
A COMPUTER NETWORK SIMULATION UTILIZING GRAPH THEORY TO
CALCULATE MEASURES OF EFFECTIVENESS

by

RUSSELL DEAN THOMAS

B.S., Kansas State University, 1983

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCES

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

Approved by:

GdjUzs 7V^^/-fe^
Major Professor

2.^*# A11502 bbb023

j <f$¥ ACKNOWLEDGEMENTS

The author would like to thank the Air Force Systems Command, the

Air Force Office of Scientific Research, and the Southeastern Center
for Electrical Engineering Education for providing him with the

opportunity to spend two very worthwhile and interesting summers at

the Air Force Weapons Laboratory (AFWL) . He would also like to

acknowledge the Air Force Weapons Laboratory Nuclear Technology
Directorate for providing an interesting research problem, a

well-stocked Technical Library, and the use of the NTC VAX 11/780.

Furthermore, he would like to thank his fellow AFWL researchers
Dr. Eddie Fowler, Ron Hightower, and Kurt Ziegler for their assistance.

He would like to thank the Department of Electrical and Computer
Engineering for providing him with the opportunity, facilities, and

the use of a Z-100 to complete the research. Additionally, he would
like to thank the members of his graduate committee Dr. Eddie R.

Fowler, Dr. Everett E. Haft, and Dr. Virgil E. Wallentine for all of

their help and guidance. Finally, he would like to thank Mary
Langman for her careful typing of this report and his lovely wife
Dee Anne for her support through it all.

TABLE OF CONTENTS

1.0 Introduction 1

1 .

1

Background and Motivation 1

1.2 Objectives and Scope ,1

2.0 Characterizing Computer Networks Using Graphical Methods 2

2.

1

Link and Node Weights 2
2 .

2

Link and Node Costs 6

2.3 Link and Node Probabilities of Survival 8
2 .

4

Graphical Degradat ion 9
2.5 Matrix Representations of Graphs 11

2.5.1 Adjacency Matrix 11

2.5.2 Connection Matrix 11

2.5.3 Reachability Matrix 11

2.5.4 Incidence Matrix 12
2.5.5 Circuit Matrix 12
2.5.6 Cut-Set Matrix 13

3.0 Measures of Effectiveness 13
3.1 Source to Destination Measures of Effectiveness 14
3.1.1 Shortest Delay Path Measure of Effectiveness 14
3.1.1.1 Dijkstra's Shortest Path First Algorithm 14
3.1.1.1.1 Initialization 14
3.1.1.1.2 Label Updating 15
3.1.1.1.3 Making a Label Permanent 15
3.1.1.2 Two Language Implementations of the Shortest Path

First Algorithm 15
3.1.1.3 Shortest Path First Algorithm Output 15
3.1.2 Highest Reliable Path Measure of Effectiveness 16
3.1.2.1 Highest Reliable Path Algorithm 16
3.1.2.2 Two Language Implementations of the Highest

Reliable Path Algorithm 16
3.1.3 Reachability and Limited Reachability Measures

of Effectiveness 17
3.1.3.1 Reachability and Limited Reachability Algorithm 17
3.1.3.2 Two Language Implementations of the Reachability

and Limited Reachability Algorithm 17
3.1.4 Maximum Throughput Measures of Effectiveness 17
3.1.4.1 Ford and Fulkerson's Minimum-Cut Maximum-Flow

Algorithm 18
3.1.4.1.1 Initialization 18
3.1.4.1.2 Label Updating 18
3.1.4.1.3 Flow Augmentation 19
3.1.4.2 Two Language Implementations of the Minimum-Cut

Maximum-Flow Algorithm 20
3.1.4.3 Minimum-Cut Maximum Flow Output 20
3.1.5 Number of Link Independent Paths Measure of

Effectiveness 20

3.1.5.1 Number of Link Independent Path Algorithm ,20
3.1.5.2 Two Language Implementations of the Number of

Link Independent Paths Algorithm .21
3.1.6 Number of Node Independent Paths Measure of

Effectiveness ,21

3.1.7 Reliability Measure of Effectiveness 21

3.1.7.1 Reliability Using Path Enumeration 21

3.1.7.2 Reliability Using Cut-Set Enumeration 22
3.1.7.3 Reliability Using State Enumeration .22
3.1.7.4 Reliability Run Time 22
3.1.7.5 Two Language Implementation of the Reliability

Algorithm Using State Enumeration 23
3.1.8 Availability Measure of Effectiveness .25
3.2 Network Measures of Effectiveness 23
3.2.

1

Connectivity Measure of Effectiveness 23
3.2.1.1 Connectivity Derivation .24
3.2.1.2 Connectivity Algorithm 25
3.2.1.2 Two Language Implementations of the Connectivity

Algorithm 26
3.2.2 Connected Network Reliability Measure of Effectiveness .26
3.2.3 Reliable Throughput Measures of Effectiveness 26
3.2.3.1 Reliable Throughput Algorithm 26
3.2.3.2 Two Language Implementations of the Reliable

Throughput Algorithms 26
3.2.4 Network Reliability Measure of Effectiveness .27
3.2.4.1 Network Reliability Algorithm 27

3.2.4.2 Two Language Implementations of the Network
Reliability Algorithm 27

4.0 Measures of Survivability .27

5.0 Testing and Validation 28

6.0 Recommendations for Further Research 28

7.0 Summary and Conclusions .28

8.0 Literature Cited 30

9.0 Further Reading on Graph Theory 31

10.0 Further Reading on Computer Networks 34

Appendix A

Appendix B

Appendix C

Appendix D

A FORTRAN GRAFTHY 35

A BASIC GRAFTHY 69

A GRAFTHY User's Manual 96

An Example GRAFTHY Run 105

1.0 Introduction

When dealing with computer networks that serve the Department of

Defense (DOD) , the effects of a wartime load and degradation on the
network must always be considered. Many measures which calculate the
effectiveness of the network after degradation are called Measures of

Effectiveness (MOE's). Measures which determine the survivability of

a network after degradation are called Measures of Survivability
CMOS' s).

Most of the MOE's can be found using graphical methods. Some
of these MOE's come directly from well-known algorithms written to

describe a network graphically. For example, Dijkstra's Shortest Path
First Algorithm and Ford and Fulkerson's Minimum-Cut Maximum-Flow
Algorithm are the best known of these.

The program GRAFTHY was written to meet the need for a simulation
model which calculates the MOE's of a computer network. To better
appreciate how GRAFTHY operates, it is necessary to have a good
understanding of how computer networks are modeled graphically and
represented in the program and how each MOE and MOS is defined and

calculated. All of these concepts are discussed in this paper.

1. 1 Background and Motivation

The United States Air Force (USAF) operational capability is

dependent upon its Command, Control, Communications, and Intelligence
(C3I) systems, and computer networks are an important part of these
systems. A 1974 DOD study projected that by the 1980 's there would
be approximately 2,500 computers and 20,000 terminals used by the DOD
community which would require data-communications facilities (1).

Therefore, there is motivation to model these computer networks and
test the models to ensure that the computer networks will be effective
in their tasks.

1.3 Objectives and Scope

The objective of this paper is to model computer networks and
determine their effectiveness using the graph theory approach.
Although a graph theory background is helpful, it is not necessary
for an understanding of this paper. However, a good understanding of

matrix theory, boolean algebra, and computer programming is necessary
for understanding some concepts and all programs included.

2.0 Characterizing Computer Networks Using Graphical Methods

A computer network is an "interconnection of autonomous computers"
geographically remote from one another (2) . These computer networks
can be modeled with nodes and links, where the nodes are the computers
and the links are the leased land lines, radio frequency links,
satellite links, etc. which interconnect the computers. For example,
Figures 2.1, 2.2, and 2.3 show graphical models for two real world
networks: the Advanced Research Projects Agency computer network
(ARPANET) and the high-capacity transmission facilities for American
Telephone and Telegraph (AT&T) . Each node and link will have its own
delay (corresponding to a weight or cost on that node or link) and its
own probability of survival.

2.1 Link and
"

Node Weights

When representing computer networks by graphical means, delays at
the computers and on the links can be represented as weights on the
nodes and links of the graphical model. Throughout this paper, a low
weight corresponds to a high bit rate on the links and nodes, and
therefore a low delay. There is no reason why high weights could not
correspond to high bit rates, but the advantages of using low weights
as high bit rates will become evident throughout this paper.

Since GRAFTHY was intended to be user friendly for nontechnical
users and flexible enough for users to play "what if" games, the
weights input to the program can either correspond to a relative
delay on the links and nodes or to an actual bit rate on the links
and nodes. For example, if there are two links in the computer network
and the second link is twice as slow as the first link, then the first

and second link weights could be 1 and 2 respectively. Weights of

2 and 4, 4 and 8, etc. would also work. Therefore the user is not

required to know what the actual bit rates are but only relative delay
between them.

However, if the bit rates for the network under test are known,
then the bit rates must be converted to the proper weights. To
convert the bit rates on the nodes and links to weights, a standard
should be chosen. Then each bit rate should be divided into the
standard to determine their weights. This can be expressed as:

5

I

c

5
q

CD G
on 3

D

60^

< o

fe & 3 5 B w

a r-i

u o
O P,

3 §

H9

co n
U

. o
'.'i H
at n
+j +J

a; u
*» 0)

en H
Ul

•d
0)

|H a)

C +j

P BQ

o
a 5
c

H
a U

*J

sa

n) >
:!) /!

•H
+J r*
H
rH <;>

<H ml
Q
.n «
Vh H

*J

g c
i

•H 3
gg

tqH c
a

i
4J

in Np a)

t>jO
+»

H kf
I) d
s •-H

P) H
31 0)

a
1 C

4H a
ffi a

® U
-t-» +*

5 g

J!
3

E

i-M 0)1

O

O C|

•H M
U qS •H

^
id O
« 0)

i B

€
H
6

H
1

WEIGHT = _R_ (2.1)
STD

where

WEIGHT is the weight of the node or link in the model,
R is the bit rate of the node or link in the network,
STD is the standard bit rate chosen.

For example, if there are three links in the computer network which
have bit rates of 56 Kbits per second (bps) , 19.2 Kbps, and 9600 bps
respectively, and the standard is 56 Kbps, then the link weights are
1, 2.917, and 5.714 respectively.

All outputs from GRAFTHY will be weights corresponding to the
delay on the nodes or links. If the actual bit rates for the nodes
and links were unknown, and only the relative delays were known,
then the output weights are weights relative to the input weights. If
the bit rates were known for the network under test, then the output
weights can be converted directly to bit rates for the network.

All weights on nodes and links will be greater than or equal to
zero. In GRAFTHY, a zero weight does not correspond to an infinite
bit rate (no delay), but to the link or node being inoperative.

2.2 Link and Node Costs

A weight that can be either positive or negative is called a cost.
The negative costs correspond to nodes and links that should be
traversed when crossing the network from point A to point B. High
positive cost links and nodes should be avoided when traversing the
network.

There are algorithms available which analyze networks with links
and node costs, but these algorithms require more storage and longer
run times than those which analyze networks with weights. Since run
time is a primary consideration when calculating the MOE's, it is
for the reason stated above that negative weights will not be used.
This will not cause any loss of generality when describing the
operation of the network and calculating the corresponding MOE's.

Generally, when describing graphical networks, the nodes have no
weight. Only the links have weight. One method of describing a
graphical network with nodes that have weight is to replace the nodes
being modeled with supernodes consisting of an input node, an output
node, and a directed link going from the input node to the output node.
See Figure 2.4. However, this is not a desirable technique to use
because of computer networks always have delay associated with them.

Figure 2.4 A graphical supernode model (below) of a network with node
weights (shown above).

If computer networks were modeled in the fashion described above,
then the number of nodes in the graphical model describing the computer
network would be twice the number of nodes in the computer network
being modeled. The number of directed links in the graphical model
would be twice the number of bidirectional links in the computer
network being modeled, plus the number of directed links in the network
being modeled, plus the number of nodes in the computer network (since
each computer is now modeled by two nodes and a directed link) . In
other words,

2 * NON (2.2)

where

and

MNON is the number of nodes in the model,
NON is the number of nodes in the network,

MNODL = 2 * NOBL + NODL + NON (2.3)

where

MNODL is the number of directed links in the model,
NOBL is the number of bidirectional links in the network,
NODL is the number of directed links in the network,
NON is the number of nodes in the network.

Since the node modeling technique described above is undesirable,
it was not used. Instead, all the algorithms used in GRAFTHY were
modified to accept node weights and calculate the MOE's without using
the supernode technique. An examination of the programs in the
Appendices will reveal the techniques used in the modification.

The reason for minimizing the number of nodes and links in the
model is to save run time. A six-node communication network modeled
with a 12-node graphical model would be more than four times slower
than a six-node graphical model.

2.3 Link and Node Probabilities of Survival

When representing computer networks by graphical means, the node
and link probabilities of survival of that node or link in the model
correspond to either the probability of survival of that node or link
in the network, or to the probability that a message in the network
will traverse that node or link without experiencing a bit in error.

8 '

Since either option is available, GRAFTHY, a network-oriented program,
could easily be made message-oriented.

Since link and node probabilities of exactly one are unrealistic,
erroneous results will occur if probabilities of one are input to
GRAFTHY.

2.4 Graphical Degradation

When dealing with the degradation of a computer network,
many degradation techniques can be used dependent upon how the computer
network is modeled. Other simulation models are binary for degradation
purposes. Links and nodes are either up or down (the link or node
probability is either one or zero respectively)

.

With GRAFTHY, the user has a high-resolution model. Link and node
probabilities of survival can range anywhere between zero and one,
instead of being only the values of zero and one as in the other
simulations. GRAFTHY also allows elements of each node to fail while
other elements in the same node remain active. For example, a node's
receiver may fail while its transmitter could still be operative, but
with a lower probability of successful transmission. Table 2.1
demonstrates how to transform network degradation into graphical
degradation for specific events.

Communication network

1. If the directed link from A to

B down, then

2. If the transmitter from A to B

at node A down, then

Graphical model

1. Remove link from A to B.

2. Remove link from A to B.

3. If the receiver from A to B at

node B is down, then
3. Remove link from A to B,

4. If the bidirectional link between
points A to B goes down, then

5. If the node has only one transmitter
for all links and the transmitter
fails, then

6. If the receiver at node A receives
all incoming signals and the
receiver fails, then

7. If node A goes down completely,
then

4. Remove both directed links,

A to B and B to A.

5. Remove all outgoing links
from node A.

6. Remove all incoming links
from node A.

7 . Remove all incoming and

outgoing links from node A.

Table 2.1 Changes needed in the graphical model to simulate network
degradation for specific events.

10

2.5 Matrix Representation of Graphs

There are many matrix representations of bidirectional, directed
and mixed graphs (3). They are the Adjacency Matrix, the Connection
Matrix, the Reachability Matrix, the Incidence Matrix, the Circuit
Matrix, and the Cut-Set Matrix.

2.5.1 Adj acency Matrix

The Adjacency Matrix is a square matrix of size NON x NON, where
NON is the number of nodes in the network, whose elements are given as

follows:

a(i, j) = 1 if there is a branch from node i to node j,

a(i, j) = if there is no branch from node i to node j.

The Adjacency Matrix works for either directed or bidirectional graphs.

2.5.2 Connection Matrix

The Connection Matrix is a matrix of size NON x NON where NON is

the number of nodes in the graph, whose elements are given as follows:

a(i, j) = weight from node i to node j if a link exists,

a(i, j) = if no link exists between node i and node j.

The Connection Matrix is good for bidirectional, directed, or mixed
graphs.

2.5.3 Reachability Matrix

The Reachability Matrix is a matrix of size NON x NON, where NON is

the number of nodes in the network, whose elements are given by:

a(i, j) = 1 if there is at least one path from node i to node j,

a(i, j) = if there is no path from node i to node j.

The Reachability Matrix is good for bidirectional, directed, or mixed
graphs.

11

2.5.4 Incidence Matrix

The Incidence Matrix is a matrix of size NON x NOL, where NON is
the number of nodes of the network and NOL is the number of links in
the network, whose elements for bidirectional graphs are given as
follows:

a(ij j) = 1 if link j is connected to node i,

a(i. j) = if link j is not connected to node i.

For directed link graphs,

a(i, j) = +1 if link j is directed out of node 1,

a(i, j) =-1 if link j is directed into node i,

a(i, j) = if link j is not connected to node i.

Every column of the Incidence Matrix will contain two entries. Each
link must begin and end at some node, and since by definition a link can
contain no other node, this is a quick check to ensure the Incidence
Matrix is correct.

2.5.5 Circuit Matrix

The Circuit Matrix is a matrix of size NOC x NOL, where NOC is
the number of circuits in the network and NOL is the number of links
in the network, whose elements are given as follows:

a(i, j) 1 if link j is in circuit i,

a(i, j) = if link j is not in circuit i.

The Circuit Matrix works only for bidirectional graphs.

Every column of the Circuit Matrix will add to the same number.
This is a quick check to see if all the loops have been identified,
but the check is not absolute. There are special cases where the test
could fail.

Also, the product of the Incidence Matrix and the transpose of the
Circuit Matrix equals zero in field modulo-2 algebra. This can be
expressed as

12

IC
T

= (2.4)

where

I is the Incidence Matrix,
D is the Circuit Matrix.

Field modulo-2 algebra is simply Boolean algebra using the exclusive-OR
operator. The product above determines whether the identified loops
are valid ones. It will not determine whether all loops have been
identified.

2.5.6 Cut-Set Matrix

The Cut-Set Matrix is a matrix of size NOCS x NOL, where NOCS is
the number of cut-sets of the graph and NOL is the number of links in
the graph, whose elements are given as follows:

a(i, j) = 1 if link j is in cut-set i,

a(i, j) = if link j is not in cut-set i.

The Cut-Set Matrix is good for bidirectional graphs only.

The product of the Circuit Matrix and the transpose of the Cut-Set
Matrix equals zero in field modulo-2 algebra. In other words,

CS
T

= o (2.5)

where

C is the Circuit Matrix,
S is the Cut-Set Matrix.

The product determines whether the identified cut-sets are valid ones.

3.0 Measures of Effectiveness

MOE's determine how effective the computer network is depending
on the criterion used. Criterion range from shortest delay to highest
reliability. MOE's can be divided into two groups: those which require
a given source and destination node and those which only have meaning
when the network is viewed as a whole.

U

3. 1 Source to Destination Measures of Effectiveness

A list of MOE's which require a given source and destination
node and a description of how they are obtained follows.

3.1.1 Shortest Delay Path Measure of Effectiveness

The Shortest Delay Path MOE gives the shortest delay path between
a given source and destination node taking into account processing
delay at each of the nodes along the path, including the source and
destination nodes. Dijkstra's Shortest Path First Algorithm is
recommended as the best method of determining the shortest delay path
between a given source and destination (2,4,5).

3.1.1.1 Dijkstra's Shortest Path First Algorithm

Dijkstra's Shortest Path First Algorithm gives each node a
temporary label corresponding to the weight from the source to the
destination. This label, initially infinity, is an upper bound for
the total weight from the source to the destination node.

During program execution, nodes fall in two classes, either
permanent or temporary. A permanent label on a node means there is
no shorter path weight from the source to that destination. A
temporary label means no shortest path to that destination has been
found yet.

After each iteration in the program, exactly one node is made
permanent with its corresponding weight the shortest path weight from
source to that destination. Details of the algorithm are given below.

3.1.1.1.1 Initialization

Step 1: a) Set the weight from the source node to itself equal to
the weight at that node.

b) Set the weight from the source to all other nodes to
infinity.

c) Make the label of the source node permanent. In other
words, there is no shorter path.

14

d) Make the label of all other nodes temporary.

e) Set the intermediate source node equal to the source node.

3.1.1.1.2 Label Updating

Step 2: For all temporary labeled adjacent nodes to the intermediate
source node, change each adjacent node weight to either its
present value or to the accumulated weight from the
intermediate source node to the adjacent node, choosing
whichever is a minimum.

3.1.1.1 .3 Making a. Label Permanen t

Step 3: For all the temporary labeled nodes, find the node whose
weight is a minimum.

Step 4: Make that node the new intermediate source node, and make
its label permanent.

Step 5: a) If only a path from source to destination is required, and
if the intermediate source node is the destination node,
then stop. Otherwise, go to Step 2.

b) If a path from the source to every other node is required,
and if all the labels are permanent, stop. All the paths
are shortest paths. If there are temporary labels present,
go to Step 2.

3.1.1.2 Two Language Implementations of the Shortest Path First
Algorithm

The program listings in Appendices A and B are quite well-commented,
complete with a listing of the variables used, and need no further
explanation. A user's manual is provided in Appendix C. .

3.1.1.3 Shortest Path First Algorithm Output

The output from Dijkstra's Shortest Path First Algorithm will be a
weight corresponding to the delay between the given source and
destination. To convert this weight to a delay in seconds, the message
length should be divided by the standard and multiplied by the shortest
delay path weight. This can be expressed as

15

D = _ML SDPW (3.1)
STD

where

D is the delay from source to destination in seconds,
ML is the message length in bits,
STD is the standard bit rate chosen in bps,
SDPW is the shortest delay path weight.

For example, if weight 1 (the standard) corresponds to a bit rate of
56 Kbps, the message length is 1 K bits, and the shortest delay path
weight is 7, then the delay from the source to destination is 0.125
seconds.

3.1.2 Highest Reliable Path Measure of Effectiveness

The Highest Reliable Path MOE gives the highest reliable path
from source to destination, taking into account the probability of
node survival at each node along the path, including the source and
destination node.

3.1.2. 1 Highest Reliable Path Algorithm

To calculate the Highest Reliable Path, Dijkstra's Shortest Path
First Algorithm is used. Previous to executing the Shortest Path
First Algorithm, the negative logarithm of the probability matrix is
found, and the negative logarithm probability matrix is used in place
of the connection matrix. The Shortest Path First Algorithm will then
add the minimum logarithms, which is the same as multiplying the
highest probabilities along the path.

3.1.2.2 Two Language Implementations of the Highest Reliable Path
Algorithm

The program listings in Appendices A and B show the preprocessor
and the call to Dijkstra's Shortest Path First Algorithm. The
preprocessor takes the negative logarithm of the Probability of
Survival Matrix and passes the negative logarithm probability matrix
to Dijkstra's Shortest Path First Algorithm in place of the connection
matrix. A user's manual is provided in Appendix C.

16

3.1.3 Reachability and Limited Reachability Measures of Effectiveness

The Reachability MOE tells whether a given destination node can be
reached from a given source node in any number of links along the path.
The Limited Reachability MOE tells whether the destination node can be
reached in a given number of links or less from the source node.

3.1.3.1 Reachability and Limited Reachability Algorithm

To calculate the Reachability, Dijkstra's Shortest Path First
Algorithm is applied here also. Before executing the algorithm, all
weights on the links are set to one, and the node weights are set to

zero. The Shortest Path First Algorithm will then add the minimum
weights along the path. Since all weights are equal to one, the
addition just totals the number of links along the path.

The Limited Reachability is found by comparing the number of links
along the path to the threshold number. If the number of links is less
than or equal to the threshold number, then the corresponding element
of the Reachability Matrix is one. If the number of links is greater
than the threshold, then the element is zero.

3.1.3.2 Two Language Implementations of the Reachability and Limited
Reachability Algorithm

The program listings in Appendices A and B show the preprocessor
and the call to Dijkstra's Shortest Path First Algorithm. The
preprocessor sets all weights on the links to one and sets the node
weights to zero. A user's manual is provided in Appendix C.

3.1.4 Maximum Throughput Measure of Effectiveness

The Maximum Throughput MOE gives the maximum throughput between
a given source and destination node taking into account the processing
delay at each of the nodes, including the source and the destination
nodes. Ford and Fulkerson's Min-Cut Max-Flow Algorithm is recommended
as the best method of determining the maximum throughput between a

given source and destination (4,5).

17

3.1.4.1 Ford and Fulkerson ' s Minimum-Cut Maximum-Flow Algorithm

Ford and Fulkerson' s Min-Cut Algorithm gives each node a temporary
label corresponding to flow leaving all nodes. This label, initially
infinity, is an upper bound for the flow across the minimum cut.

During program execution, a label on the node can be either
labeled and scanned, labeled and unscanned, or unlabeled and unscanned.
If a node is labeled and scanned, then all of the adjacent links to the
node have been examined. If a node is labeled and unscanned, then there
are still adjacent links to be examined. Finally, if a node is unlabeled
and unscanned, then none of the adjacent links have been examined.

Before executing Ford and Fulkerson's Min-Cut Max-Flow Algorithm,
however, all weights on the nodes and links are inverted by a
preprocessor. This is necessary since the program is searching for
the minimum cut corresponding to low throughput. Since low weights
in the GRAFTHY model correspond to high bit rates, the weights must be
inverted so the program will find the low bit rate links.

The algorithm then pushes flow along a path from source to
destination, saturating the link or node with the lowest weight along
the path. This process continues until no more flow can proceed to
the destination node. The saturated nodes and links form the mimimum
cut. Details of the algorithm are given below.

3.1.4.1.1 Initialization

Step 1: a) Label the source node labeled and unscanned.

b) Label all other nodes unlabeled and unscanned.

3.1.4.1.2 Label Updating

Step 2: Choose any labeled unscanned node (intermediate source node),
and for all adjacent unlabeled unscanned nodes (intermediate
destination nodes)

,

a) If the flow from the intermediate destination node to the
intermediate source node is greater than zero, then label
the intermediate destination node as labeled and unscanned.
Also, change the flow exiting the intermediate destination
node to either the flow already present on that link or
to the flow being pulled along that link, choosing
whichever is a minimum. Label the intermediate source
node as labeled and scanned, and

18

b) If the flow being pushed along the link between the
intermediate source node and the intermediate destination
node is less than the capacity of the link, then label the
intermediate destination node as labeled and unscanned.
Also change the flow entering the intermediate destination
node to either the flow being pushed along that link or to
the capacity of the link minus the flow already present
on the link, choosing whichever is a minimum. Label the
intermediate source node as labeled and unscanned

.

Step 3: Repeat Step 2 until either:

a) The destination node is labeled. In this case, go to

Step 4, or

b) The destination node is unlabeled and no more labels can
be placed. For this case, the algorithm terminates with
the interface between the set of labeled links and the set
of unlabeled links the minimum cut.

3.1.4.1.3 Flow Augmentation

Step 4: Let a pointer (intermediate destination node) be the destination
node.

Step 5: a) If there is flow directed into the intermediate destination
node, then increase the flow along the link between the
previous intermediate source node and the intermediate
destination node by the minimum flow along the path being
examined

.

b) If there is flow directed out of the intermediate destination
node, then decrease the flow along the link between the
previous intermediate source node and the intermediate
destination node by the minimum flow along the path being
examined

.

Step 6: a) If the pointer node is the source node, then go to Step 1,
repeating the process with the improved flow calculated in
Step 5.

b) If the pointer node is not the source node, then make the
previous intermediate source node the intermediate
destination node and go to Step 5.

19

3. 1.4.2 Two Language Implementations of the Minimum-Cut Maximum-Flow
Algorithm

The program listings in Appendices A and B are quite well-commented,
complete with a listing of the variables used, and need no further
explanation. A user's manual is provided in Appendix C.

3.1.4.3 Minimum-Cut Maximum-Flow Output

The output from Ford and Fulkerson's Min-Cut Max-Flow Algorithm
will be a weight corresponding to the throughput between the given
source and destination. To convert this weight to a throughput in
bits per second, the standard should be multiplied by a maximum-flow
weight. In other words,

T = STD * MFW (3.2)

T is the maximum throughput between a given source and
destination in bps,

STD is the standard chosen in bps,
MFW is the maximum-flow Weight.

For example, if weight 1 (the standard) corresponds to a bit rate of
9600 bps, and the maximum flow weight is 1.20, then the maximum
throughput from source to destination is 11.52 Kbps.

3.1.5 Number of Link Independent Paths Measure of Effectiveness

The Number of Link Independent Paths MOE, also known as Arc
Connectivity, k-Arc Connectivity, and Degree, gives the number of link
independent paths between the source and destination. Furthermore,
this MOE shows that any k-1 links can be removed without disconnecting
the network.

3.1.5.1 Number of Link Independent Paths Algorithm

To calculate the number of link independent paths, Ford and
Fulkerson's Min-Cut Max-Flow Algorithm is used. Before executing the
Min-Cut Max-Flow Algorithm, all weights on the links and nodes are set
to one. Therefore, the minimum cut totals the number of links in the
minimum cut separating source and destination.

20

3.1.5.2 Two Language Implementations of the Number of Link Independent
Paths Algorithm

The program listings in Appendices A and B show the preprocessor
and the call to Ford and Fulkerson's Min-Cut Max-Flow Algorithm. The
preprocessor sets all weights on the links and nodes to one. A user's
manual is provided in Appendix C.

3.1.6 Number of Node Independent Paths Measure of Effectiveness

The Number of Node Independent Paths MOE, also known as Node
Connectivity and k-Node Connectivity, gives the number of node
independent paths between the source and destination. Also, this MOE
shows that k-1 nodes, excluding the given source and destination, can
be removed without disconnecting the source and destination nodes.
This MOE was not calculated and is only mentioned here for the sake of
completeness.

3.1.7 Reliability Measure of Effectiveness

The source to destination Reliability MOE gives a probability
that at least one path exists between the source and destination.
There are three ways of finding the source to destination reliability.
They are path enumeration, cut-set enumeration, and state enumeration.
GRAFTHY uses state enumeration since it was easiest to implement.

3.1.7.1 Reliability Using Path Enumeration

The basic algorithm for finding the source to destination
reliability using path enumeration is as follows:

Step 1: Find all successful paths between the source and destination.

Step 2: Find all the required intersections of the paths (the union of
the elements)

.

Step 3: Replace each element with its probability of success and carry
out the multiplication.

Step 4: Sum all the reliability expressions according to set theory.

21

3.1.7.2 Reliability Using Cut-Set Enumeration

The basic algorithm for finding the source to destination
reliability using cut-set enumeration is as follows:

Step 1: Find all cut-sets which separate the source and destination
nodes.

Step 2: Find all the required intersections of the cut-sets (the
union of the elements)

.

Step 3: Replace each element with its probability of failure and
carry out the multiplication.

Step 4: Sum all the reliability expressions according to set theory.

Step 5: One minus the sum calculated above gives the probability
that at least one path exists between the source and
destination.

3.1.7.3 Reliability Using State Enumeration

The basic algorithm for finding the source to destination
reliability using state enumeration is as follows:

Step 1: Find all possible combinations of the states.

Step 2: For each combination which gives a success, find the product
of the probabilities of failures of the down elements and
the probabilities of successes of the up elements.

Step 3: Sum all the terms above.

3. 1.7.4 Reliability Run Time

Since calculating the exact reliability is a lengthy process for
large networks, regardless of the technique used, two independent
MOE's were developed to give quickly calculated approximations of
network behavior using the probabilities of link and node survival of
the network. These MOE's are Reliable Throughput and Network
Reliability. Since these MOE's are network MOE's, and not source to
destination MOE's, they will be discussed later in the paper.

22

3.1.7.5 Two Language Implementations of the Reliability Algorithm
Using State Enumeration

The program listings in Appendices A and B are quite well-commented,
complete with a listing of the variables used, and need no further
explanation. A user's manual is provided in Appendix C.

3.1.8 Availability Measure of Effectiveness

The Availability MOE uses the Reliability MOE to find such

parameters as Mean Time Between Failures of links and nodes. This MOE
was not calculated because reliability as a function of time is not

known in a wartime network. Since no one is certain of exactly how
degradation is going to occur on the network, Mean Time Between
Failures has no meaning. Therefore, the time is better spent

calculating other MOE's.

3.2 Network Measures of Effectiveness

Many network MOE's can be found by finding the average of the

source to destination MOE's. For example, Average Delay, Average
Throughput, and Average Reliability are all average of source to

destination MOE's. Since finding the average of a MOE is a trivial

matter and since the average of a MOE does not change the basic
definition of the MOE (average delay is still delay, average

throughput is still throughput), these types of MOE's will not be

discussed further.

However, some network MOE's cannot be determined by taking the

average of source to destination MOE's because.no corresponding MOE

exists on the source to destination level. These type of network MOE'

and a description of how they are obtained » follows.

3.2.1 Connectivity Measure of Effectiveness

The Connectivity MOE gives the connectivity of the network, where
connectivity is defined as the number of communicating node pairs after

attack, divided by the number of originally communicating node pairs

(6). For bidirectional networks, this definition poses no problem.

The pair 1,2 is the same as the pair 2,1. However, in a directed or

mixed network, order does make a difference. Therefore, to take care

of this problem, the derivation of connectivity and the modifications

necessary to expand the definition to include directed and mixed graphs

are shown below.

25

3*2,1.1 Connectivity Derivation

Assume the number of nodes in a maximally connected newtowk is

NON. Since in a computer network a self-loop is meaningless (a node
can always talk to itself), the node pairs are given by: 1,2; 1,3;

...; 2,1; 2,3;...; NON-1, NON. Thus there are NON different ways to

choose the first node and NON-1 different ways to choose the second
node. Therefore, the number of node pairs (NONP) is given by

NONP= NON (NON-1) (3.3)

For a bidirectional network there are duplications in the pairs.

In other words, the pair 1,2 is the same as the pair 2,1. Therefore,

the number of node pairs for a bidirectional network (NONPB) is given

by

NONPB = NON (NON-1) (3.4)

2

For directed or mixed networks, the order does make a difference and

the number of node pairs for a directed or mixed network (NONPD) is

given by

NONPD = NON (NON-1) (3.5)

It would seem that the number of node pairs for a bidirectional

network is half as great as the number of node pairs for a directed

or mixed graph. But since connectivity is a ratio of terms, it will

be shown that the two in the denominator of the bidirectional term

drops out.

After degradation, the network may consist of k disjoint networks
(in which some of the disjoint networks may consist of only one node).

For a bidirectional disjoint network after degradation, the number of

connected node pairs is given by the sum of the connected node pairs

from all the disjoint networks divided by two.

k

2. HON.' (NUN/ -1)

(T\ (3.6)

For a directed or mixed disjoint network after degradation, the number
of host pairs is given by the sum of the connected node pairs from all
the disjoint networks.

24

NONPD = ^> NON
t
'(NON

t
--l) (3.7)

Remembering that connectivity is defined as the number of connected
node pairs after degradation divided by the number of connected node
pairs before degradation, connectivity for the bidirectional network
(CONB) is

k.

3* NONj(NON^-l)

_tSl
CONB - Z (3.8)

NON(NON-l)

Note the two drops out in both denominators. The connectivity for the
directed or mixed graph case (COND) is

k

COND = ^ NON; (NON; - 1

)

(3.9)

NON(NON-l)

Note the two connectivities are equal.

3.2.1.2 Connectivity Algorithm

To calculate the connectivity of the network, the number of
connected node pairs before degradation and the number of connected
node pairs after degradation must be determined, and Dijkstra's
Shortest Path First Algorithm can be of use here.

The routing matrix for the network is determined by Dijkstra's
Shortest Path First Algorithm. The routing matrix is a form of the
reachability matrix where the elements of the matrix contain either
the adjacent node to the source node along a path to the destination
node, or zero if the destination node cannot be reached from the
source. If the element of the routing matrix is non-zero, then the
pair of nodes being examined is connected; otherwise the pair is

disconnected. The number of connected node pairs is found by totaling
the number of non-zero elements in the routing matrix.

After degradation, the routing matrix is again determined for the
degraded network, and the number of connected node pairs is calculated.
The connectivity for the network is determined by dividing the number
of connected node pairs after degradation by the number of connected
node pairs before degradation.

25

3.2.1.2 Two Language Implementations of the Connectivity Algorithm

The program listings in Appendices A and B show the preprocessor
and the call to Dijkstra's Shortest Path First Algorithm. The
preprocessor sets all weights on the links and nodes to one. A user's
manual is provided in Appendix C.

3.2.2 Connected Network Reliability Measure of Effectiveness

The Connected Network Reliability MOE gives the probability
that every connected node pair before degradation is still connected
after degradation. This MOE is calculated at the same time as the

source to destination Reliability MOE using state enumeration.

3.2.3 Reliable Throughput Measure of Effectiveness

The Reliable Throughput MOE gives the reliable throughput of the

network, where reliable throughput is defined as the sum of the link

and node probabilities after degradation divided by the original sum

of the link and node probabilities.

3.2.3.1 Reliable Throughput Algorithm

To calculate the reliable throughput of the network, the sum of

the link and node probabilities before degradation and the sum of the

link and node probabilities after degradation must be determined.

Once they are determined, the after degradation sum divided by the

before degradation sum gives the reliable throughput of the network.

3.2.3.2 Two Language Implementations of the Reliable Throughput
Algorithms

The program listings in the Appendices A and B are quite
well-commented, complete with a listing of variables, and need no

further explanation. A user's manual is provided in Appendix C.

26

3.2.4 Network. Reliability Measure of Effectiveness

The Network Reliability MOE gives the network reliability of

the network, where network reliability is defined as the product of

the connectivity of the network and the reliable throughput of the
network. The Network Reliability MOE should not be confused with the
average of the source and destination Reliability MOE discussed
earlier. They are not the same.

3.2.4.1 Network Reliability Algorithm

To calculate the network reliability, both the connectivity
and the reliable throughput of the network must be known. The
technique for determining these terms is described above. Once the

terms are known, their product gives the network reliability.

3.2.4.2 Two Language Implementations of the Network Reliability
Algorithm

The program listings in Appendices A and B show the preprocessor
and the calls to both the Connectivity Algorithm and the Reliable
Throughput Algorithm. The preprocessor sets all weights on the links

and nodes to one. A user's manual is provided in Appendix C.

4. Measures of Survivability

A network may be considered survivable if:

a) any node can communicate with any other node;

b) communication paths exist between specified pairs of nodes;

c) the largest communicating section after attack exceeds a

specified threshold;

d) the shortest surviving path after degradation does not
exceed a specified limit;

e) the average fraction of specified pairs of nodes communicating
after attack exceeds some limit;

f) the average and/or maximum time needed to transmit a message
from source to destination does not exceed a specified time

limit;

27

g) the expected percentage of surviving nodes receiving a
message during a given time interval exceeds some level;

h) the probability of a specific node receiving a message
during a given time interval exceeds some time limit
(5,7,8,9).

Many of these MOS's can be found using the MOE's previously discussed.

5.0 Testing and Validation

Several different types of network configurations were input
to GRAFTHY to test and validate its output. They were a six-node
maximally connected network, a spc-node ring network, a six-node line
network, a six-node star network, and the six-node general network
shown in Figure 2.4. In all the above cases, correct outputs from
GRAFTHY were obtained. An example run for a three-node network is

shown in Appendix D.

6.0 Recommendations for Further Research

GRAFTHY is a powerful, user-friendly simulation which is

network-oriented. The inputs reflect the network topology, and the
output describes how well the network functions after degradation. In

message-oriented simulations, the inputs reflect the protocols at the

node, and the outputs describe whether messages were received or
not. These simulations do not tell the user how "good" the networks
are. However, GRAFTHY, by describing the network, does infer whether
messages can be received or not. Because network-oriented simulations
describe the network effectiveness and also infer whether messages
are received, and message-oriented simulations only describe whether
messages are received, a comparison should be made between the two
types of simulations to determine fully the number of advantages of

network-oriented simulations such as GRAFTHY.

7. Summary and Conclusions

The military presently utilizes computers and computer networks
in all facets of their C3I systems. As a consequence of this use,

the C3I system operational effectiveness is directly related to the
degradation level of these computer networks. Thus there is an
intense interest on the part of military commanders to have an

understanding as to how strategic and tactical environments degrade
the operational capability of computer networks within their C3I

28

systems. This interest can only be satisfied with considerable
analysis of computer networks within various hostile environments.
Further, this analysis usually requires a simulation model as one of

the analytic tools.

GRAFTHY was written to meet the need for a simulation model
which calculates the degradation level (ef fectiveness/survivability)
of these computer networks. Since GRAFTHY calculates many MOE's,
each MOE representing a different criterion for the level of
degradation of the network, the user can determine which criteria
affect the network most. Thus commanders gain a better understanding
of the degree to which different measures affect the operational
capability of their C3I systems.

29

8.0 Literature Cited

1. A brochure on the Defense Data Network; The Defense Communications
Agency

2. Tanenbaum, Andrew S.; Computer Networks ; Prentice-Hall, Inc.;
Englewood Cliffs, N.J.; c. 1981

3. Henley, Ernest J. and R.A. Williams; Graph Theory in Modern
Engineering ; Academic Press Inc.; New York, N.Y.; c. 1973

4. Christofides, Nicos; Graph Theory: An Algorithmic Approach ; Academic
Press Inc.; New York, N.Y.; c. 1975

5. Frank, Howard and Ivan T. Frisch; Communication, Transmission, and
Transportation Networks ; Addison-Wesley Publishing Co., Inc.; Reading,
Mass.; c. 1971

6. Sevcik, Peter J., Graeme J. Williams, and Bruce L. Hitson; "Defense
Data Network Survivability;" Bolt Beranek and Newman, Inc. for the
Defense Communications Agency; IEEE Press; New York, N.Y.; c. 1982

7. Frank, Howard; "Survivability Analysis of Command and Control
Communications Networks - Part I," IEEE Transactions on
Communications, Vol. COM-22, No. 5; May 1974

8. Frank, Howard; "Survivability Analysis of Command and Control
Communications Networks - Part II," IEEE Transactions on
Communications, Vol. COM-22, No. 5; May 1974

9. Frank, Howard and Ivan T. Frisch; "Analysis and Design of Survivable
Networks," IEEE Transactions on Communications, Vol. COM-18, No. 5;

Oct. 1970

JO

9.0 Further Reading on Graph Theory

Abraham, J. A.; "An Improved Algorithm for Network Reliability," IEEE
Transactions on Reliability, Vol. R-28, No. 1; April 1979

Aggarwal, K.K., K.B. Misra, and J.S. Gupta; "A Simple Method for
Reliability Evaluation of a Communication System," IEEE Transactions on
Communications; May 1975

Aggarwal, K.K., K.B. Misra, and J.S. Gupta; "A Fast Algorithm for
Reliability Evaluation," IEEE Transactions on Reliability, Vol. R-24, No.
1; April 1975

Arunkumar, S. and S.H. Lee; "Enumeration of All Minimal Cut-Sets for a

Node Pair in a Graph," IEEE Transactions, Vol. R-28, No. 1; April 1979

8all, Michael 0,; "Complexity of Network Reliability Computations,"
Networks, Vol. 10; 1980

Bellman, Richard, Kenneth L. Cooke, and Jo Ann Lockett; Algorithms,
Graphs, and Computers ; Academic Press Inc.; New York, N.Y.; c. 1970

Biegal, John E.; "Determination of Tie Sets and Sets for a System Without
Feedback," IEEE Transactions on Reliability, Vol R-26, No. 1; April 1977

Colella, A.M., M.J. O'Sullivan, and O.J. Carlino; Systems Simulation ;

D.C. Heath and Co.; Lexington, Mass.; c. 1974

Even, Shimon and R. Endre Tarjan; "Network Flow and Testing Graph
Connectivity," SIAM Journal on Computing, Vol. 4, No. 4; Dec. 1975

Gomory, R.E. and T.C. Hu; "Multi -Terminal Network Flows," SIAM Journal on
Applied Mathematics, Vol. 9, No. 4; Dec. 1961

Haray, Frank and Edgar M. Palmer; Graphical Enumeration ; Academic Press
Inc.; New York, N.Y.; c. 1973

Hu, T.C. ; Integer Programming and Network Flows ; Addison-Wesley
Publishing Co., Inc.; Reading, Mass.; c. 1969

Kershenbaum, A. and R.M. Van Slyke; "Recursive Analysis of Network
Reliability," Networks, Vol. 3; 1973

Khan, N.M., K. Rajamani, and S.K. Banerjee; "A Direct Method to Calculate
the Freguency and Duration of Failures for Large Networks," IEEE
Transactions on Reliability, Vol. R-26, No. 5; Dec. 1977

Kim, Young H., Kenneth E. Case, and P.M. Ghare; "A Method for Computing
Complex System Reliability," IEEE Transactions on Reliability, Vol. R-21,
No. 4; Nov. 1972

31

Locks, Mitchell 0.; "Relationships Between Minimal Path Sets and Cut
Sets," IEEE Transactions on Reliability, Vol. R-27, No. 2; June 1978

Locks, Mitchell 0.; "Inverting and Minimalizing Path Sets and Cut Sets,"
IEEE Transactions on Reliability, Vol. R-27, No. 2; June 1978

Mihram, G. Arthur; Simulation: Statistical Foundations and Methodology ;

Academic Press Inc.; New York, N.Y.; c. 1972

Minieka, Edward; Optimization Algorithms for Networks and Graphs ; Marcel
Dekker, Inc.; New York, N.Y.; c. 1978

Moranda, Paul B.; "Event-Altered Rate Models for General Reliability
Analysis," IEEE Transactions on Reliability, Vol. R-28, No. 5; Dec. 1979

Petrovic, Radivoj and Slobodan Jovanovic; "Two Algorithms for Determining
the Most Reliable Path of a Network," IEEE Transactions on Reliability,
Vol. R-28, No. 2; June 1979

Rai, Suresh and K.K. Aggarwal; "An Efficient Method for Reliabilities
Evaluation of a General Network," IEEE Transactions on Reliability, Vol.
R-27, No. 3; Aug. 1978

Read, Ronald C; Graph Theory and Computing ; Academic Press Inc.; New
York, N.Y.; c. 1972

Satyanarayana, A. and Jane N. Hagstrom; "Combinatorial Properties of
Oirected Graphs Useful in Computing Network Reliability," Networks, Vol.
11; 1981

Schnorr, C.P.; "Bottlenecks and Edge Connectivity in Unsymmetrical
Networks," SIAM Journal on Computing; Vol. 8, No. 2; May 1979

Sharma, Roshan Lai, Paulo J.T. de Sousa, and Ashok D. Ingle; Network
Systems ; Van Nostrand Reinhold Co., Inc.; New York, N.Y.; c. 1982

Shoemaker, S. (Ed.); Computer Networks and Simulations II; North-Holland
Publishing Co.; Amsterdam, The Netherlands; c. 1982

Shogan, Andrew W.; "A Recursive Algorithm for Bounding Network
Reliability," IEEE Transactions on Reliability, Vol. R-26, No. 5; Dec.
1977

Springer, Clifford H., Robert E. Herlihy, Robert T. Mall, and Robert I.

Beggs; Probabilistic Models ; Richard D. Irwin, Inc.; Homewood, 111.; c.
1968

Tillman, F.A., C.H. Lie, and Hwang; "Simulation Model of Mission
Effectiveness for Military Systems," IEEE Transactions on Reliability,
Vol. R-27, No. 3; Aug. 1978

Van Slyke, R. and H. Frank; "Network Reliability Analysis: Part I,"

32

Networks, Vol. 1; 1972

Whitehouse, Gary E. ; Systems Analysis and Design Using Network
Techniques ; Prentice-Hall, Inc.; Englewood Cliffs, N.J.; c. 1973

Wilkov, Robert S.; "Analysis and Design of Reliable Computer Networks,"
IEEE Transactions on Communications, Vol. COM-20; June 1972

?3

10.0 Further Reading on Computer Networks

Bell Laboratories; Engineering Operations 1n the Bell System ; Western
Electric Co., Inc.; Indianapolis, Ind.; c. 1977

Blanc, Robert P. and Ira W. Cotton (Ed.); Computer Networking ; IEEE
Press; New York, N.Y.; c. 1976

Cantor, David G. and Mario Gerla; "Optimal Routing in a Packet-Switched
Computer Network," IEEE Transactions on Computers, Vol. C-23, No. 10;
Oct. 1974

Davies, Donald W. and Derek L.A. Barber; Communication Networks for
Computers ; John Wiley & Sons, Inc.; London, England; c. 1973

Davies, Donald W., Derek L.A. Barber, W.L. Price, and CM. Solomonides;
Computer Networks and Their Protocols ; John Wiley & Sons Ltd.

;

Chichester, England; c. 1979

Frank, Howard, R.E. Kahn, and L. Kleinrock; "Computer Communications
Network Design: Experience with Theory and Practice," Large-Scale
Networks: Theory and Design ; IEEE Press; New York, N.Y.; c. 1976

Green, Jr., Paul E. and Robert W. Lucky (Ed.); Computer Communications ;

IEEE Press; New York, N.Y.; c. 1974

Kleinrock, Leonard; Queueing Systems Volume II: Computer Applications ;

John Wiley & Sons, Inc.; New York, N.Y.; C..T976

Martin, James; Telecommunications and the Computer, 2nd ed. ;

Prentice-Hall, Inc.; Englewood Cliffs, N.J.; c. 1976

McQuillan, John M. and Vinton G. Cerf ; Tutorial: A Practical View of
Computer Communication Protocols ; IEEE Press; New York, N.Y.; c. 1978

McQuillan, John M., Ira Richer, and Eric C. Rosen; "The New Routing
Algorithm for the ARPANET," IEEE Transactions on Communications, Vol.
COM-28, No. 5; May 1980

Schwartz, Mischa; Computer-Communication Network Design and Analysis ;

Prentice-Hall, Inc.; Englewood Cliffs, N.J.; c. 1977

54

Appendix A: A FORTRAN GRAFTHY

55

PROGRAM GRAFTHY
C

C Written by: Russell D. Thomas
C Date: August 3, 1984

C

C This is the declaration block.
DIMENSION CONNECT (100 ,100), CUT(IOO.IOO) , CUT2(100,100)
DIMENSION HRPM(IOO.IOO), IND(IOO.IOO) , IND2(100,100)
DIMENSION LENGTH(IOO.IOO), LENGTH2(100,100) , LENM(IOO.IOO)
DIMENSION POS(IOO.IOO), PROB(IOO.IOO) , PR0B2(100,100)
DIMENSION SPM(IOO.IOO), TEMP(100,100) , HST(IOO.IOO)
DIMENSION WGT2(100,100)
INTEGER CON, CONAD, CONBD, HRP, HRPM, LENM, MCMF, NOLIP, NR, RCH
INTEGER RT, SDP, SDRL, SPM, TOTAL
REAL ADPDCT, BDPDCT, CONNECT, CUT, CUT2, IND, IND2, LENGTH
REAL LENGTH2, POS, PROB, PR0B2, RATI, RAT2, RAT3, RTAD, RTBD
REAL TEMP, WGT, WGT2

C

C Input Block

C

C Choose the MOE's.
CALL CH00SEJ10E (CON, HRP , MCMF , NOL IP , NR , RCH , RT , SDP , SDRL

)

C

C Input the network configuration.
CALL DESCR IBE_NETWORK (NON , CONNECT , POS

)

C

C Before-Degradation Output
C

C Calculate and output the Shortest Delay Path MOE if the MOE was
C requested.

IF (SDP.EQ.l) CALL DI JKSTRA(NON, CONNECT, 1, SPM, WGT)

C

C Calculate and output the Highest Reliable Path MOE if the MOE was
C requested.

IF (HRP.EQ.l) THEN
C

C This loop takes the negative logarithm of the probability matrix.
DO 20 1=1, NON

DO 10 J=1,N0N
C

C If the link or node exists, then take the negative logarithm of its
C probability of survival. Otherwise, leave the probability zero.

IF (POS(I.J).NE.O) THEN
TEMP(I,J)=-ALOG(POS(I,J))

ELSE
TEMP(I,J)=0

ENDIF

Jfi

10 CONTINUE
20 CONTINUE

C

C Call Dijkstra's Shortest Path First Algorithm and pass the negative
C logarithm probability matrix in place of the connection matrix.

CALL DIJKSTRA(N0N,TEMP,2,HRPM,PR0B)
ENDIF

C

C Calculate and output the Reachability MOE if the MOE was requested.
IF (RCH.EQ.l) THEN

C

C This loop sets all link weights to one and all node weights to zero.

00 40 1=1, NON
DO 30 J=1,N0N

C

C Set node weights to zero.
IF (I.EQ.J) THEN
TEMP(I,J)=0

C

C If a link exists between the two nodes being examined, then set its
C weight to one.

ELSE IF (POS(I.J).NE.O) THEN
TEMP(I,J)=1

C

C If no link exists, then leave the weight zero.
ELSE

TEMPO, J)=0

ENDIF
30 CONTINUE
40 CONTINUE

C

C Call Dijkstra's Shortest Path First Algorithm and pass the binary
C connection matrix (whose node weights are zero and link weights are
C one) in place of the original connection matrix.

CALL DIJKSTRA(NON, TEMP, 3.LENM, LENGTH)
ENDIF

C

C Calculate and output the Maximum Throughput MOE if the MOE was
C requested.

IF (MCMF.EQ.l) THEN
C

C This loop inverts all the node and link weights.
DO 60 1=1, NON

DO 50 J=1,N0N
C

C If the link or node exists, then invert its weight. Otherwise,
C leave the weight zero.

IF (CONNECT(I.J).NE.O) THEN
TEMP(I,J)=1/C0NNECT(I,J)

ELSE

TEMP(I,J)=0
ENDIF

57

50 CONTINUE
60 CONTINUE

C

C Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the
C inverted connection matrix in place of the original connection
C matr i x

.

CALL F0RD_FULKERS0N(N0N, TEMP, 1, CUT)
ENDIF

C

C Calculate and output the Number of Link Independent Paths MOE if the
C MOE was requested.

IF (N0LIP.EQ.1) THEN
C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(N0N, CONNECT, TEMP)
C

C Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the
C binary connection matrix in place of the original connection
C matrix.

CALL F0RD_FULKERS0N(N0N,TEMP,2,IND)
ENDIF

C

C Calculate and output the Reliability MOE if the MOE was requested.
IF (SDRL.EQ.l) THEN

C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE (NON, CONNECT, TEMP)
C

C Call the connectivity algorithm to determine the number of connected
C node pairs.

CALL C0NNECTIVITY(N0N,TEMP, TOTAL)
C

C Call the reliability algorithm and pass the binary connection matrix
C and the probability connection matrix.

CALL RELIABILITY(NON, TEMP, POS, TOTAL)
ENOIF

C

C Calculate the before-degradation term for the Connectivity MOE if
C the MOE was requested.

IF (C0N.EQ.1) THEN
C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(NON, CONNECT, TEMP)
CALL C0NNECTIVITY(NON, TEMP, CONBD)

ENDIF
C

C Calculate the before-degradation term for the Relative Throughput
C MOE if the MOE was requested.

IF (RT.EQ.l) CALL RELIABLE_THR0UGHPUT(N0N,P0S,RTBD)

58

c

C Calculate the before-degradation term for the Network Reliability
C MOE if the MOE was requested.

IF (NR.EQ.l) THEN
C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(NON, CONNECT, TEMP)
CALL NETWORK RELIABILITY(NON,TEMP,POS,BDPDCT)

ENDIF
C

C

C Event Block
C

C Input the changes to the network.
65 CALL EVENT(N0N, CONNECT, POS)

C

c

C After-Degradation Output
C

C Calculate and output the Shortest Delay Path MOE if the MOE was
C requested.

IF (SDP.EQ.l) CALL DIJKSTRA(NON, CONNECT, 1,SPM,WGT2)
C

C Calculate and output the Highest Reliable Path MOE if the MOE was
C requested.

IF (HRP.EQ.l) THEN
C

C This loop takes the negative logarithm of the probability matrix.
DO 80 I=1,N0N

DO 70 J=1,N0N
C

C If the link or node exists, then take the negative logarithm of its

C probability of survival. Otherwise, leave the probability zero.
IF (POS(I.J).NE.O) THEN
TEMP(I,J)=-ALOG(POS(I,J))

ELSE
TEMP(I, J)=0

ENDIF
70 CONTINUE
80 CONTINUE

C

C Call Dijkstra's Shortest Path First Algorithm and pass the negative
C logarithm probability matrix in place of the connection matrix.

CALL DIJKSTRA(NON,TEMP,2,HRPM,PROB2)
ENDIF

C

C Calculate and output the Reachability MOE if the MOE was requested.
IF (RCH.EQ.l) THEN

C

3°

C This loop sets all link weights to one and all node weights to zero.
DO 100 1=1, NON

DO 90 J=1,N0N
C

C Set node weights to zero.

IF (I.EQ.J) THEN
TEMP(I,J)=0

C

C If a link exists between the two nodes being examined, then set its

C weight to one.

ELSE IF (POS(I.J).NE.O) THEN
TEMP(I,J)=1

C

C If no link exists, then leave the weight zero.
ELSE
TEMP(I,J)=0

ENDIF
90 CONTINUE
100 CONTINUE

C

C Call Dijkstra's Shortest Path First Algorithm and pass the binary
C connection matrix (whose node weights are zero and link weights are
C one) in place of the original connection matrix.

CALL DIJKSTRA(N0N,TEMP,3,LENM,LENGTH2)
ENDIF

C

C Calculate and output the Maximum Throughput MOE if the MOE was
C requested.

IF (MCMF.EQ.l) THEN
C

C This loop inverts all the node and link weights.
DO 120 1=1, NON

DO 110 J=1,N0N
C

C If the link or node exists, then invert its weight. Otherwise,
C leave the weight zero.

IF (CONNECT(I,J).NE.O) THEN
TEMP(I,J)=1/C0NNECT(I,J)

ELSE
TEMP(I,J)=0

ENDIF
110 CONTINUE
120 CONTINUE

C

C Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the
C inverted connection matrix in place of the original connection

C matrix.
CALL F0RD_FULKERS0N(NON , TEMP , 1 , CUT2

)

ENDIF
C

C Calculate and output the Number of Link Independent Paths MOE if the
C MOE was requested.

40

IF (NOLIP.EQ.l) THEN
C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(NON,CONNECT,TEMP)
C

C Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the
C binary connection matrix in place of the original connection
C matrix.

CALL FORD FULKERS0N(N0N,TEMP,2,IND2)
ENOIF

C

C Calculate and output the Reliability MOE if the MOE was requested.
IF (SDRL.EQ.l) THEN

C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(NON, CONNECT, TEMP)
C

C Call the reliability algorithm and pass the binary connection matrix
C and the probability connection matrix.

CALL RELIABILITY(NON, TEMP, POS, TOTAL)
ENDIF

C

C Calculate the after-degradation term for the Connectivity MOE if the
C MOE was requested.

IF (CON.Eq.l) THEN
C

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE(NON, CONNECT, TEMP)
CALL CONNECTIVITY(NON,TEMP,CONAD)
RATKONAD/CONBD
PRINT 130, RATI

130 FORMAT (' The connectivity of the network is \F5.3)
PRINT *,' '

ENDIF
C

C Calculate the after-degradation term for the Relative Throughput MOE
C if the MOE was requested.

IF (RT.EQ.l) THEN
CALL REL IABLE_THROUGHPUT (NON , POS , RTAO

)

RAT2=RTAD/RTBD
PRINT 140, RAT2

140 FORMAT (' The reliable throughput of the network is \F5.3)
PRINT *,

'

'

ENDIF

C

C Calculate the after-degradation term for the Network Reliability
C MOE if the MOE was requested.

IF (NR.EQ.l) THEN

41

C The CHANGE subroutine will return a binary connection matrix whose
C node and link weights are one.

CALL CHANGE (NON, CONNECT, TEMP)
CALL NETWORK_RELIABILITY(NON,TEMP,POS,ADPDCT)

RAT3=ADPDCT/B0PDCT
PRINT 150, RAT3

150 FORMAT (' The network reliability is ',F5.3)
PRINT V '

ENDIF
C

C Return to the Event Block.
GO TO 65

END

SUBROUTINE CHOOSE_MOE(CON,HRP,MCMF,NOLIP,NR,RCH,RT,SDP,SDRL)
C

C Written by: Russell D. Thomas
C Date: July 30, 1984
C

C This is the declaration block.
INTEGER CON, HRP, MCMF, NOLIP, NR, RCH, RT, SDP, SDRL

C

C Purpose of the subroutine:
C

C This subroutine determines which MOE's are required by the
C user.
C

C Variables used in the subroutine:
C

C CON the answer to the Connectivity MOE question
C no
C 1 yes
C HRP the answer to the HigHest Reliable Path MOE question
C no
C 1 yes
C MCMF the answer to the Maximum Flow MOE question
C no
C 1 yes
C NOLIP the answer to the Number of Link Independent Paths MOE
C question
C no
C 1 yes
C NR the answer to the Network Reliability MOE question
C no
C 1 yes
C RCH the answer to the Reachability MOE question
C no
C 1 yes
C RT the answer to the Reliable Throughput MOE question
C no
C 1 yes

42

C SDP the answer to the Shortest Delay Path MOE question
C no
C 1 yes
C SDRL the answer to the Reliablity MOE question
C no
C 1 yes
C

c**

c

TYPE 10

TYPE 20

TYPE 30

TYPE 40

TYPE 50

10 FORMAT ('0',' The following is a list of Measures of Effective

&ness (M0E"s) which this')
20 FORMAT (' algorithm will calculate, and all the M0E"s will be

& calculated unless the 1

)

30 FORMAT (' algorithm is told otherwise. To prevent a MOE from
& being calculated, just 1

)

40 FORMAT (' type in a negative response when prompted. The default
& answer is yes (the MOE')

50 FORMAT ('is needed).')
C

C The framework is the same for the following blocks of code. The
C user is asked if a particular MOE is needed (the answer originally
C assumed yes). In a call to the READ subroutine, the input is read
C and determined if negative. If the input was negative, then the
C answer is no. If the input was non-negative, then the answer is

C yes.
TYPE 60

50 FORMAT ('0','ls the Shortest Delay Path MOE needed?')
SDP=1
CALL READ(SDP)
PRINT 65, SDP

MD

Is the Highest Reliable Path MOE needed?')

65 FORMAT (' SDP

C

TYPE 70
70 FORMAT ('0', 'I

HRP=1
CALL READ(HRP)
PRINT 75, HRP

75 FORMAT (' HRP
C

',11)

TYPE 80

80 FORMAT ('O'.'Is the Reachability MOE needed?'
RCH=1
CALL READ(RCH)
PRINT 85, RCH

85 FORMAT ('RCH = ',11)

TYPE 90

43

C

90 FORMAT ('0','ls the Maximum Flow MOE needed? 1

)

MCMF=1
CALL READ(MCMF)
PRINT 95, MCMF

95 FORMAT (' MCMF = ',11)

C

TYPE 100

100 FORMAT ('0','Is the Number of Link Independent Paths MOE
& needed? 1

)

N0LIP=1
CALL REAO(NOLIP)
PRINT 105, NOLIP

105 FORMAT (' NOLIP= ',11)

C

TYPE 110

110 FORMAT ('O', 1

Is the Source to Destination Reliability MOE
& needed?'

)

SDRL=1
CALL READ(SDRL)
PRINT 115, SDRL

115 FORMAT (' SDRL = ',11)

C

TYPE 120

120 FORMAT ('0','Is the Connectivity MOE needed?')
C0N=1
CALL READ(CON)
PRINT 125, CON

125 FORMAT ('CON = ',11)

C

TYPE 130
130 FORMAT ('0','Is the Reliable Throughput needed?')

RT=1
CALL READ(RT)
PRINT 135, RT

135 FORMAT (
' RT = ',11)

C

TYPE 140
140 FORMAT ('O'.'Is the Network Reliability MOE needed?')

NR=1

CALL READ(NR)
PRINT 145, NR

145 FORMAT (
' NR ',11)

PRINT *,' '

RETURN
END

SUBROUTINE READ(MOE)
C

C Written by: Russell D. Thomas
C Date: July 30, 1984
C

44

C This is the declaration block.
CHARACTER*2 CHR
INTEGER MOE

C

C Purpose of the subroutine:
C

C This subroutine determines whether a negative answer has been
C inputted.

C

C Variables used in the subroutine:
C

C CHR the user input
C MOE the answer to the MOE question
C no
C 1 yes
C

C

C Read the user input.
READ 5, CHR

5 FORMAT (A2)

C

C If the response was negative, set the answer to zero. Otherwise,
C leave the answer one.

IF ((CHR.EQ.'n'J-OR.tCHR.EQ.'N'l.OR.tCHR.EQ.'no'J.OR.tCHR.EQ.
&

' NO
')) M0E=0

RETURN
END

SUBROUT I NE DESCRIBE NETWORK (NON , CONNECT , POS

)

C

C Written by: Russell D. Thomas
C Date: July 30, 1984

C

C This is the declaration block.
DIMENSION C0NNECT(100,100), P0S(100,100)
INTEGER D, NON, S

REAL CONNECT, P, POS, W
C

C Purpose of the subroutine:
C

C This subroutine reads in the network.
C

C Variables used in the subroutine:
C

C D the destination node
C NON the number of nodes in the network
C P the probability of link or node survival
C S the source node, sometimes both the source and destination
C node
C W the link or node weight

45

c

C CONNECTO the connection matrix for the network
C P0S() the probability connection matrix
C

C**
C

TYPE 10

10 FORMAT ('0',' Input the number of nodes.')
C

C Read the number of nodes in the network.
READ 20, NON

20 FORMAT (12)
PRINT 30, NON

30 FORMAT (' The number of nodes is ',12)

PRINT V '

C

C This loop initializes the connection matrix and the probability
C connection matrix to zero.

DO 50 1=1, NON
DO 40 J=1,N0N

connect; I, J)=0
P0S(I,J)=0

40 CONTINUE
50 CONTINUE

C

TYPE 51

TYPE 52

51 FORMAT ('0',' This is the input block to the program. At this
& point, input the node, the')

52 FORMAT (' node weight, and its probability of survival. Input
& when finished.

'

)

C

C Read the node, its weight, and its probability of survival.
53 READ *, S, W, P

IF (S.EQ.O) GO TO 55

CONNECTS, S)=w
P0S(S,S)=P

PRINT 54, S, W, P

54 FORMAT (' ' , I2,2X,F5.2,2X,F5.3)
GO TO 53

55 PRINT *,' '

C

TYPE 50

TYPE 70

TYPE 80

TYPE 90
TYPE 100
TYPE 110
TYPE 120

60 FORMAT ('0',' This is the input block for all the

& bidirectional links. Bidirectional')
70 FORMAT (' links have the same link weights from source to

46

& destination and from destination')
80 FORMAT (' to source. Bidirectional links also have equal

& probabilities of link survival')
90 FORMAT (' from source to destination and destination to source.

& The input block for'

)

100 FORMAT (' directed links follows. Input the source node,
& destination node, link weight,')

110 FORMAT (' and the probability of link survival. Input
& when finished with the')

120 FORMAT (' bidirectional link input.')
C

C Read the two nodes, the link weight, and the probability of link
C survival.

130 READ *, S, D, M, P

IF (S.EQ.O) GO TO 150
CONNECT(S,D)=W
CONNECT(D,S)=w
P0S(S,D)=P
P0S(D,S)=P

PRINT 140, S, D, W, P

140 FORMAT (' ' ,I2,2X,I2,2X,F5.2,2X,F5.3)
GO TO 130

150 PRINT *,' '

C

TYPE 160

TYPE 170
TYPE 180

160 FORMAT ('0',' This is the input block for the directed links.
4 Input the source node,')

170 FORMAT (' destination node, link weight, and the probability of

& link survival. Input'

)

180 FORMAT (' when finished.')
C

C Read the source node, the destination node, the link weight, and the
C probability of link survival.
190 READ *, S, 0, W, P

IF (S.EQ.O) GO TO 210
CONNECT(S,D)=W
P0S(S,D)=P

PRINT 200, S, D, W, P

200 FORMAT (' ' , I2,2X,I2,2X,F5.2,2X,F5.3)
GO TO 190

210 PRINT *,' '

RETURN
END

SUBROUTINE CHANGE(NON, CONNECT, TEMP)
C

C Written by: Russell D. Thomas
C Date: July 30, 1094
C

47

C This is the declaration block.
DIMENSION C0NNECT(10O,100), TEMP(100,100)
REAL CONNECT, TEMP
INTEGER NON

C

C Purpose of the subroutine:
C

C This subroutine calculates the binary connection matrix for
C the network.
C

C Variables used in the subroutine:
C

C NON the number of nodes in the network
C

C CONNECTO the connection matrix for the network
C TEMPO the binary connection matrix whose node and link
C weights are one
C

c

C This loop sets all node and link weights to one.
DO 80 1=1, NON

DO 70 J=1,N0N
C

C If the node or link exists, then set its weight to one. Otherwise,
C leave the weight zero.

IF (C0NNECT(I,J).NE.0) THEN
TEMP(I,J)=1

ELSE

TEMP(I, J)=0
ENDIF

70 CONTINUE
80 CONTINUE

RETURN
END

SUBROUTINE EVENT(N0N, CONNECT, POS)
C

C Written by: Russell D. Thomas
C Date: July 30, 1984
C

C This is the declaration block.
DIMENSION CONNECT(100,100),POS(100,100)
REAL CONNECT, P, POS, W
INTEGER D, NON, S, TST

C

C Purpose of the subroutine:
C

C This subroutine reads in changes to the network.
C

C Variables used in the subroutine:

48

c

C D the destination node
C NON the number of nodes in the network
C P the probability of link or node survival
C S the source node, sometimes the source and destination
C node

C TST the user input
C W the link or node weight
C

C CONNECTO the connection matrix for the network
C P0S() the probability connection matrix
C

c

C Read whether or not the user wishes to continue.
TYPE 5

5 FORMAT ('0', 'Should the program continue? (default yes)
1

)

CALL READ (TST)

C

C If the response was negative, then terminate the program.
IF (TST.EQ.O) STOP

C

TYPE 10

TYPE 20
TYPE 30
TYPE 40

10 FORMAT ('O 1

,

1 This is the event block for the program. At
& this point, the weights and')

20 FORMAT (' probabilities of the nodes and links can be changed,
& or nodes and links may be')

30 FORMAT (' removed from the network entirely. Input the
& degradated nodes and links only.')

40 FORMAT ('All other nodes and links will remain the same.')
C

TYPE 50

TYPE 60

50 FORMAT ('O'.'This is the event block for the nodes. Input the
& node, the new node weight, and')

50 FORMAT (' the new probability of node survival. Input when
& finished. ')

C

C Read the node, its weight, and its probability of survival.
70 READ *, S, W, P

IF (S.EQ.O) GO TO 100
CONNECT (S,S)=W
P0S(S,S)=P

C

C If either the node weight or the probability of node survival was
C set to zero, then remove the node from the network.

IF ((W.Eq.O).OR.(P.EO.O)) THEN
DO 80 1=1, NON

*9

CONNECT! I, S)=0

CONNECTS, I)=0

POS(I,S)=0
POS(S,I)-0

80 CONTINUE
W=0
P=0

ENDIF
PRINT 90, S, W, P

90 FORMAT (' ' , I2,2X,F5.2,2X,F5.3)
GO TO 70

100 PRINT *,' '

C

TYPE 110
TYPE 120
TYPE 125

110 FORMAT ('O'.'This is the event block for the bidirectional links.
& Input the two nodes, the 1

)

120 FORMAT (' new link weight, and the new probability of link
& survival. Input 0')

125 FORMAT (' when finished.')
C

C Read the two nodes, the link weight, and the probability of link
C survival.
130 READ *, S, D, W, P

IF (S.EQ.O) GO TO 150
CONNECTS, D)=W
CONNECTS, S)=W
P0S(S,D)=P
P0S(0,S)=P

C

C If either the link weight or the probability of link survival was
C set to zero, then remove the link from the network.

IF ((W.Eq.O).OR.(P.EQ.O)) THEN
CONNECTS, D)=0

CONNECTED, S)=0
P0S(S,D)=0
P0S(D,S)=0
W=0
P=0

ENDIF
PRINT 140, S, D, W, P

140 FORMAT (' ' ,I2,2X,I2,2X,F5.2,2X,F5.3)
GO TO 130

150 PRINT *,' '

C

TYPE 160
TYPE 170

TYPE 180

160 FORMAT ('O'.'This is the event block for the directed links.
& Input the source node, the')

170 FORMAT (' destination node, the new link weight, and the new

50

& probability of link survival. 1

)

180 FORMAT (' Input when finished.')
C

C Read the source node, the destination node, the link weight, and the
C probability of link survival.
190 READ *, S, D, W, P

IF (S.EQ.O) GO TO 210
CONNECTS, D)=W
P0S(S,D)=P

C

C If either the link weight or the probability of link survival was
C set to zero, then remove the link from the network.

IF ((W.Eq.O).OR.(P.EO.O)) THEN
CONNECTS, D)=0
P0S(S,D)=0
W=0

P=0
ENDIF

PRINT 200, S, D, W, P

200 FORMAT (' ' , I2,2X,I2,2X,F5.2,2X,F5.3)
GO TO 190

210 PRINT *,' '

RETURN
END

SUBROUTINE DIJKSTRA(N0N, CONNECT, A, SPM.WGT)
C

C Written by: Russell D. Thomas
C Date: July 26, 1984
C

C This is the declaration block.
DIMENSION C0NNECT(100,100), SPM(100,100) , WGT(100,100)
DIMENSION ADJ(IOO), LABEL (100), WEIGHT(IOO)
INTEGER A, ADJ, I, J, K, LABEL, NON, S, SPM
REAL CONNECT, MIN, WEIGHT, WGT

C

C Purpose of the subroutine:
C

C This subroutine finds the shortest delay path (or highest
C reliable path, or shortest length path) between all sources and
C destinations, the subroutine also calculates the routing matrix
C for the network.
C

C Variables used in the subroutine:
C

C A the Measure of Effectiveness criterion
C 1 shortest delay path
C 2 highest reliable path
C 3 minimum number of links
C 4 minimum number of links
C I the adjacent node, sometimes the source node

51

J the destination node
K the intermediate source node
NON the number of nodes in the network
MIN the minimum weight along the shortest path
S the source node

AD0() the intermediate source nodes which form the path from
source to destination

LABELO the label for the node
temporary

1 permanent
WEIGHTO the total weight along the path from source to

destination

C0NNECT() the connection matrix for the network
SPM() the routing directory for routing messages through the

network
WGT() the total weight from source to destination

Initialization

C

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

C Choose the source node.

200 DO 360 S=1,N0N
C

C This loop initializes the arrays.
DO 220 1=1, NON

C

C Set the weight to all nodes equal to infinity.
WEIGHT(I)=1.0E38

C

C Set the adjacent nodes to zero (meaning none found yet).
MW(I)"0

C

C Make the weights to all nodes temporary (temporary=0, permanent=l).
LABEL(I)=0

220 CONTINUE
C

C Set the weight from the source node to itself equal to the weight at

C that node.

WEIGHT(S)=C0NNECT(S,S)
C

C Make the length from the source to the source permanent. (In other
C words, there is no shorter path from the source to the source.)

LABEL(S)=1
C

C Make the intermediate source node the source node.
K=S

C

52

C Label Updating
C

C This statement checks to see if all the paths have been made
C permanent. If they have, then go to the output block. If not,
C continue.

DO 280 J=l, NON-1
C

C This loop finds all the adjacent nodes which are connected to the
C intermediate source node, and stores their weight from the original
C source node to the new adjacent node.

DO 240 1=1, NON
C

C If there is a link present, then the node being examined is an

C adjacent node.
IF (CONNECT(K,I).NE.O) THEN

C

C If the label on the adjacent node is temporary, then continue.
IF (LABEL(I).NE.l) THEN

C

C If the weight from the original source node to the adjacent node
C being examined is greater than or equal to the weight the adjacent
C node already has, then this particular path being examined is not{!)
C the shortest path from the original source node to the adjacent node
C being examined.

IF (WEIGHT(K)+CONNECT(K, I)+C0NNECT(I, I) .LT.WEIGHT(I)

)

& THEN
C

C If at this point, the path being examined is(!) a shorter path to
C that particular adjacent node from the original source node. Put
C the intermediate source node on the adjacent node's adjacent list.

ADJ(I)=K
C

C Record the new weight in the weight array.

wEIGHT(I)=wEIGHT(K)+CONNECT(K,I)+CONNECT(I,I)
ENDIF

ENDIF
ENDIF

240 CONTINUE
C

c

C Making a Label Permanent
C

C Set the minimum weight to infinity.
MIN=1.0E38

C

C Set the intermediate source node to zero.
K=0

C

C This loop chooses the next intermediate source node by selecting the
C node with the smallest weight from the original source node.

DO 260 1=1, NON

5^

c

C If the node has already been made permanent, then choose another
C because it has already been an intermediate source node. Otherwise,
C continue.

IF (LABEL(I).EQ.O) THEN
C

C If the total weight from the original source node to the node being
C examined is less than the minimum weight, then continue.

IF (WEIGHT(I).LT.MIN) THEN
C

C If at this point, then there is a new minimum path weight and a new
C intermediate source node. Set the minimum weight equal to the newly
C found total weight.

MIN=WEIGHT(I)
C

C Make the node being examined the new intermediate source node.
K«I

ENDIF

ENDIF
260 CONTINUE

C

C If the intermediate source node remained zero, then the nodes left
C temporary cannot be reached from the original source node.

IF (K.EQ.O) GO TO 300
C

C Make the new intermediate source node permanent.
LABEL(K)=1

280 CONTINUE
C

C

C Path Block
C

C This loop calculates the routing directory for the network, and
C saves the total weight from the source to the destinations.
300 DO 340 1=1, NON

C

C Save the total weight from the source to destination.
WGT(S,I)=WEIGHT(I)

C

C If no path exists between the source and destination being examined,
C then enter a zero in the routing directory.

IF (ADJ(I).EQ.O) THEN
SPM(S,I)=0

C

C If the destination node is an adjacent node to the source, then

C enter the destination node in the routing directory.
ELSE IF (ADJ(I).EQ.S) THEN

SPM(S,I)=I
C

C If the destination node is not adjacent to the source, then retrace
C the path to determine the adjacent node to the source which lies

54

C along the path.

ELSE

X=I

320 Y=X
X=ADJ(X)
IF (X.NE.S) GO TO 320

SPM(S,I)=Y
ENDIF

340 CONTINUE
360 CONTINUE

C

C If the call to Oijkstra's Shortest Path First Algorithm was made

C from the reliability algorithm, then return.

IF (A.EQ.4) RETURN
C
Q**

c

C Output Block

C

C Print the total path weight and the routing directory.

DO 400 1=1, NON

DO 380 J=l,NON
IF (A.EQ.l) THEN

IF (WGT(I.J).LT.l.OElO) THEN
PRINT 365, I, J, SPM(I,J), I, J, WGT(I,J)

365 FORMAT (' SPM(
'
,12,

'

,
'
,12,

'
) = ' ,I2,10X, 'WGT(

'
, 12,

'

,

'
, 12,

& ') =',F5.2)
ELSE

PRINT 366, I, J, SPM(I,J), I, J

366 FORMAT (' SPM(
'

,12,
'

,

'
, 12,

'
) = ' ,I2,10X, 'WGT(

'

,12,
'

,

'
,12,

& ') infinity 1

)

ENDIF
ENDIF
IF (A.EQ.2) PRINT 370, I, J, SPM(I,J), I, J, EXP(-WGT(I, J)

)

370 FORMAT (' HRPM(
'
,12,

'

,

'
, 12,

'
) = ' , I2.10X, 'PROB(

'
, 12,

'

,

'
,12,

& ') = ',F5.3)

IF (A.EQ.3) THEN
IF (WGT(I.J).LT.l.OElO) THEN
PRINT 375, I, J, SPM(I,J), I, J, WGT(I.J)

375 FORMAT (' LENM(
'

, 12,
'

,

'
,12,

'

)= ' , I2.10X, 'LENGTH(
'
,12,

'

,

'

,

& 12,')= \F3.1)
ELSE

PRINT 376, I, J, SPM(I.J), I, J

376 FORMAT (' LENM(
'
,12,

'

,

'
, 12,

'

)= ' ,I2,10X, 'LENGTH(
'
,12,

'

,

'

,

& 12,')= infinity')
ENDIF

ENDIF
380 CONTINUE
400 CONTINUE

PRINT *,
'

'

RETURN
END

55

SUBROUTINE FORD_FULKERSON(NON, CONNECT, W, CUT)

Written by: Russell D.

Date: July 26, 1984
Thomas

This is the declaration block.

DIMENSION C0NNECT(100,100), CUT(IOO.IOO) , FL0W(100,100)
DIMENSION ADJ(IOO), DIR(IOO), TMPFLO(IOO), LABEL(IOO), SCAN(IOO)
INTEGER ADJ, D, DIR, I, J, LABEL, NON, S, SCAN, W, Z

REAL CONNECT, CUT, TMPFLO, FLOW

Purpose of the subroutine:

This subroutine finds the maximum throughput (or number of

link independent paths) between all sources and destinations.

Variables used in the subroutine:

D the destination node
I the intermediate source node, sometimes the source node
J the intermediate destination node, sometimes the destination

node

NON the number of nodes

S the source node
W the Measure of Effectiveness criterion

1 maximum throughput
2 link independent paths

Z the pointer node (intermediate destination node when
retracing the path from source to destination).

ADJ() the intermediate source nodes which form the path from
source to destination

DIR() the direction of flow
-1 flow leaving the intermediate destination node

neutral (no flow entering or leaving)
1 flow entering the intermediate destination node

LABEL () a label on the node
unlabeled

1 labeled
SCAN(

)

TMPFLOO

a label on the node
unscanned

1 scanned
the temporary flow being pushed along the path from
source to destination

C0NNECT() the connection matrix for the network
CUT() the maximum flow between source and destination
FL0W() the augmented flow in the network

5b

c

C Initialization
C

C This loop initializes the output array to zero.
160 DO 200 1=1, NON

DO 180 J=1,N0N
CUT(I,J)=0

180 CONTINUE
200 CONTINUE

C

C Choose the source node.

DO 440 S=1,N0N

C

C Choose the destination node.

DO 420 D=1,N0N

C

C If the source node and the destination node are one and the same,

C then choose a new destination node. Otherwise, continue.

IF (S.NE.D) THEN
C

C This loop initializes the flow along all links to zero.

DO 240 1=1, NON
DO 220 J=1,N0N

F10W(I,J)=0
220 CONTINUE
240 CONTINUE

C

C This loop initializes the arrays.

260 DO 280 1=1, NON

C

C Set the adjacent node to zero (meaning none found yet).

ADJ(I)=0
C

C Set the direction of flow to neutral (meaning no flow into or out of

C the node yet).
DIR(I)=0

C

C Make all nodes unlabelled and unscanned.
LA8EL(I)=0
SCAN(I)=0

C

C Set the temporary flow entering and leaving all nodes equal to

C infinity.
TMPFL0(I)=1.0E38

280 CONTINUE
C

C Make the source node labelled and unscanned.
LABEL(S)=1

C

c

C Label Updating

57

c

C This outer loop is necessary because the search for the minimum cut
C is very dependent on how the nodes are numbered.

DO 380 K-1.N0N
C

C This loop chooses an intermediate source node along a path from the
C source node to the destination node.

DO 360 1=1, NON
C

C If the node being examined is labelled and unscanned, then continue.
IF ((LABEL(I).EQ.l).AND.(SCAN(I).EQ.O)) THEN

C

C This loop chooses an intermediate destination node along a path from
C the source to the destination node.

DO 340 J=1,N0N
C

C If there is no link present, try another node.
IF (CONNECT(I.J).NE.O) THEN

C

C If the adjacent node being examined is unlabelled, then the link

C lies along a path from the source to destination.
IF (LABEL(J).EQ.O) THEN

C

C If there is flow from the intermediate destination node to the

C intermediate source node, then continue.
IF (FLOW(J.I).GT.O) THEN

C

C Put the intermediate source node on the intermediate destination
C node's adjacent list.

ADJ(J)=I
C

C Direct the flow out of the intermediate destination node.

DIR(J)=-1
C

C If the temporary flow from the intermediate destination node to the

C intermediate source node is less than flow already along that link,

C then push that amount of temporary flow along that link. Otherwise,
C leave the flow the same.

IF (TMPFLO(I).LT.FLOW(J.O) THEN
TMPFL0(J)=TMPF10(I)

ELSE
TMPFL0(J)=FL0W(J,I)

ENDIF
C

C Make the intermediate destination node labelled and unscanned.
LABEL(J)=1

C

C Make the intermediate source node labelled and scanned.
SCAN(I)=1

ENDIF
C

C If the capacity for flow through the intermediate destination node

58

C is less than the capacity for flow through the adjacent link from
C the intermediate source node to the intermediate destination node,
C then use the capacity for flow through the intermediate destination
C node in place of the capacity for flow through the link.

IF (CONNECT(J,J).LT.CONNECT(I,J)) THEN
C

C If the capacity of the intermediate destination node is greater than
C the flow along the adjacent link from the intermediate source node
C to the intermediate destination node, then continue.

IF (CONNECT(J,J).GT.FLOW(I,J)) THEN
C

C Put the intermediate source node on the intermediate destination
C node's adjacent list.

ADJ(J)=I
C

C Direct the flow into the intermediate destination node.
DIR(J)=1

C

C If the temporary flow from the intermediate source node to the
C intermediate destination node is less than the amount of unused
C capacity at the intermediate destination node, then push that amount
C of flow to the intermediate destination node. If the temporary flow
C is greater than the unused capacity at the intermediate destination
C node, then only push as much flow as the node can handle.

IF (TMPFLO(I).LT.CONNECT(J,J)-FLOW(I,J))
& THEN

TMPFLO(J)=TMPFLO(I)
ELSE

TMPFLO(J)=CONNECT(J,J)-FLOW(I,J)
ENDIF

C

C Make the intermediate destination node labelled and unscanned.
LABEL(J)=1

C

C Make the intermediate source node labelled and scanned.
SCAN(I)=1

ENDIF
GO TO 300

ENDIF
C

C If the flow from the intermediate source node to the intermediate
C destination node is less than or equal to the capacity of the link,
C then continue.

IF (C0NNECT(I,J).GT.FLOU(I,J)) THEN
C

C Put the intermediate source node on the intermediate destination
C node's adjacent list.

ADJ(J)«I
C

C Direct the flow into the intermediate destination node.
DIR(J)=1

5?

C If the temporary flow from the intermediate source node to the
C intermediate destination node is less than the amount of unused
C capacity of the link, then push that amount of flow to the
C intermediate destination node. If the temporary flow is greater
C than the unused capacity of the link, then only push as much flow as
C the link can handle.

IF (TMPFLO(I).LT.CONNECT(I,J)-FL0W(I,J)) THEN
TMPFL0(J)=TMPFL0(I)

ELSE

TMPFL0(J)=C0NNECT(I,J)-FL0W(I,J)
ENDIF

C

C Make the intermediate destination node labelled and unscanned.
LABEL(J)=1

C

C Make the intermediate source node labelled and scanned.

SCAN(IM
ENDIF

C

c

C Flow Augmentation
C

C If the destination node has been labeled, then augment the flow
C along the path found.
300 IF (LABEL(D).EQ.l) THEN

C

C Make the intermediate destination node the destination node.
Z=D

C

C If the flow is directed into the intermediate destination node, then
C increase the flow along the link between the previous intermediate
C source node and the intermediate destination node by the minimum
C flow along the path being examined.
320 IF (DIR(Z).EQ.l) FL0W(ADJ(Z) ,Z)=

& FLOW(ADJ(Z),Z)+TMPFLO(D)
C

C If the flow is directed out of the intermediate destination node,
C then decrease the flow along the link between the previous
C intermediate source node and the intermediate destination node by
C the minimum flow along the path being examined.

IF (DIR(Z).Eq.-l) FLOW(ADJ(Z),Z)=
& FLOW(ADJ(Z),Z)-TMPFLO(D)

C

C If the previous intermediate source node is the source node, then
C repeat the process with the improved flow calculated above. If the
C previous intermediate source node was not the source node, then make
C the previous intermediate source node the intermediate destination
C node and continue retracing the path to the source node.

IF (ADJ(Z).EQ.S) THEN
GO TO 260

ELSE

60

Z=ADJ(Z)

GO TO 320
ENDIF

ENDIF
ENDIF

ENDIF
340 CONTINUE

ENDIF
360 CONTINUE
380 CONTINUE

C

C Since the flow entering the destination node is the same as the flow
C across the minimum cut (if the destination node was not in the
C minimum cut), then sum the flow entering the destination node to
C determine the maximum throughput between source and destination.

DO 400 1=1, NON

CUT(S,D)=CUT(S,D)+FLOW(I,D)
400 CONTINUE

C

C It is possible that the destination node was part of the minimum cut
C (and this will happen if the node has a very low throughput). If

C this is so, then the minimum cut has no meaning, and the destination
C node is the minimum cut. It is also possible that the minimum cut

C is valid, but the source node is incapable of delivering that amount
C of flow. In this case, the source node is the minimum cut.

IF (W.EQ.l) THEN
IF (CUT(S.D).NE.O) THEN

IF (CONNECTS, S). IT. CONNECTED, D)) THEN
IF (CONNECTS, S).LT.CUT(S.D)) CUT(S,D)=

& CONNECT(S.S)
ELSE

IF (CONNECT(D,D).LT.CUT(S,D)) CUT(S,D)=
& CONNECT(D,D)

ENDIF
ENDIF

ENDIF

ENDIF
420 CONTINUE
440 CONTINUE

C

c**

c

C Output Block
C

C Print the maximum throughput.
DO 480 1=1, NON

DO 460 J=l,NON
IF (W.EQ.l) PRINT 445, I, J, CUT(I.J)

445 FORMAT (' CUT(
'

, 12,
'

,

'
, 12, ')= \F7.5)

IF (W.EQ.2) PRINT 450, I, J, CUT(I.J)
450 FORMAT (' IND(' ,12,

'

,
' ,12, ')= \F3.1)

61

460
480

CONTINUE
CONTINUE
PRINT *,' '

RETURN
END

SUBROUTINE RELIABILITY(NON, CONNECT, POS, TOTAL)

Written by: Russell D. Thomas
Date: July 28, 1984

This is the declaration block.
DIMENSION C0NNECT(100,100), POS(IOO.IOO), REL(100,100)
DIMENSION SAVE(100,100), SPM(IOO.IOO) , WGT(IOO.IOO)
DIMENSION DEST(IOO), SOURCE(IOO), PROB(IOO), UPDOWN(IOO)
INTEGER A, DEST, I, J, K, M, NOLAN, NON, SOURCE, SPM, TOTAL
INTEGER UPDOWN
REAL CON, CONNECT, POC, POS, REL, SAVE, PROB, SUM, T, MET

Purpose of the subroutine:

This subroutine calculates the probability that at least one
path exists between a source and destination using state
enumeration. The subroutine also calculates the probability that
the network is connected.

Variables used in the subroutine:

A the Measure of Effectiveness criterion for Dijkstra's
Shortest Path First Algorithm

1 shortest delay path
2 highest reliable path
3 minimum number of links
4 minimum number of links

CON

I

J

K

M

NOLAN
NON
TOTAL

the source node
the destination node

the number of up links and nodes
the number of links and nodes in the network
the number of nodes in the network
the number of connected nodes before degradation

DEST() the destination node
PR0B() the probability of the link or node survival
SOURCE () the source node
UPDOWNO the state of the link or node

down
1 up

C0NNECT() the connection matrix for the network

62

C POS() the probability connection matrix
C SPM() the routing directory for the network
C WGT() the total weight from source to destination
C

c

C Initialization
C

C Set the number of links and nodes in the network to zero.
N0LAN=0

C

C Set the node/link number to one.

K-l
C

C This loop numbers all the nodes and links.
DO 220 1=1, NON

DO 200 J=1,N0N
C

C If the link or node exists, then number it.

IF (CONNECT(I.J).NE.O) THEN
C

C Store, for quick reference, the probability of survival, the source
C node, and the destination node under its node/link number.

PR0B(K)=P0S(I,J)
S0URCE(K)=I
DEST(K)=J

C

C Increment the node/link number.
K=K+1

C

C Increment the number of links.

N0LAN=N0LAN+1
ENDIF

200 CONTINUE
220 CONTINUE

C

C This loop saves the connection matrix for future use and sets the
C reliability matrix to zero.

DO 260 1=1, NON
DO 240 J=1,N0N

SAVE(I,J)=C0NNECT(I,J)
REL(I,J)=0

240 CONTINUE
260 CONTINUE

C

C Initialize the states of all the nodes and links to down.

DO 320 1=1, NOLAN
UPD0WN(I)=0

320 CONTINUE
C

C Make the probability that the network is connected zero.
P0C=0

b?

c

C Set the number of up links and nodes to zero.

M=0

C

C State Block
C

C Point the node/link number to the first

340 K-l

C

C 0=D0WN, 1=UP (LINK)

360 IF (UPOOWN(K).EQ.O) THEN
M=M+1

C

C Restore the link or node.

UPD0WN(K)=1
C

C Restore the connection matrix.
DO 400 1=1, NON

DO 380 J=1,N0N
CONNECT(I,J)=SAVE(I,J)

380 CONTINUE
400 CONTINUE

C

C This loop removes all the down nodes and links from the network.

DO 440 1=1, NOLAN

C

C If the node or link being examined is down, then remove it from the

C network.

IF (UPDOWN(I).EQ.O) THEN
CONNECT(SOURCE(I),DEST(I))=0

C

C If the node being examined is down, then remove all of its adjacent

C links.

IF (SOURCE(I).EQ.DEST(I)) THEN

DO 420 J=1,N0N
CONNECT(SOURCE(I),J)=0
C0NNECT(J,0EST(I))=0

420 CONTINUE
ENDIF

ENDIF
440 CONTINUE

C

C Call Dijkstra's Shortest Path First Algorithm to determine the

C routing matrix for the network. The routing matrix is just a form

C of the reachability matrix.
CALL DIJKSTRA(NON, CONNECT, 4, SPM.WGT)

C

C Find the product of the probabilities of failures of the down

C elements and the probabilities of successes of the up elements.
T-l

64

DO 460 1=1, NOLAN
IF (UPDOWN(I).EQ.O) THEN
T=T*(1-PR0B(I))

ELSE

T=T*PROB(I)

END1F
460 CONTINUE

C

C If a path exists between the source and destination being examined,

C then add in the probability to the total path reliability.
DO 500 1=1, NON

DO 480 J=1,N0N
IF (SPM(I.J).NE.O) REL(I,J)=REL(I,J)+T

480 CONTINUE
500 CONTINUE

C

C Set the number of connected node pairs to zero.

SUM=0

C

C This loop totals the number of connected node pairs.

DO 540 1=1, NON
DO 520 J=1,N0N

IF (SPM(I.J).NE.O) SUM=S0W-1
520 CONTINUE
540 CONTINUE

C

C Calculate the connectivity of the network.
C0N=SUM/T0TAL

C

C If the network has as many connected node pairs as the original

C network, then add in the probability to the network reliability.
IF (C0N.EQ.1) P0C=P0C+T

C

C If all links and nodes are up, then go to the Output Block.
IF (M.EQ. NOLAN) GO TO 560
(50 TO 340

ELSE

C

C Decrement the number of up links.
M=M-1

C

C Set the link or node to a down state.
UPD0WN(K)=0

C

C Increment the node/link pointer.
K=K+1
GO TO 360

ENDIF

C

C

65

C Output Block

C

C Print the source to destination reliability.
560 00 600 1=1, NON

DO 580 J=1,N0N
PRINT 570, I, J, REL(I.J)

570 FORMAT (' REL(' ,12,
'

,

'
,12,

'
) ',F5.3)

580 CONTINUE
600 CONTINUE

PRINT *,' '

C

C Print the connected network reliability.
PRINT 620, POC

620 FORMAT (' The probability the network is connected is \F5.3)
PRINT *,' '

RETURN
END

SUBROUTINE CONNECTIVITY(NON, CONNECT, CON)

C

C Written by: Russell D. Thomas
C Date: July 28, 1984

C

C This is the declaration block.

DIMENSION C0NNECT(100,100), SPM(IOO.IOO), WGT(IOO.IOO)

INTEGER CON, NON, SPM

REAL CONNECT, WGT

C

C Purpose of the subroutine:

C

C This subroutine determines the before-degradation and

C after-degradation terms for the Connectivity MOE.

C

C Variables used in the subroutine:
C

C CON the number of connected node pairs

C NON the number of nodes in the network

C

C CONNECT () the connection matrix for the network

C SPM() the routing directory for routing messages
C WGT() the total weight from source to destination
C

C

C Call Dijkstra's Shortest Path First Algorithm to determine the

C routing matrix for the network. The routing matrix is just a form

C of the reachability matrix.
CALL DIJKSTRA(NON, CONNECT, 4, SPM, WGT)

C

C Set the number of connected node pairs to zero.
C0N=0

66

C This loop totals the number of connected node pairs.
00 20 1=1, NON

DO 10 J=1,N0N
IF (SPM(I.J).NE.O) C0N=CON+l

10 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE RELIABLE_THROUGHPUT(NON,P0S,RT)

C

C Written by: Russell D. Thomas
C Date: July 28, 1984

C

C This is the declaration block.

DIMENSION P0S(100,100)
INTEGER NON

REAL POS, RT

C

C Purpose of the subroutine:

C

C This subroutine calculates the before-degradation and

C after -degradation terms for the Relative Throughput MOE.

C

C Variables uesd in the subroutine:
C

C NON the number of nodes in the network

C RT the sum of the link and node probabilities
C

C P0S() the probability of survival matrix
C

c

C Set the sum of the link and node probabilities to zero.

RT=0
C

C This loop sums the link and node probabilities.
DO 20 1=1, NON

DO 10 J=1,N0N
RT=RT+POS(I,J)

10 CONTINUE
20 CONTINUE

RETURN
END

SUBROUTINE NETWORK_RELIABIUTY(NON, CONNECT, POS, PDCT)
C

C Written by: Russell D. Thomas
C Date: August 1, 1984

C

67

C This is the declaration block.
DIMENSION C0NNECT(100,100), P0S(100,100)
INTEGER CON, NON
REAL CONNECT, PDCT, POS, RT

C

C Purpose of the subroutine:
C

C This subroutine calculates the before-degradation and

C after-degradation terms for the Network Reliability MOE.

C

C Variables used in the subroutine:
C

C CON the number of connected node pairs
C NON the number of nodes in the network

C PDCT the product of the number of connected node pairs and the

C sum of the link and node probabilities
C RT the sum of the link and node probabilities
C

C C0NNECT() the connection matrix for the network
C P0S() the probability connection matrix
C

CALL CONNECTIVITY; NON, CONNECT, CON)

CALL RELIABLE THR0U8HPUT(N0N,P05,RT)
PDCT=CON*RT
RETURN
END

68

Appendix B: A 3ASIC GRAFTHY

b9

1000 'PROGRAM GRAFTHY
1005 '

1010 'Written by: Russell D. Thomas
1015 'Date: August 29, 1984
1020 '

1025 ***

1030 '

1035 'CHOOSE THE MOE'S
1040 '

1045 'Purpose of the routine:
1050 '

1055 ' This routine determines which MOE's are required by the user.
1060 '

1065 'Variables used in the routine:
1070 '

1075 ' CON% the answer to the Connectivity MOE question
1080 .' HRP% the answer to the Highest Reliable Path question
1085 ' MCMF% the answer to the Maximum Flow MOE question
1090 ' NOLIP% the answer to the Number of Link Independent Paths MOE
1095 ' question
1100 ' NR% the answer to the Network Reliability MOE question
1105 ' RCH% the answer to the Reachibility MOE question
1110 ' RT% the answer to the Reliable Throughput MOE question
1115 ' SDP% the answer to the Shortest Delay Path MOE question
1120 ' SDRL% the answer to the Reliability MOE question
1125 '

1130 'For the above MOE's: no
1135 '

1 yes
1140 '

1145 '**

1150 '

1155 as
1160 PRINT " The following is a list of Measures of Effectiveness (MOE's) wh
ich this"
1165 PRINT "algorithm will calculate, and all the MOE's will be calculated unles

s the"
1170 PRINT "algorithm is told otherwise. To prevent a MOE from being calculated

, just"

1175 PRINT "type in a negative response when prompted. The default answer is ye
s (the MOE"
1180 PRINT "is needed)."
1185 '

1190 "The framework is the same for the following blocks of code. The user is
1195 'asked if a particular is needed (the answer originally assumed yes) . The
1200 'input is read and determined if negative. If the input was negative, then
1205 'the answer is no. If the input was non-negative, then the answer is yes.
1210 '

1215 SDP%=1
1220 PRINT
1225 INPUT "Is the Shortest Delay Path MOE needed"; CHAR

$

1230 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN SDP%=0
1235 PRINT "SDP=",-SDP%

1240 LPRINT "SDP=";SDP%
1245
1250 HRP%=1

70

1255 PRINT

1260 INPUT "Is the Highest Reliable Path MOE needed" ;CHAR$
1265 IF (CHAR$="no n

) OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN HRP%=0
1270 PRINT "HRP=";HRP%
1275 LPRINT "HRP=";HRP%
1280 '

1285 RCH%=1
1290 PRINT
1295 INPUT "Is the Reachability MOE needed" ; CHAR$
1300 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN RCH%=0

1305 PRINT "RCH=";RCH%

1310 LPRINT "RCH=";RCH%
1315 '

1320 MCMF%=1
1325 PRINT
1330 INPUT "Is the Maximum Flow MOE needed",-CHAR$
1335 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN MCMF%=0

1340 PRINT "MCMF=";MCMF%
1345 LPRINT "MCMF=";MCMF%
1350 '

1355 NOLIP%=l
1360 PRINT
1365 INPUT "Is the Number of Link Independent Paths MOE needed" ; CHAR$
1370 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN NOLIP%=0
1375 PRINT "NOLIP=";NOLIP%
1380 LPRINT "NOLIP=";NOLIP%
1385 '

1390 SDRL%=1
1395 PRINT
1400 INPUT "Is the Source to Destination Reliability MOE needed",-CHAR$
1405 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN SDRL%=0
1410 PRINT "SDRL=";SDRL%
1415 LPRINT "SDRL=";SDRL%
1420 '

1425 CON%=l
1430 PRINT
1435 INPUT "Is the Connectivity MOE needed",-CHAR$
1440 IF (CHAR$="no") OR (CHAR$="NO") OR (CHfiR$="n") OR (CHAR$="N") THEN CCN%=0

1445 PRINT "CON=";CON%
1450 LPRINT "CON=";CON%
1455 '

1460 RT%=1
1465 PRINT
1470 INPUT "Is the Reliable Throughput needed",-CHflR$
1475 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHARS="N") THEN RT%=0
1480 PRINT "RT=";RT%
1485 LPRINT "RT=";RT%
1490 '

1495 NR%=1
1500 PRINT
1505 INPUT "Is the Network Reliability MOE needed"; CHARS
1510 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHARS="N") THEN NR%=0
1515 PRINT "NR=";NR%
1520 LPRINT "NR=";NR%
1525 '

71

1530 '**

1535 '

1540 'DESCRIBE THE NETWORK
1545 '

1550 'Purpose of the routine:
1555 '

1560 ' This routine reads in the network.
1565 '

1570 'Variables used in the routine:
1575 '

1580 ' D% the destination node
1585 ' NON% the number of nodes in the network
1590 ' P the probability of link or node survival
1595 ' S% the source node, sometimes both the source and destination node
1600 ' w the link or node weight
1605 '

1610 ' CONNECT () the connection matrix for the network
1615 ' PROBO the probability connection matrix
1620 '

1625 '**

1630 '

1635 PRINT
1640 LPRINT
1645 INPUT "How many nodes in the network";NON%
1650 PRINT "The number of nodes in the network is";NON%
1655 LPRINT "NON=";NON%
1660 '

1665 'Declare the arrays.
1670 OPTION BASE 1

1675 DIM ADJ%(NCN%) ,DIR%(NON%) ,LABEL%(NON%) ,SCAN%(NON%) ,TMPFLO(NON%) ,WEIGHT(NON%
)

1680 DIM CONNECT(NCN%,N0N%),CuT(NON%,NDN%) ,FLCW(NCN%,NON%) ,H0LD(NON%,N0N%) ,PROB(
NON%,N3N%) ,SPM%(NON%,N3N%) ,WGT(NON%,NON%)
1685 '

1690 PRINT
1695 LPRINT
1700 LPRINT "Node Input:"
1705 PRINT " This is the input block for all nodes. Input the node, its nod
e weight,"
1710 PRINT "and its probability of survival. Input 0,0,0 when finished."
1715 INPUT "",S%,W,P
1720 IF (S%=0) GOTO 1755
1725 CONNECT(S%,S%)=W
1730 PROB(S%,S%)=P
1735 PRINT USING "## ##.## #.###",-S%,W,P
1740 LPRINT USING "## ##.## #.###";S%,W,P
1745 GOTO 1715
1750 '

1755 PRINT
1760 LPRINT
1765 LPRINT "Bidirectional Link Input:"
1770 PRINT " This is the input block for all bidirectional links. Input the
two nodes ,

"

1775 PRINT "the link weight, and the link probability of survival. Input 0,0,0,
when"

72

1780 PRINT "finished."

1785 INPUT "",S%,D%,W,P
1790 IF (S%=0) GOTO 1835
1795 CONNECr(S%,D%)=tt
1800 CONNECT (D%,S%)=W
1805 PROB(S%,D%)=P
1810 PROB(D%,S%)=P
1815 PRINT USING "## ## ##.## #.###";S%,D%,W,P

1820 LPRINT USING "## ## ##.## #. ###";S%,D%,W,P
1825 GOTO 1785
1830 '

1835 PRINT
1840 LPRINT
1845 LPRINT "Directed Link Input:"

1850 PRINT " This is the input block for all directed links. Input the sour

ce node,

"

1855 PRINT "the destination node, the link weight, and the link probability of s

urvival .

"

1860 PRINT "Input 0,0,0,0 when finished."
1865 INPUT "",S%,D%,W,P
1870 IF (S%=0) GOTO 1930
1875 CONNECT(S%,D%)=W
1880 PROB(S%,D%)=P
1885 PRINT USING "## ## ##.## #.###";S%,D%,W,P
1890 LPRINT USING "## ## ##.## #.###";S%,D%,W,P
1895 GOTO 1865
1900 '

1905 '**

1910 '

1915 'BEFORE-DEGRADATION OUTPUT
1920 '

1925 'Calculate and output the Shortest Delay Path MOE if the M3E was requested.

1930 A%=1
1935 IF (SDP%=1) THEN GOSUB 3955
1940 '

1945 "This loop saves the connection matrix for future use.

1950 FOR I%=1 TO NON%
1955 FOR J%=1 TO NON%
1960 HOLD(I%,J%)=CONNECT(I%,J%)
1965 NEXT J%
1970 NEXT 1%

1975 '

1980 'Calculate and output the Highest Reliable Path MDE if the M3E was
1985 'requested.

1990 A%=2
1995 IF (HRP%=0) GOTO 2085
2000 '

2005 "This loop takes the negative logarithm of the probability matrix.
2010 FOR I%=1 TO NON%
2015 FOR J%=1 TO NCN%
2020 '

2025 'If the link or node exists, then take the negative logarithm of its

2030 'probability of survival. Otherwise, leave the probability zero.

2035 CONNECT(I%,J%)=0
2040 IF (PROB(I%,J%)<>0) THEN CCNNECT(I%,J%) =-LCG(PROB(I%,J%)

)

73

2045 NEXT J%
2050 NEXT 1%

2055 '

2060 'Call Dijkstra's Shortest Path Algorithm and pass the negative logarithm
2065 'probability matrix in place of the connection matrix.

2070 GOSUB 3955
2075 '

2080 'Calculate and output the Reachability MOE if the MOE was requested.

2085 A%=3
2090 IF (RCH%=0) GOTO 2210
2095 '

2100 "This loop sets all link weights to one and all node weights to zero.
2105 FOR I%=1 TO N0N%
2110 FOR J%=1 TO NCN%
2115 '

2120 'Set all weights to zero.

2125 CONNECT(I%,J%)=0
2130 '

2135 'If a link exists between the two nodes being examined, then set its weight
2140 'to one.

2145 IF (HOLD(I%,J%)<>0) THEN CONNECT(I%, J%) =1

2150 '

2155 'Set all node weights to zero.

2160 IF (I%=J%) THEN CONNECT (I %, J%) =0
2165 NEXT J%
2170 NEXT 1%

2175 '

2180 'Call Dijkstra's Shortest Path First Algorithm and pass the binary
2185 'connection matrix (whose node weights are zero and link weights are one)

2190 'in place of the original connection matrix.
2195 GOSUB 3955
2200 '

2205 'Calculate and output the Maximum Throughput MOE if the MOE was requested.
2210 W%=1
2215 IF (MCMF%=0) GOTO 2310
2220 '

2225 "This loop inverts all link and node weights.
2230 FOR I%=1 TO N0N%
2235 FOR J%=1 TO N0N%
2240 '

2245 'If the link or node exists, then invert its weight. Otherwise, leave the
2250 'weight zero.
2255 CONNECT (I%,J%)=0
2260 IF (HOLD(I%,J%)<>0) THEN CONNECT (I%,J%)=l/HOLD(I %,J%)

2265 NEXT J%
2270 NEXT 1%

2275 '

2280 'Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the inverted
2285 'connection matrix in place of the original connection matrix.
2290 GOSUB 5080

2295 '

2300 'Calculate and output the Number of Link Independent Paths MOE if the MOE
2305 'was requested.
2310 W%=2
2315 IF (NQLIP%=0) GOTO 2370

74

2320 '

2325 'Set all link and node weights to one.
2330 GOSUB 7415
2335 '

2340 'Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the binary
2345 'connection matrix (whose node and link weights are one) in place of the
2350 'original connection matrix.
2355 GOSUB 5080
2360 '

2365 'Calculate and output the Reliability MOE if the MOE was requested.
2370 A%=4
2375 IF (SDRL%=0) GOTO 2460
2380 '

2385 'Set all- link and node weights to one.
2390 GOSUB 7415
2395 '

2400 'Call the connectivity algorithm to determine the number of connected node
2405 'pairs.

2410 GOSUB 7575
2415 TOTAL%=CNP%
2420 '

2425 'Call the reliability algorithm and pass the binary connection matrix
2430 ' (whose node and link weights are one) in place of the original connection
2435 'matrix.
2440 GQSUB 6505
2445 '

2450 'Calculate the before-degradation term for the Connectivity MOE if the MOE
2455 'was requested.
2460 IF (CON%=0) GOTO 2515
2465 '

2470 'Set all link and node weights to one.
2475 GOSUB 7415
2480 '

2485 'Call connectivity.
2490 GOSUB 7575
2495 COND%=CNP%
2500 '

2505 'Calculate the before-degradation term for the Relative Throughput MOE if
2510 'the MOE was requested.
2515 IF (RT%=0) GOTO 2545
2520 GOSUB 7730
2525 RTD=RTR
2530 '

2535 'Calculate the before-degradation term for the Network Reliability MOE if
2540 'the MOE was requested.
2545 IF (NR%=0) GOTO 2695
2550 '

2555 'Set all link and node weights to one.
2560 GOSUB 7415
2565 GOSUB 7875
2570 NRD=EDCT
2575 '

2580 '**

2585 '

2590 'EVENT BLOCK

75

2595 '

2600 'Purpose of the routine:

2605 '

2610 ' This routine reads in changes to the network.
2615 '

2620 'Variables used in the routine:

2625 '

2630 ' CHAR$ the user input
2635 ' D% the destination node
2640 ' N0N% the number of nodes in the network
2645 ' P the probability of link or node survival
2650 ' S% the source node, sometimes the source and destination node
2655 ' W the link or node weight
2660 '

2665 ' CONNECT () the connection matrix for the network
2670 ' PROBO the probability connection matrix
2675 '

2680 '**

2685 '

2690 'Determine whether the user wishes to continue.

2695 INPUT "Should the program continue (default yes)";CHAR$
2700 IF (CHAR$="no") OR (CHAR$="NO") OR (CHAR$="n") OR (CHAR$="N") THEN END
2705 '

2710 'Input the changes to the network.
2715 PRINT
2720 LPRINT
2725 PRINT " This is the event block for the program. At this point, the we
ights and"
2730 PRINT "probabilities of the nodes and links can be changed, or nodes and li

nks may be"
2735 PRINT "removed from the network entirely. Input the degradated nodes and 1

inks only.

"

2740 PRINT "All other nodes and links will remain the same."
2745 PRINT
2750 LPRINT "Node Changes:"

2755 PRINT " This is the event block for the nodes. Input the node, the new
node"
2760 PRTNT "weight, and the new probability of node survival. Input 0,0,0 when

finished.

"

2765 INPUT "",S%,W,P
2770 IF (S%=0) GOTO 2865

2775 CONNECT (S%,S%)=W
2780 PROB(S%,S%)=P
2785 '

2790 'If either the node weight or the probability of node survival was set to

2795 'zero, then remove the node and its surrounding links from the network.
2800 IF (WOO) AND (POO) GOTO 2845

2805 FOR I%=1 TO NCN%
2810 CONNECT (I%,S%)=0
2815 CONNECT (S%,I%)=0
2820 PROB(I%,S%)=0
2825 PROB(S%,I%)=0
2830 NEXT 1%

2835 W=0
2840 P=0

7b

2845 HUNT USING "## ##.## #.###";S%,W,P
2850 LPRINT USING "## ##.## #.###" ;S%,W,P
2855 GOTO 2765
2860 '

2865 PRINT
2870 LPRINT
2875 LPRINT "Bidirectional Link Changes:"
2880 PRINT " This is the event block for all bidirectional links. Input the

two nodes,"
2885 PRINT "the new link weight, and the new probability of link survival. Inpu

t 0,0,0,0"
2890 PRINT "when finished."
2895 INPUT n ",S%,D%,W,P
2900 IF (S%=0) GOTO 2995

2905 CONNECT(S%,D%)=W
2910 CONNECT (D%,S%)=W
2915 PROB(S%,D%)=P
2920 PROB(D%,S%)=P
2925 '

2930 'If either the link weight or the probability of link survival was set to

2935 'zero, then remove the link from the network.
2940 IF (WOO) AND (POO) GOTO 2975
2945 CONNECT (S%,D%)=0

2950 CONNECT (D%,S%)=0
2955 PROB(S%,D%)=0
2960 PROB(D%,S%)=0
2965 W=0
2970 P=0
2975 PRINT USING "## ####.## #.###";S%,D%,W,P
2980 LPRINT USING "## ## ##.## #. ###";S%,D%,W,P
2985 GOTO 2895
2990 '

2995 PRINT
3000 LPRINT
3005 LPRINT "Directed Link Changes:"
3010 PRINT " This is the event block for all directed links. Input the sour
ce node,"
3015 PRINT "the destination node, the new link weight, and the new probability o

f link"
3020 PRINT "survival. Input 0,0,0,0 when finished."
3025 INPUT "",S%,D%,W,P
3030 IF (S%=0) GOTO 3130
3035 CONNECT (S%,D%)=W
3040 PROB(S%,D%)=P
3045 '

3050 'If either the link weight or the probability of link survival was set to
3055 'zero, then remove the link from the network.
3060 IF (WOO) AND (POO) GOTO 3085
3065 CCNNECT(S%,D%)=0
3070 PROB(S%,D%)=0
3075 W=0
3080 P=0
3085 PRINT USING "## ## ##.## #.###";S%,D%,W,P
3090 LPRINT USING "## ## ##.## #. ###";S%,D%,W,P
3095 GOTO 3025

77

3100 '

3105 '**

3110 '

3115 'AFTER-DEGRADATION OUTPUT
3120 '

3125 'Calculate and output the Shortest Delay Path MOE if the MOE was requested.
3130 A%=1
3135 IF (SDP%=1) THEN GOSUB 3955
3140 '

3145 'This loop saves the connection matrix for future use.
3150 FOR I%=1 TO NON%
3155 FOR J%=1 TO NON%
3160 HOLD(I%,J%)=CONNECT(I%,J%)
3165 NEXT J%
3170 NEXT 1%

3175 '

3180 'Calculate and output the Highest Reliable Path MDE if the MOE was
3185 'requested.
3190 A%=2
3195 IF (HRP%=0) GOTO 3285

3200 '

3205 "This loop takes the negative logarithm of the probability matrix.
3210 FOR I%=1 TO NCN%
3215 FOR J%=1 TO NCN%
3220 '

3225 'If the link or node exists, then take the negative logarithm of its

3230 'probability of survival. Otherwise, leave the probability zero.
3235 CONNECT (I%,J%)=0
3240 IF (PROB(I%,J%)00) THEN CONNECT(I%,J%)^LOG(PROB(I%,J%)

)

3245 NEXT J%
3250 NEXT 1%

3255 '

3260 'Call Dijkstra's Shortest Path Algorithm and pass the negative logarithm
3265 'probability matrix in place of the connection matrix.
3270 GOSUB 3955
3275 '

3280 'Calculate and output the Reachability MOE if the MOE was requested.
3285 A%=3
3290 IF (RCH%=0) GOTO 3355
3295 '

3300 'This loop sets all link weights to one and all node weights to zero.
3305 FOR I%=1 TO NON%
3310 FOR J%=1 TO NON%
3315 CCNNECT(I%,J%)=0
3320 IF (HOLD(I%,J%)<>0) THEN CONNECT(I%,J%) =1

3325 IF (I%=J%) THEN CONNECT (I%,J%)=0
3330 NEXT J%
3335 NEXT 1%
3340 GOSUB 3955
3345 '

3350 'Calculate and output the Maximum Throughput MOE if the MOE was requested.
3355 W%=1
3360 IF (MCMF%=0) GOTO 3440
3365 '

3370 'This loop inverts all link and node weights.

7a

3375 FOR I%=1 TO NON%
3380 FOR J%=1 TO NCN%
3385 CONNECT (I%,J%)=0
3390 IF (BOLD(I%,J%)<>0) THEN CCNNECT(I%, J%) =l/HOLD(I%, J%)
3395 NEXT J%
3400 NEXT 1%

3405 '

3410 'Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the inverted
3415 'connection matrix in place of the original connection matrix.
3420 GOSUB 5080
3425 '

3430 'Calculate and output the Number of Link Independent Paths MOE if the MOE
3435 'was requested.
3440 W%=2
3445 IF (NOLIP%=0) GOTO 3500
3450 '

3455 'Set all link and node weights to one.

3460 GOSUB 7415
3465 '

3470 'Call Ford and Fulkerson's Min-Cut Max-Flow Algorithm and pass the binary
3475 'connection matrix (whose node and link weights are one) in place of the
3480 'original connection matrix.
3485 GOSUB 5080

3490 '

3495 'Calculate and output the Reliability MOE if the MOE was requested.
3500 A%=4

3505 IF (SDRL%=0) GOTO 3565
3510 '

3515 'Set all link and node weights to one.
3520 GOSUB 7415
3525 '

3530 'Call the reliability algorithm and pass the binary connection matrix
3535 ' (whose node and link weights are one) in place of the original connection
3540 'matrix.
3545 GOSUB 6570
3550 '

3555 'Calculate the after-degradation term for the Connectivity MOE if the MOE
3560 'was requested.
3565 IF (CON%=0) GOTO 3645
3570 '

3575 'Set all link and node weights to one.
3580 GOSUB 7415
3585 '

3590 'Call connectivity.
3595 GOSUB 7575
3600 C0NN%=CNP%
3605 PRINT
3610 LPRINT
3615 CONTN=CONN%/COND%
3620 PRINT "The connectivity of the network is";CONTN
3625 LPRINT "The connectivity of the network is";CONTN
3630 '

3635 'Calculate the after-degradation term for the Relative Throughput MOE if
3640 'the MDE was requested.
3645 IF (RT%=0) GOTO 3690

79

3650

3655
3660
3665
3670

3675
3680

3685

3690
3695
3700
3705
3710
3715
3720
3725
3730

3735
3740

3745
3750
3755
3760
3765
3770

3775
3780

3785
3790

3795
3800
3805
3810
3815
3820

3825
3830
3835

3840
3845
3850

3855
3860
3865

3870
3875
3880

3885
3890

3895
3900
3905
3910
3915
3920

GOSUB 7730
PRINT
LPRINT
PRINT "The reliable throughput of the network is";RTR/RTD
LERINT "The reliable throughput of the network is";RTR/RTD

'Calculate the after-degradation term for the Network Reliability MDE if

'the MDE was requested.

IF (NR%=0) GOTO 3740
i

'Set all link and node weights to one.

GOSUB 7415
GCSUB 7875
PRINT
LERINT
ERINT "The network reliability of the network is";PDCT/NRD
LPRINT "The network reliability of the network is";EDCT/NRD

GOTO 2695
I •

I**
I

'DIJKSTRA'S SHORTEST PATH FIRST ALGORITHM
i

'Purpose of the subroutine:
i

1 This subroutine finds the shortest delay path (or highest reliable
'path, or shortest length path) between all sources and destinations. The
'subroutine also calculates the routing matrix for the network.

'Variables used in the subroutine:

A%

1%

J%
K%
N3N%
MIN
S%

the Measure of Effectiveness criterion
1 the shortest delay path
2 the highest reliable path
3 minimum number of links
4 minimum number of links

the adjacent node, sometimes the source node
the destination node
the intermediate source node
the number of nodes in the network
the minimum weight along the shortest path
the source node

AEQ%() the intermediate source nodes which form the path from
source to destination

LABEL%() the label for the node
temporary

1 permanent
WEIGHTO the total weight along the path from source to destination

CONNECT () the connection matrix for the network
SPM%() the routing directory for routing messages through the

network
WGTQ the total weight from source to destination

60

3925 '

3930 '**

3935
3940 'Initialization
3945 '

3950 'Choose the source node.
3955 FOR S%=1 TO NCN%
3960 '

3965 'This loop initializes the arrays.
3970 FOR I%=1 TO NCN%
3975 '

3980 'Set the weight to all nodes equal to infinity.
3985 WEIGHT(I%)=9.999999E+37
3990 '

3995 'Set the adjacent nodes to zero (meaning none found yet).
4000 ADJ%(I%)=0
4005 '

4010 'Make the weights to all nodes temporary (temporary=0, permanent=l)

.

4015 LABEL%(I%)=0
4020 NEXT 1%

4025 '

4030 'Set the weight from the source node to itself equal to the weight at that
4035 'node.

4040 WEIGHT(S%)=CONNECT(S%,S%)
4045 '

4050 'Make the length from the source to the source permanent. (In other words,
4055 'there is no shorter path from the source to the source.)
4060 LABEL%(S%)=1
4065 '

4070 'Make the intermediate source node the source node.
4075 K%=S%
4080 '

4085 ***

4090 '

4095 'Label Updating
4100 '

4105 'This statement checks to see if all the paths have been made permanent.
4110 'If they have, then go to the output block. If not, continue.
4115 FOR J%=1 TO NCN%
4120 '

4125 'This loop finds all the adjacent nodes which are connected to the
4130 'intermediate source node, and stores their weight from the original source
4135 'node to the new adjacent node.
4140 FOR I%=1 TO NCN%
4145 '

4150 'If there is a link present, then the node being examined is an adjacent
4155 'node.

4160 IF (CONNECT (K%,I%)=0) GOTO 4250
4165 '

4170 'If the label on the adjacent node is temporary, then continue.
4175 IF (LABEL%(I%)=1) GOTO 4250
4180 '

4185 'If the weight from the original source node to the adjacent node being
4190 'examined is greater than or equal to the weight the adjacent node already
4195 'has, then this particular path being examined is not(!) the shortest path

81

4200 'from the original source node to the adjacent node being examined.
4205 IF (WEIGHT (K%) +CONNECT(K%,I%) +O0NNECT(I%,I%) >=WEIGHT(I%)) GOTO 42

50

4210 'If at this point in the program, then the path being examined is(!) a
4215 'shorter path to that particular adjacent node from the original source
4220 'node. Put the intermediate source node on the adjacent node's adjacent
4225 'list.

4230 ADJ%(I%)=K%
4235 '

4240 'Record the new weight in the weight array.
4245 WEIGHT(I%)=WEIGHT(K%)+GCNNECT(K%,I%)+CONNECT(I%,I%)
4250 NEXT 1%

4255 '

4260 ***

4265 '

4270 'Making a Label Permanent
4275 '

4280 'Set the minimum weight to infinity.
4285 MIN=9.999999E+37
4290 '

4295 'Set the intermediate source node to zero.
4300 K%=0
4305 '

4310 'This loop chooses the next intermediate source node by selecting the node
4315 'with the smallest weight from the original source node.
4320 FOR I%=1 TO NCN%
4325 '

4330 'If the node has already been made permanent, then choose another because
4335 'it has already been an intermediate source node. Otherwise, continue.
4340 IF (LABEL%(I%)<>0) GOTO 4405
4345 '

4350 'If the total weight from the original source node to the node being
4355 'examined is less than the minimum weight, then continue.
4360 IF (WEIGHT (1%) >=MTN) GOTO 4405
4365 '

4370 'If at this point in the program, then there is a new minimum path weight
4375 'and a new intermediate source node. Set the minimum weight equal to the
4380 'newly found total weight.
4385 MTN=WEIGHT(I%)
4390 '

4395 'Make the node being examined the new intermediate source node.

4400 K%=I%
4405 NEXT 1%

4410 'If the intermediate source node remained zero, then the nodes left
4415 'temporary cannot be reached from the original source node.
4420 IF (K%=0) GOTO 4480
4425 '

4430 'Make the new intermediate source node permanent.
4435 LABEL%(K%)=1
4440 NEXT J%
4445 '

4450 '**

4455 '

4460 'Path Block
4465 '

82

4470 "This loop calculates the routing directory for the network, and saves the

4475 'total weight from the source to the destination.

4480 FOR I%=1 TO NCN%
4485 '

4490 'Save the total weight from the source to destination.

4495 WGT(S%,I%)=WEIGHT(I%)
4500 '

4505 'If no path exists between the source and destination being examined, then

4510 'enter a zero in the routing directory.
4515 IF (ACa%(I%)<>0) GOTO 4545
4520 SFM%(S%,I%)=0
4525 GOTO 4605
4530 '

4535 'If the destination node is an adjacent node to the source, then enter the

4540 'destination node in the routing directory.

4545 IF (ADJ%(I%)OS%) GOTO 4580

4550 SPM%(S%,I%)=I%

4555 GOTO 4605
4560 '

4565 'If the destination node is not adjacent to the source, then retrace the

4570 'path to determine the adjacent node to the source which lies along the

4575 'path.

4580 X%=I%
4585 Y%=X%
4590 X%=ADJ% (X%)

4595 IF (X%OS%) GOTO 4585

4600 SPM%(S%,I%)=Y%
4605 NEXT 1%

4610 NEXT S%

4615 '

4620 'If the call to Dijkstra's Shortest Path First Algotithm was made from the

4625 'reliability algorithm, then return.

4630 IF (A%=4) THEN RETURN
4635 '

4640 '**

4645 '

4650 'Output Block
4655 '

4660 'Print the total path weight and the routing directory.
4665 PRINT
4670 LPRINT
4675 C$=","
4680 D$=")="
4685 FOR I%=1 TO N0N%
4690 FOR J%=1 TO N0N%
4695 IF (A%<>1) GOTO 4750
4700 B$= nSPM("

4705 E$=" WGT("
4710 IF (W3T(I%,J%)>100000!) GOTO 4730
4715 PRINT USING "\ \##!##\ \##\ \##!##\ \##. ##";B$,I%,C$,J%,D$,S
PM%(I%,J%),E?,I%,C$,J%,D$,WGT(I%,J%)
4720 LPRINT USING "\ \##!##\ \##\ \##!##\ \##. ##" ;B$,I%,C$,J%,D$,
SPM%(I%,J%) ,E$,I%,C$,J%,D$,WGT(I%,J%)

4725 GOTO 4825
4730 F$=")= infinity"

83

4735 PRINT USING "\ \##!##\ \##\ \##!##\ \";B$,I%,C$,J%,D$,
SPM%(I%,J%) ,E$,I%,C$,J%,F$
4740 LPRINT USING "\ \##!##\ \##\ \##!##\ \";B$,I%,C$, J%,D$
,SPM%(I%,J%) ,E$,I%,C$,J%,FS
4745 GOTO 4825
4750 IF (A%<>2) GOTO 4780
4755 B$="HRPM{ n

4760 E$=" PROB("
4765 PRINT USING "\ \##!##\ \##\ \##!##\ \#.###";B$,I%,C$,J%,D$,SP
M%(I%,J%),E$,I%,C$,J%,D$,EXP(-WGT(I%,J%))
4770 LPRINT USING "\ \##!##\ \##\ \##!##\ \#. ###";B$,I%,C$, J%,D$,S

PM%(I%,J%),E$,I%,C$,J%,D$,EXP(-W3T(I%,J%))
4775 GOTO 4825
4780 B$="LENM("
4785 E$=" LENGTH ("

4790 IF (WGT(I%,J%)>100000!) GOTO 4810
4795 PRINT USING "\ \##!##\ \##\ \##!##\ \##";B$,I%,C$,J%,D$,SPM
%(I%,J%) ,E$,I%,C$,J%,D$,W?T(I%,J%)
4800 LPRINT USING "\ \##!##\ \##\ \##!##\ \##";B$,I%,C$,J%,D$,SP
M%(I%,J%),E$,I%,C$,J%,D$,WGT(I%,J%)
4805 GOTO 4825
4810 F$=")= infinity"
4815 PRINT USING "\ \##!##\ \##\ \##!##\ \";B$,I%,C$,J%,D$
,SPM%(I%,J%) ,E$,I%,C$,J%,F$
4820 LPRINT USING "\ \##!##\ \##\ \##!##\ \";B$,I%,C$, J%,D
$,SPM%(I%,J%) ,E$,I%,C$,J%,F$
4825 NEXT J%
4830 NEXT 1%

4835 RETURN
4840 '

4845 '**

4850 '

4855 'FORD AND FULKERSCN'S MIN-CUT MAX-FLCW ALGORITHM
4860 '

4865 'Purpose of the subroutine:
4870 '

4875 ' This subroutine finds the maximum throughput (or number of link
4880 'independent paths) between all sources and destinations.
4885 '

4890 'Variables used in the subroutine:
4895 '

4900 ' D% the destination node
4905 ' 1% the intermediate source node, sometimes the source node
4910 ' J% the intermediate deatination node, sometimes the destination
4915 ' node
4920 ' NON% the number of nodes
4925 ' S% the source node
4930 ' W% the Measure of Effectiveness criterion
4935 ' 1 maximum throughput
4940 ' 2 link independent paths
4945 ' Z% the pointer node (intermediate destination node when retracing
4950 ' the path from destination to source)
4955 '

4960 ' ADJ%() the intermediate source nodes which form the path from
4965 ' source to destination

84

4970 ' DIR%() the direction 'of flow

4975 ' -1 flow leaving the intermediate destination node
4980 ' neutral (no flow entering or leaving)
4985 ' 1 flow entering the intermediate destination node
4990 ' LflBEL%() a label on the node
4995 ' unlabeled
5000 ' 1 labeled
5005 ' SCAN%() a label on the node
5010 ' unscanned
5015 ' 1 scanned
5020 ' TMPFLOO the temporary flow being pushed along the path from source

5025 ' to destination
5030 '

5035 ' CONNECT () the connection matrix for the network

5040 ' CUT() the maximum flow between source and destination
5045 ' FLOWQ the augmented flow in the network
5050 '

5055 '**

5060 '

5065 'Initialization
5070 '

5075 "This loop initializes the output array to zero.

5080 FOR I%=1 TO NCN%
5085 FOR J%=1 TO N0N%
5090 CUT(I%,J%)=0
5095 NEXT J%
5100 NEXT 1%

5105 '

5110 'Choose the source node.

5115 FOR S%=1 TO NCN%
5120 '

5125 'Choose the destination node.

5130 FOR D%=1 TO NCN%
5135 '

5140 'If the source node and the destination node are one and the same, then
5145 'choose a new destination node. Otherwise, continue.
5150 IF (S%=D%) GOTO 6160
5155 '

5160 "This loop initializes the flow along all links to zero.

5165 FOR I%=1 TO N0N%
5170 FOR J%=1 TO NON%
5175 FLCW(I%,J%)=0
5180 NEXT J%
5185 NEXT 1%

5190 '

5195 'This loop initializes the arrays.
5200 FOR I%=1 TO NON%
5205 '

5210 'Set the adjacent nodes to zero (meaning none found yet)

.

5215 ADJ%(I%)=0
5220 '

5225 'Set the direction of flow to neutral (meaning no flow into or out of the

5230 'node yet)

.

5235 DIR%(I%)=0
5240 '

85

5245 'Make all nodes unlabelled and unscanned.
5250 LABEL%(I%)=0
5255 SCAN%(I%)=0
5260 '

5265 'Set the temporary flow entering and leaving all nodes equal to infinity.
5270 TMPFLO(I%)=9.999999E+37
5275 NEXT 1%
5280 '

5285 'Make the source node labelled and unscanned.
5290 LABEL%(S%)=1
5295 '

5300 ' **

5305 '

5310 'Label Updating
5315 '

5320 "This outer loop is necessary because the search for the minimum cut is
5325 'very dependent on how the nodes are numbered.
5330 FOR K%=1 TO NON%
5335 '

5340 "This loop chooses an intermediate source node along a path from the source
5345 'node to the destination node.
5350 FOR I%=1 TO NON%
5355 '

5360 'If the node being examined is labelled and unscanned, then continue.
5365 IF (LABEL%(I%)=0) OR (SCRN%(I%)=1) GOTO 6045
5370 '

5375 'This loop chooses an intermediate destination node along a path from
5380 'source to the destination node.
5385 FOR J%=1 TO NON%
5390 '

5395 'If there is no link present, try another node.
5400 IF (CONNECT (I%,J%)=0) GOTO 6040
5405 '

5410 'If the adjacent node being examined is unlabelled, then the link lies
5415 'along a path from source to destination.
5420 IF (LABEL%(J%)=1) GOTO 6040
5425 '

5430 'If there is flow from the intermediate destination node to the
5435 'intermediate source node, then continue.
5440 IF (FLCW(J%,I%)<=0) GOTO 5585
5445 '

5450 'Put the intermediate source node on the intermediate destination node's
5455 'adjacent list.

5460 ADJ%(J%)=I%
5465 '

5470 'Direct the flow out of the intermediate destination node.
5475 DIR%(J%)=~1
5480 '

5485 ' If the temporary flow from the intermediate destination node to the
5490 'intermediate source node is less than flow already along that link, then
5495 'push that amount of temporary flow along that link. Otherwise, leave the
5500 'flow the same.
5505 IF (TMPFLO(I%)>=FLCW(J&,I%)) GOTO 5520
5510 TMPFLO(J%)=TMPFLO(I%)
5515 GOTO 5535

86

5520 TMPFLO(J%)=FLCW(J%,I%)
5525 '

5530 'Make the intermediate destination node labelled and unscanned.
5535 LABEL%(J%)=1
5540 '

5545 'Make the intermediate source node labelled and scanned.

5550 SCAN%(I%)=1
5555

5560 'If the capacity for flow through the intermediate destination node is less

5565 'than the capacity for flow through the adjacent link from the intermediate

5570 'source node to the intermediate destination node, then use the capacity

5575 'for flow through the intermediate destination node in place of the

5580 'capacity for flow through the link.

5585 IF (CCNNECr(J%,J%)>=CONNECr(I%,J%)) GOTO 5760

5590 '

5595 'If the capacity of the intermediate destination node is greater than the

5600 'flow along the adjacent link from the intermediate source node to the

5605 'intermediate destination node, then continue.

5610 IF (CONNECT(J%,J%)<=FLCH(I%,J%)) GOTO 5915

5615 '

5620 'Put the intermediate source node on the intermediate destination node's
5625 'adjacent list.

5630 ADJ%(J%)=I%
5635 '

5640 'Direct the flow into the intermediate destination node.

5645 DIR%(J%)=1
5650 '

5655 'If the temporary flow from the intermediate source node to the

5660 'intermediate destination node is less than the amount of unused capacity

5665 'at the intermediate destination node, then push that amount of flow to the

5670 'intermediate destination node. If the temporary flow is greater than the

5675 'unused capacity at the intermediate destination node, then only push as

5680 'much flow as the node can handle.
5685 IF (TMPFLO(I%)>=OONNECT(J%,J%)-FLCW(I%,J%)) GOTO 5700
5690 TMPFLO(J%)=TMPFLO(I%)

5695 GOTO 5715
5700 TMPFLO(J%)=CONNECT(J%,J%)-FLOW(I%,J%)
5705 '

5710 'Make the intermediate destination node labelled and unscanned.
5715 LABEL%(J%)=1
5720 '

5725 'Make the intermediate source node labelled and scanned.
5730 SCAN%(I%)=1
5735 GOTO 5915
5740 '

5745 ' If the flow from the intermediate source node to the intermediate
5750 'destination node is less than or equal to the capacity of the link, then
5755 'continue.
5760 IF (CONNECT (I%,J%)<=FLCW(I%,J%)) GOTO 5915
5765 '

5770 'Put the intermediate source node on the intermediate destination node's
5775 'adjacent list.

5780 ADJ%(J%)=I%
5785 '

5790 'Direct the flow into the intermediate destination node.

87

5795 DIR%(J%)=1
5800 '

5805 'If the temporary flow from the intermediate source node to the

5810 'intermediate destination node is less than the amount of unused capacity
5815 'of the link, then push that amount of flow to the intermediate destination
5820 'node. If the temporary flow is greater than the unused capacity of the
5825 'link, then only push as much flow as the link can handle.
5830 IF (TMPFLO(I%)>=CCNNECT(I%,J%)-FL0W(I%,J%)) GOTO 5845

5835 TMPFLO(J%)=TMPFLO(I%)
5840 GOTO 5860
5845 TMH,LO(J%)=CONNECT(I%,J%)-FLCW(I%,J%)
5850 '

5855 'Make the intermediate destination node labelled and unscanned.

5860 . LABEL% (J%) =1

5865 '

5870 'Make the intermediate source node labelled and scanned.

5875 SCAN%(I%)=1
5880 '

5885 '**

5890 '

5895 'Flow Augmentation
5900 '

5905 'If the destination node has been labelled, then augment the flow along the

5910 'path found.

5915 IF (LABEL%(D%)=0) GOTO 6040
5920 '

5925 'Make the intermediate destination node the destination node.
5930 Z%=D%
5935 '

5940 'If the flow is directed into the intermediate destination node, then
5945 'increase the flow along the link between the previous intermediate source

5950 'node and the intermediate destination node by the minimum flow along the

5955 'path being examined.
5960 IF (DIR%(Z%)=1) THEN FLOW (AEJ%(Z%) ,Z%) =FLCW(ADJ%(Z%
),Z%)+TMPFLO(D%)
5965 '

5970 'If the flow is directed out of the intermediate destination node, then

5975 'decrease the flow along the link between the previous intermediate source

5980 'node and the intermediate destination node by the minimum flow along the

5985 'path being examined.
5990 IF (DIR%(Z%)=-1) THEN FLOW(AEJ%(Z%) ,Z%)=FLCW(AEJ%(Z

%),Z%)-TMPFLO(D%)
5995 '

6000 'If the previous intermediate source node is the source node, then repeat

6005 'the process with the inproved flow calculated above. If the previous

6010 'intermediate source node was not the source node, then make the previous
6015 ' intermediate source node the intermediate destination node and continue

6020 'retracing the path to the source node.
6025 IF (ADJ%(Z%)=S%) GOTO 5200
6030 Z%=ADJ%(Z%)

6035 GOTO 5960
6040 NEXT J%
6045 NEXT 1%

6050 NEXT K%
6055 '

88

6060 'Since the flow entering the destination node is the same as the flow

6065 'across the minimum cut (if the destination node was not in the minimum

6070 'cut), then sum the flow entering the destination node to determine the
6075 'maximum throughput between source and destination.
6080 FOR I%=1 TO NCN%

6085 CUT(S%,D%)=CUT(S%,D%)+FLOW(I%,D%)
6090 NEXT 1%

6095 '

6100 'It is possible that the destination node was part of the minimum cut (and

6105 'this will happen if the node has a very low throughput) . If this is so,

6110 'then the minimum cut has no meaning, and the destination node is the

6115 'minimum cut. It is also possible that the minimum cut is valid, but the

6120 'source node is incapable of delivering that amount of flow. In this case,

6125 'the source node is the minimum cut.

6130 IF (W%<>1) GOTO 6160

6135 IF (CUT(S%,D%)=0) GOTO 6160

6140 IF (OONNECr(S%,S%)>=OONNECr(D%,D%)) GOTO 6155

6145 IF (00NNECT(S%,S%)<OJT(S%,D%)) THEN CDT(S%,D%) =0ONNECT(S%,S%)

6150 GOTO 6160
6155 IF (GONNECT(D%,D%)<CUT(S%,D%)) THEN CUT(S%,D%) =03NNECT(D%,D%)

6160 NEXT D%
6165 NEXT S%
6170 '

6175 '**

6180 '

6185 'Output Block
6190 '

6195 'Print the maximum throughput.

6200 PRINT
6205 LPRINT
6210 B$="CUT("
6215 C$=","
6220 D$=")="
6225 E$="IND("
6230 FOR I%=1 TO NCN%
6235 FOR J%=1 TO NCN%
6240 IF (W%=1) THEN PRINT USING "\ \##!##\ \##.#####";B$,I%,C$, J%,D$,OJT(I%

,J%)

6245 IF (W%=1) THEN LPRINT USING "\ \##!##\ \##. #####";B$, I%,C$, J%,D$,CUT(I

%,J%)

6250 IF (W%=2) THEN PRINT USING n
\ \##!##\ \##";E$,I%,C$,J%,D$,CUT(I%,J%)

6255 IF (W%=2) THEN LPRINT USING "\ \##!##\ \##";E$,I%,C$, J%,D$,OJT(I%,J%)

6260 NEXT J%
6265 NEXT 1%

6270 RETURN
6275 '

6280 '**

6285 '

6290 'RELIABILITY ALGORITHM
6295 '

6300 'Purpose of the subroutine:
6305 '

6310 ' This subroutine calculates the probability that at least one path

6315 'exists between a source and destination using state enumeration. The

6320 'subroutine also calculates the probability that the network is connected.

89

6325 '

6330 'Variables used in the subroutine:

6335 '

6340 ' A% the Measure of Effectiveness criterion for Dijkstra's

6345 ' Shortest Path First Algorithm
6350 ' 1 shortest delay path
6355 ' 2 highest reliable path
6360 ' 3 minimum number of links

6365 ' 4 minimum number of links
6370 ' CONN the connectivity of the network
6375 ' 1% the source node

6380 ' J% the destination node
6385 ' K% the node/link number
6390 ' M% the number of up links and nodes

6395 ' NXAN% the number of links and nodes in the network

6400 ' N0N% the number of nodes in the network

6405 ' SUM% the number of connected nodes per state

6410 ' TOTAL% the number of connected nodes before degradation
6415 '

6420 ' DEST%() the destination node

6425 ' PRB() the probability of link or node survival

6430 ' S0URCE%() the source node
6435 ' UPDCWN%() the state of the link or node

6440 ' down
6445 ' 1 up
6450 '

6455 ' CONNECT!) the connection matrix for the network
6460 ' PROBO the probability connectiona matrix
6465 ' RELO
6470 ' SPM%() the routing directory for the network
6475 '

6480 '**

6485 '

6490 ' Initilization
6495

6500 'Set the number of links and nodes in the network to zero.
6505 NXAN%=0
6510 '

6515 "This loop determines the number of links and nodes in the network to
6520 'determine the array sizes.
6525 FOR I%=1 TO NON%

6530 FOR J%=1 TO N3N%
6535 IF (CONNECT(I%,J%)<>0) THEN NOLAN%=NOLAN%+1
6540 NEXT J%
6545 NEXT 1%

6550 DIM DEST%(NOLAN%) , PRB(N0LAN%) , SOURCE%(NXAN%) , UPD0WN% (NCLAN%)

6555 DIM REL(NON%,NON%) , SAV(NCN%,NDN%)
6560 '

6565 'Set the number of links and nodes in the network to zero.
6570 NOLAN%=0
6575 '

6580 'Set the node/link number to one.
6585 K%=1
6590 '

6595 "This loop numbers all nodes and links.

90

6600 FOR I%=1 TO NON%
6605 FOE J%=1 TO NCN%
6610 '

6615 'If the link or node exists, then number it.
6620 IF (CONNECT(I%,J%)=0) GOTO 6685
6625 '

6630 'Store, for quick reference, the probability of survival, the source node,
6635 'and the destination node under its node/link number.
6640 PRB(K%)=PROB(I%,J%)
6645 SOURCE! (K%)=I%
6650 DEST%(K%)=J%
6655 '

6660 'Increment the node/link number.
6665 K%=K%+1

6670 '

6675 'Increment the number of links and nodes.
6680 N0LAN%=NCLAN%+1
6685 NEXT J%
6690 NEXT 1%

6695 '

6700 'This loop saves the connection matrix for future use and sets the
6705 'reliability matrix to zero.
6710 FOR I%=1 TO NON%
6715 FOR J%=1 TO NON%
6720 SAV(I%,J%)=CONNECT(I%,J%)
6725 REL(I%,J%)=0
6730 NEXT J%
6735 NEXT 1%

6740 '

6745 'Initialize the states of all the nodes and links to down.

6750 FOR I%=1 TO NOLMJ%
6755 UPDCWN%(I%)=0
6760 NEXT 1%

6765 '

6770 'Make the probability that the network is connected zero.

6775 POC=0

6780 '

6785 'Set the number of links and nodes to zero.

6790 M%=0
6795 '

6800 ' **

6805 '

6810 'State Block
6815 '

6820 'Point the node/link to the first element.
6825 K%=1
6830 '

6835 'If the node or link is down, continue.
6840 IF (UPDCWN%(K%)=1) GOTO 7180
6845 M%=M%+1
6850 UPD0WN%(K%)=1
6855 '

6860 'Restore the connection matrix.

6865 FOR I%=1 TO NCN%
6870 FOR J%=1 TO NCN%

91

6875 CONNECT(I%,J%)=SAV(I%,J%)
6880 NEXT J%
6885 NEXT 1%

6890 '

6895 'This loop removes all the down nodes and links from the network.
6900 FOR I%=1 TO NOLAN%
6905 '

6910 'If the node or link being examined is down, then remove it from the
6915 'network.
6920 IF (UPD0WN%(I%)=1) GOTO 6965
6925 CONNECT (SOURCE%(I%) ,DEST%(I%)) =0

6930 '

6935 'If the node being examined is down, then remove all of its adjacent links.

6940 IF (SOURCE%(I%)<>DEST%(I%)) GOTO 6965
6945 FOR J%=1 TO N0N%
6950 CONNECT (SCURCE%(I%) ,J%)=0
6955 CONNECT(J%,DEST%(I%))=0
6960 NEXT J%
6965 NEXT 1%

6970 '

6975 'Call Dijkstra's Shortest Path First Algorithm to determine the routing
6980 'matrix for the network. The routing matrix is just a form of the
6985 ' reachibility matrix.

6990 GOSUB 3955
6995 '

7000 'Find the product of the probabilities of failures of the down elements and

7005 'the probabilities of successes of the up elements.
7010 T=l
7015 FOR I%=1 TO NQLAN%

7020 IF (UPDCHN%(I%)=0) THEN T=T*(1-PRB(I%)

)

7025 IF (UPD0WN%(I%)=1) THEN T=T*PRB(I%)
7030 NEXT 1%

7035 '

7040 'If a path exists between the source and destination being examined, then
7045 'add in the probability to the total path reliability.

7050 FOR I%=1 TO N0N%
7055 FOR J%=1 TO NON%
7060 IF (SPM%(I%,J%)<>0) THEN REL(I%, J%) =REL(I%,J%) +T
7065 NEXT J%
7070 NEXT 1%

7075 '

7080 'Set the number of connected node pairs to zero.
7085 SOM%=0
7090 '

7095 "This loop totals the number of connected node pairs.
7100 FOR I%=1 TO NON%
7105 FOR J%=1 TO NCN%
7110 IF (SPM%(I%,J%)<>0) THEN SUM%=SDM%+1
7115 NEXT J%
7120 NEXT 1%

7125 '

7130 'Calculate the connectivity of the network.
7135 OONN=SUM%/TOTAL%
7140 '

7145 'If the network has as many connected node pairs as the original network.

92

7150 'then add in the probability to the network reliability.
7155 IF (C0NN=1) THEN P0C=P0C+T
7160 '

7165 'If all links are up, then go to the Output Block.
7170 IF (M%=N0LAN%) GOTO 7230
7175 GOTO 6825
7180 M%=M%-1
7185 UPD0WN% (K%) =0

7190 K%=K%+1
7195 GOTO 6840
7200 '

7205 '**

7210 '

7215 'Output Block
7220 '

7225 'Print the
7230 PRINT
7235 LPRINT
7240 BS="REL("
7245 C$=\ n

7250 D$=")="
7255 FOR I%=1 TO KON%
7260 FOR J%=1 TO NCN%
7265 PRINT USING n

\ \##!##\ \#. #####";B$,I%,C$,J%,D$,REL(I%, J%)

7270 LPRINT USING "\ \##!##\ \#. #####";B$,I%,CS,J%,D$,REL(I%, J%)
7275 NEXT J%

7280 NEXT 1%

7285 PRINT
7290 LPRINT
7295 E$="The probability the network is connected is "

7300 PRINT USING n
\ \#.#####";E$,POC

7305 LPRINT USING "\ \#.#####";E?,POC
7310 RETURN
7315 '

7320 '**

7325 '

7330 'CHANGE THE CONNECTION MATRIX
7335 '

7340 'Purpose of the subroutine:
7345 '

7350 ' This subroutine calculates the binary connection matrix for the
7355 'network.
7360 '

7365 'Variables used in the subroutine:
7370 '

7375 ' NDN% the number of nodes in the network
7380 '

7385 ' GONNECTO the connection matrix for the network
7390 ' HOLDQ the connection matrix for the network
7395 '

7400 '**

7405 '

7410 "This loop sets all link and node weights to one.

7415 FOR I%=1 TO NCN%
7420 FOR J%=1 TO NON%

9?

7425 '

7430 'If the link or node exists, then set its weight to one. Otherwise, leave

7435 'the weight zero.

7440 CONNECT(I%,J%)=0
7445 IF (HOLD(I%,J%)<>0) THEN CONNECT (1%, J%) =1

7450 NEXT J%
7455 NEXT 1%

7460 RETURN
7465 '

7470 '**

7475 '

7480 ' CONNECTIVITY
7485 '

7490 'Purpose of the subroutine:

7495 '

7500 ' This subroutine determines the before-degradation and
7505 'after-degradation terms for the Connectivity MOE.

7510 '

7515 'Variables used in the subroutine:
7520 '

7525 ' CNP% the number of connected node pairs
7530 ' NCN% the number of nodes in the network
7535 '

7540 ' SPM%() the routing directory for routing messages
7545 '

7550 ***

7555 '

7560 'Call Dijkstra's Shortest Path First Algorithm to determine the routing
7565 'matrix for the network. The routing matrix is just a form of the

7570 'reachability matrix.
7575 GOSUB 3955
7580 '

7585 'Set the number of connected node pairs to zero.
7590 CNP%=0
7595 '

7600 'This loop totals the number of connected node pairs.

7605 FOR I%=1 TO NON%
7610 FOR J%=1 TO NCN%

7615 IF (SPM%(I%,J%)O0) THEN CNP%=CNP%+1
7620 NEXT J%
7625 NEXT 1%

7630 RETURN
7635 '

7640 '**

7645 '

7650 'RELIABLE THROUGHPUT
7655 '

7660 'Purpose of the subroutine:
7665 '

7670 ' This subroutine calculates the before-degradation and
7675 'after-degradation terms for the Relative Throughput MOE.

7680 '

7685 'Variables used in the subroutine:
7690 '

7695 ' NON% the number of nodes in the network

94

7700 ' RTR the sum of the link and node probabilities
7705 '

7710 ' PROB() the probability connection matrix
7715 '

7720 ' **

7725 'Set the sum of the link and node probabilities to zero.

7730 RTR=0
7735 "

7740 "This loop sums the link and node probabilities.
7745 FOR I%=1 TO NCN%
7750 FOR J%=1 TO NCN%
7755 RTR=RTR+PROB(I%,J%)
7760 NEXT J%
7765 NEXT 1%

7770 RETURN
7775 '

7780 '**

7785 '

7790 'NETWORK RELIABILITY
7795 '

7800 'Purpose of the subroutine:
7805 '

7810 ' This subroutine calculates the before-degradation and

7815 'after-degradation terms for the Network Reliability MOE.

7820 '

7825 'Variables used in the subroutine:

7830 '

7835 ' CNP% the number of connected node pairs
7840 ' PDCT the product of the number of connected node pairs and the sum

7845 ' of the link and node probabilities
7850 ' RTR the sum of the link and node probabilities
7855 '

7860 '**

7865 '

7870 'Call the Connectivity subroutine.

7875 GOSUB 7575
7880 '

7885 'Call the Reliable Throughput subroutine.

7890 GOSUB 7730
7895 '

7900 'Calculate the Network Reliability term.

7905 PDCT=CNP%*RTR
7910 RETURN

95

Appendix C: A GRAFTHY User's Manual

?6

CO Introduction to the User's Manual

Since GRAFTHY was intended to be user friendly for non-technical users and

flexible enough for users to play "what if" games, the weights input to the

program can either correspond to a relative delay on the links and nodes or to

an actual bit rate on the links and nodes. For example, if there are two links

in the computer network and the second link is twice as slow as the first link,

then the first and second link weights could be 1 and 2 respectively. Weights

of 2 and 4, 4 and 8, etc. would also work. Therefore the user is not required

to know what the actual bit rates are but only the relative delay between them.

However, if the bit rates for the network under test are known, then the

bit rates must be converted to the proper weights. To convert the bit rates on

the nodes and links to weights, a standard should be chosen. Then each bit

rate should be divided into the standard to determine their weights. This can

be expressed as:

WEIGHT = _R_ (2.1)

STD

where

WEIGHT is the weight of the node or link in the model,

R is the bit rate of the node or link in the network,

STD is the standard bit rate chosen.

For example, if there are three links in the computer network which have bit

rates of 56 Kbps, 19.2 Kbps, and 96OO bps respectively, and the standard is 56

Kbps, then the link weights are 1, 2.917. and 5.714 respectively.

This user's manual is valid for both the FORTRAN GRAFTHY and the BASIC

GRAFTHY. However, please note that the BASIC GRAFTHY requires a printer

attached to the personal computer.

C.1 Inputs to GRAFTHY

There are three different blocks of inputs to GRAFTHY. The first input

block determines which MOE's are needed by the user. The second input block

reads in the network to be examined. The third input block is called the event

block, and its purpose is to read in changes to the network. All three of
these blocks are discussed below.

C.1.1 Requesting Different Measures of Effectiveness

Once the program has been loaded into memory and the command has been
given to start execution, GRAFTHY will respond with!

97

The following is a list of Measures of Effectiveness (MOE's) which this

algorithm will calculate, and all the MOE's will be calculated unless the

algorithm is told otherwise. To prevent a MOE from being calculated, just

type in a negative response when prompted. The default answer is yes (the MOE

is needed).

Is the Shortest Delay Path MOE needed?

GRAFTHY will then pause, waiting for user input. If the user does not want the

MOE calculated, then a response of n, N, no, or NO will prevent the MOE from

being calculated. Any other input (including only a carriage return) will

cause that MOE to be calculated for the network.

The above discussion also holds true for the next eight MOE questions that

GRAFTHY will ask the user. They are:

Is the Highest Reliable Path MOE needed?

Is the Reachability MOE needed?

Is the Maximum Plow MOE needed?

Is the Number of Link Independent Paths MOE needed?

Is the Source to Destination Reliability MOE needed?

Is the Connectivity MOE needed?

Is the Reliable Throughput needed?

Is the Network Reliability MOE needed?

After the user responds to each MOE question, an echo print occurs reminding

the user which MOE's were requested for that run.

C.1.2 Network Input

After all the MOE questions have been answered, the network under test is

then entered into GRAFTHY. The program will ask:

How many nodes in the network?

GRAFTHY will then pause, waiting for user input. The number of nodes in the

network must be a non-negative integer value since it is not logical to

consider either a negative number of nodes or a fractional number of nodes.

98

Once the number of nodes has been input to the program, an echo print

will occur. GRAFTHY will then display:

This is the input block for all nodes. Input the node, its node weight,

and its probability of survival. Input 0,0,0 when finished.

GRAFTHY will then pause, waiting for the user to input the node number, its

weight, and its probability of survival. The node number will be an integer

between one and the number of nodes in the network inclusive. The node weight

will be a real value greater than zero corresponding to the delay at that node.

In GRAFTHY, a zero weight does not correspond to an infinite bit rate (no

delay), but to the link or node being inoperative. The probability of node

survival will be a fraction between and 0.999. Probabilities of exactly one

are not allowed in GRAFTHY, but no loss of generality occurs since real-world

elements are not error free.

After each user response, an echo print will occur. Once all nodes, their

weights, and their probabilities of survival have been input to GRAFTHY, the

user should type 0,0,0 to terminate the node input. GRAFTHY will then respond

with:

This is the input block for all bidirectional links. Input the two nodes,

the link weight, and the link probability of survival. Input 0,0,0,0 when

finished.

Again, GRAFTHY will pause, waiting for user input. Since bidirectional links

allow communication in either direction between the two nodes that the link

connects, the order that the node numbers are input does not matter. For

example, the link 1,2 is the same as the link 2,1. The rules for node number

input, weight input, and probability of survival input are the same as those

listed above.

After each user response, an echo print will occur. Once all the

bidirectional links, their weights, and their probabilities of survival have

been input to GRAFTHY, the user should type 0,0,0,0 to terminate the

bidirectional link input. GRAFTHY will then display:

This is the input block for all directed links. Input the source node,

the destination node, the link weight, and the link probability of survival.

Input 0,0,0,0 when finished.

GRAFTHY will then pause, waiting for the user to input the source node number,

the destination node number, the link weight, and the probability of link

survival in that order. The rules for node number input, weight input, and

probability of survival input are the same as those listed above.

99

After each user response, an echo print will occur. Once all the directed

links, their weights, and their probabilities of survival have been input to

GRAFTHY, the user should type 0,0,0,0 to terminate the directed link input.

C.1.3 Entering Changes to the Network

After the program has calculated and output the before-degradation terms

for all the MOE's requested, changes to the network may be entered into GRAFTHY

if the user so desires. GRAFTHY will display:

Should the program continue (default yes)

GRAFTHY will then pause, waiting for user input. If the user does not want to

continue, then a response of n, N, no, or NO will terminate the program. Any

other input (including only a carriage return) will cause the program to

continue. If the user should terminate the program at the first event, the

user should expect no network MOE's to be output since these are ratios of

after-degradation terms to before-degradation terms.

If the user has chosen to continue the program, GRAFTHY will then display:

This is the event block for the program. At this point, the weights and

probabilities of the nodes and links can be changed, or nodes and links may be

removed from the network entirely. Input the degradated nodes and links only.

All other nodes and links will remain the same.

This is the event block for the nodes. Input the node, the new node

weight, and the new probability of node survival. Input 0,0,0 when finished.

GRAFTHY will then pause, waiting for the user to input changes to the network.

Only changes to the links and nodes should be input to GRAFTHY. All other

link and node weights and probabilities of survival will remain the same. The

input to the event block behaves identically to the input to the input block

and needs no further explanation.

The above discussion also holds true for the next two input events that

GRAFTHY will ask the user. They are:

This is the event block for all bidirectional links. Input the two nodes,

the new link weight, and the new probability of link survival. Input 0,0,0,0
when finished.

This is the event block for all directed links. Input the source node,

the destination node, the new link weight, and the new probability of link

survival. Input 0,0,0,0 when finished.

100

Once all the changes have been input to the program, the after-degradation
terms will be calculated and output for all the MOE's requested. The program
will then return to the event block, allowing the user to make additional
changes to the network or terminate the program.

C.2 Outputs from GRAFTHY

All outputs from GRAFTHY will be weights corresponding to the delay on the

nodes or links. If the actual bit rates for the nodes and links were unknown,

and only the relative delays were known, then the output weights are the

weights relative to the input weights. If the bit rates were known for the

network under test, then the output weights can be converted directly to bit

rates for the network.

Nine different output MOE's are possible with GRAFTHY. They arei the

shortest delay path outputs, the highest reliable path outputs, the

reachability outputs, the maximum throughput outputs, the number of link

independent path outputs, the reliability outputs, the connectivity outputs,

the reliabile throughput outputs, and the network reliability outputs. These

GRAFTHY outputs are discussed below.

Note that the first pointer of each output array is the source node, and
the second pointer is the destination node. The outputs for the routing
matrices are adjacent nodes to the source nodes along paths to the destinations,

depending on the criterion used (shortest delay path, highest reliable path,

etc.).

C.2.1 Shortest Delay Path Outputs

The output from Dijkstra's Shortest Path First Algorithm will be a weight
corresponding to the delay between the given source and destination taking into

account processing delay at each of the nodes along the path. The SEP matrix
is the routing matrix for the shortest delay path criterion. The WGT matrix
gives the total weight from the given source to the given destination.

If the bit rates for the nodes and links were known originally, then to

convert the output weight to a delay in seconds, the message length should be

divided by the standard and multiplied by the shortest delay path weight. This
can be expressed as

101

ML * SDFW (5.1)

STD

where

D is the delay from source to destination in seconds,

ML is the message length in bits,

STD is the standard bit rate chosen in bps,

SDPW is the shortest delay path weight.

For example, if weight 1 (the standard) corresponds to a bit rate of 56 Kbps,

the message length is 1 Kbits, and the shortest delay path weight is 7, then

the delay from the source to destination is 0.125 seconds.

C.2.2 Highest Reliable Path Outputs

The HRPM matrix is the routing matrix for the highest reliable path

criterion. The PROS matrix gives the highest reliable path probability from

the given source to the given destination taking into account the probability

of node survival at each node along the path, including the source and

destination node.

0.2.3 Reachability Outputs

The LENM matrix is the routing matrix for the minimum number of links

criterion. The LENGTH matrix gives the minimum number of links that a message

must traverse when traveling from the given source to the given destination.

0.2.4 Maximum Throughput Outputs

The output from Ford and Fulkerson's Min-Cut Max-Flow Algorithm will be a

weight corresponding to the throughput between the given source and destination

node taking into account the processing delay at each of the nodes, including

the source and the destination nodes. The OUT matrix gives the maximum

throughput between the given source and the given destination.

If the bit rates for the nodes and links were known originally, then to

convert the output weight to a throughput in bits per second, the standard

should be multiplied by a maximum-flow weight. In other words,

102

STD * MFW (3.2)

where

T ia the maximum throughput between a given source and destination

in bps,

STD is the standard ohosen in bps,

M5V is the maximum-flow weight.

For example, if weight 1 (the standard) corresponds to a bit rate of 96OO bps,

and the maximum-flow weight is 1.20, then the maximum throughput from source

to destination is 11.52 Kbps.

G.2.5 Number of Link Independent Path Outputs

The IHD matrix gives the number of link independent paths that a message

could traverse when traveling from the given source to the given destination.

C.2.6 Reliability Outputs

The HEL matrix gives the probability that at least one path exists between

the given source and destination nodes. The probability that the network is

connected gives the probability that every connected node pair before

degradation is still connected after degradation.

C.2.7 Connectivity Outputs

The connectivity of the network gives the number of communicating node
pairs after degradation divided by the number of communicating node pairs

before degradation.

C.2.8 Reliable Throughput Outputs

The reliable throughput of the network gives the sum of the link and node

probabilities after degradation divided by the sum of the link and node
probabilities before degradation.

10'

G.2.9 Network Reliability Outputs

The network reliability gives the product of the connectivity of the

network and the reliable throughput of the network.

C.2.10 Example Outputs

Examples of the above-mentioned MOE outputs can be found in Appendix D.

104

Appendix D: An Example GRAJTHY Run

105

The example network shown in Figure D.1 was used to produce the following

GRAFTHY output. The example run serves a dual purpose: to show a typical

GRAFTHY output and to provide a demonstration the user can execute to become

familiar with GRAFTHY and its procedures.

Should the user want to duplicate the example run, then all the MOE's

should be requested. The example network shown in Figure E.1 is a three-node

network with one bidirectional link and two directed links. For the initial

input to the program, the node inputs should be:

1, It 0.95 (follow each line of input with a carriage return)

2, 1, 0.95

3, 2. 0.9

0, 0,

The bidirectional link inputs should be:

1, 2. 3, 0.7

0, 0, 0,

The directed link inputs should be:

2, 3, 4, 0.6

3, 1, 6, 0.8

0, 0, 0,

For the first event, the node inputs should be:

1, 1.5. 0.95

2, 1.5, 0.95

3, 2.5, 0.85
0, 0,

The bidirectional link input should be:

0, 0, 0,

The directed link input should be:

2, 3, 0,

3, 1, 6. 0.7
0, 0, 0,

106

For the second event, the node inputs should be:

1, 3, 0.8

2, 0,

3, 4, 0.7

0, 0,

The bidirectional link input should be:

0, 0, 0,

The directed link inputs should be:

3, 1, 6, 0.5

0, 0, 0,

The approximate times for calculating and printing each block of MOE's on

the Z-100 desktop computer for the example network are: six seconds for SPM

and WGT, seven seconds for HKPM and PROB, nine seconds for LENM and LENGTH,

27 seconds for CUT, 26 seconds for IND, six minutes and 28 seconds for REL

and the probability that the network is connected, and nine seconds for the

remaining MOE's.

107

Initial
network:

0.90
2.0

Network after
the first event

0.85
2.5

Network after
the second event:

P- 0,.70

w= 3-.0

P" ,80
(1

w= 3.,0

Figure D.1 An example network with two example degradation events.

1C6

SDP= 1

HRP= 1

RCH= 1

MCMF= 1

NOLIP= 1

SDRL= 1

CON= 1

RT- 1

NR= 1

The number of noi

Node Input
1 1.00 0.950
2 1.00 0.950

3 2.00 0.900

Bidirectional Link Input:

1 2 3.00 0.700

Directed Link Input:

2 3 4.00 0.600

3 1 6.00 0.800

SPM(1,

Jl:

WGT(1,1)- 1.00

SPM(1, 2 WGT(1, 2)- 5-00

SPM(1, 3) = 2 WGT(1, 3)= 11.00

SPM(2, 1)- 1 WGT(2, 1)- 5.00

SPM(2, 2- WGT(2, 2)- 1.00

SPM(2, 3)- 3 WGT(2, 3)= 7.00
SPM(3, D= 1 WGT(3, 1)- 9.00

SPM(3, 2)- 1 VGT(3, 2)= 13.00

SPM(3, 3) = WGT(3. 3)- 2.00

HEPM(1, 1)- PR0B(1, 1)= 0.950
HEPH(1, 2). 2 PH0B(1, 2)= 0.632

HRPM(1, 'r 2 PR0B(1, 3)- 0.341

HEPM(2, i> 1 PR0B(2, 1)= 0.632

HRPM(2, 2) = PR0B(2, 2)=. 0.950
HRPM(2, 3) = 3 PR0B(2, 3)- 0.513

HRPM(3i 1)= 1 PR0B(3, 0= 0.684

HRPM(3i 2)- 1 PR03(3. 2)= 0.455
HEPM(3. 5)- PR0B(3. 3)- 0.900

LENM(1, 1)- LENGTH(1, 1)=

LENM(1, 2)- 2 LENGTH(1, 2)= 1

LENM(1, 3)- 2 LENGTH(1, 3)- 2

LENM(2, 1)- 1 LENGTH(2, 1)= 1

LENM(2, 2) = LENGTH(2, 2)=.

LENM(2, 3)- 3 LENGTH(2, 3)- 1

LENM(3, 1 - 1 LENGTH(3. 1)- 1

LENM(3, 2 - 1 LENGTH(3. 2)= 2

LENM(3, ,
3)= LENGTH(3. 3)-

109

CUT(1, 1)

CUT' 1. 2)

raw 1. 3)

CUT(2, 1)

CUTi 2. 2)

CUTi 2, 3)
CUTI 3, 1)

CUTI 3, 2)

CTT(3, 3)

IND(1, 1)

IND(1, 2)

IND(1i 3)

IND(2, 1)

IND(2, 2
)

IND(2, 3)

ITO(3, 1)

IND(3, 2)

IND(3, 3)

REL(1. 1)

REL(1. 2)

REL(1, 3)

REL(2, 1)

REL(2, 2)

EEL(2, 3)
EEL(3, 1)

HELi 3, 2)

HEL(3, 3)

0.00000

0.33333
0.25000
0.50000
0.00000
0.25000
0.16667
0.16667
0.00000

1

1

2

1

1

1

0.00000
0.63175
0.54114
0.74871
0.00000
0.51300
0.68400
0.45486
0.00000

The probability the network is connected is 0.27292

Node Changes:

1 1.50 0.950
2 1.50 0.950
3 2.50 0.850

Bidirectional Link Changes:

Directed Link Changes:

2 3 0.00 0.000

3 1 6.00 0.700

1, 1)=

1, 2) =

1, 3) =

SPM(

SPM(
SPM(

SPM(2, 1)-

SPM(2, 2)-
SPM(2, 3)-
SPM(3, 1}-
SPM(3. 2) =

SPM(3, 3) =

WGT(

WGT(

WGT(
WGT(2,

1. 1) 1.

1, 2) =

1, J)-
1

WGT(2, 2)=
WGT(2, 3)
WGT(
WGT(
WGT(

50

00

infinity
4.00
1.50

infinity

1). 10.00

2)= 12.50
3)= 2.50

110

HEPM(1, 1).
HRPM(1, 2) =

HRPM(1, 3).
HEPM(2, 1).

HRPM(2, 2).
HBPM(2, 3)=
HHPM(3, 1).

HRPM(3, 2). 1

HRPM(3, 3)=

LENM(1, 1).

LENM(1, 2)-
LENM(1, 3)=
LENM(2, 1).

LENM(2, 2)-
LENM(2, 3)=
LENM(3. 1)=

LENM(3, 2)= 1

LENM(3, JJ-

PROB(1, 1). 0.950
PROB(1, 2)= 0.632
PR0B(1, 3)= 0.000
PR0B(2, 1)- O.632
PR0B(2, 2)= 0.950
PR0B(2, 3)= 0.000
PR0B(3, 1)» 0.565
PR0B(3. 2)- 0.376
PR0B(3, 3)" 0.850

LENGTH(1,1)-
LENGTH(1, 2)- 1

LENGTH(1, 3)= infinity
LENGTH(2, 1)- 1

LENGTH(2, 2)-
LENGTH

(

2, })- infinity
LENGTH(3, 1)- 1

LENGTH(3, 21- 2

LENGTH(3, 3)-

CUT! 1, 1)

CUT(1. 2)

CTJTl 1, 3)

CUT' 2, 1)

CUTi 2, 2)

CUT(2, 3)

cut(3, 1)

CUTI 3, 2)

CUT(3, 3)

IND(1, 1)

IND(1. 2)

IHD(1, 3)

IND(2, 1)

IHffl 2, 2)

IND(2, 3)

DCB 3, 1
)

DJDi 3, 2)

IKD(3, 3)

REL(1, 1}
REL(1, 2)

REL(1, 3)

REL(2, 1)

REL(2, 2)

REL(2, 3)

REL(3, 1)

REL(3, 2)

REL(3, 3)

0.00000
0.66667
0.00000
0.66667
0.00000
0.00000
0.16667
0.16667
0.00000

1

1

1

1

0.00000
0.63175
0.00000
0.63175
0.00000
0.00000
0.56525
0.37589
0.00000

The probability the network is connected ia 0.00000

The connectivity of the network ia .6666667

111

The reliable throughput of the network is .86607 13

The network reliability of the network is .5773809

Node Changes:

1 3.00 0.800
2 0.00 0.000

3 4.00 0.700

Bidirectional Link Changes:

Directed Link Changes:

3 1 6.00 0.500

SPM(1, 1)= WGT(1, 1)- 3.00

SPM(1, 2)-= WGT(1, 2)* infinity

SPM(1, 3)= WGT(1, 3)- infinity

SPM(2, 1) = WGT(2, 1) = infinity

SPM(2, 2)= WGT(2, 2)=. 0.00

SPM(2, 3)- WGT(2, 3)= infinity

SPM(3, 1)= 1 «GT(3, 1)- 15.00

SPM(3, 2)= *GT(3, 2)- infinity

SPM(3, 3)= WGT(3, 3)= 4.00

HKPM(1, 1)- PR0B(1,1)= 0.800

HKPM(1, 2)= PR0B(1, 2)= 0.000

HRPM(1, 3)= PH0B(1, 3)- 0.000

HRPM(2, 1)- PR0B(2, 1)= 0.000

HRPM(2, 2)» PR0B(2, 2)= 0.000

HRPM(2, 3)- PR0B(2, 3)= 0.000

HRPM(3, 1)= 1 PR0B(3, 1)- 0.280

HRPM(3, 2)= PR0B(3. 2)- 0.000

HRPM(3, 3)= PR0B(3, 3)= 0.700

LENI1(1, 1)= LENGTH(1, 1) =

LENM(1, 2)= LENGTH

(

1, 2)- infinity

LENM(1, 3)= LENGTH(1, 3)= infinity

LENM(2, 1)= LENGTH(2, 1)=. infinity

LENM(2, 2)- LENGTH(2, 2)-

LENM(2, 3)- LENGTH(2, 3)= infinity

LENM(3, 1)- 1 LENGTH(3, 1) = 1

LENM(3, 2)- LENGTH(5, 2)= infinity

LENM(3, 3)- LENGTH(3, 3)-

CUT(1, 1)- 0.00000

OTT(1, 2)- 0.00000

CDT(1, 3)" 0.00000
CUT(2, 1)= 0.00000

CUT(2, 2)= 0.00000

CUT(2, 3)= 0.00000

CUT(3, 1)= 0.16667

cut(3, 2)= 0.00000

0UT(3, 3)= 0.00000

112

nruf 1, i)» o

IND(1,2)-
DJD(1, 3)-

DTM 2, 1)=

KM 2, 2)-

DIM 2, 3)=
DJD(3, 1)- 1

QtU 3, 2)-

DJD(3, 3)=

REL(1, 1)-= 0.00000
HEL(1, 2)- 0.00000
REL(1, 3)= 0.00000

REL(2, 1)» 0.00000
HEL(2, 2)» 0.00000
HEL(2, 3)= 0.00000

REL(3, 1) = 0.28000
REL(3. 2)= 0.00000
REL(3, 3)= 0.00000

The probability the network is connected is 0.00000

The connectivity of the network is .1666667

The reliable throughput of the network is .3571428

The network reliability of the network is 5.952381E-02

113

A COMPUTER NETWORK SIMULATION UTILIZING GRAPH THEORY TO
CALCULATE MEASURES OF EFFECTIVENESS

by

RUSSELL DEAN THOMAS

B.S., Kansas State University, 1983

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCES

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1984

ABSTRACT

This paper contains a description of a computer network simulation

program which utilizes graph theory to calculate the following

Measures of Effectiveness (MOE's): Shortest Delay Path, Highest

Reliable Path, Reachability, Maximum Throughput, Number of Link

Independent Paths, Reliability, Connectivity, and two independently

developed MOE's, Reliable Throughput and Network Reliability.

