

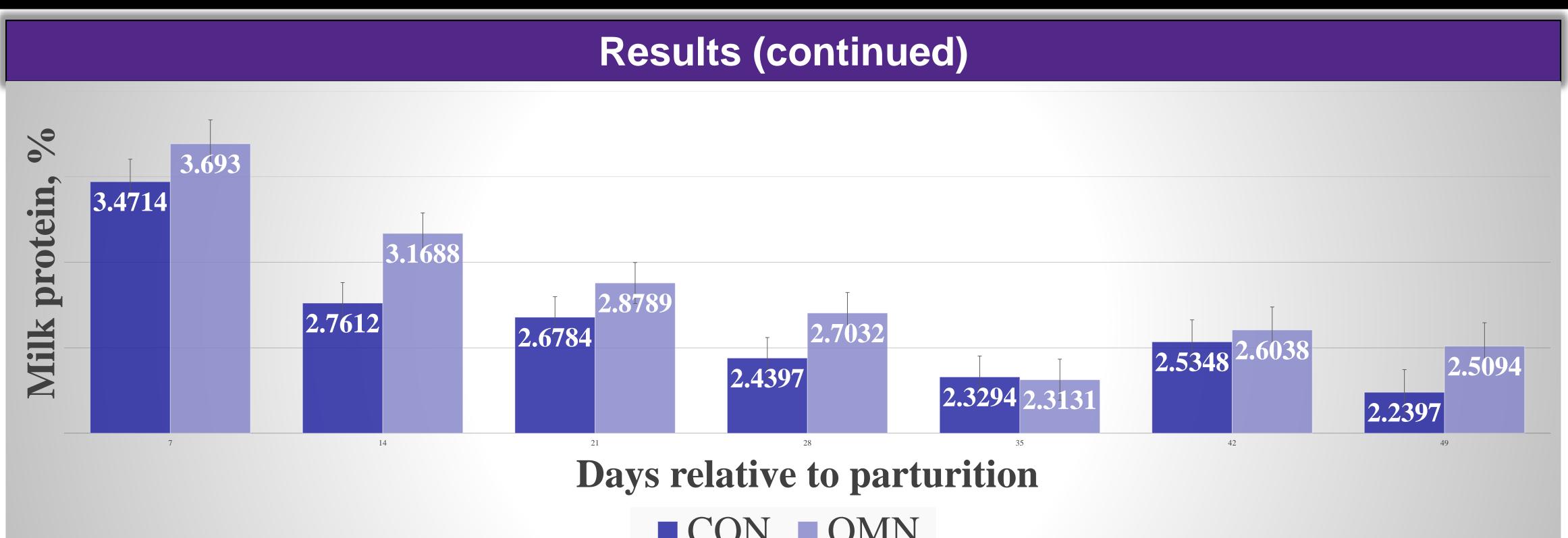
Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS; (Phibro Animal Health, Teaneck, NJ)

Introduction

• During the transition from pregnancy to full milk, dairy cows are the most at risk for suppressed immune systems. • Omnigen is a feed additive product that is promoted as giving better immune responses to dairy cattle during the transition from pregnancy to full milk production.

Objective

 To evaluate and determine the responses of OmniGen-AF on feed intake, and milk yield and composition


Materials and Methods

- 30 Pre-partum Holstein cows
- Completely randomized block design
- Treatments
 - Control
 - OmniGen-AF (56 g/head per d) mixed into the top third of the TMR and distributed evenly across feedings
- Dry cows will be allowed ad libitum access to the designated treatment rations through an electronically-gated feeding system with one cow assigned per gate.
- After calving, cows will be moved to a tie-stall facility containing individual feed bunks suspended from load cells, and the bunk weight will be monitored continuously by a computer. Feed consumption and meal patterns will be recorded individually in both feeding systems • Cows will be milked three times daily in a milking parlor. Milk samples will be collected at each milking on 3 days each week (from week 1 to 7 of lactation) and will be analyzed for concentrations of fat, true protein, lactose, and somatic cells by Heart of America DHIA.
- Data were analyzed using mixed models to account for treatment, parity, time, and their interactions, and significance was declared at P < 0.05.

Results and Discussion

- Twenty of the thirty cows were analyzed, and no significant effects were detected for feed intake, milk yield, or change body weight over the treatment period
- Milk protein was the only performance variable affected by treatment; Omnigen increased milk protein concentration relative to control (2.84 vs. 2.64 ± 0.09%, *P* < 0.01).

Evaluating Impacts of OmniGen-AF on Feed Intake, Milk Yield and composition.

Table 1. Performance of cows (n=20, 49 d) fed an immunomodulatory feed additive during the dry period and early lactation (Mean±SE)

Item

Feed intake Milk yield, Fat, kg/d Protein, kg/ Lactose, kg/ Solids non-f **SCC** linear **Fat**, % Protein, % Lactose, % Solids non-f

Milk urea n

Energy-corn

3.5% Fat-co

Body weigh Body condit

Shane Newton, Caio Takiya, Barry Bradford, Luís Mendonça, Lindsey Hulbert, and Jodi McGill, Kansas State University

■ CON ■ OMN

	Treatment ¹			P-value ²		
	CON	OMN	Treatment	Time	Treatment × Time	
e (as-fed), kg/d	38.9±2.0	40.8 ± 2.0	0.480	<.0001	0.605	
kg/d	44.5 ± 2.0	46.7±2.0	0.425	<.0001	0.461	
	1.74 ± 0.09	$1.84{\pm}0.09$	0.259	0.0322	0.608	
/ d	1.15 ± 0.08	1.27 ± 0.08	0.207	0.0107	0.310	
g/d	2.08±0.12	2.11±0.12	0.788	<.0001	0.509	
fat, kg/d	3.62±0.23	3.82±0.23	0.453	<.0001	0.643	
· score ³	2.11±0.39	1.73 ± 0.39	0.420	0.0029	0.385	
	4.04 ± 0.15	4.15±0.15	0.376	<.0001	0.527	
	2.64 ± 0.09	$2.84{\pm}0.09$	0.005	<.0001	0.241	
)	4.77 ± 0.09	4.72 ± 0.09	0.335	0.0038	0.591	
fat, %	8.34 ± 0.18	8.47 ± 0.18	0.160	0.0005	0.220	
nitrogen, mg/dL	12.0±0.43	12.3±0.43	0.500	0.0381	0.911	
crected milk ⁴ , kg/d	44.8±2.17	47.7±2.18	0.224	0.0031	0.868	
corrected milk ⁵ , kg/d	47.3±2.15	49.9±2.17	0.257	0.0013	0.756	
nt, kg	616±21.6	606±21.6	0.577	<.0001	0.826	
ition score, 1-5	2.66 ± 0.09	2.73 ± 0.09	0.416	<.0001	0.258	

Conclusions

 In conclusion, feeding Omnigen during the transition to lactation increased milk protein concentration, but no other productivity responses were observed in this relatively small cohort.

