1  1 1        
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83,200,000  1 1   1           1  1 1        

83,400,000  1 1   1           1  1 1        

83,600,000  1 1 1 1 1           1  1 1        

83,800,000  1 1 1  1           1  1 1        

84,000,000  1 1   1           1  1 1        

84,200,000  1 1 1  1           1  1 1        

84,400,000  1 1 1  1           1  1 1        

84,600,000  1 1 1  1           1  1 1        

84,800,000  1 1 1 1 1           1  1 1        

85,000,000  1 1 1  1           1  1 1        

85,200,000  1 1 1 1 1           1  1 1        

85,400,000  1 1 1  1           1  1 1        

85,600,000  1 1 1 1 1           1  1 1        

85,800,000  1 1 1 1 1           1  1 1        

86,000,000  1 1 1  1           1  1 1        

86,200,000  1 1 1 1 1           1  1 1        

86,400,000  1 1 1 1 1           1  1 1       1 

86,600,000  1 1 1 1 1           1  1 1        

86,800,000  1 1 1 1 1           1  1 1        

87,000,000  1 1 1 1 1           1  1 1        

87,200,000  1 1 1 1 1           1  1 1        

87,400,000  1 1 1 1 1           1  1 1        

87,600,000  1 1 1 1 1           1  1 1        

87,800,000  1 1 1 1 1           1  1 1        

88,000,000  1 1 1 1 1           1  1 1        

88,200,000  1 1 1 1 1           1  1 1        

88,400,000  1 1 1 1 1           1  1 1        

88,600,000  1 1 1 1 1           1  1 1        

88,800,000  1 1 1 1 1           1  1 1        

89,000,000 1 1 1 1 1 1           1  1 1        

89,200,000 1 1 1 1 1 1         1  1  1 1        

89,400,000  1 1 1 1 1           1  1 1        

89,600,000  1 1 1 1 1           1  1 1        

89,800,000  1 1 1 1 1         1  1  1 1        

90,000,000 1 1 1 1 1 1         1 1 1  1 1        

90,200,000  1 1 1 1 1         1 1 1  1 1        

90,400,000 1 1 1 1 1 1          1 1  1 1        

90,600,000 1 1 1 1 1 1          1 1  1 1        

90,800,000   1 1 1 1           1  1 1        
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91,000,000   1 1 1 1           1  1 1        

91,200,000   1 1  1           1  1 1        

91,400,000  1 1  1 1           1  1 1        

91,600,000  1 1 1 1 1          1 1  1 1        

91,800,000  1 1 1 1 1          1 1  1 1        

92,000,000  1 1 1 1 1          1 1  1 1        

92,200,000  1 1 1 1 1          1 1  1 1        

92,400,000  1 1 1 1 1          1 1  1 1        

92,600,000  1 1 1 1 1           1  1 1        

92,800,000  1 1 1 1 1           1  1 1        

93,000,000  1 1 1 1 1           1  1 1        

93,200,000  1 1 1  1           1  1 1        

93,400,000  1 1 1 1 1          1 1  1 1        

93,600,000  1 1 1  1           1  1 1        

93,800,000  1 1 1  1           1  1 1        

94,000,000  1 1 1  1           1  1 1        

94,200,000  1 1 1  1           1  1 1      1  

94,400,000  1    1           1  1 1        

94,600,000  1  1  1           1  1 1        

94,800,000  1 1 1  1           1  1 1        

95,000,000  1    1           1  1 1      1  

95,200,000  1    1           1  1 1        

95,400,000  1    1           1  1 1      1  

95,600,000  1    1           1  1 1      1  

95,800,000  1    1           1  1 1      1  

96,000,000  1    1           1  1 1     1 1  

96,200,000  1    1       1    1  1 1      1  

96,400,000  1    1           1  1 1      1  

96,600,000  1    1           1  1 1     1 1  

96,800,000  1    1           1  1 1     1 1 1 

97,000,000  1    1           1  1 1     1 1 1 

97,200,000  1    1           1  1 1     1 1 1 

97,400,000  1    1           1  1 1     1 1 1 

97,600,000  1    1           1  1 1     1 1 1 

97,800,000  1    1           1  1 1     1 1 1 

98,000,000  1    1       1    1  1 1     1 1 1 

98,200,000  1    1       1    1  1 1     1 1 1 

98,400,000  1    1       1    1  1 1     1 1 1 

98,600,000  1    1       1   1 1  1 1     1 1  
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98,800,000  1    1       1   1 1  1 1     1 1  

99,000,000  1    1      1 1   1 1  1 1      1  

99,200,000  1    1      1 1   1 1  1 1     1 1  

99,400,000  1    1      1 1   1 1  1 1     1 1  

99,600,000      1    1  1 1   1 1  1 1      1  

99,800,000  1    1    1  1 1   1 1  1 1      1  

100,000,000  1  1  1    1  1    1 1  1 1      1  

100,200,000  1    1    1 1 1    1 1  1 1    1  1  

100,400,000  1  1  1    1 1 1    1 1  1 1    1  1  

100,600,000  1  1  1    1 1 1    1 1  1 1    1  1  

100,800,000  1    1    1 1 1 1   1 1  1 1    1  1 1 

101,000,000  1    1    1 1 1 1   1 1  1 1    1  1 1 

101,200,000  1    1    1 1 1 1   1 1  1 1    1  1 1 

101,400,000  1    1    1 1 1 1   1 1  1 1    1  1 1 

101,600,000  1    1    1 1 1 1   1 1  1 1    1 1 1 1 

101,800,000      1    1 1 1    1 1  1 1    1 1 1 1 

102,000,000  1    1     1 1    1 1  1 1    1 1 1 1 

102,200,000      1     1 1    1 1  1 1    1 1 1 1 

102,400,000      1     1 1 1   1 1  1 1    1 1 1 1 

102,600,000      1     1 1 1   1 1  1 1    1 1 1 1 

102,800,000      1    1 1 1 1   1 1  1 1    1 1 1 1 

103,000,000      1    1 1 1 1   1 1  1 1   1 1 1 1 1 

103,200,000      1    1 1 1 1   1 1  1 1   1 1 1 1  

103,400,000      1    1 1     1 1  1 1   1 1 1 1  

103,600,000      1   1 1 1     1 1  1 1  1 1 1 1 1  

103,800,000      1   1 1 1     1 1  1 1   1 1 1 1  

104,000,000      1   1 1 1     1 1  1 1   1 1 1 1  

104,200,000      1   1 1      1 1   1   1 1 1 1  

104,400,000      1   1 1      1 1  1 1   1 1 1 1  

104,600,000      1   1 1      1 1  1 1  1 1 1 1 1  

104,800,000      1  1 1 1      1 1   1  1 1 1 1 1  

105,000,000      1  1 1 1      1 1   1  1 1 1 1 1  

105,200,000      1  1 1 1      1 1   1  1 1 1 1 1  

105,400,000      1  1 1 1      1 1  1 1  1 1 1 1 1  

105,600,000      1  1 1 1      1 1  1 1  1 1 1 1 1  

105,800,000      1   1 1      1 1   1  1 1 1 1 1  

106,000,000      1   1 1      1 1  1 1  1 1 1 1 1  

106,200,000      1    1      1 1  1 1  1 1 1 1 1  

106,400,000      1    1      1 1  1 1  1 1 1 1   
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106,600,000      1    1      1 1   1   1 1 1   

106,800,000          1      1 1   1   1 1 1   

107,000,000          1      1 1  1 1   1 1    

107,200,000          1      1 1  1 1    1    

107,400,000                1 1  1 1    1    

107,600,000                1 1  1 1    1    

107,800,000                1 1  1 1    1    

108,000,000                1 1   1    1    

108,200,000                1 1  1 1    1    

108,400,000                1 1   1    1    

108,600,000      1    1      1 1  1 1    1    

108,800,000      1    1      1 1  1 1    1    

109,000,000          1      1 1  1 1    1    

109,200,000      1    1      1 1   1    1    

109,400,000      1    1      1 1   1    1    

109,600,000      1    1      1 1   1    1    

109,800,000      1    1      1 1   1    1    

110,000,000      1    1      1 1   1    1    

110,200,000      1    1      1 1   1    1    

110,400,000      1    1      1 1  1 1    1    

110,600,000      1    1      1 1   1    1    

110,800,000      1    1      1   1 1    1    

111,000,000      1    1      1    1    1    

111,200,000      1    1      1    1    1    

111,400,000      1    1      1 1   1    1    

111,600,000      1    1      1    1    1    

111,800,000      1    1      1    1    1    

112,000,000      1    1      1    1    1    

112,200,000      1    1      1    1    1    

112,400,000      1    1      1    1    1    

112,600,000      1    1      1    1    1    

112,800,000      1    1      1    1    1    

113,000,000      1    1      1    1    1    

113,200,000      1    1      1    1    1    

113,400,000      1    1      1    1    1    

113,600,000   1   1    1      1 1   1    1    

113,800,000   1   1    1      1    1    1    

114,000,000      1    1      1    1    1    

114,200,000   1   1    1      1 1   1    1    
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114,400,000      1    1      1 1   1    1    

114,600,000   1   1    1      1 1   1    1    

114,800,000   1   1    1      1 1   1    1    

115,000,000   1   1    1      1 1   1    1    

115,200,000      1    1      1 1   1    1    

115,400,000   1   1    1      1 1   1    1    

115,600,000   1   1    1      1 1   1    1    

115,800,000   1   1    1       1   1    1    

116,000,000   1   1    1      1 1   1    1    

116,200,000   1   1    1      1 1       1    

116,400,000   1   1    1       1       1    

116,600,000   1   1    1       1   1    1    

116,800,000   1   1    1       1   1    1    

117,000,000   1   1    1      1 1   1    1    

117,200,000   1   1    1       1   1    1    

117,400,000   1   1    1       1   1    1    

117,600,000   1   1    1       1   1    1    

117,800,000   1   1    1       1   1        

118,000,000   1   1    1       1   1        

118,200,000   1   1    1       1   1        

118,400,000   1   1    1       1   1        

118,600,000   1   1    1       1   1        

118,800,000   1   1    1       1   1        

119,000,000   1   1    1       1   1        

119,200,000   1   1    1       1   1        

119,400,000   1   1    1       1   1        

119,600,000   1   1    1       1   1        

119,800,000   1   1    1       1   1        

120,000,000      1      1        1   1  1 1 1 
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Appendix K - Frequencies Selected in Stepwise Regression for 

Ethanol (Gain) 

Small Probe  Large Probe  Small Box  Large Box 
14,000,000   28,600,000   350,000   120,000 

25,000,000   40,000,000   9,400,000   5,000,000 

27,800,000   100,400,000   12,800,000   7,200,000 

39,200,000       17,600,000   15,200,000 

40,200,000       18,400,000   24,200,000 

41,400,000       26,000,000   26,800,000 

41,800,000       27,000,000   31,600,000 

42,200,000       29,600,000   34,600,000 

44,800,000       30,000,000   36,400,000 

52,000,000       33,000,000   39,800,000 

52,200,000       33,600,000   46,000,000 

53,400,000       34,200,000   48,000,000 

55,400,000       40,000,000   48,400,000 

58,800,000       40,800,000   53,600,000 

60,800,000       45,400,000   54,000,000 

61,200,000       50,200,000   54,600,000 

62,600,000       53,000,000   55,200,000 

65,000,000       59,200,000   55,400,000 

65,600,000       63,400,000   56,400,000 

71,800,000       66,600,000   56,600,000 

75,800,000       69,000,000   63,400,000 

77,200,000       72,000,000   65,200,000 

80,400,000       80,400,000   71,000,000 

81,000,000       81,000,000   77,000,000 

96,800,000       86,200,000   81,200,000 

98,800,000       90,800,000   81,400,000 

101,800,000       91,000,000   85,800,000 

104,800,000       92,200,000   87,600,000 

105,000,000       92,400,000   88,200,000 

107,200,000       93,400,000   99,200,000 

108,200,000       96,000,000   99,600,000 

108,600,000       101,200,000   107,200,000 

110,000,000       106,600,000   108,800,000 

115,600,000       108,000,000   112,200,000 

119,000,000       114,200,000   114,400,000 

119,800,000       118,400,000     
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Appendix L - Frequencies Selected in Stepwise Regression for 

Ethanol (Phase) 

Small Probe  Large Probe  Small Box  Large Box 
60,000   13,000,000   2,200,000   2,800,000 

6,200,000   13,400,000   12,000,000   4,200,000 

12,000,000   53,000,000   16,000,000   5,600,000 

12,400,000   58,200,000   18,000,000   13,800,000 

13,000,000   63,400,000   25,800,000   18,200,000 

19,600,000   67,600,000   28,400,000   19,200,000 

20,800,000   69,200,000   29,600,000   19,800,000 

27,400,000   69,400,000   31,200,000   21,400,000 

28,400,000   78,600,000   38,000,000   23,400,000 

34,200,000   113,400,000   41,600,000   27,800,000 

35,800,000   113,800,000   42,200,000   28,600,000 

36,800,000   116,200,000   52,000,000   33,800,000 

38,400,000       53,400,000   34,200,000 

41,000,000       54,600,000   35,200,000 

43,800,000       58,400,000   35,600,000 

45,600,000       59,400,000   36,000,000 

49,600,000       60,200,000   37,000,000 

49,800,000       60,800,000   41,200,000 

54,000,000       62,400,000   44,800,000 

56,000,000       71,000,000   45,200,000 

65,200,000       81,400,000   52,600,000 

66,400,000       89,600,000   76,000,000 

70,600,000       92,200,000   76,200,000 

78,000,000       93,000,000   77,600,000 

80,000,000       94,800,000   78,800,000 

82,800,000       95,600,000   83,200,000 

85,000,000       97,200,000   85,000,000 

87,600,000       101,000,000   87,800,000 

87,800,000       101,400,000   94,600,000 

94,200,000       102,000,000   106,600,000 

97,800,000       102,600,000   107,200,000 

106,000,000       108,200,000   109,000,000 

107,600,000       110,400,000   112,400,000 

114,600,000       113,400,000   115,400,000 

115,000,000       118,800,000     

116,200,000       119,600,000     
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Appendix M - Frequencies Selected in Stepwise Regression for 

Ammonia (Gain) 

Small Probe  Large Probe  Small Box  Large Box 
10,000   10,000   15,000,000   15,600,000 

2,200,000   30,000   15,800,000   61,600,000 

4,400,000   500,000   29,600,000   68,800,000 

8,600,000   1,400,000   29,800,000   71,000,000 

13,000,000   2,600,000   35,000,000   86,800,000 

25,000,000   2,800,000   35,200,000   89,000,000 

25,400,000   3,200,000   39,200,000   91,800,000 

27,000,000   3,400,000   42,200,000   98,400,000 

32,400,000   3,800,000   42,400,000   119,600,000 

33,400,000   4,400,000   46,200,000   119,800,000 

39,200,000   4,600,000   46,600,000     

39,400,000   5,000,000   59,600,000     

41,000,000   5,400,000   62,200,000     

44,200,000   6,800,000   63,600,000     

47,800,000   7,800,000   71,200,000     

49,200,000   8,800,000   73,400,000     

51,000,000   9,200,000   75,400,000     

53,000,000   9,800,000   76,400,000     

54,400,000   10,000,000   79,000,000     

54,600,000   10,400,000   80,800,000     

55,000,000   10,800,000   84,400,000     

56,200,000   11,400,000   86,000,000     

56,800,000   12,000,000   86,200,000     

57,800,000   12,200,000   88,200,000     

62,800,000   12,400,000   90,000,000     

67,200,000   13,600,000   98,000,000     

71,200,000   15,200,000   98,400,000     

82,400,000   40,000,000   100,200,000     

83,000,000   47,800,000   101,600,000     

95,200,000   49,000,000   102,600,000     

101,200,000   52,200,000   108,800,000     

105,200,000   54,000,000   109,600,000     

106,600,000   56,000,000   112,600,000     

112,600,000   58,400,000   112,800,000     

116,800,000   59,800,000   113,800,000     

    62,800,000   115,600,000     

    73,400,000         
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Appendix N - Frequencies Selected in Stepwise Regression for 

Ammonia (Phase) 

Small Probe  Large Probe  Small Box  Large Box 
3,200,000   10,000   10,000   6,000,000 

5,200,000   170,000   1,000,000   7,000,000 

6,000,000   2,000,000   2,400,000   7,600,000 

6,200,000   2,600,000   3,200,000   33,400,000 

7,000,000   4,000,000   3,600,000   35,000,000 

7,200,000   4,200,000   4,200,000   41,600,000 

9,800,000   5,800,000   5,000,000   43,200,000 

12,600,000   8,000,000   5,400,000   44,400,000 

13,800,000   8,400,000   5,800,000   45,400,000 

15,000,000   9,000,000   6,400,000   47,400,000 

15,400,000   12,200,000   8,600,000   78,000,000 

15,800,000   12,400,000   9,800,000   80,000,000 

35,200,000   13,600,000   36,200,000   80,600,000 

35,800,000   13,800,000   39,800,000   83,000,000 

36,000,000   15,400,000   42,600,000     

37,600,000   18,200,000   42,800,000     

42,400,000   19,200,000   43,600,000     

46,600,000   20,200,000   48,400,000     

53,200,000   20,600,000   49,600,000     

54,200,000   21,600,000   50,400,000     

55,200,000   23,200,000   52,200,000     

57,200,000   27,600,000   53,000,000     

58,400,000   27,800,000   53,800,000     

60,000,000   28,000,000   54,400,000     

70,400,000   28,600,000   55,800,000     

75,000,000   28,800,000   72,200,000     

80,200,000   45,400,000   72,400,000     

82,600,000   48,200,000   75,800,000     

91,400,000   51,000,000   77,200,000     

100,000,000   55,800,000   78,400,000     

107,000,000   56,200,000   83,000,000     

112,000,000   72,800,000   83,400,000     

112,200,000   74,400,000   86,400,000     

112,800,000   75,400,000   86,800,000     

113,600,000   100,000,000   89,200,000     

    113,600,000   118,200,000     

    115,800,000         
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Appendix O - Results with Neural Network Combined Test with 

Small Probe Sensor 

Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

No contaminants Ammonia  1.03 Nothing  0.32 Nothing  0.44 Nothing  -0.19 

No contaminants Ammonia  0.70 Ammonia  0.68 Nothing  0.04 Nothing  -0.61 

No contaminants Ammonia  0.91 Ammonia  0.58 Nothing  -0.04 Nothing  0.10 

No contaminants Nothing  -0.05 Ethanol  1.56 Ammonia  0.67 Ethanol  2.13 

No contaminants Nothing  -0.11 Ammonia  0.53 Ammonia  0.52 Ammonia  1.11 

No contaminants Nothing  -0.10 Ammonia  1.42 Nothing  0.44 Ammonia  1.47 

No contaminants Nothing  -0.05 Nothing  -0.05 Ammonia  0.67 Ammonia  0.67 

No contaminants Nothing  -0.11 Nothing  -0.11 Ammonia  0.52 Ammonia  0.52 

No contaminants Nothing  -0.10 Nothing  -0.10 Nothing  0.44 Nothing  0.44 

No contaminants Nothing  0.05 Nothing  0.05 Nothing  0.45 Nothing  0.45 

No contaminants Ethanol  1.53 Ethanol  1.53 Ethanol  1.94 Ethanol  1.94 

No contaminants Ethanol  1.87 Ethanol  1.87 Nothing  0.48 Nothing  0.48 

50 ppm Ammonia Ammonia  1.07 Ammonia  1.39 Ammonia  0.97 Nothing  0.44 

50 ppm Ammonia Ammonia  1.07 Nothing  0.40 Ammonia  1.03 Ammonia  1.22 

50 ppm Ammonia Ammonia  1.09 Nothing  0.49 Ammonia  0.79 Ammonia  1.16 

100 ppm Ammonia Ammonia  1.09 Ammonia  1.03 Nothing  0.48 Ammonia  0.60 

100 ppm Ammonia Ammonia  0.99 Ammonia  0.99 Nothing  0.34 Ethanol  1.57 

100 ppm Ammonia Ammonia  1.01 Ammonia  1.01 Ammonia  0.66 Ammonia  1.44 

200 ppm Ammonia Ammonia  0.97 Ammonia  1.20 Ethanol  1.71 Nothing  0.45 

200 ppm Ammonia Ammonia  1.03 Ammonia  1.04 Ammonia  1.16 Ammonia  0.83 

200 ppm Ammonia Ammonia  1.03 Ammonia  1.21 Ammonia  1.15 Ammonia  0.92 

300 ppm Ammonia Ammonia  1.08 Ammonia  1.00 Ammonia  0.83 Nothing  -0.67 

300 ppm Ammonia Ammonia  1.09 Ammonia  0.64 Ammonia  1.29 Ammonia  0.86 

300 ppm Ammonia Ammonia  1.10 Nothing  0.44 Ammonia  1.35 Ammonia  0.82 

450 ppm Ammonia Ammonia  1.15 Ammonia  1.26 Ammonia  1.00 Ammonia  1.01 

450 ppm Ammonia Ammonia  1.05 Ammonia  1.10 Ammonia  0.92 Ammonia  1.16 

450 ppm Ammonia Ammonia  1.03 Ammonia  1.00 Ammonia  0.74 Ammonia  1.15 

600 ppm Ammonia Ammonia  0.91 Ammonia  0.87 Ammonia  0.60 Ammonia  1.06 

600 ppm Ammonia Ammonia  1.05 Ammonia  0.54 Ammonia  1.21 Ammonia  1.38 

600 ppm Ammonia Ammonia  1.05 Ammonia  0.57 Ammonia  1.27 Ethanol  1.81 

750 ppm Ammonia Ammonia  1.14 Ammonia  1.06 Ammonia  0.78 Nothing  -0.57 

750 ppm Ammonia Ammonia  1.06 Ammonia  1.06 Ammonia  0.59 Nothing  0.29 

750 ppm Ammonia Ammonia  1.08 Ammonia  1.02 Ammonia  1.05 Ammonia  1.44 

900 ppm Ammonia Ammonia  0.68 Ammonia  1.06 Nothing  0.49 Ammonia  0.73 

900 ppm Ammonia Ammonia  1.07 Ammonia  1.01 Ammonia  1.28 Ammonia  1.20 

900 ppm Ammonia Ammonia  1.01 Nothing  0.32 Ammonia  1.26 Ammonia  1.48 

1200 ppm Ammonia Ammonia  1.09 Ammonia  0.96 Ammonia  0.81 Nothing  -0.15 

1200 ppm Ammonia Ammonia  1.01 Ammonia  0.84 Nothing  0.36 Ammonia  0.54 

1200 ppm Ammonia Ammonia  1.14 Ammonia  1.18 Ammonia  0.52 Ammonia  1.26 

1500 ppm Ammonia Ammonia  1.08 Ammonia  0.97 Ammonia  0.50 Ammonia  1.13 

1500 ppm Ammonia Ammonia  1.09 Ammonia  0.81 Ammonia  1.05 Ammonia  1.42 

1500 ppm Ammonia Ammonia  1.13 Ammonia  0.68 Ammonia  1.12 Nothing  0.00 

2400 ppm Ammonia Ammonia  1.03 Ammonia  1.09 Ammonia  0.84 Nothing  0.25 
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Actual Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

2400 ppm Ammonia Ammonia  0.89 Ammonia  1.10 Ammonia  1.16 Ammonia  0.89 

2400 ppm Ammonia Ammonia  1.04 Ammonia  1.12 Ammonia  1.17 Ammonia  0.92 

3000 ppm Ammonia Ammonia  1.08 Ammonia  1.34 Ammonia  0.50 Nothing  0.47 

3000 ppm Ammonia Ammonia  1.07 Ammonia  0.62 Ammonia  0.52 Ammonia  1.32 

3000 ppm Ammonia Ammonia  1.11 Ammonia  0.93 Nothing  0.41 Ammonia  1.28 

98 ppm Ethanol Ethanol  1.87 Ethanol  1.94 Ethanol  2.16 Ethanol  2.07 

98 ppm Ethanol Ethanol  2.12 Ammonia  1.07 Ethanol  2.21 Ammonia  1.08 

98 ppm Ethanol Ethanol  1.86 Ammonia  1.09 Ammonia  1.13 Ammonia  1.26 

295 ppm Ethanol Ethanol  1.58 Ethanol  1.81 Ammonia  1.07 Ethanol  1.71 

295 ppm Ethanol Ethanol  1.71 Ammonia  1.31 Ethanol  2.02 Ammonia  1.22 

295 ppm Ethanol Ammonia  1.24 Ammonia  1.39 Ethanol  2.06 Ammonia  1.18 

699 ppm Ethanol Ethanol  1.75 Ethanol  1.57 Ethanol  2.37 Ethanol  2.09 

699 ppm Ethanol Ethanol  1.62 Ethanol  1.65 Ethanol  1.97 Ammonia  1.40 

699 ppm Ethanol Ethanol  1.83 Ammonia  1.21 Ethanol  1.51 Ammonia  0.85 

1005 ppm Ethanol Ethanol  1.82 Ethanol  2.42 Ethanol  2.22 Ethanol  2.16 

1005 ppm Ethanol Ethanol  2.01 Ammonia  1.40 Ethanol  2.13 Ammonia  1.48 

1005 ppm Ethanol Ethanol  1.79 Ammonia  1.41 Ammonia  1.41 Ammonia  1.23 

1507 ppm Ethanol Ethanol  1.74 Ethanol  2.01 Ethanol  2.39 Ethanol  1.78 

1507 ppm Ethanol Ethanol  1.72 Ammonia  1.46 Ethanol  1.87 Ammonia  1.21 

1507 ppm Ethanol Ethanol  1.83 Ammonia  1.36 Ethanol  2.09 Ethanol  1.62 

2501 ppm Ethanol Ethanol  1.81 Ethanol  1.69 Ethanol  2.12 Ethanol  1.62 

2501 ppm Ethanol Ethanol  2.00 Ethanol  1.56 Ethanol  1.82 Ammonia  1.42 

2501 ppm Ethanol Ethanol  2.03 Ethanol  1.78 Ammonia  1.43 Ammonia  0.90 

3014 ppm Ethanol Ethanol  1.72 Ethanol  1.66 Ethanol  2.06 Ammonia  1.19 

3014 ppm Ethanol Ethanol  1.79 Ethanol  1.82 Ethanol  1.67 Ethanol  1.80 

3014 ppm Ethanol Ethanol  1.74 Ammonia  1.06 Glycerol  2.52 Ammonia  1.05 

3997 ppm Ethanol Ethanol  1.76 Ethanol  2.19 Ammonia  1.27 Ammonia  1.44 

3997 ppm Ethanol Ammonia  1.23 Ethanol  1.55 Ethanol  2.12 Ethanol  1.50 

3997 ppm Ethanol Ethanol  1.86 Ammonia  0.95 Ethanol  2.00 Ammonia  1.03 

5002 ppm Ethanol Ethanol  2.41 Ethanol  2.08 Ethanol  2.23 Ethanol  1.90 

5002 ppm Ethanol Ethanol  1.96 Ethanol  1.99 Ethanol  2.26 Ammonia  1.18 

5002 ppm Ethanol Ethanol  1.98 Ethanol  1.59 Ethanol  1.51 Ammonia  0.85 

7503 ppm Ethanol Ethanol  2.07 Ethanol  1.85 Ethanol  1.55 Ethanol  1.70 

7503 ppm Ethanol Ethanol  2.43 Ethanol  2.15 Ethanol  1.74 Ethanol  1.66 

7503 ppm Ethanol Glycerol  2.59 Ethanol  2.21 Ethanol  2.28 Ethanol  1.85 

10004 ppm Ethanol Ethanol  1.80 Ethanol  1.91 Ethanol  2.11 Ethanol  1.75 

10004 ppm Ethanol Ethanol  2.02 Ethanol  1.68 Ammonia  1.36 Ethanol  1.53 

10004 ppm Ethanol Ethanol  2.01 Ethanol  2.44 Ammonia  1.31 Ammonia  1.30 

12505 ppm Ethanol Ammonia  1.36 Ethanol  2.28 Ammonia  1.02 Ammonia  1.33 

12505 ppm Ethanol Ethanol  2.08 Ammonia  1.19 Ethanol  2.04 Ammonia  0.89 

12505 ppm Ethanol Ethanol  1.82 Ethanol  1.78 Ethanol  1.66 Ammonia  1.02 

Glycerol Present Ethanol  1.57 Ethanol  1.57 Ammonia  1.24 Ammonia  1.24 

Glycerol Present Glycerol  2.64 Glycerol  2.64 Glycerol  2.90 Glycerol  2.90 

Glycerol Present Ethanol  2.23 Ethanol  2.23 Glycerol  2.79 Glycerol  2.79 

Glycerol Present Glycerol  2.60 Glycerol  2.60 Glycerol  2.60 Glycerol  2.60 

Glycerol Present Glycerol  2.66 Glycerol  2.66 Ethanol  2.45 Ethanol  2.45 

Glycerol Present Glycerol  2.75 Glycerol  2.75 Glycerol  2.55 Glycerol  2.55 
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Appendix P - Results with Neural Network Combined Test with 

Large Probe Sensor 

Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

No contaminants Nothing  0.01 Nothing  0.43 Nothing  0.32 Nothing  0.02 

No contaminants Nothing  0.26 Ammonia  0.54 Nothing  -0.01 Nothing  0.03 

No contaminants Nothing  0.40 Nothing  0.11 Nothing  -0.14 Nothing  0.43 

No contaminants Nothing  0.40 Nothing  0.33 Ethanol  2.03 Ammonia  0.90 

No contaminants Ammonia  0.51 Ethanol  1.90 Ammonia  1.33 Ethanol  2.20 

No contaminants Ethanol  2.40 Ammonia  1.43 Ammonia  0.97 Ammonia  1.40 

No contaminants Ammonia  1.27 Ammonia  1.24 Ammonia  1.39 Ethanol  1.68 

No contaminants Ammonia  1.29 Ethanol  2.01 Ammonia  1.46 Ethanol  1.56 

No contaminants Ethanol  1.68 Ammonia  1.03 Ethanol  1.55 Ethanol  1.58 

No contaminants Nothing  0.33 Nothing  0.40 Ammonia  0.90 Ethanol  2.03 

No contaminants Ethanol  1.90 Ammonia  0.51 Ethanol  2.20 Ammonia  1.33 

No contaminants Ammonia  1.43 Ethanol  2.40 Ammonia  1.40 Ammonia  0.97 

50 ppm Ammonia Ammonia  0.99 Ammonia  0.77 Ethanol  1.63 Ethanol  1.57 

50 ppm Ammonia Ammonia  0.91 Nothing  0.48 Ethanol  1.82 Ethanol  1.65 

50 ppm Ammonia Ammonia  0.98 Nothing  0.13 Ethanol  1.59 Ethanol  1.55 

100 ppm Ammonia Ammonia  1.03 Ethanol  1.70 Ammonia  1.13 Ammonia  1.37 

100 ppm Ammonia Ethanol  1.69 Ammonia  0.99 Ammonia  1.29 Ethanol  1.59 

100 ppm Ammonia Ammonia  1.49 Ammonia  0.82 Ammonia  1.39 Ethanol  1.69 

200 ppm Ammonia Ammonia  1.19 Ammonia  0.87 Ammonia  0.90 Ammonia  1.25 

200 ppm Ammonia Ammonia  0.96 Ammonia  1.27 Ammonia  1.11 Ethanol  1.55 

200 ppm Ammonia Ammonia  0.99 Ammonia  0.83 Ammonia  1.07 Ammonia  0.96 

300 ppm Ammonia Ethanol  1.71 Ammonia  1.33 Glycerol  2.62 Ethanol  2.21 

300 ppm Ammonia Ammonia  1.10 Ammonia  0.73 Ethanol  2.46 Ethanol  2.26 

300 ppm Ammonia Ammonia  1.47 Ammonia  0.95 Ethanol  2.27 Glycerol  2.50 

450 ppm Ammonia Ammonia  0.99 Ammonia  1.21 Ammonia  1.27 Ethanol  1.72 

450 ppm Ammonia Ammonia  0.96 Ammonia  0.89 Ammonia  1.40 Ethanol  2.05 

450 ppm Ammonia Ammonia  0.96 Ammonia  0.51 Ammonia  1.44 Ethanol  1.74 

600 ppm Ammonia Ammonia  0.96 Ammonia  0.52 Ammonia  0.67 Ammonia  0.88 

600 ppm Ammonia Ammonia  0.71 Nothing  0.28 Ammonia  0.78 Ammonia  0.60 

600 ppm Ammonia Ammonia  0.89 Ammonia  0.66 Ammonia  0.99 Ammonia  1.10 

750 ppm Ammonia Ammonia  0.95 Ammonia  0.66 Ammonia  1.21 Ammonia  1.38 

750 ppm Ammonia Ammonia  0.96 Ammonia  0.56 Ethanol  1.78 Ethanol  1.91 

750 ppm Ammonia Ammonia  0.97 Ammonia  0.87 Ammonia  1.32 Ethanol  1.90 

900 ppm Ammonia Ammonia  1.27 Nothing  0.00 Ethanol  1.90 Nothing  0.43 

900 ppm Ammonia Ammonia  1.13 Nothing  0.14 Ammonia  0.63 Ammonia  0.64 

900 ppm Ammonia Ammonia  1.13 Nothing  0.40 Ammonia  0.73 Ammonia  0.80 

1200 ppm Ammonia Ammonia  1.04 Ammonia  0.75 Ammonia  1.04 Ammonia  0.65 

1200 ppm Ammonia Ammonia  0.86 Nothing  0.48 Ammonia  0.96 Ammonia  0.98 

1200 ppm Ammonia Ammonia  0.99 Ammonia  1.02 Ammonia  1.07 Ammonia  1.13 

1500 ppm Ammonia Ammonia  1.00 Ammonia  1.10 Ammonia  0.68 Nothing  0.44 

1500 ppm Ammonia Ammonia  1.00 Ammonia  1.21 Ammonia  0.56 Ammonia  0.80 

1500 ppm Ammonia Ammonia  1.16 Ammonia  1.06 Ammonia  0.69 Nothing  0.45 

2400 ppm Ammonia Ammonia  1.12 Ammonia  0.83 Ammonia  0.94 Ammonia  0.77 
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Actual Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

2400 ppm Ammonia Ammonia  1.40 Ethanol  1.59 Ammonia  0.97 Ammonia  1.07 

2400 ppm Ammonia Ammonia  1.15 Ammonia  1.22 Ammonia  0.70 Ammonia  1.11 

3000 ppm Ammonia Ammonia  1.00 Ammonia  1.30 Ammonia  0.88 Ammonia  1.29 

3000 ppm Ammonia Ammonia  1.37 Ammonia  1.06 Ammonia  0.71 Ammonia  0.98 

3000 ppm Ammonia Ammonia  1.16 Ammonia  1.04 Ammonia  1.24 Ethanol  1.63 

98 ppm Ethanol Ethanol  1.94 Ethanol  1.71 Ethanol  2.48 Glycerol  2.54 

98 ppm Ethanol Ethanol  1.66 Ethanol  1.70 Ethanol  2.19 Ethanol  2.42 

98 ppm Ethanol Ethanol  1.98 Ethanol  2.37 Ethanol  1.96 Ethanol  2.16 

295 ppm Ethanol Ethanol  1.82 Ethanol  2.04 Ethanol  2.00 Ethanol  2.02 

295 ppm Ethanol Ammonia  1.06 Ethanol  2.02 Ethanol  1.95 Ethanol  2.22 

295 ppm Ethanol Ethanol  1.83 Glycerol  2.56 Ethanol  2.13 Ethanol  2.12 

699 ppm Ethanol Ethanol  1.80 Ethanol  1.99 Ethanol  2.24 Ethanol  2.05 

699 ppm Ethanol Ethanol  1.75 Ethanol  2.03 Ethanol  2.06 Ethanol  2.14 

699 ppm Ethanol Ethanol  2.04 Ethanol  2.07 Ethanol  2.11 Ethanol  2.03 

1005 ppm Ethanol Ammonia  0.56 Ammonia  0.95 Glycerol  2.66 Glycerol  3.15 

1005 ppm Ethanol Ammonia  0.67 Ammonia  1.15 Glycerol  2.61 Glycerol  3.39 

1005 ppm Ethanol Nothing  0.48 Ammonia  0.84 Glycerol  2.66 Glycerol  2.52 

1507 ppm Ethanol Ethanol  1.85 Glycerol  2.88 Ethanol  1.98 Ethanol  2.26 

1507 ppm Ethanol Ethanol  1.83 Ethanol  1.59 Ethanol  2.06 Ethanol  2.32 

1507 ppm Ethanol Ethanol  1.79 Ethanol  1.53 Ethanol  1.97 Ethanol  2.09 

2501 ppm Ethanol Ethanol  1.78 Glycerol  2.62 Ethanol  2.41 Ethanol  2.12 

2501 ppm Ethanol Ethanol  1.92 Ethanol  1.58 Ethanol  2.05 Ethanol  2.05 

2501 ppm Ethanol Ethanol  2.00 Ethanol  1.68 Ethanol  2.02 Ethanol  2.03 

3014 ppm Ethanol Ethanol  1.77 Ethanol  1.53 Ethanol  2.37 Glycerol  2.50 

3014 ppm Ethanol Ethanol  2.04 Ethanol  1.64 Ethanol  2.39 Glycerol  2.70 

3014 ppm Ethanol Ethanol  1.86 Ethanol  2.01 Ethanol  1.91 Ethanol  2.20 

3997 ppm Ethanol Ethanol  1.91 Ethanol  1.97 Ethanol  2.32 Ethanol  2.45 

3997 ppm Ethanol Ethanol  1.84 Ammonia  1.41 Ethanol  2.28 Ethanol  2.45 

3997 ppm Ethanol Ethanol  1.60 Ethanol  1.67 Ethanol  2.16 Ethanol  2.07 

5002 ppm Ethanol Ethanol  1.78 Glycerol  2.62 Ethanol  2.41 Ethanol  2.12 

5002 ppm Ethanol Ethanol  1.92 Ethanol  1.58 Ethanol  2.05 Ethanol  2.05 

5002 ppm Ethanol Ethanol  2.00 Ethanol  1.68 Ethanol  2.02 Ethanol  2.03 

7503 ppm Ethanol Ethanol  1.85 Ethanol  2.02 Ethanol  2.15 Ethanol  2.38 

7503 ppm Ethanol Ethanol  1.79 Glycerol  2.53 Ethanol  2.12 Ethanol  2.27 

7503 ppm Ethanol Ethanol  1.99 Ethanol  2.13 Ethanol  2.19 Ethanol  2.22 

10004 ppm Ethanol Ethanol  2.05 Ethanol  1.57 Ammonia  1.42 Glycerol  3.30 

10004 ppm Ethanol Ethanol  1.94 Ammonia  1.48 Ethanol  1.55 Ethanol  2.33 

10004 ppm Ethanol Ethanol  1.93 Ammonia  1.40 Ammonia  1.49 Ethanol  1.78 

12505 ppm Ethanol Ethanol  1.81 Ethanol  1.91 Ethanol  1.89 Ethanol  1.93 

12505 ppm Ethanol Ethanol  1.89 Ethanol  2.03 Ethanol  1.82 Ethanol  1.91 

12505 ppm Ethanol Ethanol  1.96 Ethanol  1.84 Ethanol  1.86 Ethanol  1.95 

Glycerol Present Glycerol  2.78 Ethanol  1.85 Ethanol  1.86 Ethanol  2.07 

Glycerol Present Ethanol  2.10 Ammonia  1.33 Glycerol  2.64 Ethanol  2.03 

Glycerol Present Ethanol  1.51 Ethanol  1.75 Ethanol  1.86 Ethanol  2.02 

Glycerol Present Glycerol  2.74 Ethanol  2.45 Ethanol  1.86 Ethanol  1.99 

Glycerol Present Glycerol  2.62 Ethanol  1.80 Ethanol  2.02 Ethanol  1.93 

Glycerol Present Ethanol  2.22 Ethanol  2.05 Ethanol  1.82 Ethanol  1.88 
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Appendix Q - Results with Neural Network Combined Test with 

Small Box Sensor 

Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

No contaminants Nothing  0.01 Nothing  -0.02 Nothing  0.02 Nothing  0.41 

No contaminants Nothing  0.43 Nothing  0.00 Ammonia  0.62 Nothing  0.40 

No contaminants Nothing  0.04 Nothing  -0.40 Nothing  0.02 Nothing  0.04 

No contaminants Nothing  0.06 Ethanol  1.72 Nothing  0.13 Ammonia  0.61 

No contaminants Ammonia  1.49 Ethanol  1.51 Nothing  0.03 Ammonia  0.93 

No contaminants Nothing  0.00 Ammonia  1.41 Nothing  0.10 Ammonia  1.00 

No contaminants Glycerol  2.61 Ammonia  0.63 Nothing  0.12 Ammonia  1.04 

No contaminants Ammonia  1.17 Ammonia  1.25 Nothing  0.13 Nothing  0.33 

No contaminants Nothing  0.49 Ammonia  1.40 Nothing  0.26 Ethanol  1.50 

No contaminants Nothing  0.00 Nothing  0.36 Nothing  0.08 Nothing  0.40 

No contaminants Nothing  -0.06 Ammonia  1.39 Nothing  0.19 Ammonia  0.99 

No contaminants Nothing  0.02 Ammonia  0.99 Nothing  0.15 Ammonia  1.44 

50 ppm Ammonia Ammonia  1.07 Ammonia  1.23 Ammonia  0.75 Ethanol  1.71 

50 ppm Ammonia Ammonia  1.09 Ammonia  0.60 Ammonia  1.01 Ethanol  1.57 

50 ppm Ammonia Ammonia  1.01 Nothing  -0.08 Ammonia  1.00 Ethanol  1.58 

100 ppm Ammonia Ammonia  1.03 Ammonia  0.82 Ammonia  1.04 Ammonia  1.28 

100 ppm Ammonia Ethanol  2.10 Ammonia  0.68 Ammonia  1.01 Ethanol  2.24 

100 ppm Ammonia Ammonia  1.39 Ammonia  0.77 Ammonia  1.01 Ethanol  1.91 

200 ppm Ammonia Ammonia  1.02 Nothing  -0.26 Ammonia  1.01 Ethanol  1.99 

200 ppm Ammonia Nothing  0.27 Nothing  -0.31 Ammonia  1.05 Ammonia  0.96 

200 ppm Ammonia Nothing  0.04 Nothing  -0.03 Ammonia  1.16 Ammonia  1.31 

300 ppm Ammonia Ammonia  0.51 Nothing  0.05 Ammonia  1.03 Ammonia  0.75 

300 ppm Ammonia Nothing  0.37 Nothing  -0.26 Ammonia  1.22 Ammonia  0.68 

300 ppm Ammonia Ammonia  0.99 Nothing  0.17 Ammonia  1.12 Ammonia  0.90 

450 ppm Ammonia Ammonia  1.03 Nothing  0.08 Ethanol  1.54 Ethanol  1.68 

450 ppm Ammonia Ammonia  1.11 Nothing  -0.31 Ammonia  1.00 Ammonia  1.19 

450 ppm Ammonia Ammonia  1.00 Nothing  -0.68 Ammonia  1.27 Ammonia  1.09 

600 ppm Ammonia Nothing  -0.48 Nothing  -0.09 Ammonia  0.99 Ammonia  1.08 

600 ppm Ammonia Ammonia  1.00 Nothing  -0.35 Ammonia  0.99 Ammonia  0.84 

600 ppm Ammonia Ammonia  1.00 Nothing  -0.75 Ammonia  1.03 Ammonia  1.08 

750 ppm Ammonia Ethanol  1.70 Nothing  0.41 Ethanol  1.82 Ammonia  0.96 

750 ppm Ammonia Ammonia  0.90 Nothing  -0.09 Ammonia  0.99 Ammonia  1.25 

750 ppm Ammonia Ammonia  1.03 Nothing  -0.49 Ammonia  0.98 Ammonia  0.77 

900 ppm Ammonia Ammonia  1.08 Nothing  0.09 Ethanol  1.89 Ethanol  1.74 

900 ppm Ammonia Ammonia  0.77 Ammonia  1.17 Ammonia  1.02 Ethanol  2.34 

900 ppm Ammonia Ammonia  1.02 Ethanol  1.55 Ammonia  0.53 Ammonia  1.27 

1200 ppm Ammonia Ethanol  1.56 Ammonia  1.30 Ammonia  1.06 Ammonia  0.89 

1200 ppm Ammonia Ammonia  1.01 Nothing  -0.23 Ammonia  1.01 Ammonia  0.73 

1200 ppm Ammonia Ammonia  1.01 Nothing  0.36 Ammonia  0.76 Ammonia  0.66 

1500 ppm Ammonia Ammonia  1.07 Ammonia  0.66 Ammonia  0.98 Nothing  0.16 

1500 ppm Ammonia Ammonia  0.81 Nothing  -0.07 Ammonia  1.03 Ammonia  1.04 

1500 ppm Ammonia Ammonia  1.01 Nothing  0.37 Ammonia  1.05 Nothing  0.27 

2400 ppm Ammonia Ammonia  1.02 Ammonia  0.50 Ammonia  0.98 Ammonia  1.30 
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Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

2400 ppm Ammonia Ammonia  1.05 Nothing  -0.15 Ammonia  0.98 Ethanol  1.68 

2400 ppm Ammonia Ethanol  2.01 Ammonia  0.50 Ammonia  1.42 Ethanol  1.66 

3000 ppm Ammonia Ammonia  1.00 Ammonia  0.63 Ammonia  1.02 Ammonia  0.93 

3000 ppm Ammonia Ammonia  0.60 Nothing  0.36 Ammonia  1.29 Ammonia  0.72 

3000 ppm Ammonia Ammonia  0.99 Ammonia  0.98 Ammonia  1.01 Nothing  -0.17 

98 ppm Ethanol Ethanol  2.02 Ammonia  1.12 Ethanol  1.72 Ammonia  0.78 

98 ppm Ethanol Ethanol  1.87 Ethanol  1.67 Ethanol  2.19 Ammonia  1.24 

98 ppm Ethanol Ethanol  2.01 Ammonia  1.46 Ethanol  2.05 Ethanol  1.69 

295 ppm Ethanol Ethanol  2.01 Ammonia  0.95 Ethanol  1.94 Ethanol  1.94 

295 ppm Ethanol Ethanol  2.01 Ammonia  1.16 Ethanol  2.31 Ethanol  1.56 

295 ppm Ethanol Ethanol  2.00 Ammonia  1.00 Ethanol  2.41 Ethanol  1.83 

699 ppm Ethanol Ethanol  2.06 Ethanol  2.15 Ethanol  2.10 Ethanol  1.92 

699 ppm Ethanol Ethanol  2.03 Ethanol  1.64 Ethanol  1.74 Glycerol  3.01 

699 ppm Ethanol Ethanol  2.22 Ethanol  1.97 Ethanol  2.11 Ethanol  1.87 

1005 ppm Ethanol Ethanol  2.06 Ammonia  1.14 Ethanol  1.86 Ethanol  1.98 

1005 ppm Ethanol Ethanol  2.25 Ethanol  1.60 Ammonia  1.40 Ethanol  2.05 

1005 ppm Ethanol Ethanol  1.87 Ethanol  1.68 Ethanol  1.89 Ethanol  2.05 

1507 ppm Ethanol Ethanol  2.02 Ethanol  1.89 Ethanol  2.02 Glycerol  2.90 

1507 ppm Ethanol Ethanol  2.40 Ethanol  1.82 Ethanol  2.06 Ethanol  1.62 

1507 ppm Ethanol Ethanol  2.30 Ethanol  1.61 Ethanol  2.22 Ethanol  1.91 

2501 ppm Ethanol Ethanol  2.01 Ethanol  1.76 Ethanol  2.01 Ethanol  1.91 

2501 ppm Ethanol Ethanol  2.03 Nothing  0.20 Ethanol  2.10 Ethanol  1.69 

2501 ppm Ethanol Ethanol  2.03 Ethanol  2.19 Ethanol  2.21 Ammonia  1.43 

3014 ppm Ethanol Ethanol  1.84 Ethanol  1.71 Ethanol  1.97 Ethanol  1.92 

3014 ppm Ethanol Ammonia  1.13 Ammonia  1.26 Ethanol  2.17 Ethanol  2.39 

3014 ppm Ethanol Glycerol  2.76 Ethanol  2.45 Ethanol  2.17 Ethanol  1.90 

3997 ppm Ethanol Ethanol  2.00 Ethanol  2.21 Ethanol  1.74 Ethanol  1.60 

3997 ppm Ethanol Glycerol  2.90 Ethanol  2.08 Ethanol  2.29 Ammonia  1.48 

3997 ppm Ethanol Ethanol  2.00 Ammonia  0.96 Ethanol  2.27 Ethanol  2.12 

5002 ppm Ethanol Ethanol  2.04 Nothing  0.25 Ethanol  1.93 Ammonia  1.43 

5002 ppm Ethanol Ethanol  2.01 Ethanol  1.98 Ethanol  2.15 Ethanol  1.63 

5002 ppm Ethanol Ethanol  2.07 Ethanol  1.59 Ethanol  2.11 Ammonia  1.39 

7503 ppm Ethanol Ethanol  1.98 Ammonia  0.78 Ethanol  1.91 Ethanol  1.89 

7503 ppm Ethanol Ethanol  1.99 Ammonia  1.18 Ethanol  2.21 Ammonia  1.20 

7503 ppm Ethanol Ethanol  2.00 Ethanol  2.11 Ethanol  2.26 Ammonia  1.38 

10004 ppm Ethanol Ethanol  2.04 Ammonia  1.02 Ethanol  1.89 Ammonia  1.15 

10004 ppm Ethanol Ethanol  2.02 Ethanol  1.92 Ethanol  2.11 Ethanol  1.80 

10004 ppm Ethanol Ethanol  1.99 Ethanol  1.95 Ethanol  2.15 Ethanol  1.75 

12505 ppm Ethanol Ethanol  2.07 Ethanol  2.12 Ethanol  2.03 Ammonia  1.41 

12505 ppm Ethanol Ethanol  2.07 Ammonia  1.12 Ethanol  1.89 Ammonia  1.43 

12505 ppm Ethanol Ethanol  2.01 Ethanol  2.16 Ethanol  1.59 Ethanol  1.50 

Glycerol Present Ammonia  1.25 Ammonia  1.00 Glycerol  2.80 Ammonia  0.82 

Glycerol Present Glycerol  3.02 Ammonia  1.40 Ammonia  0.75 Ethanol  1.83 

Glycerol Present Glycerol  2.97 Ethanol  1.52 Ammonia  0.96 Ammonia  1.46 

Glycerol Present Glycerol  3.02 Ethanol  1.70 Ammonia  1.34 Ammonia  1.05 

Glycerol Present Glycerol  3.13 Ammonia  0.95 Ethanol  1.85 Ammonia  1.49 

Glycerol Present Ethanol  1.75 Nothing  0.12 Ethanol  1.68 Ammonia  1.38 
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Appendix R - Results with Neural Network Combined Test with 

Large Box Sensor 

Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

No contaminants Nothing  0.01 Nothing  0.23 Nothing  0.03 Nothing  -0.36 

No contaminants Nothing  0.01 Nothing  -0.02 Nothing  0.08 Ethanol  1.72 

No contaminants Nothing  0.01 Nothing  0.26 Nothing  0.06 Nothing  -1.07 

No contaminants Nothing  0.00 Ethanol  1.77 Nothing  0.27 Ethanol  1.58 

No contaminants Nothing  0.00 Ethanol  1.50 Ethanol  2.09 Ammonia  1.39 

No contaminants Nothing  0.00 Ammonia  0.92 Nothing  0.11 Ethanol  1.57 

No contaminants Nothing  0.01 Ammonia  1.20 Nothing  0.09 Ammonia  0.66 

No contaminants Nothing  0.31 Nothing  0.38 Nothing  0.06 Ammonia  0.64 

No contaminants Nothing  0.00 Ammonia  0.77 Ammonia  0.77 Ammonia  1.34 

No contaminants Nothing  0.00 Ethanol  1.77 Nothing  0.27 Ethanol  1.58 

No contaminants Nothing  0.00 Ethanol  1.50 Ethanol  2.09 Ammonia  1.39 

No contaminants Nothing  0.00 Ammonia  0.92 Nothing  0.11 Ethanol  1.57 

50 ppm Ammonia Ammonia  1.00 Ammonia  0.98 Ammonia  1.00 Ethanol  1.91 

50 ppm Ammonia Ammonia  1.00 Ammonia  1.16 Ammonia  1.12 Ethanol  1.50 

50 ppm Ammonia Ammonia  1.00 Ammonia  1.08 Ammonia  1.11 Ethanol  1.68 

100 ppm Ammonia Ammonia  1.00 Ammonia  0.55 Ethanol  1.70 Ammonia  1.04 

100 ppm Ammonia Ammonia  1.00 Nothing  0.49 Ethanol  1.71 Ethanol  1.52 

100 ppm Ammonia Ammonia  0.89 Ammonia  0.69 Ammonia  0.98 Ammonia  1.03 

200 ppm Ammonia Ammonia  1.00 Ethanol  1.79 Ammonia  1.25 Ammonia  0.94 

200 ppm Ammonia Ammonia  1.00 Ammonia  1.02 Ammonia  0.96 Nothing  0.44 

200 ppm Ammonia Ethanol  1.52 Ammonia  1.34 Ammonia  0.55 Ammonia  0.84 

300 ppm Ammonia Ammonia  1.01 Nothing  -0.02 Ammonia  0.99 Ammonia  1.42 

300 ppm Ammonia Ammonia  0.53 Ammonia  0.55 Ammonia  0.97 Ammonia  1.25 

300 ppm Ammonia Ammonia  0.72 Nothing  0.32 Ammonia  0.68 Ammonia  0.92 

450 ppm Ammonia Ammonia  1.00 Ammonia  0.57 Ammonia  1.00 Ammonia  1.28 

450 ppm Ammonia Ammonia  1.01 Ammonia  0.85 Ammonia  1.01 Ammonia  0.89 

450 ppm Ammonia Ethanol  1.51 Ammonia  1.06 Ammonia  1.01 Ammonia  0.73 

600 ppm Ammonia Ammonia  1.00 Nothing  0.27 Ammonia  0.99 Ammonia  1.49 

600 ppm Ammonia Nothing  0.26 Nothing  0.30 Ammonia  0.90 Nothing  0.46 

600 ppm Ammonia Ammonia  0.88 Nothing  0.26 Ammonia  0.99 Nothing  0.37 

750 ppm Ammonia Ammonia  1.01 Nothing  0.24 Ammonia  0.77 Ethanol  1.69 

750 ppm Ammonia Ammonia  0.73 Nothing  0.27 Ammonia  1.06 Ammonia  1.31 

750 ppm Ammonia Nothing  0.29 Nothing  0.09 Ammonia  1.00 Ammonia  1.40 

900 ppm Ammonia Ammonia  1.23 Ammonia  1.41 Ammonia  0.62 Nothing  0.49 

900 ppm Ammonia Ammonia  1.01 Ammonia  0.70 Ammonia  0.98 Ammonia  0.75 

900 ppm Ammonia Ammonia  1.01 Nothing  0.13 Ammonia  0.98 Ammonia  0.65 

1200 ppm Ammonia Ethanol  1.70 Ammonia  1.39 Ammonia  1.08 Ammonia  1.32 

1200 ppm Ammonia Ammonia  0.67 Ammonia  0.58 Ethanol  2.00 Ethanol  2.01 

1200 ppm Ammonia Ammonia  1.01 Ammonia  0.89 Ethanol  2.27 Ammonia  1.17 

1500 ppm Ammonia Ammonia  1.01 Ammonia  0.53 Nothing  0.49 Ammonia  0.65 

1500 ppm Ammonia Nothing  0.36 Ammonia  0.76 Ammonia  1.00 Nothing  0.28 

1500 ppm Ammonia Ammonia  1.01 Ammonia  0.83 Ammonia  0.98 Nothing  0.30 

2400 ppm Ammonia Ethanol  2.19 Glycerol  2.52 Ammonia  0.95 Ammonia  0.53 
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Actual 
Conditions 

Prediction with 
Gain Data 
Training 

Prediction with 
Gain Data 
Validation 

Prediction with 
Phase Data 

Training 

Prediction with 
Phase Data 
Validation 

2400 ppm Ammonia Ammonia  1.01 Glycerol  2.67 Ammonia  1.10 Nothing  0.44 

2400 ppm Ammonia Ammonia  1.01 Ethanol  1.98 Ethanol  1.62 Ammonia  0.91 

3000 ppm Ammonia Ammonia  1.00 Ammonia  0.83 Ammonia  0.61 Nothing  0.45 

3000 ppm Ammonia Ammonia  0.83 Ammonia  1.24 Ammonia  0.99 Ammonia  0.61 

3000 ppm Ammonia Ammonia  0.72 Ammonia  0.92 Ammonia  0.99 Ammonia  0.51 

98 ppm Ethanol Ethanol  2.00 Ethanol  1.81 Ethanol  1.96 Ammonia  0.80 

98 ppm Ethanol Ammonia  1.28 Ammonia  0.98 Ethanol  1.97 Ethanol  1.67 

98 ppm Ethanol Ethanol  2.00 Ethanol  1.54 Ammonia  1.08 Ammonia  1.34 

295 ppm Ethanol Ethanol  2.00 Ethanol  1.95 Ethanol  1.98 Glycerol  2.88 

295 ppm Ethanol Ethanol  2.08 Ethanol  1.67 Ethanol  1.97 Ethanol  2.26 

295 ppm Ethanol Ethanol  2.00 Glycerol  2.52 Glycerol  2.65 Ethanol  2.02 

699 ppm Ethanol Ethanol  2.00 Ethanol  2.21 Ethanol  1.94 Ethanol  2.15 

699 ppm Ethanol Ethanol  2.00 Ethanol  1.64 Ammonia  1.23 Ammonia  1.24 

699 ppm Ethanol Ethanol  1.62 Ammonia  0.85 Ethanol  2.27 Ethanol  1.89 

1005 ppm Ethanol Ethanol  2.00 Ammonia  1.42 Ethanol  1.72 Nothing  -0.71 

1005 ppm Ethanol Ethanol  2.00 Ammonia  0.93 Ethanol  1.98 Ethanol  1.78 

1005 ppm Ethanol Ethanol  1.84 Ammonia  1.39 Ethanol  1.95 Ethanol  2.14 

1507 ppm Ethanol Ethanol  2.00 Ethanol  2.47 Ethanol  1.69 Ethanol  2.13 

1507 ppm Ethanol Ethanol  1.94 Ethanol  1.78 Ethanol  1.95 Ammonia  1.30 

1507 ppm Ethanol Ethanol  2.00 Ammonia  1.34 Glycerol  2.78 Ethanol  1.88 

2501 ppm Ethanol Ethanol  2.17 Ethanol  1.50 Ethanol  2.00 Ethanol  2.12 

2501 ppm Ethanol Ethanol  2.00 Ethanol  1.55 Ethanol  1.96 Glycerol  2.62 

2501 ppm Ethanol Ethanol  2.00 Ammonia  1.40 Ethanol  1.95 Ethanol  1.90 

3014 ppm Ethanol Ethanol  2.00 Ammonia  1.43 Ethanol  2.01 Ammonia  1.40 

3014 ppm Ethanol Ethanol  2.00 Glycerol  2.71 Ethanol  1.71 Ethanol  2.34 

3014 ppm Ethanol Ethanol  2.00 Ethanol  1.52 Ethanol  1.99 Ethanol  2.42 

3997 ppm Ethanol Ethanol  2.00 Ethanol  1.61 Ammonia  1.11 Ethanol  1.51 

3997 ppm Ethanol Ethanol  2.00 Ethanol  2.23 Ethanol  1.99 Ethanol  1.64 

3997 ppm Ethanol Ethanol  1.60 Ethanol  1.54 Ethanol  1.99 Ethanol  2.27 

5002 ppm Ethanol Ethanol  2.00 Ethanol  2.33 Ethanol  1.95 Ethanol  1.72 

5002 ppm Ethanol Ethanol  2.00 Ethanol  1.65 Ethanol  1.93 Ethanol  2.18 

5002 ppm Ethanol Ethanol  1.72 Glycerol  2.60 Ethanol  2.01 Ethanol  2.01 

7503 ppm Ethanol Ethanol  2.21 Ethanol  1.79 Ethanol  2.13 Ammonia  1.14 

7503 ppm Ethanol Ammonia  0.96 Ammonia  1.47 Ethanol  1.98 Ethanol  1.91 

7503 ppm Ethanol Ethanol  1.68 Ethanol  1.77 Ethanol  1.58 Ethanol  2.32 

10004 ppm Ethanol Ethanol  2.00 Ethanol  1.87 Ammonia  1.28 Ethanol  1.50 

10004 ppm Ethanol Ammonia  1.40 Ammonia  1.41 Ethanol  1.75 Ammonia  1.27 

10004 ppm Ethanol Ammonia  0.74 Ammonia  1.38 Glycerol  2.71 Ethanol  1.50 

12505 ppm Ethanol Ethanol  2.00 Ethanol  1.79 Ethanol  1.95 Ethanol  1.95 

12505 ppm Ethanol Ethanol  2.00 Ammonia  1.38 Ethanol  1.98 Ethanol  2.32 

12505 ppm Ethanol Ethanol  2.00 Ethanol  2.13 Ethanol  1.98 Ethanol  1.89 

Glycerol Present Ammonia  1.22 Ammonia  1.34 Ethanol  2.13 Ethanol  1.84 

Glycerol Present Ammonia  1.10 Ammonia  1.33 Glycerol  2.99 Ethanol  2.08 

Glycerol Present Ammonia  1.16 Nothing  0.33 Glycerol  2.98 Ammonia  1.43 

Glycerol Present Glycerol  2.69 Glycerol  3.07 Glycerol  2.87 Glycerol  2.65 

Glycerol Present Glycerol  3.00 Glycerol  2.66 Glycerol  2.96 Glycerol  2.94 

Glycerol Present Ethanol  2.29 Glycerol  2.61 Glycerol  2.98 Ethanol  2.48 
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